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Abstract: In this paper, we develop a method of exploring a 2-D environment with  
multiple robots by modelling the problem as a potential game rather than using conventional 
frontier-based dynamic programming algorithms. A potential game is a type of game that results 
in coordinated behaviours amongst players. This is done by enforcing strict rules for each player 
in selecting an action from its action set. As part of this game, we define a potential function for 
the game that is meaningful in terms of achieving the greater objective of exploring a space. 
Furthermore, an objective function is assigned for each player from this potential function. We 
then create an algorithm for the exploration of an obstacle-filled bounded space, and demonstrate 
through simulation how it outperforms an uncoordinated algorithm by reducing the time needed 
to uncover the space. Analysis of the computational complexity of the algorithm will show that 
the algorithm is of O(sRange2), where sRange is the range of a sensor on a robot. We then 
suggest an improvement to the proposed algorithm that is premised on having a robot predict the 
future positions of all other robots. 
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1 Introduction 

The field of robotics has seen much development and 
research in recent years. The problem of exploring an 
unknown environment and generating a map for it remains 
an active area for research and is at the heart of mobile 
robotics. Applications for this problem can be found in 
planetary exploration, reconnaissance, rescue, etc., in which 
complete coverage of a terrain is important (Burgard et al., 
2000). Recently, these applications have been extended to 
include underwater systems in accomplishing various tasks 
using autonomous underwater vehicles (AUVs). This 
includes mapping of mines underwater and the mapping of 
the topography under polar ice caps (Wadhams, 2012). 
Furthermore, applications involving the use of multiple 
robots in achieving cooperative tasks have received a 
considerable amount of attention. A multi-agent system 
consists of a number of intelligent agents that interact with 
other agents in a multi-agent environment. An agent is an 
autonomous entity that observes the environment and takes 
an action to satisfy its objective based on its knowledge  
(Lu, 2012). The major challenge in multiagent systems arise 
from the fact that agents have limited knowledge about the 
status of other agents, except perhaps for a small subset of 
neighbouring agents. Agents are endowed with a utility 
function or reward that depends on their own strategies and 
the strategies of other agents. As such, in situations where 
agents know nothing about the structure of their utility 
functions or how their own utility depends on the actions of 
other agents, the only course of action for them is to observe 
rewards based on experience and ‘optimise’ on a trial and 
error basis (Marden et al., 2009a). Also, as all agents are 
trying simultaneously to optimise their own strategies, even 
in the absence of noise, an agent trying the same strategy 
twice may see different results because of the non-stationary 
nature of the strategies of other agents. The situation is only 
further complicated when the environment is dynamic as in 
Sun et al. (2012), where robots intelligently re-plan new 
routes as the environment changes. 

The exploration and the mapping of an environment is a 
challenge in that the environment is completely unknown 
and there is no pre-existing map for a robot to localise itself 
within. Having multiple robots explore and map out the 
space adds to the complexity because as with any  
multi-agent system the environment becomes dynamic and 
complex (Lu, 2012). Not only do robots have to 
simultaneously explore the environment while avoiding 
obstacles and barriers and locate these features on a map, 
but they also have to coordinate themselves so that their 
numbers can be used to efficiently navigate the space. In 
addition, since each robot does not follow the same path or  
 
 

trajectory to explore the space, they have a different view of 
the environment. These different views of the environment 
have to be merged together to create a unified view or map 
of the environment. Robots that simultaneously explore an 
environment to map it while localising itself within that 
environment is solving what is known as the simultaneous 
localisation and mapping problem (SLAM) or the 
concurrent mapping and localisation (CML) problem 
(Castellanos et al., 2001; Dissanayake et al., 2000). There is 
extensive literature on SLAM, which focus on different 
aspects of SLAM from robot dynamics, environment 
dynamics (e.g., indoor, outdoor, moving or static objects), 
and the framework for combining sensor information  
(e.g., extended Kalman filter, particle filter) to more 
recently utilising different sensors such as cameras rather 
than lasers as seen in Asmar and Shaker (2012). 
Furthermore, methods have been proposed to address 
changing degrees of environmental complexity in real-time 
SLAM applications, which require different models to 
estimate the modes of behaviour. This is done in Wong et 
al. (2013) by having an integrated schema which mixes the 
interactive multiple model (IMM) and joint probabilistic 
data association (JPDA), with the asymmetric assignment 
optimisation algorithm. 

In this paper, we look at using multiple robots for the 
purpose of navigating and exploring a bounded 2-D space 
that consists of obstacles. We are more interested in the 
navigation algorithms employed by robots to fully explore a 
space than the mapping aspect. As such, we assume that 
robots are able to localise themselves within a bounded 
region. Specifically, this paper looks at the application of 
potential games in having multiple robots collaboratively 
explore a space rather than using conventional  
Frontier-detection algorithms. 

1.1 Background 

The goal of exploration is to gain as much new information 
as possible of the environment within bounded time (Keidar 
and Kaminka, 2012). In most applications today that 
involve the use of multiple robots to explore a space, a 
variation of the Frontier-based dynamic programming (DP) 
algorithm introduced in Burgard et al. (2000) is utilised. 
This approach involves choosing appropriate target points 
for the individual robots so that they simultaneously explore 
different regions of the environment. Coordination is 
achieved by simultaneously taking into account the cost of 
reaching a target point and its utility (Burgard et al., 2000). 
Whenever a target point is assigned to a specific robot, the 
utility of the unexplored area visible from this target 
position is reduced for the other robots. In this way,  
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different target locations are assigned to individual robots 
(Burgard et al., 2000). Using this approach every robot is 
required to keep track of the Frontier cells, which is the 
boundary between unexplored and explored cells. To 
determine the cost of reaching the current Frontier cells, the 
optimal path from the current position of the robot to all 
Frontier cells is computed based on a deterministic variant 
of value iteration, a popular DP algorithm (Bellman, 1957; 
Howard, 1960). Thus, the cost of reaching each cell in the 
explored space must be calculated. As it can take several 
iterations to converge to a final cost value for each cell, the 
computational complexity grows as the robots explore more 
space. In fact, the computational complexity is of quadratic 
order of the size of the explored area. The second issue with 
this approach is that much information has to be shared 
among robots to achieve coordination. Among other 
variables that must be shared, each robot has to share with 
other robots its cost of reaching the Frontier cell that is 
closest to it. Furthermore, as part of the coordination 
scheme each player has to consider the decision the other 
players would take at a given time and the respective 
payoffs they would receive before the player can evaluate 
its own payoff for a particular action choice. Thus, 
considering the aforementioned facts about Frontier-based 
DP algorithms, it would be of interest to investigate a 
method that may reduce computational complexity for large 
search spaces; have a robot determine the action it should 
take without having to calculate the decision of other robots; 
and that reduces the information that needs to be shared 
among robots. It is generally known that game theory offers 
advantages in that it leads to decentralised systems and 
reduces computational complexity (Lindsay, 2011). In this 
regard, we come up with a method of exploring a space 
using multiple robots by modelling the problem as a 
potential game. 

Section 2.1 will introduce a well established class of 
non-cooperative games known as the weakly acyclic game, 
which a potential game is a subclass of. It will also 
introduce the simple forward turn controller from Lindsay 
(2011), which is a mechanism for accounting the lateral 
motion experienced by a robot when it performs a turn in a 
non-holonomic environment. We will integrate the simple 
forward turn controller in our solution for exploring a space 
using multiple robots. Section 2.2 will identify a 
shortcoming of weakly acyclic games and briefly discuss 
how potential games addresses this problem. In Section 2.3, 
the potential game itself will be defined. Furthermore, the 
potential function of our game will be defined in terms of 
the goal we are trying to achieve, and from this, the 
objective function of a player will be assigned. In Section 
2.4, an algorithm will be derived based on our game, which 
will then be modified in Section 3 so that bounded spaces 
with obstacles can be explored by robots. The resulting 
algorithm’s computational complexity will be analysed in 
Section 3.1, and finally an improved algorithm that is based 
on predicting the future locations of robots will be discussed 
in Section 4. 

