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Abstract In this paper, we consider a multi-pursuer single-superior-evader pursuit-evasion game where
the evader has a speed that is similar to or higher than the speed of each pursuer. A new fuzzy rein-
forcement learning algorithm is proposed in this work. The proposed algorithm uses the well-known
Apollonius circle mechanism to define the capture region of the learning pursuer based on its loca-
tion and the location of the superior evader. The proposed algorithm uses the Apollonius circle with
a developed formation control approach in the tuning mechanism of the fuzzy logic controller (FLC)
of the learning pursuer so that one or some of the learning pursuers can capture the superior evader.
The formation control mechanism used by the proposed algorithm guarantees that the pursuers are
distributed around the superior evader in order to avoid collision between pursuers. The formation con-
trol mechanism used by the proposed algorithm also makes the Apollonius circles of each two adjacent
pursuers intersect or be at least tangent to each other so that the capture of the superior evader can
occur. The proposed algorithm is a decentralized algorithm as no communication among the pursuers
is required. The only information the proposed algorithm requires is the position and the speed of the
superior evader. The proposed algorithm is used to learn different multi-pursuer single-superior-evader
pursuit-evasion games. The simulation results show the effectiveness of the proposed algorithm.

Keywords Fuzzy control · Reinforcement learning · Pursuit-evasion differential games · Apollonius
circles.

1 Introduction

The prevention, detection and response to intruders who want to cross a perimeter can be a security con-
cern for individuals, companies or countries. Due to the development of robotic systems in recent years,
there has been an increase in demand for autonomous guarding robots based security applications. The
objective of this kind of security applications is to prevent intruders from performing harmful actions
against some persons or territories of strategic importance such as important infrastructure, transporta-
tions and international borders [9]. Pursuit-evasion games and guarding a territory games have been
widely used to facilitate such type of security applications. In this work, we are interested in pursuit-
evasion games because of their extensive applications in the real world such as surveillance and tracking,
search and rescue, locating and capturing hostile intruders, localizing and neutralizing environmental
threads, and collision avoiding systems in intelligent transportation systems [2,26,28,32,33].

Pursuit-evasion games have been widely studied in the literature [4,5,10–38,43]. In a pursuit-evasion
game, the pursuer wants to capture the evader in a short time, and the evader wants to escape from the
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pursuer or prolong the capture time [28,29]. The pursuit-evasion game was first proposed in [45] as a
one-pursuer one-evader game. However, in recent years, multi-player pursuit-evasion games have received
more attention [28,32,33]. One of the approaches used in the literature to optimize the performance of
the pursuers in multi-player pursuit-evasion games is the hierarchical decomposition framework. This
approach decomposes the multi-player pursuit-evasion game into small games between pursuers and
evaders. That is, one-pursuer one-evader games, or multi-pursuer single-superior-evader games [25,32].
We mean by the superior evader that the evader that has a speed which is similar to or higher than the
speed of all pursuers. Cooperation among pursuers is another approach that is used in the literature to
optimize the performance of the pursuers in multi-player pursuit-evasion games and to make them act
as a whole to perform their mission task. One of the popular techniques used to facilitate cooperation
among pursuers in a multi-player pursuit-evasion game is the formation control [25], which shapes the
relative position and the orientation of pursuers.

1.1 Related work

A number of articles [4,5,12,19,22–24] investigated pursuit-evasion games with slow evaders, where the
capture of the evader is always guaranteed. However, in real-world applications, evaders may run with
speed similar to or higher than the speed of pursuers. In such cases, the capture of the faster (superior)
evader may require more than one pursuer. This has led many researchers to investigate multi-pursuer
single-superior-evader pursuit-evasion games and propose a number of different techniques so that one
or some of the pursuers can capture the superior evader [25–28,33–35,37,38]. These techniques use dif-
ferent mechanisms such as hierarchical decomposition approaches and formation control approaches to
tune the pursuers. However, all these techniques are deterministic approaches and involve no learning
in the tuning mechanisms of the pursuers. In real-world applications, pursuers may need to adapt to
changing environments.

There is no much work in the literature addressing the learning in multi-player pursuit-evasion dif-
ferential games with superior evaders. In [29,30], the authors proposed different learning techniques
for multi-player pursuit-evasion games. However, the learning techniques proposed in [29,30] are not
suitable for pursuit-evasion differential games because they only work with games that have discrete
state and action spaces. In addition, the algorithm proposed in [29] is only applicable for multi-player
pursuit-evasion games with slow evaders (i.e. evaders with speed slower than the speed of the pursuers).
The only other article to consider the use of learning in multi-player pursuit-evasion differential games
with superior evaders is proposed in [36]. The authors of this article propose their algorithm based on
three basic behaviors of each pursuer (namely Move-to-goal, Avoid-obstacle and Hunting), and learning
is only involved in one behavior (Hunting). The authors of this article structure the learning part of
their algorithm based on the Q-learning algorithm. Because the Q-learning algorithm requires discrete
state and action spaces, the authors used a state-space reduction mechanism to deal with the continuous
spaces. However, in many real-world applications, a priori discretization of the action space may not
be useful [39]. In addition, using a coarse discretization of the state or action space may lead to a poor
performance [40–42].

1.2 Main contribution

In this work, we consider multi-pursuer single-superior-evader pursuit-evasion differential games. Our
objective is to make the pursuers in the multi-pursuer single-superior-evader pursuit-evasion differential
game learn their strategies so that one or some of the learning pursuers can capture the superior evader.
We develop a formation control mechanism and use it from the learning point of view to develop a de-
centralized learning algorithm that can be used in multi-pursuer single-superior-evader pursuit-evasion
differential games. This work is the first piece of work that presents a decentralized learning algorithm to
capture a superior evader in a pursuit-evasion differential game without using any type of discretization
for the state or action spaces. We establish a fast and robust learning algorithm that directly incor-
porates the idea of Apollonius circles and the developed formation control mechanism in the reward
function of the learning algorithm.
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The proposed algorithm uses the well-known Apollonius circle as a mechanism to define the capture
region of the learning pursuer based on its location and the location of the superior evader. Based on
the defined capture region, the proposed algorithm uses a developed formation control approach to con-
struct the reward function of the learning pursuer. The proposed algorithm uses this reward function
to tune the FLC of the learning pursuer by the residual gradient fuzzy actor critic learning (RGFACL)
algorithm proposed in [4]. The developed formation control approach used by the proposed algorithm
guarantees that the pursuers are distributed around the superior evader in order to avoid collision be-
tween pursuers. It also makes the Apollonius circles of each two adjacent pursuers intersect or be at least
tangent to each other so that the capture of the superior evader can occur. The proposed algorithm is
a decentralized algorithm as no communication among the pursuers is required. The only information
the proposed algorithm requires is the position and the speed of the superior evader. We evaluate the
proposed algorithm over a number of multi-pursuer single-superior-evader pursuit-evasion differential
games, and the results validate the proposed algorithm.

This paper is organized as follows: Preliminary concepts and the problem definition are presented in
Section 2. Section 3 presents the RGFACL algorithm. The proposed algorithm is introduced in Section
4. The simulation and results are presented in Section 5.

