
Noname manuscript No.
(will be inserted by the editor)

A Learning Invader for the “Guarding a Territory” Game
A Reinforcement Learning Problem

Hashem Raslan · Howard Schwartz · Sidney Givigi

Received: date / Accepted: date

Abstract This paper explores the use of a learning al-

gorithm in the “guarding a territory” game. The game

occurs in continuous time, where a single learning in-

vader tries to get as close as possible to a territory be-

fore being captured by a guard. Previous research has

approached the problem by letting only the guard learn.

We will examine the other possibility of the game, in

which only the invader is going to learn. Furthermore,

in our case the guard is superior (faster) to the invader.

We will also consider using models with non-holonomic

constraints. A control system is designed and optimized

for the invader to play the game and reach Nash Equi-

librium. The paper shows how the learning system is

able to adapt itself. The system’s performance is evalu-

ated through different simulations and compared to the

Nash Equilibrium. Experiments with real robots were
conducted and verified our simulations in a real-life en-

vironment. Our results show that our learning invader

behaved rationally in different circumstances.

Keywords Reinforcement Learning · Machine

Intelligence · Adaptive Control · Continuous Time ·
non-holonomic · Fuzzy Q-Learning · Nash Equilibrium

1 Introduction

“Guarding a territory” is a game with two sets of play-

ers; Guards and Invaders. The guards try to protect a

H. Raslan
E-mail: HashemRaslan@sce.carleton.ca

H. Schwartz
E-mail: Schwartz@sce.carleton.ca

S. Givigi
E-mail: Sidney.Givigi@rmc.ca

certain space, the territory, which the invaders are try-

ing to reach. This game was first described by Isaacs[6].

Different applications for this game can be found in cru-

cial real-life scenarios, such as protecting borders from

smuggling or breaching a secure space. Some papers

have been published that investigated “guarding the

territory” game [11][8]; however, they mostly focused

on the use of fixed algorithms. We investigate the use

of a learning algorithm that can easily adapt itself to

different strategies taken by the opponent.

The examined game occurs in a bounded space. It

consists of a single invader and a single guard. The game

runs in the continuous time domain. The invader’s goal

is to reach the territory, or at least get as close as pos-

sible to it. The guard’s goal is to intercept the invader

as far as possible from the territory.

All our developed efforts focus on constructing an

adaptive learning invader, which can learn to perform

optimally against the guard’s different strategies. Dif-

ferent from previous work, our work uses a model with

non-holonomic constraints. Also, we use a superior guard

to play against our adapting invader.

If full knowledge of the environment (including the

dynamic and kinematic model of the guard and evader)

and the strategy of the guard is available, the optimal

solution of the game from the invader’s perspective can

be achieved. In this paper we relaxed these assump-

tions. Therefore, this paper investigates the use of ma-

chine learning (namely a Reinforcement Learning) al-

gorithm that can easily adapt itself and perform op-

timally to different strategies taken by the opponent.

An invading system that can easily adapt itself to the

current environment has an important use as it can be

used as a testing mechanism to evaluate how success-

ful and strong is a guarding system. Once the invader

2 Hashem Raslan et al.

learns the guard’s weakness, the guard’s weakness can

be exploited.

The main contributions of this paper are: (i) the

modeling of the “guarding a territory” game in terms

of reinforcement learning; (ii) the proposal of reward

functions that lead to the evaluation of the performance

of the game; (iii) the proposal of an algorithm that

solves the game so it achieves the Nash equilibrium; and

(iv) experiments that demonstrate that the algorithm

can be ported to real platforms and learn the optimal

strategies on the fly.

This paper will provide a brief introduction to Re-

inforcement Learning in Sec. 2, then it will define the

game problem with more details in Sec. 3. Sec. 4 will

describe the control system developed. We will compare

the simulation results from the learning (adaptive) con-

trol system to other fixed algorithms in Sec. 6 and show

our experimental results in Sec. 7.

2 Reinforcement Learning

There are two types of learning in machine intelligence;

supervised and unsupervised. Supervised learning de-

pends on previous knowledge of the environment and

action space. Supervised learning always require to know

the correct answer. This means it has to know the en-

vironment prior to interaction. In this condition, Rein-

forcement Learning (RL), a type of unsupervised learn-

ing, is more useful.

Actions create events in the environment. For one

to perform a certain task (goal), one has to take a set

of actions. RL helps the learning agent to perform its

goals throughout the agent’s interactions with the envi-

ronment, by focusing on increasing the agent’s reward.

The reward describes how well the agent is perform-

ing to reach its goals. The RL algorithm has to create

a balance between exploration and exploitation; mean-

ing the learning agent has to remember how success-

ful were the actions previously taken and repeat them

(exploitation). Also, the agent should occasionally take

random actions (explorations). This is done to ensure

trying different action scenarios and not getting stuck

in a local-minima/maxima[12].

In the literature, RL has been used in many gam-

ing scenarios to allow robots to learn a strategy [4]. The

pursuer-evader game is one of the most common of these

games, wherein a pursuer tries to capture an evader [6].

This game has been investigated in the context of RL

where an algorithm based on hierarchical reinforcement

learning and its learning efficiency is used [9], enabling

the players to learn and “significantly reduce the com-

plexity of the learning task”. Givigi and Schwartz [5]

explored a multiple pursuer-evader game. They repre-

sented the game as a Markov game and enabled each

player to have its own decentralized learning, showing

how their agents were able to learn and reached equi-

librium points.