 

1.2 Contributions 

The main contributions of this paper are: 

1 The collaborative mapping of an unknown environment 
with a team of robots using potential games. As part of 
this contribution, we extend the definition of a potential 
game so that it can be modelled under the framework of 
the simple forward turn controller. 

2 We define a potential function and objective function 
for our potential game that is meaningful in terms of 
achieving the greater objective of exploring a space. 
Moreover, update rules for crucial variables in the 
potential game will be presented, and a proof of our 
game satisfying a potential game will be presented. 

3 The derivation of an algorithm from our potential game 
that allows a finite bounded space to be explored by 
multiple robots. 

4 The complexity analysis of our potential game 
algorithm, which will be found to have a lower runtime 
order than Frontier detection algorithms. 

5 The improvement of our initial potential game 
algorithm. The improvement stems from having a robot 
predict the future location of every other robot when it 
decides to turn. New update rules will also be presented 
for key variables as part of this new algorithm. 

2 Weakly acyclic and potential games 

2.1 Weakly acyclic games 

Weakly acyclic games are a class of games that unlike what 
is often encountered in cooperative robotics, provides robust 
group behaviours for robots while only placing gentle 
restrictions on the robots’ selection of actions (Lindsay, 
2011). “Informally, a weakly acyclic game is one where 
natural distributed dynamics, such as better-response 
dynamics, cannot enter inescapable oscillations” (Fabrikant 
et al., 2010). This definition implies that players can start 
with any action and so long as there exists a pure Nash 
equilibrium, the players will reach it by changing their 
actions throughout the course of the game, which will result 
in a corresponding increase in their utility. The following 
definitions have to be established to formalise a weakly 
acyclic game. 

Definition 2.1 (better-response actions): An action i ia A′ ∈  
is a better-response of player i to an action profile (ai, a–i) if 

( ) ( )i i i i i iU a a U a a− −′ − > −  (Fabrikant et al., 2010), where 
a−i refers to the joint actions of all the players except i and 
ui refers to the utility or objective function of player i. 
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Definition 2.2 (better response path): A better response path 
in a game G is a sequence of action profiles a1, ..., ak in that 
for every j ∈ [1, ..., k − 1] two conditions are met: 

1 aj and aj+1 only differ in the action of a single player i 

2 player i at time step j + 1 is a better response action, 
i.e., 1( , ) ( , )j j j j

i i i i i iU a a U a a+
− −>  (Lindsay (2011; 

Fabrikant et al., 2010). 

The second part of Definition 2.2 implies that the utility 
received by the player changing its action at a given time 
must be greater than the utility it would receive if it did not 
change its action. 

Definition 2.3 (weakly acyclic games): A game G is weakly 
acyclic if for any action profile a ∈ A, there exists a better 
response path starting at action a, and ending at some pure 
Nash equilibrium of G (Lindsay, 2011; Fabrikant et al., 
2010), where A represents the set of all joint action vectors 
for all the players in the game. 

A limiting factor in a weakly acyclic game lies in the first 
part of Definition 2.2, which requires that only one player 
changes its action at every time step. Thus if a strict weakly 
acyclic game is used as a solution to solve a cooperative 
robotics problem it would require that a centralised entity 
determine which player will change its action at every time 
step. This is, however, very undesirable because it would 
make it a centralised system. Another option is to let the 
players change their actions at a random specified rate, ε, 
which is known as the exploration rate (Marden et al., 
2009a). It was found in Marden et al. (2009a) that using the 
exploration rate option, it is never guaranteed that a Nash 
equilibrium will be found, but if ε is small and if the time 
step t is significantly large, the Nash equilibrium will be 
found with a high probability. This theory was incorporated 
in Lindsay (2011) knowing that there is a slight probability 
that for a small number of tests, a Nash equilibrium 
consensus point would not be reached. 

The consensus problem, which is the problem of getting 
a group of autonomous robots to meet at a point without 
having a centralised algorithm telling the robots where that 
point is Lindsay (2011), was solved in Marden et al. (2009a) 
and Blume (1996). Although Marden et al. (2009a) and 
Blume (1996) guaranteed results to the consensus problem 
when it is modelled as a weakly acyclic game, it did not 
allow for non-holonomic behaviour. Thus the algorithms 
could not be implemented as controllers on actual robots 
that may for example use a differential drive system. In 
Lindsay (2011), a mechanism known as a simple forward 
turn controller was devised as part of a weakly acyclic game 
to solve the consensus problem in a non-holonomic 
environment. The lateral motion experienced by a robot 
when it turns is accounted for in the simple forward turn 
controller by having the robot change its pose or orientation 
in one time step, and then having it move forward with the 
new pose in the following time step for one time step. Thus, 
when a robot turns it does so over two time steps over a 
sequence of two different actions (a ‘turn action’ and a 

‘move forward’ action). We call this a two-step action 
sequence. This restriction in having to perform a turn over 
two times steps is how the non-holonomic behaviour of a 
robot is modelled. The idea of having a two-step action 
sequence is that it would impact the utility the robot would 
receive over the course of the turn sequence in comparison 
to the utility it would get if a whole turn (which includes a 
robot’s lateral movement and its movement forward) was 
executed in one time step. This will be seen in Section 2.3. 
We will utilise the simple forward turn controller in our 
algorithm. 

The following subsections discuss the workings of the 
simple forward turn controller as seen in Lindsay (2011), 
which includes initialisation and the action-selection policy 
based on the expected utilities. However, we first need to 
establish an action set for each of the robots in a similar 
manner as Lindsay (2011). We will arbitrarily assign each 
robot in our game an action set, Ai, that has without loss of 
generality four actions. This is sufficient for any robot to get 
to any point in a 2-D environment. 

{ }1 2 3 4, , , ,i i i i iA a a a a=  (1) 

where 1
ia  is the action ‘move forward’, 2

ia  ‘turn 90°’, 3
ia  

‘turn 180°’, 4
ia  ‘turn −90°’. 

2.1.1 Initialisation 

At the first time step, t = 0, each player will randomly select 
a pose. In the next time step each of the robots will execute 

1
ia  (‘move forward’). The combination of the ‘move 

forward’ command and the pose of a robot constitutes what 
is known as its baseline action b

ia  (Lindsay, 2011). 

2.1.2 Action selection 

At each time step, each robot is given a choice to play its 
baseline action by moving forward with a probability of  
(1 − ε) or to explore by performing a turn sequence with a 
probability ε. 

2.1.3 Baseline action and turn sequence 

When player i plays the baseline action and does not 
explore, it moves in the direction that the baseline action 
specifies. We denote a two-step action sequence of a player 
i as 1( , ) ,x

i i ia a α∈  where x
i ia A∈  in (1), and the sequence of 

actions is x
ia  followed by 1,ia  the ‘move forward’ 

command. There are four two-step actions sequences that 
are possible for the action set specified in (1). They are 

( ) ( ) ( ) ( ){ }1 1 2 1 3 1 4 1, , , , , , ,i i i i i i i i ia a a a a a a aα =  (2) 

Notice here that 1x
i ia a=  represents the baseline action. 

