
Vol.:(0123456789)1 3

Evolutionary Intelligence
https://doi.org/10.1007/s12065-020-00394-9

RESEARCH PAPER

Neuromodulated multiobjective evolutionary neurocontrollers
without speciation

Ian Showalter1 · Howard M. Schwartz1

Received: 27 September 2019 / Revised: 14 February 2020 / Accepted: 18 March 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Neuromodulation is a biologically-inspired technique that can adapt the per-connection learning rates of synaptic plasticity.
Neuromodulation has been used to facilitate unsupervised learning by adapting neural network weights. Multiobjective evo-
lution of neural network topology and weights has been used to design neurocontrollers for autonomous robots. This paper
presents a novel multiobjective evolutionary neurocontroller with unsupervised learning for robot navigation. Multiobjective
evolution of network weights and topologies (NEAT-MODS) is augmented with neuromodulated learning. NEAT-MODS
is an NSGA-II based multiobjective neurocontroller that uses two conflicting objectives. The first rewards the robot when it
moves in a direct manner with minimal turning; the second objective is to reach as many targets as possible. NEAT-MODS
uses speciation, a selection process that aims to ensure Pareto-optimal genotypic diversity and elitism. The effectiveness of
the design is demonstrated using a series of experiments with a simulated robot traversing a simple maze containing target
goals. It is shown that when neuromodulated learning is combined with multiobjective evolution, better-performing neural
controllers are synthesized than by evolution alone. Secondly, it is demonstrated that speciation is unnecessary in neuro-
modulated neuroevolution, as neuromodulation preserves topological innovation. The proposed neuromodulated approach
is found to be statistically superior to NEAT-MODS alone when applied to solve a multiobjective navigation problem.

Keywords  Artificial neural network · Hebbian learning · Multiobjective · NEAT-MODS · Neuromodulation · Speciation

1  Introduction

Fully autonomous robots are needed to aid humans in many
fields. Robots can go places that biological lifeforms can not,
and willingly perform tasks that humans find monotonous.
When communication between robots and human control-
lers is difficult due to distance or interference, some degree
of autonomy is required. Autonomy requires robots able to
adapt to changing environments. Evolution and unsupervised
learning are both mechanisms that can provide autonomous
adaptation with respect to a changing environment.

Lifeforms face competing problems. For example, plants
typically face competing objectives such as finding water
and obtaining sunlight. These objectives compete for the
same resources, yet the plant cannot survive without the
resources provided by both. Similarly, the vehicle designer
faces competing objectives such as minimizing energy con-
sumption by reducing mass, and maximizing vehicle range
requiring energy storage (which increases mass). Autono-
mous robots face may different objectives such as complet-
ing missions in the minimum amount of time while simul-
taneously minimizing power consumption. Multiobjective
optimization is an area of research allowing several objective
functions to be maximized simultaneously without the use of
an auxiliary function. Using an auxiliary function requires
that separate objectives be weighted and combined into a
single function. Auxiliary functions require assumptions
about the Pareto front, whereas multiobjective solutions aim
to search for the entire Pareto front simultaneously. Mul-
tiobjective evolutionary neurocontrollers have been shown
to successfully adapt neural network topology and weights

 *	 Ian Showalter
	 ianshowalter@cmail.carleton.ca

	 Howard M. Schwartz
	 howard.schwartz@sce.carleton.ca
	 http://www.sce.carleton.ca/faculty/schwartz/index.html

1	 Department of Systems and Computer Engineering, Carleton
University, 4456 Mackenzie, 1125 Colonel By Drive,
Ottawa, ON K1S 5B6, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-020-00394-9&domain=pdf

	 Evolutionary Intelligence

1 3

[1], incrementally growing from a basal initial structure, and
evolved to a minimal topological solution [21].

Artificial neural networks (ANN) have been successfully
used to operate robotic systems over the last few decades.
They are an effective tool for robotic control, and prom-
ise many advantages over conventional control such as the
ability to learn, and adapt unsupervised to changing envi-
ronments. Determining the smallest size network topology
is desirable to minimize computational cost, latency, and
power consumption. Many different techniques have been
applied to the training and topology of ANNs, including
gradient descent methods with grown or pruned topologies
[16], evolutionary methods, and biologically plausible meth-
ods such as Hebbian learning and neuromodulation [11].
NeuroEvolution of Augmented Topologies (NEAT) was suc-
cessfully demonstrated for function approximation and the
double pole balancing problem in the original publication
[21], and subsequently for other problems. NEAT-MODs
has adapted NEAT for multiobjective problems, and dem-
onstrated the evolution of robot neurocontrollers [1]. Simi-
larly, NEAT has been adapted to evolve neurocontrollers in
a distributed on-line manner in odNEAT [18]. The odNEAT
method has been augmented with Hebbian neuromodulation
to further reduce convergence times [17].

Combining evolution and learning can provide a power-
ful synergy between complementary search algorithms. Net-
works with evolved initial weights can be trained faster, and
to a higher degree of accuracy, than networks with random
initial weights [15]. According to Hebbian theory, synaptic
plasticity is the mechanism by which, when an axon of cell
A repeatedly excites cell B, a change takes place in one or
both cells such that A’s efficiency in firing B is increased
[6]. Hebbian learning is therefore an unsupervised method
of training where the connection weights (strengths) are
updated as a functions of pre- and post-synaptic activity
[19]. Neuromodulation is considered to be a major mecha-
nism producing memory and learning in biological nervous
systems [19]. Specialized neuromodulatory neurons con-
trol the amount of plasticity of other neurons in biological
organisms by using neurotransmitters such as dopamine and
serotonin [19]. Neuromodulation of the synaptic plasticity
augments the Hebbian learning rule by providing gating of
the plasticity of a synapse between two other neurons, by
updating the synapse after the neuron has fired [7, 11].

It is proposed that adding neuromodulation to neuroevo-
lution will improve neurocontroller performance. Secondly,
it is hypothesized that protecting innovation by the use of
species as in NEAT [21], and NEAT-MODS [1] is unneces-
sary when neuromodulation is used to adapt the neurocon-
trollers during the operation of each generation, between
times when the offspring population is generated.

We propose a novel architecture where a neuromodulated
multiobjective evolutionary neural controller is trained in

real time during each evaluation tournament. Here, a tourna-
ment is defined as the time period during which candidate
controllers are evaluated (here, by simulation of a robot in
the test environment) to determine their individual fitness.
Like NEAT-MODS [1], the multiobjective neural controller
is assembled based on NEAT [21] and evolved using NSGA-
II [3], but unlike NEAT-MODS, speciation is not used. Each
candidate neurocontroller’s fitness is determined by tour-
nament, where each candidate neurocontroller is judged
based on its performance controlling the robot in the test
arena. The candidate neurocontroller’s weights are modified
online during each tournament using neuromodulated Heb-
bian learning. The proposed architecture overcomes both the
evolutionary shortcomings described above by alternatively
testing the learning space with a genetic operator, and then
attempting to improve upon these results using neuromodu-
lated learning to adapt the network between each time step
during operation. This approach also allows exploration of
the entire learning space, and fine tuning to find each local
error minimum, until a solution with the global minimum
error is found. Using NEAT-MODS alone, fine-grain adjust-
ment of the connection weights requires mutation, which
only occurs between generations, when offspring are pro-
duced. By including neuromodulation the weights can be
adjusted continuously during the lifetime of each generation
due to synaptic plasticity [17].

To demonstrate the effectiveness and improved perfor-
mance given by neuromodulation when applied to evolved
multiobjective neurocontrollers, simulated robots using
neurocontrollers evolved by simple NEAT-MODS, neuro-
modulated NEAT-MODS, and the proposed neuromodulated
multiobjective non-speciated NEAT are applied to a basic
autonomous foraging and maze task. Foraging is a task that
would be required to be performed by fully autonomous
machines, in order to acquire fuel and parts for self-repair.
The maze aspect simulates obstacles encountered during
operation.