Researchers have also combined RL with fuzzy con-

trollers to deal with large space and noisy environments.

Schwartz and Desouky [2] proposed a technique called

Q-learning based genetic fuzzy controller, where a fuzzy

controller is used in order to reduce the number of states

in a large continuous state space. The authors show how

their players, in the pursuer-evader game, are able to

converge their learning using this technique.

Other games and applications using RL have also

been proposed as, for example, the patrolling of an

area [7]. In this scenario, multiple agents learn an MDP

using Q-Learning to patrol their environment. The method

is shown to be robust to failures as well as efficient based

on the number of agents used.

In RL, the agent takes a certain action (or a set of

actions) then observes its new state from taking these

actions. The rewards act as a feedback for the actions

taken. They help the agent in knowing how useful were

the actions taken. In our case, the learning agent is the

invader and the environment is the “guarding a terri-

tory” game. In other words, the guard is part of the

invader’s environment.

Since the current game runs in continuous time with

a bounded space, it is possible to discretize the en-

tire game space. However, this will require a very large

space of memory to be implemented on a simple device.

The same goes for the action space. Moreover, this dis-

cretization will cause slow learning, since the agent will

have a large amount of tables to fill and update. Dis-

cretization will also be computationally expensive, and

hence discretizing the spaces is less favorable. There-

fore, the use of a fuzzy logic controller is proposed to

estimate the current system state. A fuzzy logic estima-

tor with a reinforcement learning algorithm is used to

produce our learning agent. Other than estimating the

state, the fuzzy logic controller helps in dealing with

noisy signals.

3 Problem Definition

Given a game with a single guard (G) and single in-

vader (I) working around territory (T), the game ter-

minates when the invader reaches the territory or the

invader gets captured by the guard. For the sake of sim-

plicity, the capturing action happens when the invader

is at a specified proximity from the guard defined as

distcapture. The payoff (result) of the game can be de-

termined as the distance between the invader and the

A Learning Invader for the “Guarding a Territory” Game 3

territory’s centre at game termination time:

payoff =
√

(xI(tf)− xT)2 + (yI(tf)− yT)2 (1)

Where xI(tf) and yI(tf) represent the invader’s coor-

dinates at terminal time. xT and yT represent the ter-

ritory’s centre coordinates. This makes the goal for the

invader is to minimize the payoff and the goal of the

guard is to maximize the payoff.

Working in continuous time, any player j (invader

or guard) will have the following equations of motion:

ẋjẏj
ϕ̇j

 =

cosϕj

sinϕj

0

 vj +

0

0

1

ωj (2)

such that



x : x− coordinates,

y : y − coordinates,

ϕ : robot orientation,

v : driving velocity, and

ω : angular speed

These equations of motions describe the kinemat-

ics of a cart robot with non-holonomic constraints [13].

Both the guards and the invaders have to stay within

the borders of the game-space. Hitting the border will

make the player stay in the same position. This con-

straint is enforced such that the game will quickly come

to completion. Both players will have the same action

state for angular speed (i.e. ωj = −0.5, 0, or 0.5), but

the linear speed of the guard is 20 percent faster than

that of the invader.

Fig. 1 displays the game layout. Only the invader’s

kinematics are labelled. Please note that the dimen-

sions of the robot does not depict what is used for

simulation, but it is only for illustrative purposes. The

term L is the length of the game’s bounded space (L =

30 unit space).

3.1 Guard’s Optimal Strategy

Different guarding strategies were considered to play

against the learning invader. The used guarding strat-

egy will be hard coded into our guard. There will be no

learning followed by the guard.

On the assumption that the invader can be cap-

tured, [6] describes the guard’s optimal policy as fol-

lows: if both the guard and the invader have equal

kinematics, the perpendicular bisector line between the

two players (at each time step) will indicate the region

that the invader can reach before being captured by the

Fig. 1 Game Environment

Fig. 2 Reachable region geometry

guard. This is the region on the invader’s side of the line.

Once the guard knows this line, it should move towards

the point closest to the territory that lies on this line.

This point is called closest interception point (closest to

the territory). The guard has to calculate this point at

each time step. The only optimal strategy against the

guard’s optimal strategy is that the invader has to also

aim at the closest interception point. This will allow

the invader to get as close as possible to the territory,

and hence achieve the minimum payoff possible. This is

referred to as the Nash Equilibrium for both players.

Since in the investigated case the guard is 20 per-

cent faster than the invader, the line that describes the

region that can be reached by the invader is no longer

the perpendicular bisector. The next steps illustrate the

region that can be reached by the invader before being

intercepted by the guard.

