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Abstract

In this paper we shall provide new analysis on some fundamental properties of the Kalman �lter based parameter estimation algorithms
using an orthogonal decomposition approach based on the excited subspace. A theoretical analytical framework is established based on the
decomposition of the covariance matrix, which appears to be very useful and e4ective in the analysis of a parameter estimation algorithm
with the existence of an unexcited subspace. The su6cient and necessary condition for the boundedness of the covariance matrix in the
Kalman �lter is established. The idea of directional tracking is proposed to develop a new class of algorithms to overcome the windup
problem. Based on the orthogonal decomposition approach two kinds of directional tracking algorithms are proposed. These algorithms
utilize a time-varying covariance matrix and can keep stable even in the case of unsu6cient and/or unbounded excitation.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Tracking time-varying parameters of a dynamic system is
an important issue in adaptive system design. In the world
of adaptive control, tracking ability is usually provided by
two kinds of recursive estimation algorithms: the exponen-
tially weighted least squares (EWLS) algorithm and the
Kalman �lter based (KFB) algorithms. Although the EWLS
algorithm in its form can be viewed as a special case of the
Kalman �lter (Ljung & Gunnarsson, 1990), these two kinds
of algorithms track time-varying parameters based on di4er-
ent mechanisms. In principle, it can be said that the EWLS
algorithm obtains its tracking ability by performing a forget-
ting operation on the information matrix; while in the KFB
algorithms tracking ability is rendered by adding a nonneg-
ative de�nite matrix to the covariance matrix. It is expected
that this operational di4erence may lead to some signi�cant
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di4erences in their behavior. One of the objectives of this
paper is to clarify a main di4erence in terms of their behavior
under the condition of unsu6cient excitation.
This paper focuses on the KFB algorithms. The standard

Kalman �lter recursive algorithm is usually associated with
a random walk parameter variation model and a linear re-
gression equation described by

�t = �t−1 + wt; (1)

yt = ’T
t �t + vt : (2)

In (1) �t represents the n-dimensional unknown system pa-
rameter vector, and wt is a sequence of random vectors that
drives the parameter’s change. In (2), yt is the scalar sys-
tem’s output, ’t is the regression vector (also called regres-
sor), and vt is the measurement noise. Furthermore, it is usu-
ally assumed that both wt and vt are Gaussian process with
zero mean value and the variances given by EwtwT

t = Q,
Ev2t = r, where Q is an n × n nonnegative de�nite matrix,
and r ¿ 0 is a scalar.
The standard Kalman �lter for estimating �t in (1) is given

by

�̂t = �̂t−1 + Kt(yt − ’T
t �̂t−1); (3)
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Kt =
Pt−1’t

rt + ’T
t Pt−1’t

; (4)

Pt = Pt−1 − Pt−1’t’T
t Pt−1

rt + ’T
t Pt−1’t

+ Qt: (5)

As shown in Ljung and Gunnarsson (1990), if we exactly
know the variances Q and r and let Qt = Q, rt = r in the
above equations, then the Kalman �lter provides the best
estimation of �t . However, in real applications we can never
exactly know Q and r. Fortunately, the unknown variances
Q and r do not restrict the applicability of the Kalman �lter.
On one hand, as shown in Isaksson (1987) and the references
there, the unknown Q and r themselves can be estimated
recursively to obtain the asymptotically optimal estimation
on �t if the changes in �t are su6ciently slow. On the other
hand, even when we cannot estimateQ and r reasonably well
or the actual parameter change is quite di4erent from the
randomwalkmodel, the standard Kalman �lter can still work
very well. This is because the Kalman �lter does not require
an accurate model of the parameter variation (NiedMzwiecki,
2000), and it can track time-varying parameters reasonably
well as long as its gain vector Kt keeps away from zero.
A nonzero gain vector Kt is guaranteed if the covariance
matrix satis�es the matrix inequality

Pt¿ �I; ∀t; (6)

where � is a positive scalar.
Therefore, we can design a Kalman �lter in terms of

its tracking performance by choosing a suitable matrix se-
quence Qt¿ 0 to guarantee (6) for some appropriate posi-
tive number �. In this context, the choice of Qt is exactly the
same as choosing a suitable forgetting factor in the EWLS
algorithm, and almost does not need the knowledge of how
the parameters are changing. Although this design strategy
is di4erent from the original context of the Kalman �lter,
we still call the corresponding algorithm the Kalman �lter
based algorithm. For this kind of design, the important issue
is to keep a reasonable tracking performance for all time. Of
course, by adding the knowledge of the parameter variation
to the choice of Qt , we can expect to obtain more satisfac-
tory tracking performance.
Besides a reasonable tracking performance it is also im-

portant to ensure the stability of a recursive algorithm. The
stability of the Kalman �lter is generally guaranteed if the
covariance matrix satis�es the matrix inequality

Pt6 �I; ∀t (7)

for some scalar �¿ 0.
In fact, as shown in Salgado, Goodwin, and Middleton

(1988) and Parkum, Poulsen, and Holst (1992) the inequali-
ties (6) and (7) represent two of the most desirable and most
important properties for all of the tracking algorithms. They
not only guarantee the tracking ability and stability of an al-
gorithm, but also ensure some basic convergence properties
(Parkum et al., 1992), which are needed in the analysis of

adaptive control algorithms (Salgado et al., 1988). There-
fore, a fundamental requirement for any tracking algorithm
is to satisfy (6) and (7).
There are quite large number of publications available

on the topic of the Kalman �lter based algorithm. Here we
mention the survey paper of Ljung and Gunnarsson (1990),
the paper of Guo (1990), and the papers of Guo and Ljung
(1995a, b) where the stability and tracking performance
of the KFB algorithm are intensively analyzed based on
stochastic excitation condition. This paper focuses on the
behavior of the KFB algorithm in the case where the regres-
sor ’t is not persistently exciting and particularly there is a
subspace in Rn which is almost not excited by ’t . One of the
main objectives of this paper is to inspect if the KFB algo-
rithms satisfy (6) and (7) particularly in the case of unsu6-
cient excitation based on an orthogonal decomposition ap-
proach. The orthogonal decomposition for positive semidef-
inite matrices is originally proposed in Cao and Schwartz
(2001a) and has been successfully used in developing the
directional forgetting algorithm of Cao and Schwartz (2000)
and analyzing the windup phenomenon of the KFB algo-
rithm (Cao & Schwartz, 2001b). In the present paper, we
will continue to develop this useful analytical tool and make
it more suitable to the analysis of the behavior of param-
eter estimation algorithms with unsu6cient excitation. The
objectives of this paper are three-fold.