Figure 1 shows a robot i’s predicted positions in a grid game 
for playing each two-step action sequence in αi. The arrow 
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in the figure indicates the direction the robot is facing. 
Points 2 and 1 are the positions i expects to be at the end of 
time t and at the end of time t + 1 respectively if it is to play 
its baseline action sequence (i.e., 1 1( , )i ia a ). Points 3, 4, and 
5 are the positions i expects to be at the end of time t + 1 if 
it were to perform turn sequences 2 1 3 1( , ),  ( , ),i i i ia a a a  and 

4 1( , )i ia a  respectively. As discussed earlier, the robot’s 
position does not change at the end of time t when it plays 
any of the turn sequences; only its heading changes. This is 
the defining characteristic of the simple forward turn 
controller to account for non-holonomic behaviour. 

Figure 1 A robot’s predicted future positions for each two-step 
action sequence 

 

When player i explores, it randomly selects a two-step 
action sequence from the four possible action sequences and 
predicts its utility if it were to execute the action sequence. 
If the predicted utility of turning in a direction over a  
two-step action sequence is greater than the utility of 
playing the baseline action, the player will turn in that 
direction. This is in accordance with the second part of 
Definition 2.2 in a weakly acyclic game. It will then set the 
baseline action with the heading the player possesses after it 
has completed the turn sequence. This process will repeat 
itself until consensus is reached, which is synonymous with 
reaching the Nash equilibrium in the consensus problem. 

In Lindsay (2011), the utility that the controller receives 
is based on the Euclidean distance between the robots. In 
this paper, however, as our focus is on having a group of 
robots explore a space, the utility will be based on the new 
grid points that have been discovered by the robots. This 
will be detailed in Section 2.3. 

2.2 Convergence of weakly acyclic games 

It was proved in Lindsay (2011) that even if a group of 
players used the simple forward turn controller in a weakly 
acyclic game, there would be a high probability of reaching 
the Nash equilibrium. However, this Nash equilibrium can 
take a long time to reach as it was demonstrated in Section 
3.3.4 of Lindsay (2011). This is primarily because in a 
weakly acyclic game there is no systematic way for 
designing a player’s objective function based on a global 
utility function (Blume, 1996). In other words a player’s 
objective function is not made explicit with respect to the 
greater cooperative goal. That is where a subclass of the 
weakly acyclic game known as the potential game is 

particularly useful. A potential game speeds up the time it 
takes to reach an equilibrium at the expense of enforcing 
strict rules as to which action can be selected. In a potential 
game, every player’s local objective function is ‘aligned’ 
with the global objective function (Lindsay, 2011) so that 
the players’ utility can be easily derived from the global 
utility function. In retrospect, due to a lack of rigid rules a 
player’s utility function is ‘somewhat’ aligned to the game’s 
global utility function in a weakly acyclic game (Lindsay, 
2011). The following section will introduce the potential 
game, but we extend the original definition, which is only 
defined over a single action, to include a two-step action 
sequence. Furthermore, the objective function of each 
player and the global utility function will be defined for our 
game, which serves as a contribution of this paper. 

2.3 Potential game 

A potential game is a game “in which all payoff differences 
to all players can be described by first differences of a 
single real-valued function” (Blume, 1996), or in other 
words, a global utility function. This additional rule of 
having each player’s utility function aligned with the global 
utility function is what sets a potential game apart from a 
weakly acyclic game. An individual player’s contribution to 
a global utility can be determined using the wonderful life 
utility (WLU) (Lindsay, 2011). The WLU is a family of 
utility structures wherein the utility of a player forms a 
marginal contribution made by the player to the global 
utility (Marden and Shamma, 2007). Mathematically, this is 
represented for every player i as 

 ( )  ( ),i iWLU z zφ φ −= −  (3) 

where z represents the collection of all players, z−i 
represents the collection of all players except player i, and 
φ() is the function that represents the global utility of the 
players in its argument (Lindsay, 2011). As it will be shown 
shortly, once a global utility function has been defined, it is 
easy to assign local objective functions for each of the 
players using the WLU so that the resulting game is a 
potential game. In fact, it is known that the WLU leads to a 
potential game with the global utility being the potential 
function (Marden and Shamma, 2007). It also makes a 
player’s utility more learnable by removing unnecessary 
dependencies on other players’ assignment decisions, while 
still keeping the player utilities aligned with the global 
utility (Marden and Shamma, 2007). This can be seen in 
Marden and Shamma (2007), which uses the WLU to solve 
an autonomous vehicle-target assignment problem where a 
group of vehicles are expected to optimally assign 
themselves to a set of targets. In Marden and  
Shamma (2007), the vehicles are assumed to be rational 
self-interested decision makers that want to optimise their 
utility. The utility function of each vehicle was set using the 
WLU so that the objectives of the vehicles are localised to 
each vehicle yet aligned with a global utility function. This 
allowed each vehicle to make their own individual decisions 
without any regard for the decisions of other vehicles. This 
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aspect of the WLU that allows an agent to make decisions 
without considering other’s decisions is highly beneficial 
over other methods such as reinforcement learning 
techniques and Frontier-based DP methods, which require 
each agent to know the actions taken by other agents. 

Before we set up our potential game, we need to create a 
grid where the game will be played. The grid represents the 
space which the robots will explore. If we divide the space 
equally so that there is Z horizontal divisions and Z vertical 
divisions, we will have a Z × Z grid. A grid point is the 
intersection of a horizontal line and a vertical line. They 
serve as reference points in calculating utilities as it will be 
seen shortly. Furthermore, as before the group of players or 
robots in the potential game is represented by N = {1, 2, 3, 
..., n} where n is the number of players. In this setting, each 
player i ∈ N is assigned a two-step action sequence set αi 
and a local objective function 1(( , ),( )) :  x

i i i i iU a a a a α− −′ ′′− →Z  

where ii N
α α

∈
=∏  is the set of joint two-step action 

sequences. Before we define the function 1(( , ),( )),x
i i i i iU a a a a− −′ ′′−  

however, we first define an intermediary objective function 
for a player for a single time step as opposed to two time 
steps in a two-step action sequence to make the definition 
easier to follow. In a similar manner as Lindsay (2011) we 
assign a player i’s objective function for a single time step 
at a time t for a given action .x

i ia A∈ . Note that t is an 
instance of time in the discrete time domain. 

( ) [ ]( ) ( 1), ,
x
ia

i i i
pt gridpts

U pos t f pos t pt
∈

= +∑  (4) 

where 

[ ]
1, if  ( )

( 1), 1, if  1  or  2 is true
0, otherwise

i

i

pt discPts t
f pos t pt C C

∈⎧
⎪+ = ⎨
⎪
⎩

 

C1 evaluates to true if 

  ( )    and    ( ),i ipt loc t sRange pt discP ts t−− ≤ ∉  

C2 evaluates to true if 

  ( 1)    and    ( ),i ipt loc t sRange pt discP ts t−− + ≤ ∉  

and gridpts is the set of 2-D Cartesian coordinates of all the 
grid points. For example, if we have a square grid of 3 × 3 
points we would have 32 = 9 grid points, and if the grid’s 
bottom-left corner is situated at the origin (0, 0), we have 
gridpts = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), ...}. The 
term loci(t) is the 2-D Cartesian coordinates of player i and 
loci(t) ∈ gridpts. In Figure 2 for example, loci(t) = (4, 1) for 
Player 1. The term posei(t) represents the pose of player i at 
time t and is composed of the unit vectors ˆ {1,0}x =  and 
ˆ {1,0}y =  of a 2-D Cartesian space. Since a robot can be 

facing one of four directions in our game according  
to the action set defined in (1), we effectively have 

