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Abstract

The concept of leveraging knowledge from previous experience to accelerate learning forms the crux of transfer
learning. Within the realm of reinforcement learning, the agent typically requires protracted interaction with
the environment, which can be time-consuming and can lead to slow convergence. Transfer learning offers a
promising solution in such settings. In this paper, we investigate the application of transfer learning in the
fuzzy reinforcement learning domain, specifically within the context of differential games. We introduce a novel
approach for knowledge transfer across analogous tasks, employing fuzzy logic controllers as function approxi-
mators, notably within the Fuzzy Actor-Critic Learning (FACL) algorithm. Specifically, we propose a strategy
for fuzzy rule transfer (FRT) aimed at mapping fuzzy rules between the source and target tasks. The target
task is assumed to be related to the source task yet it contains more complex states. Our approach has been
implemented and tested within the domain of differential games in which all state space and action space are
continuous. The simulation outcomes demonstrate that the application of knowledge transfer enables RL agents
to learn faster and achieve asymptotic performance more rapidly in the target task.
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1 Introduction

Reinforcement learning (RL) offers a structured
approach for for an agent to learn the mapping of situ-
ations to actions with the aim to maximize a numerical
reward signal[1]. In reinforcement learning, if both the
state and action spaces are discrete and of modest
scale, the policy can be conveniently stored in a look-
up table. However, this approach becomes intractable
when the state and action spaces occupy the continuous
domain, implying an infinite array of states and actions
to assess. Managing such an expansive look-up table
becomes infeasible. To deal with this situation, function
approximation is employed to represent the continuous
state and action spaces in an effective way [2], [3]. In
this study, we focus on one of the extensively utilized
function approximators, namely, fuzzy logic controllers
(FLC) or fuzzy inference systems (FIS). FLCs are uni-
versal approximators that can estimate any continuous
function to any degree of accuracy [4]. By integrat-
ing reinforcement learning with FLCs, we can address
problems situated within the continuous domain. When

reinforcement learning is associated with FLCs, the
resultant approach is typically referred to as Fuzzy
Reinforcement Learning. [5].

Fuzzy reinforcement learning is gaining popular-
ity in both academic and applied sectors, including
control for multi-robot system [6][7] and autonomous
underwater vehicle (AUV) [8]. Challenges arise when it
comes to mastering intricate tasks. One notable chal-
lenge is the slow convergence towards a good policy,
which can be attributed to several factors, including
the complexity of the problem, the high dimension-
ality of the state and action spaces. For instance,
temporal-difference(TD) learning methods [1], a vari-
ant of reinforcement learning, have demonstrated some
success in different machine learning tasks, primarily
due to its capability to learn in situations characterized
by limited prior knowledge and minimal environmental
feedbacks.[9]. However, TD frequently exhibits a rather
slow convergence in practice to produce near-optimal
behaviors. Thus, a large amount of research and tech-
niques has been targeted at improving the learning
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speed of agents. Methods such as experience replay [10],
reward shaping [11], and direct algorithmic improve-
ments [12] are quite common. Notably, transfer learning
stands out as a pivotal technique in this domain. The
insight behind transfer learning is that generalizations
may occur not only within tasks, but also across tasks
[13]. This concept mirrors the mechanisms inherent in
human learning processes, where we leverage our past
experiences to efficiently navigate new tasks. Similarly,
the method of learning can also benefit the RL agents,
provided that they are given the appropriate experience
from a similar task they have previously encountered.
Within the context of reinforcement learning, Our aim
is to transfer knowledge acquired by the agent from a
preceding task (source task) to a new task (target task)
in order to speed up learning.

To the best of our knowledge, this study is the first
methodological exploration of transfer learning within
the domain of fuzzy reinforcement learning. Specifi-
cally, We propose an innovative strategy for knowledge
transfer across analogous tasks, utilizing the Fuzzy
Actor-Critic Learning (FACL) algorithm at its core.
Additionally, we introduce the concept of Fuzzy Rule
Transfer (FRT), specifically tailored for mapping of
fuzzy rules between the source and target tasks. The
method is based on the assumption that the target
task, while related to the source task, encapsulates a
more complex set of states. Our proposed methodol-
ogy has been implemented and validated within the
context of differential games, wherein all state and
action spaces exist in a continuous domain. The out-
comes of our research reveal that the application of
Fuzzy Rule Transfer enables reinforcement learning
agents to achieve asymptotic performance at a notably
accelerated rate within the target task.

The structure of the paper is organized as fol-
lows. The background and related work is presented
in Section 2. We introduce the technical details of the
Fuzzy Rule Transfer (FRT) method in Section 3. The
simulation and results are demonstrated in Section 4.
Finally, the paper is concluded in Section 5.

2 Background and Related Work

2.1 Transfer Learning

Transfer learning operates on the insight that general-
izations are not strictly confined within individual tasks
but can potentially extend across tasks. This concept
shares similar mechanisms in human learning pro-
cesses, where we leverage our past experiences to effec-
tively navigate new tasks. Analogously, the method
of learning can also benefit the RL agents, given the
appropriate experience from a similar task they have
previously mastered. The most intuitive application
of transfer learning to reinforcement learning involves

the reuse of solutions from tasks previously encoun-
tered by the agent [14]. However, many methodologies
also emphasize the reuse of knowledge derived from
external sources, such as demonstrations by human
operators or advice from other learning agents [15].
Within the context of reinforcement learning, we aim
to transfer knowledge acquired by agents in a preced-
ing task (source task) to a new task (target task) in
order to speed up learning, and ultimately enhance
the efficiency and effectiveness of reinforcement learn-
ing agents. Transfer learning in reinforcement learning
(RL) tasks has been extensively explored through
numerous studies. (e.g., [16]), [17]). The wide array of
transfer learning algorithms typically vary based on the
degree of similarity between the target and source tasks
[13]. The allowed task differences are a major consid-
eration in RL transfer learning methods. To mimic a
real-world situation, it is desirable to utilize method-
ologies that accommodate differences in state vari-
ables between the source and target task. An effective
approach in this aspect is transfer via inter-task map-
ping (TVITM), which enables transfer between pairs of
tasks by mapping the state variables and actions in the
target task onto the source task [14]. In their research,
various function approximators are investigated includ-
ing the artificial neural network (ANN) and cerebellar
model articulation controller (CMAC), and success-
fully employed within the TVITM framework. Another
well-suited methodology for this scenario is transfer via
inter-task mapping for policy search methods (TVITM-
PS) [18]. In this approach, rather than transferring
the action-value functions in TVITM, entire policies
are transferred between the source and target tasks.
Again, the transfer process within TVITM-PS is exe-
cuted and evaluated utilizing a neural network function
approximator. These approaches underscore the poten-
tial of transfer learning in the domain of reinforcement
learning tasks.

2.2 Evaluating Transfer Learning
Methods

One of the key challenges in transfer learning is to
define evaluation metrics. Most evaluation metrics are
goal driven. For example, if the goal is reusing the
knowledge from the past to accelerate training in a new
task, then only a target task scenario should be con-
sidered. In this scenario, we focus on learning spent in
the target task only, not the source task. This perspec-
tive is central to our study. The possible measurement
options should always depend on the algorithms focus
and the goal of transfer. We conclude the most common
metrics as follows [13].
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1. Jumpstart : This is the improvement in performance
that occurs during the initial phase of a target task
learning when transfer learning is applied.