2 � Background

Neuroevolution is the design of artificial neural networks
using evolutionary methods. Parameters of the neural net-
work are encoded in mathematical models of genes, then
optimized in an evolutionary fashion. Evolutionary tech-
niques have been used in artificial neural networks to deter-
mine weight values, network architectures such as number of
neurons in a layer, or connections between neurons, or deep
convolutional neural networks in a block-wise fashion. Evo-
lutionary techniques have also been used to determine acti-
vation functions in [5]. Neuroevolution has been applied to
many problems, including evolving platooning strategies in
intelligent transportation systems [23], and estimating stock

Evolutionary Intelligence	

1 3

closing indices using evolutionary neural networks [10], and
neuro-evolutionary systems for foreign exchange trading [9].

2.1 � NeuroEvolution of augmenting topologies
(NEAT)

Neuroevolution representations can be divided into three
classes: direct, developmental and implicit. Direct repre-
sentations have been generally used to evolve the param-
eter values of fixed-sized networks [5]. NeuroEvolution of
Augmented Topologies (NEAT) is a direct representational
method for genetically encoding and evolving the weights
and architecture of ANNs [21]. NEAT uses a unique innova-
tion number associated with each gene to track the history of
the genetic markers. This facilitates crossover without suf-
fering from the “competing convention”, where computation
is wasted when duplicates of the same or virtually identical

structure compete against each other. The competing con-
ventions problem arises because the order of the genes is
unimportant. For example, a genome containing neurons A,
B, and C can be represented by the sequences [ABC] and
[ACB] (and others). Applying the crossover function to these
two genomes would lead to missing information, as the off-
spring would be formed [ABB] or [ACC] . When a new gene
is added, the global innovation number is incremented and
assigned to that gene. As a new gene is added to the genome,
it receives its own innovation number, so that genes do not
get out of order when crossover is performed. When crosso-
ver is performed, the genes of the two parent sequences are
lined up sequentially by innovation number (see Fig. 2).
Thus the sequence [ACB] is sorted to become [ABC] , and
the sequence [ACC] (with duplicate gene C) is prevented
from being created by the crossover of [ABC] with [ACB] .
The NEAT genome is shown in Fig. 1.

To produce the offspring generation from the parent gen-
eration, NEAT applies crossover and mutation operators.
The crossover between two parents of different structures
is based on the innovation number. When crossover is per-
formed in NEAT, the genes of both parents are lined up by
innovation number. Genes that have the same innovation
number are called matching genes. In Fig. 2, the genes with
innovation numbers 1 through 5 are matching genes. Genes
that do not match are called disjoint if they occur within the
range of the other parent’s innovation numbers, or excess
if they occur outside the other parent’s range. In Fig. 2, the
genes with innovation numbers 6 through 8 are disjoint
genes, those with innovation numbers 9 and 10 are excess
genes. Crossover in NEAT is accomplished by randomly
selecting matching genes from both parents, and disjoint
and excess genes from the parent with better fitness. Fig-
ure 2 shows disjoint and excess genes and the basic NEAT Fig. 1   NEAT genome

Fig. 2   NEAT crossover

	 Evolutionary Intelligence

1 3

crossover operation. Note that this figure does not take into
account the fitter parent. Regardless of which parent is fitter,
each of the genes with innovation number 1 through 5 would
be selected at random from one or the other of the parents.
If Parent 1 is the fitter of the two parents, the disjoint gene
with innovation number 8 would also be selected to form
the complete Offspring sequence. If Parent 2 were the fitter
parent, the Offspring would inherit the genes with innovation
numbers 6, 7, 9 and 10 in addition to the five genes randomly
selected from both parents.

The mutation operation allows for weight perturbation or
replacement of one gene of a sequence, or the addition of a
node or a connection. NEAT mutation is shown in Figs. 3
and 4. In Fig. 3, the left-hand network is modified by adding
a connection between nodes 3 and 5. The result is shown in
the right-hand figure, with a seventh gene being added to the
sequence describing the connection between nodes 3 and 5.
This is also shown in the resulting network.

Figure 4 shows mutation in the form of the addition of
a node. Node 6 is added as two new genes to the end of the
sequence, with innovation number 8 (indicating a connection
between nodes 3 and 6), and innovation number 9 (indicat-
ing a connection between nodes 6 and 4). The node sequence
is also updated with the new node.

NEAT also uses speciation, in which the total population
of individuals is divided into species, to preserve innova-
tion: Sequences with similar genes and structures are consid-
ered to be of the same species, and are more likely to breed
together (crossover) than with members of other species.
Dividing the population into species allows new topologies
with non-optimal weights an opportunity to evolve their
weights (via the evolutionary weight mutation operation)
towards optimal values without immediately being killed
off. Inter-species differences between individual i and j are
determined using a compatibility distance � function based
on the number of excess genes, disjoint genes, and average
weight differences.

Coefficients c1 , c2 , and c3 adjust the importance of the num-
ber of excess genes E, disjoint genes D, and matching genes
W respectively. N is the connection gene sequence length,
but is set to 1 in [21] if the connection gene sequence length
is less than 20.

Species are weighted using a sharing function based on
the compatibility distance function, such that organisms in
the same species share their fitness. Offspring populations

(1)� =
c1E

N
+

c2D

N
+ c3W

Fig. 3   NEAT mutation: add
connection

Fig. 4   NEAT mutation: add
node

Evolutionary Intelligence	

1 3

are evaluated using a fitness function f. The result is
weighted using the sharing function presented in Eq. 2. This
weighted fitness f ′ is then ranked by nondominated sorting.

where the sharing function sh(�) is:

NEAT then follows the method used in NSGA-II [3]. The
next offspring population is populated based on the weighted
ranking. The new population is then randomly mutated by
any of: Perturbation of weights, replacement of weights,
addition of a new node, addition of a new connection,
disabling a connection, intraspecies crossover, or interspe-
cies crossover. NEAT has been applied to many problems,
including the pole balancing problem [21], computer games
[14, 20], and robot control [22].

2.2 � NEAT‑MODS

NEAT-MODS is a NEAT-based multiobjective evolution-
ary algorithm that aims to maximize two (or more) objec-
tives without the use of an auxiliary function. In [2] it is
argued that it is more efficient to approach objectives in
a simultaneous manner than sequentially in the search for
the Pareto-optimal solution, as multiobjective evolutionary
algorithms are more easily parallelizable, and conflicting
objectives ensure good diversity in the search space [8]. In
NEAT-MODS, the basic genotype, species diversification
and steps of NEAT are followed, but with the substitution
of the nondominated sorting of NSGA-II being used, allow-
ing Pareto-optimal controllers to be evolved simultaneously
for problems with conflicting objectives. For the problem
of robot navigation, the conflicting objectives here as in [1]
are achieving goals while avoiding obstacles. NEAT-MODS
uses NEAT’s speciation. The NEAT-MODS process imple-
mented for the research is presented in Algorithm 1.

Algorithm 1 NEAT-MODS

1. Initialization A minimal topology network is defined
with no hidden layer nodes. One edge
connects each input directly to each
output. An initial Offspring population of
individuals is generated with randomly
assigned weights. An empty Parent popu-
lation is also defined.

while gens < gens
max

Repeat until the generational count has
reached the termination condition.

2. Tournament The NEAT genes of each offspring indi-
vidual are used to construct an ANN that
is then used to control a simulated robot.

(2)f �
i
=

fi
∑n

j=1
sh(�(i, j))

(3)sh(𝛿(i, j)) =

{

0 𝛿(i, j) > 𝛿t
1 𝛿(i, j) ≤ 𝛿t

Algorithm 1 NEAT-MODS

3. Evaluation The performance of each offspring individ-
ual’s ANN is calculated for each objective
based on their performance.

