
Artificial Intelligence Review manuscript No.
(will be inserted by the editor)

Exponential Moving Average Based Multiagent Reinforcement
Learning Algorithms

Mostafa D. Awheda · Howard M. Schwartz

Received: date / Accepted: date

Abstract Two multi-agent policy iteration learning algorithms are proposed in this work. The two
proposed algorithms use the Exponential Moving Average (EMA) approach along with the Q-learning
algorithm as a basis to update the policy for the learning agent so that the agent’s policy converges to a
Nash equilibrium policy. The first proposed algorithm uses a constant learning rate when updating the
policy of the learning agent, while the second proposed algorithm uses two different decaying learning
rates. These two decaying learning rates are updated based on either the Win-or-Learn-Fast (WoLF)
mechanism or the Win-or-Learn-Slow (WoLS) mechanism. The WoLS mechanism is introduced in this
article to make the algorithm learn fast when it is winning and learn slowly when it is losing. The second
proposed algorithm uses the rewards received by the learning agent to decide which mechanism (WoLF
mechanism or WoLS mechanism) to use for the game being learned. The proposed algorithms have been
theoretically analyzed and a mathematical proof of convergence to pure Nash equilibrium is provided for
each algorithm. In the case of games with mixed Nash equilibrium, our mathematical analysis shows that
the second proposed algorithm converges to an equilibrium. Although our mathematical analysis does
not explicitly show that the second proposed algorithm converges to a Nash equilibrium, our simulation
results indicate that the second proposed algorithm does converge to Nash equilibrium. The proposed
algorithms are examined on a variety of matrix and stochastic games. Simulation results show that the
second proposed algorithm converges in a wider variety of situations than state-of-the-art multi-agent
reinforcement learning (MARL) algorithms.

Keywords Multi-agent learning systems · Reinforcement learning.

1 Introduction

Reinforcement learning (RL) is a learning technique that maps situations to actions so that an agent
learns from the experience of interacting with its environment (Sutton and Barto, 1998; Kaelbling et al.,
1996). Reinforcement learning has attracted attention and been widely used in intelligent robot con-
trol systems (Awheda and Schwartz, 2015; Schwartz, 2014; Hinojosa et al., 2011; Rodŕıguez et al., 2007;
Dai et al., 2005; Kondo and Ito, 2004; Gutnisky and Zanutto, 2004; Ye et al., 2003; Smart and Kaelbling,
2002). It has also been effectively used for solving nonlinear optimal control problems (Luo et al., 2015a;
Luo et al., 2015b; Luo et al., 2015c; Luo et al., 2015d; Dixon, 2014; Luo et al., 2014a; Luo et al., 2014b;
Modares et al., 2014; Wu and Luo, 2012). In reinforcement learning, an agent learns from the experience
of interacting with its environment. After perceiving the state of its environment at each time step, the
agent takes an action so that its environment transitions from a state to a new state. A scalar reward

Mostafa D. Awheda
Department of Systems and Computer Engineering
Carleton University
1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
E-mail: mawheda@sce.carleton.ca

Howard M. Schwartz
Department of Systems and Computer Engineering
Carleton University
1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
E-mail: schwartz@sce.carleton.ca

2 Mostafa D. Awheda, Howard M. Schwartz

signal is used to evaluate the transition. The objective for the agent is to maximize its cumulative re-
ward (Sen and Weiss, 1999; Sutton and Barto, 1998; Kaelbling et al., 1996). Reinforcement learning is
also well-suited for multi-agent learning because of its simplicity and generality (Busoniu et al., 2008;
Busoniu et al., 2006; Hu et al., 1998). Learning is a key element of multi-agent systems (MAS) as it
allows an agent to improve its performance by adapting the dynamics of the other agents and envi-
ronment (Zhang and Lesser, 2010). Learning encounters some challenges when it is used in multi-agent
learning. One of these challenges is that the other learning agents have to be explicitly considered by
each learning agent and therefore the environment is non-stationary. The environment of a multi-agent
system is no longer stationary as the Markov property is violated by the other learning agents. As a re-
sult of a non-stationary environment, single agent reinforcement learning techniques are not guaranteed
to converge in multi-agent settings. In multi-agent learning, the objective of each learning agent is to
adopt an equilibrium strategy that maximizes its payoffs in the long run. However, a globally optimal
equilibrium may not be reached in some cases when the learning agents do not cooperate with each
other (Abdallah and Lesser, 2008; Claus and Boutilier, 1998). The objective of each learning agent, in
such cases, is to adopt a Nash equilibrium (NE), where no learning agent will do better if deviates from
Nash equilibrium (Abdallah and Lesser, 2008; Conitzer and Sandholm, 2007; Banerjee and Peng, 2007;
Bowling, 2005).

In this work, we consider multi-agent domains in which different agents with different independent
goals, assumptions, and algorithms have to interact with each other. We are interested in multi-agent
learning algorithms that make agents learn how to adapt to changes in the other agents’ performance
when the Markovian property is no longer valid. That is, we are interested in multi-agent learning al-
gorithms that can make agents learn Nash equilibrium strategies in a difficult learning problem with a
moving target. Several multi-agent reinforcement learning (MARL) algorithms have recently been pro-
posed and studied (Zhang and Lesser, 2010; Abdallah and Lesser, 2008; Banerjee and Peng, 2007;
Conitzer and Sandholm, 2007; Bowling, 2005; Hu and Wellman, 2003; Bowling and Veloso, 2002;
Bowling and Veloso, 2001a; Bowling and Veloso, 2001b; Singh et al., 2000). All these algorithms assume
that each learning agent knows its own immediate reward and the actions of the other learning agents.
Some of these algorithms have theoretical results of convergence in general-sum games. In addition,
some of these algorithms fail to converge to Nash equilibrium in some games. For example, the Infinites-
imal Gradient Ascent (IGA) algorithm proposed in (Singh et al., 2000) fails to converge in games with
mixed Nash equilibrium. The Win-or-Learn-Fast Infinitesimal Gradient Ascent (WoLF-IGA) algorithm
proposed in (Bowling and Veloso, 2001a) and the Win-or-Learn-Fast Generalized Infinitesimal Gradient
Ascent (GIGA-WoLF) algorithm proposed in (Bowling, 2005) fail to converge in some challenging games
such as in the Shapley’s game (Abdallah and Lesser, 2008). The Win-or-Learn-Fast Policy Hill-Climbing
(WoLF-PHC) algorithm proposed in (Bowling and Veloso, 2002) does not converge to Nash equilibrium
in the Shapley’s game. In addition, some of these algorithms guarantee converge to Nash equilibrium by
making some strict assumptions on the knowledge that is available to each learning agent. For example,
some algorithms assume that the underlying game structure (Nash equilibrium) is known to each learn-
ing agent (Banerjee and Peng, 2007; Bowling and Veloso, 2002). Other algorithms such as the algorithms
proposed in (Conitzer and Sandholm, 2007; Hu and Wellman, 2003) assume that each learning agent
knows the actions and the immediate rewards of the other learning agents (Zhang and Lesser, 2010;
Abdallah and Lesser, 2008). Such strict assumptions may limit the use of these algorithms because the
underlying game structure (Nash equilibrium) and the rewards of the other learning agents are often un-
known to the learning agent and may be learned via interacting with the other learning agents (Bowling
and Veloso, 2002). On the other hand, the Weighted Policy Learner (WPL) and the Policy Gradient As-
cent with Approximate Policy Prediction (PGA-APP) algorithms proposed in (Zhang and Lesser, 2010;
Abdallah and Lesser, 2008) empirically converge to Nash equilibrium in a wider variety of situations
without requiring the knowledge of the other agents’ immediate rewards or strategies.

In this work, we are interested in proposing a multi-agent learning algorithm that can converge to
Nash equilibrium in a wider variety of situations. In addition, we are interested in proposing a multi-
agent learning algorithm that does not make strict assumptions that are often unknown and need to
be learned via experience. In this paper, we propose two multi-agent reinforcement learning algorithms.
The algorithms proposed in this work are an extended version of the work published in (Schwartz, 2014;
Awheda and Schwartz, 2013). The first proposed algorithm proposed in this work can successfully
converge to Nash equilibrium policies in games that have pure Nash equilibrium. The second proposed
algorithm, on the other hand, can successfully learn Nash equilibrium policies in games that have pure or
mixed Nash strategies. The proposed algorithms use the exponential moving average (EMA) approach

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 3

Fig. 1 Matrix games

in parallel with the greedy action of the learning agent’s Q-table as a basis to update the learning
agent’s strategy. We evaluate the proposed algorithms on a variety of matrix and stochastic games. The
results show that the second proposed algorithm outperforms the state-of-the-art multi-agent learning
algorithms in terms of convergence to Nash equilibrium.

This paper is organized as follows. Preliminary concepts and notations are presented in Section 2.
The constant learning rate-based exponential moving average Q-learning (CLR-EMAQL) algorithm is
proposed in Section 3. The exponential moving average Q-learning (EMAQL) algorithm is proposed in
Section 4. Section 5 presents the simulation and results.

2 Preliminary Concepts and Notations

2.1 Markov Decision Processes

A Markov decision process (MDP) (Howard, 1960; Bellman, 1957) can be described as a tuple, (S,A,R, T),
where S is the discrete space of states, A is the discrete space of actions, R is the reward function and
T is the transition function. The reward function defines the reward that an agent j receives when
choosing an action from the available actions at the given state. The transition function describes how
a probability distribution is defined over the next states as a function of the given state and the agent’s
action (Bowling and Veloso, 2002). In a Markov decision process (MDP), the objective of the agent is to
find a policy π : S → A that maps states to actions so that the discounted future reward is maximized
(Bowling and Veloso, 2002; Hu et al., 1998).

2.2 Matrix Games

A matrix game (strategic game) can be described as a tuple (n,A1,....,n, R1,....,n), where n is the agents’
number, Aj is the discrete space of agent j’s available actions, and Rj is the payoff function that
agent j receives (Bowling and Veloso, 2002). In matrix games, the objective of agents is to find pure
or mixed strategies that maximize their payoffs. A pure strategy is the strategy that chooses actions
deterministically, whereas a mixed strategy is the strategy that chooses actions based on a probability
distribution over the agent’s available actions. Fig. (1) shows some examples of matrix games. The
dilemma game, the shapley’s game, and the biased game are shown. In these games, one player chooses
a row and the other chooses a column in the matrix. In these games, each cell in the payoff matrix
represents the payoff received by the row and column players, respectively. The dilemma game has a
pure Nash equilibrium strategy that executes the second action of each player with a probability of one.
The shapley’s game has one mixed Nash equilibrium strategy, (1

3 ,
1
3 ,

1
3). On the other hand, the biased

game has a mixed Nash equilibrium strategy with probabilities not uniform across actions, (0.15,0.85)
and (0.85,0.15).

2.3 Stochastic Games

A stochastic game can be described as a tuple (n, S,A1,....,n, R1,....,n, T) , where n is the agents’ number,
S is the discrete space of states, Aj is the discrete space of agent j’s available actions, Rj is the reward
function, and T is the transition function (Bowling and Veloso, 2002). Stochastic games can be described
as an extension of Markov decision processes (MDP). They can also be described as an extension of
matrix games as each state in a stochastic game can be dealt with as a matrix game (Bowling and

4 Mostafa D. Awheda, Howard M. Schwartz

Fig. 2 Two stochastic games (Hu and Wellman, 2003)

Fig. 3 (a) A Nash equilibrium of grid game 1. (b) A Nash equilibrium of grid game 2 (Hu and Wellman, 2003).