2. Asymptotic Performance: This is the improvement
in performance that occurs at the final stage of a
target task when transfer learning is applied.

3. Total Reward : The total reward accumulated by an
agent in the target task when transfer learning is
applied. We compare the accumulated reward with
and without transfer learning in the target task

4. Transfer Ratio: This is similar to total reward, but
instead of using it directly, we calculate the ratio of
the total reward accumulated with and without the
transfer in place.

5. Time to Threshold : The elapsed time in the the
target task for an agent to achieve a pre-specified
performance level when transfer learning is applied.

While other metrics have been suggested in litera-
ture, we prioritize these five because they are sufficient
to describe most transfer learning methods [13]. We
present these performance metrics in Fig. 1, showcas-
ing that various metrics can measure transfer learn-
ing. Specifically, the graph highlights enhancements in
jumpstart, asymptotic performance, time to threshold,
and total reward, represented by the area under the
learning curve.

Fig. 1: Various metrics used in measuring TL [13]

2.3 Fuzzy Actor-Critic Learning

When state and action spaces are either large or
reside within the continuous domain, maintaining a
lookup table typically becomes computationally infea-
sible. Consequently, traditional reinforcement learning
algorithms, such as Q-learning, might lead to the curse
of dimensionality. To overcome this issue, function
approximators such as a cerebellar model arithmetic
computer (CMAC) or an artificial neural network

(ANN) can be used to effectively represent the con-
tinuous state and action spaces[1]. Another prevalent
choice among function approximators is the Fuzzy
Logic Controller (FLC) or Fuzzy Inference Systems
(FIS) [2]. FLC are popular computing frameworks
based on the concepts of fuzzy set theory, which have
been extensively applied with success in a wide range
of fields, including control, decision support, and sys-
tem identification, among others [19]. The FLC exhibits
two advanced attributes when employed for function
approximation: Firstly, fuzzy sets are able to cope
with the vagueness present in real-world environment
and brings human heuristic knowledge into the con-
trol design, thereby creating an intuitive connection
between the designer and the system. Subsequently, it
provides the advantage of focusing the learning process
strictly on the consequent parameters[20, 21]. This fea-
ture promotes a more efficient and targeted learning
experience.

When reinforcement learning is associated with the
FLC, the approach is typically referred to as fuzzy
reinforcement learning [5]. This approach encapsulates
the benefits of both traditional reinforcement learn-
ing and fuzzy logic, providing an effective means to
address problems in areas where state and action
spaces are continuous or otherwise complex. The fuzzy
Q-learning (FQL) and fuzzy actor-critic learning algo-
rithm (FACL) are amongst the most widely used
algorithms in fuzzy reinforcement learning. A compar-
ison between the FQL and the FACL algorithms was
conducted in [20], where FACL leads to better perfor-
mance and shorter learning length than those obtained
with FQL. Given that FQL is a more compact method
than FACL, the FACL’s superiority may stem from
its additional degrees of freedom relative to FQL [20].
Thus, in this study, we will primarily focus on the
FACL algorithm.

In the FACL, the Fuzzy Logic Controller(FLC) is
implemented as a function approximator for both actor
and critic. The role of the actor is to generate contin-
uous control action while the role of the critic is to
predict the sum of future discounted rewards. Fig. 2
illustrates the FACL agent and its environment to the
system block. At every timestep, each learning agent
observes the environment’s state, st ∈ S. The actor,
using this observation, chooses an optimal action at ∈
A(s) Concurrently, the critic assesses anticipated per-
formance through the value function relative to the
agent’s objectives. After this action, the agent receives
a reinforcement signal, rt+1 ∈ R transitioning to a new
state st+1. Using this reinforcement signal, the current
value function, V̂t, and the subsequent state’s value
function, ˆVt+1, the Temporal Difference (TD) error is
computed. This error can be seen as an indication of
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prediction accuracy, is then used to adjust both the
actor’s and critic’s inputs.

In this study, we have employed the zero-order
Sugeno fuzzy model for the implementation of the
Fuzzy Logic Controller (FLC) [22]. In our previous
research, we have applied the fuzzy reinforcement
learning methods to the pursuer–evader differential
game in [23], [24]. In [23], a fuzzy actor–critic learning
(FACL) algorithm is also applied to the pursuit-evasion
differential game. It is shown that the adaptive fuzzy
critic in [24] performed better than the neural network
proposed in [25]. In the configuration proposed in this
thesis, we only adapt the output parameters of the
fuzzy system, whereas in [24], [26] the input and output
parameters of the fuzzy system are adapted which is
a more complex adaptive algorithm. In the subsequent
section, we will briefly present the overview of FACL
algorithms.

A reinforcement learning agent interacts with the
MDP environment and receives a reward signal rt at
each time step. The ultimate goal of an agent is to
maximize the discounted return Rt in the long run [1].
The value function is the expected rewards at time step
t, and can also be rewritten recursively as

Vt = rt+1 + γVt+1 , (1)

where γ ∈ [0, 1) is a discount factor. The agent imme-
diately receives a reward from the current environment
based on its action in that state. We use a FLC as
the agent’s critic to estimate the value of the state at
time t, as V̂ (s(t)). The error in the estimation of the
state value is represented by the temporal difference.
As shown in Fig. 2, the temporal difference (TD) error
δt, is given as

δt = rt+1 + γV̂ (st+1)− V̂ (st) , (2)

Fig. 2: The fuzzy actor critic learning structure[27].

We represent the actor by an adaptive fuzzy con-
troller to effectively select an action and also update

Fig. 3: Membership function for input of distance [27].

the policy parameter in the FLC in the direction sug-
gested by the critic. The output of the fuzzy controller
is,

ut =

M∑
l=1

Φlwlt , (3)

where M is the number of rules, wl is the output or
consequent parameter of the actor, and Φl is the firing
strength of rule l. The firing strength for rule l is defined
as,

Φl =

n∏
i=1

µF
l
i (xi)

M∑
l=1

(
n∏
i=1

µF
l
i (xi))

, (4)

where n is the number of inputs and µF
l
i is the member-

ship degree of input xi, in the fuzzy rule F li . We choose
only triangular membership functions where only two
membership functions overlap for any given input and
the maximum value of any membership function is 1
[27]. Therefore the denominator of (4) is always equal
to 1. For example, the set of membership functions for
distance are as shown in Fig. 3. We can then rewrite
(4) as [27],

Φl =

n∏
i=1

µF
l
i (xi) . (5)

In order to promote exploration of the action space,
a random white noise is chosen from a Gaussian distri-
bution with a mean of 0 and a variance of σ given by
N(0, σ) is added to the generated control signal u. The
output parameter of the actor FLC, wl is adapted as
[27]

wlt+1 = wlt + βLδt

(
u′t − ut

)
∂u

∂wl
, (6)

where δt is the TD error mentioned earlier, βL ∈ (0, 1)
is the learning rate for the actor and where,

∂u

∂wl
= Φlt . (7)

Upon examining (6) we see that the term u′t − ut is
equal to the added noise. As such we modify the update
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for the actor FLC output parameters as,

wlt+1 = wlt + βLδt(noise)Φ
l
t . (8)

Once the action is executed, the critic evaluates the
new state to determine the expected new state value.
The output of the critic V̂ is an approximation to V
given by

V̂t =

M∑
l=1

Φlζlt , (9)

where ζlt is the output or consequent parameter of
the critic and Φl is defined in (4). The critic output
parameter ζl is adapted as,

ζlt+1 = ζlt + αLδt
∂V̂

∂ζl
, (10)

where αL ∈ (0, 1) is the learning rate for the critic.
The learning rate in FACL is set as βL < αL, so that
the actor will converge slower than the critic to prevent
instability in the actor [28]. The partial derivative is
calculated as,

∂V̂

∂ζl
= Φlt . (11)

We update the parameters in critic as

ζlt+1 = ζlt + αLδtΦ
l . (12)

The FACL learning algorithm is presented in Algo-
rithm 1.