4. Combine Populations The Parent and Offspring populations are
combined for selection.

5. Ranking The combined population is ranked using
the nondominated sorting algorithm of
NSGA-II.

6. Species The species affiliation of each individual in
the combined population is calculated per
Equation 1.

7. Sorting Individuals grouped into their species, and
sorted within the species based on the
nondominated ranking from Step 5.

8. Sorting of Species The species are sorted based on their high-
est nondominated ranking individuals.

9. Selection From top rank species to lowest ranked, the
top ranking individual of each species is
selected, followed by the next top ranking
individual of each species. The process
continues down the ranking of each
combined population species until the
offspring population is filled.

10. Parent Population The new Offspring population is saved as
the Parent population.

11. Reproduction As in NEAT, the mutation of ANN weights
by uniform perturbation and random
replacement, new node addition, new con-
nection addition, connection disabling,
crossover and inter-species crossover are
performed on the Offspring population in
a probabilistic manner.

12. Stopping criteria Steps 2 through 11 are repeated until the
generational count has reached the termi-
nation condition.

2.3 � Hebbian learning

It has long been known that any two nerve cells that are
repeatedly active at the same time become associated in such
a manner that activity in one facilitates activity in the other.
Hebb’s theory proposes the following: “Let us assume then
that the persistence or repetition of a reverberatory activity
(or ’trace’) tends to induce lasting cellular changes that add
to its stability. The assumption can be precisely stated as fol-
lows: When an axon of cell A is near enough to excite a cell
B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing
B, is increased.”—[6] Hebb continues to say that “When
one cell repeatedly assists in firing another, the axon of the
first cell develops synaptic knobs (or enlarges them if they
already exist) in contact with the soma of the second cell.”—
[6] The synapse is the junction through which signals flow
between two nerve cells. Figure 5 shows a stylized neuron

	 Evolutionary Intelligence

1 3

cell indicating the synapse, and the pre- and post-synaptic
neurons.

Hebbian learning is an unsupervised method of training
where the connection weights (strengths) are updated as a
function of pre- and post-synaptic activity [19]. Synaptic
plasticity Δw is the strengthening or weakening of syn-
apse strength over time according to increases or decreases
in their activity [6]. As in [11], the updating of synaptic
weights is performed as per Eq. 4 where � is the learning
rate, oj is the activation level of the pre-synaptic neuron, oi
the activation level of the post-synaptic neuron, and w the
connection weight.

Often, a more advanced rule of synaptic plasticity is used,
such as that of Eq. 5, where A, B, C, D are the correlation
term, pre-synaptic term, post-synaptic term, and constant
weight increase or decay rate. These parameters are tuned
to adapt the synaptic plasticity.

Hebbian-based learning has similarities to backpropaga-
tion, but does not include or require an error signal or value.
While allowing fully unsupervised learning, the Hebbian
learning rule alone is not as effective as the delta rule, at
least for the simplified model of neural networks presented
above [13].

2.4 � Neuromodulation

In the brain, some specialized neurons release chemical
transmitters to control the rate of learning of the connec-
tions between neurons [12]. This phenomenon is called
neuromodulation and is considered to be a major mecha-
nism producing memory and learning in biological nerv-
ous systems [19]. The neuromodulatory neurons control the
amount of plasticity of other neurons in biological organisms
by using neurotransmitters such as dopamine and serotonin
[19]. The computational theory on the roles of neuromodula-
tory systems and how they mediate signals that regulate the
learning mechanisms in the brain is presented in [4]. Based
on a review of experimental data and theoretical models, a

(4)Δw = �ojoi

(5)Δw = �
(

Aojoi + Boj + Coi + D
)

unified theory on the roles of neuromodulators is presented.
In this model, dopamine controls the error in reward predic-
tion, serotonin controls the time scale of reward prediction,
noradrenaline controls the randomness in action selection,
and acetylcholine controls the speed of memory update.

Neuromodulation of the synaptic plasticity augments the
classic (Hebbian) learning rule by providing gating of the
plasticity of a synapse between two other neurons, by updat-
ing the synapse after the neuron has fired [7, 11]. Increased
performance in ANNs through simple Hebbian plasticity has
previously been demonstrated, but shown to have limited
learning and memory capabilities in more complex tasks
[11]. Controlling Hebbian synaptic plasticity by neuromodu-
lation has been presented as more powerful and biologically
plausible than simple Hebbian plasticity in [7]. In [19], neu-
ral networks that employed neuromodulatory neurons were
found to have a clear advantage over those with no neuro-
modulatory neurons based on experimental data.

A simplified version of neuromodulation is assumed in
[17], and a similar approach is used in this research. Here
the model of the neuromodulation activation for each neu-
romodulating neuron is calculated using Eq. 6, where wji is
the weight connection of the pre-synaptic neuron j and the
post-synaptic neuron i, and oj is the output of pre-synaptic
neuron j.

Applying neuromodulation from Eq. 6 to the model of syn-
aptic plasticity described in Eq. 4, the weight between neu-
ron j and neuromodulated neuron i is modified using Eq. 7
( oi is the output of the post-synaptic neuron i, and oj is the
output of pre-synaptic neuron j).

where mi represents the amount of neuromodulator (such as
dopamine) received and is the neuromodulation transmit-
ted by the neuromodulating neuron and connections. The
values A, B, C, and D can be determined in a variety of man-
ners, including evolutionary methods. Figure 6 shows how
neuromodulation is applied by a neuromodulating neuron
to neuromodulated neurons. Here, each weight represents
a synapse. The value of the weight represents the amount
of signal transmitted from the pre-synaptic neuron, through
the synapse, to the next neuron, the post-synaptic neuron.

Hebbian learning, and by extension neuromodulated
learning, are unsupervised learning methods, as no desired
value is necessary. Figure 7 compares two neural networks
with the same topology. The neural network that is trained
using backpropagation requires a desired output signal that
is needed to calculate the output error signal, which is then

(6)mi =
∑

j

wjioj

(7)Δwji = � tanh

(mi

2

)

(

Aojoi + Boj + Coi + D
)

Fig. 5   Neuron and synapses

Evolutionary Intelligence	

1 3

used to adjust (control the rate of plasticity of) the weights
of the neural network. The neural network trained using
neuromodulation uses its own specialized neuromodulating
neurons to control the rate of plasticity. Unlike the back-
propagation algorithm, no error feedback is required in neu-
romodulated Hebbian learning (as Fig. 7 shows), and thus
it is fully unsupervised, fulfilling one of the requirements
for fully autonomous robots. Evolutionary methods can be
used to determine the parameters of the neural networks,
including those of neuromodulation, and in these cases, the
objectives used in the evolutionary optimization could be
considered as a form of supervision.

3 � NEAT‑MODS with neuromodulation

The proposed architecture overcomes both of the evolu-
tionary shortcomings by alternatively testing the learn-
ing space with a genetic operator, and then attempting to
improve upon these results using neuromodulated Heb-
bian learning to adapt the network during operation. This
approach allows exploration of the entire learning space,
and fine tuning to find each local error minima, until a
solution with the global minimum error is found. We pro-
pose a multiobjective evolutionary neurocontroller that
is assembled based on NEAT-MODS [1], with network
weights that are modified during each evaluation tourna-
ment using neuromodulated Hebbian learning, as applied
to a single objective NEAT-based neurocontroller in [18].
Here, we define a tournament as the time period during

which candidate controllers are both learning and evalu-
ated to determine their individual fitness. The NEAT node
(neuron) gene is augmented to include the synaptic plastic-
ity terms A, B, C, D, and a flag to denote if the node was
standard or neuromodulated. The NEAT connection (syn-
apse) gene is similarly augmented to include neuromodula-
tory neurons. In the experiments presented here, the model
of neuromodulation allows neuromodulating neurons to
modulate any neurons, including themselves and other
neuromodulating neurons. The neuromodulated NEAT
node and connection genomes are presented in Fig. 8:

In Fig. 8, node 6 is a neuromodulating node, the con-
nection gene with innovation number 16 is a neuromodu-
lating connection, and node 4 is a neuromodulated node.

