
Int. J. Mechatronics and Automation, Vol. 4, No. 3, 2014 173

Copyright © 2014 Inderscience Enterprises Ltd.

Cooperative navigation of unknown environments
using potential games

George Philip*
Department of Systems and Computer Engineering,
Carleton University,
Ottawa, Ontario, Canada
E-mail: gphilip@sce.carleton.ca
*Corresponding author

Sidney N. Givigi Jr.
Department of Electrical and Computer Engineering,
Royal Military College of Canada,
Kingston, Ontario, Canada
E-mail: Sidney.Givigi@rmc.ca

Howard M. Schwartz
Department of Systems and Computer Engineering,
Carleton University,
Ottawa, Ontario, Canada
E-mail: schwartz@sce.carleton.ca

Abstract: In this paper, we develop a method of exploring a 2-D environment with
multiple robots by modelling the problem as a potential game rather than using conventional
frontier-based dynamic programming algorithms. A potential game is a type of game that results
in coordinated behaviours amongst players. This is done by enforcing strict rules for each player
in selecting an action from its action set. As part of this game, we define a potential function for
the game that is meaningful in terms of achieving the greater objective of exploring a space.
Furthermore, an objective function is assigned for each player from this potential function. We
then create an algorithm for the exploration of an obstacle-filled bounded space, and demonstrate
through simulation how it outperforms an uncoordinated algorithm by reducing the time needed
to uncover the space. Analysis of the computational complexity of the algorithm will show that
the algorithm is of O(sRange2), where sRange is the range of a sensor on a robot. We then
suggest an improvement to the proposed algorithm that is premised on having a robot predict the
future positions of all other robots.

Keywords: weakly acyclic game; potential game; robotics; simultaneous localisation and
mapping problem; SLAM; game theory; exploration.

Reference to this paper should be made as follows: Philip, G., Givigi Jr., S.N. and
Schwartz, H.M. (2014) ‘Cooperative navigation of unknown environments using potential
games’, Int. J. Mechatronics and Automation, Vol. 4, No. 3, pp.173–187.

Biographical notes: George Philip received his BASc in Electrical Engineering from the
University of Waterloo, and MASc in Systems and Computer Engineering from Carleton
University. His research interests include adaptive control systems, machine learning, and game
theory in robotics.

Sidney N. Givigi Jr. is an Assistant Professor in the Electrical and Computer Engineering
Department at the Royal Military College of Canada. His expertise is in robotics and control
systems. In particular, his research interests include real-time systems, non-linear and chaotic
systems, and game theory.

Howard M. Schwartz is a Professor in the Systems and Computer Engineering Department at
Carleton University. His research interests include adaptive and intelligent control systems,
robotics, system modelling and system identification. His most recent research is in multi agent
learning with applications to teams of mobile robots.

174 G. Philip et al.

This paper is a revised and expanded version of a paper entitled ‘Multi-robot exploration using
potential games’ presented at IEEE International Conference on Mechatronics and Automation,
Takamatsu, Japan, August 4–7, 2013.

1 Introduction

The field of robotics has seen much development and
research in recent years. The problem of exploring an
unknown environment and generating a map for it remains
an active area for research and is at the heart of mobile
robotics. Applications for this problem can be found in
planetary exploration, reconnaissance, rescue, etc., in which
complete coverage of a terrain is important (Burgard et al.,
2000). Recently, these applications have been extended to
include underwater systems in accomplishing various tasks
using autonomous underwater vehicles (AUVs). This
includes mapping of mines underwater and the mapping of
the topography under polar ice caps (Wadhams, 2012).
Furthermore, applications involving the use of multiple
robots in achieving cooperative tasks have received a
considerable amount of attention. A multi-agent system
consists of a number of intelligent agents that interact with
other agents in a multi-agent environment. An agent is an
autonomous entity that observes the environment and takes
an action to satisfy its objective based on its knowledge
(Lu, 2012). The major challenge in multiagent systems arise
from the fact that agents have limited knowledge about the
status of other agents, except perhaps for a small subset of
neighbouring agents. Agents are endowed with a utility
function or reward that depends on their own strategies and
the strategies of other agents. As such, in situations where
agents know nothing about the structure of their utility
functions or how their own utility depends on the actions of
other agents, the only course of action for them is to observe
rewards based on experience and ‘optimise’ on a trial and
error basis (Marden et al., 2009a). Also, as all agents are
trying simultaneously to optimise their own strategies, even
in the absence of noise, an agent trying the same strategy
twice may see different results because of the non-stationary
nature of the strategies of other agents. The situation is only
further complicated when the environment is dynamic as in
Sun et al. (2012), where robots intelligently re-plan new
routes as the environment changes.

The exploration and the mapping of an environment is a
challenge in that the environment is completely unknown
and there is no pre-existing map for a robot to localise itself
within. Having multiple robots explore and map out the
space adds to the complexity because as with any
multi-agent system the environment becomes dynamic and
complex (Lu, 2012). Not only do robots have to
simultaneously explore the environment while avoiding
obstacles and barriers and locate these features on a map,
but they also have to coordinate themselves so that their
numbers can be used to efficiently navigate the space. In
addition, since each robot does not follow the same path or

trajectory to explore the space, they have a different view of
the environment. These different views of the environment
have to be merged together to create a unified view or map
of the environment. Robots that simultaneously explore an
environment to map it while localising itself within that
environment is solving what is known as the simultaneous
localisation and mapping problem (SLAM) or the
concurrent mapping and localisation (CML) problem
(Castellanos et al., 2001; Dissanayake et al., 2000). There is
extensive literature on SLAM, which focus on different
aspects of SLAM from robot dynamics, environment
dynamics (e.g., indoor, outdoor, moving or static objects),
and the framework for combining sensor information
(e.g., extended Kalman filter, particle filter) to more
recently utilising different sensors such as cameras rather
than lasers as seen in Asmar and Shaker (2012).
Furthermore, methods have been proposed to address
changing degrees of environmental complexity in real-time
SLAM applications, which require different models to
estimate the modes of behaviour. This is done in Wong et
al. (2013) by having an integrated schema which mixes the
interactive multiple model (IMM) and joint probabilistic
data association (JPDA), with the asymmetric assignment
optimisation algorithm.

In this paper, we look at using multiple robots for the
purpose of navigating and exploring a bounded 2-D space
that consists of obstacles. We are more interested in the
navigation algorithms employed by robots to fully explore a
space than the mapping aspect. As such, we assume that
robots are able to localise themselves within a bounded
region. Specifically, this paper looks at the application of
potential games in having multiple robots collaboratively
explore a space rather than using conventional
Frontier-detection algorithms.

1.1 Background

The goal of exploration is to gain as much new information
as possible of the environment within bounded time (Keidar
and Kaminka, 2012). In most applications today that
involve the use of multiple robots to explore a space, a
variation of the Frontier-based dynamic programming (DP)
algorithm introduced in Burgard et al. (2000) is utilised.
This approach involves choosing appropriate target points
for the individual robots so that they simultaneously explore
different regions of the environment. Coordination is
achieved by simultaneously taking into account the cost of
reaching a target point and its utility (Burgard et al., 2000).
Whenever a target point is assigned to a specific robot, the
utility of the unexplored area visible from this target
position is reduced for the other robots. In this way,

 Cooperative navigation of unknown environments using potential games 175

different target locations are assigned to individual robots
(Burgard et al., 2000). Using this approach every robot is
required to keep track of the Frontier cells, which is the
boundary between unexplored and explored cells. To
determine the cost of reaching the current Frontier cells, the
optimal path from the current position of the robot to all
Frontier cells is computed based on a deterministic variant
of value iteration, a popular DP algorithm (Bellman, 1957;
Howard, 1960). Thus, the cost of reaching each cell in the
explored space must be calculated. As it can take several
iterations to converge to a final cost value for each cell, the
computational complexity grows as the robots explore more
space. In fact, the computational complexity is of quadratic
order of the size of the explored area. The second issue with
this approach is that much information has to be shared
among robots to achieve coordination. Among other
variables that must be shared, each robot has to share with
other robots its cost of reaching the Frontier cell that is
closest to it. Furthermore, as part of the coordination
scheme each player has to consider the decision the other
players would take at a given time and the respective
payoffs they would receive before the player can evaluate
its own payoff for a particular action choice. Thus,
considering the aforementioned facts about Frontier-based
DP algorithms, it would be of interest to investigate a
method that may reduce computational complexity for large
search spaces; have a robot determine the action it should
take without having to calculate the decision of other robots;
and that reduces the information that needs to be shared
among robots. It is generally known that game theory offers
advantages in that it leads to decentralised systems and
reduces computational complexity (Lindsay, 2011). In this
regard, we come up with a method of exploring a space
using multiple robots by modelling the problem as a
potential game.