1. To complement the orthogonal decomposition method
proposed in Cao and Schwartz (2001a). In particular, the
concepts of the general orthogonal decomposition and the
unique orthogonal decomposition are established. New
results (Theorem 2.2, and Lemma 2.1) are developed,
which are directly applicable to the analysis of the KFB
algorithm with unsu6cient excitation.

2. Using the orthogonal decomposition method and the as-
sociated results to analyze the behavior of the KFB algo-
rithms. By decomposing the covariance matrix into two
parts based on the excited subspace, we can analyze the
boundedness of the covariance matrix in an elegant way,
so we easily characterize the property of the windup phe-
nomenon in the KFB algorithm and establish the con-
ditions for the boundedness of the covariance matrix in
terms of the excitation condition.

3. To propose the new idea of directional tracking which
leads to a new class of the KFB algorithms. The key idea
of directional tracking is to restrict tracking directions of
an algorithm to the excited subspace to avoid windup. Di-
rectional tracking appears as a parallel concept to direc-
tional forgetting and is particularly useful in modifying
the KFB algorithm to improve its performance. Based on
the orthogonal decomposition method and the associated
results, two directional tracking algorithms are proposed
and their main properties are established.

One of the main contributions of this paper is the intro-
duction of the useful and e4ective analytical method based
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on the orthogonal decomposition approach. By applying this
analytical method to the KFB algorithm, it is shown that this
method is very useful in establishing the key property of an
algorithm in the case of unsu6cient excitation. Considering
that there is not yet an e4ective analytical method available
in the literature to handle the case of unsu6cient excit-
ation, this paper complements the existing theories and
methods for analyzing the behavior of a parameter estima-
tion algorithm.
In the authors previous work (Cao & Schwartz, 2001b),

it has been proven that in the case of Qt being a positive
de�nite constant matrix and unsu6cient excitation, some of
the eigenvalues of Pt become unbounded as t → ∞. That
is, the so-called estimator windup does exist in some of
the KFB algorithms. In the present paper, we will extend
this analysis to the more general case of time-varying Qt .
In the case of constant Qt and unsu6cient excitation, it is
shown that some of eigenvalues of Pt tend to in�nity linearly
with time. In addition, due to the new result developed in
this paper (Theorem 2.2), the proof becomes more concise
than that in Cao and Schwartz (2001b). Furthermore, the
necessary and su6cient conditions on Qt for Pt satisfying
(7) is established in terms of the exciting condition.
This paper is organized as follows. In Section 2 we sum-

marize the basic results concerning the orthogonal decompo-
sition of a positive semide�nite matrix based on a subspace,
and then establish some new results which complement the
existing theories developed in Cao and Schwartz (2001a)
and provide more direct and easy to use tools to analyze the
KFB algorithm. In Section 3 we analyze the boundedness of
the covariance matrix in terms of its two decomposed parts
based on the theorems and lemmas established in Section 2.
We clarify the property of the windup phenomenon in the
standard Kalman �lter and give su6cient and necessary con-
ditions to avoid windup. In Section 4 we propose the idea
of directional tracking for the KFB algorithms, which is a
parallel concept to directional forgetting used in the mod-
i�ed EWLS algorithm. Based on the results established in
Section 3, two new directional tracking algorithms are pro-
posed, which have a bounded covariance matrix even in the
case of unsu6cient and/or unbounded excitation. Finally in
Section 5, the conclusions are given.

2. Preliminaries

In this section we will summarize some basic results
regarding decomposing a positive semide�nite (de�nite)
matrix into the sum of two speci�c positive semide�nite ma-
trices based on a given subspace (Cao & Schwartz, 2001a).
We will also present some new results on this decomposi-
tion. All of these results play a central role in the analysis
of the behavior of the KFB algorithm with unsu6cient
excitation.
Given an n × n positive semide�nite matrix A and a

m-dimensional subspace S ⊂ Rn, m6 n, we consider the

problem of decomposing A into the form

A= B+ C (8)

where B and C are required to be positive semide�nite,
and furthermore C is required to satisfy the “orthogonal”
condition

CV = 0 (9)

or equivalently B satis�es

BV = AV (10)

where V is an n×mmatrix whose columns constitute a basis
of S. Since any vector x∈ S can be expressed as x=Vawhere
a∈Rm, we have Cx=CVa=0, which implies S ⊆ Ker C. 1

In the following, we call the decomposition (8) satisfying
(9) an orthogonal decomposition along the subspace S. We
assume that the rank of A is not less than m, the dimension
of the given subspace S. Furthermore, we also assume that
Ker A∩S=0. 2 The reason for this assumption will become
obvious later.
The fundamental problems for the orthogonal decompo-

sition of (8) along the subspace S are whether the decom-
position exists, and if it exists, whether it is unique. In Cao
and Schwartz (2001a) it has been shown that if A satis�es
S ∩ Ker A = 0, then the orthogonal decomposition exists;
and furthermore, if the rank of B is required to be m, then
the orthogonal decomposition is unique. These results are
summarized in Theorem 2.1.

Theorem 2.1. Given an n× n positive semide8nite matrix
A with rank l, and a m-dimensional subspace S in Rn such
that S∩Ker A=0. Let V be an n×m matrix whose columns
constitute a basis of S. Then there exists a unique pair
of positive semide8nite matrices B0 and C0 such that
A=B0+C0, where B0 satis8es B0V =AV (or C0V =0) and
has rank m. Furthermore, B0 and C0 are given by

B0 = AV (V TAV )−1V TA; (11)

C0 = A− B0; (12)

and the rank of C0 is l− m.

Proof. Refer to Cao and Schwartz (2001a).