3.1 � Species and neuromodulation

In NEAT and NEAT-MODS, species are maintained based
on the following premise: “Speciating the population allows
organisms to compete primarily within their own niches
instead of with the population at large. This way, topologi-
cal innovations are protected in a new niche where they have
time to optimize their structure through competition within
the niche.” [21]. The concern is that when a new topology is
evolved, it may have non-optimal weight values, and there-
fore will not be selected to form part of the offspring genera-
tion, and will be discarded as a viable topology. By grouping
similar topologies, and protecting new topologies for a few
generations, the new topologies are given an opportunity to
evolve their weights to more optimal values.

When neuromodulation is used with NEAT, the candidate
topologies are able to optimize their weights during the tour-
nament (as defined in Sect. 2.4, and in Algorithm 1), before
ranking and selection. It is therefore hypothesized that spe-
ciation is unnecessary when neuromodulation is used with
NEAT-based neuroevolution, as neuromodulation produces
the desired topological innovation. Neuromodulation allows
candidates (organisms) to optimize their structure (weights)
while operating, during the tournament. Thus at the end of
each tournament, candidates (organisms) do not need to be
protected within a niche, as they are optimized to compete
with the entire population.

Fig. 6   Neuromodulation

Fig. 7   Neuromodulation is
unsupervised learning

	 Evolutionary Intelligence

1 3

3.2 � Neuromodulated multiobjective non‑speciated
NEAT

The proposed neuromodulated multiobjective non-speciated
NEAT (NM-MO-NS-NEAT) method augments NEAT-
MODS with neuromodulation, but removes the speciation
innovation protection that is no longer considered necessary,
as its function is performed by neuromodulation.

3.3 � Simulation

In order to demonstrate the effectiveness of the proposed
NM-MO-NS-NEAT method, it, NEAT-MODS, and neuro-
modulated NEAT-MODS each evolve neural networks to
control simulated robots that are applied to a basic autono-
mous foraging and maze task. Natural foraging is a task that
animals must perform to obtain food resources, and similarly
a task fully autonomous machines would be required to per-
form in order to acquire fuel and material for self-repair
when human operators are unable to provide such things.
The maze aspect simulates obstacles encountered during
operation.

3.3.1 � The simulated robot

A differential wheel robot is simulated to demonstrate the
effectiveness of neuromodulation when applied to multiob-
jective evolutionary neurocontrollers. The robot test platform
is similar to the Khepera used in [1]. The simulated robot
consists of a 20 cm radius body with 2 motorized wheels.
As in [1], the robot has 8 obstacle range sensors configured
at [ − 167 − 64 − 38.5,− 13, 1338.5, 64, 167 ] degrees. These
are neural network inputs 1–8. The maximum obstacle range

that can be sensed is 2 m, and sensor output is on a range of
[0, 1], zero being maximum distance. Unlike [1], the robot
uses a radar-style rotational range sensor to determine goal
location, maximum range is 25 m, the range being given on
[0, 1] in the same manner as the obstacle sensors. The goal
location radar sensor range and angle are neural network
inputs 9 and 10. Sensor noise is not simulated, and no sen-
sors can penetrate walls.

3.3.2 � The neurocontrollers

In NEAT, NEAT-MODs and here, the initial network topol-
ogy is minimal, and there are 10 input neurons directly con-
nected to two output neurons through 20 initially randomly
assigned weights as shown in Fig. 9. The population of the
candidate neurocontrollers used is 44 as in [1].

The network topology is then augmented in a minimalist
fashion, by a maximum of one node gene and one connec-
tion per individual per generation. The process outlined in
Algorithm 1 (both with and without the speciation steps),
is then used to evolve the candidate neurocontrollers, with
neuromodulation being performed as described in Sect. 2.4
during the tournament step.

3.3.3 � Simulated arena

The test arena is shown in Fig. 10, and is a simple rectan-
gular room with five additional walls that act as obstacles
for the robot as it tries to acquire all goals. The initial robot
position is marked with an ‘x’. The target goal locations are
marked with an asterisk ‘*’. The targets are distributed so
that they are not all visible to the robot at any given time,

Fig. 8   Neuromodulated NEAT
genome

Evolutionary Intelligence	

1 3

and there are locations where the robot cannot see the next
target goal.

3.3.4 � Objective functions

For each generation, the individual candidate neurocon-
trollers are evaluated based on their performance driving
the simulated robot through the test arena. As in [1], the
robot’s starting location is the same for each candidate neu-
rocontroller. The fixed start position prevents bias in the fit-
ness values that would be introduced should there be varying
travel times between the starting position and the first goal
position. Both objective functions use the number of time
steps required to complete the journey to the next goal as
divisor. Thus, starting positions further from the first goal
would result in lower fitness values for each objective. Dif-
ferent starting positions, with the same distance but differ-
ent orientation with respect to the starting position, would
require the robot to turn, potentially requiring more time
steps to follow the same distance. As such, different start-
ing positions for each generation would mean that fitness
values could not be compared within or across generations.
The maximum number of time-steps without reaching a
target is 40. Upon reaching a target, the neurocontroller
is given 40 more time-steps to reach the next target. The

robot’s neurocontroller receives input from the sensors at
each time-step. The value of 40 time-steps was determined
experimentally by running many simulations of a reduced
number of generations (to save simulation time), as opposed
to the 150 generations used to generate the results presented
here. Simulations with 35 or fewer time-steps did not give
the robots enough time to reach each target. Values of 45 and
more allowed the robots too much time to reach the targets,
wasting computational time. Learning factors of 0.01, 0.02,
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.5, 1, 2, 5,
10, 20, 100, and 200 were also tried, with 0.05 being cho-
sen as the best compromise. The neurocontroller’s outputs
are the robot’s speed and heading commands. As in [1], the
candidate neurocontrollers are evaluated using two objective
functions. Collision with a wall is undesirable. It indicates
an unfit individual, and therefore results in termination of
the candidate neurocontrollers in the simulation, and a value
of zero for both fitness functions, effectively removing it as
a possible parent for the next generation. For comparative
purposes, the two objective functions F1 and F2 are the same
as those used in [1]:

where V is the robot speed, � is the difference between wheel
velocities (the magnitude of the robot’s angular heading,
0 ≤ � ≤ 1 ), I is the normalized ( 0 ≤ I ≤ 1 ) activation value
of the obstacle sensor with the highest value (I is zero when
no obstacle is sensed); H is the score for reaching a target
or goal (a value of 500 was used in [1], here a value of 500
is also used), d is the distance from the robot to the clos-
est target, and N is the total number of time steps that the
neurocontroller kept the robot alive. The purpose of F1 is to
promote speed and direct motion while avoiding obstacles,
but without any destination. The purpose of F2 is to reach as
many targets as possible, without concern for obstacle avoid-
ance. Objective function F1 rewards forward speed, but pun-
ishes candidate robots that turn or that move close to walls.
Both turning and close proximity to walls may be required to
maximize objective F2 . Increasing the robot’s forward speed
increases the distance it travels between scans of the targets.
If the distance travelled becomes too large between the radar
scans, the robot will miss the target. Thus rewarding forward
speed can have an adverse effect on maximizing objective

(8)
F1 =

∑N

t=1

�

Vt

�

1 −
√

�

�

t
(1 − I)t

�

N

(9)F2 =

∑N

t=1
f2t

N

(10)f2t =

{

H robot reaches target
1

1+dt
otherwise

 1 2 3 4 5 6 7 8 9 10

 11 12

INPUTS

OUTPUTS

Fig. 9   Initial network topology

0 5 10 15 20 25

X [meters]

0

5

10

15

20

25

Y
 [m

et
er

s]

Occupancy Grid

Fig. 10   Test arena

	 Evolutionary Intelligence

1 3

function F2 . As such F1 and F2 are considered contradictory,
and a Pareto-optimal set of neurocontrollers should exist [1].