Algorithm 1 FACL algorithm

1: Initialize V̂ = 0, ζl = 0 and wl = 0 for l = 1, ...,M .
2: for each time step in the current episode do
3: Obtain the inputs x̄t.
4: Calculate the output of the actor ut in (3).
5: Calculate the output of the critic V̂t in (9).
6: Run the game for the current time step.
7: Obtain the reward rt+1 and new inputs x̄t+1.
8: Calculate V̂t+1 based on (9).
9: Calculate the temporal error δt in (2).

10: Update ζlt+1 in (12) and wlt+1 in (8).
11: end for

3 Transfer Learning in FACL
using Fuzzy Rule Transfer

In the preceding section, we discussed the Fuzzy
Actor-Critic Learning algorithm, a Temporal Differ-
ence (TD)-based learning methodology, wherein both
the actor and the critic are adapted in accordance with

temporal differences. Additionally, we briefly explored
transfer learning in Reinforcement Learning (RL), a
strategy that speeds up an agent’s learning process
by applying knowledge from prior experiences to new
tasks.

In this section, our focus is directed towards a
specific scenario: knowledge transfer within the Fuzzy
Actor-Critic Learning algorithm. Drawing inspiration
from Transfer via Inter-Task Mapping (TVITM) and
Transfer via Inter-Task Mapping for Policy Search
Methods (TVITM-PS), we propose an innovative
Fuzzy Rule Transfer (FRT) method. This method is
specifically designed to map fuzzy rules between the
source and target tasks, leveraging the unique Fuzzy
Logic Controller (FLC) structure within the Fuzzy
Actor-Critic Learning framework.

To illustrate the fuzzy rule transfer method, we will
initially discuss the overall approach and framework
specific to FRT. Subsequently, we will dive into the
details of the mapping process including the vectoriza-
tion of fuzzy rules and the employment of similarity
measurement. The latter is utilized to evaluate the
degree of similarity between the vector representations
of fuzzy rules.

3.1 Knowledge Transfer in Fuzzy Rules

We introduce a novel method for transferring knowl-
edge between a previously learned task and a target
task, specifically within the context of the Fuzzy Actor-
Critic Learning (FACL) algorithm. This is achieved
through the application of the Fuzzy Rule Transfer
(FRT) method.

For the FACL algorithm employed in this study,
both the critic and actor are instantiated with zero-
order Takagi-Sugeno-Kang (TSK) Fuzzy Logic Con-
troller (FLC) that incorporates constant consequent
parameters. Each FLC consists of L rules. The inputs
for each rule comprise n fuzzy input variables, while the
consequent of each rule is a numerical constant. Each
rule l (l = 1, ..., L) has the following form:

Rl : IF s1 is Al1, ..., and sn is Aln Then zl = kl ,

(13)

where the variable zl represents the output variable of
rule l, and kl is the consequent parameter of rule l. The
variable si (i = 1, ..., n) is the ith input state variable
of the fuzzy system, and n is the number of input state
variables. The Ali represents the linguistic value of the
input si at the rule l.

The total number of rules can be derived based on
the number of input variables and membership func-
tions (MF). We denote hi as the number of membership
functions for each state variable si. Given n input state
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variables, the total number of rules L can be calculated
as (14).

L = h1 × h2 × h3...× hn . (14)

In this study, we consider a typical scenario where
the input states are different in the source and tar-
get tasks. This implies the fuzzy rules associated with
each task are distinct. As described previously, we use
Lsource as the total number of rules in the source task
and Ltarget as the total number of rules in the target
task. Thus the consequent parameter for source and
target tasks are ki (i = 1, ..., Lsource) and kj (j =
1, ..., Ltarget) respectively. We consider Ltarget to be
much larger than Lsource as target tasks are assumed
to have more complex states than the source tasks.

Our objective is to facilitate knowledge transfer
between the source and target tasks. In the context
of the FACL, the acquired knowledge is encapsulated
in the consequent parameters of the Fuzzy Logic Con-
troller (FLC). Given the difference in rule quantity
and rule structure previously explained, we introduce a
mapping function, denoted as ψ, designed to align the
initial consequent parameters in a target task with the
learned consequent parameters in a source task, based
on rule similarity. This initiation of the FLC within
a target task, utilizing previously acquired knowledge,
enables an immediate enhancement in both the state
estimation of the critic and the action selection of the
actor during the initial learning phase. This improve-
ment navigates the learning agent towards more rea-
sonable action choices, as opposed to those selected at
random, thus accelerating the learning process.

Similar to the mapping procedures outlined in
TVITM and TVITM-PS, as described in Section 2, we
perform mapping functional ψ on both the critic and
the actor of the agent in FACL. However, a funda-
mental difference is that the mappings in TVITM and
TVITM-PS are performed on the state variables and
actions, whereas in the FLC function approximator,
the mapping is directly performed on the fuzzy rules
space between the source and target task. The conse-
quent parameters of fuzzy rules pertaining to a target
task’s critic FLC are mapped to the learned consequent
parameters of the most similar rules pertaining to a
source task’s critic FLC, via ψcritic in (15)

ψcritic(k
critic
i,target) = k criticj,source , (15)

where k critici,target (i = 1, ..., Ltarget) is the consequent
parameter of the critic’s FLC in a target task and
k criticj,source (j = 1, ..., Lsource) is the consequent parame-
ter of the critic’s FLC in a source task. Furthermore, we

employ ψactor to establish a mapping between the con-
sequent parameters of fuzzy rules in the actor’s FLC
within a target task and the corresponding learned
parameters of the most similar rules in the actor’s FLC
from a source task, as given in (16)

ψactor(k
actor
i,target) = k actorj,source , (16)

where k actori,target (i = 1, ..., Lsource) is the consequent
parameter of the actor’s FLC in a target task and
k actorj,source (j = 1, ..., Ltarget) is the consequent parame-
ter of the actor’s FLC in a source task. As can be seen,
both mappings are performed based on the similarity
of the fuzzy rules between the source and target tasks.
We will discuss the mapping process in the following
subsections.

One prerequisite for our transfer method to suc-
ceed is that the source and target task must be related
or similar to some degree. Transfer learning simply
would not work on a pair of arbitrary tasks. In the
context of FACL, this means there is at least one com-
mon state variable, and its MFs are shared between
the source and target task. As described in Equations
(15) and (16), we execute the mapping procedure of
the consequent parameters associated with fuzzy rules
in the target task, aligning them with the correspond-
ing parameters in the most similar fuzzy rules drawn
from the source tasks. This mapping process consists
of two components: (1) the vectorization of fuzzy rules,
which is critical in transforming the complex struc-
ture of these rules into a computationally tractable
form; (2) the employment of similarity measurement for
evaluating the degree of similarity between the vector
representations of fuzzy rules. The complete fuzzy rule
transfer (FRT) procedure is outlined in Algorithm 2

3.2 Vectorization of Fuzzy Rules

Similar to (13), consider a given fuzzy rule defined in
the following form,

Rl : IF s1 is As1m , ..., and sn is Asnm Then zl = kl .

