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Abstract
Neuromodulation is a biologically-inspired technique that can adapt the per-connection learning rates of synaptic plasticity. 
Neuromodulation has been used to facilitate unsupervised learning by adapting neural network weights. Multiobjective evo-
lution of neural network topology and weights has been used to design neurocontrollers for autonomous robots. This paper 
presents a novel multiobjective evolutionary neurocontroller with unsupervised learning for robot navigation. Multiobjective 
evolution of network weights and topologies (NEAT-MODS) is augmented with neuromodulated learning. NEAT-MODS 
is an NSGA-II based multiobjective neurocontroller that uses two conflicting objectives. The first rewards the robot when it 
moves in a direct manner with minimal turning; the second objective is to reach as many targets as possible. NEAT-MODS 
uses speciation, a selection process that aims to ensure Pareto-optimal genotypic diversity and elitism. The effectiveness of 
the design is demonstrated using a series of experiments with a simulated robot traversing a simple maze containing target 
goals. It is shown that when neuromodulated learning is combined with multiobjective evolution, better-performing neural 
controllers are synthesized than by evolution alone. Secondly, it is demonstrated that speciation is unnecessary in neuro-
modulated neuroevolution, as neuromodulation preserves topological innovation. The proposed neuromodulated approach 
is found to be statistically superior to NEAT-MODS alone when applied to solve a multiobjective navigation problem.

Keywords Artificial neural network · Hebbian learning · Multiobjective · NEAT-MODS · Neuromodulation · Speciation

1 Introduction

Fully autonomous robots are needed to aid humans in many 
fields. Robots can go places that biological lifeforms can not, 
and willingly perform tasks that humans find monotonous. 
When communication between robots and human control-
lers is difficult due to distance or interference, some degree 
of autonomy is required. Autonomy requires robots able to 
adapt to changing environments. Evolution and unsupervised 
learning are both mechanisms that can provide autonomous 
adaptation with respect to a changing environment.

Lifeforms face competing problems. For example, plants 
typically face competing objectives such as finding water 
and obtaining sunlight. These objectives compete for the 
same resources, yet the plant cannot survive without the 
resources provided by both. Similarly, the vehicle designer 
faces competing objectives such as minimizing energy con-
sumption by reducing mass, and maximizing vehicle range 
requiring energy storage (which increases mass). Autono-
mous robots face may different objectives such as complet-
ing missions in the minimum amount of time while simul-
taneously minimizing power consumption. Multiobjective 
optimization is an area of research allowing several objective 
functions to be maximized simultaneously without the use of 
an auxiliary function. Using an auxiliary function requires 
that separate objectives be weighted and combined into a 
single function. Auxiliary functions require assumptions 
about the Pareto front, whereas multiobjective solutions aim 
to search for the entire Pareto front simultaneously. Mul-
tiobjective evolutionary neurocontrollers have been shown 
to successfully adapt neural network topology and weights 
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[1], incrementally growing from a basal initial structure, and 
evolved to a minimal topological solution [21].

Artificial neural networks (ANN) have been successfully 
used to operate robotic systems over the last few decades. 
They are an effective tool for robotic control, and prom-
ise many advantages over conventional control such as the 
ability to learn, and adapt unsupervised to changing envi-
ronments. Determining the smallest size network topology 
is desirable to minimize computational cost, latency, and 
power consumption. Many different techniques have been 
applied to the training and topology of ANNs, including 
gradient descent methods with grown or pruned topologies 
[16], evolutionary methods, and biologically plausible meth-
ods such as Hebbian learning and neuromodulation [11]. 
NeuroEvolution of Augmented Topologies (NEAT) was suc-
cessfully demonstrated for function approximation and the 
double pole balancing problem in the original publication 
[21], and subsequently for other problems. NEAT-MODs 
has adapted NEAT for multiobjective problems, and dem-
onstrated the evolution of robot neurocontrollers [1]. Simi-
larly, NEAT has been adapted to evolve neurocontrollers in 
a distributed on-line manner in odNEAT [18]. The odNEAT 
method has been augmented with Hebbian neuromodulation 
to further reduce convergence times [17].

Combining evolution and learning can provide a power-
ful synergy between complementary search algorithms. Net-
works with evolved initial weights can be trained faster, and 
to a higher degree of accuracy, than networks with random 
initial weights [15]. According to Hebbian theory, synaptic 
plasticity is the mechanism by which, when an axon of cell 
A repeatedly excites cell B, a change takes place in one or 
both cells such that A’s efficiency in firing B is increased 
[6]. Hebbian learning is therefore an unsupervised method 
of training where the connection weights (strengths) are 
updated as a functions of pre- and post-synaptic activity 
[19]. Neuromodulation is considered to be a major mecha-
nism producing memory and learning in biological nervous 
systems [19]. Specialized neuromodulatory neurons con-
trol the amount of plasticity of other neurons in biological 
organisms by using neurotransmitters such as dopamine and 
serotonin [19]. Neuromodulation of the synaptic plasticity 
augments the Hebbian learning rule by providing gating of 
the plasticity of a synapse between two other neurons, by 
updating the synapse after the neuron has fired [7, 11].

It is proposed that adding neuromodulation to neuroevo-
lution will improve neurocontroller performance. Secondly, 
it is hypothesized that protecting innovation by the use of 
species as in NEAT [21], and NEAT-MODS [1] is unneces-
sary when neuromodulation is used to adapt the neurocon-
trollers during the operation of each generation, between 
times when the offspring population is generated.

We propose a novel architecture where a neuromodulated 
multiobjective evolutionary neural controller is trained in 

real time during each evaluation tournament. Here, a tourna-
ment is defined as the time period during which candidate 
controllers are evaluated (here, by simulation of a robot in 
the test environment) to determine their individual fitness. 
Like NEAT-MODS [1], the multiobjective neural controller 
is assembled based on NEAT [21] and evolved using NSGA-
II [3], but unlike NEAT-MODS, speciation is not used. Each 
candidate neurocontroller’s fitness is determined by tour-
nament, where each candidate neurocontroller is judged 
based on its performance controlling the robot in the test 
arena. The candidate neurocontroller’s weights are modified 
online during each tournament using neuromodulated Heb-
bian learning. The proposed architecture overcomes both the 
evolutionary shortcomings described above by alternatively 
testing the learning space with a genetic operator, and then 
attempting to improve upon these results using neuromodu-
lated learning to adapt the network between each time step 
during operation. This approach also allows exploration of 
the entire learning space, and fine tuning to find each local 
error minimum, until a solution with the global minimum 
error is found. Using NEAT-MODS alone, fine-grain adjust-
ment of the connection weights requires mutation, which 
only occurs between generations, when offspring are pro-
duced. By including neuromodulation the weights can be 
adjusted continuously during the lifetime of each generation 
due to synaptic plasticity [17].