4 Hashem Raslan et al.

Fig. 3 Guard’s Optimal Strategy - Nash Equilibrium

According to Fig. 2, assuming that the invader is

at point ‘A’ and the guard is at point ‘B’ (separated

by distance d) and that the speed of the guard is 20

percent faster than that of the invader, the invader can

reach any point ‘M’ before being captured by the guard;

such that the distance between ‘A’ and ‘M’ is ‘a’ and the

distance between ‘B’ and ‘M’ is ‘1.2a’. The set of points

that can satisfy the condition for ‘M’ are calculated

through the following:

e2 + c2 = a2

e2 + (d− c)2 = (1.2a)2

0.44c2 + 2dc+ (0.44e2 − d2) = 0

For e ∈ R, c can be found as:

c =
−(2d)2 ±

√
2d− 4× 0.44× (0.44e2 − d2)

2× 0.44
(3)

Once the set of points is deduced and on the as-

sumption that capturing is possible, the guard’s optimal

policy will be to target the closest interception point. If

the invader targets the same point, then the invader is

following the Nash Equilibrium strategy for an optimal

guard. Fig. 3 illustrates the strategy.

3.2 Irrational Guard Strategy

Another guard algorithm used in our simulations is tar-

geting the invader’s current position. In the optimal

strategy, we assume that the guard has full knowledge

of the state of the environment. That is not always pos-

sible, hence, the irrational strategy is in several cases

the best the guard can do. For example, if the guard

has to observe the invader with a sensor, it may not

know its orientation and the speed it is at.

This strategy performs worse than the optimal strat-

egy, because it does not try to intercept the invader. We

call this strategy the irrational guard approach.

In this strategy, the guard will ignore the position

of the territory. It will aim at decreasing the distance

between the guard and the invader. The invader’s or

guard’s heading is also not considered. Thus, the guard

will not be performing optimally and this will give a

chance for the invader to reach the territory in some

cases.

If it is impossible for the invader to reach the terri-

tory, a rational invader should get as close as possible

to the territory (maximum reward). However, if it is

possible to reach, then a rational invader should reach

the territory.

4 System Configuration

As described previously, the system will combine a fuzzy

logic controller with reinforcement learning to create

our learning agent. This learning agent is called the

Fuzzy Q-Learning algorithm (FQL)[12]. To build our

fuzzy controller, rules-based fuzzy sets with constant

consequent as described in [14] are used. It creates a ba-

sic fuzzy system configuration with If-Else rules [12][10].

The fuzzy logic controller was built to choose the in-

vader’s heading (steering angle) based on the game’s

current state. We aimed at creating a generic system

that uses 3 different inputs as will be described in sub-

section 4.1.

4.1 The fuzzy logic controller

The first input was chosen to describe the territory posi-

tion with respect to the invader. The angle (θ) between

the global x-axis and the invader’s line of sight towards

the territory was used, as shown in Fig. 4, such that

θ ∈ [0, 2π]. The input θ is then divided into 9 fuzzy sets

as follows:

– ZE: θ is near 0 (zero)

– SS: θ is near π/4 (small small)

– SM: θ is near π/2 (small medium)

– SL: θ is near 3π/4 (small large)

– MS: θ is near π (medium small)

– MM: θ is near 5π/4 (medium medium)

– ML: θ is near 6π/4 (medium large)

– LS: θ is near 7π/4 (large small)

– LM: θ is near 2π (large medium)

The second and third inputs were used to relate

the current guard’s position with respect to the in-

vader. Those inputs were selected to be the Manhattan

A Learning Invader for the “Guarding a Territory” Game 5

Fig. 4 Fuzzy Inputs: angle θ, d1 and d2

Fig. 5 Membership function for the angle input

distance between the invader and the guard positions.

They are represented by two components d1 and d2 as

shown in Fig. 4. Such that d1, d2 ∈ [−L,L]. Manhattan

distance was used instead of the Euclidean distance be-

cause it contains more information about the relative

position between the guard and the invader positions.

Also, simulations showed a faster learning using Man-

hattan distance rather than using both Euclidean dis-

tance and the angle between the invader and guard.

For both d1 and d2, the following 5 fuzzy sets are

created (i ∈ 1, 2):

– LN: di near -20 (large negative)

– SN: di near -10 (small negative)

– ZE: di near 0 (zero)

– SP: di near 10 (small positive)

– LP: di near 20 (large positive)

The membership degree function between the rules

was chosen as a triangular function with no adapta-

tion for all the inputs. Fig. 5 and Fig. 6 display the

membership functions for the angle θ and the Manhat-

tan distance inputs. Each of the fuzzy sets describe our

fuzzy-rules.

In summary, using the previously mentioned inputs

creates 225 different combinations, which are 225 rules

for our fuzzy system. We also tested using other control

Fig. 6 Membership function for Manhattan distance input

system inputs, such as using the Manhattan distance

between the invader and the territory. However, this

would have required 625 rules and would be compu-

tationally complex. Additional input signals were also

tested, but the previously mentioned selection describes

our final fuzzy logic controller inputs and rules.

4.2 Fuzzy Q-Learning (FQL)

Using the product inference for fuzzy implication, t-

norm, singleton fuzzifier and center average defuzzi-

fier [15][10], the output of the fuzzy system Ut for the

current state x̄t becomes at time t,

Ut(x̄t) =

N∑
l=1

φlta
l
t (4)

φl =

n∏
i=1

µl
i(xi)

N∑
l=1

(
n∏

k=1

µl
k(xk))

(5)

Where µ is the membership function, xi is the ith input;

such that x̄ = [x1, x2, x3] = [θ, d1, d2], n is the number

of inputs (n = 3) and N is the number of rules (N =

225). The term alt is the constant describing the centre

of the fuzzy set for each rule, which in our case is the

action selected at time t for rule l based on the Q-

table (will be described afterwards)[12]. Also, action a

belongs to an action set A. The action was selected to

describe different possible steering angles. The action

set was chosen as:

A = {−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4, π}

After taking any action, the action is evaluated.