(17)

Let S represent the set of state variables
{s1, s2, s3, ..., sn}, Asn represent the set of all member-
ship functions {Asn0 , Asn1 , Asn2 , ..., Asnm } associated with
state variable sn, and m denotes the zero-based index
for the membership function in the set.

We can map each fuzzy rule into a vector v of length
|S|, where each element vi in v is the unique index m
of the membership function in Asn .
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Under these assumptions, the vector form [0, 1, 2]
corresponds to a rule “IF s1 is As10 and s2 is As21 and
s3 is As32 Then ... ”

3.3 Similarity Measurement of Fuzzy
Rules

Suppose we have two fuzzy rules R1 and R2. R1 is from
the source task and with two input state variables,

R1 : IF s1 is As11 , and s2 is As22 Then z1 = k1 .
(18)

R2 is from the target task and we assume the target
task is more complex than the source task. Thus, R2
consists of three input state variables,

R2 : IF s1 is As11 , and s2 is As22 , and s3 is As31
Then z2 = k2 . (19)

after applying vectorization to fuzzy rule R1 and R2,
we can derive the following vector forms,

VR1
= [1, 2]

VR2
= [1, 2, 1] . (20)

As mentioned previously, one prerequisite in the
FACL context is that there should be one or more com-
mon state variables between the source and target task,
and we only consider the dimension of vectors that cor-
respond to the shared state variables. To this end, we
define a transformation process as a function T,

v′
1, v

′
2 = T(v1, v2) , (21)

and the function T operates on the original vectors
v1 ∈ Rn1 and v2 ∈ Rn2 which correspond to dis-
tinct sets of state variables s1 = [s1,1, s1,2, . . . , s1,n1

]
and s2 = [s2,1, s2,2, . . . , s2,n2

], respectively. We denote
the intersection of the state variables as s∩ =
[s∩,1, s∩,2, . . . , s∩,k], where k is the number of shared
state variables. The goal is to reorganize the vectors
based on the shared state variables, s∩. To this end,
we map the elements of v1 and v2 corresponding to
s∩, obtaining the transformed vectors v′

1 and v′
2.

Specifically, v′
1 = [v1,∩,1, v1,∩,2, . . . , v1,∩,k] and v′

2 =
[v2,∩,1, v2,∩,2, . . . , v2,∩,k], where v1,∩,j and v2,∩,j are the
elements of v1 and v2 corresponding to the shared state
variable s∩,j , j = 1, 2, . . . , k.The resulting v′

1 and v′
2

should share the same dimension. We apply the afore-
mentioned transformation (21) on the vectors in (20),
and derive V′

R1
and V′

R2
,

V′
R1

= [1, 2]

V′
R2

= [1, 2] , (22)

We propose a method to measure the similarity
between fuzzy rules based on the representation of
these rules in vector form. The underlying hypothesis
is that two fuzzy rules, R1 and R2, are most similar if
the similarity measurement of their vector forms is 1.

Let V1 and V2 be the vector forms of the fuzzy rules
R1 and R2, respectively, and suppose they possess the
same dimension. We quantify their similarity S(V1, V2)
by computing the euclidean distance between r1 and r2,
and subsequently normalized to lie within the interval
[0, 1]. The formal definition of the similarity measure
is :

S(V1, V2) =
1

1 + d(V1, V2)
=

1

1 +
√∑n

i=1(v1,i − v2,i)2
,

(23)

Where d is the euclidean distance, v1,i and v2,i
represent the components of vectors V1 and V2, respec-
tively, and n is the dimensionality of the vectors. In
essence, the closer the value of S(V1, V2) is to 1, the
more similar the two fuzzy rules are deemed to be.

For the given example, we perform the similarity
computation using (23) on V ′

R1
and V ′

R2
,

S(V ′
R1
, V ′
R2

) =
1

1 + d(V ′
R1
, V ′
R2

)
= 1 . (24)

This means R2 in the target task is most similar to
the source task’s pre-trained fuzzy rule R1. Hence the
mapping should take place, as shown in (15) and (16),
on their consequent parameters. Hence, the consequent
parameter k2 is mapped to the pre-trained value of k1,

ψactor(k2) = k1

ψcritic(k2) = k1 . (25)

3.4 FRT: Systematic Illustration,
Complexity and Example

In Fig. 4, we present the system architecture illustrat-
ing the FRT process. Within this framework, FRT is
applied to both critic and actor components of the
FACL agents. As shown in the figure,the fuzzy rules
3 and 4 from the target FLC are mapped to fuzzy
rules 1 and 2 from the source task, drawing upon the
similarity metrics discussed in Section 3.3. Thus, the
consequent parameter k′3 (associated with fuzzy rule 3)
takes the pretrained value of the consequent parameter
k1 from the source FLC, and similarly, k′4 (associated
with fuzzy rule 4) adopts the pretrained value of k2
from the source FLC.

7



Algorithm 2 Fuzzy Rule Transfer (FRT) Procedure

1: Train the FACL agents in the source task. Identify
the fuzzy rules associated with the state variables
and MFs.

2: Configure the FACL agents in the target task:

1. To facilitate knowledge transfer, reuse the same
state variables and MFs from the source task,
introducing new state variables and MFs as
necessary.

2. Determine the fuzzy rules associated with the
new state variables and MFs.

3: for each fuzzy rule Ri in critic’s FLC in the target
task do

1. Identify the most similar fuzzy rule Rj in the
source task according to (23)

2. Map consequent parameters in critic:
ψcritic(k

critic
i,target) = k criticj,source in (15)

4: end for
5: for each fuzzy rule Ri in actor’s FLC in the target

task do

1. Identify the most similar fuzzy rule Rj in the
source task according to (23)

2. Map consequent parameters in actor:
ψactor(k

actor
i,target) = k actorj,source in (16)

6: end for

Fig. 4: FRT system diagram

In the context of the FRT application, it’s worth
noting that the algorithm only needs to run once at
the beginning of training for the target task. Under
the most extreme circumstances, the computational
complexity of the FRT could be denoted as Lsource ×

Ltarget, where Lsource is the total number of rules in the
source task and Ltarget represents those of the target
task. However, empirical observations suggest that the
real-world complexity is often substantially less, due to
the sparsity of the consequent parameters in the source
FLC; a significant majority of these parameters are
zero, with only a small fraction having non-zero values
that need to be transferred. Consequently, the real com-
putational cost is likely much less than the maximum
estimated in the most extreme circumstances. Further-
more, Storing fuzzy rules in a structured way can help
save computation time. For instance, by arranging sim-
ilar target rules together in memory, we can more
efficiently transfer data between tasks, e.g. bulk mem-
ory transfers. However, it’s worth noting that the exact
software setup can affect this. For the time being, dis-
cussing those details is beyond the scope of this study.
For enhanced clarity, we present an illustrative exam-
ple. Consider a basic model of an autonomous driving
agent. In the source task, the primary objective is train-
ing the agent to circumvent pedestrians. Given only
two pedestrians, we account for two state variables,
representing the distances between the agent and each
pedestrian. The target task, however, introduces added
complexity. Here, the agent is trained to avoid pedes-
trians while also navigating to a specified destination.
In such a way, a third state variable is created. A
detailed representation of this scenario is provided in
the subsequent Table 1.