Veloso, 2002). Fig. (2) shows two stochastic games introduced by Hu and Wellman (Hu and Wellman,
2003). The players in both games are located in the lower corners and are allowed to move one cell in the
four compass directions (North, East, South and West). The transition is ignored if both players move to
the same cell (excluding a goal cell). The players’ goals in both grid games are located as shown in Fig.
(2). The transition in grid game 1 is deterministic; grid game 2, on the other hand, has deterministic
and probabilistic transitions. At the lower corners in grid game 2, the probability of transition to the
next cell is 0.5 when the player takes the action North. In both grid games, the player that reaches its
goal is rewarded 100 points, it receives -1 points when either it hits the wall or moves into the same cell
the other player moves into (excluding a goal cell), and it receives 0 points otherwise. Reaching its goal
with a minimum number of steps is therefore the aim of each player in both games. As soon as a player
reaches its goal, the game ends (Hu and Wellman, 2003). Grid game 1 has ten different Nash equilibria;
whereas grid game 2 has two different Nash equilibria (Hu and Wellman, 2003). Fig. (3) shows one Nash
equilibrium for each grid game.

2.4 Q-learning Algorithm

The Q-learning algorithm (Watkins and Dayan, 1992; Watkins, 1989) is one of the most well-known
algorithms in reinforcement learning. The Q-learning algorithm updates the long-term payoffs of state-
action pairs by interacting with the environment. The Q-learning algorithm is a single-agent learning
algorithm (Watkins and Dayan, 1992; Watkins, 1989) that can be used in MDPs to learn optimal policies.
In single-agent learning, the Q-table of a learning agent is guaranteed to converge to optimal Q-values,
and hence, the learning agent learns an optimal policy by selecting the greedy actions. The Q-learning
algorithm defines an optimal policy for the learning agent by learning the optimal state-action value
function Q∗. Each learning agent keeps a table that saves the estimates Q∗(s, a) for each state s and
action a. At each state s, the learning agent selects an action a with some exploration rate so that
Q(s, a) is maximized. The Q-learning table of agent j is updated as follows,

Qjt+1(s, at) = (1− θ)Qjt(s, at) + θ[rjt + ζ max
a′

Qjt(s
′, a′)] (1)

Where t is the number of time the state s has been visited, θ is the learning rate, rjt is the immediate
reward of the agent j at the state s, at is the action chosen by the agent j at the state s, and ζ is the
discount factor.

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 5

The state-action value function Q of Eq. (1) is guaranteed to converge to the optimal Q∗ (Sutton and
Barto, 1998) if the following conditions are satisfied:

(i) The state-action pair is visited an infinite number of times.
(ii) The learning rate θ is decaying over time provided that∑∞

t=0 θ =∞ and
∑∞
t=0 θ

2 <∞

Condition (i) states that each state-action pair has to be visited an infinite number of times which
in turn emphasizes the importance of the exploration strategy. In this paper, the ε-greedy exploration
policy is used. In this policy, the learning agent chooses the optimal action with a probability 1 − ε
and chooses a random action with a probability ε. Condition (i) is guaranteed to satisfy when ε > 0.
Condition (ii), on the other hand, is a standard condition for stochastic approximation.

Although the Q-learning algorithm is a single-agent learning algorithm, it has been successfully used
for multi-agent learning (Claus and Boutilier, 1998; Sen et al., 1994; Tan, 1993). Despite the loss of the-
oretical guarantees, Q-learning agents often succeed to learn Nash equilibrium policies in multi-agent
environment (Fulda and Ventura, 2007) because the Q-tables of the learning agents do not have to con-
verge to optimal values in order for the agents to execute a Nash equilibrium policy, and the learning
agents must adopt a Nash equilibrium if they are playing optimally.

3 The Proposed Constant Learning Rate-based Exponential Moving Average Q-Learning
(CLR-EMAQL) Algorithm

The exponential moving average (EMA) approach is a model-free strategy estimation approach. It is
one of the statistical approaches used to analyze time series data in finance and technical analysis.
Typically, EMA gives the recent observations more weight than the older ones (Burkov and Chaib-draa,
2009). The EMA estimation approach is used in (Tesauro, 2003) by the hyper Q-learning algorithm to
estimate the opponent’s strategy. It is also used in (Burkov and Chaib-draa, 2009) by the Infinitesimal
Gradient Ascent (IGA) agent to estimate its opponent’s strategy. The EMA estimator used to estimate
the strategy of the agent’s opponent can be described by the following equation (Burkov and Chaib-draa,
2009; Tesauro, 2003):

π−jt+1(s, a) = (1− η)π−jt (s, a) + ηu−jt (s, a−j) (2)

Where π−j(s, a) is the opponent’s strategy at the state s, η is a small constant step size and 0 < η << 1,
and u−j(s, a−j) is a unit vector representation of the action a−j chosen by the opponent (−j) at the
state s. The unit vector u−j(s, a−j) contains the same number of elements the π−j does. The elements
in the unit vector u−j(s, a−j) are all equal to zero except for the element corresponding to the action
a−j which is equal to 1. For example, if the opponent (−j) has four possible actions at each state and
the opponent chooses the second action at the state s, the unit vector u−j(s, a−j) will be given in this
case as follows, u−j(s, a−j) = [0, 1, 0, 0].

In this work, we propose the constant learning rate-based exponential moving average Q-learning (CLR-
EMAQL) algorithm. The proposed CLR-EMAQL algorithm uses the exponential moving average (EMA)
approach in parallel with the Q-learning algorithm as a basis to update the strategy of the learning agent
itself. The CLR-EMAQL algorithm proposed in this section uses a constant learning rate η (constant
step size). The Q-table of a learning agent j is updated by the Q-learning algorithm of Eq. (1). Despite
the loss of theoretical guarantees, Q-learning agents often succeed to learn Nash equilibrium policies
in a multi-agent environment (Fulda and Ventura, 2007). This is because the Q-tables of the learning
agents do not have to converge to optimal values in order for the agents to execute a Nash equilibrium
policy, and the learning agents must adopt a Nash equilibrium if they are playing optimally (Fulda
and Ventura, 2007). It is important here to mention that the proposed algorithm forces the Q-table of
the learning agent to converge to a Nash equilibrium policy. When the Q-table of the learning agent
converges to a Nash equilibrium policy, the policy π of the learning agent will also converge to a Nash
equilibrium. The proposed CLR-EMAQL algorithm updates the agent j’s policy by Eq. (3). Algorithm 1
lists the procedure of the CLR-EMAQL algorithm for a learning agent j when using a constant learning
rate η.

πjt+1(s, a) = (1− η)πjt (s, a) + ηujt(s, a) (3)

6 Mostafa D. Awheda, Howard M. Schwartz

Algorithm 1 The constant learning rate-based exponential moving average Q-learning (CLR-EMAQL)
algorithm for agent j:

Initialize:
learning rates θ ∈ (0,1] and η ∈ (0,1)
exploration rate ε
discount factor ζ
Qj(s, a) ← 0 and πj(s, a) ← ICs
Repeat

(a) From the state s, select an action at according to the strategy πjt (s, a) with some exploration.

(b) Observe the immediate reward rjt and the new state s′.

(c) Update Qjt+1(s, at) using Eq. (1).

(d) Update the strategy πjt+1(s, a) by using Eq. (3).

where η ∈ (0, 1) is a constant learning rate and ujt(st) is defined as follows,

ujt(s, a) =
[
uj1 uj2 . . . ujm

]T
=

V
j
1 (s) if at = arg max

a′
Qjt(s, a

′)

V j2 (s) otherwise
(4)

The elements (uj1, u
j
2, ..., u

j
m) ∈ [0,1], uj1 +uj2 + ...+ujm = 1, and m is the number of actions of the agent

j. The vectors V j1 (s) and V j2 (s) consist of the same number of the elements πj does. The elements in the

vector V j1 (s) are all equal to zero except for the element corresponding to the action at which is equal

to 1. On the other hand, V j2 (s) = 1
m−1 [1 − V j1 (s)]. When the action at chosen by the agent j at the

state s is equal to the greedy action obtained from the agent’s Q-table at the state s, the term ujt(s, a)
will equal to the vector V j1 (s). On the other hand, if the learning agent selects an action that is different

from the greedy action, the term ujt(s, a) will equal to the vector V j2 (s). To illustrate the definition of

the vectors V j1 (s) and V j2 (s) more, let us assume that, for example, agent j has four possible actions at
each state. Let us also assume that the action at chosen by agent j at the state s is the third action.
The vector ujt(s, a) will be defined in this case as ujt(s, a) = V j1 (s) = [uj1 uj2 uj3 uj4]T = [0, 0, 1, 0]T if
the greedy action obtained from the agent’s Q-table at the state s is also the third action. On the other
hand, the vector ujt(s, a) will be defined as ujt(s, a) = V j2 (s) = [uj1 uj2 uj3 uj4]T = [1/3, 1/3, 0, 1/3]T

if the greedy action obtained from the agent’s Q-table at the state s is not the third action.

In the proposed CLR-EMAQL algorithm, the learning agent selects an action each time during learning
based on his policy distribution π(s, a). That is, the learning agent selects an action each time during
learning and that action may not be the greedy action. The proposed CLR-EMAQL algorithm uses the
greedy action as a criterion when it updates the policy of the learning agent. If the learning agent selects
an action that is the same as the greedy action calculated from the Q-table of the Q-learning algorithm,
then the proposed algorithm drags the agent’s policy towards that action by giving the probability
distribution corresponding to the selected action more weight than the other actions of the agent. We
call this procedure by the operation of exploiting the greedy action by the CLR-EMAQL algorithm. If
the selected action by the agent and the greedy action are different, the proposed algorithm then allows
the learning agent to explore the other actions by decreasing the probability distribution of the selected
action. We call this procedure by the operation of exploring actions by the CLR-EMAQL algorithm.
The operation of exploring the other actions continue until the learning agent selects an action that is
the same to the greedy action calculated from the Q-table. At that point, the operation of exploiting the
greedy action takes place and the proposed algorithm keeps updating the policy of the learning agent
towards that greedy action by giving more weights to the probability distribution corresponding to that
selected action.

3.1 The multi-agent learning dynamics of the proposed CLR-EMAQL algorithm

To simplify the analysis, we consider two-player-two-action games. The policies of Player 1 and Player
2 updated by Eq. (3) can be written as follows,

π1
t+1(s, a) = (1− η)π1

t (s, a) + ηu1t (s, a) (5)

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 7

π2
t+1(s, a) = (1− η)π2

t (s, a) + ηu2t (s, a) (6)

Where u1t (s, a) and u2t (s, a) are defined based on Eq. (4) as follows,

u1t (s, a) =

V
1
1 (s) if at = arg max

a′
Q1
t (s, a

′)

V 1
2 (s) otherwise

(7)

u2t (s, a) =

V
2
1 (s) if at = arg max

a′
Q2
t (s, a

′)

V 2
2 (s) otherwise

(8)

Where Q1
t (s, a) and Q2

t (s, a) are the Q-tables for Player 1 and Player 2, respectively.

From Eq. (7) and Eq. (8), it is shown that u1t (s, a) is a function of Q1
t (s, a) and u2t (s, a) is a function of

Q2
t (s, a). That is,

u1t (s, a) = f1
(
Q1
t (s, a)

)
(9)

u2t (s, a) = f2
(
Q2
t (s, a)

)
(10)

From Eq. (1), it is shown that the Q-tables of Player 1 and Player 2 are functions of the player’s action
and the opponent’s action as well. This is because the reward rjt of the player j depends on the player
j’s action and the opponent’s action. Thus,

Q1
t (s, a) = g1

(
s, a1, a2

)
(11)

Q2
t (s, a) = g2

(
s, a1, a2

)
(12)

Where a1 and a2 are the actions of Player 1 and Player 2, respectively.