Based on our evaluation a value is added to the Q-table.

The Q-table contains a value for each action in the ac-

tion set for each of the rules. For each rule, the action

6 Hashem Raslan et al.

with a higher value is more favourable; however, a ran-

dom selection factor was added to create exploration

and exploitation. The values for each of the actions are

updated and adapted based on the learning algorithm.

The value for the current state is represented by capital

Q, and the Q-table is represented by lower-case q. One

can compute Q for the current state as,

Q(x̄t) =

N∑
l=1

φltqt(l, a
l
t) (6)

The maximum possible value is represented as Q∗

and computed as,

Q∗(x̄t) =

N∑
l=1

φlt max
al∈A

qt(l, a
l
t) (7)

Lastly, one computes the future temporal difference

as [12],

Et+1 = rt+1 + γQ∗(x̄t+1)−Q(x̄t) (8)

Where γ is the forgetting factor and it focuses on the

expected future rewards and rt+1 is the reward received

by the agent after doing an action.

After calculating the temporal difference, the learn-

ing agent is ready to adapt its Q-table for each of the

fuzzy rules l ∈ fuzzy rules. The Q-table is adapted ac-

cording to:

qt+1(l, a) = qt(l, a) + αEt+1φ
l
t (9)

Where α is the learning rate.

Exploration and exploitation is done by selecting

a random action from action set A with probability ε

(exploration rate). We call the forgetting factor, learn-

ing rate, and exploration rate as Learning Factors. The

FQL algorithm is shown in Algorithm 1. This FQL was

implemented in [3][1].

5 Reward Function Selection

Reinforcement Learning can have two different types of

rewards. They are terminal rewards or instantaneous

rewards. In our game, a terminal reward will be given

only if the invader reaches the territory. However, this

will make it difficult for the invader to learn when it is

impossible to reach the territory. Also, it will cause slow

learning. That is because the invader will have to take

many actions before it can reach the territory. Thus, it

will not know if it is doing the correct action for a long

time. On the other hand, an instantaneous reward will

Algorithm 1 FQL algorithm

1: q(l, a)← 0, ∀a ∈ A and ∀l ∈ rules
2: for each time step t do
3: For each rule, choose action alt based on:

4:

a
l
t = argmax

a∈A
ql(l, a),with probability(1− ε)

random action from A, with probility ε

5: Calculate φl for each rule based on (5)
6: Estimate current state value Q(x̄t) using (6)
7: Calculate system output for current state Ut(x̄t) using

(4)
8: Take action Ut (update the robot’s kinematics using

(2))
9: Observe new state

10: Obtain reward
11: Calculate maximum possible future value Q∗(x̄t+1)

based on (7)
12: Calculate temporal difference Et+1 using (8)
13: Adapt the Q-table using (9)
14: end for

always inform the agent how well the agent is doing at

each time-step.

We propose using an instantaneous reward function.

It is difficult to select the reward function. To con-

struct our reward function, we divide our game into

two games.

The first game is a single invader with no guards.

The invader’s goal is to reach the territory. In that case

we can describe our instantaneous reward by how much

the agent got closer to the territory. That is:

rp1t+1 = distIT (t)− distIT (t+ 1) = δIT (10)

where distIT (t) is the euclidean distance between the

invader and the territory at time t. Thus, this con-

structs the instantaneous reward for the first part of

the game.

We describe the second game as a pursuer evader

game. Such that the invader is trying to run away from

the guard and no territory is involved. In other words,

the invader is trying to increase the distance between

itself and the guard. Hence, we can describe the reward

in this part of the game as how far the agent went from

the guard. That is:

rp2t+1 = distIG(t+ 1)− distIG(t) = −δIG (11)

such that distIG(t) is the euclidean distance between

the guard and the invader at time t.

Once we have constructed these two rewards, we

propose combining both rewards with ratios K and J

to produce the agent’s full instantaneous reward.

rt+1 = KδIT − JδIG (12)

We define K as a constant that describes the im-

portance of getting closer to the territory. The larger

A Learning Invader for the “Guarding a Territory” Game 7

K is, the faster the agent will go to the territory. Sim-

ilarly, J describes the importance of travelling furthest

from the guard. Since the guard is always faster than

the invader, distIG will never increase. However, the

invader’s actions will choose how slowly the distance

(between the guard and the invader) decreases. Thus,

J describes the importance of controlling the distance

decrease rate between the guard and the invader. Since

an agent in our simulations and experiments is actually

a robot, from now on we only refer to robots.

6 Simulation Setup

In the simulations, the game is run for several different

episodes, which we call epochs, therefore, a simulation

consists of a set of epochs.

We define an epoch as a run of the game until ter-

minal time, meaning that the invader is captured or it

reaches the target. Capturing happens when the invader

and the guard are 2 units apart (distcapture = 2).

Furthermore, an epoch can be a training or a test

epoch. In any test epoch, all the learning factors are set

to zero. As such, no learning or exploration will take

place. Finally, the territory is represented by a circle

with a radius of 2 units.