To demonstrate the effectiveness and improved perfor-
mance given by neuromodulation when applied to evolved 
multiobjective neurocontrollers, simulated robots using 
neurocontrollers evolved by simple NEAT-MODS, neuro-
modulated NEAT-MODS, and the proposed neuromodulated 
multiobjective non-speciated NEAT are applied to a basic 
autonomous foraging and maze task. Foraging is a task that 
would be required to be performed by fully autonomous 
machines, in order to acquire fuel and parts for self-repair. 
The maze aspect simulates obstacles encountered during 
operation.

2  Background

Neuroevolution is the design of artificial neural networks 
using evolutionary methods. Parameters of the neural net-
work are encoded in mathematical models of genes, then 
optimized in an evolutionary fashion. Evolutionary tech-
niques have been used in artificial neural networks to deter-
mine weight values, network architectures such as number of 
neurons in a layer, or connections between neurons, or deep 
convolutional neural networks in a block-wise fashion. Evo-
lutionary techniques have also been used to determine acti-
vation functions in [5]. Neuroevolution has been applied to 
many problems, including evolving platooning strategies in 
intelligent transportation systems [23], and estimating stock 
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closing indices using evolutionary neural networks [10], and 
neuro-evolutionary systems for foreign exchange trading [9].

2.1  NeuroEvolution of augmenting topologies 
(NEAT)

Neuroevolution representations can be divided into three 
classes: direct, developmental and implicit. Direct repre-
sentations have been generally used to evolve the param-
eter values of fixed-sized networks [5]. NeuroEvolution of 
Augmented Topologies (NEAT) is a direct representational 
method for genetically encoding and evolving the weights 
and architecture of ANNs [21]. NEAT uses a unique innova-
tion number associated with each gene to track the history of 
the genetic markers. This facilitates crossover without suf-
fering from the “competing convention”, where computation 
is wasted when duplicates of the same or virtually identical 

structure compete against each other. The competing con-
ventions problem arises because the order of the genes is 
unimportant. For example, a genome containing neurons A, 
B, and C can be represented by the sequences [ABC] and 
[ACB] (and others). Applying the crossover function to these 
two genomes would lead to missing information, as the off-
spring would be formed [ABB] or [ACC] . When a new gene 
is added, the global innovation number is incremented and 
assigned to that gene. As a new gene is added to the genome, 
it receives its own innovation number, so that genes do not 
get out of order when crossover is performed. When crosso-
ver is performed, the genes of the two parent sequences are 
lined up sequentially by innovation number (see Fig. 2). 
Thus the sequence [ACB] is sorted to become [ABC] , and 
the sequence [ACC] (with duplicate gene C) is prevented 
from being created by the crossover of [ABC] with [ACB] . 
The NEAT genome is shown in Fig. 1.

To produce the offspring generation from the parent gen-
eration, NEAT applies crossover and mutation operators. 
The crossover between two parents of different structures 
is based on the innovation number. When crossover is per-
formed in NEAT, the genes of both parents are lined up by 
innovation number. Genes that have the same innovation 
number are called matching genes. In Fig. 2, the genes with 
innovation numbers 1 through 5 are matching genes. Genes 
that do not match are called disjoint if they occur within the 
range of the other parent’s innovation numbers, or excess 
if they occur outside the other parent’s range. In Fig. 2, the 
genes with innovation numbers 6 through 8 are disjoint 
genes, those with innovation numbers 9 and 10 are excess 
genes. Crossover in NEAT is accomplished by randomly 
selecting matching genes from both parents, and disjoint 
and excess genes from the parent with better fitness. Fig-
ure 2 shows disjoint and excess genes and the basic NEAT Fig. 1  NEAT genome

Fig. 2  NEAT crossover
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crossover operation. Note that this figure does not take into 
account the fitter parent. Regardless of which parent is fitter, 
each of the genes with innovation number 1 through 5 would 
be selected at random from one or the other of the parents. 
If Parent 1 is the fitter of the two parents, the disjoint gene 
with innovation number 8 would also be selected to form 
the complete Offspring sequence. If Parent 2 were the fitter 
parent, the Offspring would inherit the genes with innovation 
numbers 6, 7, 9 and 10 in addition to the five genes randomly 
selected from both parents.

The mutation operation allows for weight perturbation or 
replacement of one gene of a sequence, or the addition of a 
node or a connection. NEAT mutation is shown in Figs. 3 
and 4. In Fig. 3, the left-hand network is modified by adding 
a connection between nodes 3 and 5. The result is shown in 
the right-hand figure, with a seventh gene being added to the 
sequence describing the connection between nodes 3 and 5. 
This is also shown in the resulting network.

Figure 4 shows mutation in the form of the addition of 
a node. Node 6 is added as two new genes to the end of the 
sequence, with innovation number 8 (indicating a connection 
between nodes 3 and 6), and innovation number 9 (indicat-
ing a connection between nodes 6 and 4). The node sequence 
is also updated with the new node.

NEAT also uses speciation, in which the total population 
of individuals is divided into species, to preserve innova-
tion: Sequences with similar genes and structures are consid-
ered to be of the same species, and are more likely to breed 
together (crossover) than with members of other species. 
Dividing the population into species allows new topologies 
with non-optimal weights an opportunity to evolve their 
weights (via the evolutionary weight mutation operation) 
towards optimal values without immediately being killed 
off. Inter-species differences between individual i and j are 
determined using a compatibility distance � function based 
on the number of excess genes, disjoint genes, and average 
weight differences.

Coefficients c1 , c2 , and c3 adjust the importance of the num-
ber of excess genes E, disjoint genes D, and matching genes 
W  respectively. N is the connection gene sequence length, 
but is set to 1 in [21] if the connection gene sequence length 
is less than 20.