Section 2.1 will introduce a well established class of
non-cooperative games known as the weakly acyclic game,
which a potential game is a subclass of. It will also
introduce the simple forward turn controller from Lindsay
(2011), which is a mechanism for accounting the lateral
motion experienced by a robot when it performs a turn in a
non-holonomic environment. We will integrate the simple
forward turn controller in our solution for exploring a space
using multiple robots. Section 2.2 will identify a
shortcoming of weakly acyclic games and briefly discuss
how potential games addresses this problem. In Section 2.3,
the potential game itself will be defined. Furthermore, the
potential function of our game will be defined in terms of
the goal we are trying to achieve, and from this, the
objective function of a player will be assigned. In Section
2.4, an algorithm will be derived based on our game, which
will then be modified in Section 3 so that bounded spaces
with obstacles can be explored by robots. The resulting
algorithm’s computational complexity will be analysed in
Section 3.1, and finally an improved algorithm that is based
on predicting the future locations of robots will be discussed
in Section 4.

1.2 Contributions

The main contributions of this paper are:

1 The collaborative mapping of an unknown environment
with a team of robots using potential games. As part of
this contribution, we extend the definition of a potential
game so that it can be modelled under the framework of
the simple forward turn controller.

2 We define a potential function and objective function
for our potential game that is meaningful in terms of
achieving the greater objective of exploring a space.
Moreover, update rules for crucial variables in the
potential game will be presented, and a proof of our
game satisfying a potential game will be presented.

3 The derivation of an algorithm from our potential game
that allows a finite bounded space to be explored by
multiple robots.

4 The complexity analysis of our potential game
algorithm, which will be found to have a lower runtime
order than Frontier detection algorithms.

5 The improvement of our initial potential game
algorithm. The improvement stems from having a robot
predict the future location of every other robot when it
decides to turn. New update rules will also be presented
for key variables as part of this new algorithm.

2 Weakly acyclic and potential games

2.1 Weakly acyclic games

Weakly acyclic games are a class of games that unlike what
is often encountered in cooperative robotics, provides robust
group behaviours for robots while only placing gentle
restrictions on the robots’ selection of actions (Lindsay,
2011). “Informally, a weakly acyclic game is one where
natural distributed dynamics, such as better-response
dynamics, cannot enter inescapable oscillations” (Fabrikant
et al., 2010). This definition implies that players can start
with any action and so long as there exists a pure Nash
equilibrium, the players will reach it by changing their
actions throughout the course of the game, which will result
in a corresponding increase in their utility. The following
definitions have to be established to formalise a weakly
acyclic game.

Definition 2.1 (better-response actions): An action i ia A′ ∈
is a better-response of player i to an action profile (ai, a–i) if

() ()i i i i i iU a a U a a− −′ − > − (Fabrikant et al., 2010), where
a−i refers to the joint actions of all the players except i and
ui refers to the utility or objective function of player i.

176 G. Philip et al.

Definition 2.2 (better response path): A better response path
in a game G is a sequence of action profiles a1, ..., ak in that
for every j ∈ [1, ..., k − 1] two conditions are met:

1 aj and aj+1 only differ in the action of a single player i

2 player i at time step j + 1 is a better response action,
i.e., 1(,) (,)j j j j

i i i i i iU a a U a a+
− −> (Lindsay (2011;

Fabrikant et al., 2010).

The second part of Definition 2.2 implies that the utility
received by the player changing its action at a given time
must be greater than the utility it would receive if it did not
change its action.

Definition 2.3 (weakly acyclic games): A game G is weakly
acyclic if for any action profile a ∈ A, there exists a better
response path starting at action a, and ending at some pure
Nash equilibrium of G (Lindsay, 2011; Fabrikant et al.,
2010), where A represents the set of all joint action vectors
for all the players in the game.

A limiting factor in a weakly acyclic game lies in the first
part of Definition 2.2, which requires that only one player
changes its action at every time step. Thus if a strict weakly
acyclic game is used as a solution to solve a cooperative
robotics problem it would require that a centralised entity
determine which player will change its action at every time
step. This is, however, very undesirable because it would
make it a centralised system. Another option is to let the
players change their actions at a random specified rate, ε,
which is known as the exploration rate (Marden et al.,
2009a). It was found in Marden et al. (2009a) that using the
exploration rate option, it is never guaranteed that a Nash
equilibrium will be found, but if ε is small and if the time
step t is significantly large, the Nash equilibrium will be
found with a high probability. This theory was incorporated
in Lindsay (2011) knowing that there is a slight probability
that for a small number of tests, a Nash equilibrium
consensus point would not be reached.

The consensus problem, which is the problem of getting
a group of autonomous robots to meet at a point without
having a centralised algorithm telling the robots where that
point is Lindsay (2011), was solved in Marden et al. (2009a)
and Blume (1996). Although Marden et al. (2009a) and
Blume (1996) guaranteed results to the consensus problem
when it is modelled as a weakly acyclic game, it did not
allow for non-holonomic behaviour. Thus the algorithms
could not be implemented as controllers on actual robots
that may for example use a differential drive system. In
Lindsay (2011), a mechanism known as a simple forward
turn controller was devised as part of a weakly acyclic game
to solve the consensus problem in a non-holonomic
environment. The lateral motion experienced by a robot
when it turns is accounted for in the simple forward turn
controller by having the robot change its pose or orientation
in one time step, and then having it move forward with the
new pose in the following time step for one time step. Thus,
when a robot turns it does so over two time steps over a
sequence of two different actions (a ‘turn action’ and a

‘move forward’ action). We call this a two-step action
sequence. This restriction in having to perform a turn over
two times steps is how the non-holonomic behaviour of a
robot is modelled. The idea of having a two-step action
sequence is that it would impact the utility the robot would
receive over the course of the turn sequence in comparison
to the utility it would get if a whole turn (which includes a
robot’s lateral movement and its movement forward) was
executed in one time step. This will be seen in Section 2.3.
We will utilise the simple forward turn controller in our
algorithm.

The following subsections discuss the workings of the
simple forward turn controller as seen in Lindsay (2011),
which includes initialisation and the action-selection policy
based on the expected utilities. However, we first need to
establish an action set for each of the robots in a similar
manner as Lindsay (2011). We will arbitrarily assign each
robot in our game an action set, Ai, that has without loss of
generality four actions. This is sufficient for any robot to get
to any point in a 2-D environment.

{ }1 2 3 4, , , ,i i i i iA a a a a= (1)

where 1
ia is the action ‘move forward’, 2

ia ‘turn 90°’, 3
ia

‘turn 180°’, 4
ia ‘turn −90°’.

2.1.1 Initialisation

At the first time step, t = 0, each player will randomly select
a pose. In the next time step each of the robots will execute

1
ia (‘move forward’). The combination of the ‘move

forward’ command and the pose of a robot constitutes what
is known as its baseline action b

ia (Lindsay, 2011).

2.1.2 Action selection

At each time step, each robot is given a choice to play its
baseline action by moving forward with a probability of
(1 − ε) or to explore by performing a turn sequence with a
probability ε.

2.1.3 Baseline action and turn sequence

When player i plays the baseline action and does not
explore, it moves in the direction that the baseline action
specifies. We denote a two-step action sequence of a player
i as 1(,) ,x

i i ia a α∈ where x
i ia A∈ in (1), and the sequence of

actions is x
ia followed by 1,ia the ‘move forward’

command. There are four two-step actions sequences that
are possible for the action set specified in (1). They are

() () () (){ }1 1 2 1 3 1 4 1, , , , , , ,i i i i i i i i ia a a a a a a aα = (2)

Notice here that 1x
i ia a= represents the baseline action.