The condition S∩Ker A=0 ensures that the matrix V TAV
is invertible and l¿m (Cao & Schwartz, 2001a). We call
S ∩ Ker A = 0 the decomposable condition. If the rank of
A is equal to m, then B0 = A, C0 = 0. From C0V = 0 we
have S ⊂ Ker C0. In the case where A is positive de�nite,
we have rank C0 = n− m and hence Ker C0 = S.

1 Ker C denotes the kernel space of C.
2 As shown in Cao and Schwartz (2001a), Ker A ∩ S = 0 implies

rank(A)¿m. Therefore, we often only state Ker A ∩ S = 0 without
explicitly saying rank(A)¿m.
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Corresponding to the property S ⊂ Ker C0, for the kernel
space of B0 we have the following lemma.

Lemma 2.1. Let B0 be de8ned by (11). Let x be a vector
in Rn. Then x∈Ker B0 if and only if Ax∈ S⊥. That is,

Ker B0 = {x∈Rn |Ax∈ S⊥}:

Proof. See the appendix.

It should be noted that the conditions for the unique de-
composition are BV = AV and rank B= m. As indicated in
Remark 2.8 of Cao and Schwartz (2001a), if instead of re-
quiring rank B=m, we require that rank C=l−m, then there
are many positive semide�nite pairs of B and C satisfying
BV = AV and rank B¿m. Here we establish the follow-
ing relationship between the unique decomposition given in
Theorem 2.1 and the other orthogonal decompositions.

Theorem 2.2. For any positive semide8nite pair B and C
that constitutes an orthogonal decomposition of A, they
satisfy

B¿B0; C6C0;

where B0 and C0 are the unique orthogonal decomposition
given in Theorem 2.1. Furthermore, the ranks of B and C
satisfy

rank(B)¿m (13)

rank(A)− rank(B)6 rank(C)6 rank(A)− m: (14)

Proof. See the appendix.

Theorem 2.1 characterizes the unique orthogonal decom-
position of a positive semide�nite matrix along the given
subspace S, while Theorem 2.2 characterizes all of the or-
thogonal decompositions along S based on the unique posi-
tive semide�nite pair B0 and C0. These two theorems under-
lie the theoretical analysis on the KFB algorithms given in
the next section. Theorems 2.1 and 2.2 state that among all
the orthogonal decompositions along S, the unique positive
semide�nite matrix B0 is minimal and has the feasible min-
imal rank m; and the unique positive semide�nite matrix C0

is maximal and has the feasible maximal rank.
When analyzing the KFB algorithm, we often need to

decompose a positive de�nite matrix which is equal to the
sum of two positive semide�nite matrices. Assume that the
positive de�nite matrix A has the form: A=A1 +A2, where
both A1 and A2 are positive semide�nite and satisfy the
decomposable condition. Based on Theorem 2.1, A1 and A2

can be decomposed as

A1 = B1 + C1; (15)

A2 = B2 + C2; (16)

where rank(B1)=rank(B2)=m, B1V=A1V , and B2V=A2V .
De�ne

B= B1 + B2; (17)

C = C1 + C2: (18)

Then we have A=B+C. We can also see that the pair B and
C forms an orthogonal decomposition along S and therefore
rank(B)¿m and rank(C)6 rank(A) − m. Let the pair B0

and C0 be the unique orthogonal decomposition of A along
S. Then generally B0 
= B1 + B2 and C0 
= C1 + C2. That
is, the unique orthogonal decomposition of the sum of two
matrices A1 and A2 is not, in general, equal to the sum of
the two corresponding decompositions of the two matrices
A1 and A2. Based on Theorem 2.2 we have the following
relationship between B0 and B, and C0 and C.

B06B= B1 + B2;

C0¿C = C1 + C2:

3. Boundedness of the Kalman �lter based algorithm

The estimator windup phenomenon in the EWLS algo-
rithm is well known and is characterized as the exponen-
tial growth of some elements in the covariance matrix if
the regression vector sequence ’ is not persistently exciting
( RAstrAom & Wittenmark, 1995). The similar phenomenon in
the KFB parameter estimator seems not to have been ana-
lyzed su6ciently. As shown in NiedMzwiecki (2000, p. 284),
it is quite easy to show that this kind of phenomenon does
exist in the standard Kalman �lter algorithm when no exci-
tation is provided (’t =0 for all t), and the covariance ma-
trix tends to in�nity at a linear rate in this case. However,
a strictly theoretical analysis on the windup phenomenon
in the KFB algorithm with a constant matrix Qt has only
recently been derived in Cao and Schwartz (2001b) for a
relatively general excitation condition. Here we will extend
the analysis to the more general case where Qt could be
time-varying.
The concepts of persistency of excitation and the excited

subspace as well as the unexcited subspace are key proper-
ties in the paper. Their de�nitions are given below.

Persistency of excitation. The n-dimensional regression
vector sequence ’t ∈Rn is called persistently exciting in s
steps if there exist constant 0¡a¡∞ and an integer s¿ 0
such that
t+s∑

i=t+1

’i’T
i ¿ aI (19)

for all t.
This de�nition states that the n-dimensional real number

space Rn can be spanned by ’t uniformly in s steps when
’t is persistently exciting.
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The unexcited subspace. The following set:

 u = {x∈Rn | xT’t = 0; ∀t}
is de�ned as the unexcited subspace.
The above de�nition of the unexcited subspace is basi-

cally the same as that in Sethares, Lawrence, Johnson, and
Bitmead (1986). Under this de�nition, the unexcited sub-
space is the collection of the directions in Rn which are never
excited. 3

The excited subspace. The orthogonal complement of  u,
denoted by  e, is de�ned as the excited subspace.
The excited subspace is actually spanned by the regres-

sion vector sequence ’t . In Sethares et al. (1986), the ex-
cited subspace  e is further decomposed into three sub-
spaces based on the excitation condition. In this paper, we
will consider the case where  e can be decomposed into two
orthogonal subspaces: the persistently excited subspace  p

and the subspace of decreasing excitation  d (Sethares et al.,
1986). In Bittanti, Bolzern, and Campi (1990a), a similar
de�nition for  d is introduced, where  d is called the unex-
citation subspace. The following de�nition of the subspace
of decreasing excitation is based on Bittanti et al. (1990a).