Species are weighted using a sharing function based on 
the compatibility distance function, such that organisms in 
the same species share their fitness. Offspring populations 

(1)� =
c1E

N
+

c2D

N
+ c3W

Fig. 3  NEAT mutation: add 
connection

Fig. 4  NEAT mutation: add 
node
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are evaluated using a fitness function f. The result is 
weighted using the sharing function presented in Eq. 2. This 
weighted fitness f ′ is then ranked by nondominated sorting.

where the sharing function sh(�) is:

NEAT then follows the method used in NSGA-II [3]. The 
next offspring population is populated based on the weighted 
ranking. The new population is then randomly mutated by 
any of: Perturbation of weights, replacement of weights, 
addition of a new node, addition of a new connection, 
disabling a connection, intraspecies crossover, or interspe-
cies crossover. NEAT has been applied to many problems, 
including the pole balancing problem [21], computer games 
[14, 20], and robot control [22].

2.2  NEAT‑MODS

NEAT-MODS is a NEAT-based multiobjective evolution-
ary algorithm that aims to maximize two (or more) objec-
tives without the use of an auxiliary function. In [2] it is 
argued that it is more efficient to approach objectives in 
a simultaneous manner than sequentially in the search for 
the Pareto-optimal solution, as multiobjective evolutionary 
algorithms are more easily parallelizable, and conflicting 
objectives ensure good diversity in the search space [8]. In 
NEAT-MODS, the basic genotype, species diversification 
and steps of NEAT are followed, but with the substitution 
of the nondominated sorting of NSGA-II being used, allow-
ing Pareto-optimal controllers to be evolved simultaneously 
for problems with conflicting objectives. For the problem 
of robot navigation, the conflicting objectives here as in [1] 
are achieving goals while avoiding obstacles. NEAT-MODS 
uses NEAT’s speciation. The NEAT-MODS process imple-
mented for the research is presented in Algorithm 1.

Algorithm 1 NEAT-MODS

1. Initialization A minimal topology network is defined 
with no hidden layer nodes. One edge 
connects each input directly to each 
output. An initial Offspring population of 
individuals is generated with randomly 
assigned weights. An empty Parent popu-
lation is also defined.

while gens < gens
max

Repeat until the generational count has 
reached the termination condition.

2. Tournament The NEAT genes of each offspring indi-
vidual are used to construct an ANN that 
is then used to control a simulated robot.

(2)f �
i
=

fi
∑n

j=1
sh(�(i, j))

(3)sh(𝛿(i, j)) =

{

0 𝛿(i, j) > 𝛿t
1 𝛿(i, j) ≤ 𝛿t

Algorithm 1 NEAT-MODS

3. Evaluation The performance of each offspring individ-
ual’s ANN is calculated for each objective 
based on their performance.

4. Combine Populations The Parent and Offspring populations are 
combined for selection.

5. Ranking The combined population is ranked using 
the nondominated sorting algorithm of 
NSGA-II.

6. Species The species affiliation of each individual in 
the combined population is calculated per 
Equation 1.

7. Sorting Individuals grouped into their species, and 
sorted within the species based on the 
nondominated ranking from Step 5.

8. Sorting of Species The species are sorted based on their high-
est nondominated ranking individuals.

9. Selection From top rank species to lowest ranked, the 
top ranking individual of each species is 
selected, followed by the next top ranking 
individual of each species. The process 
continues down the ranking of each 
combined population species until the 
offspring population is filled.

10. Parent Population The new Offspring population is saved as 
the Parent population.

11. Reproduction As in NEAT, the mutation of ANN weights 
by uniform perturbation and random 
replacement, new node addition, new con-
nection addition, connection disabling, 
crossover and inter-species crossover are 
performed on the Offspring population in 
a probabilistic manner.

12. Stopping criteria Steps 2 through 11 are repeated until the 
generational count has reached the termi-
nation condition.

2.3  Hebbian learning

It has long been known that any two nerve cells that are 
repeatedly active at the same time become associated in such 
a manner that activity in one facilitates activity in the other. 
Hebb’s theory proposes the following: “Let us assume then 
that the persistence or repetition of a reverberatory activity 
(or ’trace’) tends to induce lasting cellular changes that add 
to its stability. The assumption can be precisely stated as fol-
lows: When an axon of cell A is near enough to excite a cell 
B and repeatedly or persistently takes part in firing it, some 
growth process or metabolic change takes place in one or 
both cells such that A’s efficiency, as one of the cells firing 
B, is increased.”—[6] Hebb continues to say that “When 
one cell repeatedly assists in firing another, the axon of the 
first cell develops synaptic knobs (or enlarges them if they 
already exist) in contact with the soma of the second cell.”—
[6] The synapse is the junction through which signals flow 
between two nerve cells. Figure 5 shows a stylized neuron 



 Evolutionary Intelligence

1 3

cell indicating the synapse, and the pre- and post-synaptic 
neurons.

Hebbian learning is an unsupervised method of training 
where the connection weights (strengths) are updated as a 
function of pre- and post-synaptic activity [19]. Synaptic 
plasticity Δw is the strengthening or weakening of syn-
apse strength over time according to increases or decreases 
in their activity [6]. As in [11], the updating of synaptic 
weights is performed as per Eq. 4 where � is the learning 
rate, oj is the activation level of the pre-synaptic neuron, oi 
the activation level of the post-synaptic neuron, and w the 
connection weight.

Often, a more advanced rule of synaptic plasticity is used, 
such as that of Eq. 5, where A, B, C, D are the correlation 
term, pre-synaptic term, post-synaptic term, and constant 
weight increase or decay rate. These parameters are tuned 
to adapt the synaptic plasticity.

Hebbian-based learning has similarities to backpropaga-
tion, but does not include or require an error signal or value. 
While allowing fully unsupervised learning, the Hebbian 
learning rule alone is not as effective as the delta rule, at 
least for the simplified model of neural networks presented 
above [13].