Hence, from Eq. (11) and Eq. (12), Eq. (9) and Eq. (10) can be rewritten as follows,

u1t (s, a) = f1
(
Q1
t (s, a)

)
= f1

(
g1
(
s, a1, a2

))
(13)

u2t (s, a) = f2
(
Q2
t (s, a)

)
= f2

(
g2
(
s, a1, a2

))
(14)

From Eq. (13) and Eq. (14), we can say that the policy equations of Player 1 and Player 2 given in
Eq. (5) and Eq. (6) represent multi-agent learning equations. The convergence of these equations to a
Nash equilibrium depends on the convergence of the Q-tables of Player 1 and Player 2. Although the
Q-learning algorithm is a single-agent learning algorithm, it has been successfully used for multi-agent
learning (Claus and Boutilier, 1998; Sen et al., 1994; Tan, 1993). Despite the loss of theoretical guar-
antees, Q-learning agents often succeed to learn Nash equilibrium policies in multi-agent environment
(Fulda and Ventura, 2007). This is because the Q-tables of the learning agents do not have to converge
to optimal values in order for the agents to execute a Nash equilibrium policy. In addition, the learning
agents must adopt a Nash equilibrium if they are playing optimally (Fulda and Ventura, 2007). In this
work, the proposed algorithm forces the Q-table of the learning agent to converge to a Nash equilibrium
policy. When the Q-table of the learning agent converges to a Nash equilibrium policy, the strategy
(policy) of the learning agent will also converge to Nash equilibrium.

8 Mostafa D. Awheda, Howard M. Schwartz

3.2 The mathematical analysis of the proposed CLR-EMAQL algorithm

To simplify the analysis, we consider two-player-two-action games. The probability of selecting the first
action of Player 1 at time t is referred to by p1,t, whereas the probability of selecting the second action
is referred to by p2,t. Thus, the policy of Player 1 at state s and time t will be π1

t (s, a) = (p1,t, p2,t),
where p1,t+ p2,t = 1. Similar to Player 1, the probability of selecting the first action of Player 2 at time
t is referred to by q1,t, whereas the probability of selecting the second action at time t is referred to by
q2,t. Thus, the policy of Player 2 at state s and time t will be π2

t = (q1,t, q2,t), where q1,t + q2,t = 1.
To simplify notations, the term ujt(s, a) in Eq. (3) is defined as u1t (s, a) = [u11 u12]T for Player 1 and
u2t (s, a) = [u21 u22]T for Player 2, where the superscripts refer to the corresponding player and the
subscripts refer to the corresponding action. Hence, the policies of Player 1 and Player 2 updated by
Eq. (3) can be rewritten as,

p1,t+1

p2,t+1

q1,t+1

q2,t+1

 =

1− η 0 0 0

0 1− η 0 0
0 0 1− η 0
0 0 0 1− η

p1,t
p2,t
q1,t
q2,t

+

ηu11
ηu12
ηu21
ηu22

 (15)

To analyze the above equation, we use the ordinary differential equation (ODE) approach. The behavior
of the learning algorithm can be approximated by ODEs as the step size goes to zero (Thathachar and
Sastry, 2011). Thus, when the learning rate (step size) η → 0, the ordinary differential equation of Eq.
(15) can be given as follows,

ṗ1
ṗ2
q̇1
q̇2

 =

u11 − p1
u12 − p2
u21 − q1
u22 − q2

 (16)

When the Q-table of each learning agent converges to a Nash equilibrium policy, the above ordi-
nary differential equation can be viewed as a linear time-invariant equation. This linear time-invariant
equation will be asymptotically stable as its eigenvalues are all real and less than zero, and they are
[−1 − 1 − 1 − 1]T . If we let the right hand side of the above equation equal to zero, we then get
the equilibrium solutions of the above equation as p∗1 = u11, p∗2 = u12, q∗1 = u21, and q∗2 = u22. For a
two-player-two-action game, each parameter of the vector u1t (s, a) = [u11 u12]T for Player 1 will have
a value of either zero or one, as stated in Eq. (3). Similar to Player 1, each parameter of the vector
u2t (s, a) = [u21 u22]T for Player 2 will also have a value of either zero or one. Therefore, the possible
equilibrium solutions of Eq. (16) can be specified as follows,

(π1∗, π2∗) =
(
(1, 0), (1, 0)

)
(π1∗, π2∗) =

(
(1, 0), (0, 1)

)
(π1∗, π2∗) =

(
(0, 1), (1, 0)

)
(π1∗, π2∗) =

(
(0, 1), (0, 1)

) (17)

Without loss of generality, let us assume that the last equilibrium solution, (π1∗, π2∗) =
(
(0, 1), (0, 1)

)
,

is the Nash equilibrium. Let us also assume that both players are adopting this Nash equilibrium. This
means that selecting the second action by each player (Player 1 and Player 2) with a probability of one
is the Nash equilibrium. This also means that the Q-table of each player updated by Eq. (1) converges to
a Nash equilibrium policy so that the second action is the greedy action of each player’s Q-table. Hence,
none of the first three equilibrium solutions of Eq. (17) will be the Nash equilibrium solution as the
proposed CLR-EMAQL algorithm of each player drags the player’s policy away from these equilibrium
solutions. Only the equilibrium solution (π1∗, π2∗) =

(
(0, 1), (0, 1)

)
will be the Nash equilibrium of the

game.

The equilibrium solution (π1∗, π2∗) =
(
(1, 0), (1, 0)

)
: This equilibrium solution means that Player 1

selects its first action with a probability of one (p1 = 1, p2 = 0), and Player 2 also selects its first action
with a probability of one (q1 = 1, q2 = 0). Since the greedy action of Player 1’s Q-table is the second
action, the term u1t (s, a) of Player 1 will be defined as stated in Eq. (3) as follows,

u1t (s, a) = [u11 u12]T = [0 1]T

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 9

Fig. 4 Two matrix games.

On the other hand, because the greedy action of Player 2’s Q-table is the second action, the term u2t (s, a)
of Player 2 will be defined as stated in Eq. (3) as follows,

u2t (s, a) = [u21 u22]T = [0 1]T

Hence, Eq. (16) can be defined as follows,

ṗ1
ṗ2
q̇1
q̇2

 =

−p1

1− p2
−q1

1− q2

 (18)

The steady state values of Eq. (18) can be calculated by setting the right half side of the equation equal
to zero. Thus, the steady state values of Eq. (18) are given as follows, p∗1 = 0, p∗2 = 1, q∗1 = 0 and q∗2 = 1.
This means that the equilibrium solution (π1∗, π2∗) =

(
(1, 0), (1, 0)

)
is not the Nash equilibrium. This

is because the proposed CLR-EMAQL algorithm of each player drags the player’s policy away from this
equilibrium solution.

We can also do a similar analysis to the other equilibrium solutions given in Eq. (17). The analysis will
show that only the equilibrium solution (π1∗, π2∗) =

(
(0, 1), (0, 1)

)
will be the Nash equilibrium of the

game. This is because the proposed CLR-EMAQL algorithm of each player will drag the player’s policy
towards this equilibrium solution.

In a two-player-two-action game, we have mathematically shown that the players learning with the
proposed CLR-EMAQL algorithm successfully converge to Nash equilibrium if the game has a pure
Nash equilibrium. However, in a two-player-two-action game with a mixed Nash equilibrium, the play-
ers learning with the proposed CLR-EMAQL algorithm will fail to adopt a mixed Nash equilibrium.
The strategies of both players will keep oscillating around the mixed Nash equilibrium. This is also
true in games with more than two players and with two actions or more. The strategies of the players
learning with the proposed CLR-EMAQL algorithm will either converge to the Nash equilibrium if the
game has a pure Nash strategy or oscillate around it if the game has a mixed Nash strategy.

To illustrate the performance of the proposed CLR-EMAQL algorithm, the algorithm is used to learn
the games depicted in Fig. (4); the coordination game and the matching pennies game. The coordination
game has a pure Nash strategy that executes the second action with a probability of 1, whereas the
matching pennies game has a mixed strategy that executes each action with a probability of 0.5. Fig.
(5)(a) illustrates the probability distributions of action 2 of both players (Player 1 and Player 2) when
using the proposed CLR-EMAQL algorithm to learn the coordination game. As shown in this figure,
both players converge to their pure Nash equilibrium. This shows that the equilibrium points of the
linear time-invariant system of Eq. (16) are reached, where p∗1 = u11 = 0, p∗2 = u12 = 1, q∗1 = u21 = 0,
and q∗2 = u22 = 1. On the other hand, Fig. (5)(b) illustrates the probability distributions of action 1
and action 2 of Player 1 (policy of Player 1) when using the proposed CLR-EMAQL algorithm to learn
the matching pennies game. This figure shows that the proposed CLR-EMAQL algorithm enforces the
policy of Player 1 to oscillate around the Nash equilibrium strategy. As stated earlier in this section,
in case of mixed Nash equilibrium, the policy of a CLR-EMAQL player will continue oscillating around
the mixed Nash equilibrium. In this case, a decaying learning rate has to be used so that the oscillation
around the Nash equilibrium will vanish and both players adopt their mixed Nash equilibrium.

10 Mostafa D. Awheda, Howard M. Schwartz

Iterations
0 1000 2000 3000 4000 5000

P
o
li
c
y

0

0.2

0.4

0.6

0.8

1

1.2
(a) Coordination game by CLR-EMAQL algorithm

Probability of action 2 of Player 1
Probability of action 2 of Player 2

Iterations ×104
0 1 2 3 4 5

P
o
li
c
y

0

0.2

0.4

0.6

0.8

1
(b) Matching pennies game by CLR-EMAQL algorithm

Probability of action 1 of Player 1
Probability of action 2 of Player 1

Fig. 5 Probability of selecting actions: (a) Probability of choosing the second action for both players in the coordination
game (b) Probability of choosing Player 1’s actions in the the matching pennies game.

4 The Proposed Exponential Moving Average Q-Learning (EMAQL) Algorithm

In this section, we introduce the proposed exponential moving average Q-learning (EMAQL) algorithm.
The proposed EMAQL algorithm uses two different decaying learning rates (ηw and ηl) when updating
the agent’s strategy instead of only one constant learning rate η as used in the proposed CLR-EMAQL
algorithm. The values of these variable learning rates are inversely proportional to the number of it-
erations (or episodes) and are set based on one of two different mechanisms; the Win-or-Learn-Fast
(WoLF) mechanism or the Win-or-Learn-Slow (WoLS) mechanism. The Q-table of a learning agent j
is updated by the Q-learning algorithm of Eq. (1) and the agent j’s policy is updated by Eq. (19) as
follows,

πjt+1(s, a) = (1− ηt)πjt (s, a) + ηtu
j
t(s, a) (19)

where ηt is a decaying learning rate and ηt ∈ (0, 1). The term ujt(s, a) and the learning rate ηt are
defined as follows,

ujt(s, a) =
[
uj1 uj2 . . . ujm

]T
=

V
j
1 (s) if at = arg max

a′
Qjt(s, a

′)

V j2 (s) otherwise
(20)

ηt =

ηw if at = arg max
a′

Qjt(s, a
′)

ηl otherwise
(21)

Where,

ηl =

{
ηWoLF
l if WoLF mechanism is used

ηWoLS
l if WoLS mechanism is used

(22)

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 11

4.1 WoLF and WoLS Mechanisms

The WoLF principle was used with reinforcement learning algorithms in (Bowling and Veloso, 2002;
Bowling and Veloso, 2001a; Bowling and Veloso, 2001b). The WoLF mechanism used by the WoLF-
PHC algorithm (Bowling and Veloso, 2002) uses two different learning rates, δw when the algorithm is
winning and δl when it is losing. The WoLF-PHC algorithm uses the difference between the expected
value of the average strategy and the expected value of the current strategy as a criterion to decide when
the algorithm wins or loses. The learning rate δl is bigger than the learning rate δw. As such, when the
learning agent is losing, it learns faster than when it is winning. This makes the agent adapt quickly to
the changes in the strategies when it is losing and to learn cautiously when it is winning (Bowling and
Veloso, 2002). In this work, the proposed EMAQL algorithm uses either the WoLF mechanism or the
WoLS mechanism to update the policy of the learning agent.