ˆ ˆ ˆ ˆ( ) { , , , }.ipose t x y x y∈ − −  In Figure 2 for example,  

posei(t) = (1, 0) for Player 1. The term posi(t) is a vector that 
consists of loci(t) and posei(t) so that posi(t) = (loci(t), 
posei(t)). For example, in Figure 2, posi(t) = (4, 1, 1,0) for 
Player 1. The term posi(t + 1) is the predicted location and 
pose of player i at the next time step (t + 1) after  
taking an action x

ia  at time t so that posi(t + 1) = (loci(t + 1),  
posei(t + 1)). The term discPtsi(t) is the set of Cartesian 
coordinates of the grid points that have been discovered by i 
up until time t so that discPtsi(t) ⋇  gridpts. The term 
discPts−i(t) is the set of Cartesian coordinates of the grid 
points that have been discovered by all players except i up 
until time t so that discPts−i(t) ⋇  gridpts. Finally, the term 
sRange represents the range of the sensor, which we assume 
has 360° of coverage in our game, and has units that 
represent the number of grid points that can be detected 
vertically or horizontally from the location of the sensor 
assuming the grid is a square. Note that posi(t + 1) is present 
in the argument of function f() because loci(t + 1), which is 
a component of posi(t + 1), is used in evaluating C2. The 
conditions C1 and C2 exist to ensure that points in gridpts 
that have the prospect of increasing player i’s utility have 
not already been discovered by other players and that it falls 
within the sensor scan of player i at time step t or t + 1 
respectively. 

Figure 2 6 × 6 grid game with two robots 

 

At the beginning of a time step posi(t) is updated. Then 
discPtsi(t) and discPts−i(t) are updated to include new grid 
points that have been discovered so that 

[ ]{ }( ) ( ),  1 ,i idiscPts t pt gridpts f pos t pt= ∈ =  (5) 

( )

( ),  1 ,
i

i

j
j N

discPts t

pt gridpts f pos t pt

−

∈

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟⎡ ⎤= ∈ ≥⎨ ⎬⎣ ⎦⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑  (6) 

where Ni = {x | x is a player in the game and x ≠ i} or  
Ni = N\{i}. 

Note that f() in (5) and (6) is a function of time t rather 
than time t + 1 as it was defined in (4). This signifies that 
new grid points are added to the set discPtsi(t) and 
discPts−i(t) only if they have actually been discovered rather 
than just predicted in the previous time step when (4) was 
evaluated. There is a greater than or equal to symbol present 
in (6) because there can be times when two or more robots 
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have overlapping sensor coverage, which can lead to a grid 
point being discovered by more than one robot. More will 
be said about this in Section 2.4. Finally, the predicted 
utility for each two-step action sequence 1( , )x

i ia a  is 
calculated. This is done as opposed to just predicting the 
utility of one action because if we assume a player has a 
360° view or sensor coverage, the turn action alone at time t 
will not change its utility at time t + 1. This is because the 
robot will remain in the exact same position at the end of 
the time step t as seen in Figure 1. It has to move forward at 
time t + 1 if its predicted utility is to increase. This can be 
seen in the definition of the objective function of a player in 
(4), where only the discovery of new grid points at a time t 
+ 1 causes the objective function ( ( ))

x
ia

i iU pos t  to change 

from ( ( 1)).
x
ia

i iU pos t −  Hence, we now define the objective 
function for a player i for a two-step action sequence based 
on its objective function for a single time step. Ui 

( ) ( )( )

[ ]

1

1, ,

( ( 1))

( 2),  ,

i

x
i i i i i

a
i i

i
pt gridpts

U a a a a

U pos t

f pos t pt

− −

∈

′ ′′−

= +

= +∑
 (7) 

where as previously mentioned 
1(( , ), ( )) :  x

i i i i iU a a a a α− −′ ′′− → Z  and .ii N
α α

∈
=∏  Based 

on the definition of f[posi(t + 1), pt] in (4), we evaluate 
f[posi(t + 2), pt] to be the following. 

[ ]
1, if  ( 1)

( 2), 1, if  1  or  2 is true
0, otherwise

i

i

pt discPts t
f pos t pt C C

∈ +⎧
⎪+ = ⎨
⎪
⎩

 

C1 evaluates to true if 

  ( 1)    and    ( 1),i ipt loc t sRange pt discP ts t−− + ≤ ∉ +  

C2 evaluates to true if 

  ( 2)    and   ( 1),i ipt loc t sRange pt discPts t−− + ≤ ∉ +  

The left-hand side of (7) represents the predicted utility of a 
two-step action sequence 1( , )x

i i ia a α∈  for a player i at time 
t amidst the sequence of actions taken by the other players 
during the two-step action sequence, denoted here by 
( ).i ia a− −′ ′′−  In the right-hand side of the equation, posi(t + 1) 
represents the position and pose of player i after it has 
executed the first action x

ia  in the two-step action sequence 
1( , ).x

i ia a  Therefore, the right-hand side of the equation 
represents player i’s predicted utility at the end of the 
second time step t + 1 after it has executed the second action 
of the two-step action sequence, which by the definition of a 
player’s objective function in (4) is inclusive of the utility it 
would have had in the previous time step t. Thus, 
effectively, 1(( , ), ( ))x

i i i i iU a a a a− −′ ′′−  is the utility player i 
predicts to have by the end of the time step t + 1 at time t by 

following the two-step action sequence 1( , ).x
i ia a  We note 

two important points here. The first is that player i’s 
predicted utility of playing the action sequence 1( , )x

i ia a  is 
independent of the sequence of actions ( )i ia a− −′ ′′−  played 
by other players because player i’s objective function as it is 
defined in (4) is independent of the actions taken by the 
other players at time t. The position and the pose of the 
other players are not predicted nor utilised in any way. 
Secondly, instead of using discPts−i(t + 1) for evaluating the  
right-hand side of (7) as it would be expected based on (4), 
discPts−i(t) is used. This is because the prediction is done 
over two time steps and at time t player i cannot know 
discPts−i(t + 1). This can only be determined in the next 
time step after every player has taken an action and has 
communicated the set of grid points it has discovered to the 
rest of the players. Thus, it uses the latest knowledge it has, 
which is discPts−i(t). Another way of stating this is that we 
assume discPts−i(t + 1) = discPts−i(t). Once the utilities of 
every two-step action sequence have been predicted, an 
action is taken based on an action-policy that will be 
presented in Section 2.4. 

We define the potential function of the game as 

( )( ) ( ) ,
x
ia

i i
i N

t U pos tφ
∈

=∑  (8) 

Given the potential function in (8), we can see as in Marden 
et al. (2009b) that with the assignment of the objective 
function in (4) each player does not have to observe the 
decision of all players to evaluate its payoff for a particular 
action choice. This is because if we observe the definition of 
the potential function and its relation to the objective 
function of each player in (4), we see that it satisfies the 
WLU; and as stated in the beginning of this section, the 
WLU removes unnecessary dependencies of a player’s 
decisions on other players’ assignment decisions. We define 
a corresponding potential function φ(γ) : α → Z for (8) that 

is a function of the two-step action sequences of all n 
players rather than time t. 

( ) ( )( )1( ) , ,x
i i i i i

i N

U a a a aφ γ − −
∈

′ ′′= −∑  (9) 

where γ ∈ α. By using the WLU formulation in (3), (9) can 
be written as 

( ) ( )( )
( ) ( )( )
1

1

( ) , ,

          , , .

x
i i i i i

x
j j j j j

i N

U a a a a

U a a a a

φ γ − −

− −
∈

′ ′′= −

′ ′′+ −∑
 (10) 

We now formally define a potential game as it is defined in 
Marden et al. (2009b), but we extend the definition so that it 
is for a two-step action sequence rather than a single action. 