2.4  Neuromodulation

In the brain, some specialized neurons release chemical 
transmitters to control the rate of learning of the connec-
tions between neurons [12]. This phenomenon is called 
neuromodulation and is considered to be a major mecha-
nism producing memory and learning in biological nerv-
ous systems [19]. The neuromodulatory neurons control the 
amount of plasticity of other neurons in biological organisms 
by using neurotransmitters such as dopamine and serotonin 
[19]. The computational theory on the roles of neuromodula-
tory systems and how they mediate signals that regulate the 
learning mechanisms in the brain is presented in [4]. Based 
on a review of experimental data and theoretical models, a 

(4)Δw = �ojoi

(5)Δw = �
(

Aojoi + Boj + Coi + D
)

unified theory on the roles of neuromodulators is presented. 
In this model, dopamine controls the error in reward predic-
tion, serotonin controls the time scale of reward prediction, 
noradrenaline controls the randomness in action selection, 
and acetylcholine controls the speed of memory update.

Neuromodulation of the synaptic plasticity augments the 
classic (Hebbian) learning rule by providing gating of the 
plasticity of a synapse between two other neurons, by updat-
ing the synapse after the neuron has fired [7, 11]. Increased 
performance in ANNs through simple Hebbian plasticity has 
previously been demonstrated, but shown to have limited 
learning and memory capabilities in more complex tasks 
[11]. Controlling Hebbian synaptic plasticity by neuromodu-
lation has been presented as more powerful and biologically 
plausible than simple Hebbian plasticity in [7]. In [19], neu-
ral networks that employed neuromodulatory neurons were 
found to have a clear advantage over those with no neuro-
modulatory neurons based on experimental data.

A simplified version of neuromodulation is assumed in 
[17], and a similar approach is used in this research. Here 
the model of the neuromodulation activation for each neu-
romodulating neuron is calculated using Eq. 6, where wji is 
the weight connection of the pre-synaptic neuron j and the 
post-synaptic neuron i, and oj is the output of pre-synaptic 
neuron j.

Applying neuromodulation from Eq. 6 to the model of syn-
aptic plasticity described in Eq. 4, the weight between neu-
ron j and neuromodulated neuron i is modified using Eq. 7 
( oi is the output of the post-synaptic neuron i, and oj is the 
output of pre-synaptic neuron j).

where mi represents the amount of neuromodulator (such as 
dopamine) received and is the neuromodulation transmit-
ted by the neuromodulating neuron and connections. The 
values A, B, C, and D can be determined in a variety of man-
ners, including evolutionary methods. Figure 6 shows how 
neuromodulation is applied by a neuromodulating neuron 
to neuromodulated neurons. Here, each weight represents 
a synapse. The value of the weight represents the amount 
of signal transmitted from the pre-synaptic neuron, through 
the synapse, to the next neuron, the post-synaptic neuron.

Hebbian learning, and by extension neuromodulated 
learning, are unsupervised learning methods, as no desired 
value is necessary. Figure 7 compares two neural networks 
with the same topology. The neural network that is trained 
using backpropagation requires a desired output signal that 
is needed to calculate the output error signal, which is then 

(6)mi =
∑

j

wjioj

(7)Δwji = � tanh

(mi

2

)

(

Aojoi + Boj + Coi + D
)

Fig. 5  Neuron and synapses
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used to adjust (control the rate of plasticity of) the weights 
of the neural network. The neural network trained using 
neuromodulation uses its own specialized neuromodulating 
neurons to control the rate of plasticity. Unlike the back-
propagation algorithm, no error feedback is required in neu-
romodulated Hebbian learning (as Fig. 7 shows), and thus 
it is fully unsupervised, fulfilling one of the requirements 
for fully autonomous robots. Evolutionary methods can be 
used to determine the parameters of the neural networks, 
including those of neuromodulation, and in these cases, the 
objectives used in the evolutionary optimization could be 
considered as a form of supervision.

3  NEAT‑MODS with neuromodulation

The proposed architecture overcomes both of the evolu-
tionary shortcomings by alternatively testing the learn-
ing space with a genetic operator, and then attempting to 
improve upon these results using neuromodulated Heb-
bian learning to adapt the network during operation. This 
approach allows exploration of the entire learning space, 
and fine tuning to find each local error minima, until a 
solution with the global minimum error is found. We pro-
pose a multiobjective evolutionary neurocontroller that 
is assembled based on NEAT-MODS [1], with network 
weights that are modified during each evaluation tourna-
ment using neuromodulated Hebbian learning, as applied 
to a single objective NEAT-based neurocontroller in [18]. 
Here, we define a tournament as the time period during 

which candidate controllers are both learning and evalu-
ated to determine their individual fitness. The NEAT node 
(neuron) gene is augmented to include the synaptic plastic-
ity terms A, B, C, D, and a flag to denote if the node was 
standard or neuromodulated. The NEAT connection (syn-
apse) gene is similarly augmented to include neuromodula-
tory neurons. In the experiments presented here, the model 
of neuromodulation allows neuromodulating neurons to 
modulate any neurons, including themselves and other 
neuromodulating neurons. The neuromodulated NEAT 
node and connection genomes are presented in Fig. 8:

In Fig. 8, node 6 is a neuromodulating node, the con-
nection gene with innovation number 16 is a neuromodu-
lating connection, and node 4 is a neuromodulated node.

3.1  Species and neuromodulation

In NEAT and NEAT-MODS, species are maintained based 
on the following premise: “Speciating the population allows 
organisms to compete primarily within their own niches 
instead of with the population at large. This way, topologi-
cal innovations are protected in a new niche where they have 
time to optimize their structure through competition within 
the niche.” [21]. The concern is that when a new topology is 
evolved, it may have non-optimal weight values, and there-
fore will not be selected to form part of the offspring genera-
tion, and will be discarded as a viable topology. By grouping 
similar topologies, and protecting new topologies for a few 
generations, the new topologies are given an opportunity to 
evolve their weights to more optimal values.

When neuromodulation is used with NEAT, the candidate 
topologies are able to optimize their weights during the tour-
nament (as defined in Sect. 2.4, and in Algorithm 1), before 
ranking and selection. It is therefore hypothesized that spe-
ciation is unnecessary when neuromodulation is used with 
NEAT-based neuroevolution, as neuromodulation produces 
the desired topological innovation. Neuromodulation allows 
candidates (organisms) to optimize their structure (weights) 
while operating, during the tournament. Thus at the end of 
each tournament, candidates (organisms) do not need to be 
protected within a niche, as they are optimized to compete 
with the entire population.