The WoLF mechanism used by the proposed EMAQL algorithm is similar to the WoLF mechanism
used by the WoLF-PHC algorithm. It has two different learning rates (ηWoLF

l when losing and ηw when
winning), where ηWoLF

l > ηw. However, the criterion used by the proposed EMAQL algorithm to decide
when the algorithm wins or loses is different from the criterion used by the WoLF-PHC algorithm. The
proposed EMAQL algorithm uses the greedy action as a criterion to decide when the algorithm wins or
loses. If the learning agent selects an action that is the same as the greedy action calculated from the
Q-table of the learning agent, the algorithm wins and uses ηw. If the selected action is different from
the greedy action, the algorithm loses and uses ηWoLF

l .

On the other hand, the WoLS mechanism used by the proposed EMAQL algorithm has two different
learning rates (ηWoLS

l when losing and ηw when winning), where ηWoLS
l < ηw. The essence of the

WoLS mechanism is to learn fast when the algorithm wins and to learn slowly when the algorithm
loses. Hence, when the learning agent is losing, the policy of the learning agent is changed very slowly.
Learning slowly when the algorithm is losing gives the algorithm the time to explore the other actions
before deciding whether the current strategy (policy) is good for the learning agent or not. In other
words, learning slowly gives the learning agent the opportunity to see the response of the opponents to
the learning agent’s current strategy. If the opponents’ response to the learning agent’s current strategy
benefits the learning agent, the algorithm will eventually transition from losing to winning when the
greedy action obtained from the Q-table of the learning agent becomes similar to the action selected
by the learning agent. On the other hand, if the opponents’ response to the learning agent’s current
strategy does not benefit the learning agent, the algorithm will continue losing and, at the same time,
exploring the other actions until a new strategy is adopted when the greedy action and the learning
agent’s selected action are similar to each other. At that time, the algorithm transitions from losing to
winning.

4.2 When to use WoLF and WoLS mechanisms?

The proposed EMAQL algorithm uses the rewards received by the learning agent to decide which
mechanism (WoLF mechanism or WoLS mechanism) to use for the game being learned. If the values of
the Q-table of the learning agent for at least one action from the available actions are changing in one
direction all the time (i.e. rt(s, ai) > 0 or rt(s, ai) ≤ 0), then the proposed EMAQL algorithm uses the
WoLS mechanism to update the policy of the learning agent. On the other hand, if the values of the of
the Q-table of the learning agent for all actions are not changing in one direction, then the proposed
EMAQL algorithm uses the WoLF mechanism to update the policy of the learning agent. As such, the
proposed EMAQL algorithm selects a learning mechanism (WoLF or WoLS) to update the policy of the
learning agent based on the following reward conditions:

rt(s, ai) > 0 (23)

rt(s, ai) ≤ 0 (24)

rt is the reward received by the learning agent at state s when selecting the action ai, where i = 1, ...,m
and m is the number of the available actions for the learning agent at state s.

12 Mostafa D. Awheda, Howard M. Schwartz

When the agent is learning its policy, the proposed EMAQL algorithm checks whether the rewards
received by the learning agent when selecting each action ai satisfy only one of the two above reward
conditions or both of them. If there is at least one action ai from the available actions such that the
rewards received by the learning agent satisfy only one of the previous two reward conditions all the
time, the proposed EMAQL algorithm will use the WoLS mechanism to update the policy of the learning
agent. On the other hand, if each action ai of the available actions such that the rewards received by
the learning agent satisfy both of the previous two reward conditions, the proposed EMAQL algorithm
will use the WoLF mechanism to update the policy of the learning agent.

To illustrate more how the proposed EMAQL algorithm decides which mechanism (WoLF mechanism
or WoLS mechanism) to use for each game to update the policy of the learning agent, let us consider
the two-player-two-action matrix games depicted in Fig. (1) and Fig. (4); the dilemma game, the biased
game, the coordination game, and the matching pennies game. It is important to mention here that
the proposed EMAQL algorithm does not know the reward matrix of the game being learned and only
knows the immediate reward received by the learning agent when selecting an action ai at the state s.
In the dilemma and the biased games, the immediate rewards received by Player 1 when selecting the
first action, a1, are always greater than 0. i.e. rt(s, a1) > 0. In this case and even without looking to the
second action’s immediate rewards, the proposed EMAQL algorithm will decide to use the WoLS mech-
anism to update the policy of Player 1 in these games. This is because the immediate rewards received
by Player 1 when selecting the first action, a1, always satisfy one of the above two reward conditions, the
first condition. In the coordination and the matching pennies games, the immediate rewards received
by Player 1 when selecting the first action, a1, satisfy both of the above reward conditions at the same
time. i.e. the immediate rewards sometimes satisfy the first condition of the above reward conditions
and sometimes satisfy the second condition of the above reward conditions. In addition, the immediate
rewards received by Player 1 when selecting the second action, a2, also satisfy both of the above reward
conditions. In this case, the proposed EMAQL algorithm will decide to use the WoLF mechanism to
update the policy of Player 1 in these games. This is because the immediate rewards received by Player
1 when selecting any of its actions always satisfy both of the above two reward conditions.

Algorithm 2 lists the procedure of the proposed EMAQL algorithm for a learning agent j when using
a decaying learning rate ηt. As illustrated in the proposed CLR-EMAQL algorithm, when the Q-table
of the learning agent converges to a Nash equilibrium policy, the policy of the learning agent will also
converge to a Nash equilibrium. We will now illustrate how the proposed EMAQL algorithm works when
the game has either a pure Nash equilibrium or mixed Nash equilibrium.

4.3 Pure Nash Equilibrium

For simplicity and without loss of generality, let us assume that we have a two-player game with some
actions for each player. Let us also assume that each player is using the proposed EMAQL algorithm
to learn its policy (self-play learning). When the learning starts and a joint action is selected by both
players, then each player has two possible scenarios:

Scenario 1: The action selected by Player j (j = 1, 2) is the same as the greedy action calculated from
the Q-table of Player j. In this case, the proposed EMAQL algorithm of Player j will update the player’s
policy so that it is dragged towards the player’s greedy action by giving the probability distribution
corresponding to the player’s selected action more weight than the player’s other actions. As stated in
Algorithm 2, the player learning with the proposed EMAQL algorithm selects its action each time based
on its policy distribution π with some exploration. Player j will continue updating its policy as stated
in Scenario 1 as long as its selected action is the same as the greedy action calculated from Player j’s
Q-table. This is because the selected action is maximizing the player’s Q-table corresponding to this
action. That is, maximizing the player’s payoff.

Scenario 2: The action selected by Player j is different from the player’s greedy action calculated from
Player j’s Q-table. In this case, the proposed EMAQL algorithm of Player j will update the player’s
policy by decreasing the probability distribution of the player’s selected action so that the player may
explore its other actions. The amount of this reduction will depend on the updating policy mechanism
used by the proposed EMAQL algorithm; the WoLF mechanism or the WoLS mechanism. This scenario
will continue as long as the selected action and the greedy action are different. Once Player j selects an

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 13

Algorithm 2 The proposed exponential moving average Q-learning (EMAQL) algorithm for agent j:

Initialize:
learning rates θ ∈ (0,1] and ηw ∈ (0,1)
set ηl as ηWoLS

l
exploration rate ε
discount factor ζ
Qj(s, a) ← 0 and πj(s, a) ← ICs
Repeat

(a) From the state s, select an action at according to the strategy πjt (s, a) with some exploration.

(b) Observe the immediate reward rjt and the new state s′.

(c) Update the learning rate ηl, η
WoLF
l or ηWoLS

l , based on Eq. (23) and Eq. (24).

(d) Update Qjt+1(s, at) using Eq. (1).

(e) Update the strategy πjt+1(s, a) by using Eq. (19).

action that is similar to the greedy action, then the proposed EMAQL algorithm of Player j will update
the player’s policy as stated in Scenario 1.

The operation of exploiting and exploring actions will continue by both players until a pure Nash equi-
librium is adopted by both players. This pure Nash equilibrium will be reached through Scenario 1 when
each player executes the selected action with a probability of one, and the selected action of each player
is the same as the player’s greedy action.

4.4 Mixed Nash Equilibrium

Likewise in the pure Nash equilibrium case, the proposed EMAQL algorithm of each player continues
exploiting and exploring actions. As time goes on, the players’ policies oscillate around the Nash equi-
librium. This is because each player keeps changing its actions trying to maximize its payoff. Thus, both
players’ policies will keep oscillating around the mixed Nash equilibrium as both players keep changing
their actions. In this case, the importance of decaying the learning rate (step size) ηt of the proposed
EMAQL algorithm arises. The more the learning rate ηt decays, the less the oscillation of the players’
policies around the Nash equilibrium becomes. Therefore, when the value of the decaying learning rate
ηt becomes zero, the oscillation of the players’ policies around the Nash equilibrium will be zero. At this
point, a mixed Nash equilibrium is adopted by both players.

4.5 Nash Equilibrium π∗(s, a)

The update rule of the policy iterate πt+1(s, a) in the proposed EMAQL algorithm is given as follows,

πt+1(s, a) = (1− ηt)πt(s, a) + ηtut(s, a) (25)

Let us for now assume that the strategy iterate πt+1(s, a) in Eq. (25) has a Nash equilibrium π∗(s, a).
Thus, when Eq. (25) converges to this Nash equilibrium π∗(s, a), we get

πt+1(s, a) = πt(s, a) = π∗(s, a) (26)

From Eq. (25) and Eq. (26), we get

π∗(s, a) = (1− ηt)π∗(s, a) + ηtut(s, a)

Or,

π∗(s, a) = π∗(s, a) + ηt[ut(s, a)− π∗(s, a)] (27)

Thus, for the proposed EMAQL algorithm to converge to Nash equilibrium, both sides of Eq. (27) must
equal to each other. Therefore, at least one of the following conditions must be achieved:

Condition 1: π∗(s, a) is equal to ut(s, a). i.e.

14 Mostafa D. Awheda, Howard M. Schwartz

Iterations
0 1000 2000 3000 4000 5000

P
o

li
c
y

0

0.2

0.4

0.6

0.8

1

1.2
(a) Coordination game by EMAQL with constant learning rate

Probability of action 2 of Player 1
Probability of action 2 of Player 2

Iterations
0 1000 2000 3000 4000 5000

P
o

li
c
y

0

0.2

0.4

0.6

0.8

1

1.2
(b) Coordination game by EMAQL with decaying learning rate

Probability of action 2 of Player 1
Probability of action 2 of Player 2

Fig. 6 Probability of choosing the second action for both players in the coordination game: (a) when using a constant
learning rate ηt. (b) when using a decaying learning rate ηt.

πt+1(s, a) →
t→∞

ut(s, a) (28)

Condition 2: ηt is equal to zero. i.e.

ηt →
t→∞

0 (29)

When the Nash equilibrium π∗(s, a) is a pure strategy, the proposed EMAQL algorithm will enforce
the strategy iterate πt+1(s, a) of the learning agent to converge to its Nash equilibrium π∗(s, a) so that
Condition 1 is achieved, and when t→∞, Condition 2 is achieved too. However, in a game with a pure
Nash equilibrium, Condition 2 does not have to be satisfied in order for an EMAQL agent to converge
to its pure Nash equilibrium. On the other hand, when the Nash equilibrium π∗(s, a) is a mixed strat-
egy, the proposed EMAQL algorithm will enforce the strategy iterate πt+1(s, a) of the learning agent
to oscillate around its Nash equilibrium π∗(s, a). When Condition 2 is achieved, the strategy iterate
πt+1(s, a) converges to the Nash equilibrium π∗(s, a).