Definition 2.4 (potential games): Player action sets 1{ } ,n
i iα =  

together with player objective functions 1{ : } ,n
i iU α =→ Z  
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constitute a potential game if, for some potential function  
φ : α → Z, 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 1 1 1 1

1 1 1 1 1 1

, , , , , ,

, , , , , ,

i i i i i i i i i i

i i i i i i i i

U a a a a U a a a a

a a a a a a a aφ φ

− − − −

− − − −

′ ′′−

′ ′′= −
 (11) 

for every player i ∈ N, for every 1( , ) ,i i ia a α′ ∈  and for every 
1( , ) .i i ia a α′′ ∈  

Notice in (11) that the second argument of the objective 
function of player i and the potential function 1 1( , )i ia a− −  
implying that all players must ‘move forward’ for two time 
steps or equivalently play their baseline actions while i is 
playing its two-step action sequence. This is as per the test 
for a potential game as seen in Marden et al. (2009b), which 
requires that all players other than player i continue to play 
their previous action. Since player i is the one changing its 
action from its baseline action, none of the other players are 
allowed to change their actions from their respective 
baseline actions, and thus, must continue to play it. This is 
also consistent with the first part of Definition 2.2 of a 
weakly acyclic game (Section 2.1), which a potential game 
is a subclass of. 

Claim 1: Player objective functions (7) constitute a potential 
game with potential function (9). 

Proof: A similar approach as Marden et al. (2009b) will be 
used to prove the claim. We assume a player i is 
contemplating at time t whether to turn in one direction by 
performing the action sequence 1( , )i ia a′  or to turn in another 

direction by performing 1( , )i ia a′′  so that .i ia a′ ′′≠  The change 
in the objective function of player i by switching from the 
action sequence 1( , )i ia a′′  to the action sequence 1( , ),i ia a′  

provided that all other players collectively play 1 1( , ),i ia a− −  

( ) ( )( ) ( ) ( )( )1 1 1 1 1 1, , , , , ,i i i i i i i i i i iU U a a a a U a a a a− − − −′ ′′Δ = −  

The first difference equation for the potential function of the 
game for the two different action sequences of player i is 

( ) ( )( ) ( ) ( )( )1 1 1 1 1 1, , , , , ,i i i i i i i ia a a a a a a aφ φ φ− − − −′ ′′Δ = −  

Substituting (10) into the above difference equation, we get 

( ) ( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( )

1 1 1

1 1 1

1 1 1

1 1 1
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        , , ,

         , , ,
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i i i i i

j i i i i
j N

i i i i i

j i i i i
j N

U a a a a

U a a a a

U a a a a

U a a a a

φ − −

− −
∈

− −

− −
∈
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′+

⎡
′′− ⎢
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⎤

′′ ⎥+
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∑

∑

 (12) 

As previously mentioned, a player’s predicted utility for a 
two-step action is independent of the sequence of actions 
played by the others. Due to this and the fact that every 
player j has to play its baseline action for two time steps 
while player i completes its turn sequence, we have 

( ) ( )( )
( ) ( )( )
( ) ( )( )

1 1 1

1 1

1 1 1

, , ,

, , ,

, , ,

j i i i i

x y
j j j j j

j i i i i

U a a a a

U a a a a

U a a a a

− −

− −

− −

′

=

′′=

 (13) 

Now, we substitute (13) into (12) to get 

iU φΔ = Δ  � 

Considering that the greater objective of this paper is to get 
a group of robots to explore a space as quickly as possible, a 
solution that organises these robots to achieve this can be 
thought of as projecting cooperative behaviour. After all, as 
mentioned earlier, the goal of exploration is to gain as much 
new information as possible of the environment within 
bounded time. Therefore, if a robot follows the tracks of 
another robot as part of a solution, which is to say that it 
moves through already explored space, the solution would 
not be portraying cooperative behaviour. This is because in 
the time that the robot spend moving through explored 
spaces, it could have been moving in a different path and 
exploring previously uncovered spaces, and possibly, 
reduce the overall time needed for exploration. Thus, a 
solution that engages robots to take different paths or that 
minimises overlaps can be thought of as instilling 
cooperative behaviour. Now, in this regard if we consider 
the objective function of a player, it is evident that no robot 
has anything to gain from following the path of another 
robot since it does not increase its utility in any way. Robots 
seek to follow different paths from one another, and thus, 
our objective function encourages cooperative behaviour in 
terms of achieving the greater objective. 

2.4 Potential game setup 

Based on (7), the goal of each robot is to maximise its utility 
by discovering new grid points. To do this each robot i has 
four action sequences at its disposal from the set αi defined 
in Section 2.1. However, each robot has restrictions on the 
action it can use from one time step to the next if the team 
of robots is to reach a Nash equilibrium. Since a potential 
game is a subclass of the weakly acyclic game with 
additional restrictions, the first part of Definition 2.2 of a 
weakly acyclic game (Section 2.1) applies to it too (Marden 
et al., 2009b; Young, 1998; Blume, 1993). However, as 
noted in Section 2.1, it is not practical to have a centralised 
entity to determine which robot will change its action at 
every time step. Hence, we allow each robot to change their 
actions at a small specified rate, ε, knowing that there is a 
small probability that the Nash equilibrium will not be 
reached. 
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Algorithm 1 Potential game exploration algorithm 

Initialise # of time steps, sRange, and ε 

for t ← 1,# of time steps do 
 for all player i ∈ N do 
  Update posi(t), discPtsi(t), and discPts−i(t) 
  if player should explore based on ε then 

   Compute Ui, 1( , )x
i i ia a α∀ ∈  

   Play 1( , )x
i ia a  based on asfi 

  else 
   Play 1 1( , )i ia a  

  end if 
 end for 
end for 

Now, by using the simple forward turn controller discussed 
in Section 2.1, if a robot has the option to change its action 
at time t based on the exploration rate ε, it will predict the 
utility it would receive by performing each of the four  
two-step actions as discussed in Section 2.1. This is done 
for the baseline action as well where 1 1 in  ( , ).x x

i i i ia a a a=  
The action selection function, asfi, then compares the utility 
for each two-step action sequence and selects the action 
sequence that would give it the most amount of utility. 

( )
( ) ( )( )

1

1

,
arg max , , ,

x
i i i

x
i i i i i i

a a
asf U a a a a

α
− −

∈

′ ′′=  (14) 

Any ties for the predicted utility are broken arbitrarily 
unless the two-step action sequence involving the baseline 
action (i.e., 1( , )i ia a′ ) happens to have the same utility as the 
maximum utility in which case the baseline action is 
performed. This is in accordance with the second part of 
Definition 2.2 in Section 2.1. This means that there is a very 
low probability that at a time t a robot i will change its 
action because firstly ε is small, and secondly, even if the 
robot has the option to change its action with a probability 
of 1 − ε, the action that it is changing to must provide it 
with higher utility than the baseline action. If at time t a 
robot is not allowed to change its action based on ε, it has to 
play its baseline action. Algorithm 1 summarises the 
algorithm for exploration. Note that Ui is short for 