Fig. 6  Neuromodulation

Fig. 7  Neuromodulation is 
unsupervised learning
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3.2  Neuromodulated multiobjective non‑speciated 
NEAT

The proposed neuromodulated multiobjective non-speciated 
NEAT (NM-MO-NS-NEAT) method augments NEAT-
MODS with neuromodulation, but removes the speciation 
innovation protection that is no longer considered necessary, 
as its function is performed by neuromodulation.

3.3  Simulation

In order to demonstrate the effectiveness of the proposed 
NM-MO-NS-NEAT method, it, NEAT-MODS, and neuro-
modulated NEAT-MODS each evolve neural networks to 
control simulated robots that are applied to a basic autono-
mous foraging and maze task. Natural foraging is a task that 
animals must perform to obtain food resources, and similarly 
a task fully autonomous machines would be required to per-
form in order to acquire fuel and material for self-repair 
when human operators are unable to provide such things. 
The maze aspect simulates obstacles encountered during 
operation.

3.3.1  The simulated robot

A differential wheel robot is simulated to demonstrate the 
effectiveness of neuromodulation when applied to multiob-
jective evolutionary neurocontrollers. The robot test platform 
is similar to the Khepera used in [1]. The simulated robot 
consists of a 20 cm radius body with 2 motorized wheels. 
As in [1], the robot has 8 obstacle range sensors configured 
at [ − 167 − 64 − 38.5,− 13, 1338.5, 64, 167 ] degrees. These 
are neural network inputs 1–8. The maximum obstacle range 

that can be sensed is 2 m, and sensor output is on a range of 
[0, 1], zero being maximum distance. Unlike [1], the robot 
uses a radar-style rotational range sensor to determine goal 
location, maximum range is 25 m, the range being given on 
[0, 1] in the same manner as the obstacle sensors. The goal 
location radar sensor range and angle are neural network 
inputs 9 and 10. Sensor noise is not simulated, and no sen-
sors can penetrate walls.

3.3.2  The neurocontrollers

In NEAT, NEAT-MODs and here, the initial network topol-
ogy is minimal, and there are 10 input neurons directly con-
nected to two output neurons through 20 initially randomly 
assigned weights as shown in Fig. 9. The population of the 
candidate neurocontrollers used is 44 as in [1].

The network topology is then augmented in a minimalist 
fashion, by a maximum of one node gene and one connec-
tion per individual per generation. The process outlined in 
Algorithm 1 (both with and without the speciation steps), 
is then used to evolve the candidate neurocontrollers, with 
neuromodulation being performed as described in Sect. 2.4 
during the tournament step.

3.3.3  Simulated arena

The test arena is shown in Fig. 10, and is a simple rectan-
gular room with five additional walls that act as obstacles 
for the robot as it tries to acquire all goals. The initial robot 
position is marked with an ‘x’. The target goal locations are 
marked with an asterisk ‘*’. The targets are distributed so 
that they are not all visible to the robot at any given time, 

Fig. 8  Neuromodulated NEAT 
genome
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and there are locations where the robot cannot see the next 
target goal.

3.3.4  Objective functions

For each generation, the individual candidate neurocon-
trollers are evaluated based on their performance driving 
the simulated robot through the test arena. As in [1], the 
robot’s starting location is the same for each candidate neu-
rocontroller. The fixed start position prevents bias in the fit-
ness values that would be introduced should there be varying 
travel times between the starting position and the first goal 
position. Both objective functions use the number of time 
steps required to complete the journey to the next goal as 
divisor. Thus, starting positions further from the first goal 
would result in lower fitness values for each objective. Dif-
ferent starting positions, with the same distance but differ-
ent orientation with respect to the starting position, would 
require the robot to turn, potentially requiring more time 
steps to follow the same distance. As such, different start-
ing positions for each generation would mean that fitness 
values could not be compared within or across generations. 
The maximum number of time-steps without reaching a 
target is 40. Upon reaching a target, the neurocontroller 
is given 40 more time-steps to reach the next target. The 

robot’s neurocontroller receives input from the sensors at 
each time-step. The value of 40 time-steps was determined 
experimentally by running many simulations of a reduced 
number of generations (to save simulation time), as opposed 
to the 150 generations used to generate the results presented 
here. Simulations with 35 or fewer time-steps did not give 
the robots enough time to reach each target. Values of 45 and 
more allowed the robots too much time to reach the targets, 
wasting computational time. Learning factors of 0.01, 0.02, 
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.5, 1, 2, 5, 
10, 20, 100, and 200 were also tried, with 0.05 being cho-
sen as the best compromise. The neurocontroller’s outputs 
are the robot’s speed and heading commands. As in [1], the 
candidate neurocontrollers are evaluated using two objective 
functions. Collision with a wall is undesirable. It indicates 
an unfit individual, and therefore results in termination of 
the candidate neurocontrollers in the simulation, and a value 
of zero for both fitness functions, effectively removing it as 
a possible parent for the next generation. For comparative 
purposes, the two objective functions F1 and F2 are the same 
as those used in [1]:

where V is the robot speed, � is the difference between wheel 
velocities (the magnitude of the robot’s angular heading, 
0 ≤ � ≤ 1 ), I is the normalized ( 0 ≤ I ≤ 1 ) activation value 
of the obstacle sensor with the highest value (I is zero when 
no obstacle is sensed); H is the score for reaching a target 
or goal (a value of 500 was used in [1], here a value of 500 
is also used), d is the distance from the robot to the clos-
est target, and N is the total number of time steps that the 
neurocontroller kept the robot alive. The purpose of F1 is to 
promote speed and direct motion while avoiding obstacles, 
but without any destination. The purpose of F2 is to reach as 
many targets as possible, without concern for obstacle avoid-
ance. Objective function F1 rewards forward speed, but pun-
ishes candidate robots that turn or that move close to walls. 
Both turning and close proximity to walls may be required to 
maximize objective F2 . Increasing the robot’s forward speed 
increases the distance it travels between scans of the targets. 
If the distance travelled becomes too large between the radar 
scans, the robot will miss the target. Thus rewarding forward 
speed can have an adverse effect on maximizing objective 
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function F2 . As such F1 and F2 are considered contradictory, 
and a Pareto-optimal set of neurocontrollers should exist [1].