Figure 1 shows a robot i’s predicted positions in a grid game
for playing each two-step action sequence in αi. The arrow

 Cooperative navigation of unknown environments using potential games 177

in the figure indicates the direction the robot is facing.
Points 2 and 1 are the positions i expects to be at the end of
time t and at the end of time t + 1 respectively if it is to play
its baseline action sequence (i.e., 1 1(,)i ia a). Points 3, 4, and
5 are the positions i expects to be at the end of time t + 1 if
it were to perform turn sequences 2 1 3 1(,), (,),i i i ia a a a and

4 1(,)i ia a respectively. As discussed earlier, the robot’s
position does not change at the end of time t when it plays
any of the turn sequences; only its heading changes. This is
the defining characteristic of the simple forward turn
controller to account for non-holonomic behaviour.

Figure 1 A robot’s predicted future positions for each two-step
action sequence

When player i explores, it randomly selects a two-step
action sequence from the four possible action sequences and
predicts its utility if it were to execute the action sequence.
If the predicted utility of turning in a direction over a
two-step action sequence is greater than the utility of
playing the baseline action, the player will turn in that
direction. This is in accordance with the second part of
Definition 2.2 in a weakly acyclic game. It will then set the
baseline action with the heading the player possesses after it
has completed the turn sequence. This process will repeat
itself until consensus is reached, which is synonymous with
reaching the Nash equilibrium in the consensus problem.

In Lindsay (2011), the utility that the controller receives
is based on the Euclidean distance between the robots. In
this paper, however, as our focus is on having a group of
robots explore a space, the utility will be based on the new
grid points that have been discovered by the robots. This
will be detailed in Section 2.3.

2.2 Convergence of weakly acyclic games

It was proved in Lindsay (2011) that even if a group of
players used the simple forward turn controller in a weakly
acyclic game, there would be a high probability of reaching
the Nash equilibrium. However, this Nash equilibrium can
take a long time to reach as it was demonstrated in Section
3.3.4 of Lindsay (2011). This is primarily because in a
weakly acyclic game there is no systematic way for
designing a player’s objective function based on a global
utility function (Blume, 1996). In other words a player’s
objective function is not made explicit with respect to the
greater cooperative goal. That is where a subclass of the
weakly acyclic game known as the potential game is

particularly useful. A potential game speeds up the time it
takes to reach an equilibrium at the expense of enforcing
strict rules as to which action can be selected. In a potential
game, every player’s local objective function is ‘aligned’
with the global objective function (Lindsay, 2011) so that
the players’ utility can be easily derived from the global
utility function. In retrospect, due to a lack of rigid rules a
player’s utility function is ‘somewhat’ aligned to the game’s
global utility function in a weakly acyclic game (Lindsay,
2011). The following section will introduce the potential
game, but we extend the original definition, which is only
defined over a single action, to include a two-step action
sequence. Furthermore, the objective function of each
player and the global utility function will be defined for our
game, which serves as a contribution of this paper.

2.3 Potential game

A potential game is a game “in which all payoff differences
to all players can be described by first differences of a
single real-valued function” (Blume, 1996), or in other
words, a global utility function. This additional rule of
having each player’s utility function aligned with the global
utility function is what sets a potential game apart from a
weakly acyclic game. An individual player’s contribution to
a global utility can be determined using the wonderful life
utility (WLU) (Lindsay, 2011). The WLU is a family of
utility structures wherein the utility of a player forms a
marginal contribution made by the player to the global
utility (Marden and Shamma, 2007). Mathematically, this is
represented for every player i as

 () (),i iWLU z zφ φ −= − (3)

where z represents the collection of all players, z−i
represents the collection of all players except player i, and
φ() is the function that represents the global utility of the
players in its argument (Lindsay, 2011). As it will be shown
shortly, once a global utility function has been defined, it is
easy to assign local objective functions for each of the
players using the WLU so that the resulting game is a
potential game. In fact, it is known that the WLU leads to a
potential game with the global utility being the potential
function (Marden and Shamma, 2007). It also makes a
player’s utility more learnable by removing unnecessary
dependencies on other players’ assignment decisions, while
still keeping the player utilities aligned with the global
utility (Marden and Shamma, 2007). This can be seen in
Marden and Shamma (2007), which uses the WLU to solve
an autonomous vehicle-target assignment problem where a
group of vehicles are expected to optimally assign
themselves to a set of targets. In Marden and
Shamma (2007), the vehicles are assumed to be rational
self-interested decision makers that want to optimise their
utility. The utility function of each vehicle was set using the
WLU so that the objectives of the vehicles are localised to
each vehicle yet aligned with a global utility function. This
allowed each vehicle to make their own individual decisions
without any regard for the decisions of other vehicles. This

178 G. Philip et al.

aspect of the WLU that allows an agent to make decisions
without considering other’s decisions is highly beneficial
over other methods such as reinforcement learning
techniques and Frontier-based DP methods, which require
each agent to know the actions taken by other agents.

Before we set up our potential game, we need to create a
grid where the game will be played. The grid represents the
space which the robots will explore. If we divide the space
equally so that there is Z horizontal divisions and Z vertical
divisions, we will have a Z × Z grid. A grid point is the
intersection of a horizontal line and a vertical line. They
serve as reference points in calculating utilities as it will be
seen shortly. Furthermore, as before the group of players or
robots in the potential game is represented by N = {1, 2, 3,
..., n} where n is the number of players. In this setting, each
player i ∈ N is assigned a two-step action sequence set αi
and a local objective function 1((,),()) : x

i i i i iU a a a a α− −′ ′′− →Z

where ii N
α α

∈
=∏ is the set of joint two-step action

sequences. Before we define the function 1((,),()),x
i i i i iU a a a a− −′ ′′−

however, we first define an intermediary objective function
for a player for a single time step as opposed to two time
steps in a two-step action sequence to make the definition
easier to follow. In a similar manner as Lindsay (2011) we
assign a player i’s objective function for a single time step
at a time t for a given action .x

i ia A∈ . Note that t is an
instance of time in the discrete time domain.

() []() (1), ,
x
ia

i i i
pt gridpts

U pos t f pos t pt
∈

= +∑ (4)

where

[]
1, if ()

(1), 1, if 1 or 2 is true
0, otherwise

i

i

pt discPts t
f pos t pt C C

∈⎧
⎪+ = ⎨
⎪
⎩

C1 evaluates to true if

 () and (),i ipt loc t sRange pt discP ts t−− ≤ ∉

C2 evaluates to true if

 (1) and (),i ipt loc t sRange pt discP ts t−− + ≤ ∉

and gridpts is the set of 2-D Cartesian coordinates of all the
grid points. For example, if we have a square grid of 3 × 3
points we would have 32 = 9 grid points, and if the grid’s
bottom-left corner is situated at the origin (0, 0), we have
gridpts = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), ...}. The
term loci(t) is the 2-D Cartesian coordinates of player i and
loci(t) ∈ gridpts. In Figure 2 for example, loci(t) = (4, 1) for
Player 1. The term posei(t) represents the pose of player i at
time t and is composed of the unit vectors ˆ {1,0}x = and
ˆ {1,0}y = of a 2-D Cartesian space. Since a robot can be

facing one of four directions in our game according
to the action set defined in (1), we effectively have

ˆ ˆ ˆ ˆ() { , , , }.ipose t x y x y∈ − − In Figure 2 for example,

posei(t) = (1, 0) for Player 1. The term posi(t) is a vector that
consists of loci(t) and posei(t) so that posi(t) = (loci(t),
posei(t)). For example, in Figure 2, posi(t) = (4, 1, 1,0) for
Player 1. The term posi(t + 1) is the predicted location and
pose of player i at the next time step (t + 1) after
taking an action x

ia at time t so that posi(t + 1) = (loci(t + 1),
posei(t + 1)). The term discPtsi(t) is the set of Cartesian
coordinates of the grid points that have been discovered by i
up until time t so that discPtsi(t) ⋇ gridpts. The term
discPts−i(t) is the set of Cartesian coordinates of the grid
points that have been discovered by all players except i up
until time t so that discPts−i(t) ⋇ gridpts. Finally, the term
sRange represents the range of the sensor, which we assume
has 360° of coverage in our game, and has units that
represent the number of grid points that can be detected
vertically or horizontally from the location of the sensor
assuming the grid is a square. Note that posi(t + 1) is present
in the argument of function f() because loci(t + 1), which is
a component of posi(t + 1), is used in evaluating C2. The
conditions C1 and C2 exist to ensure that points in gridpts
that have the prospect of increasing player i’s utility have
not already been discovered by other players and that it falls
within the sensor scan of player i at time step t or t + 1
respectively.