3.4 � Results

As evolutionary algorithms are stochastic in nature, repeti-
tive runs (a run being a random seeded completion of Algo-
rithm 1) are generally used to obtain statistically relevant
results. As in the infinite monkey theorem, given an infi-
nite amount of time, a monkey hitting keys at random on a
keyboard will surely type any given text (for example the
complete works of William Shakespeare), given an infinite
amount of time, evolutionary algorithms will arrive at the
optimal solution. When applied to real world problems,
an evolutionary algorithm would be expected to achieve a
solution with reasonable fitness(es) within a practical num-
ber of generations, or preferably the minimum number of
generations. Therefore, a superior evolutionary algorithm
is one that arrives at a good enough, best, or better solution
in the least amount of (computational) time, or generations
of evolution. Thus, the objective of these experiments is not
necessarily to produce the most optimal neurocontrollers,
but to produce better neurocontrollers in fewer generations.
Hence, over a set of repetitive runs, the superior evolution-
ary algorithm has the greatest mean fitness values, and the
smallest standard deviation in the mean, indicating that it is
more likely to come up with the best solution in fewer gen-
erations. The desired outcome is a generalized improvement.
Here, and in both [1] and [17], 30 independent runs of 150
generations were performed to demonstrate the performance
improvement of multiobjective neuromodulation.

The simulation and algorithms were coded in Matlab.
Parameters for each of the neurocontrollers are presented
in Table 1. These values were determined based on those
in [1, 17, 21], with the exception of the probability of neu-
romodulation and learning factor. The probability of neu-
romodulation (that when a node is added it will be a neu-
romodulating node as opposed to a standard neuron) was
determined experimentally, along with the learning factor
and the number of time-steps a robot has to reach a target (as
previously discussed in Sect. 3.3.4). Uniform perturbation is
the modification of a value by the randomly decided addi-
tion or subtraction of a constant value (amount of uniform
perturbation).

The proposed architecture is compared to NEAT-MODS,
and demonstrated by simulation of a differential wheeled
robot applied to an autonomous foraging task in a maze.
Evolved neurocontrollers are tasked with acquiring seven
target goals within the maze. The simulations exhibit the
effectiveness of neuromodulation on the evolved neurocon-
trollers, and the improved performance given by augment-
ing NEAT-MODs with neuromodulation. Table 2 exhibits
the performance of the NEAT-MODS, Neuromodulated

NEAT-MODS (NM-NEAT-MODS), and Neuromodu-
lated Multiobjective Non-Speciated NEAT (NM-MO-NS-
NEAT) simulated controllers. The NM-MO-NS-NEAT has
the greatest (fittest and therefore best performing) mean F1
value, has the greatest mean and maximum F2 , in compari-
son to both NEAT-MODS and the neuromodulated NEAT-
MODS neurocontrollers. The NM-MO-NS-NEAT also has
a smaller standard deviation than NM-NEAT-MODS in
both fitness functions. This is a generalized improvement.
As NM-MO-NS-NEAT has improved mean fitness values
in comparison to NEAT-MODS, then given any random
initial seed, NM-MO-NS-NEAT is more likely to produce
fitter neurocontrollers than NEAT-MODS. And NM-MO-
NS-NEAT is also more likely to produce a good solution in
fewer generations. The conclusion that can be drawn from
these results is that neuromodulated learning has allowed
the algorithm to improve on the genetic solution by chang-
ing the neural network weights to better performing values,
producing a fitter neurocontroller, during operation, with no
supervision. NM-MO-NS-NEAT also uses on average fewer
nodes and connections than NM-NEAT-MODS.

A two-sided Wilcoxon (Mann-Whitney) U-test was per-
formed on the best fitness values in the final generation using
Matlab’s ranksum function. When comparing NM-MO-NS-
NEAT against NEAT-MODS, the test returned a p-value of
0.001302 for F1 and 7.043E-07 for F2 . Both these values
indicate a rejection of the null hypothesis (that the NEAT-
MODS and NM-MO-NS-NEAT best fitnesses are samples
from continuous distributions with equal medians), at the 1%
significance level (99% confidence interval).

When NM-MO-NS-NEAT (no speciation) is compared
with NM-NEAT-MODS (with speciation), the two-sided
Wilcoxon test returned a p-value of 0.2226 for F1 . This
value indicates a failure to reject the null hypothesis at the
1% significance level. Thus we must assume that the NM-
NEAT-MODS and NM-MO-NS-NEAT best F1 fitnesses are
samples from continuous distributions with equal medians).

Table 1   Neurocontroller parameters

Parameter Value

Probability of neuromodulation 0.5
Probability of weight mutation 0.8
Probability of uniform perturbation 0.9
Probability of disabled connection 0.75
Probability of mutation without crossover 0.55
Interspecies mating rate 0.1
Probability of new node 0.23
Probability of new connection 0.7
Amount of uniform perturbation 0.001
Crossover gene replacement probability 0.25
Learning factor 0.05

Evolutionary Intelligence	

1 3

Here, we are not claiming that NM-MO-NS-NEAT is supe-
rior in performance to NM-NEAT-MODS. Instead, we are
demonstrating that speciation is unnecessary when neuro-
modulation is used with NEAT-based neuroevolution. Equal
performance in F1 objective fitness does not negate this argu-
ment. The two-sided Wilcoxon test returned a p-value of
5.265E-05 for F2 . Again, the null hypothesis that the NM-
NEAT-MODS and NM-MO-NS-NEAT best F2 fitnesses are
samples from continuous distributions with equal medians
can be rejected at the 1% significance level (99% confidence
interval).

This demonstrates that not only does neuromodulation
produce less complex and fitter neurocontrollers than neu-
rocontrollers without neuromodulation, but that speciation
is unnecessary when neuromodulation is used.

The increased performance provided by neuromodu-
lation is exhibited statistically as the standard deviation
(error bars), and mean of 30 trials of 150 generations of the
NM-MO-NS-NEAT and NEAT-MODS neurocontrollers in
Figs. 11 and 12. Figure 11 shows performance objective F1
of both NM-MO-NS-NEAT (solid line) and NEAT-MODS
(dashed line) controllers for each generation. The neuromod-
ulated multiobjective neurocontrollers have better mean F1
values after approximately the first 20 generations in com-
parison to those without neuromodulation.

Figure 12 shows performance objective F2 of both neu-
romodulated (NM-MO-NS-NEAT, solid line) and non-neu-
romodulated (NEAT-MODS, dashed line) controllers for
each generation. Both types of controllers exhibit similar
objective F2 performance for the first 12 generations. The
NM-MO-NS-NEAT controllers display improved objec-
tive F2 performance over the NEAT-MODS after the first
20 generations.

In order to show that speciation is not necessary when
using neuromodulated controllers, the performance of
NM-MO-NS-NEAT and neuromodulated NEAT-MODS
neurocontrollers is compared in Figs. 13 and 14. Figure 13
shows performance objective F1 of both non-speciated (NM-
MO-NS-NEAT, solid line) and speciated neuromodulated
NEAT-MODS (NM-NEAT-MODS, dashed line) controllers
for each generation. The non-speciated neuromodulated mul-
tiobjective controllers have similar or better mean F1 values
over all generations in comparison to those with speciation.