2 Preliminary Concepts and Problem Definition

2.1 Fuzzy Inference Systems

The fuzzy inference systems (FISs) used in this work are zero-order Takagi-Sugeno (TS) FISs [44] with
constant consequents. Each fuzzy system consists of L rules. The inputs of each rule are n fuzzy variables;
whereas the consequent of each rule is a constant number. Each rule l (l = 1, ..., L) has the following
form,

Rl : IF s1 is F l1, . . ., and sn is F ln THEN zl = kl (1)

where si, (i = 1, ..., n), is the ith input state variable of the fuzzy system, n is the number of the
input state variables, and F li is the linguistic value of the input si at the rule l. Each input si has h
membership functions. The variable zl represents the output variable of the rule l, and kl is a constant
that describes the consequent parameter of the rule l. In this work, Gaussian membership functions are
used and each membership function (MF) is defined as follows,

µF
l
i (si) = exp

(
−
(si −m

σ

)2)
(2)

where σ and m are the standard deviation and the mean, respectively.

In each FIS used in this work, the total number of the standard deviations of the membership functions
of its inputs is defined as H, where H = n × h. In addition, the total number of the means of the
membership functions of its inputs is H. Thus, for each FIS used in this work, the standard deviations
and the means of the membership functions of the inputs are defined, respectively, as σj and mj , where
j = 1, ..., H. We define the set of the parameters of the membership functions of each input, Ω(si), as
follows,

Ω(s1) = {(σ1,m1), (σ2,m2), ....., (σh,mh)}
Ω(s2) = {(σh+1,mh+1), (σh+2,mh+2), ....., (σ2h,m2h)}

.

.

.

Ω(sn) = {(σ(n−1)h+1,m(n−1)h+1), (σ(n−1)h+2,m(n−1)h+2), ....., (σH ,mH)}
(3)

The output of the fuzzy system is given by the following equation when we use the product inference
engine with singleton fuzzifier and center-average defuzzifier [1].
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Z(s) =

∑L
l=1

[(∏n
i=1 µ

F li (si)
)
kl
]

∑L
l=1

(∏n
i=1 µ

F li (si)
) =

L∑
l=1

Φl(s)kl (4)

where s = (s1, ..., sn) is the state vector, µF
l
i describes the membership value of the input state variable

si in the rule l, and Φl(s) is the normalized activation degree (normalized firing strength) of the rule l
at the state s and is defined as follows:

Φl(s) =

∏n
i=1 µ

F li (si)∑L
l=1

(∏n
i=1 µ

F li (si)
) =

ωl(s)∑L
l=1 ωl(s)

(5)

where ωl(s) is the firing strength of the rule l at the state s and it is defined as follows,

ωl(s) =
n∏
i=1

µF
l
i (si) (6)

We define the set of the parameters of each firing strength of each rule in each FIS, Ω(ωl), as follows,

Ω(ω1) = {(σ1,m1), (σh+1,mh+1), ....., (σ(n−1)h+1,m(n−1)h+1)}
Ω(ω2) = {(σ1,m1), (σh+1,mh+1), ....., (σ(n−1)h+2,m(n−1)h+2)}

.

.

.

Ω(ωh) = {(σ1,m1), (σh+1,mh+1), ....., (σH ,mH)}
Ω(ωh+1) = {(σ1,m1), (σh+2,mh+2), ....., (σ(n−1)h+1,m(n−1)h+1)}

.

.

.

Ω(ωL) = {(σh,mh), (σ2h,m2h), ....., (σH ,mH)}
(7)

2.2 The Pursuit-Evasion Differential Game

The pursuit-evasion game is defined as a differential game [45]. In this game, the goal of the pursuer is
to capture the evader in a minimum time whereas the goal of the evader is to escape from the pursuer.
The model of the pursuit-evasion differential game is shown in Fig. (1). The equations of motion of the
pursuer and evader robots are given as follows [46,47],

ẋκ = Vκ cos(θκ)
ẏκ = Vκ sin(θκ)

θ̇κ = Vκ
Lκ

tan(uκ)
(8)

where κ represents both the pursuer ”p” and the evader ”e”, (xκ, yκ) represents the position of the
robot κ, θκ represents the orientation of the robot κ, Lκ is the wheelbase of the robot κ, uκ is the robot
κ’s steering angle, uκ ∈ [−uκmax , uκmax ], and Vκ is the robot κ’s speed.

The pursuer captures the evader if the distance d between them is less than the capture radius dc, where
the distance d is defined as follows

d =
√

(xe − xp)2 + (ye − yp)2 (9)
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Fig. 1 Pursuit-evasion model

2.3 Apollonius Circles

The Apollonius circle was first presented in [45]. Consider a single pursuit-evasion differential game
with a pursuer P that has a constant speed Vp and a superior evader E that has a constant speed
Ve, where Ve > Vp. Let us also consider that the positions of the pursuer P and the evader E are
(xp, yp) and (xe, ye), respectively. Fig. (2) shows the Apollonius circle created by the pursuer P and the
evader E. The pursuer captures the evader if the distance between them is less than a small amount dc,
‖(xp, yp)− (xe, ye)‖ ≤ dc. Fig. (2) shows the capture region of the pursuer and the evasion region of the
evader. If the evader moves in a direction that is inside the capture region of the pursuer (the region
covered by the angle 6 AEB in Fig. (2)), the capture of the evader by the pursuer will be guaranteed
if the pursuer is well tuned. On the other hand, if the evader moves into its evasion region (the region
that is not covered by the angle 6 AEB in Fig. (2)), the evader will be able to escape from the pursuer
if the evader is well tuned.

The point C, (xc, yc), in Fig. (2) is a random point that is located on the Apollonius circle and such

that γ = ‖
−−→
PC‖
‖
−−→
EC‖

=
Vp
Ve

, and γ < 1. The centre of the Apollonius circle, OAC , and its radius, RAC , can be

defined as follows [27,35],

OAC =
(xp − γ2xe

1− γ2 ,
yp − γ2ye

1− γ2
)

(10)

RAC =
γ
√(

xp − xe
)2

+
(
yp − ye

)2
1− γ2 (11)

As shown in Fig. (2), if the evader moves into the capture region of the pursuer (towards point C for
example) and gets captured by the pursuer, then by the triangle property, the capture condition is
defined as follows [25,26,33],

sinα

sinβ
=
Ve
Vp

(12)

where α is the absolute value of the angle difference between the pursuer’s direction and its line of sight
(LOS) to the evader, and β is the absolute value of the angle difference between the evader’s direction
and its LOS to the pursuer.

Thus,

β = sin−1
(Vp
Ve

sinα
)

(13)

Or,
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Fig. 2 Apollonius circle created by the pursuer P and the evader E.

β∗ = sin−1
(Vp
Ve

)
(14)

where β∗ = max(β).

Hence, in a multi-player pursuit-evasion differential game with Ve > Vp, the condition required by the
pursuer to capture the superior evader is defined as follows,

β ≤ sin−1
(Vp
Ve

)
(15)

In other words, as long as the evader’s angle β is not greater than β∗, the capture of the superior evader
E by the pursuer P will be possible. Fig. (2) shows that the capture region of the pursuer P covers 2β∗.
In other words, the pursuer P can capture the superior evader E if the evader moves with β ≤ β∗ from
its LOS to the pursuer in the direction of either the boundary line EA or the boundary line EB.