The training and testing technique are realized in

Algorithm 2 after the learning factors are initialized.

Equation (2) was solved in the simulation using Euler

integration.

Algorithm 2 Train-Test algorithm

1: q(l, a)← 0, ∀a ∈ A and ∀l ∈ rules
2: j ← 1
3: for j ≤ 400 do
4: Run 1 training epoch, with robot initial coordinates

assigned at random
5: Set learning factors to zero
6: Run 1 test epoch, with robot initial coordinates
PI & PG (PI & PG are fixed coordinates for the invader
and guard)

7: Update learning factors
8: j++
9: end for

The territory was placed at coordinates (20, 15).

The training region was arranged for the guard and the

invader to randomly choose a starting position (xG0, yG0)

and (xI0, yI0); such that xG0 ∈ [0, 10], yG0 ∈ [20, 30]

shown as the dashed area in Fig. 7 and xI0 ∈ [6, 10], yI0 ∈
[6, 15] shown as the solid area in same figure. The test-

ing starting positions were chosen such that: PI = (5, 5)

and PG = (5, 25) and ϕI and ϕG are initialized to zero

radians. The sampling time was selected as T = 10mS.

Fig. 7 Training region

The learning parameters were chosen to decay after

every learning epoch. The decay was chosen as an expo-

nential decay as follows (where j represents the epoch

count):

α = 0.99jα0, γ = 0.92jγ0, and ε = 0.95jε0 (13)

with α0 = 0.1, γ0 = 0.9, and ε0 = 0.3. Even though this

decay is fast, the robot will be able to update the same

state multiple times within a single epoch due to the

small sampling time and its non-holonomic constraints.

The instantaneous reward in (12) was used. The pa-

rameter K was set to a value of 2.0 and J was set to

a value of 1.0. The K and J values were chosen based

on simulation. Increasing the K value or decreasing the

J value make the invader go in a straight line towards
the territory, ignoring the guard. The results examined

were based only on the test epochs results.

6.1 Optimal Guard Simulation Results

The first simulation was done using the learning in-

vader against the optimal strategy guard (described

in Sec. 3.1). This scenario demonstrates that the in-

vader is able to reach the Nash Equilibrium (when pos-

sible) or to get as close as possible to it (when capture

is inevitable). Fig. 8 shows the invader’s and guard’s

trajectories for the first test epoch (in this case capture

of the invader). Fig. 9 shows the guard’s and invader’s

trajectories after the invader learns. Notice that even

though the invader didn’t reach the territory, it got the

closest possible to the territory as desired.

Comparing Fig. 8 and Fig. 9, it can be seen that the

invader was able to perform better and got closer to the

territory, which implies that the learning procedure was

8 Hashem Raslan et al.

Fig. 8 Simulation: Learning Invader vs. Optimal Guard -
first test epoch trajectories

Fig. 9 Simulation: Learning Invader vs. Optimal Guard -
final test epoch trajectories

Fig. 10 Simulation: Invader’s payoff against optimal guard

effective. Fig. 10 shows the average payoff of 10 simu-

lations and one can observe that the learning robot’s

payoff converged to a specific payoff value, in this case

4.43. If the invader was following the Nash Equilibrium

strategy, its payoff will be 3.96. The learning robot was

able to get very close to the Nash Equilibrium target

(≈ 0.5 units apart) and minimized the robot’s payoff.

It should be emphasized that in the simulation shown

in Fig. 9, the players’ starting positions make it im-

possible for the invader to reach the territory (since

the guard is doing the optimal strategy). Therefore, we

further tested our invader by starting the game with

positions that make it possible for the invader to reach

the territory. As a consequence, our invader could only

reach the territory if it is rational, i.e., it uses its opti-

mal actions.

We set the invader’s starting position to (7, 7) and

the guard’s starting position to (5, 25). We use the Q-

table that produced the results in Fig. 9 in order to

evaluate the learning. After running the test epoch, we

found that the invader was able to reach the territory

as seen in Fig. 11. The same simulation was repeated

for the 10 different final Q-tables that produced Fig. 10

and the invader was always able to reach the territory

for the different Q-tables.

These results imply the following. First, the invader

adapted its parameters to maximize its future rewards.

Second, maximizing our proposed reward function en-

ables the invader to get the closest possible to the ter-

ritory. Third, the control system designed was suffi-

cient to describe different game states in continuous

time. This demonstrates that the invader can effectively

counteract the optimal strategy of the guard. However,
one other question remains: what if the guard plays a

sub-optimal strategy? Could the invader learn to take

advantage of that situation? We pursue this question in

the next section.

6.2 Irrational Guard Simulation Results

In our second simulation, the irrational guard algo-

rithm, described in Sec. 3.2, is used instead of the opti-

mal guard’s strategy. We initialize the invader’s Q-table

to all zeros and start adapting. Fig. 12 shows the test

results after the first test epoch.

In comparison, Fig. 13 demonstrates how the in-

vader performed after learning (after 400 training epochs).

The invader learned to decrease the distance to the ter-

ritory, but not target it. Thus, forcing the guard to move

towards the invader and to leave enough space for the

invader to maneuver into the territory. Then once it is

clear to go to the territory, the invader makes a sharp

A Learning Invader for the “Guarding a Territory” Game 9

Fig. 11 Learning Invader vs. Optimal Guard - possible
reaching test

Fig. 12 irrational guard - first test epoch results

turn and goes directly to the territory. The same simu-

lation was run 10 times and the simulations’ payoff was

averaged and plotted in Fig. 14.