Recall the rule form of a zero order Takagi-Sugeno-
Kang (TSK) Fuzzy Logic Controller (13), the fuzzy rule
space in the source tasks are shown as follow:

R1 : IF s1 is A1 and s2 is B1 Then z1 = ksource1

R2 : IF s1 is A2 and s2 is B1 Then z2 = ksource2

R3 : IF s1 is A1 and s2 is B2 Then z3 = ksource3

R4 : IF s1 is A2 and s2 is B2 Then z4 = ksource4 .

(26)

Table 1: State variable in the source task and target task

Source Task

State Variable Description

s1 distance between agent and pedestrian 1

s2 distance between agent and pedestrian 2

Target Task

State Variable Description

s1 distance between agent and pedestrian 1

s2 distance between agent and pedestrian 2

s3 distance between agent and destination
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In our illustrative example, each input utilizes two
membership functions (MFs). Specifically, for state
variable s1, we have MFs A1 and A2, and for s2, MFs
B1 and B2 are used. Similarly, in the target task we
introduce a new state variable s3 with two MFs, C1 and
C2 . The fuzzy rule space in the target task is shown
in below:

R′
1 : IF s1 is A1 and s2 is B1 and s3 is C1 Then z1 = ktarget1

R′
2 : IF s1 is A2 and s2 is B1 and s3 is C1 Then z2 = ktarget2

R′
3 : IF s1 is A1 and s2 is B2 and s3 is C1 Then z3 = ktarget3

R′
4 : IF s1 is A2 and s2 is B2 and s3 is C1 Then z4 = ktarget4

R′
5 : IF s1 is A1 and s2 is B1 and s3 is C2 Then z5 = ktarget5

R′
6 : IF s1 is A2 and s2 is B1 and s3 is C2 Then z6 = ktarget6

R′
7 : IF s1 is A1 and s2 is B2 and s3 is C2 Then z7 = ktarget7

R′
8 : IF s1 is A2 and s2 is B2 and s3 is C2 Then z8 = ktarget8 .

(27)

Apply the vectorization described in section 3.2 and
transformation process in (21), the vector form of the
fuzzy rules in the source tasks now become:

VR1 = [1, 1]

VR2 = [2, 1]

VR3
= [1, 2]

VR4
= [2, 2] .

(28)

For the vector form of the fuzzy rules in the target
tasks, as s1 and s2 are the only shared state vari-
ables between source and target task, we remove the
s3’s dimension from the vector according to (21). The
derived vector form are as follows:

VR′
1

= [1, 1]

VR′
2

= [2, 1]

VR′
3

= [1, 2]

VR′
4

= [2, 2]

VR′
5

= [1, 1]

VR′
6

= [2, 1]

VR′
7

= [1, 2]

VR′
8

= [2, 2] .

(29)

Using the similarity computation from (23), we can
measure the similarity between the fuzzy rules. for
instance, if we compute the similarity between R′

1 and
all the fuzzy rules in the source task, we derive the

following:

S(VR′
1
, VR1

) = 1 (30)

S(VR′
1
, VR2

) = 0.5

S(VR′
1
, VR3

) = 0.5

S(VR′
1
, VR4

) = 0.414 .

(31)

we can clearly see R1 is the most similar rule to R′
1 in

the source task. Hence, the mapping of the consequent
parameter takes place, as described in (15) and (16):

ψ(ktarget1 ) = ksource1 . (32)

The core idea is that even with the expanded rule
space from additional state variables, there is still foun-
dational knowledge relies on the source tasks’ rules.
Essentially, the shared state variables form the con-
nection of common knowledge, enabling knowledge
transfer between source and target tasks. We apply this
approach to all fuzzy rules in our example, and Table 2
provides a detailed mapping.

Table 2: Mapping of the consequent parameters in FRT

Consequent Parameters Mapping ψ

Target Task Source Task

ktarget1 ksource1

ktarget2 ksource2

ktarget3 ksource3

ktarget4 ksource4

ktarget5 ksource1

ktarget6 ksource2

ktarget7 ksource3

ktarget8 ksource4

4 Simulation and Result

In this section, we assess the proposed algorithm in
two distinct sets of differential games; the pursuit-
evasion game and the guarding-a-territory game. All
the simulation codes were designed and implemented
from scratch in Python, due to the absence of an
existing open-source library for the Fuzzy Actor-Critic
Learning (FACL) algorithm and its corresponding sim-
ulation environment at the time of this study. Within
the Pursuit-Evasion Game, the objective of the evader
is to identify the fastest escape route, while the pur-
suer endeavors to capture the evader. We modeled
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the Pursuit-Evasion Game under two scenarios: single-
agent learning and multi-agent learning. In the single-
agent learning scenario, only the evader is subjected
to the learning process, while the pursuer employs
a simple control strategy, moving constantly in the
direction of line-of-sight towards the evader. In con-
trast, within the multi-agent learning scenario, both
the evader and pursuer are learning using FACL. Con-
versely, for the Guarding-a-Territory Game, we solely
consider the multi-agent learning scenario, given the
nature of the game. Within this setting, both guards
and the invader learn to identify their optimal strate-
gies. The guards aim to intercept the invader at the
greatest possible distance from the territory, while the
invader seeks to approach as close as possible to the ter-
ritory without being captured. This game begins with
a source task featuring a single invader versus a sin-
gle guard and subsequently extends to a target task
involving one invader versus two guards.

4.1 Pursuit–Evasion Game

The Pursuit-Evasion game is a form of differential game
involving a high-velocity evader and multiple slower
pursuers. The objective of the pursuers is to appre-
hend the evader, while the evader’s primary goal is to
accomplish a rapid escape from the pursuers. Initially,
the agents are engaged in the game within a config-
uration of one evader versus one pursuer, serving as
the source task. Subsequently, the game’s complexity is
increased in the target task, featuring an expanded sce-
nario of one evader engaged with three pursuers. The
agent kinematics is defined as (33),

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω ,

(33)

where v represents the agent speed, ω is the angular
speed of the agent, θ is the orientation of the agent
with respect to x axis, x and y are the position of
the agent on the global x and y axis. In the design
of our FACL agent, ω is the output of the actor’s
FLC. The kinematics equations of the players given
above are solved in simulation using the second-order
Runge-Kutta method.