Figure 2 6 × 6 grid game with two robots

At the beginning of a time step posi(t) is updated. Then
discPtsi(t) and discPts−i(t) are updated to include new grid
points that have been discovered so that

[]{ }() (), 1 ,i idiscPts t pt gridpts f pos t pt= ∈ = (5)

()

(), 1 ,
i

i

j
j N

discPts t

pt gridpts f pos t pt

−

∈

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟⎡ ⎤= ∈ ≥⎨ ⎬⎣ ⎦⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑ (6)

where Ni = {x | x is a player in the game and x ≠ i} or
Ni = N\{i}.

Note that f() in (5) and (6) is a function of time t rather
than time t + 1 as it was defined in (4). This signifies that
new grid points are added to the set discPtsi(t) and
discPts−i(t) only if they have actually been discovered rather
than just predicted in the previous time step when (4) was
evaluated. There is a greater than or equal to symbol present
in (6) because there can be times when two or more robots

 Cooperative navigation of unknown environments using potential games 179

have overlapping sensor coverage, which can lead to a grid
point being discovered by more than one robot. More will
be said about this in Section 2.4. Finally, the predicted
utility for each two-step action sequence 1(,)x

i ia a is
calculated. This is done as opposed to just predicting the
utility of one action because if we assume a player has a
360° view or sensor coverage, the turn action alone at time t
will not change its utility at time t + 1. This is because the
robot will remain in the exact same position at the end of
the time step t as seen in Figure 1. It has to move forward at
time t + 1 if its predicted utility is to increase. This can be
seen in the definition of the objective function of a player in
(4), where only the discovery of new grid points at a time t
+ 1 causes the objective function (())

x
ia

i iU pos t to change

from ((1)).
x
ia

i iU pos t − Hence, we now define the objective
function for a player i for a two-step action sequence based
on its objective function for a single time step. Ui

() ()()

[]

1

1, ,

((1))

(2), ,

i

x
i i i i i

a
i i

i
pt gridpts

U a a a a

U pos t

f pos t pt

− −

∈

′ ′′−

= +

= +∑
 (7)

where as previously mentioned
1((,), ()) : x

i i i i iU a a a a α− −′ ′′− → Z and .ii N
α α

∈
=∏ Based

on the definition of f[posi(t + 1), pt] in (4), we evaluate
f[posi(t + 2), pt] to be the following.

[]
1, if (1)

(2), 1, if 1 or 2 is true
0, otherwise

i

i

pt discPts t
f pos t pt C C

∈ +⎧
⎪+ = ⎨
⎪
⎩

C1 evaluates to true if

 (1) and (1),i ipt loc t sRange pt discP ts t−− + ≤ ∉ +

C2 evaluates to true if

 (2) and (1),i ipt loc t sRange pt discPts t−− + ≤ ∉ +

The left-hand side of (7) represents the predicted utility of a
two-step action sequence 1(,)x

i i ia a α∈ for a player i at time
t amidst the sequence of actions taken by the other players
during the two-step action sequence, denoted here by
().i ia a− −′ ′′− In the right-hand side of the equation, posi(t + 1)
represents the position and pose of player i after it has
executed the first action x

ia in the two-step action sequence
1(,).x

i ia a Therefore, the right-hand side of the equation
represents player i’s predicted utility at the end of the
second time step t + 1 after it has executed the second action
of the two-step action sequence, which by the definition of a
player’s objective function in (4) is inclusive of the utility it
would have had in the previous time step t. Thus,
effectively, 1((,), ())x

i i i i iU a a a a− −′ ′′− is the utility player i
predicts to have by the end of the time step t + 1 at time t by

following the two-step action sequence 1(,).x
i ia a We note

two important points here. The first is that player i’s
predicted utility of playing the action sequence 1(,)x

i ia a is
independent of the sequence of actions ()i ia a− −′ ′′− played
by other players because player i’s objective function as it is
defined in (4) is independent of the actions taken by the
other players at time t. The position and the pose of the
other players are not predicted nor utilised in any way.
Secondly, instead of using discPts−i(t + 1) for evaluating the
right-hand side of (7) as it would be expected based on (4),
discPts−i(t) is used. This is because the prediction is done
over two time steps and at time t player i cannot know
discPts−i(t + 1). This can only be determined in the next
time step after every player has taken an action and has
communicated the set of grid points it has discovered to the
rest of the players. Thus, it uses the latest knowledge it has,
which is discPts−i(t). Another way of stating this is that we
assume discPts−i(t + 1) = discPts−i(t). Once the utilities of
every two-step action sequence have been predicted, an
action is taken based on an action-policy that will be
presented in Section 2.4.

We define the potential function of the game as

()() () ,
x
ia

i i
i N

t U pos tφ
∈

=∑ (8)

Given the potential function in (8), we can see as in Marden
et al. (2009b) that with the assignment of the objective
function in (4) each player does not have to observe the
decision of all players to evaluate its payoff for a particular
action choice. This is because if we observe the definition of
the potential function and its relation to the objective
function of each player in (4), we see that it satisfies the
WLU; and as stated in the beginning of this section, the
WLU removes unnecessary dependencies of a player’s
decisions on other players’ assignment decisions. We define
a corresponding potential function φ(γ) : α → Z for (8) that

is a function of the two-step action sequences of all n
players rather than time t.

() ()()1() , ,x
i i i i i

i N

U a a a aφ γ − −
∈

′ ′′= −∑ (9)

where γ ∈ α. By using the WLU formulation in (3), (9) can
be written as

() ()()
() ()()
1

1

() , ,

 , , .

x
i i i i i

x
j j j j j

i N

U a a a a

U a a a a

φ γ − −

− −
∈

′ ′′= −

′ ′′+ −∑
 (10)

We now formally define a potential game as it is defined in
Marden et al. (2009b), but we extend the definition so that it
is for a two-step action sequence rather than a single action.

Definition 2.4 (potential games): Player action sets 1{ } ,n
i iα =

together with player objective functions 1{ : } ,n
i iU α =→ Z

180 G. Philip et al.

constitute a potential game if, for some potential function
φ : α → Z,

() ()() () ()()
() ()() () ()()

1 1 1 1 1 1

1 1 1 1 1 1

, , , , , ,

, , , , , ,

i i i i i i i i i i

i i i i i i i i

U a a a a U a a a a

a a a a a a a aφ φ

− − − −

− − − −

′ ′′−

′ ′′= −
 (11)

for every player i ∈ N, for every 1(,) ,i i ia a α′ ∈ and for every
1(,) .i i ia a α′′ ∈

Notice in (11) that the second argument of the objective
function of player i and the potential function 1 1(,)i ia a− −
implying that all players must ‘move forward’ for two time
steps or equivalently play their baseline actions while i is
playing its two-step action sequence. This is as per the test
for a potential game as seen in Marden et al. (2009b), which
requires that all players other than player i continue to play
their previous action. Since player i is the one changing its
action from its baseline action, none of the other players are
allowed to change their actions from their respective
baseline actions, and thus, must continue to play it. This is
also consistent with the first part of Definition 2.2 of a
weakly acyclic game (Section 2.1), which a potential game
is a subclass of.

Claim 1: Player objective functions (7) constitute a potential
game with potential function (9).