The subspace of decreasing excitation. The following set

 d =

{
x∈ e | ∃L¡∞; xT

N∑
1

’t’T
t x¡L; ∀N ¿ 0

}

is de�ned as the subspace of decreasing excitation.
It can be shown that for any x∈ d ; xT’t → 0 as t → ∞.

Therefore, each direction in  d is decreasingly excited.
The persistently excited subspace. The orthogonal com-

plement of  d in  e, denoted by  p is de�ned as the persis-
tently excited subspace.
It can be shown that for any x 
= 0 in  p, there exist a

positive number a and an integer s¿ 0 such that

xT
t+s∑

i=t+1

’i’T
i x¿ a (20)

for all t. Inequality (20) indicates that  p is persistently
excited.
Based on the above de�nitions, we can decompose the

regressor ’t as ’t = ’t;p + ’t;d, where ’t;p ∈ p is called
the persistently exciting component of ’t , and ’t;d ∈ d is
called the decreasingly exciting component. One can see
that ’t;d → 0 as t → ∞. This is called the asymptotic zero
excitation property.
In the following, we will analyze the behavior of the co-

variance matrix Pt under the condition that there exists an
unexcited subspace  u. Furthermore, we assume that the di-
mension of  e is m and hence the dimension of  u is n−m.

3 This de�nition seems very unrealistic because  u may never exist
in the real world applications. However, as long as for a su6ciently
long period xT’t = 0 or xT’t is su6ciently small, then the de�nition is
applicable and useful, just as the de�nition of persistency of excitation.

Now consider the update equation (5). Assume that Pt

starts at P0 ¿ 0 and Qt¿ 0. Let S’ be an n × m matrix
whose columns constitute a basis of the excited subspace
 e. We can decompose Pt in the following way according
to Theorem 2.1:

Pt = Pt;o + Pt;p; (21)

where Pt;o and Pt;p are positive semide�nite and given by

Pt;p = PtS’(ST
’PtS’)−1ST

’Pt; (22)

Pt;o = Pt − Pt;p: (23)

From Theorem 2.1 we have Pt;oS’ = 0 and the rank of Pt;o

is n− m.
Similarly, we can decompose Qt in the same way as

follows:

Qt = Qt;o + Qt;p; (24)

where Qt;o and Qt;p are positive semide�nite and given by

Qt;p = QtS’(ST
’QtS’)−1ST

’Qt; (25)

Qt;o = Qt − Qt;p: (26)

Based on Theorems 2.1 and 2.2, we can give a lower
bound for Pt in the KFB algorithm in terms of the matrix
sequence Qt , which is stated in the following theorem.

Theorem 3.1. Assume that the regression vector sequence
’t ∈Rn only spans an m-dimensional subspace in Rn. Then
Pt;o, the orthogonal part of the covariance matrix Pt to
the excited subspace given by (5), satis8es the following
matrix inequality:

Pt;o¿P0;o +
t∑

i=0

Qi;o: (27)

Proof. De�ne the following matrix:

SPt−1 = Pt−1 − Pt−1’t’T
t Pt−1

r + ’T
t Pt−1’t

: (28)

Then from (5) we have

Pt = SPt−1 + Qt: (29)

According to Theorem 2.1, we can decompose SPt−1 along
the excited subspace  e as

SPt−1 = SPt−1;o + SPt−1;p; (30)

where SPt−1;o and SPt−1;p are positive semide�nite and given
by

SPt−1;p = SPt−1S’(ST
’
SPt−1S’)−1ST

’
SPt−1; (31)

SPt−1;o = SPt−1 − SPt−1;p: (32)

From Theorem 2.1 we have SPt−1;oS’ = 0. Furthermore, we
know that the rank of SPt−1;o is n−m and the rank of SPt−1;p

is m.
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Similarly, we can decompose Qt in the same way

Qt = Qt;o + Qt;p; (33)

Qt;p = QtS’(ST
’QtS’)−1ST

’Qt; (34)

Qt;o = Qt − Qt;p; (35)

where Qt;o and Qt;p are positive semide�nite and satisfy the
same conditions as SPt−1;o and SPt−1;p.
Thus, Eq. (29) can be written as

Pt = ( SPt−1;o + Qt;o) + ( SPt−1;p + Qt;p): (36)

Based on Theorem 2.2, we can get the following inequality:

Pt;o¿ SPt−1;o + Qt;o: (37)

From (28) we have

SPt−1 = Pt−1 − Pt−1’t’T
t Pt−1

r + ’T
t Pt−1’t

= Pt−1;o + Pt−1;p − Pt−1;p’t’T
t Pt−1;p

r + ’T
t Pt−1;p’t

(because Pt−1;o’t = 0);

= Pt−1;o + P̂t−1;p; (38)

where P̂t−1;p¿ 0 is de�ned by

P̂t−1;p = Pt−1;p − Pt−1;p’t’T
t Pt−1;p

r + ’T
t Pt−1;p’t

: (39)

From (38) we have P̂t−1;pS’ = SPt−1S’. Based on Lemma
4.4 in Cao and Schwartz (2001a), we can see that

rank(P̂t−1;p) = rank(Pt−1;p) = m:

Then from (38) we see that the pair Pt−1;o and P̂t−1;p con-
stitutes the unique orthogonal decomposition of SPt−1. Thus,
we have

SPt−1;o = Pt−1;o; (40)

SPt−1;p = P̂t−1;p: (41)

From (40) and (37) we get

Pt;o¿Pt−1;o + Qt;o; (42)

which leads to (27).

Since Pt¿Pt;o, inequality (42) gives a lower bound on
Pt . On the other hand, it is quite easy to get an upper bound
on Pt as follows.
From (5) it is obvious that

Pt6Pt−1 + Qt: (43)

Using the above inequality recursively, one can get

Pt6P0 +
t∑

i=0

Qi: (44)

From Theorem 3.1 we can see that if the sum of the
orthogonal component of Qt to the excited subspace is
unbounded, then estimator windup happens in the KFB
algorithm. This includes the case where Qt is a positive
de�nite constant matrix. In the case of Qt being a constant
matrix Q¿ 0, we can get the following result based on
Theorem 3.1.