To illustrate the effect of Condition 1 and Condition 2 on the convergence of the proposed EMAQL
algorithm, the algorithm is used to learn the games depicted in Fig. (4); the coordination game and
the matching pennies game. The coordination game has a pure Nash strategy that executes the second
action with a probability of 1, whereas the matching pennies game has a mixed strategy that executes
each action with a probability of 0.5. Fig. (6)(a) illustrates the probability distributions of action 2 of
both players (Player 1 and Player 2) when using the proposed EMAQL algorithm to learn the coor-
dination game (a constant learning rate η is used in this case). As shown in this figure, both players
converge to their pure Nash equilibrium. This shows that Condition 1 is satisfied as each player’ strategy
converges to ut(s, a), where ut(s, a) = [0 1]T in this case. On the other hand, Fig. (6)(b) illustrates the
probability distributions of action 2 of both players (Player 1 and Player 2) when using the proposed
EMAQL algorithm to learn the coordination game (a decaying learning rate ηt is used in this case).
This figure shows that both players converge to their Nash equilibrium when Condition 2 is satisfied.

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 15

Iterations ×104
0 1 2 3 4 5

P
o

li
c
y

0

0.2

0.4

0.6

0.8

1
(a) Matching pennies game by EMAQL with constant learning rate

Probability of action 1 of Player 1
Probability of action 2 of Player 1

Iterations ×104
0 1 2 3 4 5

P
o

li
c
y

0

0.2

0.4

0.6

0.8

1
(b) Matching pennies game by EMAQL with decaying learning rate

Probability of action 1 of Player 1
Probability of action 2 of Player 1

Fig. 7 Probability of choosing Player 1’s actions in the the matching pennies game: (a) when using a constant learning
rate ηt. (b) when using a decaying learning rate ηt.

Fig. (6) shows that in a game with a pure Nash equilibrium, an EMAQL player will converge to its Nash
equilibrium when Condition 1 is satisfied even if Condition 2 is not satisfied. This figure also shows that
the pure Nash equilibrium will be reached through Scenario 1 when each player executes the selected
action with a probability of one, and the selected action of each player is the same as the player’s
greedy action. Fig. (7)(a) illustrates the probability distributions of action 1 and action 2 of Player 1
(policy of Player 1) in the matching pennies game when learning with the proposed EMAQL algorithm
(a constant learning rate η is used in this case). This figure shows that the proposed EMAQL algorithm
enforces the policy of Player 1 to oscillate around the Nash equilibrium strategy. As stated earlier, in
case of mixed Nash equilibrium, the policy of the learning player will continue oscillating around the
mixed Nash equilibrium when a constant learning rate η is used. In this case a decaying learning rate
has to be used so that the oscillation around the Nash equilibrium vanishes and both players adopt
their mixed Nash equilibrium. Fig. (7)(b), on the other hand, shows that using the proposed EMAQL
algorithm (with a decaying learning rate ηt) affects the learning performance and makes the policy of
Player 1 converge to the mixed Nash equilibrium. Fig. (7)(b) shows that in a game with a mixed Nash
equilibrium, an EMAQL player will converge to its Nash equilibrium when condition 2 is satisfied.

4.6 The mathematical analysis of the proposed EMAQL algorithm

To simplify analysis, we consider two-player-two-action games. However, what we are going to present
here is also valid for any other multi-agent learning game. The probabilities of selecting actions at
time t are referred to by p1,t and p2,t for the first and the second actions of Player 1, respectively.
Similar to Player 1, the probabilities of selecting actions are referred to by q1,t and q2,t for the first
and the second actions of Player 2, respectively. Thus, the policy of Player 1 at state s and time t will
be π1

t (s, a) = (p1,t, p2,t), where p1,t + p2,t = 1. On the other hand, the policy of Player 2 at state s
and time t will be π2

t = (q1,t, q2,t), where q1,t + q2,t = 1. To simplify notations, the term ujt(s, a) in
Eq. (19) is defined as u1t (s, a) = [u11 u12]T for Player 1 and u2t (s, a) = [u21 u22]T for Player 2, where

16 Mostafa D. Awheda, Howard M. Schwartz

the superscripts refer to the corresponding player and the subscripts refer to the corresponding action.
Without loss of generality, let us rewrite the equation of updating the policy iterate πt+1(s, a) given by
Eq. (19) as follows,

πjt+1(s, a) = (1− ηcηt)πjt (s, a) + ηcηtu
j
t(s, a) (30)

where ηc is a small constant step size and ηcηt ∈ (0, 1).

Thus, the policies of Player 1 and Player 2 updated by Eq. (30) can be rewritten as follows,

p1,t+1

p2,t+1

q1,t+1

q2,t+1

 =

1− ηcηt 0 0 0

0 1− ηcηt 0 0
0 0 1− ηcηt 0
0 0 0 1− ηcηt

p1,t
p2,t
q1,t
q2,t

+

ηcηtu

1
1

ηcηtu
1
2

ηcηtu
2
1

ηcηtu
2
2

 (31)

To analyze the above equation, we use the ordinary differential equation (ODE) approach. The behavior
of the learning algorithm can be approximated by ODEs as the step size goes to zero (Thathachar and
Sastry, 2011). Thus, when the step size ηc → 0, the ordinary differential equation of Eq. (31) can be
given as follows,

ṗ1
ṗ2
q̇1
q̇2

 =

−ηt 0 0 0

0 −ηt 0 0
0 0 −ηt 0
0 0 0 −ηt

p1
p2
q1
q2

+

ηtu

1
1

ηtu
1
2

ηtu
2
1

ηtu
2
2

 (32)

or,

ṗ1
ṗ2
q̇1
q̇2

 =

−ηtp1 + ηtu

1
1

−ηtp2 + ηtu
1
2

−ηtq1 + ηtu
2
1

−ηtq2 + ηtu
2
2

 (33)

To find the equilibrium solutions of the the above ordinary differential equation, let the right hand side
of Eq. (33) equal to zero. Because the parameters of the vectors u1t (s, a) and u2t (s, a) are either 0 or 1,
the possible equilibrium solutions of the above ordinary differential equation can be specified as follows,

(π1∗, π2∗) =
(
(1, 0), (1, 0)

)
(π1∗, π2∗) =

(
(1, 0), (0, 1)

)
(π1∗, π2∗) =

(
(0, 1), (1, 0)

)
(π1∗, π2∗) =

(
(0, 1), (0, 1)

)
(π1∗, π2∗) =

(
(p∗1, p

∗
2), (q∗1 , q

∗
2)
)

(34)

Hence, the ordinary differential equation of Eq. (32) (or Eq. (33)) will have either a pure Nash equi-

librium when
[
u11 − p1, u12 − p2, u21 − q1, u22 − q2

]T
= 0 (Condition 1 in the previous subsection), or a

mixed Nash equilibrium when ηt → 0 (Condition 2 in the previous subsection).

Without loss of generality, let us assume that we have a two-player-two-action game. Thus, the possible
equilibrium solutions of the game can be specified as given in Eq. (34). Without loss of generality,
let us assume that the game has a pure Nash equilibrium and the equilibrium solution (π1∗, π2∗) =(
(0, 1), (0, 1)

)
of Eq. (34) is the Nash equilibrium. Let us also assume that both players adopt this Nash

equilibrium. That is, each player selects its second action with a probability of one. This also means that
the greedy action of the Q-table of each player is the second action. Therefore, none of the first three
equilibrium solutions of Eq. (34) will be the Nash equilibrium of the game. This is because of the same
reasons we illustrate in the proposed CLR-EMAQL algorithm. The last equilibrium solution of Eq. (34),
(π1∗, π2∗) =

(
(p∗1, p

∗
2), (q∗1 , q

∗
2)
)
, will not be the Nash equilibrium of the game either. This is because this

equilibrium solution means that Player 1 selects its actions with a probability of (p1 = p∗1, p2 = p∗2), and
Player 2 selects its actions with a probability of (q1 = q∗1 , q2 = q∗2). Since the greedy action of Player
1’s Q-table is the second action, the term u1t (s, a) of Player 1 will be defined as stated in Eq. (19) as
follows whatever the selected action by Player 1 is,

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 17

u1t (s, a) = [u11 u12]T = [0 1]T

On the other hand, because the greedy action of Player 2’s Q-table is the second action, the term u2t (s, a)
of Player 2 will be defined as stated in Eq. (19) as follows whatever the selected action by Player 2 is,

u2t (s, a) = [u21 u22]T = [0 1]T

Hence, Eq. (33) can be defined as follows,

ṗ1
ṗ2
q̇1
q̇2

 =

−p1

1− p2
−q1

1− q2

 (35)

The steady state values of Eq. (35) are p∗1 = 0, p∗2 = 1, q∗1 = 0 and q∗2 = 1. This means that the equilib-
rium solution (π1∗, π2∗) =

(
(p∗1, p

∗
2), (q∗1 , q

∗
2)
)

is not the Nash equilibrium of the game. This is because
the proposed EMAQL algorithm of each player drags the player’s policy away from this equilibrium
solution. Hence, only the equilibrium solution (π1∗, π2∗) =

(
(0, 1), (0, 1)

)
will be the Nash equilibrium

of the game. This is because the proposed EMAQL algorithm of each player drags the player’s policy
towards this equilibrium solution.

Let us now assume that the two-player-two-action game has a mixed Nash equilibrium, and the equilib-
rium solution (π1∗, π2∗) =

(
(p∗1, p

∗
2), (q∗1 , q

∗
2)
)

of Eq. (34) is the mixed Nash equilibrium of the game. Let
us also assume that both players adopt this Nash equilibrium. That is, Player 1 selects its actions with a
probability of (p1 = p∗1, p2 = p∗2), and Player 2 selects its actions with a probability of (q1 = q∗1 , q2 = q∗2).
The greedy action of the Q-table of each player will not be a specific action all the time. This is because,
in mixed Nash equilibrium games, no player will benefit from using the same action with a probability
of one all the time as its opponent (the other player) will take advantage of that and maximize its
payoff. This will make both players keep changing their actions. Thus, none of the first four equilibrium
solutions of Eq. (34) will be the Nash equilibrium of the game as the proposed EMAQL algorithm of
each player will drag the player’s policy away from adopting a pure strategy. Therefore, the strategy
of each player will keep oscillating around the game’s Nash equilibrium until both players adopt their
mixed Nash equilibrium when ηt → 0. Hence, the equilibrium solution (π1∗, π2∗) =

(
(p∗1, p

∗
2), (q∗1 , q

∗
2)
)

of Eq. (34) is the only Nash equilibrium of the game. It is important to mention here that, in the case
of games with mixed Nash equilibrium, our mathematical analysis shows that the proposed EMAQL
algorithm converges to an equilibrium. Although our mathematical analysis does not explicitly show
that the proposed EMAQL algorithm converges to a Nash equilibrium in games with mixed Nash equi-
librium, our simulation results, as will be presented later, indicate that the proposed EMAQL algorithm
does converge to Nash equilibrium.

4.7 The stability of the equilibrium solutions of the proposed EMAQL algorithm

In this subsection, we will study the stability of the equilibrium solutions of the proposed EMAQL
algorithm when the game has a pure Nash equilibrium and when it has a mixed Nash equilibrium.

4.7.1 When the game has a pure Nash equilibrium:

In pure Nash equilibrium games, when the Q-table of each learning agent converges to a Nash equilib-
rium policy, the ordinary differential equations of Eq. (33) can be viewed as linear time-varying equations.