Figure 14 shows performance objective F2 of both
non-speciated (NM-MO-NS-NEAT, solid line) and speci-
ated neuromodulated NEAT-MODS (NM-NEAT-MODS,
dashed line) controllers for each generation. The NM-MO-
NS-NEAT neurocontrollers display improved objective F2
performance over the speciated controllers after the first 20

Table 2   Neurocontroller
performance comparison

Algorithm (30 runs) F
1

F
2

Added
nodes
(mean)

Added
edges
(mean)Mean Max � Mean Max �

NEAT-MODS 0.02017 0.05153 0.008777 18.98 50.28 15.11 20.07 52.10
NM-NEAT-MODS 0.02363 0.05963 0.01005 26.04 50.28 18.86 23.87 74.87
NM-MO-NS-NEAT 0.02626 0.04840 0.009525 42.11 50.31 15.66 21.07 63.67

051001050

Generation

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
ax

im
um

 F
1

NEAT-MODS
NM-MO-NS-NEAT

Fig. 11   F
1
 performance for NM-MO-NS-NEAT and NEAT-MODS

controllers versus generation

051001050

Generation

0

5

10

15

20

25

30

35

40

45

50

M
ax

im
um

 F
2

NEAT-MODS
NM-MO-NS-NEAT

Fig. 12   F
2
 performance for NM-MO-NS-NEAT and NEAT-MODS

controllers versus generation

	 Evolutionary Intelligence

1 3

generations. Speciation is intended as a system by which
candidate topologies are given an opportunity to adapt their
weights to a better solution through mutation. When spe-
ciation is combined with neuromodulation, poor candidate
topologies that have not increased their fitness though neu-
romodulated weight adjustment are still kept in the offspring
population by speciation protection. Thus, unfit topology
solutions can occupy positions that could be occupied by
candidates that have evolved to fitter topologies, impeding
the rate of evolution.

Figures 15 and 16 show the final robot position and robot
path for the fittest non-neuromodulated (NEAT-MODS)
and neuromodulated (NM-MO-NS-NEAT) individuals for
objective functions F1 and F2 . These figures show the robots

that achieved the maximum fitness over all generations in
all the runs, not the average. Note also, that robot speed
is part of the F1 fitness equation, but the effect of speed is
not visible in these figures. Both of the fitness functions
include division by the total number of possible time-steps,
so that a robot that completes the maze in fewer time-steps
achieves a greater fitness function. Greater speed can reduce
the amount of time-steps required to complete the maze, and
thus both F1 and F2 fitnesses are a indirectly a function of
speed. Hence, two sample plots of apparently similar robot
paths may be associated with considerably different fitness
values.

The robot orientation is displayed as a stylized robot
symbol with its obstacle range sensor traces and ‘radar-
style’ detector. The targets are displayed as asterisks before
being acquired, and after acquisition they are ‘x’ symbols.
Figure 15 shows the robot paths for the evolved non-neu-
romodulated and neuromodulated networks with the best
performance objective F1 . The calculation of this objective

051001050

Generation

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
M

ax
im

um
 F

1

NM-NEAT-MODS
NM-MO-NS-NEAT

Fig. 13   F
1
 performance for NM-MO-NS-NEAT and NM-NEAT-

MODS controllers versus generation

051001050

Generation

0

5

10

15

20

25

30

35

40

45

50

M
ax

im
um

 F
2

NM-NEAT-MODS
NM-MO-NS-NEAT

Fig. 14   F
2
 performance for NM-MO-NS-NEAT and NM-NEAT-

MODS controllers versus generation

0 5 10 15 20 25

x [metres]

0

5

10

15

20

25

y
[m

et
re

s]

Occupancy Grid

0 5 10 15 20 25

x [metres]

0

5

10

15

20

25

y
[m

et
re

s]

Occupancy Grid

Fig. 15   Robot paths for fittest F
1
 performance objective. NEAT-

MODS (left), and NM-MO-NS-NEAT (right). The maximum F
1

NEAT-MODS value (0.05153) is slightly greater than the maximum
NM-MO-NS-NEAT F

1
 value (0.04840), as presented in Table 2.

These figures show the fittest robots over all generations in all the
runs, not the average. Note also that robot speed is not visible here

0 5 10 15 20 25

x [metres]

0

5

10

15

20

25

y
[m

et
re

s]

Occupancy Grid

0 5 10 15 20 25

x [metres]

0

5

10

15

20

25

y
[m

et
re

s]

Occupancy Grid

Fig. 16   Robot paths for fittest F
2
 performance objective. NEAT-

MODS (left), and NM-MO-NS-NEAT (right). Here, the NM-MO-
NS-NEAT maximum F

2
 value (50.31) is slightly greater than the

maximum NEAT-MODS F
2
 value (50.28), as presented in Table 2.

These figures show the fittest robots over all generations in all the
runs, not the average. Note also that robot speed is not visible here

Evolutionary Intelligence	

1 3

function does not include the target goals, and therefore can-
didate neurocontrollers do not attempt to visit them. The
robots have reached the first three targets, but this is a result
of being crossbred within a general population that is also
evolving to maximize objective F2 . The crossover mecha-
nism of the evolutionary algorithm does not discriminate
between F1 or F2 fitness functions when choosing candidates
for crossbreeding, and thus candidates that are fit in F1 can
crossbreed with candidates that are fit in F2 . These are the
respective maximum values of performance objective F1 ,
and both neurocontrollers display similar performance as
in Table 2.

Figure 16 shows the robot path for the non-neuromod-
ulated (NEAT-MODS) and neuromodulated (NM-MO-
NS-NEAT) neurocontrollers with the fittest performance
objective F2 . Here the best neuromodulated robot follows
a more direct path than the best non-neuromodulated robot.
Diversions from the direct path of the non-neuromodulated
neurocontroller are marginally larger than those of the neu-
romodulated controller. The direct motion of the robot path
plot travelling from each target goal to the next indicates
not only that it has maximized objective F2 , but also that it
has maximized objective F1 , exhibiting the effectiveness of
evolving multiple objectives concurrently within a common
population (multiobjective optimization). Here the objective
of avoiding walls ( F1 ) has been maximized, but not at the
cost of reaching targets (objective F2 ), as shown between the
third and fourth targets, where the fittest neuromodulated
robot has come close to the top vertical wall.

Figures 17 and 18 show the evolved neural network struc-
ture for the non-neuromodulated (NEAT-MODS) and neu-
romodulated (NM-MO-NS-NEAT) neurocontrollers with
the fittest performance objective F2 over all runs and gen-
erations. Non-neuromodulated neurons are circular shaped
nodes with regular connections being solid lines. Connec-
tions that have been disabled by the NEAT mutation algo-
rithm are shown as a dashed line. Neuromodulating neurons
are diamond shaped, and neuromodulating connections are
bold. Neuromodulated neurons are square shaped. The val-
ues displayed for each edge are the weight values for the
synapse associated with their respective edge. The inputs are
numbered one through ten, the outputs eleven and twelve.

In Fig. 18 there are two neuromodulating neurons (nodes
14 and 15), and four neuromodulated neurons (nodes 11,
12, 13 and 14). Node 14 is both neuromodulating and neu-
romodulated. In Fig. 18 it can also be seen that Node 11 has
12 input connections (including the recurrent one), Node
12 has 11 input connections (including the recurrent one),
Node 13 has 13 input connections (including the recurrent
one), and Node 14 has six non-neuromodulating input con-
nections. Therefore there are a total of 42 connections each
with a weight that is adapted by neuromodulation over the
four neuromodulated nodes.

Table 3 shows the number of added neurons and connec-
tions for the non-neuromodulated and neuromodulated con-
trollers with the best F2 performance objective. In Table 2,
the best non-neuromodulated controller has an F2 fitness of
50.28, which is very close to the value of 50.31 that the
best neuromodulated neurocontroller has achieved. The neu-
romodulated controller has 2 fewer neurons, but 11 more
connections.