1(( , ), ( ))x
i i i i iU a a a a− −′ ′′−  in Algorithm 1, and the action Play 

1( , )x
i ia a  based on asfi takes into account the tiebreaking rule 

just discussed. 
At a time t a robot i only knows where it is and all the 

grid points it has discovered. It then queries all the other 
robots for their position (locj(t), j ∈ Ni) and all the grid 
points they have discovered to calculate discPts−i(t). Recall 
that discPts−i(t) is the set of Cartesian coordinates of the 
grid points that have been discovered by all players except i 
up until time t. As mentioned in Section 2.3 it is not 

necessary that at time t all the grid points discovered by a 
robot i were exclusively discovered by it. This is because 
there can be times when two or more robots have 
overlapping sensor coverage, which can lead to a grid point 
being discovered by more than one robot. However, due to 
the fact that a robot mostly moves straight (since ε  1), in 
a large environment they quickly spread apart if they all 
begin in relatively the same location with different 
orientations so that overlapping sensor coverages quickly 
diminish. Furthermore, recall from Section 2.3 that our 
potential game leads to cooperative behaviour in the sense 
that robots seek to follow different paths from one another 
when exploring. This is because based on the objective 
function defined in (7), no robot has anything to gain from 
following another robot’s path or running into another 
robot’s path. In comparison, if robots were completely 
uncoordinated and could perform any action whenever they 
wanted (i.e., ε = 1), they would have much more frequent 
run-ins or overlaps with other robots over uncovering the 
same grid points so that there would be a higher probability 
that robots would explore the same areas. This would make 
the exploration process inefficient. This is how coordination 
is achieved in Algorithm 1 over an uncoordinated algorithm. 
Section 3 will present results that show how a variant of 
Algorithm 1 outperforms an uncoordinated algorithm in the 
exploration of a finite space. 

3 Modified potential game algorithm 

If there are obstacles in the environment, we note a very 
important limitation of Algorithm 1. As there is a preference 
(probability 1 − ε) of a robot to keep using its baseline 
action (i.e., ‘move forward’ with its current pose), it is very 
likely that it will run into obstacles or walls. Thus, 
Algorithm 1 must be modified. A simple solution to this 
problem would be for a robot to change its heading when it 
encounters an obstacle in front of it even if at that particular 
moment it is not allowed to perform a turn sequence as 
dictated by its exploration policy ε. The direction the robot 
would turn would be the direction that results in the highest 
utility. This is shown in Algorithm 2. We can immediately 
perceive the repercussions of this modification as the 
obstacles would cause robots to change actions more often 
than ε. In this respect, the presence of obstacles can be 
considered to have the equivalent effect of increasing ε from 
the value it was initialised to, which as discussed in Section 
2.3 would decrease the probability that the Nash equilibrium 
will be reached. However, reaching a Nash equilibrium is 
not our goal here. Our goal is to fully explore a finite space 
in as little time as possible. In our previous paper, we 
performed a simulation to compare between the  
modified potential game algorithm (Algorithm 2) and an 
uncoordinated algorithm and we demonstrated that the 
coordination introduced in the algorithm reduces 
exploration time compared to a completely uncoordinated 
exploration algorithm. For the same setup used in Philip et 
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al. (2013) consisting of three obstacles and three robots and 
ε = 0.3, the improvement in exploration time as sRange 
increases is shown in Figure 3. Though exploration time 
improves with increasing sRange values, it is evident that 
improvements are less profound as sRange increases. 

Algorithm 2 Modified potential game algorithm 

Initialise # of time steps, sRange, and ε 

for t ← 1,# of time steps do 
 for all player i ∈ N do 
  Update posi(t), discPtsi(t), and discPts−i(t) 
  if player should turn because of obstacle then 
   Compute 1 1 1( , ) ( , )x

i i i ia a a a∀ ≠  

   Play 1( , )x
i ia a  that maximises Ui 

  else if player should explore based on ε then 

   Compute Ui, 1( , )x
i i ia a α∀ ∈  

   Play 1( , )x
i ia a  based on asfi 

  else 
   Play 1 1( , )i ia a  

  end if 
 end for 
end for 

3.1 Complexity of Algorithm 2 

In this section, we analyse Algorithm 2 to determine its 
computational complexity. Before we do so, however, we 

investigate the computational complexity of Frontier-based 
exploration algorithms. This gives us a base upon which we 
can compare and comment on the performance of our 
algorithm. 

As mentioned in Section 1.1, most approaches today use 
Frontier-based exploration for having a space explored 
using multiple robots. In Frontier-based exploration, robots 
explore by repeatedly computing and moving towards 
Frontiers, which is the boundary that separates known 
regions from unknown regions (Keidar and Kaminka, 
2012). Computing the cost of reaching Frontiers or Frontier 
detection as it is referred to, involves the use of a 
deterministic variant of value iteration, a popular DP 
algorithm (Bellman, 1957; Howard, 1960). In Madani 
(2002), it was shown that for deterministic Markov decision 
problems (DMDP), basic value iteration takes Θ(Z2) 
iterations, where Z denotes the number of states. Thus, it 
cannot do better than an O(Z2) algorithm in terms of 
execution time if we just consider the upper bound of its 
growth rate. In Frontier detection algorithms, the states 
correspond to the cells in the explored area. Considering 
that Frontier detection algorithms processes all the states 
every time it performs Frontier detection, it can be a time 
consuming process which slows down exploration (Keidar 
et al., 2012). In fact, even on powerful computers, state-of-
the-art Frontier detection algorithms can take a number of 
seconds to run for every execution of the algorithm, and if a 
large region is explored, the robot actually has to wait in its 
spot until the Frontier detection algorithm terminates 
(Keidar et al., 2012). To make matters worse, there are 
Frontier-based algorithms such as the algorithm presented in 
Wurm et al. (2008) that suggest calling Frontier detection 
every time-step of the coordination algorithm. 

Figure 3 Comparison of exploration time of Algorithm 2 for a sRange of 2, 3, and 4 grid points, and ε = 0.3 
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There are two important points we note about Algorithm 2 
before we analyse its runtime. The first point is that 
Algorithm 2 is a distributed algorithm. Hence, when we 
make a statement about its computational complexity, we 
are referring to an instance of its execution on one of the 
robots. Secondly, as a robot does not have to make a 
decision when it is forced to play its baseline action, it does 
not have to compute anything. In fact, it only seldom needs 
to calculate values. One occasion that it needs to compute 
values is when it is allowed to update its action as dictated 
by ε. The other occasion when it needs to compute values is 
when it needs to avoid an obstacle, and it needs to decide 
which direction to turn towards. As ε  1 and if we assume 
an environment with a large open space with few obstacles 
and few outer walls in comparison to the area of the overall 
space, robots would be moving straight most of the time 
with respect to the total time needed for exploration. They 
would not need to make many decisions resulting in a 
drastic reduction in the number of computations needed. 
Considering the aforementioned points, it is only of interest 
to us to analyse the computational complexity of Algorithm 
2 for a robot i that is allowed to update its action at time t, 
and we proceed bearing this in mind. 