Proof: A similar approach as Marden et al. (2009b) will be
used to prove the claim. We assume a player i is
contemplating at time t whether to turn in one direction by
performing the action sequence 1(,)i ia a′ or to turn in another

direction by performing 1(,)i ia a′′ so that .i ia a′ ′′≠ The change
in the objective function of player i by switching from the
action sequence 1(,)i ia a′′ to the action sequence 1(,),i ia a′

provided that all other players collectively play 1 1(,),i ia a− −

() ()() () ()()1 1 1 1 1 1, , , , , ,i i i i i i i i i i iU U a a a a U a a a a− − − −′ ′′Δ = −

The first difference equation for the potential function of the
game for the two different action sequences of player i is

() ()() () ()()1 1 1 1 1 1, , , , , ,i i i i i i i ia a a a a a a aφ φ φ− − − −′ ′′Δ = −

Substituting (10) into the above difference equation, we get

() ()()
() ()()

() ()()

() ()()

1 1 1

1 1 1

1 1 1

1 1 1

, , ,

 , , ,

 , , ,

 , , ,

i

i

i i i i i

j i i i i
j N

i i i i i

j i i i i
j N

U a a a a

U a a a a

U a a a a

U a a a a

φ − −

− −
∈

− −

− −
∈

′Δ =

′+

⎡
′′− ⎢

⎢⎣
⎤

′′ ⎥+
⎥⎦

∑

∑

 (12)

As previously mentioned, a player’s predicted utility for a
two-step action is independent of the sequence of actions
played by the others. Due to this and the fact that every
player j has to play its baseline action for two time steps
while player i completes its turn sequence, we have

() ()()
() ()()
() ()()

1 1 1

1 1

1 1 1

, , ,

, , ,

, , ,

j i i i i

x y
j j j j j

j i i i i

U a a a a

U a a a a

U a a a a

− −

− −

− −

′

=

′′=

 (13)

Now, we substitute (13) into (12) to get

iU φΔ = Δ �

Considering that the greater objective of this paper is to get
a group of robots to explore a space as quickly as possible, a
solution that organises these robots to achieve this can be
thought of as projecting cooperative behaviour. After all, as
mentioned earlier, the goal of exploration is to gain as much
new information as possible of the environment within
bounded time. Therefore, if a robot follows the tracks of
another robot as part of a solution, which is to say that it
moves through already explored space, the solution would
not be portraying cooperative behaviour. This is because in
the time that the robot spend moving through explored
spaces, it could have been moving in a different path and
exploring previously uncovered spaces, and possibly,
reduce the overall time needed for exploration. Thus, a
solution that engages robots to take different paths or that
minimises overlaps can be thought of as instilling
cooperative behaviour. Now, in this regard if we consider
the objective function of a player, it is evident that no robot
has anything to gain from following the path of another
robot since it does not increase its utility in any way. Robots
seek to follow different paths from one another, and thus,
our objective function encourages cooperative behaviour in
terms of achieving the greater objective.

2.4 Potential game setup

Based on (7), the goal of each robot is to maximise its utility
by discovering new grid points. To do this each robot i has
four action sequences at its disposal from the set αi defined
in Section 2.1. However, each robot has restrictions on the
action it can use from one time step to the next if the team
of robots is to reach a Nash equilibrium. Since a potential
game is a subclass of the weakly acyclic game with
additional restrictions, the first part of Definition 2.2 of a
weakly acyclic game (Section 2.1) applies to it too (Marden
et al., 2009b; Young, 1998; Blume, 1993). However, as
noted in Section 2.1, it is not practical to have a centralised
entity to determine which robot will change its action at
every time step. Hence, we allow each robot to change their
actions at a small specified rate, ε, knowing that there is a
small probability that the Nash equilibrium will not be
reached.

 Cooperative navigation of unknown environments using potential games 181

Algorithm 1 Potential game exploration algorithm

Initialise # of time steps, sRange, and ε

for t ← 1,# of time steps do
 for all player i ∈ N do
 Update posi(t), discPtsi(t), and discPts−i(t)
 if player should explore based on ε then

 Compute Ui, 1(,)x
i i ia a α∀ ∈

 Play 1(,)x
i ia a based on asfi

 else
 Play 1 1(,)i ia a

 end if
 end for
end for

Now, by using the simple forward turn controller discussed
in Section 2.1, if a robot has the option to change its action
at time t based on the exploration rate ε, it will predict the
utility it would receive by performing each of the four
two-step actions as discussed in Section 2.1. This is done
for the baseline action as well where 1 1 in (,).x x

i i i ia a a a=
The action selection function, asfi, then compares the utility
for each two-step action sequence and selects the action
sequence that would give it the most amount of utility.

()
() ()()

1

1

,
arg max , , ,

x
i i i

x
i i i i i i

a a
asf U a a a a

α
− −

∈

′ ′′= (14)

Any ties for the predicted utility are broken arbitrarily
unless the two-step action sequence involving the baseline
action (i.e., 1(,)i ia a′) happens to have the same utility as the
maximum utility in which case the baseline action is
performed. This is in accordance with the second part of
Definition 2.2 in Section 2.1. This means that there is a very
low probability that at a time t a robot i will change its
action because firstly ε is small, and secondly, even if the
robot has the option to change its action with a probability
of 1 − ε, the action that it is changing to must provide it
with higher utility than the baseline action. If at time t a
robot is not allowed to change its action based on ε, it has to
play its baseline action. Algorithm 1 summarises the
algorithm for exploration. Note that Ui is short for

1((,), ())x
i i i i iU a a a a− −′ ′′− in Algorithm 1, and the action Play

1(,)x
i ia a based on asfi takes into account the tiebreaking rule

just discussed.
At a time t a robot i only knows where it is and all the

grid points it has discovered. It then queries all the other
robots for their position (locj(t), j ∈ Ni) and all the grid
points they have discovered to calculate discPts−i(t). Recall
that discPts−i(t) is the set of Cartesian coordinates of the
grid points that have been discovered by all players except i
up until time t. As mentioned in Section 2.3 it is not

necessary that at time t all the grid points discovered by a
robot i were exclusively discovered by it. This is because
there can be times when two or more robots have
overlapping sensor coverage, which can lead to a grid point
being discovered by more than one robot. However, due to
the fact that a robot mostly moves straight (since ε 1), in
a large environment they quickly spread apart if they all
begin in relatively the same location with different
orientations so that overlapping sensor coverages quickly
diminish. Furthermore, recall from Section 2.3 that our
potential game leads to cooperative behaviour in the sense
that robots seek to follow different paths from one another
when exploring. This is because based on the objective
function defined in (7), no robot has anything to gain from
following another robot’s path or running into another
robot’s path. In comparison, if robots were completely
uncoordinated and could perform any action whenever they
wanted (i.e., ε = 1), they would have much more frequent
run-ins or overlaps with other robots over uncovering the
same grid points so that there would be a higher probability
that robots would explore the same areas. This would make
the exploration process inefficient. This is how coordination
is achieved in Algorithm 1 over an uncoordinated algorithm.
Section 3 will present results that show how a variant of
Algorithm 1 outperforms an uncoordinated algorithm in the
exploration of a finite space.

3 Modified potential game algorithm

If there are obstacles in the environment, we note a very
important limitation of Algorithm 1. As there is a preference
(probability 1 − ε) of a robot to keep using its baseline
action (i.e., ‘move forward’ with its current pose), it is very
likely that it will run into obstacles or walls. Thus,
Algorithm 1 must be modified. A simple solution to this
problem would be for a robot to change its heading when it
encounters an obstacle in front of it even if at that particular
moment it is not allowed to perform a turn sequence as
dictated by its exploration policy ε. The direction the robot
would turn would be the direction that results in the highest
utility. This is shown in Algorithm 2. We can immediately
perceive the repercussions of this modification as the
obstacles would cause robots to change actions more often
than ε. In this respect, the presence of obstacles can be
considered to have the equivalent effect of increasing ε from
the value it was initialised to, which as discussed in Section
2.3 would decrease the probability that the Nash equilibrium
will be reached. However, reaching a Nash equilibrium is
not our goal here. Our goal is to fully explore a finite space
in as little time as possible. In our previous paper, we
performed a simulation to compare between the
modified potential game algorithm (Algorithm 2) and an
uncoordinated algorithm and we demonstrated that the
coordination introduced in the algorithm reduces
exploration time compared to a completely uncoordinated
exploration algorithm. For the same setup used in Philip et

182 G. Philip et al.

al. (2013) consisting of three obstacles and three robots and
ε = 0.3, the improvement in exploration time as sRange
increases is shown in Figure 3. Though exploration time
improves with increasing sRange values, it is evident that
improvements are less profound as sRange increases.