The following figures are intended to illustrate graphi-
cally the effects of neuromodulation on the neuromodu-
lated neurons. The figures happen to show the fittest F2

1 2 3 45 6 789 10

11 12

1314

15

16

17 18

19

-0.0012395

0.23755

0.63009

-0.60231

0.9786

-0.077005

0.65403

0.53052

0.67432

0.88327

0.12557

0.
77

97
3

1

0.51691

-0.090461
0.97997

-0
.1
81

43

-0.97758

0.60419

1

0.10953

-0.9661

-0.1782

-0.18746

1.
00

2

1

0.8276

-0.21321
1.002

-0
.3
72

04

0.98152

0.9762

0.
58

23
7

0.7
275

-0
.5
75

95

-0.1637

0.038334

-0
.7
91

18

-0.18746

1

-0
.5
52

34

-0.18946

-0
.2
11
51

0.
82

36

-0
.9
79

58

0.19202

1

-0.97558 -0
.7
91
18

0.7
79
73

Fig. 17   Evolved NEAT-MODS neural network structure for fittest F
2

performance objective. This figure shows the fittest neurocontroller
over all generations in all the runs, and is not representative of the
average

1 2 3 4 56 78 9 10

1112

13

14

15

16

17

-0.16894

0.53593

-0.91973

0.40878

0.60628

0.68611

-0.41516

-0.1733

0.4382

0.41876

0.90304

0.39483
-0.12636

-0.86094

0.76592

0.95578

-0.89409

-0.79502

0.99569

-0.24226

0.
46

54
6

0.47556

0.27716

0.70491

-0.014976

0.799611

0.13801

-0.10584

0.
76

77
8

-0.80072

-0.66223

-0
.3
58

81

-0
.1
18

49

-0.2316

0.54084

0.29563

-0
.8
23

33

-0.0041455

1

0.29902

0.99826

-0
.5
29

46

0.97
788

0.8
786

6

-0.29888

-0
.5
30

72

0.3
397

8

-0.2473
-0.19759

-0
.8
70

28
-0
.6
71

79

1
-0
.1
78

96

-0.88159

-0.059374

-0
.6
73
79

0.035353

-0
.0
04

14
55

-0
.3
58

81

0.70491

Fig. 18   Evolved NM-MO-NS-NEAT neural network structure for fit-
test F

2
 performance objective. This figure shows the fittest neurocon-

troller over all generations in all the runs, and is not representative of
the average

	 Evolutionary Intelligence

1 3

neurocontroller, but any neuromodulated neurocontroller
with some interesting behaviour would have sufficed.

Figure 19 presents the neuromodulation signal (with
respect to time-step) produced by the neuromodulating
neurons. In Fig. 19, spikes in the neuromodulating signal
can be seen at times when the robot encounters a situation
more challenging than moving freely towards the next tar-
get. There are spikes at locations when the robot encounters
obstacles, and at times the robot has difficulty getting close
enough to the targets to acquire them. The neurocontroller
has had difficulty reaching the sixth target (as can be seen in
the NM-MO-NS-NEAT robot path in Fig. 16, and is detailed
in Fig. 20). The neuromodulating neuron is attempting to
compensate for this problem, which is exhibited as oscilla-
tion around the 220th time-step.

Figure 20 shows an expanded portion of the NM-MO-
NS-NEAT robot path exhibited in the right half of Fig. 16.
The robot can be seen approaching target 6 from the top
right of the figure. Target 6 is the leftmost object in the fig-
ure, a small ‘x’. As the robot nears target 6, it zig-zags in
an attempt to acquire the target. After several attempts, the

robot acquires the target, and continues on its mission to
acquire the remaining target. It then exits at the bottom right
of the figure.

The neuromodulated weight values with respect to the
time-steps for each of the 42 plastic connections are shown
in Fig. 21. This shows the effect of the neuromodulation
signals presented in Fig. 19 on the neuromodulated weights.
Here, the neuromodulated weights can be seen to be learn-
ing—adapting to better values as the robot moves through
the maze, based on the neuromodulating signals presented
in Fig. 19. The neuromodulated weights appear to be con-
verging towards a final value, suggesting that the neurocon-
trollers have learned to operate the robot in the maze to the
best of their ability for their neural network topology.

4 � Discussion and future work

Multiobjective evolutionary algorithms such as NSGA-II [3]
select individuals that dominate each objective (and objec-
tives), and as such maintain a population of fitter individuals
of each objective. As multiobjective evolutionary algorithms

Table 3   Neurocontroller topology statistics for best F
2
 performance

objective

Algorithm
(30 runs)

Added
neu-
rons

Neuro-
modu-
lating
neurons

Neuro-
modu-
lated
neurons

Added
connec-
tions

Neuro-
modulating
connections

NEAT-
MODS

7 0 0 30 0

NM-MO-
NS-
NEAT

5 2 4 41 5

0 50 100 150 200 250 300

Time-Steps

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
eu

ro
m

od
ul

at
in

g
S

ig
na

l

Fig. 19   Neuromodulating neuron’s neuromodulation signal

Fig. 20   Detail of final target of robot path for best neuromodulated F
2

performance objective

0 50 100 150 200 250 300

Time-Steps

-1

-0.5

0

0.5

1

1.5

2

2.5

N
N

 W
ei

gh
ts

Fig. 21   Neuromodulated neuron’s neuromodulated weights. Close
inspection of the weights that appear to be unchanging will reveal
that they are in fact changing very slowly

Evolutionary Intelligence	

1 3

maintain a population of the fittest individuals of each objec-
tive, (and given that the objectives are sufficiently conflict-
ing) good diversity is ensured [8]. The objectives used so
far (as presented in Sect. 3.3.4) are composite objectives
in that each is a function of separate atomic objectives, an
atomic objective being one that cannot be further separated
into component objectives. For example, ‘maximize for-
ward velocity’ is an atomic objective, as the wheel position/
velocity from an encoder cannot be further broken down into
components. In theory, simplifying the composite objec-
tives by breaking them up into separate atomic objectives
will increase the efficiency of the evolutionary algorithm,
as increasing the number of objectives increases diversity,
and therefore the probability of finding a good solution in
fewer generations.

It is proposed that the NM-MO-NS-NEAT algorithm be
augmented to include the evolution of a number of the meta-
parameters. Encoding the simulation metaparameters in the
evolutionary algorithm would allow these to be optimized
at the same time as the network parameters. This will not
only find the best metaparameters, but may also improve
network parameter performance and help reduce the number
of generations required to evolve good controllers.

5 � Conclusions

A novel architecture for neuromodulated multiobjective
topology and weight evolution of artificial neural networks
is proposed. Combining neuromodulation with multiobjec-
tive neuroevolution provides a powerful tool for exploring
the search space. This combination gives the unique ability
to test the search space with a genetic operator, and then
improve upon these results using neuromodulated learning
to adapt the network during operation, during each tourna-
ment. At the end of each tournament, candidates do not need
to be protected through speciation, as they are optimized to
compete with the entire population. This approach allows
exploration of the entire search space, and fine tuning to find
each local maximum, until a solution with the global (or at
least a more global) maximum is found.

The proposed neuromodulated multiobjective non-spe-
ciated NEAT (NM-MO-NS-NEAT) architecture is demon-
strated by simulation of a differential wheeled robot applied
to an autonomous foraging task in a maze (to be consistent
with the work presented in [1]). Evolved neurocontrollers
are tasked with acquiring seven target goals within the
maze. The simulations compare the performance of neuro-
modulated speciated NEAT-MODS (NM-NEAT-MODS),
and NEAT-MODS with NM-MO-NS-NEAT. The simula-
tions exhibit the effectiveness of neuromodulation on the
evolved neurocontrollers, and the improved performance
given by augmenting NEAT-MODs with neuromodulation.

On average NM-MO-NS-NEAT evolves neurocontrollers
with greater fitnesses and smaller or similar fitness standard
deviations, in fewer generations than either NEAT-MODS
or NM-NEAT-MODS. Since the objective of these experi-
ments is not necessarily to produce the most optimal neuro-
controllers, but to produce better neurocontrollers in fewer
generations, and as NM-MO-NS-NEAT is more likely to
come up with the best solution in fewer generations, it is
considered to be the superior algorithm here. It is also shown
that speciation is unnecessary when neuromodulation is used
with NEAT-based neuroevolution, as neuromodulation pro-
duces topological innovation.