3.4  Results

As evolutionary algorithms are stochastic in nature, repeti-
tive runs (a run being a random seeded completion of Algo-
rithm 1) are generally used to obtain statistically relevant 
results. As in the infinite monkey theorem, given an infi-
nite amount of time, a monkey hitting keys at random on a 
keyboard will surely type any given text (for example the 
complete works of William Shakespeare), given an infinite 
amount of time, evolutionary algorithms will arrive at the 
optimal solution. When applied to real world problems, 
an evolutionary algorithm would be expected to achieve a 
solution with reasonable fitness(es) within a practical num-
ber of generations, or preferably the minimum number of 
generations. Therefore, a superior evolutionary algorithm 
is one that arrives at a good enough, best, or better solution 
in the least amount of (computational) time, or generations 
of evolution. Thus, the objective of these experiments is not 
necessarily to produce the most optimal neurocontrollers, 
but to produce better neurocontrollers in fewer generations. 
Hence, over a set of repetitive runs, the superior evolution-
ary algorithm has the greatest mean fitness values, and the 
smallest standard deviation in the mean, indicating that it is 
more likely to come up with the best solution in fewer gen-
erations. The desired outcome is a generalized improvement. 
Here, and in both [1] and [17], 30 independent runs of 150 
generations were performed to demonstrate the performance 
improvement of multiobjective neuromodulation.

The simulation and algorithms were coded in Matlab. 
Parameters for each of the neurocontrollers are presented 
in Table 1. These values were determined based on those 
in [1, 17, 21], with the exception of the probability of neu-
romodulation and learning factor. The probability of neu-
romodulation (that when a node is added it will be a neu-
romodulating node as opposed to a standard neuron) was 
determined experimentally, along with the learning factor 
and the number of time-steps a robot has to reach a target (as 
previously discussed in Sect. 3.3.4). Uniform perturbation is 
the modification of a value by the randomly decided addi-
tion or subtraction of a constant value (amount of uniform 
perturbation).

The proposed architecture is compared to NEAT-MODS, 
and demonstrated by simulation of a differential wheeled 
robot applied to an autonomous foraging task in a maze. 
Evolved neurocontrollers are tasked with acquiring seven 
target goals within the maze. The simulations exhibit the 
effectiveness of neuromodulation on the evolved neurocon-
trollers, and the improved performance given by augment-
ing NEAT-MODs with neuromodulation. Table 2 exhibits 
the performance of the NEAT-MODS, Neuromodulated 

NEAT-MODS (NM-NEAT-MODS), and Neuromodu-
lated Multiobjective Non-Speciated NEAT (NM-MO-NS-
NEAT) simulated controllers. The NM-MO-NS-NEAT has 
the greatest (fittest and therefore best performing) mean F1 
value, has the greatest mean and maximum F2 , in compari-
son to both NEAT-MODS and the neuromodulated NEAT-
MODS neurocontrollers. The NM-MO-NS-NEAT also has 
a smaller standard deviation than NM-NEAT-MODS in 
both fitness functions. This is a generalized improvement. 
As NM-MO-NS-NEAT has improved mean fitness values 
in comparison to NEAT-MODS, then given any random 
initial seed, NM-MO-NS-NEAT is more likely to produce 
fitter neurocontrollers than NEAT-MODS. And NM-MO-
NS-NEAT is also more likely to produce a good solution in 
fewer generations. The conclusion that can be drawn from 
these results is that neuromodulated learning has allowed 
the algorithm to improve on the genetic solution by chang-
ing the neural network weights to better performing values, 
producing a fitter neurocontroller, during operation, with no 
supervision. NM-MO-NS-NEAT also uses on average fewer 
nodes and connections than NM-NEAT-MODS.

A two-sided Wilcoxon (Mann-Whitney) U-test was per-
formed on the best fitness values in the final generation using 
Matlab’s ranksum function. When comparing NM-MO-NS-
NEAT against NEAT-MODS, the test returned a p-value of 
0.001302 for F1 and 7.043E-07 for F2 . Both these values 
indicate a rejection of the null hypothesis (that the NEAT-
MODS and NM-MO-NS-NEAT best fitnesses are samples 
from continuous distributions with equal medians), at the 1% 
significance level (99% confidence interval).

When NM-MO-NS-NEAT (no speciation) is compared 
with NM-NEAT-MODS (with speciation), the two-sided 
Wilcoxon test returned a p-value of 0.2226 for F1 . This 
value indicates a failure to reject the null hypothesis at the 
1% significance level. Thus we must assume that the NM-
NEAT-MODS and NM-MO-NS-NEAT best F1 fitnesses are 
samples from continuous distributions with equal medians). 

Table 1  Neurocontroller parameters

Parameter Value

Probability of neuromodulation 0.5
Probability of weight mutation 0.8
Probability of uniform perturbation 0.9
Probability of disabled connection 0.75
Probability of mutation without crossover 0.55
Interspecies mating rate 0.1
Probability of new node 0.23
Probability of new connection 0.7
Amount of uniform perturbation 0.001
Crossover gene replacement probability 0.25
Learning factor 0.05
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Here, we are not claiming that NM-MO-NS-NEAT is supe-
rior in performance to NM-NEAT-MODS. Instead, we are 
demonstrating that speciation is unnecessary when neuro-
modulation is used with NEAT-based neuroevolution. Equal 
performance in F1 objective fitness does not negate this argu-
ment. The two-sided Wilcoxon test returned a p-value of 
5.265E-05 for F2 . Again, the null hypothesis that the NM-
NEAT-MODS and NM-MO-NS-NEAT best F2 fitnesses are 
samples from continuous distributions with equal medians 
can be rejected at the 1% significance level (99% confidence 
interval).

This demonstrates that not only does neuromodulation 
produce less complex and fitter neurocontrollers than neu-
rocontrollers without neuromodulation, but that speciation 
is unnecessary when neuromodulation is used.

The increased performance provided by neuromodu-
lation is exhibited statistically as the standard deviation 
(error bars), and mean of 30 trials of 150 generations of the 
NM-MO-NS-NEAT and NEAT-MODS neurocontrollers in 
Figs. 11 and 12. Figure 11 shows performance objective F1 
of both NM-MO-NS-NEAT (solid line) and NEAT-MODS 
(dashed line) controllers for each generation. The neuromod-
ulated multiobjective neurocontrollers have better mean F1 
values after approximately the first 20 generations in com-
parison to those without neuromodulation.