Theorem 1:

The first-order linear time-varying system (D’Angelo, 1970) characterized by the following equation,

β0(t)ẋ(t) + β1(t)x(t) = m(t) (36)

x(t0) = x0

18 Mostafa D. Awheda, Howard M. Schwartz

has a transition matrix φ(t, t0) described as follows:

φ(t, t0) = exp
[
−

t∫
t0

β1(σ)

β0(σ)
d(σ)

]
(37)

where t0, x0 and m(t) are the initial time, the initial state and the system’s input, respectively.

Each equation in Eq. (33) can be rewritten as follows,

ẋ(t) + ηtx(t) = ηtu(t)

or,

ẋ(t) + ηtx(t) = m(t) (38)

From Eq. (36) and Eq. (38), we have,

β1(t)
β0(t)

= ηt

Without loss of generality, let t0 = 0 and ηt = 1
c1+c2t

, where c1 and c2 are constants. Thus,

φ(t, 0) = exp
[
−

t∫
0

β1(σ)
β0(σ)

d(σ)
]

= exp
[
−

t∫
0

ησd(σ)
]

= exp
[
−
∫ t
0

1
c1+c2σ

dσ
]

= exp
[
− 1

c2
ln|c1 + c2σ|t0

]
= exp

[
− 1

c2

(
ln|c1 + c2t| − ln|c1|

)]
= exp

[
− 1

c2

(
ln|c1 + c2t|+ ln| 1c1 |

)]
= exp

[
− 1

c2
ln| c1+c2tc1

|
]

= exp
[
ln| c1+c2tc1

|−
1
c2

]
= exp

[
ln| c1

c1+c2t
|

1
c2

]
Thus,

φ(t, 0) =
(c1
c1 + c2t

) 1
c2 (39)

Therefore, from Eq. (39), the transition matrix of the diagonal matrix of the linear time-varying system
of Eq. (32) is given as follows,

φ(t, 0) =

φ1(t, 0) 0 0 0

0 φ1(t, 0) 0 0
0 0 φ2(t, 0) 0
0 0 0 φ2(t, 0)

 (40)

where φ1(t, 0) =
(

a1

a1+a2t

) 1
a2 and φ2(t, 0) =

(
b1

b1+b2t

) 1
b2 .

Theorem 2
The equilibrium solution of the linear time-varying system (DeCarlo, 1989; D’Angelo, 1970) given by
the following equation

ẋ(t) = A(t)x(t) +B(t)m(t) (41)

is (globally) uniformly asymptotically stable if and only if

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 19

sup
t0≥0

sup
t≥t0
‖φ(t, t0)‖i = m0 <∞ (42)

‖φ(t+ t0, t0)‖i → 0 as t→∞ (43)

where the notation ‖ . ‖i refers to some weighted maximum norm.

Hence, the pure Nash equilibrium of the linear time-varying system of Eq. (33) is (globally) uniformly
asymptotically stable as sup

t≥0
‖φ(t, 0)‖i <∞ and lim

t→∞
‖φ(t, 0)‖i → 0.

4.7.2 When the game has a mixed Nash equilibrium:

In mixed Nash equilibrium games, we view the term ηtu as an input, m(t), to the differential equations
of Eq. (33). Because the learning rate ηt decays as time goes on, the input, m(t), to the differential
equations of Eq. (33) becomes very small and continuous as well. At that point, the differential equations
of Eq. (33) become linear time-varying differential equations. Hence, the stability analysis performed in
case of pure Nash equilibrium games can be applied to these differential equations too.

5 Simulation and Results

We have evaluated the proposed EMAQL, the WoLF-PHC (Bowling and Veloso, 2002), the GIGA-
WoLF (Bowling, 2005), the WPL (Abdallah and Lesser, 2008), and the PGA-APP (Zhang and Lesser,
2010) algorithms on a variety of matrix and stochastic games. Given that both the WoLF-PHC and the
GIGA-WoLF algorithms give nearly identical results over the same games (Bowling, 2005), we choose to
only show the proposed EMAQL, the PGA-APP, the WPL and the WoLF-PHC algorithms. The results
of applying the WoLF-PHC, the WPL, the PGA-APP and the proposed EMAQL algorithms to different
matrix and stochastic games are presented in this section. A comparison among the four algorithms in
terms of the convergence to Nash equilibrium is provided. The learning rates of each algorithm are
carefully chosen based on trial and error basis for a number of combinations of these learning rates so
that each algorithm achieves the best performance.

5.1 Matrix Games

The proposed EMAQL, the PGA-APP, the WPL and the WoLF-PHC algorithms are applied to the
matrix games depicted in Fig. (1). Fig. (8) shows the probabilities of selecting the second actions by
both players in the dilemma game. The proposed EMAQL, the PGA-APP, the WPL, and the WoLF-
PHC algorithms are shown. In this game, the parameters of the proposed EMAQL algorithm are set as
follows, ηw = 1

100+i/25 , ηWoLF
l = 2ηw, ηWoLS

l = 0.001ηw, ζ = 0.25, and θ = 0.1
1+0.0001i with an explo-

ration rate ε = 0.05. The parameters of the WoLF-PHC algorithm are selected as those of the proposed
EMAQL algorithm with δw = 1

100+i and δl = 2δw. In the PGA-APP algorithm, the parameter ζ is set
as ζ = 0, and the parameter γ is set as γ = 0.5. In the WPL algorithm, the parameters are set as follows,
η = 0.05, ζ = 0, and θ = 0.01. As stated in Section (2), the dilemma game has a pure Nash equilibrium
strategy that executes the second action of each player with a probability of one. As can be seen in Fig.
(8), when learning with all different algorithms, both players adopt their Nash equilibrium strategy as
the probabilities of selecting the second actions by both players converge to one after some time. The
probabilities of selecting actions by both players in Fig. (8)(a) go through the scenarios we stated in
Section 4.3 until a Nash equilibrium strategy is finally adopted by both players. Fig. (8)(a) confirms our
claim in Section 4.3 that the pure Nash equilibrium is reached through Scenario 1 when the selected
action of each player has a probability distribution of one, and at the same time this selected action is
the same as the greedy action calculated from the Q-table of that player.

Fig. (9) shows the probability of choosing Player 1’s actions in the shapley’s game when learning with the
proposed EMAQL, the PGA-APP, the WPL, and the WoLF-PHC algorithms. In this game, the parame-
ters of the proposed EMAQL algorithm are set as follows, ηw = 1

100+i , η
WoLF
l = 2ηw, ηWoLS

l = 0.001ηw,

ζ = 0.95, and θ = 2
10+0.0001i with an exploration rate ε = 0.05. The learning rates of the WoLF-PHC

20 Mostafa D. Awheda, Howard M. Schwartz

algorithm are set as follows, δw = 1
100+i/10 and δl = 2δw. The parameters of the PGA-APP algorithm

are set as follows, η = 1
100+i/50 and γ = 3. On the other hand, the parameters of the WPL algorithm

are set as follows, η = 1
100+i/500 , ζ = 0, and θ = 0.95. As stated in Section (2), the shapley’s game

has one mixed Nash equilibrium strategy that executes each action of each player with a probability
of 1

3 . As can be seen in Fig. (9)(a), when learning with the proposed EMAQL algorithm, both players
adopt their Nash equilibrium strategy as the probabilities of selecting each action of Player 1 converge
to 1

3 after some time. Fig. (9)(a) shows that the probabilities of selecting actions by Player 1 converge
to their mixed Nash equilibrium when Condition 2 we stated in Section 4.5 is satisfied. Fig. (9)(b) and
Fig. (9)(c) show that the PGA-APP and the WPL algorithms succeed to learn the Nash equilibrium of
the shapley’s game. Fig. (9)(d), on the other hand, shows that the WoLF-PHC algorithm fails to learn
the Nash equilibrium of the shapley’s game.

Fig. (10) shows the probability of choosing the first action for both players in the biased game while
learning with the proposed EMAQL, the PGA-APP, the WPL, and the WoLF-PHC algorithms. As
stated in Section 2, the biased game has a mixed Nash equilibrium strategy with probabilities not
uniform across actions, (0.15,0.85) and (0.85,0.15). In this game, the parameters of the proposed EMAQL
algorithm are set as follows: ηw = 1

10+i/5 , ηWoLF
l = 2ηw, ηWoLS

l = 0.001ηw, ζ = 0.95, and θ =
1

10+0.0001i with an exploration rate ε = 0.05. The WoLF-PHC algorithm’s learning rates are set as

δw = 1
10+i and δl = 2δw. In the PGA-APP algorithm, the values of ζ and γ are set as follows: ζ = 0

and γ = 3. In the WPL algorithm, the parameters are set as follows, ζ = 0, θ = 0.01 and η = 0.05.
Fig. (10)(a) shows that the proposed EMAQL algorithm succeeds to converge to a Nash equilibrium in
the biased game. The players’ strategies in this figure go through the scenarios stated in Sections 4.3
and 4.4 until a Nash equilibrium is adopted. Fig. (10)(b) shows that the PGA-APP algorithm fails to
learn the Nash equilibrium of the biased game. Fig. (10)(c) and Fig. (10)(d), on the other hand, show
that the WPL and the WoLF-PHC algorithms converge to values that are close to the Nash equilibrium
of the biased game. Fig. (8) to Fig. (10) show that the proposed EMAQL algorithm outperforms the
state-of-the-art (PGA-APP, WPL, and WoLF-PHC) algorithms in terms of the convergence to Nash
equilibrium in the matrix games depicted in Fig. (1).

5.2 Stochastic Games

The proposed EMAQL, the WoLF-PHC, the PGA-APP and the WPL algorithms are used to learn the
grid games depicted in Fig. (2); grid game 1 and grid game 2. Each game of these grid games has more
than one Nash equilibrium; grid game 1 has ten different Nash equilibria, whereas grid game 2 has two
different Nash equilibria (Hu and Wellman, 2003). We run grid game 1 until the game converges to
the Nash equilibrium shown in Fig. (3)(a). We also run grid game 2 until the game converges to the
Nash equilibrium shown in Fig. (3)(b). In both games, we only show the probabilities of the players’
actions when they first move from their initial state. This is to investigate whether or not the players’
probabilities of the selected actions will converge to Nash equilibria shown in Fig. (3) corresponding to
this stage game (the stage game at the initial state). Therefore, the figures that will be presented in
this subsection will only represent the probabilities of players’ actions at the initial state.

5.2.1 Grid Game 1

The proposed EMAQL, the WoLF-PHC, the PGA-APP and the WPL algorithms are used to learn
grid game 1 depicted in Fig. (2)(a). Grid game 1 has ten different Nash equilibria (Hu and Wellman,
2003). One of these Nash equilibria (optimal paths) is shown in Fig. (3)(a). Fig. (3)(a) shows that the
action North is the Nash equilibrium action for both players when they are at their initial state. The
learning parameters of the proposed EMAQL algorithm are set as follows, ηw = 1

10+i/5 , ηWoLF
l = 2ηw,

ηWoLS
l = 0.001ηw, ζ = 0, and θ = 1

10+0.001i with an exploration rate ε = 0.05, where i is the current
number of episodes. The parameters of the WoLF-PHC algorithm are set the same as those of the
proposed EMAQL algorithm and with δw = 1

10+5i and δl = 2δw. The values of the parameters of the
PGA-APP algorithm are the same as those of the proposed EMAQL algorithm except that γ = 3,
θ = 8

10+0.005i , and η = 0.1. On the other hand, the learning parameters of the WPL algorithm are set

as follows, θ = 1
10+0.001i and η = 0.1.