It can be clearly seen that the robot converged to

reaching the territory. To be able to compare our learn-

ing robot against the irrational guard strategy, the ir-

rational guard strategy was run against the invader’s

Nash Equilibrium strategy for an optimal guard to cre-

ate a benchmark as shown in Fig. 14. This shows that

the invader was able to adapt and outperform the Nash

Equilibrium strategy. The invader learned to take ad-

vantage of the irrational guard’s poor strategy.

Again, the simulation results show that maximizing

our proposed reward function enables the invader to get

the closest possible to the territory (in this case, reach-

ing it). In summary, the simulations described in sec-

Fig. 13 Simulation: Learning Invader vs. Irrational Guard -
final test epoch trajectories

Fig. 14 Simulation: Invader’s payoff against irrational guard

tions Sec. 6.1 and Sec. 6.2 match our expectations from

literature. If the guard is employing the Nash Equi-

librium strategy, the invader will adapt to the Nash

Equilibrium strategy to maximize its rewards. If the

guard is not employing the Nash Equilibrium, the in-

vader should adapt to a new strategy to maximize its

rewards.

7 Experimental Setup

Laboratory experiments were conducted at the Royal

Military College of Canada to demonstrate how our

learning algorithm performs in actual physical environ-

ments with noise and variations in models. CLEARPATH

HUSKY robots were used as our players. These are

4 wheeled mobile robots with differential drives. The

robots were programmed and configured using the Robot

Operating System (ROS) and the Python scripting lan-

guage [16]. Each robot ran its software independently in

10 Hashem Raslan et al.

Fig. 15 Experiment Setup

a decentralized fashion. The game area was tracked us-

ing an OptiTrack system consisting of 24 synchronized

infrared cameras. The tracking system sends the robot

positions at a frequency ≈ 100Hz to a central database.

The robots can request that tracking information. This

mimics a GPS system. The experiment environment is

illustrated in Fig. 15, the arrows display the possible

flow of information.

Our experiments mapped the simulation size 30unit×
30unit to 8.3meter×8.3meter. Players’ kinematics were

set such that:

Invader : vI = 0.35meter/sec (14)

Guard : vG = 0.42meter/sec (15)

|ωj | = −0.5, 0, or 0.5rad/sec (16)

The model that we used in (2) is not the same as

the robot. However, it is very similar.

7.1 Experimental Evaluation of Simulation Results

In this section, we evaluate the invader’s performance

using the Q-table taken from the simulations. In other

words, we are going to test our numerical results (from

the simulations) in a real-life scenario. This is done to

see how our simulation model compares to the labo-

ratory environment. The invader uses the learned pa-

rameters from the simulations (the Q-table). There is

no learning while the experiment is running. We use

the Q-table from the final simulation epochs discussed

in Sec. 6.

7.1.1 Learning Invader vs. Optimal Guard

In this experiment we use the Q-table used in the simu-

lation shown in Fig. 10. The first experiment trajectory

results can be seen in Fig. 16. The same experiment

was run 10 times. The invader was able to produce

an average payoff of 4.7 with 0.5 standard deviation.

These results are very similar to the results discussed

Fig. 16 Simulations’ Experimental Evaluation: Invader vs.
Optimal Guard

Fig. 17 Simulations’ Experimental Evaluation: Invader vs.
Irrational Guard

in Sec. 6.1 and demonstrate that the learning is robust

to variations in the model (as the simulation model dif-

fers from the actual behaviour of the robot).

7.1.2 Learning Invader vs. Irrational Guard

Again, in this experiment we use the Q-table used in

the simulation described in Fig. 13 in order to evaluate

the quality of the learning. Trajectory results can be

seen in Fig. 17. The same experiment was run 10 times

and the invader was able to produce a payoff less than

2 units. Hence, it was always able to reach the terri-

tory (similar to the simulations). Again, these results

demonstrate the robustness of the proposed solution.

A Learning Invader for the “Guarding a Territory” Game 11

7.2 Online Learning Experiments

Further to the evaluation of porting the simulation so-

lutions to real robots, we implemented online learning

experiments in the HUSKY robots. This was done in

order to evaluate the robot’s ability to learn through

real-life interactions, a very important issue if the model

of either the guard or invader changes over time as well

as changes in the environment (for example if traction

changes due to water on the ground).

In online learning, the learning robot adapts its Q-

table as it directly interacts with the environment (as

it plays the game). The Q-table is first initialized to

zero, meaning that the robot has no preference for any

specific action and all actions would be randomly se-

lected. Since the experiments are run sequentially, the

Q-table is kept from one experiment to the next and

the learning is cumulative. We always let the invader

start the experiment at coordinate (5, 5) and the guard

at (5, 25).

Each experiment represents a game run until ter-

mination time. The payoff is recorded after each ex-

periment. We run two different sets of experiments to

demonstrate how the invader learns online versus the

different guard strategies.