4.1.1 Single-agent Pursuit–Evasion Game:
Setup

In the single-agent model, the pursuer employs a simple
control strategy which always moves in the direction
of the evader, while the evader is learning its optimal
strategy using the FACL. Initially, we start our training

Table 3: Agents’ state variables in 1 evader vs. 1 pursuer

Source Task : 1 evader vs. 1 pursuer

State Variable Description MFs and Range

dxep manhattan dis-
tance w.r.t. x-axis
between evader
and pursuer

7 uniform trian-
gular MFs over
the range of [-40,
40]

dyep manhattan dis-
tance w.r.t. y-axis
between evader
and pursuer

7 uniform trian-
gular MFs over
the range of [-40,
40]

θhd heading angle of
the agent w.r.t. x-
axis

10 uniform trian-
gular MFs over
the range of [-π,
π]

in a source task featuring a single evader versus a single
pursuer. The speed of the pursuer is set at 1 unit/sec-
ond and the evader is set at 1.2 units/second. Thus,
the evader should always be able to escape. The game
is lost when the evader is captured and won when the
Euclidean distance between the evader and pursuers
becomes larger than 15 units. This means the evader
has escaped from the pursuer. To enhance the effi-
ciency of the agent’s learning process, the introduction
of immediate rewards within the environment could be
beneficial [29, 30]. We use a shaping reward function
for the high-speed evader and it has two components,
given as (34),

Rt+1 = dep(t+ 1)− dep(t)− p , (34)

where dep is the Euclidean distance between the evader
and the pursuer. The component dep(t+1)−dep(t) pro-
vides a positive reward if the evader moves farther from
the pursuer and a negative reward otherwise. The other
component p is a constant and it appends a penalty
to the reward at every time step and pushes the agent
to escape as soon as possible. The value of p is chosen
based on the grid search between 0 and 1 and in this
case we found the evader agent performs the best when
p is set to 0.2.

Our source task utilizes three input state variables
within the Fuzzy Logic Controllers (FLC), as out-
lined in Table 3. Triangular membership functions are
employed to define all fuzzy sets across the state vari-
ables. Ten symmetrical and uniformly spread triangular
membership functions are defined for the heading angle
of the agent θhd, over the interval of [-π, π]. Meanwhile,
seven triangular membership functions were defined for
each the Manhattan distance variable d, over the inter-
val of [-40, 40]. Additionally, We set the initial learning
rates of the actor and the critic in the FACL algorithm
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as follows: β0 = 0.05 and α0 = 0.1. We set β0 < α0 so
that the actor will converge slower than critic to pre-
vent instability in the actor [28]. The variance of the
initial exploration noise σ and the discount factor γ are
set as follows: σ = 3 rad/second and γ = 0.25. Finally,
the decay rates of the learning factors and exploration
noise after each episode k are set as follows: βk+1 =
0.995kβ0, αk+1 = 0.999kα0, and σk+1 = 0.994kσ0. The
values for the learning rates, the exploration noise, and
the discount factors were carefully chosen based on a
priori knowledge of the problem and heuristics from the
experiments. These configurations have demonstrated
effectiveness in our simulation. To ensure an appropri-
ate comparison when evaluating the fuzzy rule transfer,
these configurations are set consistently in the target
task throughout the simulation.

Firstly, we set the individual pursuer and evader to
engage in the game for a total of 1000 episodes, the
final trajectory of which can be observed in Fig. 5.

Fig. 5: Game trajectory 1 evader vs. 1 pursuer

Fig. 6: Game trajectory 1 evader vs. 3 pursuer

Table 4: Evader’s state variables in 1 evader vs. 3 pursuer

Target Task : 1 evader vs. 3 pursuer

State Variable Description MFs and Range

dxep1 manhattan dis-
tance w.r.t. x-axis
between evader
and pursuer 1

7 uniform trian-
gular MFs over
the range of [-40,
40]

dyep1 manhattan dis-
tance w.r.t. y-axis
between evader
and pursuer 1

7 uniform trian-
gular MFs over
the range of [-40,
40]

dxep2 manhattan dis-
tance w.r.t. x-axis
between evader
and pursuer 2

7 uniform trian-
gular MFs over
the range of [-40,
40]

dyep2 manhattan dis-
tance w.r.t. y-axis
between evader
and pursuer 2

7 uniform trian-
gular MFs over
the range of [-40,
40]

dxep3 manhattan dis-
tance w.r.t. x-axis
between evader
and pursuer 3

7 uniform trian-
gular MFs over
the range of [-40,
40]

dyep3 manhattan dis-
tance w.r.t. y-axis
between evader
and pursuer 3

7 uniform trian-
gular MFs over
the range of [-40,
40]

θhd heading angle of
the agent w.r.t. x-
axis

10 uniform trian-
gular MFs over
the range of [-π,
π]

The result shows that the evader agent was success-
ful in determining the fastest escape path, specifically
by moving as a linear trajectory in the opposite direc-
tion of the pursuer. For the target task, our agent is
engaged in a game exhibiting strong similarities to our
source task, with the key distinction being that the
three pursuers now start from varying positions sur-
rounding the evader, as depicted in Fig. 6. All three
pursuer agents are identical, following the same simple
control strategy applied in the source task. However,
the state space for the evader is altered due to the
presence of additional pursuers. Instead of maintaining
three state variables as in the source task previously,
in the target task, we incorporate seven state variables
into the Fuzzy Logic Controllers (FLCs). The full list
of state variables present in the target task is described
in Table 4.

Meanwhile, our reward function is also expanded to
account for the distance between the evader and the
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additional pursuers, given as (35).

Rt+1 = dep1(t+ 1)− dep1(t) + dep2(t+ 1)

− dep2(t) + dep3(t+ 1)− dep3(t)− p ,
(35)

Where dep1 is the Euclidean distance between the
evader and pursuer 1, dep2 is the Euclidean distance
between the evader and pursuer 2 and so forth. Sim-
ilar to the 1 evader vs. 1 pursuer case, we introduce
a constant p in the reward function in order to push
the evader agent to escape as soon as possible. As the
number of pursuers in the target task tripled, we raised
the value of parameter p to 0.6, leading to favorable
performance outcomes in our trials.

Furthermore, owing to the rise in the number of
state variables in the target task, there is a corre-
sponding expansion in the fuzzy rule space, which now
has 1,176,490 rules as opposed to the 490 rules con-
tained within the source task. The aggregate number
of rules is computed based on the number of Member-
ship Functions (MFs) and state variables as shown in
(14). Although the target task comprises a substantial
number of rules, the employment of triangular mem-
bership functions in our design ensures that, at any
given time step, only 2n rules are fired, where n denotes
the number of inputs [27]. Accordingly, our objective
is solely to pinpoint the sets of rules activated based
on the input state variables, followed by the computa-
tion of the firing strength for the rules within these rule
sets. This renders the process computationally feasi-
ble. However, given the seven input state variables, we
must compute 256 rules collectively for both the critic
and actor within the FACL at each time step. This
presents a computationally intensive process and the
agent may not converge towards an optimal policy in a
brief period. Nevertheless, if we adopt a different type
of membership function such as the Gaussian member-
ship function, the computational complexity will surge
exponentially, albeit the transfer process remains unaf-
fected since the number of fuzzy rules and consequent
parameters remain unchanged.