Corollary 3.1. Assume that the regression vector sequence
’t ∈Rn only spans a m-dimensional subspace in Rn and Qt

is equal to a constant matrix Q¿ 0 in (5). Then there are
n − m eigenvalues of Pt given in (5) which will tend to
in8nity as t → ∞.

Proof. Based on Theorem 3.1, we have

Pt¿Pt;o¿P0;o + tQo: (45)

Because the ranks of Qo and P0;o are n − m, therefore
they have n − m nonzero eigenvalues. Let the eigenval-
ues #k(Pt); #k(P0;o + tQo) and #k(Qo) be arranged in in-
creasing order. Then according to Corollary 7.7.4 and the
Weyl Theorem in Horn and Johnson (1985), we have for
k = m+ 1; m+ 2; : : : ; n

#k(Pt)¿ #k(Pt;o)¿ #k(P0;o + tQo)

¿ t#k(Qo) (46)

which shows that there are n−m eigenvalues of Pt that tend
to in�nity as t → ∞.

Inequality (46) shows that if there is an unexcited sub-
space and Qt = Q¿ 0, then some of the eigenvalues of Pt

will tend to in�nity at least at a linear rate. We can also
show that these eigenvalues will increase exactly at a linear
rate as follows. Replacing Qt with Q in (44) we get

Pt6P0 + tQ: (47)

Let the maximum eigenvalue of P0 be #0;M . Then based on
Corollary 7.7.4 and the Weyl Theorem in Horn and Johnson
(1985), from (47) we can get for k = m+ 1; m+ 2; : : : ; n

#k(Pt)6 #k(P0 + tQ)

6 #0;M + t#k(Q): (48)

Combining (46) and (48) in a compact form we get

t#k(Qo)6 #k(Pt)6 #0;M + t#k(Q) (49)

for k =m+1; m+2; : : : ; n. Inequality (49) shows that there
are n−m eigenvalues of Pt that grow at a linear rate, which
is determined by Q. This is quite di4erent from the windup
phenomenon in the EWLS algorithm where the covariance
matrix grows exponentially. Generally, it can be expected
that linear growth rate is much slower than an exponential
growth rate, which means that the KFB algorithm with a
constant matrixQ could be more robust to excitation failures
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than the EWLS algorithm (NiedMzwiecki, 2000). Despite this
signi�cant di4erence, the KFB algorithm with a constant Q
has the same tracking ability as that of the EWLS algorithm
in the sense that both algorithms are exponentially conver-
gent. These aspects suggest that the KFB algorithm could
be a much better choice than the EWLS algorithm.
The possible presence of estimator windup in the KFB

algorithms with unsu6cient excitation indicates that the de-
signer should be cautious in choosing Qt when long-term
unsu6cient excitation is expected. In such a case, the condi-
tions on Qt for Pt being bounded from above is very helpful.
From Theorem 3.1, one can see that a necessary condition
for Pt being bounded from above is that the sum

∑
i Qi;o

is bounded. Fortunately, by using the orthogonal decompo-
sition approach and the associated results in Section 2 we
can analyze the boundedness of Pt based on its decomposed
positive semide�nite parts Pt;o and Pt;p, and develop some
su6cient condition for Pt being bounded in the case where
the unexcited subspace exists.
De�ne the following matrix:

Mt = SPt−1;p + Qt;p: (50)

Then (36) becomes

Pt =Mt + SPt−1;o + Qt;o: (51)

Decomposing Mt along the excited subspace based on
Theorem 2.1, we get

Mt =Mt;p + &t; (52)

where Mt;p satis�es Mt;pS’ = MtS’ and the rank of Mt;p is
m, and &t¿ 0 is the orthogonal part of Mt to the excited
subspace and the rank of &t is given by

rank(&t) = rank(Mt)− m: (53)

From (51) we have Mt;pS’ =PtS’. Thus based on Theorem
2.1 it must be true that Mt;p = Pt;p. Therefore we get

Mt = Pt;p + &t: (54)

From (51), (54) and (40) we can have

Pt = Pt;p + Pt−1;o + Qt;o + &t: (55)

From the above equation we get

Pt;o = Pt−1;o + Qt;o + &t: (56)

which is the update equation for the orthogonal part of Pt to
the excited subspace. Based on (54), (50) and (41) we can
get the update equation for Pt;p as follows

Pt;p =Mt;p =Mt − &t;

= Pt−1;p − Pt−1;p’t’T
t Pt−1;p

rt + ’T
t Pt−1;p’t

+ Qt;p − &t: (57)

Since both Pt;p and Pt;o are positive semide�nite, Pt=Pt;p+
Pt;o is bounded if and only if both Pt;p and Pt;o are bounded.

Thus, we can analyze the boundedness of Pt by separately
inspecting the boundedness of Pt;p and Pt;o.
In the following, we will show that the boundedness of

Pt;p can be analyzed in terms of a reduced-order version of
the Kalman �lter for which the unexcited subspace does not
exist.
De�ne the following matrix

W = [U V ]; (58)

where U is an n × m matrix whose columns constitute an
orthonormal basis of the excited subspace  e, and V is an
n×(n−m) matrix whose columns constitute an orthonormal
basis of  u. One can see that W is an orthogonal matrix and
satis�es

WW T = UUT + VV T = I: (59)

Also note that UTU = I , but UUT 
= I . The same is true
for V .
From (5) one can get

UTPtU = UTPt−1U − UTPt−1’t’T
t Pt−1U

r + ’TPt−1’t
+ UTQtU:

(60)

Noting that V T’t = 0 we have

UTPt−1’t’T
t Pt−1U =UTPt−1(UUT + VV T)

×’t’T
t (UUT + VV T)Pt−1U

=UTPt−1UUT’t’T
t UUTPt−1U

and

’T
t Pt−1’t = ’T

t UUTPt−1UUT’T
t :

De�ne the m× m matrix St as

St = UTPtU: (61)

Then we can get the following update equation for St based
on (60)

St = St−1 − St−1 t T
t St−1

r +  T
t St−1 t

+ Ot; (62)

where the m-dimensional vector  t is de�ned by

 t = UT’t (63)

and the m× m matrix Ot is de�ned by

Ot = UTQtU = UTQt;pU: (64)

One can see that (62) has exactly the same form as the
update equation (5). Therefore, (62) is the update equation
of the covariance matrix for a mth-order Kalman �lter. We
have the following theorem on the relationship between St

and Pt;p.