7.2.1 Learning Invader vs. Optimal Guard

After programming the guard to follow the optimal

strategy, we ran 100 experiments. As mentioned be-

fore, the invader started with a Q-table with all zeros

and in each experiment thereafter, the invader used the

parameters (Q-table) learned from the previous experi-

ment. This is done to demonstrate the invader’s ability

to learn with real interactions with the environment

and adapt its Q-table.

Fig. 18 displays the players trajectories after learn-

ing. The payoff of each experiment was recorded and

plotted in Fig. 19. This figure also demonstrates how

our invader’s strategy progressed and minimized the

robot’s payoff. In the last 20 experiments in online learn-

ing, the robot produced an average payoff of 3.82 with

standard deviation of 0.23. This is better than the out-

put from experiments that used the Q-table from the

simulations illustrated in Fig. 16. This demonstrates

that, in this case, the robot adapted to the physical re-

alities of the experimental environment in a relatively

low number of interactions.

7.2.2 Learning Invader vs. Irrational Guard

After programming the guard to follow the irrational

strategy, we ran 50 experiments with the same condi-

tions of the experiment described in section 7.2.1, i.e.,

Fig. 18 Online Learning: Learning Invader vs. Optimal
Guard - After Learning

Fig. 19 Online Learning: Learning Invader vs. Optimal
Guard - payoff

the invader started with its Q-table initialized with ze-

ros and the invader adapts the Q-table as it plays the

game. This is done to demonstrate that the invader is

able to learn directly from its interaction with a real

environment and generate the Q-table again.

Fig. 20 displays the players’ trajectories after learn-

ing took place. Also, the payoff of each experiment was

recorded and plotted in Fig. 21. We stopped at 50 ex-

periments since the invader was able to reach the terri-

tory more than 10 times in a row. Fig. 21 demonstrates

how our invader’s payoff converged into reaching the

territory. Furthermore, the robot once again adapted

to the physical environment and reached the territory

in a shorter time than in Fig. 17.

These results and those of Sec. 7.2.1 are a good in-

dication that online learning with the model and algo-

rithm discussed in this paper is possible. This opens

a new venue of investigation for the “guarding a terri-

12 Hashem Raslan et al.

Fig. 20 Online Learning: Learning Invader vs. Irrational
Guard - After Learning

Fig. 21 Online Learning: Learning Invader vs. Irrational
Guard - payoff

tory” game as one can move to fully experimental study

of the machine learning algorithms.

8 Conclusion

A fuzzy logic controller was designed to estimate the in-

vader’s current state in the game. The controller inputs

relate the invader’s position to both the territory and

the guard. The learning robot was then created by com-

bining both the fuzzy logic controller with Q-Learning,

which is called FQL. Different simulations were run to

demonstrate the FQL performance.

Simulations were run having the guard follow differ-

ent strategies. Against a guard employing the optimal

strategy, the invader was able to get very close to the

Nash Equilibrium strategy. In the second simulation,

the invader competes against an irrational guard strat-

Fig. 22 Alternative Training Region

egy. Following a Nash Equilibrium strategy while the

guard is not acting optimally would produce a smaller

payoff, hence, the invader has an incentive to change its

strategy to exploit a non-optimal strategy by the guard.

It was seen from the second simulation that the robot

was able to adapt to the new guard strategy. It also

performed better than the invader’s Nash Equilibrium

strategy against an optimal guard. The robot’s strat-

egy converged into reaching the territory. This shows

that our learning robot was able to adapt and adjust

its strategy to perform best with the current guard’s

strategy.

Our training method, focused on specific regions for

both players. Other training methods can also be con-

sidered to optimize the robot’s performance in any posi-

tion in the game. This can be done by using a different

training region as described in Fig. 22, such that the

shaded circle describes the pool for the initial train-

ing positions for both players. The players can pick a

random position from that region. However, training

will take a longer time in this case and the learning

rates need to be adjusted differently. The parameters

will have to then decay slower to ensure learning in dif-

ferent configurations.

Furthermore, we ran experiments against the differ-

ent guard strategies. This was done to verify that our

simulation model was close to reality. Our simulations’

experimental evaluation results were almost identical

to our simulation results. Also, our online learning ex-

perimental results demonstrated our robot’s ability to

learn and perform well in a real-life environment. The

results from online learning experiments were superior

to the results from simulations’ experimental evaluation

A Learning Invader for the “Guarding a Territory” Game 13

results. The robot adapted to the physical realities of

the experimental environment.

In conclusion, this paper examined the use of Rein-

forcement Learning in the “guarding a territory” game

to adapt the invader. The invader was able to adapt

itself against different opponent strategies and perform

optimally and rationally.

In the future, we intend to implement this method

for multiple invaders and guards. However, for this to

be done, a different formulation of reward is neces-

sary as well as a more efficient representation of the

states of the game, as the number of possible states

tend to grow exponentially with the number of play-

ers. However, if successful, such learning method would

have applications in several different domains such as

autonomous cars interactions and surveillance by au-

tonomous robots.