The process of fuzzy rule transfer, as outlined in
Section 3 and Algorithm 2, is implemented in the FACL
agent within the target task. This procedure involves
the mapping of fuzzy rules on both the critic and the
actor of the FACL agent, as presented in (15) and
(16), through which the initial value of the consequent
parameters in the target task is established based on
the learned consequent parameters in the source task
and the degree of similarity between the fuzzy rules,
as described in Section 3.3. In our simulation software,
this mapping can be accomplished via a simple For
loop that traverses the fuzzy rules space in the target
task to allocate weights to the consequent parameters,

Fig. 7: Average reward using FRT in 1 evader vs. 3
pursuers game (only the evader is learning)

Fig. 8: Average reward without Transfer in 1 evader vs. 3
pursuers game (only the evader is learning)

conditioned on the similarity measurement. This pro-
cess needs to be executed only once at the beginning
of the simulation in the target task. To enhance under-
standing, we provide an illustrative example of how the
mapping and assignment are executed for a single fuzzy
rule. Suppose we have a fuzzy rule Rm in the target
task,

Rm : IF dxep1 is MF 1
dxep1

and dyep1 is MF 1
dyep1

and dxep2 is MF 1
dxep2

and dyep2 is MF 1
dyep2

and dxep3 is MF 1
dxep3

and dyep3 is MF 1
dyep3

and θhd is MF 1
θhd

Then zm = ktargetm ,

(36)

where dxep1 to θhd are the input state variables presented
in Table 4. MF 1

dxep1
is the first membership function of
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the state variable dxep1, MF 1
dyep1

is the first membership

function of the state variable dyep1, and so on. Based on
the similarity measurement of fuzzy Rules presented in
Section 3.3, we map this rule to the most similar rule
Rn in the source task,

Rn : IF dxep1 is MF 1
dxep1

and dyep1 is MF 1
dyep1

and

θhd is MF 1
θhd

Then zn = ksourcen ,

(37)

where ksourcen is the learned value of the consequent
parameter in the source task. Thus, the mapping should
take place, as shown in (15) and (16), on their con-
sequent parameters. Particularly, for both actor and
critic, the consequent parameter ktargetm is mapped to
the pre-trained value of ksourcen ,

ψactor(k
target
m ) = ksourcen

ψcritic(k
target
m ) = ksourcen , (38)

4.1.2 Single-Agent Pursuit-Evasion Game:
Results

We have discussed several performance metrics for
transfer learning in Section 2.2. In this study, our goal
is reusing the knowledge from the past to accelerate
training in a new task, Thus, only a target task scenario
should be considered. for the experiment, the same
pursuit-evasion game scenario (involving one evader
versus three pursuers) is simulated under two condi-
tions: with and without the application of FRT. Each
simulation ran for a total of 1000 episodes. The results,
as illustrated in Fig. 6, indicated that in both scenar-
ios, the agents successfully learned and converged to
a uniform policy that led to the evader’s escape from
the three pursuers. This evaluation was reiterated in 10
separate trials, each spanning 1000 episodes.

In Section 2.2, we introduce Total Reward as a piv-
otal performance metrics for transfer learning. Fig. 7
depicts the accumulated rewards collected by the agent
across these trials when learning with the transfer,
while Fig. 8 portrays the same under learning without
the transfer. These rewards were averaged over the ten
trials to ensure a comprehensive understanding of the
agent’s performance under the influence of FRT. The
presented figures highlight that the agents accumulate
more rewards when FRT is applied, as evidenced by
the area under the reward curve.

Another key metric discussed in Section 2.2 is Time
to Threshold, the learning time needed for the tar-
get agent to reach certain performance threshold. In
the context of this simulation, it pertains to the con-
vergence to an effective escape policy of the agent.
The presented figures illustrate the enhanced conver-
gence speed of the escape policy, as evidenced by the

Fig. 9: Episode 500 using FRT in 1 evader vs. 3 pursuers
game (only the evader is learning)

Fig. 10: Episode 500 without FRT in 1 evader vs. 3
pursuers game (only the evader is learning)

reward trajectory in the scenario employing FRT. This
faster convergence speed indicates that the agent ben-
efits from a more rapid learning curve when FRT is
utilized. Moreover, Fig. 9 and Fig. 10 provide a com-
parative view of the agents’ movement trajectories at
the halfway mark of 500 episodes, both with and with-
out the application of FRT. Fig. 9 illustrates the case
with FRT, where the evader agent manages to learn
an effective policy after approximately 500 episodes of
training, leading to a successful escape within roughly
350 time-steps in that particular episode. In contrast,
as shown in Fig. 10, the agent, when not benefiting from
FRT, struggles to acquire an effective policy even after
a similar number of training episodes, taking a notably
longer time of around 400 steps within the same episode
to escape. This comparison clearly demonstrates the
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Table 5: The agent’s state variables in 1 invader vs. 1
guard

Source Task : 1 invader vs. 1 guard

State Variable Description MFs and Range

dxIG manhattan dis-
tance w.r.t. x-axis
between invader
and guard

7 uniform trian-
gular MFs over
the range of [-40,
40]

dyIG manhattan dis-
tance w.r.t. y-axis
between invader
and guard

7 uniform trian-
gular MFs over
the range of [-40,
40]

θT angle between
the x-axis and
Agent’s line of
sight towards the
territory

10 uniform trian-
gular MFs over
the range of [-π,
π]

utility and efficiency of the FRT application in pro-
moting faster learning in the scenario of single-agent
Pursuit–Evasion Game.

4.2 Guarding-a-Territory Game

The guarding-a-territory differential game was intro-
duced by Isaacs [31]. It is a zero-sum differential game
with continuous state space and action space. Both
guards and the invader are learning with the FACL
algorithm to find their optimal strategies in this game.
The guard’s objective is to intercept the invader as dis-
tantly from the territory as possible, while the invader
aims to reach the territory as closely as possible, evad-
ing capture in the process. The dynamics of the FACL
agents in this game mirror those of the previously
described pursuit–evasion game, defined in equation
(33). The invader is running at a higher speed than
the guard. The speed of the guard is set at 1 unit/sec-
ond and the invader is set at 1.3 units/second. For
each episode in the training, the game terminates when
the invader reaches the territory or gets caught by the
guard. This game has been studied and implemented
using the FACL learning algorithm in [32].

4.2.1 Multi-agent Guarding-a-Territory
Game: Setup

Similar to the pursuit-evasion game presented in
Section 4.1, we use triangular membership functions to
define the fuzzy sets in the state variables. Ten sym-
metrical and uniformly spread triangular membership
functions are defined for the angle θT and seven tri-
angular membership functions are defined for each the
Manhattan distance variable dIG. In the game of a sin-
gle invader versus a single guard, the configuration of

Table 6: Invader’s state variables in 1 invader vs. 2 guards

Target Task : 1 invader vs. 2 guards

State Variable Description MFs and Range

dxIG1 manhattan dis-
tance w.r.t. x-axis
between invader
and guard 1

7 uniform trian-
gular MFs over
the range of [-40,
40]

dyIG1 manhattan dis-
tance w.r.t. y-axis
between invader
and guard 1

7 uniform trian-
gular MFs over
the range of [-40,
40]

dxIG2 manhattan dis-
tance w.r.t. x-axis
between invader
and guard 2

7 uniform trian-
gular MFs over
the range of [-40,
40]

dyIG2 manhattan dis-
tance w.r.t. y-axis
between invader
and guard 2

7 uniform trian-
gular MFs over
the range of [-40,
40]

θT angle between
the x-axis and
invader’s line of
sight towards the
territory

10 uniform trian-
gular MFs over
the range of [-π,
π]

the state variables for FACL agents is identical between
the invader and the guard. We show the state vari-
ables in Table 5. We set the initial learning rates of
the actor and the critic in the FACL algorithm as fol-
lows: β0 = 0.05 and α0 = 0.1. We set β0 < α0 so that
the actor will converge slower than critic to prevent
instability in the actor [28]. The variance of the initial
exploration noise σ and the discount factor γ are set
as follows: σ = 3 rad/second and γ = 0.25. The decay
rates of the learning factors and exploration noise after
each episode k are set as follows: βk+1 = 0.995kβ0,
αk+1 = 0.999kα0, and σk+1 = 0.994kσ0. The values
for the learning rates, the exploration noise, and the
discount factors were carefully chosen based on a pri-
ori knowledge of the problem and heuristics from the
experiments. These configurations have demonstrated
effectiveness in our simulation. In accordance with prior
research in[32], the reward function for the invader in
the 1 invader vs. 1 guard case is designed as:

Rt+1 = D(dit(t)− dit(t+ 1))− J(dig(t)− dig(t+ 1)) ,
(39)

Where dit is the Euclidean distance between the
invader and territory and dig is the Euclidean dis-
tance between the invader and guard. The compo-
nent D(dit(t) − dit(t + 1)) provides a positive reward
if the invader moves closer to the territory and a
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negative reward otherwise. Similarly, the component
−J(dig(t) − dig(t + 1)) provides a negative reward if
the invader moves closer to the guard and a positive
reward otherwise. The constant D and J determines the
importance attached to the various components of the
reward function. According to [32], we set D = 3, J =1
and the reward function for the guard is defined as:

Rt+1 = P (dig(t)− dig(t+ 1)) +M(dgt(t)− dgt(t+ 1)) ,
(40)

Where dgt is the Euclidean distance between the guard
and the territory and dig is the Euclidean distance
between the invader and the guard. Likewise, we set P
= 1.1 and M= 1.0 as in [32].

Initially, we establish a game scenario featuring a
single invader versus a single guard. Fig. 11 depicts the
trajectory of the agents’ movements after 600 episodes.

Fig. 11: Game trajectory 1 invader vs. 1 guard in
Territory game as the source task

Fig. 12: Game trajectory 1 invader vs. 2 guard in
Territory game as the target task

Subsequently, we simulate the target task, introducing
an additional guard into the gameplay. Therefore, the
input state space for the invader agent changes in the
target task. Table 6 illustrates the design of the new
state variables and membership functions (MFs).

With this altered state space, the rule counts in the
target task rise from 490 to 24, 010. However, for the
guards, the state space remains consistent between the
source and target tasks, leaving the rule count at a con-
stant 490. As outlined in Section 4.1’s description of the
pursuit-evasion game, we employ the same Fuzzy Rule
Transfer (FRT) approach to perform knowledge trans-
fer on the invader agent, while the learned consequent
parameters from the source task are directly copied to
the target task for the guards. While the reward func-
tion for the guard remains unchanged, the invader’s
reward function in the target task evolves:

Rt+1 =D(dit(t)− dit(t+ 1))− J1(dig1(t)

− dig1(t+ 1))− J2(dig2(t)− dig2(t+ 1)) ,
(41)

where J2(dig2(t) − dig2(t + 1)) is the new component
introduced in the reward function due to the addi-
tional guard. dig1 is the Euclidean distance between the
invader and guard 1 and dig2 is the Euclidean distance
between the invader and guard 2. We set D = 3 and J1
= 1 and J2 = 1 according to [32].

In the target task featuring one invader versus two
guards, we engage the FACL agents in the game both
with and without the application of FRT. In both
scenarios, all three participants are able to learn and
converge towards their respective optimal strategies,
as illustrated in Fig. 12. Our previous research [32]
presents the optimal strategies for rational invaders and
guards utilizing an Apollonius circle approach.

4.2.2 Multi-agent Guarding-a-Territory
Game: Results

Similar to the single-agent scenario, we use the time to
threshold metric, as introduced in Section 2.2, to assess
the performance of the transfer learning. Considering
that this is a multi-agent, zero-sum differential game,
our interest lies in the time taken for the game to attain
its equilibrium state, in which the optimal strategies
for rational invaders and guards are learned, and their
game trajectories are illustrated in Fig. 12. Thus, in
this particular instance, we select the game’s equilib-
rium state as the pre-determined performance level. We
utilize a metric of simulation time steps per episode,
which encapsulates the trajectory of elapsed time in
each episode over the span of the training. The simula-
tion is run over 10 learning trials, each comprising 600
episodes. Fig. 13 and Fig. 14 respectively depict the
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Fig. 13: Simulation time-steps in 1 invader vs. 2 guards
game when all agents are learning with FRT

Fig. 14: Simulation time-steps in 1 invader vs. 2 guards
game when all agents are learning without FRT

simulation time-steps per episode, averaged over these
10 trials, for both the FRT and non-FRT scenarios.

When FRT is utilized, the differential game’s equi-
librium state is reached considerably faster, with the
three competing agents learning their optimal strate-
gies rapidly. Since the guard’s state space remains
unaltered between the source and target tasks, their
final performance after 600 episodes in the target task
could be considered the outcome of training spanning
1200 episodes, including 600 episodes from the source
task, with a reset configuration (learning rate, explo-
ration noise, and discount factors) preceding the target
task’s initiation. In contrast, the invader must adapt
to a new state space, which consequently benefits the
guards more significantly from the transfer.

Nonetheless, FRT facilitates the invader in learn-
ing to move in a straight line towards the territory
more rapidly rather than moving arbitrarily. This

Fig. 15: Episode 300 in 1 invader vs. 2 guards game when
all agents are learning with FRT

s
Fig. 16: Episode 300 in 1 invader vs. 2 guards game when

all agents are learning without FRT

improvement accelerates the capture from the guards’
viewpoint, thereby leading to quicker game comple-
tion, as depicted by fewer time steps for each episode
in Fig. 13. In contrast, in the absence of FRT, agents
tend to struggle initially before slowly converging to
their optimal strategies. This behavior accounts for the
higher number of time steps per episode seen in Fig. 14,
particularly in the game’s early stages. Furthermore,
we depict the game trajectory of the agents’ movements
at 300 episodes in both scenarios in Figures Fig. 15
and Fig. 16. As highlighted in these figures, the agents’
performance is notably superior at 300 episodes when
FRT is employed.

5 Conclusion

In this paper, we investigated the feasibility to trans-
fer knowledge between tasks that are interrelated and
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utilizing the Fuzzy Actor-Critic Learning (FACL) algo-
rithm. To enable this process of knowledge transfer, we
proposed the fuzzy rule transfer(FRT) method which
maps the consequent parameters between the source
and target task based on rules similarity. We showed
the FRT method and the concept of the similarity
measurement between fuzzy rules in Section 3. We
demonstrate these ideas through simulations in two sets
of differential games; the pursuit-evasion game and the
guarding-a-territory game in Section 4. In all simula-
tions, the results exhibit a consistent pattern that the
FRT method is able to speed up the learning process
of the FACL agents within the target tasks.

One pivotal direction of our future work will cen-
ter around how fuzzy rules from the source tasks can
be selectively transferred. At present, our methodol-
ogy entails the indiscriminate transfer of knowledge
containing all fuzzy rules from a source task to a tar-
get task. This approach, although sufficient in general
cases, may have certain limitations. While some rules
prove to be remarkably relevant and beneficial, oth-
ers may not yield similar levels of efficacy or might
even introduce disruptions within a new task. Can
we potentially improve the existing solutions if we
advance towards selective knowledge transfer within
fuzzy rules? Another direction of our future work is
combining multiple source tasks to produce a richer
transfer of experience. Our current work is primarily
constrained to the use of a singular source task for
the transfer process. However, it prompts the question:
could the integration of knowledge from multiple source
tasks lead to a more robust generalization for learn-
ing within a target task? These are some interesting
questions that need to be investigated in subsequent
studies.
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