As can be seen in Fig. (2), the Apollonius circle defines the capture region of the pursuer and the escape
region of the evader. The boundary lines (threshold lines) EA and EB separate between the capture
region of the pursuer and the escape region of the evader. Fig. (2) also shows that when the evader
moves with an angle β such that β = β∗ in the direction of the boundary line (threshold line) EA, the
pursuer has to move with an angle α = π

2 (in counter-clockwise direction) in order to satisfy the capture
condition of Eq. (12) and capture the evader at the point A. In addition, when the evader moves with
an angle β∗ in the direction of the boundary line (threshold line) EB, the pursuer has to move with an
angle α = π

2 (in clockwise direction) in order to capture the evader at the point B. We define the points
A and B as the furthest capture points (threshold capture points) as they are located on the threshold
lines that separate between the capture region of the pursuer and the escape region of the evader. They
also cost the pursuer the longest time to capture the evader.

2.4 Problem Definition

In this paper, we consider a pursuit-evasion differential game with N pursuers and one superior evader
E. Each pursuer Po, (o = 1, ..., N), has a constant speed Vpo , and all pursuers have the same speed. The
evader, on the other hand, has a constant speed Ve, where Ve > Vpo . It is important to mention here that
although we only now consider multi-pursuer single-superior-evader pursuit-evasion differential games
with Ve > Vpo , our work is also applicable to multi-pursuer single-superior-evader pursuit-evasion dif-
ferential games with Ve = Vpo . This is more illustrated in the subsection (4.3). The positions of the
pursuers and the evader are (xpo(t), ypo(t)) and (xe(t), ye(t)), respectively. We assume that each pursuer
Po knows the position of the evader at time t. We also assume that the constant speed of the evader is
known to each pursuer Po. The capture of the superior evader occurs if the distance between the pursuer
Po and the evader E is less than or equal to a small specific amount dc, ‖(xpo , ypo)− (xe, ye)‖ ≤ dc.
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Eq. (11) shows that when γ is small (the evader is much faster than the pursuer), the radius of the
Apollonius circle will be small and the evader will have more paths to escape. Therefore, to capture
the superior evader, more pursuers are needed to surround the superior evader. The pursuers have to
be distributed around the superior evader to construct a polygon whose vertices are the pursuers’ po-
sitions [25,27,33]. The Apollonius circles of each two adjacent pursuers have to intersect or be at least
tangent to each other [27,35]. This represents the most important condition required in a multi-pursuer
single-superior-evader pursuit-evasion differential game in order to capture the superior evader by one
or some of the pursuers. Thus, a formation control approach that controls the angle distributions of the
pursuers around the superior evader has to be integrated with the control strategy of each pursuer. This
is to guarantee that the pursuers are distributed around the superior evader and the Apollonius circles
of each two adjacent pursuers intersect or are at least tangent to each other.

In a multi-pursuer single-superior-evader pursuit-evasion differential game with Ve > Vpo , each pursuer
Po covers 2β∗ of the evader’s movement. Thus, the minimum number of the pursuers needed to surround
the superior evader in order to capture it is defined as follows [25,27,34],

N =

[
2π

2β∗

]
+

=

[
2π

2 sin−1
(
Vp
Ve

)]
+

=

[
π

sin−1
(
Vp
Ve

)]
+

Thus,

N =

[
π

sin−1
(
Vp
Ve

)]
+

(16)

where
[
.
]
+

defines the smallest integer number that is greater than or equal to
[
.
]
.

From Eq. (16), we have

N ≥ π

sin−1
(
Vp
Ve

)
Thus,

sin−1
(Vp
Ve

)
≥ π

N

Or,

Vp
Ve
≥ sin

( π
N

)
(17)

Hence, if
Vp
Ve
≥ sin

(
π
N

)
and the Apollonius circles of each two adjacent pursuers intersect or are at least

tangent to each other all the time, there will be at least one pursuer that would satisfy the capture
condition of Eq. (12) and will then be able to capture the superior evader.

3 The Residual Gradient Fuzzy Actor Critic Learning (RGFACL) Algorithm

Different fuzzy learning algorithms that can be applied to pursuit-evasion differential games are proposed
in the literature [4–8]. In this work, the proposed algorithm uses the RGFACL algorithm as the RGFACL
algorithm is shown in [4] to be robust and has a quick convergence speed. The RGFACL algorithm uses
three fuzzy inference systems (FISs); one is used as an actor (fuzzy logic controller, FLC), and the other
two FISs are used as critics [4]. The critics are used to estimate the value functions Vt(st) and Vt(st+1)
of the same learning agent at two different states st and st+1, respectively. The input parameters of the
actor and the critics are the means and the standard deviations of the Gaussian membership functions
(MFs) of their inputs. On the other hand, the output parameters of the actor and the critics are the
constant consequent parameters of their fuzzy rules. To simplify notations, we define the input and the
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output parameters of the actor and the critics as ψA and ψC , respectively. The temporal difference
error, ∆t, is defined as follows,

∆t = rt + γVt(st+1)− Vt(st) (18)

where rt is the immediate reward of the learning agant, and γ is a discount factor.

The mean square error, E, of the temporal difference error, ∆t, is defined as follows,

E =
1

2
∆2
t (19)

The RGFACL algorithm updates the input and the output parameters of the critics, ψC , as follows [4],

ψCt+1 = ψCt − α
∂E

∂ψCt
(20)

where α is a learning rate for the parameters of the critics. On the other hand, the term ∂E
∂ψCt

is updated

as follows [4],

∂E

∂ψCt
= ∆t

[
γ
∂Vt(st+1)

∂ψCt
− ∂Vt(st)

∂ψCt

]
(21)

From Eq. (21), Eq. (20) can be rewritten as follows,

ψCt+1 = ψCt − α
[
rt + γVt(st+1)− Vt(st)

]
.
[
γ

∂

∂ψCt
Vt(st+1)− ∂

∂ψCt
Vt(st)

]
(22)

The derivatives ∂Vt(st)

∂ψCt
are defined as follows,

∂Vt(st)

∂kl
= Φl(st) (23)

∂Vt(st)

∂σj
=

2(si −mj)
2

σ3
j

×
L∑
l=1

ξj,l
kl − Vt(st)∑

l ωl(st)
ωl(st) (24)

∂Vt(st)

∂mj
=

2(si −mj)

σ2
j

×
L∑
l=1

ξj,l
kl − Vt(st)∑

l ωl(st)
ωl(st) (25)

where,

si =


s1 if (σj ,mj) ∈ Ω(s1)
s2 if (σj ,mj) ∈ Ω(s2)
.
.
sn if (σj ,mj) ∈ Ω(sn)

(26)

and,

ξj,l =

{
1 if (σj ,mj) ∈ Ω(ωl)
0 if (σj ,mj) /∈ Ω(ωl)

(27)

The derivatives
∂Vt(st+1)

∂ψCt
are defined as follows,

∂Vt(st+1)

∂kl
= Φl(st+1) (28)

∂Vt(st+1)

∂σj
=

2(s′i −mj)
2

σ3
j

×
L∑
l=1

ξj,l
kl − Vt(st+1)∑

l ωl(st+1)
ωl(st+1) (29)

∂Vt(st+1)

∂mj
=

2(s′i −mj)

σ2
j

×
L∑
l=1

ξj,l
kl − Vt(st+1)∑

l ωl(st+1)
ωl(st+1) (30)

where,
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s′i =


s′1 if (σj ,mj) ∈ Ω(s1)
s′2 if (σj ,mj) ∈ Ω(s2)
.
.
s′n if (σj ,mj) ∈ Ω(sn)

(31)

where s′i is the ith input state variable of the state vector st+1.