As discussed earlier, the argmax operator in the function 
asfi [equation (14)] selects the two-step action sequence 
from the two-step action sequence set αi that would give i 
the most amount of utility or that maximises objective 
function (7). Based on the actions we defined in the action 
set Ai and the resulting two-step action sequence set αi that 
was derived from it, player i has to compute the utility it 
expects to receive from performing each of the four two-
step action sequences to make a decision. It namely has to 
compute the utility it would receive by playing 

1 1 2 1 3 1( , ),  ( , ),  ( , ),i i i i i ia a a a a a  and 4 1( , ).i ia a  Figure 4 shows 
player i contemplating each of the two-step action 
sequences at time t in a Z × Z grid. The robot is the black 
box and the arrow on top of it represents the direction it is 
facing. The two solid dots ahead of the robot represents its 
predicted positions if it were to play its baseline action for 
the following two time steps (i.e., 1 1( , )i ia a ). The solid dots 
to the left, bottom, and right of the robot represents its 
predicted positions at the end of the second time step after 
playing 2 1 3 1( , ),  ( , ),i i i ia a a a  and 4 1( , )i ia a  respectively. Recall 
from Section 2.1.3 that under the framework of the simple 
forward turn controller, when a robot performs a two-step 
action sequence that involves a turn, the robot remains in 
the same position for the first time step. Thus, over the 
course of a two-step action sequence the position would 
only change once, and this is why there is only one dot 
present to the left, bottom, and right of the robot in Figure 4. 
The circles represent the 360° coverage of the sensor from 
the future positions, and the range of the sensor, sRange, has 
been set to 2 grid points. In the objective function (7) for a 
player, the function f[posi(t + 2), pt] is evaluated for every 
point pt ∈ gridpts. This leads to Z2 iterations of f[posi(t + 2), 
pt] as the grid is Z × Z in dimension. Evaluating  

f[posi(t + 2), pt] for a particular point pt is not intensive 
computationally because the majority of the function 
involves verifying whether or not pt belongs to the set 
discPtsi(t) or discPts−i(t). This is as simple as maintaining a 
lookup table in memory in the form of an array and having a 
simple array indexing operation. Since retrieving a value 
from memory is very fast, cross-checking pt with already 
discovered points is an inexpensive operation. In the clauses 
C1 and C2 in (7), the operations to determine whether  
pt ∉ discPts−i(t) must be executed first because if it does not 
hold true, the magnitude function to determine if  
||pt − loci(t + 1)|| ≤ sRange is true or if ||pt − loci(t + 2)||  
≤ sRange is true, does not need to be evaluated. Even if the 
magnitude function is required to be evaluated, the 
computation needed for it does not have any affect on the 
runtime order for iterating through all the points. Since there 
are four two-step actions sequences to be considered, 4Z2 
iterations are needed, which is of order Z2. Thus, the 
runtime order would be O(Z2). 

Figure 4 Player i considering each two-step action sequence 

 

If the function f[posi(t + 2), pt] did not have to be evaluated 
for every point in the grid, the complexity of computing the 
objective function (7) for a player i for an action sequence 

1( , )x
i ia a  could be reduced. Since the points that have 

already been discovered by player i, namely discPtsi(t), are 
present in the lookup table, the function f[posi(t + 2), pt] 
does not have to be evaluated for them to determine their 
contribution to the overall utility of player i. Instead, a very 
simple operation can be used to query the number of 
elements in discPtsi(t), which would indicate the utility of 
player i prior to time t. The problem then becomes to iterate 
through only a subset of points in the grid that have the 
potential of increasing player i’s utility in the following 
two-step action sequence. It would be necessary to at least 
scan through the points that would be in range of the sensor 
in the future positions. Since the sensor has a circular 
coverage, a solution would be to enclose the points that 
would be covered by the sensor’s range using a square, and 
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scan through all the points that would fall under the square. 
This is illustrated in Figure 4. Squares 3, 4, and 5 enclose 
the points that need to be scanned to determine the utility of 
turning right, left, and back respectively. Squares 1 and 2 
enclose the points that need to be scanned to determine the 
utility of playing the current baseline action. There are two 
squares because there are two future positions associated 
with playing the baseline action. The squares associated 
with the baseline action have a solid boundary, whereas the 
squares associated with any of the turn actions have dotted 
boundary lines. Figure 5 shows a detailed view of how a 
square encloses a sensor’s radial coverage so that in 
scanning all the grid points inside the square (denoted by 
the bold line), all the points that would be in range of the 
sensor are also scanned. The solid dot indicates a future 
position of the robot and the hollow dot indicates a point 
that needs to be scanned. We say that a point pt is ‘bounded 
at a location loci(t)’ if at time t, pt is inside the square that 
encloses the circle created by the sensor centred at loci(t). 
Since the radius of the sensor’s coverage is sRange, a side 
of the square is 2 ∗ sRange in dimension. We note that one 
point that certainly does not need to be scanned or that 
cannot contribute to increasing player i’s utility in the  
two-step actions sequence is the point where the robot 
would be situated (i.e., the solid dot in Figure 5). This point 
would already have been accounted for in the previous time 
step, and is based on the assumption that sRange ≥ 1 grid 
point; that is, the range of the sensor is large enough to at 
least detect adjacent points in the grid. Thus, the number of 
points that would need to be iterated through or scanned in a 
square is 

2

2

     

 (2 | |  1) 1

 4 | |   4 | |

points to be scanned in square

sRange

sRange sRange

= + −

= +

 (15) 

Figure 5 Example of a square enclosing sensor’s radial coverage 

 

We note that points to be scanned in square is a O(sRange2) 
function of sRange. It cannot be of order sRange because 
for sufficiently large values of sRange, points to be scanned 
in square would not be bounded by M ∗ |sRange|, where M 
is a constant factor. 

We need to restate the objective function in (7) in a 
different way now because presently the objective function 
iterates through all the points in the grid. Before we do so, 
however, we need to define the following set. 

 {    |  3 is },squareSet pt gridpts C true= ∈  (16) 

where, 

( )

( )

1 1

1 1

if    in ,  and  is 
,

bounded at ( 1) or ( 2)
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,
bounded at ( 2)

, otherwise

x x
i i i i

i i

x x
i i i i

i
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C a a a a pt

true
loc t

false

⎧ =
⎪
⎪ + +
⎪

= ⎨ ≠
⎪
⎪ +
⎪
⎩

 

If the first statement in C3 evaluates to true, then player i 
must be playing its current baseline action for the two-step 
action sequence. If the second statement in C3 evaluates to 
true, then player i must be making a turn. Given this, we 
now restate 

1
( ( 1))ia

i iU pos t +  in terms of a function  
h[posi(t + 2), pt]. 

( )
1

( 1)

( ) [ ( 2),  ],

ia
i i

i i
pt squareSet

U pos t

discPts t h pos t pt
∈

+

= + +∑  (17) 

where 

[ ] 1,  if 4 or 5 is 
(   2),  

0,  otherwisei
C C true

h pos t pt ⎧
+ = ⎨

⎩
 

C4 evaluates to true if 

 ( 1)    and   ( 1)
                                 and    ( ),

i i

i

pt loc t sRange pt discPts t
pt discPts t

−− + ≤ ∉ +

∉
 

C5 evaluates to true if 

 ( 2)    and    ( 1)
                                  and    ( ),

i i

i

pt loc t sRange pt discPts t
pt discPts t

−− + ≤ ∉ +

∉
 

and |discPtsi(t)| represents the cardinality of discPtsi(t). We 
note that the only difference between C4 and C1, and C5 
and C2, is the inclusion of the clause pt ∉ discPtsi(t). It is 
present to ensure that h[posi(t + 2), pt] only equates to 1 for 
a point pt if pt is expected to be discovered by i  
in the following two-step action sequence. This prevents 
double-counting previously discovered points. As before, it 
is assumed that discPts−i(t + 1) = discPts−i(t), and, 

( ) ( )( ) ( )
11, , ( 1) .iax

i i i i i i iU a a a a U pos t− −′ ′′− = +  
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Considering that (17) has to be computed for four two-step 
actions sequences, a total of 20(|sRange|2 + |sRange|) 
iterations are needed. This is calculated using (15) as 
follows. 