Figure 12 shows performance objective F2 of both neu-
romodulated (NM-MO-NS-NEAT, solid line) and non-neu-
romodulated (NEAT-MODS, dashed line) controllers for 
each generation. Both types of controllers exhibit similar 
objective F2 performance for the first 12 generations. The 
NM-MO-NS-NEAT controllers display improved objec-
tive F2 performance over the NEAT-MODS after the first 
20 generations.

In order to show that speciation is not necessary when 
using neuromodulated controllers, the performance of 
NM-MO-NS-NEAT and neuromodulated NEAT-MODS 
neurocontrollers is compared in Figs. 13 and 14. Figure 13 
shows performance objective F1 of both non-speciated (NM-
MO-NS-NEAT, solid line) and speciated neuromodulated 
NEAT-MODS (NM-NEAT-MODS, dashed line) controllers 
for each generation. The non-speciated neuromodulated mul-
tiobjective controllers have similar or better mean F1 values 
over all generations in comparison to those with speciation.

Figure  14 shows performance objective F2 of both 
non-speciated (NM-MO-NS-NEAT, solid line) and speci-
ated neuromodulated NEAT-MODS (NM-NEAT-MODS, 
dashed line) controllers for each generation. The NM-MO-
NS-NEAT neurocontrollers display improved objective F2 
performance over the speciated controllers after the first 20 

Table 2  Neurocontroller 
performance comparison

Algorithm (30 runs) F
1

F
2

Added 
nodes 
(mean)

Added 
edges 
(mean)Mean Max � Mean Max �

NEAT-MODS 0.02017 0.05153 0.008777 18.98 50.28 15.11 20.07 52.10
NM-NEAT-MODS 0.02363 0.05963 0.01005 26.04 50.28 18.86 23.87 74.87
NM-MO-NS-NEAT 0.02626 0.04840 0.009525 42.11 50.31 15.66 21.07 63.67
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generations. Speciation is intended as a system by which 
candidate topologies are given an opportunity to adapt their 
weights to a better solution through mutation. When spe-
ciation is combined with neuromodulation, poor candidate 
topologies that have not increased their fitness though neu-
romodulated weight adjustment are still kept in the offspring 
population by speciation protection. Thus, unfit topology 
solutions can occupy positions that could be occupied by 
candidates that have evolved to fitter topologies, impeding 
the rate of evolution.

Figures 15 and 16 show the final robot position and robot 
path for the fittest non-neuromodulated (NEAT-MODS) 
and neuromodulated (NM-MO-NS-NEAT) individuals for 
objective functions F1 and F2 . These figures show the robots 

that achieved the maximum fitness over all generations in 
all the runs, not the average. Note also, that robot speed 
is part of the F1 fitness equation, but the effect of speed is 
not visible in these figures. Both of the fitness functions 
include division by the total number of possible time-steps, 
so that a robot that completes the maze in fewer time-steps 
achieves a greater fitness function. Greater speed can reduce 
the amount of time-steps required to complete the maze, and 
thus both F1 and F2 fitnesses are a indirectly a function of 
speed. Hence, two sample plots of apparently similar robot 
paths may be associated with considerably different fitness 
values.

The robot orientation is displayed as a stylized robot 
symbol with its obstacle range sensor traces and ‘radar-
style’ detector. The targets are displayed as asterisks before 
being acquired, and after acquisition they are ‘x’ symbols. 
Figure 15 shows the robot paths for the evolved non-neu-
romodulated and neuromodulated networks with the best 
performance objective F1 . The calculation of this objective 
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function does not include the target goals, and therefore can-
didate neurocontrollers do not attempt to visit them. The 
robots have reached the first three targets, but this is a result 
of being crossbred within a general population that is also 
evolving to maximize objective F2 . The crossover mecha-
nism of the evolutionary algorithm does not discriminate 
between F1 or F2 fitness functions when choosing candidates 
for crossbreeding, and thus candidates that are fit in F1 can 
crossbreed with candidates that are fit in F2 . These are the 
respective maximum values of performance objective F1 , 
and both neurocontrollers display similar performance as 
in Table 2.

Figure 16 shows the robot path for the non-neuromod-
ulated (NEAT-MODS) and neuromodulated (NM-MO-
NS-NEAT) neurocontrollers with the fittest performance 
objective F2 . Here the best neuromodulated robot follows 
a more direct path than the best non-neuromodulated robot. 
Diversions from the direct path of the non-neuromodulated 
neurocontroller are marginally larger than those of the neu-
romodulated controller. The direct motion of the robot path 
plot travelling from each target goal to the next indicates 
not only that it has maximized objective F2 , but also that it 
has maximized objective F1 , exhibiting the effectiveness of 
evolving multiple objectives concurrently within a common 
population (multiobjective optimization). Here the objective 
of avoiding walls ( F1 ) has been maximized, but not at the 
cost of reaching targets (objective F2 ), as shown between the 
third and fourth targets, where the fittest neuromodulated 
robot has come close to the top vertical wall.

Figures 17 and 18 show the evolved neural network struc-
ture for the non-neuromodulated (NEAT-MODS) and neu-
romodulated (NM-MO-NS-NEAT) neurocontrollers with 
the fittest performance objective F2 over all runs and gen-
erations. Non-neuromodulated neurons are circular shaped 
nodes with regular connections being solid lines. Connec-
tions that have been disabled by the NEAT mutation algo-
rithm are shown as a dashed line. Neuromodulating neurons 
are diamond shaped, and neuromodulating connections are 
bold. Neuromodulated neurons are square shaped. The val-
ues displayed for each edge are the weight values for the 
synapse associated with their respective edge. The inputs are 
numbered one through ten, the outputs eleven and twelve.

In Fig. 18 there are two neuromodulating neurons (nodes 
14 and 15), and four neuromodulated neurons (nodes 11, 
12, 13 and 14). Node 14 is both neuromodulating and neu-
romodulated. In Fig. 18 it can also be seen that Node 11 has 
12 input connections (including the recurrent one), Node 
12 has 11 input connections (including the recurrent one), 
Node 13 has 13 input connections (including the recurrent 
one), and Node 14 has six non-neuromodulating input con-
nections. Therefore there are a total of 42 connections each 
with a weight that is adapted by neuromodulation over the 
four neuromodulated nodes.