The input and the output parameters of the actor, ψA, are updated as follows [4],

ψAt+1 = ψAt + β∆t
∂ut
∂ψAt

[uc − ut
σn

]
(32)

where β is a learning rate for the actor parameters, uc is the output of the actor with a random Gaussian
noise. The derivatives of the output of the FLC (the actor), ut, with respect to the input and the output
parameters of the FLC can be calculated by replacing Vt(st) with ut in Eq. (23), Eq. (24) and Eq. (25)
as follows,

∂ut
∂kl

= Φl(st) (33)

∂ut
∂σj

=
2(si −mj)

2

σ3
j

×
L∑
l=1

ξj,l
kl − ut∑
l ωl(st)

ωl(st) (34)

∂ut
∂mj

=
2(si −mj)

σ2
j

×
L∑
l=1

ξj,l
kl − ut∑
l ωl(st)

ωl(st) (35)

4 The Proposed Algorithm

In this work, we develop a decentralized learning algorithm for multi-pursuer single-superior-evader
pursuit-evasion differential games, where the speed of the evader is similar to or higher than the speed
of each pursuer. This is the first time that anyone has shown that they can develop a system of learning to
capture a superior evader in a pursuit-evasion differential game without using any type of discretization
for the state or the action space. There have been some work reported in the literature to capture supe-
rior evaders [25–28,33–35,37,38]. However, these techniques are deterministic approaches as no learning
is involved in these techniques. In real world applications, pursuers may need to adapt to changing envi-
ronments. Our objective in this work is to make the pursuers in a multi-pursuer single-superior-evader
pursuit-evasion differential game learn their strategies so that one or some of the learning pursuers can
capture the superior evader. The proposed algorithm uses the RGFACL algorithm proposed in [4] to
tune the input and the output parameters of the fuzzy logic controller (FLC) of the learning pursuer Po.
The proposed algorithm is a decentralized algorithm as each learning pursuer Po has its own learning
algorithm and no communication among the pursuers is required. The only information the proposed
learning algorithm of the pursuer Po requires is the position and the speed of the superior evader. The
proposed algorithm uses the well-known Apollonius circle to define the capture region of the learning
pursuer Po based on its location and the location of the superior evader. The capture region of the
pursuer Po is used with a developed formation control approach to construct the reward function of the
learning pursuer Po, as will be illustrated later on in this section, so that one or some of the learning
pursuers can capture the superior evader. This reward function is used in the tuning mechanism of
the FLC of the learning pursuer Po. The formation control mechanism used in the reward function
of the learning pursuer Po guarantees that the pursuers are distributed around the superior evader in
order to avoid collision between the pursuers. In addition, the formation control mechanism makes the
Apollonius circles of each two adjacent pursuers intersect or be at least tangent to each other so that
the capture of the superior evader can occur.
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Fig. 3 Geometric illustration of defining the action for the pursuer Po

4.1 The action upo of the pursuer Po

Fig (3-a) shows the pursuer Po and the evader E. We use a Kalman filter to estimate the future position
of the evader at the next time step, Ê. Fig (3-b) shows the pursuer Po and the evader at its real and
estimated future positions. We define the angle βo as the absolute value of the angle difference between

the direction of the evader (the direction of the vector
−−→
EÊ) and the direction of the evader’s LOS to

the pursuer Po (the direction of the vector
−−→
EPo). That is,

βo = |β̄o| (36)

where

β̄o = 6
−−→
EÊ − 6

−−→
EPo and − π ≤ β̄o ≤ π (37)

Fig (3-c) shows the angle αo that the pursuer Po should select in order to satisfy the capture equation

defined in Eq. (12). That is, the angle that describes the direction θαo = 6
−−→
PoI that the pursuer Po

should take in order to capture the evader at the future capture point I. To find the direction θαo , we

first define the vector
−−→
PoÍ; the vector

−−→
PoÍ has the same length of the vector

−−→
PoE and the same direction

of the vector
−−→
PoI . We use the angle αo and the vector

−−→
PoE to define the vector

−−→
PoÍ as follows,

−−→
PoÍ = R(ᾱo)×

−−→
PoE (38)

where R(ᾱo) is a rotation matrix that is used to perform rotation in Euclidean space and it is defined
as follows,

R(ᾱo) =

[
cos(ᾱo) − sin(ᾱo)
sin(ᾱo) cos(ᾱo)

]
(39)

and,

ᾱo =

{
−αo if β̄o > 0
αo otherwise

(40)

The direction of rotation will be counter-clockwise if the angle ᾱo is positive. On the other hand, the
direction of rotation will be clockwise if the angle ᾱo is negative.

Let
−−→
PoÍ = (xdir, ydir). Thus, the direction θαo , the direction of the vector

−−→
PoÍ, is defined as follows,

θαo = 6
−−→
PoÍ = tan−1 ( ydir

xdir

)
(41)

Hence, the action upo selected by the pursuer Po at each sampling period is defined as follows,

upo = θαo − θpo (42)

where θpo is the direction (orientation) of the pursuer Po.
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4.2 The developed formation control approach

Different formation control approaches that are applied to multi-pursuer single-superior-evader pursuit-
evasion differential games are presented in the literature [26,27,33,34]. The formation control approaches
control the angle distributions (the relative position and the orientation) of the pursuers around the su-
perior evader so that the superior evader can be captured by one or some of the pursuers. The formation
control approach presented in [27] is a centralized approach as it requires cooperation between pursuers.
This is because the pursuer that can intercept the evader has to broadcast the interception point to the
other pursuers, whose responsibilities are to head up towards that interception point in order to shrink
the enclosed polygon (whose vertices are the pursuers’ positions) and contain the evader. The formation
control approach presented in [34] is a decentralized approach as no communication among pursuers is
required. The strategy of each pursuer, in this formation control approach, is either to intercept the
evader if the evader moves into the capture region of the pursuer or to move towards a virtual target if
the evader moves into its escape region. The virtual target is defined as the threshold point (either point
A or point B in Fig. (2) based on the direction of the evader), where it is most likely for the evader to
cross into the capture region of the pursuer. However, when the angle βo >

π
2 , moving towards a virtual

target by the pursuer is not the best choice to contain the evader into the polygon constructed by the
pursuers. The formation control approach presented in [26,33] is also a decentralized approach as no
communication among pursuers is required. The strategy of each pursuer, when following this formation
control approach, is either to intercept the superior evader if the evader moves into the capture region
of the pursuer or to move in parallel with the evader if the evader moves into its escape region. However,
this strategy guarantees the capture of the superior evader only in the case that the superior evader
and the pursuers have the same speed (Ve = Vpo). When Ve > Vpo , this strategy may fail to make one
or some of the pursuers capture the superior evader.

The formation control approach proposed in this work is a modified version of the formation control
approaches presented in [26,27,33,34]. The proposed formation control approach used in this work is
a decentralized approach. The strategy of the pursuer Po, in this formation control approach, is to
intercept the evader if the evader moves into the capture region of the pursuer. However, if the evader
moves into its escape region, the strategy of the pursuer Po is either to move to a virtual target or to
move in parallel with the evader. The pursuer Po moves to a virtual target if the angle βo is such that
sin−1

(Vpo
Ve

)
< βo ≤ π

2 , where the virtual target is the threshold point (either point A or point B in Fig.
(2)). On the other hand, the pursuer Po moves in parallel with the evader if the angle βo is such that
βo >

π
2 . This formation control approach will guarantee that the pursuers are distributed around the

superior evader in order to avoid collision between pursuers. This formation control approach will also
shrink the enclosed polygon constructed by the pursuers and make the pursuers contain the evader so
that the Apollonius circles of each two adjacent pursuers intersect or are at least tangent to each other.
This will make one or some of the pursuers capture the superior evader.