Algorithm 2 Modified potential game algorithm

Initialise # of time steps, sRange, and ε

for t ← 1,# of time steps do
 for all player i ∈ N do
 Update posi(t), discPtsi(t), and discPts−i(t)
 if player should turn because of obstacle then
 Compute 1 1 1(,) (,)x

i i i ia a a a∀ ≠

 Play 1(,)x
i ia a that maximises Ui

 else if player should explore based on ε then

 Compute Ui, 1(,)x
i i ia a α∀ ∈

 Play 1(,)x
i ia a based on asfi

 else
 Play 1 1(,)i ia a

 end if
 end for
end for

3.1 Complexity of Algorithm 2

In this section, we analyse Algorithm 2 to determine its
computational complexity. Before we do so, however, we

investigate the computational complexity of Frontier-based
exploration algorithms. This gives us a base upon which we
can compare and comment on the performance of our
algorithm.

As mentioned in Section 1.1, most approaches today use
Frontier-based exploration for having a space explored
using multiple robots. In Frontier-based exploration, robots
explore by repeatedly computing and moving towards
Frontiers, which is the boundary that separates known
regions from unknown regions (Keidar and Kaminka,
2012). Computing the cost of reaching Frontiers or Frontier
detection as it is referred to, involves the use of a
deterministic variant of value iteration, a popular DP
algorithm (Bellman, 1957; Howard, 1960). In Madani
(2002), it was shown that for deterministic Markov decision
problems (DMDP), basic value iteration takes Θ(Z2)
iterations, where Z denotes the number of states. Thus, it
cannot do better than an O(Z2) algorithm in terms of
execution time if we just consider the upper bound of its
growth rate. In Frontier detection algorithms, the states
correspond to the cells in the explored area. Considering
that Frontier detection algorithms processes all the states
every time it performs Frontier detection, it can be a time
consuming process which slows down exploration (Keidar
et al., 2012). In fact, even on powerful computers, state-of-
the-art Frontier detection algorithms can take a number of
seconds to run for every execution of the algorithm, and if a
large region is explored, the robot actually has to wait in its
spot until the Frontier detection algorithm terminates
(Keidar et al., 2012). To make matters worse, there are
Frontier-based algorithms such as the algorithm presented in
Wurm et al. (2008) that suggest calling Frontier detection
every time-step of the coordination algorithm.

Figure 3 Comparison of exploration time of Algorithm 2 for a sRange of 2, 3, and 4 grid points, and ε = 0.3

 Cooperative navigation of unknown environments using potential games 183

There are two important points we note about Algorithm 2
before we analyse its runtime. The first point is that
Algorithm 2 is a distributed algorithm. Hence, when we
make a statement about its computational complexity, we
are referring to an instance of its execution on one of the
robots. Secondly, as a robot does not have to make a
decision when it is forced to play its baseline action, it does
not have to compute anything. In fact, it only seldom needs
to calculate values. One occasion that it needs to compute
values is when it is allowed to update its action as dictated
by ε. The other occasion when it needs to compute values is
when it needs to avoid an obstacle, and it needs to decide
which direction to turn towards. As ε 1 and if we assume
an environment with a large open space with few obstacles
and few outer walls in comparison to the area of the overall
space, robots would be moving straight most of the time
with respect to the total time needed for exploration. They
would not need to make many decisions resulting in a
drastic reduction in the number of computations needed.
Considering the aforementioned points, it is only of interest
to us to analyse the computational complexity of Algorithm
2 for a robot i that is allowed to update its action at time t,
and we proceed bearing this in mind.

As discussed earlier, the argmax operator in the function
asfi [equation (14)] selects the two-step action sequence
from the two-step action sequence set αi that would give i
the most amount of utility or that maximises objective
function (7). Based on the actions we defined in the action
set Ai and the resulting two-step action sequence set αi that
was derived from it, player i has to compute the utility it
expects to receive from performing each of the four two-
step action sequences to make a decision. It namely has to
compute the utility it would receive by playing

1 1 2 1 3 1(,), (,), (,),i i i i i ia a a a a a and 4 1(,).i ia a Figure 4 shows
player i contemplating each of the two-step action
sequences at time t in a Z × Z grid. The robot is the black
box and the arrow on top of it represents the direction it is
facing. The two solid dots ahead of the robot represents its
predicted positions if it were to play its baseline action for
the following two time steps (i.e., 1 1(,)i ia a). The solid dots
to the left, bottom, and right of the robot represents its
predicted positions at the end of the second time step after
playing 2 1 3 1(,), (,),i i i ia a a a and 4 1(,)i ia a respectively. Recall
from Section 2.1.3 that under the framework of the simple
forward turn controller, when a robot performs a two-step
action sequence that involves a turn, the robot remains in
the same position for the first time step. Thus, over the
course of a two-step action sequence the position would
only change once, and this is why there is only one dot
present to the left, bottom, and right of the robot in Figure 4.
The circles represent the 360° coverage of the sensor from
the future positions, and the range of the sensor, sRange, has
been set to 2 grid points. In the objective function (7) for a
player, the function f[posi(t + 2), pt] is evaluated for every
point pt ∈ gridpts. This leads to Z2 iterations of f[posi(t + 2),
pt] as the grid is Z × Z in dimension. Evaluating

f[posi(t + 2), pt] for a particular point pt is not intensive
computationally because the majority of the function
involves verifying whether or not pt belongs to the set
discPtsi(t) or discPts−i(t). This is as simple as maintaining a
lookup table in memory in the form of an array and having a
simple array indexing operation. Since retrieving a value
from memory is very fast, cross-checking pt with already
discovered points is an inexpensive operation. In the clauses
C1 and C2 in (7), the operations to determine whether
pt ∉ discPts−i(t) must be executed first because if it does not
hold true, the magnitude function to determine if
||pt − loci(t + 1)|| ≤ sRange is true or if ||pt − loci(t + 2)||
≤ sRange is true, does not need to be evaluated. Even if the
magnitude function is required to be evaluated, the
computation needed for it does not have any affect on the
runtime order for iterating through all the points. Since there
are four two-step actions sequences to be considered, 4Z2
iterations are needed, which is of order Z2. Thus, the
runtime order would be O(Z2).

Figure 4 Player i considering each two-step action sequence

If the function f[posi(t + 2), pt] did not have to be evaluated
for every point in the grid, the complexity of computing the
objective function (7) for a player i for an action sequence

1(,)x
i ia a could be reduced. Since the points that have

already been discovered by player i, namely discPtsi(t), are
present in the lookup table, the function f[posi(t + 2), pt]
does not have to be evaluated for them to determine their
contribution to the overall utility of player i. Instead, a very
simple operation can be used to query the number of
elements in discPtsi(t), which would indicate the utility of
player i prior to time t. The problem then becomes to iterate
through only a subset of points in the grid that have the
potential of increasing player i’s utility in the following
two-step action sequence. It would be necessary to at least
scan through the points that would be in range of the sensor
in the future positions. Since the sensor has a circular
coverage, a solution would be to enclose the points that
would be covered by the sensor’s range using a square, and