Theorem 3.2. Pt;p is bounded if and only if St is bounded.

Proof. Once again based on Lemma 2.11 in Cao and
Schwartz (2001a), we have

Ker Pt;p ⊕ Ker Pt;o = Rn:
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Since Pt is positive de�nite for all t, we have Ker Pt;o = e.
Thus, any vector x of unit length in Rn can be written as

x = y + z;

where y∈Ker Pt;p, z ∈ e. Therefore,

Pt;px = Pt;pz:

Since z ∈ e, we have z = Uz1 for some z1 ∈Rm, zTz =
zT1U

TUz1 = zT1 z1. Therefore,

xTPt;px= zTPt;pz

= zT1U
TPt;pUz1

= z1UTPtUz1 = z1Stz1: (65)

Noting that both x and z1 are bounded, from (65) we see
that the bounded St leads to the bounded Pt;p.

Next, assume that Pt;p is bounded. For any vector u∈Rm

with unit length, we have from (61)

uTStu= uTUTPtUu

= vTPtv;

where v= Uu∈ e, vTv= uTu= 1. Since Pt;ov= 0, we get
Ptv= (Pt;p + Pt;o)v= Pt;pv. Therefore,

uTStu= vTPt;pv: (66)

From (66) we see that the bounded Pt;p leads to
bounded St .

Theorem 3.2 indicates that the boundedness of Pt;p is
equivalent to the boundedness of St . For any nonzero vector
z ∈Rm, we have zT t = (Uz)T’t , which can be zero only at
a �nite number of t. Therefore, for the mth order Kalman
�lter de�ned by the update equation (62), there is no unex-
cited subspace in its parameter space Rm. Thus, based on the
orthogonal decomposition method developed by the authors
the behavior of a Kalman �lter within the excited subspace
can be analyzed without considering the existence of the un-
excited subspace. In particular, if the subspace of decreasing
excitation  d = {0}, then  e = p and the sequence { t} is
persistently exciting. Thus, the known results and methods
under the condition of persistent excitation can be applied
directly to determine the boundedness of Pt;p.
In the case d 
= {0}, we can use the asymptotic zero exci-

tation property of decreasing excitation to analyze the behav-
ior of the covariance matrix Pt as t → ∞. We know that as
t → ∞ the decreasing exciting component ’t;d → 0. Thus,
for any small number -¿ 0 we can �nd 0¡T ¡∞ such
that for all t¿T , |’t;d|¡-, which means that for t¿T ,
’t;d can be neglected compared with the persistently ex-
citing component ’t;p. Therefore, there exists a su6ciently
large and �nite T ¿ 0 such that for t¿T the subspace  d

can be virtually viewed as a part of the unexcited subspace.
Thus, for t¿T we can analyze the behavior of Pt based on

Theorem 3.1 and Corollary 3.1. For example, in the case of
Qt=Q¿ 0 and d 
= {0}, based on Corollary 3.1 we can see
that some eigenvalues of Pt will tend to in�nity as t → ∞.
Thus, the presence of decreasing excitation does not bring
any special problems to our analysis as long as the ultimate
behavior of the KFB algorithm, such as the boundedness of
the covariance matrix Pt , is only concerned.

Now, we turn to the boundedness of Pt;o. From (56) we
can get

Pt;o = P0;o +
t∑

i=1

Qi;o +
t∑

i=1

&i: (67)

From the above equation we see that Pt;o is bounded if and
only if both

∑∞
i=1 Qi;o and

∑∞
i=1 &i are bounded. Here,

we should note that the bounded
∑∞

i=1 Qi;o alone does not
guarantee the boundedness of Pt;o, and the bounded

∑∞
i=1 &i

is also necessary for Pt;o to be bounded. From the de�nition
of &t (refer to (50) and(52)), we see that &t is dependent on
both Qt;p and Pt;p, but we do not have an explicit expression
for it. Therefore, it is very di6cult to analyze whether the
in�nite sum

∑∞
i=1 &i is convergent. In the following, we will

develop a su6cient condition for the boundedness of Pt;o,
which is independent of &t and hence is easy to work with.
De�ne the following (n− m)× (n− m) matrix

Lt = V TPtV; (68)

where the n× (n−m) matrix V is the same as in (58). Then
we have the following result.

Theorem 3.3. Pt;o is bounded from above if Lt is bounded.

Proof. Any vector x∈Rn can be written as

x = y + z

where y∈ e, z ∈ u. Therefore,

xTPt;ox = zTPt;oz: (69)

The above equation indicates that Pt;o is bounded if zTPt;oz
is bounded for any vector z ∈ u.

From Pt;o6Pt we get

zTPt;oz6 zTPtz:

The vector z can be written as

z = Vz1

for some vector z1 ∈Rn−m. Therefore, we have

zTPt;oz6 zTPtz = zT1Ltz1: (70)

The conclusion follows from (69) and (70).

Similar to Theorem 3.2, Theorem 3.3 connects the bound-
edness of Pt;o with that of the reduced-dimension matrix Lt .
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De�ne the following matrix:

Nt = V TQtV; (71)

where V is the same as in (58). Then we have

Corollary 3.2. Pt;o is bounded from above if the sum∑∞
i=1 Ni is convergent.

Proof. We have

Pt6Pt−1 + Qt:

Therefore,

V TPtV 6V TPt−1V + V TQtV

or

Lt6Lt−1 + Nt: (72)

From (72) we get

Lt6L0 +
t∑

i=1

Ni: (73)

From (73) and Theorem 3.3 the conclusion follows.