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 21

Iterations
0 2000 4000 6000 8000 10000

Po
lic

y

0

0.2

0.4

0.6

0.8

1

1.2
(a) Dilemma game by EMAQL algorithm

Probability of action 2 of Player 1
Probability of action 2 of Player 2

Iterations
0 2000 4000 6000 8000 10000

Po
lic

y

0

0.2

0.4

0.6

0.8

1

(b) Dilemma game by PGA-APP algorithm

Probability of action 2 of Player 1
Probability of action 2 of Player 2

Iterations
0 2000 4000 6000 8000 10000

Po
lic

y

0

0.2

0.4

0.6

0.8

1

1.2
(c) Dilemma game by WPL algorithm

Probability of action 2 of Player 1
Probability of action 2 of Player 2

Iterations
0 2000 4000 6000 8000 10000

Po
lic

y

0

0.2

0.4

0.6

0.8

1

1.2
(d) Dilemma game by WoLF-PHC algorithm

Probability of action 2 of Player 1
Probability of action 2 of Player 2

Fig. 8 Probability of choosing the second action for both players in the dilemma game. The proposed EMAQL, the
PGA-APP, the WPL, and the WoLF-PHC algorithms are shown.

22 Mostafa D. Awheda, Howard M. Schwartz

Iterations ×104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
lic

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) Shapley's game by EMAQL algorithm

Probability of actions 1 of PLayer 1
Probability of actions 2 of PLayer 1
Probability of actions 3 of PLayer 1

Iterations ×104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
lic

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) Shapley's game by PGA-APP algorithm

Probability of action 1 of Player 1
Probability of action 2 of Player 1
Probability of action 3 of Player 1

Iterations ×104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
lic

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(c) Shapley's game by WPL algorithm

Probability of action 1 of Player 1
Probability of action 2 of Player 1
Probability of action 3 of Player 1

Iterations ×104
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Po
lic

y

0

0.1

0.2

0.6

0.4

0.5

0.6

0.7

0.8

0.9

1
(d) Shapley's game by WoLF-PHC algorithm

Probability of action 1 of Player 1
Probability of action 2 of Player 1
Probability of action 3 of Player 1

Fig. 9 Probability of choosing Player 1’s actions in the shapley’s game. The proposed EMAQL, the PGA-APP, the
WPL, and the WoLF-PHC algorithms are shown.

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 23

Iterations ×104
0 1 2 3 4 5 6 7 8 9 10

Po
lic

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
(a) Biased game by EMAQL algorithm

Probability of action 1 of Player 1
Probability of action 1 of Player 2

Iterations ×104
0 1 2 3 4 5 6 7 8 9 10

Po
lic

y

0

0.2

0.4

0.6

0.8

1

1.2
(b) Biased game by PGA-APP algorithm

Probability of action 1 of Player 1
Probability of action 1 of Player 2

Iterations ×104
0 1 2 3 4 5 6 7 8 9 10

Po
lic

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
(c) Biased game by WPL algorithm

Probability of action 1 of Player 1
Probability of action 1 of Player 2

Iterations ×104
0 1 2 3 4 5 6 7 8 9 10

Po
lic

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
(d) Biased game by WoLF-PHC algorithm

Probability of action 1 of Player 1
Probability of action 1 of Player 2

Fig. 10 Probability of choosing the first action for both players in the biased game. The proposed EMAQL, the
PGA-APP, the WPL, and the WoLF-PHC algorithms are shown.

24 Mostafa D. Awheda, Howard M. Schwartz

Episodes
0 500 1000 1500 2000

P
o
li
c
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

(a) Probability of action North of Player 1

Learning with EMAQL algorithm
Learning with WoLF-PHC algorithm
Learning with PGA-APP algorithm
Learning with WPL algorithm

Episodes
0 500 1000 1500 2000

P
o
li
c
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

(b) Probability of action North of Player 2

Learning with EMAQL algorithm
Learning with WoLF-PHC algorithm
Learning with PGA-APP algorithm
Learning with WPL algorithm

Fig. 11 Grid game 1: (a) The probability of selecting action North by Player 1 when learning with the proposed
EMAQL, the WoLF-PHC, the PGA-APP, and the WPL algorithms. (b) The probability of selecting action North by
Player 2 when learning with the proposed EMAQL, the WoLF-PHC, the PGA-APP, and the WPL algorithms.

Fig. (11)(a) and Fig. (11)(b) show the probabilities of selecting action North by both players at their
initial state when learning with the proposed EMAQL, the WoLF-PHC, the PGA-APP, and the WPL
algorithms. Fig. (11)(a) and Fig. (11)(b) show that the probabilities of taking action North by both
players at the initial state converge to the Nash equilibrium (converge to one) when learning with the
proposed EMAQL and WoLF-PHC algorithms. However, the PGA-APP and the WPL algorithms fail to
make the players’ strategies converge to the Nash equilibria. Fig. (11) shows that the proposed EMAQL
algorithm outperforms the PGA-APP and the WPL algorithms in terms of the convergence to Nash
equilibrium in grid game 1.

The maximum reward that each player can get at the initial state if both players adopt the Nash equilib-
rium shown in Fig (3)(a) is zero. Thus, the Nash equilibrium reward for both players at the initial state
is zero. Fig. (12)(a) and Fig. (12)(b) show the average rewards of Player 1 and Player 2, respectively,
at the initial state when learning with the proposed EMAQL, the WoLF-PHC, the PGA-APP, and the
WPL algorithms. Fig. (12)(a) and Fig. (12)(b) show that the average rewards of both players at the ini-
tial state converge to the corresponding Nash equilibrium reward when only learning with the proposed
EMAQL and the WoLF-PHC algorithms. On the other hand, when learning with the PGA-APP aand
the WPL algorithms, the average rewards of both players converge to other values close to the Nash
equilibrium reward of both players.

5.2.2 Grid Game 2

The proposed EMAQL, the WoLF-PHC, the PGA-APP and the WPL algorithms are also used to learn
grid game 2 depicted in Fig. (2)(b). Grid game 2 has two Nash equilibria (Hu and Wellman, 2003). Fig.
(3)(b) shows one of these Nash equilibria. As can be seen from this particular Nash equilibrium, the
action East is the Nash equilibrium action for Player 1 at the initial state; whereas the action North is
the Nash equilibrium action for Player 2. Thus, for the algorithms to converge to this particular Nash
equilibrium at the initial state, the probability of selecting the action East by Player 1 should converge
to one. The probability of selecting the action North by Player 2 at the initial state, on the other hand,

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 25

Episodes
0 500 1000 1500 2000

A
v
e

ra
g

e
 r

e
w

a
rd

-0.4

-0.3

-0.2

-0.1

0

0.1
(a) Average reward of Player 1

Learning with EMAQL algorithm
Learning with WoLF-PHC algorithm
Learning with PGA-APP algorithm
Learning with WPL algorithm

Episodes
0 500 1000 1500 2000

A
v
e

ra
g

e
 r

e
w

a
rd

-0.4

-0.3

-0.2

-0.1

0

0.1
(b) Average reward of Player 2

Learning with EMAQL algorithm
Learning with WoLF-PHC algorithm
Learning with PGA-APP algorithm
Learning with WPL algorithm

Fig. 12 Grid game 1: (a) The average reward of Player 1 when learning with the proposed EMAQL, the WoLF-PHC,
the PGA-APP, and the WPL algorithms. (b) The average reward of Player 2 when learning with the proposed EMAQL,
the WoLF-PHC, the PGA-APP, and the WPL algorithms.

should also converge to one. The learning parameters of the proposed EMAQL algorithm are set as
follows, ηw = 1

20+i/5 , ηWoLF
l = 2ηw, ηWoLS

l = 0.001ηw, ζ = 0.25, and θ = 0.8 with an exploration rate

ε = 2
10+0.01i , where i is the current number of episodes. The parameters of the WoLF-PHC algorithm

are set the same as those of the proposed EMAQL algorithm and with δw = 1
20+i and δl = 2δw. The

values of the parameters of the PGA-APP algorithm are the same as those of the proposed EMAQL
algorithm except that γ = 3, θ = 8

10+0.001i , ζ = 0.1, and η = 0.1. On the other hand, the learning

parameters of the WPL algorithm are set as follows, θ = 1
10+0.001i , ζ = 0.1 and η = 0.1.

Fig. (13)(a) shows the probability of selecting action East by Player 1 at the initial state when learning
with the proposed EMAQL, the WoLF-PHC, the PGA-APP, and the WPL algorithms. Fig. (13)(a)
illustrates that the probability of selecting the action East by Player 1 at the initial state successfully
converges to one (Nash equilibrium) when learning with the proposed EMAQL and WoLF-PHC al-
gorithms. However, the PGA-APP and the WPL algorithms fail to make Player 1 choose the action
East with a probability of one at the initial state. Fig. (13)(b) shows the probability of selecting action
North by Player 2 at the initial state when learning with the proposed EMAQL, the WoLF-PHC, the
PGA-APP, and the WPL algorithms. As can be seen from Fig. (13)(b), the probability of selecting
action North by Player 2 at the initial state successfully converges to one (Nash equilibrium) when
Player 2 learns its strategy with the proposed EMAQL and the WoLF-PHC algorithms. The PGA-APP
and the WPL algorithms, on the other hand, fail to make Player 2 choose action North with a prob-
ability of one at the initial state. Fig. (13) shows that the proposed EMAQL algorithm outperforms
the PGA-APP and the WPL algorithms in terms of the convergence to Nash equilibrium in grid game 2.

In grid game 2, the Nash equilibrium reward for both players at the initial state is zero. Fig. (14)(a)
and Fig. (14)(b) show the average rewards of Player 1 and Player 2 at the initial state, respectively,
when learning with the proposed EMAQL, the WoLF-PHC, the PGA-APP, and the WPL algorithms.
Fig. (14)(a) and Fig. (14)(b) show that the average rewards of both players at the initial state con-
verge to the corresponding Nash equilibrium reward when only learning with the proposed EMAQL
and the WoLF-PHC algorithms. On the other hand, when learning with the PGA-APP aand the WPL

26 Mostafa D. Awheda, Howard M. Schwartz

Episodes
0 2000 4000 6000 8000 10000

P
o
li
c
y

0

0.2

0.4

0.6

0.8

1

1.2
(a) Probability of action East of Player 1

Learning with EMAQL algorithm
Learning with WoLF-PHC algorithm
Learning with PGA-APP algorithm
Learning with WPL algorithm

Episodes
0 2000 4000 6000 8000 10000

P
o
li
c
y

0

0.2

0.4

0.6

0.8

1

1.2
(b) Probability of action North of Player 2

Learning with EMAQL algorithm
Learning with WoLF-PHC algorithm
Learning with PGA-APP algorithm
Learning with WPL algorithm

Fig. 13 Grid game 2: (a) The probability of selecting action East by Player 1 when learning with the proposed
EMAQL, the WoLF-PHC, the PGA-APP, and the WPL algorithms. (b) The probability of selecting action North by
Player 2 when learning with the proposed EMAQL, the WoLF-PHC, the PGA-APP, and the WPL algorithms.

algorithms, the average rewards of both players converge to other values close to the Nash equilibrium
reward of both players at the initial state.