4.3 The reward function rpo of the pursuer Po

In this work, we set the rewards of the learning pursuer Po based on the developed formation control
mechanism illustrated above so that one or some of the learning pursuers can capture the superior
evader. The speed of the pursuer Po is defined by Vpo , and the speed of the evader E is defined by Ve.
We assume that the speed of the evader is known to each pursuer. At each sampling period, the inputs
to the FLC of the pursuer Po are the angle βo and its derivative β̇o. Based on its inputs, the FLC of
the pursuer Po selects an angle αo which is then used to calculate the action upo as in Eq. (42).

The pursuer Po will be rewarded based on the region that the evader moves into; the capture region of
the pursuer Po or the evasion region of the evader shown in Fig. (2). It is important to mention here
that the capture region of the pursuer Po and the corresponding escape region of the evader are updated
regularly every time step. Consequently, the reward function of the pursuer Po will change every time
step, depending on the angle αo selected by the pursuer Po. We will first describe how to reward the
pursuer Po when the evader moves into the capture region of the pursuer Po. That is, the evader moves
with an angle βo such that βo ≤ sin−1

(Vpo
Ve

)
. The reward function of the pursuer Po, in this case, is

constructed based on the triangle property defined in Eq. (12). We use the capture equation defined in
Eq. (12) as a mechanism to reward the learning pursuer Po at every time step. That is, if the angle αo
selected by the pursuer Po satisfies the triangle property (the capture equation) of Eq. (12), the pursuer
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Po will be rewarded with a positive payoff (+1 for example). On the other hand, if the angle αo selected
by the pursuer Po does not satisfy the triangle property (capture equation) of Eq. (12), the pursuer Po
will be punished with a negative payoff (-1 for example). This is shown in Fig. (4-a). Hence, the reward
function of the pursuer Po when the evader moves into the capture region of the pursuer Po is defined
as follows,

rpo =

{
+1 if αo ∈

[
χ− εa, χ+ εa

]
& βo ≤ sin−1

(Vpo
Ve

)
−1 otherwise

(43)

where χ = sin−1
[
Ve
Vpo

sin(βo)
]
, and εa is a very small constant that defines the angle tolerance.

On the other hand, when the evader moves into its evasion region, the pursuer Po will not be rewarded
based on the capture equation defined in Eq. (12). In this case, the evader moves with an angle βo such

that βo > sin−1
(Vpo
Ve

)
. Thus, the pursuer Po has to work with the other pursuers to surround (enclose)

the evader. This can be done by following the developed formation control illustrated above. Thus, the
strategy of the pursuer Po, in this case, is either to move to a virtual target (the threshold point) or to
move in parallel with the evader. The pursuer Po has to move to a virtual target (the threshold point

A or B) if the evader moves with an angle βo such that sin−1
(Vpo
Ve

)
< βo ≤ π

2 . On the other hand,
the pursuer Po has to move in parallel with the evader if the angle βo is such that βo >

π
2 . We will

first define the reward function of the pursuer Po when the evader moves into its escape region with
an angle βo such that sin−1

(Vpo
Ve

)
< βo ≤ π

2 . As illustrated in Subsection (2.3), the pursuer moves to
the threshold points (either point A and B) when the angle αo selected by the pursuer Po is such that
αo = π

2 . This is shown in Fig. (4-b) and Fig. (4-c). Thus, the reward function in this case is defined as
follows,

rpo =

{
+1 if αo ∈

[
π
2 − εa,

π
2 + εa

]
& sin−1

(Vpo
Ve

)
< βo ≤ π

2

−1 otherwise
(44)

When the evader, on the other hand, moves into its escape region with an angle βo such that βo >
π
2 ,

the pursuer Po has to move in parallel with the evader. Thus, if the angle αo selected by the pursuer
Po makes the pursuer Po move in parallel with the evader, the pursuer will be rewarded; otherwise the
pursuer Po will be punished. To make the pursuer Po move in parallel with the evader, the angle αo
selected by the pursuer Po has to such that αo + βo = π. This is shown in Fig. (4-d). Thus, the reward
function of the pursuer Po when the evader moves into its evasion region with an angle βo such that
βo >

π
2 is defined as follows,

rpo =

{
+1 if αo + βo ∈

[
π − εa, π + εa

]
& βo >

π
2

−1 otherwise
(45)

Hence, from Eq. (43) to Eq. (45), the reward function of the pursuer Po when the evader moves into
either the capture region of the pursuer Po or its evasion region can be defined as follows,

rpo =


+1 if αo ∈

[
χ− εa, χ+ εa

]
& βo ≤ sin−1

(Vpo
Ve

)
+1 if αo ∈

[
π
2 − εa,

π
2 + εa

]
& sin−1

(Vpo
Ve

)
< βo ≤ π

2

+1 if αo + βo ∈
[
π − εa, π + εa

]
& βo >

π
2

−1 otherwise

(46)

where χ = sin−1
[
Ve
Vpo

sin(βo)
]
.

Special case: When the speed of the evader is such that Ve = Vpo , the Apollonius circle becomes a

straight line and the term βo ≤ sin−1
(Vpo
Ve

)
in Eq. (46) becomes βo ≤ π

2 . Thus, Eq. (46) can be rewritten
as follows,

rpo =


+1 if αo ∈

[
χ− εa, χ+ εa

]
& βo ≤ π

2
+1 if αo + βo ∈

[
π − εa, π + εa

]
& βo >

π
2

−1 otherwise
(47)

The strategy learned by the pursuer Po when using the reward function defined in Eq. (47) indicates
that the pursuer Po will either intercept the evader if the evader moves into the capture region of the
pursuer or move in parallel with the evader if the evader moves into its escape region. This strategy is
similar to the strategy that was presented in [26,33] in the case that the superior evader and the pursuers
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Fig. 4 Geometric illustration of the reward function mechanism for the pursuer Po

have the same speeds (i.e. Ve = Vpo). Hence, the reward function mechanism constructed based on the
formation control approach developed in this work will also be applicable in the case that the superior
evader and the pursuers have the same speeds.

5 Simulation and Results

In this section, we evaluate the proposed algorithm on three different multi-pursuer single-superior-
evader pursuit-evasion differential games where the speed of the evader is similar to or higher than the
speed of each pursuer. In each game, each pursuer Po is learning its control strategy so that one or
some of the learning pursuers can capture the superior evader. The evader is also learning its control
strategy so that it can reach a specific target (xTe , y

T
e ) before it is being captured by one or some of the

pursuers. It is important to mention here that our objective is not to design an optimal strategy for
the superior evader. Our objective is only to evaluate our algorithm when the evader is an intelligent
superior evader. Thus, we assume that the priority of learning for the evader is to learn how to reach
its target. However, if the distance between the evader and the nearest pursuer is less than a specific
distance (tolerance distance, dtol), the priority of learning for the evader becomes to escape from that
pursuer.