Table 3 shows the number of added neurons and connec-
tions for the non-neuromodulated and neuromodulated con-
trollers with the best F2 performance objective. In Table 2, 
the best non-neuromodulated controller has an F2 fitness of 
50.28, which is very close to the value of 50.31 that the 
best neuromodulated neurocontroller has achieved. The neu-
romodulated controller has 2 fewer neurons, but 11 more 
connections.

The following figures are intended to illustrate graphi-
cally the effects of neuromodulation on the neuromodu-
lated neurons. The figures happen to show the fittest F2 
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neurocontroller, but any neuromodulated neurocontroller 
with some interesting behaviour would have sufficed.

Figure 19 presents the neuromodulation signal (with 
respect to time-step) produced by the neuromodulating 
neurons. In Fig. 19, spikes in the neuromodulating signal 
can be seen at times when the robot encounters a situation 
more challenging than moving freely towards the next tar-
get. There are spikes at locations when the robot encounters 
obstacles, and at times the robot has difficulty getting close 
enough to the targets to acquire them. The neurocontroller 
has had difficulty reaching the sixth target (as can be seen in 
the NM-MO-NS-NEAT robot path in Fig. 16, and is detailed 
in Fig. 20). The neuromodulating neuron is attempting to 
compensate for this problem, which is exhibited as oscilla-
tion around the 220th time-step.

Figure 20 shows an expanded portion of the NM-MO-
NS-NEAT robot path exhibited in the right half of Fig. 16. 
The robot can be seen approaching target 6 from the top 
right of the figure. Target 6 is the leftmost object in the fig-
ure, a small ‘x’. As the robot nears target 6, it zig-zags in 
an attempt to acquire the target. After several attempts, the 

robot acquires the target, and continues on its mission to 
acquire the remaining target. It then exits at the bottom right 
of the figure.

The neuromodulated weight values with respect to the 
time-steps for each of the 42 plastic connections are shown 
in Fig. 21. This shows the effect of the neuromodulation 
signals presented in Fig. 19 on the neuromodulated weights. 
Here, the neuromodulated weights can be seen to be learn-
ing—adapting to better values as the robot moves through 
the maze, based on the neuromodulating signals presented 
in Fig. 19. The neuromodulated weights appear to be con-
verging towards a final value, suggesting that the neurocon-
trollers have learned to operate the robot in the maze to the 
best of their ability for their neural network topology.

4  Discussion and future work

Multiobjective evolutionary algorithms such as NSGA-II [3] 
select individuals that dominate each objective (and objec-
tives), and as such maintain a population of fitter individuals 
of each objective. As multiobjective evolutionary algorithms 
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maintain a population of the fittest individuals of each objec-
tive, (and given that the objectives are sufficiently conflict-
ing) good diversity is ensured [8]. The objectives used so 
far (as presented in Sect. 3.3.4) are composite objectives 
in that each is a function of separate atomic objectives, an 
atomic objective being one that cannot be further separated 
into component objectives. For example, ‘maximize for-
ward velocity’ is an atomic objective, as the wheel position/
velocity from an encoder cannot be further broken down into 
components. In theory, simplifying the composite objec-
tives by breaking them up into separate atomic objectives 
will increase the efficiency of the evolutionary algorithm, 
as increasing the number of objectives increases diversity, 
and therefore the probability of finding a good solution in 
fewer generations.

It is proposed that the NM-MO-NS-NEAT algorithm be 
augmented to include the evolution of a number of the meta-
parameters. Encoding the simulation metaparameters in the 
evolutionary algorithm would allow these to be optimized 
at the same time as the network parameters. This will not 
only find the best metaparameters, but may also improve 
network parameter performance and help reduce the number 
of generations required to evolve good controllers.

5  Conclusions

A novel architecture for neuromodulated multiobjective 
topology and weight evolution of artificial neural networks 
is proposed. Combining neuromodulation with multiobjec-
tive neuroevolution provides a powerful tool for exploring 
the search space. This combination gives the unique ability 
to test the search space with a genetic operator, and then 
improve upon these results using neuromodulated learning 
to adapt the network during operation, during each tourna-
ment. At the end of each tournament, candidates do not need 
to be protected through speciation, as they are optimized to 
compete with the entire population. This approach allows 
exploration of the entire search space, and fine tuning to find 
each local maximum, until a solution with the global (or at 
least a more global) maximum is found.

The proposed neuromodulated multiobjective non-spe-
ciated NEAT (NM-MO-NS-NEAT) architecture is demon-
strated by simulation of a differential wheeled robot applied 
to an autonomous foraging task in a maze (to be consistent 
with the work presented in [1]). Evolved neurocontrollers 
are tasked with acquiring seven target goals within the 
maze. The simulations compare the performance of neuro-
modulated speciated NEAT-MODS (NM-NEAT-MODS), 
and NEAT-MODS with NM-MO-NS-NEAT. The simula-
tions exhibit the effectiveness of neuromodulation on the 
evolved neurocontrollers, and the improved performance 
given by augmenting NEAT-MODs with neuromodulation. 

On average NM-MO-NS-NEAT evolves neurocontrollers 
with greater fitnesses and smaller or similar fitness standard 
deviations, in fewer generations than either NEAT-MODS 
or NM-NEAT-MODS. Since the objective of these experi-
ments is not necessarily to produce the most optimal neuro-
controllers, but to produce better neurocontrollers in fewer 
generations, and as NM-MO-NS-NEAT is more likely to 
come up with the best solution in fewer generations, it is 
considered to be the superior algorithm here. It is also shown 
that speciation is unnecessary when neuromodulation is used 
with NEAT-based neuroevolution, as neuromodulation pro-
duces topological innovation.

The results presented show the superiority of multiob-
jective neuromodulated neuroevolution over multiobjective 
neuroevolution alone. Neuromodulated robots have been 
shown to achieve better mean F1 and F2 values at each gen-
eration. The results indicate that even two neuromodulating 
neurons can improve controller performance. Using NEAT-
MODS alone, fine-grain adjustment of the connection 
weights requires mutation, which only occurs between gen-
erations, when offspring are produced. By including neuro-
modulation, the weights can be adjusted continuously during 
the lifetime of each generation using synaptic plasticity. The 
results demonstrate that the combination of neuromodulation 
with multiobjective NEAT in NM-MO-NS-NEAT gives an 
effective and efficient tool for generating neurocontrollers by 
facilitating learning while the neurocontrollers are evolving.
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