References

1. Berenji, H.: Fuzzy q-learning: a new approach for fuzzy
dynamic programming. In: Fuzzy Systems, 1994. IEEE
World Congress on Computational Intelligence., Proceed-
ings of the Third IEEE Conference on, pp. 486–491 vol.1
(1994). DOI 10.1109/FUZZY.1994.343737

2. Desouky, S., Schwartz, H.: A novel hybrid learning tech-
nique applied to a self-learning multi-robot system. In:
Systems, Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on, pp. 2616–2623 (2009). DOI
10.1109/ICSMC.2009.5346111

3. Er, M.J., San, L.: Automatic generation of fuzzy infer-
ence systems using incremental-topological-preserving-
map-based fuzzy q-learning. In: Fuzzy Systems, 2008.
FUZZ-IEEE 2008. (IEEE World Congress on Computa-
tional Intelligence). IEEE International Conference on,
pp. 467–474 (2008). DOI 10.1109/FUZZY.2008.4630410

4. Fang, M., Li, H., Zhang, X.: A heuristic reinforce-
ment learning based on state backtracking method. In:
Web Intelligence and Intelligent Agent Technology (WI-
IAT), 2012 IEEE/WIC/ACM International Conferences
on, vol. 1, pp. 673–678 (2012). DOI 10.1109/WI-
IAT.2012.187

5. Givigi, S., Schwartz, H.M.: Decentralized strategy se-
lection with learning automata for multiple pursuer-
evader games. Adaptive Behavior 22(4), 221–234
(2014). DOI 10.1177/1059712314526261. URL
http://adb.sagepub.com/content/22/4/221.abstract

6. Isaacs, R.: Differential Games: A Mathematical Theory
with Applications to Warfare and Pursuit, Control and
Optimization (1999)

7. Lauri, F., Koukam, A.: Robust multi-agent patrolling
strategies using reinforcement learning. In: P. Siarry,
L. Idoumghar, J. Lepagnot (eds.) Swarm Intelligence
Based Optimization, Lecture Notes in Computer Science,
vol. 8472, pp. 157–165. Springer International Publishing
(2014)

8. Lee, Y.S., Hsia, K.H., Hsieh, J.G.: A problem of guard-
ing a territory with two invaders and two defenders. In:
Systems, Man, and Cybernetics, 1999. IEEE SMC ’99
Conference Proceedings. 1999 IEEE International Con-
ference on, vol. 3, pp. 863–868 vol.3 (1999). DOI
10.1109/ICSMC.1999.823341

9. Liu, J., Liu, S., Wu, H., Zhang, Y.: A pursuit-evasion al-
gorithm based on hierarchical reinforcement learning. In:
Measuring Technology and Mechatronics Automation,
2009. ICMTMA ’09. International Conference on, vol. 2,
pp. 482–486 (2009). DOI 10.1109/ICMTMA.2009.213

10. Nguyen, H.T., Walker, E.: A first course in fuzzy logic.
Chapman and Hall, Boca Raton, FL (2006). URL
www.summon.com

11. Rzymowski, W.: A problem of guarding line segment. In:
Decision and Control, 2009 held jointly with the 2009
28th Chinese Control Conference. CDC/CCC 2009. Pro-
ceedings of the 48th IEEE Conference on, pp. 6444–6447
(2009). DOI 10.1109/CDC.2009.5400251

12. Schwartz, H.: Multi-Agent Machine Learning: A Rein-
forcement Approach. Wiley (2014)

13. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.:
Robotics Modelling, Planning and Control. Springer
(2009)

14. Takagi, T., Sugeno, M.: Fuzzy identification of sys-
tems and its applications to modeling and con-
trol. Systems, Man and Cybernetics, IEEE Trans-
actions on SMC-15(1), 116–132 (1985). DOI
10.1109/TSMC.1985.6313399

15. Wang, L.: A Course in Fuzzy Systems and Control. Pren-
tice Hall PTR (1997)

16. Wang, S., Panzica, A., Padir, T.: Motion control for
intelligent ground vehicles based on the selection of
paths using fuzzy inference. In: Technologies for Prac-
tical Robot Applications (TePRA), 2013 IEEE In-
ternational Conference on, pp. 1–6 (2013). DOI
10.1109/TePRA.2013.6556354

Hashem Raslanis a junior
computer engineer. Hashem
attained his BSc. degree in
computer engineering from
the American University in
Dubai, UAE in April 2012.
He then completed his MASc.
degree in electrical and com-
puter engineering at Carleton
University, Canada in May
2015. Hashems main interests
are artificial intelligence and
robotics. Hashem Raslan lives
in Ottawa, Canada.

Howard M.
Schwartzreceived his B.Eng.
degree from McGill Univer-
sity, Montreal, Canada, in
June 1981 and his M.Sc.
degree and Ph.D. degree from
the Massachusetts Institute of
Technology, Cambridge, Ma,
in 1982 and 1987, respectively.
He is currently a Professor in
the Department of Systems
and Computer Engineering
at Carleton University. His
research interests include
adaptive and intelligent con-

14 Hashem Raslan et al.

trol systems, robotics and
process control, system mod-

eling and system identification. His most recent research is
in multi-agent learning with applications to teams of mobile
robots with an emphasis on reinforcement learning.

Sidney N. Givigireceived a
Ph.D. in Electrical and Com-
puter Engineering from Car-
leton University, Ottawa, ON,
Canada. He is now an Asso-
ciate Professor with the De-
partment of Electrical and
Computer Engineering of the
Royal Military College of
Canada (RMCC). Sidney’s re-
search interests are mainly fo-
cused on autonomous systems
and robotics with an empha-
sis on distributed control, ma-

chine learning and game the-
ory.