6 Conclusions

New multi-agent policy iteration learning algorithms are proposed in this work; the CLR-EMAQL
algorithm and the EMAQL algorithm. The proposed algorithms use the exponential moving average
(EMA) estimation technique along with the Q-learning algorithm to update the learning agent’s policy.
The proposed CLR-EMAQL algorithm uses one constant learning rate (ηc) when updating the learning
agent’s strategy. The proposed CLR-EMAQL algorithm succeeds to converge to Nash equilibrium only
when the game has a pure Nash equilibrium. A theoretical analysis that shows the convergence of the
proposed CLR-EMAQL algorithm to Nash equilibrium in games with pure Nash equilibrium is provided
in this article. On the other hand, the proposed EMAQL algorithm uses two different decaying learning
rates (ηw and ηl) when updating the agent’s strategy. The values of these variable learning rates are
inversely proportional to the number of iterations (or episodes) and are set based on one of two different
mechanisms; the Win-or-Learn-Fast (WoLF) mechanism or the Win-or-Learn-Slow (WoLS) mechanism.
The WoLS mechanism is introduced in this article to make the algorithm learn fast when it is winning
and learn slowly when it is losing. The proposed EMAQL algorithm uses the rewards received by the
learning agent to decide which mechanism (WoLF mechanism or WoLS mechanism) to use for the game
being learned. The proposed EMAQL algorithm succeeds to converge to Nash equilibrium in games
with pure or mixed Nash equilibrium. A theoretical analysis that shows the convergence of the proposed
EMAQL algorithm to Nash equilibrium in games with pure Nash equilibria is provided. In the case
of games with mixed Nash equilibrium, our mathematical analysis shows that the proposed EMAQL
algorithm converges to an equilibrium. Although our mathematical analysis does not explicitly show
that the proposed EMAQL algorithm converges to a Nash equilibrium, our simulation results indicate
that the proposed EMAQL algorithm does converge to Nash equilibrium. To verify that our theoretical
analysis and our simulation results are consistent, the proposed EMAQL algorithm is applied to a variety

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms 27

Episodes
0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 r

e
w

a
rd

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
(a) Average reward of Player 1

Learning with EMAQL algorithm
Learning with WoLF-PHC algorithm
Learning with PGA-APP algorithm
Learning with WPL algorithm

Episodes
0 2000 4000 6000 8000 10000

A
v
e
ra

g
e
 r

e
w

a
rd

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
(b) Average reward of Player 2

Learning with EMAQL algorithm
Learning with WoLF-PHC algorithm
Learning with PGA-APP algorithm
Learning with WPL algorithm

Fig. 14 Grid game 2: (a) The average reward of Player 1 when learning with the proposed EMAQL, the WoLF-PHC,
the PGA-APP, and the WPL algorithms. (b) The average reward of Player 2 when learning with the proposed EMAQL,
the WoLF-PHC, the PGA-APP, and the WPL algorithms.

of matrix and stochastic games. The results show that the proposed EMAQL algorithm outperforms the
PGA-APP, the WPL, and the WoLF-PHC algorithms in terms of the convergence to Nash equilibrium.

References

[Abdallah and Lesser, 2008] S. Abdallah, V. Lesser, A multiagent reinforcement learning algorithm with non-linear
dynamics. Journal of Artificial Intelligence Research, 521–549 (2008)

[Awheda and Schwartz, 2013] M.D. Awheda, H.M. Schwartz, Exponential moving average Q-learning algorithm, in
Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2013 IEEE Symposium on, IEEE, 2013,
pp. 31–38. IEEE

[Awheda and Schwartz, 2015] M.D. Awheda, H.M. Schwartz, The residual gradient FACL algorithm for differential
games, in Electrical and Computer Engineering (CCECE), 2015 IEEE 28th Canadian Conference on, IEEE, 2015,
pp. 1006–1011. IEEE

[Banerjee and Peng, 2007] B. Banerjee, J. Peng, Generalized multiagent learning with performance bound. Au-
tonomous Agents and Multi-Agent Systems 15(3), 281–312 (2007)

[Bellman, 1957] R. Bellman, Dynamic Programming (Princeton University Press, Princeton, New York, 1957)
[Bowling, 2005] M. Bowling, Convergence and no-regret in multiagent learning. Advances in neural information pro-

cessing systems 17, 209–216 (2005)
[Bowling and Veloso, 2001a] M. Bowling, M. Veloso, Convergence of gradient dynamics with a variable learning rate,

in ICML, 2001a, pp. 27–34
[Bowling and Veloso, 2001b] M. Bowling, M. Veloso, Rational and convergent learning in stochastic games, in Inter-

national joint conference on artificial intelligence, vol. 17, LAWRENCE ERLBAUM ASSOCIATES LTD, 2001b, pp.
1021–1026. LAWRENCE ERLBAUM ASSOCIATES LTD

[Bowling and Veloso, 2002] M. Bowling, M. Veloso, Multiagent learning using a variable learning rate. Artificial Intel-
ligence 136(2), 215–250 (2002)

[Burkov and Chaib-draa, 2009] A. Burkov, B. Chaib-draa, Effective learning in the presence of adaptive counterparts.
Journal of Algorithms 64(4), 127–138 (2009)

[Busoniu et al., 2006] L. Busoniu, R. Babuska, B. De Schutter, Multi-agent reinforcement learning: A survey, in Con-
trol, Automation, Robotics and Vision, 2006. ICARCV’06. 9th International Conference on, IEEE, 2006, pp. 1–6.
IEEE

[Busoniu et al., 2008] L. Busoniu, R. Babuska, B. De Schutter, A comprehensive survey of multiagent reinforcement
learning. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 38(2), 156–172
(2008)

[Claus and Boutilier, 1998] C. Claus, C. Boutilier, The dynamics of reinforcement learning in cooperative multiagent
systems, in AAAI/IAAI, 1998, pp. 746–752

28 Mostafa D. Awheda, Howard M. Schwartz

[Conitzer and Sandholm, 2007] V. Conitzer, T. Sandholm, Awesome: A general multiagent learning algorithm that
converges in self-play and learns a best response against stationary opponents. Machine Learning 67(1-2), 23–43
(2007)

[Dai et al., 2005] X. Dai, C.-K. Li, A.B. Rad, An approach to tune fuzzy controllers based on reinforcement learning
for autonomous vehicle control. Intelligent Transportation Systems, IEEE Transactions on 6(3), 285–293 (2005)

[D’Angelo, 1970] H. D’Angelo, Linear time-varying systems: Analysis and synthesis (Newton, MA: Allyn & Bacon,
Newton, Massachusetts, 1970)

[DeCarlo, 1989] R.A. DeCarlo, Linear systems: A state variable approach with numerical implementation (Prentice-
Hall, Inc., Upper Saddle River, New Jersey, 1989)

[Dixon, 2014] W. Dixon, Optimal adaptive control and differential games by reinforcement learning principles. Journal
of Guidance, Control, and Dynamics 37(3), 1048–1049 (2014)

[Fulda and Ventura, 2007] N. Fulda, D. Ventura, Predicting and Preventing Coordination Problems in Cooperative
Q-learning Systems., in IJCAI, vol. 2007, 2007, pp. 780–785

[Gutnisky and Zanutto, 2004] D.A. Gutnisky, B.S. Zanutto, Learning obstacle avoidance with an operant behavior
model. Artificial Life 10(1), 65–81 (2004)

[Hinojosa et al., 2011] W. Hinojosa, S. Nefti, U. Kaymak, Systems control with generalized probabilistic fuzzy-
reinforcement learning. Fuzzy Systems, IEEE Transactions on 19(1), 51–64 (2011)

[Howard, 1960] R.A. Howard, Dynamic programming and markov processes (1960)
[Hu and Wellman, 2003] J. Hu, M.P. Wellman, Nash Q-learning for general-sum stochastic games. The Journal of

Machine Learning Research 4, 1039–1069 (2003)
[Hu et al., 1998] J. Hu, M.P. Wellman, et al., Multiagent reinforcement learning: theoretical framework and an algo-

rithm, in ICML, vol. 98, Citeseer, 1998, pp. 242–250. Citeseer
[Kaelbling et al., 1996] L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: A survey. Journal of arti-

ficial intelligence research, 237–285 (1996)
[Kondo and Ito, 2004] T. Kondo, K. Ito, A reinforcement learning with evolutionary state recruitment strategy for

autonomous mobile robots control. Robotics and Autonomous Systems 46(2), 111–124 (2004)
[Luo et al., 2015a] B. Luo, H.-N. Wu, T. Huang, Off-policy reinforcement learning for H∞ control design. Cybernetics,

IEEE Transactions on 45(1), 65–76 (2015a)
[Luo et al., 2014a] B. Luo, H.-N. Wu, H.-X. Li, Data-based suboptimal neuro-control design with reinforcement learn-

ing for dissipative spatially distributed processes. Industrial & Engineering Chemistry Research 53(19), 8106–8119
(2014a)

[Luo et al., 2015b] B. Luo, H.-N. Wu, H.-X. Li, Adaptive optimal control of highly dissipative nonlinear spatially
distributed processes with neuro-dynamic programming. Neural Networks and Learning Systems, IEEE Transactions
on 26(4), 684–696 (2015b)

[Luo et al., 2014b] B. Luo, H.-N. Wu, T. Huang, D. Liu, Data-based approximate policy iteration for nonlinear
continuous-time optimal control design. Automatica 50(12), 3281–3290 (2014b)

[Luo et al., 2015c] B. Luo, T. Huang, H.-N. Wu, X. Yang, Data-driven H∞ control for nonlinear distributed parameter
systems (2015c)

[Luo et al., 2015d] B. Luo, H.-N. Wu, T. Huang, D. Liu, Reinforcement learning solution for HJB equation arising in
constrained optimal control problem. Neural Networks 71, 150–158 (2015d)

[Modares et al., 2014] H. Modares, F.L. Lewis, M.-B. Naghibi-Sistani, Integral reinforcement learning and experience
replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems. Automatica
50(1), 193–202 (2014)

[Rodŕıguez et al., 2007] M. Rodŕıguez, R. Iglesias, C.V. Regueiro, J. Correa, S. Barro, Autonomous and fast robot
learning through motivation. Robotics and Autonomous Systems 55(9), 735–740 (2007)

[Schwartz, 2014] H.M. Schwartz, Multi-Agent Machine Learning: A Reinforcement Approach (Wiley, New York, New
York, 2014)

[Sen and Weiss, 1999] S. Sen, G. Weiss, Learning in multiagent systems. Multiagent systems: A modern approach to
distributed artificial intelligence, 259 (1999)

[Sen et al., 1994] S. Sen, M. Sekaran, J. Hale, Learning to coordinate without sharing information, in AAAI, 1994, pp.
426–431

[Singh et al., 2000] S. Singh, M. Kearns, Y. Mansour, Nash convergence of gradient dynamics in general-sum games, in
Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc.,
2000, pp. 541–548. Morgan Kaufmann Publishers Inc.

[Smart and Kaelbling, 2002] W.D. Smart, L.P. Kaelbling, Effective reinforcement learning for mobile robots, in
Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on, vol. 4, IEEE, 2002,
pp. 3404–3410. IEEE

[Sutton and Barto, 1998] R.S. Sutton, A.G. Barto, Reinforcement learning: an introduction (The MIT Press, Cam-
bridge, Massachusetts, 1998)

[Tan, 1993] M. Tan, Multi-agent reinforcement learning: Independent vs. cooperative agents, in Proceedings of the
tenth international conference on machine learning, 1993, pp. 330–337

[Tesauro, 2003] G. Tesauro, Extending Q-learning to general adaptive multi-agent systems, in Advances in neural
information processing systems, 2003, p.

[Thathachar and Sastry, 2011] M.A. Thathachar, P.S. Sastry, Networks of learning automata: Techniques for online
stochastic optimization (Springer, Boston, Massachusetts, 2011)

[Watkins and Dayan, 1992] C.J. Watkins, P. Dayan, Q-learning. Machine learning 8(3-4), 279–292 (1992)
[Watkins, 1989] C.J.C.H. Watkins, Learning from delayed rewards, PhD thesis, University of Cambridge England,

1989
[Wu and Luo, 2012] H.-N. Wu, B. Luo, Neural network based online simultaneous policy update algorithm for solving

the HJI equation in nonlinear control. Neural Networks and Learning Systems, IEEE Transactions on 23(12), 1884–
1895 (2012)

[Ye et al., 2003] C. Ye, N.H. Yung, D. Wang, A fuzzy controller with supervised learning assisted reinforcement learning
algorithm for obstacle avoidance. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 33(1),
17–27 (2003)

[Zhang and Lesser, 2010] C. Zhang, V.R. Lesser, Multi-Agent Learning with Policy Prediction, in AAAI, 2010