5.1 Simulation setup

As illustrated in the previous section, for each pursuer Po, (o = 1, ..., N), we define the angle βo as the
absolute value of the angle difference between the evader’s direction and its LOS to the pursuer Po. In
addition, we define the state st for the pursuer Po by two input variables which are the angle βo and
its derivative β̇o. Five Gaussian membership functions (MFs) are used to define the fuzzy sets of each
input to the FISs of the proposed learning algorithm of each pursuer Po. On the other hand, the state st
of the evader is defined by two input variables, δe and its derivative δ̇e, where δe is the angle difference
between the direction of the evader and the direction of its target (xTe , y

T
e ). However, if the distance

between the evader and the nearest pursuer, dpo , is less than the tolerance distance dtol, δe is defined
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as the angle difference between the direction of the evader and the direction of the LOS of that nearest
pursuer to the evader. Thus, the reward function of the superior evader is defined as follows,

re =

{
∆e(t) if dpo > dtol
−∆po(t) if dpo ≤ dtol & dpo ≤ dpj & o 6= j

(48)

where,

∆e(t) = De(t)−De(t+ 1)

De(t) = ‖(xe, ye)− (xTe , y
T
e )‖

dpo = ‖(xpo , ypo)− (xe, ye)‖

∆po(t) = Dpo(t)−Dpo(t+ 1)

Dpo(t) = ‖(xpo , ypo)− (xe, ye)‖

dpj = ‖(xpj , ypj )− (xe, ye)‖

Five Gaussian membership functions (MFs) are used to define the fuzzy sets of each input to the FISs of
the RGFACL algorithm of the evader. The wheelbases and the maximum steering angles of the pursuers
and the evader are set as follows, Lpo = Le = 0.5 m and umaxpo = umaxe = 0.8 rad. The parameters of
the learning algorithms of the pursuers and the evader are set as those parameters in [4]. The sampling
time is defined as T = 0.05 s, whereas the capture radius is defined as dc = 0.5m. The tolerance distance
is defined as dtol = 10 m. The number of episodes is set to 200, whereas the number of steps (in each
episode) is set to 2000.

Game 1: In this game, the speed of the evader is similar to the speed of each pursuer (i.e. Ve = Vpo = 1
m/s). We use three pursuers, (i.e. N = 3 and o = 1, 2, 3). The evader starts its motion from the position
(xe, ye) = (0, 0) with an initial orientation θe = 0 rad. The pursuer P1 starts its motion from a random
position at d1 6 θd1 ; d1 is the distance between the pursuer P1 and the origin O = (0, 0), and θd1 is

the angle that describes the direction of the vector
−−→
OP1. Thus, the random position of the pursuer P1

is defined as (xp1 , yp1) =
(
d1 cos θd1 , d1 sin θd1

)
. The initial orientation of the pursuer P1 is defined as

θp1 = tan−1
(−yp1
−xp1

)
. Similarly, the pursuers P2 and P3 start their motions from random positions but tak-

ing into account the angle distributions of the pursuers around the evader required by the formation con-
trol. Since we have three pursuers, we define the initial positions of the pursuers P2 and P3 as (xp2 , yp2) =(
d2 cos(θd1 + 2π/3), d2 sin(θd1 + 2π/3)

)
and (xp3 , yp3) =

(
d3 cos(θd1 + 4π/3), d3 sin(θd1 + 4π/3)

)
, respec-

tively. The distances d2 and d3 are randomly selected. The initial orientations of the pursuers P2 and

P3 are defined as θp2 = tan−1
(−yp2
−xp2

)
and θp3 = tan−1

(−yp3
−xp3

)
, respectively.

Game 2: In this game, the speed of the evader is higher than the speed of each pursuer. We set the
speed of the superior evader as Ve = 1.1 m/s and the speed of each pursuer Po as Vpo = 1 m/s. Thus,
the number of the pursuers required to capture the superior evader in this game is set based on Eq. (16)
as follows,

N =

[
π

sin−1
(
Vp
Ve

)]
+

=

[
π

sin−1
(

1
1.2

)]
+

=

[
2.75

]
+

= 3 (49)

The initial positions and orientations of the superior evader and the pursuers are set as in Game 1.
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Game3: In this game, the speed of the evader is also higher than the speed of each pursuer. We set
the speed of the superior evader as Ve = 1.2 m/s and the speed of each pursuer Po as Vpo = 1 m/s.
Thus, the number of the pursuers required to capture the superior evader in this game is set based on
Eq. (16) as follows,

N =

[
π

sin−1
(
Vp
Ve

)]
+

=

[
π

sin−1
(

1
1.2

)]
+

=

[
3.19

]
+

= 4 (50)

In this game, the evader starts its motion from the position (xe, ye) = (0, 0) with an initial orientation
θe = 0 rad. Likewise Game 1 and Game 2, the pursuers in Game 3 start their motions from random po-
sitions defined as follows, (xp1 , yp1) =

(
d1 cos θd1 , d1 sin θd1

)
, (xp2 , yp2) =

(
d2 cos(θd1 +π/2), d2 sin(θd1 +

π/2)
)
, (xp3 , yp3) =

(
d3 cos(θd1 + π), d3 sin(θd1 + π)

)
, and (xp4 , yp4) =

(
d4 cos(θd1 + 3π/2), d4 sin(θd1 +

3π/2)
)
.

5.2 Results

Fig. (5) to Fig. (8) show the paths of the pursuers of Game 1 when each pursuer learns its control
strategy by the proposed algorithm. Fig. (5) to Fig. (8) also show the path of the evader when the
evader in Game 1 learns its control strategy by the RGFACL algorithm. The initial positions of the
pursuers are set as (xp1 , yp1) = 40 6 0.5, (xp2 , yp2) = 50 6 (0.5 + 2π/3) and (xp3 , yp3) = 30 6 (0.5 + 4π/3).
As shown in Fig. (5) to Fig. (8), the superior evader is always captured by one or some of the pursuers
learning their control strategies by the proposed algorithm. In each figure, the evader has a specific
target to go to. However, when the distance between the evader and the nearest pursuer is less than the
tolerance distance dtol, the evader’s priority becomes to escape from that pursuer. However, because of
the formation control mechanism used by the proposed learning algorithm, the evader is always enclosed
by the pursuers until it is eventually captured by one or some of the pursuers.

Fig. (9) to Fig. (12) show the paths of the pursuers of Game 2 when each pursuer learns its control
strategy by the proposed algorithm. Fig. (9) to Fig. (12) also show the path of the evader of Game
2 when the evader learns its control strategy by the RGFACL algorithm. The initial positions of the
pursuers are set as in Game 1. The figures show that the pursuers learning their control strategy by
the proposed algorithm always succeed to capture the superior evader although the evader moves with
a speed that is higher than the speed of the pursuers.

Table 1 shows the simulation results we perform on Game 3. The simulation of Game 3 is conducted
10 times, and the capture time of the evader is averaged over the number of captures. The evader’s
target in Game 3 is defined as the position (xTe , y

T
e ) = (500, 500). If the distance between the nearest

pursuer is less than the tolerance distance (dtol = 10 m), the evader’s priority becomes to escape from
that pursuer. As can be seen in Table 1, the superior evader is always captured by one or some of
the learning pursuers. Hence, the simulation we conduct on Game 1, Game 2, and Game 3 show the
effectiveness of the proposed algorithm.