The results presented show the superiority of multiob-
jective neuromodulated neuroevolution over multiobjective
neuroevolution alone. Neuromodulated robots have been
shown to achieve better mean F1 and F2 values at each gen-
eration. The results indicate that even two neuromodulating
neurons can improve controller performance. Using NEAT-
MODS alone, fine-grain adjustment of the connection
weights requires mutation, which only occurs between gen-
erations, when offspring are produced. By including neuro-
modulation, the weights can be adjusted continuously during
the lifetime of each generation using synaptic plasticity. The
results demonstrate that the combination of neuromodulation
with multiobjective NEAT in NM-MO-NS-NEAT gives an
effective and efficient tool for generating neurocontrollers by
facilitating learning while the neurocontrollers are evolving.

References

	 1.	 Abramovich O, Moshaiov A (2016) Multi-objective topology and
weight evolution of neuro-controllers. In: 2016 IEEE congress
on evolutionary computation (CEC), pp 670–677. https​://doi.
org/10.1109/CEC.2016.77438​57

	 2.	 Deb K (2001) Multi objective optimization using evolutionary
algorithms. Wiley, New York

	 3.	 Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elit-
ist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol
Comput 6(2):182–197. https​://doi.org/10.1109/4235.99601​7

	 4.	 Doya K (2002) Metalearning and neuromodulation. Neural Netw
15(4–6):495–506. https​://doi.org/10.1016/S0893​-6080(02)00044​
-8

	 5.	 Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from
architectures to learning. Evol Intell 1(1):47–62. https​://doi.
org/10.1007/s1206​5-007-0002-4

	 6.	 Hebb DO (1949) The organization of behavior, a neuropsychologi-
cal theory. Wiley, New York

	 7.	 Katz PS, Harris-Warrick RM (1999) The evolution of neuronal
circuits underlying species-specific behavior. Curr Opin Neurobiol
9(5):628–633. https​://doi.org/10.1016/S0959​-4388(99)00012​-4

	 8.	 Knowles JD, Watson RA, Corne DW (2001) Reducing local
optima in single-objective problems by multi-objectivization. In:
International conference on evolutionary multi-criterion optimiza-
tion. Springer, pp 269–283

	 9.	 Mandziuk J, Rajkiewicz P (2016) Neuro-evolutionary system
for FOREX trading. In: 2016 IEEE congress on evolutionary

https://doi.org/10.1109/CEC.2016.7743857
https://doi.org/10.1109/CEC.2016.7743857
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1016/S0959-4388(99)00012-4

	 Evolutionary Intelligence

1 3

computation, CEC 2016, pp 4654–4661. https​://doi.org/10.1109/
CEC.2016.77443​84

	10.	 Nayak SC, Misra BB (2018) Estimating stock closing indi-
ces using a GA-weighted condensed polynomial neural net-
work. Financial Innov 4(1):1–22. https​://doi.org/10.1186/s4085​
4-018-0104-2

	11.	 Niv Y, Joel D, Meilijson I, Ruppin E (2002) Evolution of rein-
forcement learning in uncertain environments: a simple explana-
tion for complex foraging behaviors. Adapt Behav 10(1):5–24.
https​://doi.org/10.1177/1059-71230​2-01000​1-01

	12.	 Norouzzadeh MS, Clune J (2016) Neuromodulation improves
the evolution of forward models. In: Proceedings of the 2016 on
genetic and evolutionary computation conference—GECCO ’16,
pp 157–164. https​://doi.org/10.1145/29088​12.29088​37

	13.	 Prados D, Kak S (1989) Neural network capacity using delta rule.
Electron Lett 25(3):197–199. https​://doi.org/10.1049/el:19890​142

	14.	 Reisinger J, Bahceci E, Karpov I, Miikkulainen R (2007) Coevolv-
ing strategies for general game playing. In: 2007 IEEE symposium
on computational intelligence and games, pp 320–327. https​://doi.
org/10.1109/CIG.2007.36811​5

	15.	 Richard K. Belew, McInerney J, Schraudolph NN (1991) Evolving
networks: using the genetic algorithm with connectionist learn-
ing. In: Proceedings of the second artificial life conference, pp
511—-547

	16.	 Showalter I, Schwartz HM (2004) A growing and pruning method
for a history stack neural network based adaptive controller. In:
Proceedings of the IEEE conference on decision and control, vol
5, pp 4946–4951. https​://doi.org/10.1109/CDC.2004.14295​90

	17.	 Silva F, Urbano P, Christensen AL (2014) Online evolution of
adaptive robot behaviour. IGI Global, Hershey, pp 59–77

	18.	 Silva F, Urbano P, Oliveira S, Christensen AL (2012) odNEAT:
an algorithm for distributed online, onboard evolution of robot

behaviours. Artif Life 13:251–258. https​://doi.org/10.7551/978-
0-262-31050​-5-ch034​

	19.	 Soltoggio A, Bullinaria JA, Mattiussi C, Dürr P, Floreano D
(2008) Evolutionary advantages of neuromodulated plasticity in
dynamic, reward-based scenarios. In: Artificial life XI: proceed-
ings of the 11th international conference on simulation and syn-
thesis of living systems (ALIFE 2008), vol 2, pp 569–576. https​
://doi.org/10.1016/S0269​-7491(01)00278​-0

	20.	 Stanley KO, Bryant BD, Miikkulainen R (2005) Real-time
learning in the NERO video game. IEEE Trans Evol Comput
9(6):653–668

	21.	 Stanley KO, Miikkulainen R (2002) Evolving neural networks
through augmenting topologies. Evol Comput 10(2):99–127. https​
://doi.org/10.1162/10636​56023​20169​811

	22.	 Stanley KO, Miikkulainen R (2004) Competitive coevolution
through evolutionary complexification. J Artif Intell Res 21:63–
100. https​://doi.org/10.1613/jair.1338

	23.	 van Willigen W, Haasdijk E, Kester L (2013) A multi-objective
approach to evolving platooning strategies in intelligent transpor-
tation systems. In: Proceeding of the fifteenth annual conference
on Genetic and evolutionary computation conference—GECCO
’13. ACM Press, New York, NY, USA, pp 1397–1404. https​://doi.
org/10.1145/24633​72.24635​34

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CEC.2016.7744384
https://doi.org/10.1109/CEC.2016.7744384
https://doi.org/10.1186/s40854-018-0104-2
https://doi.org/10.1186/s40854-018-0104-2
https://doi.org/10.1177/1059-712302-010001-01
https://doi.org/10.1145/2908812.2908837
https://doi.org/10.1049/el:19890142
https://doi.org/10.1109/CIG.2007.368115
https://doi.org/10.1109/CIG.2007.368115
https://doi.org/10.1109/CDC.2004.1429590
https://doi.org/10.7551/978-0-262-31050-5-ch034
https://doi.org/10.7551/978-0-262-31050-5-ch034
https://doi.org/10.1016/S0269-7491(01)00278-0
https://doi.org/10.1016/S0269-7491(01)00278-0
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1613/jair.1338
https://doi.org/10.1145/2463372.2463534
https://doi.org/10.1145/2463372.2463534

	Neuromodulated multiobjective evolutionary neurocontrollers without speciation
	Abstract
	1 Introduction
	2 Background
	2.1 NeuroEvolution of augmenting topologies (NEAT)
	2.2 NEAT-MODS
	2.3 Hebbian learning
	2.4 Neuromodulation

	3 NEAT-MODS with neuromodulation
	3.1 Species and neuromodulation
	3.2 Neuromodulated multiobjective non-speciated NEAT
	3.3 Simulation
	3.3.1 The simulated robot
	3.3.2 The neurocontrollers
	3.3.3 Simulated arena
	3.3.4 Objective functions

	3.4 Results

	4 Discussion and future work
	5 Conclusions
	References