The condition of the boundedness of Pt;o given in Corol-
lary 3.2 is only dependent on Qt and hence is much easier to
check than the in�nite sum of &t (refer to Eq. (67)). From
Corollary 3.2 we can further develop useful insight into the
choice of Qt , as will be shown soon.
For any vector x∈Rn−m we have

xT
∞∑
i=1

Nix= xT
( ∞∑

i=1

V TQiV

)
x

= (Vx)T
( ∞∑

i=1

Qi

)
Vx

= yT

( ∞∑
i=1

Qi

)
y; (74)

where y=Vx∈ u. From (74) we see that the boundedness
of
∑∞

i=1 Ni is equivalent to the condition

yT

( ∞∑
i=1

Qi

)
y¡∞; ∀y∈ u : (75)

Thus, the condition given in (75) is also a su6cient condition
for the boundedness of Pt;o. Now consider the orthogonal
decomposition of Qt along the unexcited subspace  u. 4

Assume thatQt satis�es the decomposable condition de�ned
in Theorem 2.1, then along  u, Qt can be decomposed as

Qt = Qu
t;o + Qu

t;p (76)

4 Up to now, the orthogonal decompositions we have used are conducted
based on the excited subspace  e.

where Qu
t;o is the orthogonal part to the unexcited subspace,

that is, Qu
t;ox = 0 for any nonzero vector x∈ u. The rank

of Qu
t;o is m, and the rank of Qu

t;p is n − m. The matrix Nt

de�ned in (71) can be written as

Nt = V TQu
t;pV: (77)

Thus (75) becomes

yT

( ∞∑
i=1

Qu
i;p

)
y¡∞; ∀y∈ u : (78)

Therefore, if the matrix sum
∑∞

i=1 Qu
i;p is bounded, so is∑∞

i=1 Ni. Then based on Corollary 3.2 one can see that the
boundedness of

∑∞
i=1 Qu

i;p is a su=cient condition for the
boundedness of Pt;o, while the boundedness of

∑∞
i=1 Qi;o

is a necessary condition for the boundedness of Pt;o (refer
to (67)).
We have

xT
∞∑
i=1

Nix= yT
∞∑
i=1

Qiy

= yTQ1y + · · ·+ yTQty + · · · ;
where y = Vx∈ u. If

∑∞
i=1 Ni is bounded, it must be true

that

yTQty → 0 as t → ∞: (79)

Since Qt¿ 0, then (79) means (refer to Horn & Johnson,
1985, p. 400)

Qty → 0 as t → ∞: (80)

Eq. (80) is the necessary condition for the boundedness of∑∞
i=1 Ni. Noting that (80) should be true for any vector in

 u, (80) means that in order to keep
∑∞

i=1 Ni bounded the
unexcited subspace  u should asymptotically become the
kernel space of Qt as t → ∞. In other words, as t → ∞, Qt

should asymptotically become singular and its n−m eigen-
values should tend to zero with the associated eigenvectors
belonged to the unexcited subspace. These observations may
be helpful in the choice of Qt .

4. Directional tracking algorithms based on the Kalman
�lter

4.1. Directional forgetting and directional tracking

In the previous section, it has been shown that estimator
windup does exist in the standard Kalman �lter based algo-
rithm when the regressor is not persistently exciting, and it
is characterized as linear growth of the covariance matrix.
Compared with exponential estimator windup in the expo-
nentially weighted least squares (EWLS) algorithm, linear
estimator windup may not cause severe consequences due
to the fact that the covariance matrix grows linearly rather
than exponentially. However, windup can never be positive
in any estimation algorithms, because unbounded growth of
the covariance matrix means that the algorithm may become
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extremely sensitive to noise and disturbances. Windup is a
potential threat to the stability and performance of an algo-
rithm. In addition, as indicated in Salgado et al. (1988) and
Parkum et al. (1992) the boundedness of Pt (expressed in
(6) and (7)) is of fundamental importance for an estima-
tion algorithm, as it is the key property in connection with
the performance analysis of adaptive systems. Therefore, it
is desirable and signi�cant to develop parameter estimation
algorithms that can overcome the windup drawback. Theo-
rems 3.2–3.5 as well as Corollaries 3.2 and 3.3 established
in the previous section can provide us useful directions as
to develop such algorithms.
To overcome the windup problem in the EWLS algorithm,

many modi�ed EWLS algorithms have been proposed dur-
ing the last two decades. These algorithms can be charac-
terized either as nonuniform time forgetting (time-varying
forgetting) or nonuniform space forgetting (directional for-
getting), or a combination of these two (selective forget-
ting in Parkum et al., 1992). For the windup problem in the
Kalman �lter based algorithm, relatively few research re-
sults have been reported in the literature. Among them are
the fading memory Kalman �lter algorithm (NiedMzwiecki,
2000) and the modi�ed KFB algorithm (Cao & Schwartz,
2001b) derived based on the directional forgetting method
of Cao and Schwartz (2000).
In this section, we will develop some modi�ed Kalman

�lter based algorithms by choosing an appropriate matrix
series {Qt}. We call these algorithms the directional tracking
Kalman �lter based (DTKFB) algorithm. To explain why
these algorithms are characterized as directional tracking,
we take a look at the following update equation for the
information matrix in the EWLS algorithm

Rt = /Rt−1 + ’t’T
t ; (81)

where /¡ 1 is the forgetting factor. Obviously, at each up-
date the old information contained in Rt−1 is discounted uni-
formly in all directions and thus windup takes place. The
directional forgetting strategy is to modify the above update
equation for Rt so that the old information is only discounted
in certain directions at each update.
On the other hand, the Kalman �lter is described by the

updated equation for the covariance matrix Pt (refer to (5)),
and generally no update equation is explicitly formed for the
information matrix. The tracking ability of the algorithm is
obtained by ensuring Qt¿ 0. Since Pt ¿Qt , it can be seen
that if Q¿ 0 then the algorithm can track the time-varying
parameters in any direction. As shown in Ljung and Gun-
narsson (1990), the EWLS algorithm can be viewed as a
special case of the Kalman �lter with a speci�c Qt which is
not singular. This example shows that there is a direct con-
nection between the forgetting directions and tracking di-
rections. If Qt is singular for some t, then tracking can only
happen in certain directions at these time instants. There-
fore, by adjusting Qt we can control the tracking directions.
In a general sense, any algorithm that uses a singular Qt dur-
ing some period has the directional tracking property. Here