Table 1 Simulation results to capture the superior evader of Game 3

Ve Vpo N Number of captures of 10 trials average of capture time
1.2 1.0 [3.19]+ = 4 10 60.73s

6 Conclusion

In this paper, we propose a new fuzzy reinforcement learning algorithm that tunes the pursuers in
a multi-pursuer single-superior-evader pursuit-evasion differential game so that the superior evader is
captured by one or some of the pursuers. We mean by the ”superior evader” that the evader that has a
speed that is similar to or higher than the speed of each pursuer in the game. The proposed algorithm
uses the well-known Apollonius circle mechanism to define the capture region of each pursuer based on
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Fig. 5 The paths of the pursuers of Game 1 (thin-line paths) when each pursuer Po learns its control strategy by
the proposed algorithm; the path of the evader (thick-line path) when the evader learns its control strategy by the
RGFACL algorithm. The target of the evader here is the position (xTe , y

T
e ) = (500, 500).
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Fig. 6 The paths of the pursuers of Game 1 (thin-line paths) when each pursuer Po learns its control strategy by
the proposed algorithm; the path of the evader (thick-line path) when the evader learns its control strategy by the
RGFACL algorithm. The target of the evader here is the position (xTe , y

T
e ) = (500, 0).

its location and the location of the superior evader. The proposed algorithm uses the RGFACL algo-
rithm to tune the FLC of each pursuer so that the pursuers learn their control strategies to capture
the superior evader. A new formation control mechanism is proposed in this work and is used with the
Apollonius circle mechanism to construct the reward function of each learning pursuer. The formation
control mechanism used by the proposed algorithm guarantees that the pursuers are distributed around
the superior evader in order to avoid collision between pursuers. The formation control mechanism used
by the proposed algorithm also makes the Apollonius circles of each two adjacent pursuers intersect
or are at least tangent to each other so that the capture of the superior evader can occur. The pro-
posed algorithm is a decentralized algorithm as no communication among the pursuers is required. The
only information the proposed algorithm requires is the position and the speed of the superior evader.
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Fig. 7 The paths of the pursuers of Game 1 (thin-line paths) when each pursuer Po learns its control strategy by
the proposed algorithm; the path of the evader (thick-line path) when the evader learns its control strategy by the
RGFACL algorithm. The target of the evader here is the position (xTe , y

T
e ) = (−500, 500).
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Fig. 8 The paths of the pursuers of Game 1 (thin-line paths) when each pursuer Po learns its control strategy by
the proposed algorithm; the path of the evader (thick-line path) when the evader learns its control strategy by the
RGFACL algorithm. The target of the evader here is the position (xTe , y

T
e ) = (−500, 0).

The proposed algorithm is used to learn different multi-pursuer single-superior-evader pursuit-evasion
differential games. The simulation results show the effectiveness of the proposed algorithm.

References

1. L. X. Wang. A Course in Fuzzy Systems and Control, Upper Saddle River, NJ: Prentice Hall, 1997.
2. H. M. Schwartz, Multi-agent Machine Learning: A Reinforcement Approach, John Wiley & Sons, 2014.
3. L. Baird, Residual algorithms: Reinforcement learning with function approximation, In ICML, pp. 30-37, 1995.
4. M. D. Awheda, and H. M. Schwartz, The Residual Gradient FACL Algorithm for Differential Games, Proceedings

of the 28th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2015), Halifax, Nova
Scotia, Canada, May 3-6, 2015.



18 Mostafa D. Awheda, Howard M. Schwartz

x - position
-50 -40 -30 -20 -10 0 10 20 30 40

y 
- p

os
iti

on

-50

-40

-30

-20

-10

0

10

20

30

40

P1's initial position
P2's initial position

Capture position

E's initial position

P3's initial position

Fig. 9 The paths of the pursuers of Game 2 (thin-line paths) when each pursuer Po learns its control strategy by
the proposed algorithm; the path of the evader (thick-line path) when the evader learns its control strategy by the
RGFACL algorithm. The target of the evader here is the position (xTe , y

T
e ) = (500, 500).

x - position
-50 -40 -30 -20 -10 0 10 20 30 40

y 
- p

os
iti

on

-50

-40

-30

-20

-10

0

10

20

30

40

P1's initial position

P2's initial position

Capture position

E's initial position

P3's initial position

Fig. 10 The paths of the pursuers of Game 2 (thin-line paths) when each pursuer Po learns its control strategy by
the proposed algorithm; the path of the evader (thick-line path) when the evader learns its control strategy by the
RGFACL algorithm. The target of the evader here is the position (xTe , y

T
e ) = (500, 0).

5. S. F. Desouky and H. M. Schwartz, Q (λ)-learning adaptive fuzzy logic controllers for pursuit-evasion differential
games, International Journal of Adaptive Control and Signal Processing 25.10 910-927, 2011.

6. L. Busoniu, D. Ernst, R. Babuska, and B. D. Schutter, Fuzzy partition optimization for approximate fuzzy Q-
iteration, In Proceedings of the 17th IFAC World Congress (IFAC-08), 2008.

7. W. Hinojosa, S. Nefti, and U. Kaymak, Systems control with generalized probabilistic fuzzy-reinforcement learning,
Fuzzy Systems, IEEE Transactions on 19.1: 51-64, 2011.

8. L. Jouffe, Fuzzy inference system learning by reinforcement methods, IEEE Trans. Syst., Man, Cybern. C, vol. 28,
no. 3, 338-355, 1998.

9. R. Abielmona, E. Petriu, M. Harb, and S. Wesolkowski, Mission-driven robotic intelligent sensor agents for terri-
torial security, Computational Intelligence Magazine, IEEE, vol. 6, no. 1, pp. 55-67, 2011.

10. N. M. Stiffler and J. M. O’Kane, A complete algorithm for visibility-based pursuit-evasion with multiple pursuers,
In Robotics and Automation (ICRA), IEEE International Conference on, pp. 1660-1667, 2014.

11. C. Jun, S. Bhattacharya, and R. Ghrist, Pursuit-evasion game for normal distributions, In Intelligent Robots and
Systems (IROS 2014), IEEE/RSJ International Conference on, pp. 83-88, 2014.



A Decentralized Fuzzy Learning Algorithm for Pursuit-Evasion Differential Games with Superior Evaders 19

x - position
-50 -40 -30 -20 -10 0 10 20 30 40

y 
- p

os
iti

on

-50

-40

-30

-20

-10

0

10

20

30

40

P1's initial position

Capture position

P3's initial position

P2's initial position

E's initial position

Fig. 11 The paths of the pursuers of Game 2 (thin-line paths) when each pursuer Po learns its control strategy by
the proposed algorithm; the path of the evader (thick-line path) when the evader learns its control strategy by the
RGFACL algorithm. The target of the evader here is the position (xTe , y

T
e ) = (−500, 500).

x - position
-50 -40 -30 -20 -10 0 10 20 30 40

y 
- p

os
iti

on

-50

-40

-30

-20

-10

0

10

20

30

40

P1's initial position

P2's initial position

P3's initial position

Capture position

E's initial position

Fig. 12 The paths of the pursuers of Game 2 (thin-line paths) when each pursuer Po learns its control strategy by
the proposed algorithm; the path of the evader (thick-line path) when the evader learns its control strategy by the
RGFACL algorithm. The target of the evader here is the position (xTe , y

T
e ) = (−500, 0).