184 G. Philip et al.

scan through all the points that would fall under the square.
This is illustrated in Figure 4. Squares 3, 4, and 5 enclose
the points that need to be scanned to determine the utility of
turning right, left, and back respectively. Squares 1 and 2
enclose the points that need to be scanned to determine the
utility of playing the current baseline action. There are two
squares because there are two future positions associated
with playing the baseline action. The squares associated
with the baseline action have a solid boundary, whereas the
squares associated with any of the turn actions have dotted
boundary lines. Figure 5 shows a detailed view of how a
square encloses a sensor’s radial coverage so that in
scanning all the grid points inside the square (denoted by
the bold line), all the points that would be in range of the
sensor are also scanned. The solid dot indicates a future
position of the robot and the hollow dot indicates a point
that needs to be scanned. We say that a point pt is ‘bounded
at a location loci(t)’ if at time t, pt is inside the square that
encloses the circle created by the sensor centred at loci(t).
Since the radius of the sensor’s coverage is sRange, a side
of the square is 2 ∗ sRange in dimension. We note that one
point that certainly does not need to be scanned or that
cannot contribute to increasing player i’s utility in the
two-step actions sequence is the point where the robot
would be situated (i.e., the solid dot in Figure 5). This point
would already have been accounted for in the previous time
step, and is based on the assumption that sRange ≥ 1 grid
point; that is, the range of the sensor is large enough to at
least detect adjacent points in the grid. Thus, the number of
points that would need to be iterated through or scanned in a
square is

2

2

 (2 | | 1) 1

 4 | | 4 | |

points to be scanned in square

sRange

sRange sRange

= + −

= +

 (15)

Figure 5 Example of a square enclosing sensor’s radial coverage

We note that points to be scanned in square is a O(sRange2)
function of sRange. It cannot be of order sRange because
for sufficiently large values of sRange, points to be scanned
in square would not be bounded by M ∗ |sRange|, where M
is a constant factor.

We need to restate the objective function in (7) in a
different way now because presently the objective function
iterates through all the points in the grid. Before we do so,
however, we need to define the following set.

 { | 3 is },squareSet pt gridpts C true= ∈ (16)

where,

()

()

1 1

1 1

if in , and is
,

bounded at (1) or (2)
3 if in , and is

,
bounded at (2)

, otherwise

x x
i i i i

i i

x x
i i i i

i

a a a a pt
true

loc t loc t
C a a a a pt

true
loc t

false

⎧ =
⎪
⎪ + +
⎪

= ⎨ ≠
⎪
⎪ +
⎪
⎩

If the first statement in C3 evaluates to true, then player i
must be playing its current baseline action for the two-step
action sequence. If the second statement in C3 evaluates to
true, then player i must be making a turn. Given this, we
now restate

1
((1))ia

i iU pos t + in terms of a function
h[posi(t + 2), pt].

()
1

(1)

() [(2),],

ia
i i

i i
pt squareSet

U pos t

discPts t h pos t pt
∈

+

= + +∑ (17)

where

[] 1, if 4 or 5 is
(2),

0, otherwisei
C C true

h pos t pt ⎧
+ = ⎨

⎩

C4 evaluates to true if

 (1) and (1)
 and (),

i i

i

pt loc t sRange pt discPts t
pt discPts t

−− + ≤ ∉ +

∉

C5 evaluates to true if

 (2) and (1)
 and (),

i i

i

pt loc t sRange pt discPts t
pt discPts t

−− + ≤ ∉ +

∉

and |discPtsi(t)| represents the cardinality of discPtsi(t). We
note that the only difference between C4 and C1, and C5
and C2, is the inclusion of the clause pt ∉ discPtsi(t). It is
present to ensure that h[posi(t + 2), pt] only equates to 1 for
a point pt if pt is expected to be discovered by i
in the following two-step action sequence. This prevents
double-counting previously discovered points. As before, it
is assumed that discPts−i(t + 1) = discPts−i(t), and,

() ()() ()
11, , (1) .iax

i i i i i i iU a a a a U pos t− −′ ′′− = +

 Cooperative navigation of unknown environments using potential games 185

Considering that (17) has to be computed for four two-step
actions sequences, a total of 20(|sRange|2 + |sRange|)
iterations are needed. This is calculated using (15) as
follows.

()
()

2

2

2

 5

 5 (2 | | 1) 1

 5 4 | | 4 | |

 20 | | | |

total iterations points to be scanned in square

sRange

sRange sRange

sRange sRange

= ∗

⎡ ⎤= + −⎣ ⎦

= +

= +

The coefficient 5 above is present rather than 4 because
as mentioned earlier there are two future positions
associated with playing the baseline action, and so, two
squares are required. From the definition of the big O
notation, we have

()()
()

2

2

 20 | | | |

total iterations O sRange sRange

total iterations O sRange

∈ +

⇒ ∈

4 Improved exploration algorithm

This section discusses an improvement to Algorithm 2 in
terms of the time taken to explore a space. The
improvement stems from each robot predicting the location
of every other robot when deciding on a direction to turn.
This allows a robot to change its heading to avoid exploring
the same areas as other robots, and as a result achieve a
greater degree of coordination. The basis of the prediction is
that when a robot i is allowed to perform a turn sequence
based on its exploration rate ε, it can be reasonably sure that
every other robot will play their baseline action or move
forward for the two time steps required to complete i’s turn.
In fact, the prediction becomes more accurate the smaller ε
is set to because robots will turn less often, and thus when a
robot is allowed to turn it can be reasonably sure that other
robots will not turn. A robot that is deciding to turn needs to
know the heading and the location of every other robot
(i.e., pos−i(t)) in the time step it is deciding on turning on so
that it can predict the locations of all the robots in the two
time steps it will take to perform its turn (i.e., ˆ (1)ipos t− +
and ˆ (2)ipos t− +). Taking into account the aforementioned,
we now redefine the objective function of a player i in (7) as

() ()()
()

[]

1

1 1 1, , ,

ˆ(1), (1)

ˆ(2), (2),

i

x
i i i i i

a
i i i

i i
pt gridpts

U a a a a

U pos t pos t

f pos t pos t pt

− −

−

−
∈

= + +

= + +∑

where

[]ˆ(2), (2),

1, if ()
1, if 1 is
1, if 2 is
0, otherwise

i i

i

f pos t pos t pt

pt discPts t
C true
C true

−+ +

∈⎧
⎪
⎪= ⎨
⎪
⎪⎩

Condition C1 evaluates to true if

1 || (1) || and
ˆ() and || (1) ||

ˆ and || (2) || .

i

i i

i

C pt loc t sRange
pt discPts t pt loc t sRange

pt loc t sRange
− −

−

⇐ − + ≤

∉ − +

− +

;
;

Condition C2 is the same as C1, except the first clause of
the condition is

ˆ|| (2) || .ipt loc t sRange− + ;

In comparison to (7), equation (18) uses 1 1(,)i ia a− − rather
than ()i ia a− −′ ′′− signifying that the objective function is
calculated under the assumption that other robots move
forward in the following two time steps. The clause

ˆ ˆ|| (1) || or || (2) || .i ipt loc t sRange pt loc t sRange− −− + − +; ;
 evaluate to true if pt is not in range of any of the robots
aside from robot i in the respective time step. It can be seen
that in maximising (18), a robot i avoids heading in a
direction that it predicts other robots are going to move
towards.

Equation (18) is the objective function for any robot i
that is able to change its action at a time t. For every other
robot that is not allowed to change its action at time t from
its baseline action (i.e., moving forward) as dictated by ε, its
predicted utility for the two-step action sequence that
follows is calculated using (7).

We need to introduce new rules for updating discPtsi(t)
and ˆ ()idiscPts t− that is consistent with the objective
function (18). As with the previous objective function (7), at
the beginning of a time step posi(t) is updated, except if a
robot i is in the middle of a turn sequence in which case it
needs to update pos−i(t) as well. Then discPtsi(t) and

ˆ ()idiscPts t− are updated. However, depending on whether a
robot has the option of performing a turn sequence or not at
a time t as dictated by _, we differentiate how discPtsi(t) is
updated. Based on C1 and C2 in (18), a robot i that has the
option of performing a turn sequence at a time t does not
expect to increase its utility by discovering new grid points
in the following two time steps if it predicts those grid
points would be discovered by other robots in those two
times steps. Thus, to be consistent with the prediction, i
must ensure those grid points do not get included in
discPtsi(t) when it updates the set after taking an action.
This is reflected in (19).