( )
( )

2

2

2

   5       

 5 (2 | |  1)   1

 5 4 | |  4 | |

 20 | |  | |

total iterations points to be scanned in square

sRange

sRange sRange

sRange sRange

= ∗

⎡ ⎤= + −⎣ ⎦

= +

= +

 

The coefficient 5 above is present rather than 4 because  
as mentioned earlier there are two future positions 
associated with playing the baseline action, and so, two 
squares are required. From the definition of the big O 
notation, we have 

( )( )
( )

2

2

   20 | |  | |

    

total iterations O sRange sRange

total iterations O sRange

∈ +

⇒ ∈
 

4 Improved exploration algorithm 

This section discusses an improvement to Algorithm 2 in 
terms of the time taken to explore a space. The 
improvement stems from each robot predicting the location 
of every other robot when deciding on a direction to turn. 
This allows a robot to change its heading to avoid exploring 
the same areas as other robots, and as a result achieve a 
greater degree of coordination. The basis of the prediction is 
that when a robot i is allowed to perform a turn sequence 
based on its exploration rate ε, it can be reasonably sure that 
every other robot will play their baseline action or move 
forward for the two time steps required to complete i’s turn. 
In fact, the prediction becomes more accurate the smaller ε 
is set to because robots will turn less often, and thus when a 
robot is allowed to turn it can be reasonably sure that other 
robots will not turn. A robot that is deciding to turn needs to 
know the heading and the location of every other robot  
(i.e., pos−i(t)) in the time step it is deciding on turning on so 
that it can predict the locations of all the robots in the two 
time steps it will take to perform its turn (i.e., ˆ ( 1)ipos t− +  
and ˆ ( 2)ipos t− + ). Taking into account the aforementioned, 
we now redefine the objective function of a player i in (7) as 

( ) ( )( )
( )

[ ]

1
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[ ]ˆ( 2), ( 2),

1,  if   ( )
1,  if 1 is 
1,  if 2 is 
0,  otherwise

i i

i

f pos t pos t pt

pt discPts t
C true
C true

−+ +

∈⎧
⎪
⎪= ⎨
⎪
⎪⎩

 

Condition C1 evaluates to true if 

1 ||   (   1) ||  and
ˆ( )  and || (   1) ||

ˆ and || (   2) || .

i

i i

i

C pt loc t sRange
pt discPts t pt loc t sRange
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− −

−
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Condition C2 is the same as C1, except the first clause of 
the condition is 

ˆ|| (   2) ||  .ipt loc t sRange− + ;  

In comparison to (7), equation (18) uses 1 1( , )i ia a− −  rather 
than ( )i ia a− −′ ′′−  signifying that the objective function is 
calculated under the assumption that other robots move 
forward in the following two time steps. The clause 

ˆ ˆ|| (   1) ||  or || (   2) || .i ipt loc t sRange pt loc t sRange− −− + − +; ;
 evaluate to true if pt is not in range of any of the robots 
aside from robot i in the respective time step. It can be seen 
that in maximising (18), a robot i avoids heading in a 
direction that it predicts other robots are going to move 
towards. 

Equation (18) is the objective function for any robot i 
that is able to change its action at a time t. For every other 
robot that is not allowed to change its action at time t from 
its baseline action (i.e., moving forward) as dictated by ε, its 
predicted utility for the two-step action sequence that 
follows is calculated using (7). 

We need to introduce new rules for updating discPtsi(t) 
and ˆ ( )idiscPts t−  that is consistent with the objective 
function (18). As with the previous objective function (7), at 
the beginning of a time step posi(t) is updated, except if a 
robot i is in the middle of a turn sequence in which case it 
needs to update pos−i(t) as well. Then discPtsi(t) and 

ˆ ( )idiscPts t−  are updated. However, depending on whether a 
robot has the option of performing a turn sequence or not at 
a time t as dictated by _, we differentiate how discPtsi(t) is 
updated. Based on C1 and C2 in (18), a robot i that has the 
option of performing a turn sequence at a time t does not 
expect to increase its utility by discovering new grid points 
in the following two time steps if it predicts those grid 
points would be discovered by other robots in those two 
times steps. Thus, to be consistent with the prediction, i 
must ensure those grid points do not get included in 
discPtsi(t) when it updates the set after taking an action. 
This is reflected in (19). 
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Figure 6 Comparison of exploration time of Algorithm 2 and improved algorithm 

 

 
If a robot i has the option of performing a turn sequence at 
time t, discPtsi(t) is updated as follows in the following two 
time steps. 

( )  {    |  5}  ( 1)i idiscPts t pt gridpts C discPts t= ∈ −∪  (19) 

where 

5 ||   (   1) ||  and
ˆ ˆ( )  and || ( ) ||

i

i i

C pt loc t sRange
pt discPts t pt loc t sRange− −

⇐ − + ≤

∉ − ;
 

If on the other hand a robot i can only play its baseline 
action, discPtsi(t) is updated as follows in the following two 
time steps. 

( )  {    |  6} (   1)i idiscPts t pt gridpts C discPts t= ∈ −∪  

where 

6  || ( ) ||    and (   1)i iC pt loc t sRange pt discPts t−⇐ − ≤ ∉ −
 

Finally, discPts−i(t) is updated for all robots as follows. 

{ }( ) | ( )
i

i j
j N

discPts t pt gridpts pt discPts t−
∈
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Claim 2: Player objective functions (18) constitute a 
potential game with potential function (9). 

The proof for Claim 2 is identical to the proof of Claim 1. 
To assess the effect of using (18) on exploration time, we 
replace the objective function used in Algorithm 2 [i.e., (7)] 
with (18) and use the new rules for updating discPtsi(t) and 
discPts−i(t) as discussed in this section. We will refer to this 
modified algorithm as the Improved Algorithm. We then 
simulate the Improved Algorithm for the test environment 
introduced in Philip et al. (2013) with sRange set to 2 grid 
pts and ε set to 0.1. The simulation is run for 2,000 time 

steps and averaged over 20 games. Figure 6 compares the 
performance of Algorithm 2 with the Improved Algorithm. 
It can be seen that the Improved Algorithm discovers more 
grid points from the 200 th to the 700 th time step, but in 
terms of the total time it takes to explore the whole space 
there is no difference between the two algorithms. However, 
it can be argued that if there is only a limited time given to 
explore the space (e.g., 400 time steps), then the Improved 
Algorithm would explore more of the space than Algorithm 
2. On the contrary it is important to note that with the 
Improved Algorithm, a robot that is performing a turn 
sequence requires more information from the other robots 
compared to Algorithm 2. Specifically, it needs pos−i(t), 
which includes both the heading and location of the other 
robots. Furthermore, as before, the robot needs to know all 
the grid points discovered by other robots for it to compute 
discPts−i(t). Thus, the improvement in exploration time of 
improved algorithm comes at the expense of more 
information having to be shared among the robots. 

5 Conclusions 

In this paper we investigated exploring 2-D spaces using 
potential games rather than conventional Frontier-based DP 
methods. The objective function of a player and the game’s 
potential function were defined in terms of the discovery of 
unexplored grid points by robots, and the definition of a 
potential game was extended for a two-step action sequence. 
Based on the objective function of a player and 
incorporating the simple forward turn controller, we devised 
an algorithm for exploration, which was then modified for a 
bounded environment with obstacles. The computational 
complexity of the resulting algorithm was analysed to be 
O(sRange2), where sRange is the range of a sensor on a 
robot. Finally, an improved exploration algorithm that is 
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based on predicting future locations of robots was discussed 
in Section 4. 

A simulation using three robots and three obstacles 
indicated that the Improved Algorithm was able to improve 
the exploration of the environment for a period of time, but 
the total time for exploration did not differ from the 
modified potential game algorithm. However, the 
improvement in exploration time comes at the expense of 
more information having to be shared among the robots. 

To account for environments that pose severe bandwidth 
constraints on communications between robots such as in 
AUV platforms, future work will involve developing a 
game in which robots do not communicate with their 
neighbours at every time step. Furthermore, the suitability 
of integrating the exploration method discussed in this paper 
with Frontier-based DP methods would be an interesting 
research direction. 
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