12. A. Festa and R. B. Vinter, A decomposition technique for pursuit evasion games with many pursuers, In Decision
and Control (CDC), IEEE 52nd Annual Conference on, pp. 5797-5802, 2013.

13. E. Bakolas, Evasion from a group of pursuers with double integrator kinematics, In Decision and Control (CDC),
IEEE 52nd Annual Conference on, pp. 1472-1477, 2013.

14. M. Pachter, E. Garcia, and D. W. Casbeer, Active target defense differential game, In Communication, Control,
and Computing (Allerton), 52nd Annual Allerton Conference on, pp. 46-53, 2014.

15. S. Bhattacharya, T. Basar, and M. Falcone, Numerical approximation for a visibility based pursuit-evasion game,
In Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on, pp. 68-75, 2014.

16. N. M. Stiffler and J. M. O’Kane, A sampling-based algorithm for multi-robot visibility-based pursuit-evasion, In
Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on, pp. 1782-1789, 2014.

17. D. W. Oyler, P. T. Kabamba, and A. R. Girard, Pursuit-evasion games in the presence of a line segment obstacle,
In Decision and Control (CDC), IEEE 53rd Annual Conference on, pp. 1149-1154, 2014.

18. I. Exarchos and P. Tsiotras, An asymmetric version of the two car pursuit-evasion game, In Decision and Control
(CDC), IEEE 53rd Annual Conference on, pp. 4272-4277, 2014.



20 Mostafa D. Awheda, Howard M. Schwartz

19. I. Becerra, V. Macias, and R. Murrieta-Cid, On the value of information in a differential pursuit-evasion game,
In Robotics and Automation (ICRA), IEEE International Conference on, pp. 4768-4774, 2015.

20. W. Lin, Z. Qu, and M. Simaan, Nash strategies for pursuit-evasion differential games involving limited observations,
Aerospace and Electronic Systems, IEEE Transactions on 51, no. 2, 1347-1356, 2015.

21. Q. Wang and M. Liu, Learning in hide-and-seek, IEEE/ACM Transactions on Networking, 2015.
22. W. Scott and N. E. Leonard, Dynamics of pursuit and evasion in a heterogeneous herd, In Decision and Control

(CDC), IEEE 53rd Annual Conference on, pp. 2920-2925, IEEE, 2014.
23. A. Kumar and A. Ojha, An evader-centric strategy against fast pursuer in an unknown environment with static

obstacles, In Control, Automation, Robotics and Embedded Systems (CARE), International Conference on, pp. 1-6,
IEEE, 2013.

24. J. Dong, X. Zhang, and X. Jia, Strategies of Pursuit-Evasion Game Based on Improved Potential Field and
Differential Game Theory for Mobile Robots, In Instrumentation, Measurement, Computer, Communication and
Control (IMCCC), Second International Conference on, pp. 1452-1456, IEEE, 2012.

25. X, Wang, J. B. Cruz Jr, G. Chen, K. Pham, and E. Blasch, Formation control in multi-player pursuit evasion
game with superior evaders, In Defense and Security Symposium, International Society for Optics and Photonics,
2007.

26. M. Wei, G. Chen, J. B. Cruz, L. S. Haynes, M. H. Chang and E. Blasch, A decentralized approach to pursuer-evader
games with multiple superior evaders in noisy environments, In Aerospace Conference, 2007.

27. S. Jin and Z. Qu, Pursuit-evasion games with multi-pursuer vs. one fast evader, In Intelligent Control and Au-
tomation (WCICA), 8th World Congress, 2010.

28. M. Wei, G. Chen, J. B. Cruz, L. Hayes and M. H. Chang, A decentralized approach to pursuer-evader games with
multiple superior evaders, In Intelligent Transportation Systems Conference, pp. 1586-1591, 2006.

29. R. Liu and C. Ze-Su, A novel approach based on evolutionary game theoretic model for multi-player pursuit evasion,
In Computer, Mechatronics, Control and Electronic Engineering (CMCE), International Conference on, Vol. 1, pp.
107-110, 2010.

30. S. Givigi and H. M. Schwartz, Decentralized learning in multiple pursuer-evader Markov games, In Control &
Automation (MED), 19th Mediterranean Conference on, pp. 1379-1385, 2011.

31. D. Li and J. B. Cruz, Better cooperative control with limited look-ahead, In American Control Conference, 2006.
32. D. Li, J. B. Cruz, G. Chen, C. Kwan and M. H. Chang, A hierarchical approach to multi-player pursuit-evasion

differential games, In Decision and Control, European Control Conference, CDC-ECC’05, 44th IEEE Conference
on, pp. 5674-5679, 2005.

33. M. Wei, G. Chen, J. B. Cruz, L. Haynes, K. Pham, K. and E. Blasch, Multi-pursuer multi-evader pursuit-evasion
games with jamming confrontation, Journal of Aerospace Computing, Information, and Communication, 4(3), 693-
706, 2007.

34. Z S. Cai, L. N. Sun and H. B. Gao, A novel hierarchical decomposition for multi-player pursuit evasion differen-
tial game with superior evaders, In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary
Computation, pp. 795-798, ACM, 2009.

35. F. Bao-Fu, P. Qi-Shu, H. Bing-Rong, D. Lei, Z. Qiu-Bo and Z. Zhaosheng, Research on high speed evader vs. multi
lower speed pursuers in multi pursuit-evasion games, Information Technology Journal, 11(8), 2012.

36. H. Wang, Q. Yue, and J. Liu, Research on Pursuit-evasion games with multiple heterogeneous pursuers and a high
speed evader, Control and Decision Conference (CCDC), 27th Chinese, IEEE, 2015.

37. S. Jin and Z. Qu, A heuristic task scheduling for multi-pursuer multi-evader games, Information and Automation
(ICIA), IEEE International Conference on, 2011.

38. M. Kothari, J. G. Manathara, and I. Postlethwaite, A Cooperative Pursuit-Evasion Game for Non-holonomic
Systems, World Congress, Vol. 19, No. 1, 2014.

39. H. V. Hasselt and M. Wiering, Reinforcement learning in continuous action spaces, Approximate Dynamic Pro-
gramming and Reinforcement Learning, ADPRL 2007, IEEE International Symposium on, 2007.

40. K. Doya, Reinforcement learning in continuous time and space, Neural computation 12.1, 219-245, 2000.
41. W. D. Smart and L. P. Kaelbling, Practical reinforcement learning in continuous spaces, ICML, 2000.
42. A. Lazaric, M. Restelli, and A. Bonarini, Reinforcement learning in continuous action spaces through sequential

Monte Carlo methods, Advances in neural information processing systems, 2007.
43. S. F. Desouky and H. M. Schwartz, Self-learning fuzzy logic controllers for pursuit-evasion differential games,

Robotics and Autonomous Systems, vol. 59, 22-33, 2011.
44. T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modelling and control, IEEE

Transactions on Systems, Man and Cybernetics SMC-15, 116-132, 1985.
45. R. Isaacs, Differential Game, John Wiley and Sons, 1965.
46. S. M. LaValle, Planning Algorithms, Cambridge University Press, 2006.
47. S. H. Lim, T. Furukawa, G. Dissanayake and H.F.D. Whyte, A time-optimal control strategy for pursuit-evasion

games problems, In International Conference on Robotics and Automation, New Orleans, LA, 2004.