186 G. Philip et al.

Figure 6 Comparison of exploration time of Algorithm 2 and improved algorithm

If a robot i has the option of performing a turn sequence at
time t, discPtsi(t) is updated as follows in the following two
time steps.

() { | 5} (1)i idiscPts t pt gridpts C discPts t= ∈ −∪ (19)

where

5 || (1) || and
ˆ ˆ() and || () ||

i

i i

C pt loc t sRange
pt discPts t pt loc t sRange− −

⇐ − + ≤

∉ − ;

If on the other hand a robot i can only play its baseline
action, discPtsi(t) is updated as follows in the following two
time steps.

() { | 6} (1)i idiscPts t pt gridpts C discPts t= ∈ −∪

where

6 || () || and (1)i iC pt loc t sRange pt discPts t−⇐ − ≤ ∉ −

Finally, discPts−i(t) is updated for all robots as follows.

{ }() | ()
i

i j
j N

discPts t pt gridpts pt discPts t−
∈

= ∈ ∈∪

Claim 2: Player objective functions (18) constitute a
potential game with potential function (9).

The proof for Claim 2 is identical to the proof of Claim 1.
To assess the effect of using (18) on exploration time, we
replace the objective function used in Algorithm 2 [i.e., (7)]
with (18) and use the new rules for updating discPtsi(t) and
discPts−i(t) as discussed in this section. We will refer to this
modified algorithm as the Improved Algorithm. We then
simulate the Improved Algorithm for the test environment
introduced in Philip et al. (2013) with sRange set to 2 grid
pts and ε set to 0.1. The simulation is run for 2,000 time

steps and averaged over 20 games. Figure 6 compares the
performance of Algorithm 2 with the Improved Algorithm.
It can be seen that the Improved Algorithm discovers more
grid points from the 200 th to the 700 th time step, but in
terms of the total time it takes to explore the whole space
there is no difference between the two algorithms. However,
it can be argued that if there is only a limited time given to
explore the space (e.g., 400 time steps), then the Improved
Algorithm would explore more of the space than Algorithm
2. On the contrary it is important to note that with the
Improved Algorithm, a robot that is performing a turn
sequence requires more information from the other robots
compared to Algorithm 2. Specifically, it needs pos−i(t),
which includes both the heading and location of the other
robots. Furthermore, as before, the robot needs to know all
the grid points discovered by other robots for it to compute
discPts−i(t). Thus, the improvement in exploration time of
improved algorithm comes at the expense of more
information having to be shared among the robots.

5 Conclusions

In this paper we investigated exploring 2-D spaces using
potential games rather than conventional Frontier-based DP
methods. The objective function of a player and the game’s
potential function were defined in terms of the discovery of
unexplored grid points by robots, and the definition of a
potential game was extended for a two-step action sequence.
Based on the objective function of a player and
incorporating the simple forward turn controller, we devised
an algorithm for exploration, which was then modified for a
bounded environment with obstacles. The computational
complexity of the resulting algorithm was analysed to be
O(sRange2), where sRange is the range of a sensor on a
robot. Finally, an improved exploration algorithm that is

 Cooperative navigation of unknown environments using potential games 187

based on predicting future locations of robots was discussed
in Section 4.

A simulation using three robots and three obstacles
indicated that the Improved Algorithm was able to improve
the exploration of the environment for a period of time, but
the total time for exploration did not differ from the
modified potential game algorithm. However, the
improvement in exploration time comes at the expense of
more information having to be shared among the robots.

To account for environments that pose severe bandwidth
constraints on communications between robots such as in
AUV platforms, future work will involve developing a
game in which robots do not communicate with their
neighbours at every time step. Furthermore, the suitability
of integrating the exploration method discussed in this paper
with Frontier-based DP methods would be an interesting
research direction.

References
Asmar, D. and Shaker, S. (2012) ‘2D occupancy-grid SLAM of

structured indoor environments using a single camera’, Int. J.
Mechatronics and Automation, Vol. 2, No. 2, pp.1009–1014.

Bellman, R.E. (1957) Dynamic Programming, Princeton
University Press, Princeton, NJ.

Blume, L. (1993) ‘The statistical mechanics of strategic
interaction’, Games and Economic Behaviour, Vol. 5, No. 3,
pp.387–424.

Blume, L. (1996) Population Games, Game Theory and
Information 9607001, EconWPA, Munich, Germany.

Burgard, W., Moors, M., Fox, D., Simmons, R. and Thrun, S.
(2000) ‘Collaborative multi-robot exploration’, Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), pp.476–481.

Castellanos, J., Montiel, J.M.M., Neira, J. and Tardos, J.D. (2001)
‘The SPmap: a probabilistic framework for simultaneous
localization and map building’, IEEE Trans. Robot. Autom.,
Vol. 15, No. 2, pp.125–137.

Dissanayake, G., Durrant-Whyte, H. and Bailey, T. (2000)
‘A Computationally efficient solution to the simultaneous
localization and map building (SLAM) problem’, Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), pp.1009–1014.

Fabrikant, A., Jaggard, A.D. and Schapira, M. (2010) ‘On the
structure of weakly acyclic games’, Proceedings of the Third
International Conference on Algorithmic Game Theory,
SAGT ‘10, pp.126–137, Springer-Verlag, Berlin, Heidelberg,
ISBN 3-642-16169-3, 978-3-642-16169-8.

Howard, R.A. (1960) Dynamic Programming and Markov
Processes, MIT Press and Wiley, Cambridge, Massachusetts,
USA.

Keidar, M. and Kaminka, G.A. (2012) ‘Robot exploration with fast
Frontier detection: theory and experiments’, Proc. 11th Intl.
Conf. Auton. Agents Multiagent Sys., Vol. 1, pp.113–120.

Lindsay, J. (2011) Nonholonomic Consensus in Cooperative
Robotics: A Game Theoretical Approach, Masters thesis,
Royal Military College of Canada, Kingston, Ontario.

Lu, X. (2012) Multi-Agent Reinforcement Learning in Games,
PhD thesis, Carleton University, Ottawa, Ontario.

Madani, O. (2002) ‘Polynomial value iteration algorithms for
deterministic MDPs’, Proceedings of the Eighteenth
conference on Uncertainty in Artificial Intelligence,
pp.311–318.

Marden, J.R. and Shamma, J.S. (2007) ‘Autonomous vehicle target
assignment: a game theoretical formulation’, ASME Journal
of Dynamic Systems, Measurement, and Control, Vol. 129,
No. 5, pp.584–596.

Marden, J.R., Young, H.P., Arslan, G. and Shamma, J.S. (2009a)
‘Payoff-based dynamics for multiplayer weakly acyclic
games’, SIAM J. Control Optim., Vol. 48, No. 1, pp.373–396.

Marden, J.R., Arslan, G. and Shamma, J.S. (2009b) ‘Cooperative
control and potential games’, Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, Vol. 39, No. 6,
pp.1393–1407.

Philip, G., Givigi, S. and Schwartz, H. (2013) ‘Multi-robot
exploration using potential games’, Proc. IEEE Intl. Conf.
Mechatronics Autom. (ICMA).

Sun, Y., Zhang, J., Wang, S. and Jiao, W. (2012) ‘A real-time
intelligent route planning method in geomagnetic navigation’,
Int. J. Mechatronics and Automation, Vol. 2, No. 2,
pp.125–131.

Wadhams, P. (2012) ‘The use of autonomous underwater
vehicles to map the variability of underice topography’,
Ocean Dynamics, Vol. 62, No. 3, pp.439–447.

Wong, R.H., Xiao, J., Joseph, S.L. and He, S. (2013) ‘A mixed
model data association for simultaneous localisation and
mapping in dynamic environments’, Int. J. Mechatronics and
Automation, Vol. 3, No. 1, pp.1–15.

Wurm, K.M., Stachniss, C. and Burgard, W. (2008) ‘Coordinated
multi-robot exploration using a segmentation of the
environment’, Intelligent Robots and Systems, IROS,
IEEE/RSJ International Conference on, pp.1160–1165.

Young, H.P. (1998) Strategy and Social Structure, Princeton
University Press, Princeton, NJ.