we will focus on the algorithms that track the time-varying
parameters only in the excited subspace.
Directional tracking and directional forgetting are dual

concepts in the estimation methods, and therefore, they are
of equal signi�cance. Directional forgetting is based on the
update equation of the information matrix, which determines
how the old information is discounted when new informa-
tion is available. The concept of directional tracking is ap-
plied to the update equation of the covariance matrix, which
determines the algorithm’s gain vector and hence its track-
ing direction. Generally speaking, unlike the covariance ma-
trix the information matrix is not involved with the imple-
mentation of a recursive algorithm. The information matrix
is mainly used in deriving an algorithm and analyzing its
performance. When an algorithm is derived in terms of the
information matrix, the inverse of the information matrix,
which appears as the covariance matrix, must be given in
a recursive form in order to avoid matrix inversion opera-
tion at each update. Therefore, designing a recursive algo-
rithm directly based on the covariance matrix is implemen-
tation orientated and may be more computationally e6cient
than the algorithm designed based on the information ma-
trix. The idea of directional tracking is useful in developing
such kinds of computationally e6cient algorithms.

4.2. Directional tracking algorithms

In this section, we will propose two kinds of directional
tracking algorithms which have the property of tracking
time-varying parameters only in the excited subspace. The
idea is based on the fundamental principle of parameter esti-
mation: tracking can happen in some direction only if there
is an excitation in the same direction. Based on this principle,
an estimation algorithm should track time-varying parame-
ters only within the excited subspace. This requires that the
rank of the matrix Qt should asymptotically coincide with
the dimension of the excited subspace. The attempt to track
in unexcited directions is useless or even dangerous.
To evaluate the proposed algorithms, we will analyze the

boundedness of the covariance matrix Pt in two situations:
(1)’t is persistently exciting; (2)’t is not persistently excit-
ing and there exists an unexcited subspace, but the subspace
of decreasing excitation does not exist. 5 For the case of non-
persistent excitation, we will only consider the boundedness
of Pt;o, the orthogonal part of Pt to the excited subspace.
As has been shown in the previous section, the boundedness
of Pt;p can be analyzed based on the condition of persistent
excitation when the subspace of decreasing excitation does
not exist. Therefore, for the case of nonpersistent excitation
we will not discuss the boundedness of Pt;p, since it is com-
pletely the same to the boundedness of Pt with persistent
excitation.

5 As has been stated in Section 3, the boundedness of Pt as t → ∞
in the case of decreasing excitation can be treated as the case where an
unexcited subspace exists.
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4.2.1. Directional tracking algorithm with rank one Qt

matrix
In this kind of directional tracking algorithm, the rank of

Qt is required to be one for all t. Therefore,Qt can be written
as

Qt = 0 t T
t ; (82)

where 0¿ 0 is a scalar and  t is a vector that belongs to the
excited subspace  e. The update equation for Pt becomes

Pt = Pt−1 − Pt−1’t’T
t Pt−1

r + ’T
t Pt−1’t−1

+ 0 t T
t : (83)

With the Qt de�ned in (82), it is easy to see that its orthog-
onal part Qt;o to the excited subspace is a zero matrix. To
specify  t , we require that  t is persistently exciting when-
ever ’t is. In addition, if ’t only excites a subspace in Rn,
then  t should excite the same subspace. By choosing  t in
such a way, we can obtain a symmetric update equation for
the covariance matrix and information matrix as shown in
the following.
De�ne the information matrix Rt as

Rt = (Pt − 0 t T
t )

−1 = P−1
t−1 + r−1’t’T

t : (84)

By using the matrix inversion lemma one can �nd the update
equation for Rt is

Rt = (R−1
t−1 + 0 t−1 T

t−1)
−1 + r−1’t’T

t

= Rt−1 − Rt−1 t T
t Rt−1

0−1 +  T
t Rt−1 t−1

+ r−1’t’T
t : (85)

Comparing (85) with (83) one can see that they are com-
pletely symmetric. The role of  t in (83) is the same as that
of ’t in (85). In particular, if  t and ’t have the same prop-
erty, then so do Rt and Pt . This structural symmetry between
(83) and (85) has two advantages: (1) it helps to choose the
vector series { t}; (2) it can simplify the analysis of Pt or Rt .
Symmetry between the information matrix and covariance
matrix is also noticed in Gunnarsson (1994), where the de-
sign method of Qt matrix to prevent Pt from tending to zero
is called covariance modi�cation. In Gunnarsson (1994) the
use of regularization 6 to avoid windup, and the relationship
between covariance modi�cation and regularization is dis-
cussed. As will be shown below, we can avoid windup by
appropriately choosing  t and no regularization is needed.

Symmetry between (83) and (85) suggests that one pos-
sible choice for  t is

 t =
’t√

-+ ’T
t ’t

; (86)

where - is a positive scalar, which ensures that  t is well
de�ned even with ’t = 0. Eq. (86) means that  t is the

6 Regularization is usually to add a constant positive de�nite matrix to
the information matrix, and this method generally increases computational
complexity.

normalized regressor ’t . Choosing  t according to (86) en-
sures that: (1)  t is persistently exciting whenever ’t is; (2)
 t is bounded in spite of the boundedness of ’t . As will be
shown later, property (2) is important when the algorithm
is used in an adaptive control system.
Now the proposed directional tracking algorithm can be

described by the following equations:

�̂t = �̂t−1 + Kt(yt − ’T
t �̂t−1);

Kt =
Pt−1’t

r + ’T
t Pt−1’t

;

Pt = Pt−1 − Pt−1’t’T
t Pt−1

r + ’T
t Pt−1’t

+
0

-+ ’T
t ’t

’t’T
t :

To simplify the notation, we will call the above equations
Algorithm I.
With Qt chosen as (82) the unexcited subspace is the

kernel space of Qt . Based on Corollary 3.2 we see that Pt;o

is bounded from above. Therefore, there is no windup for
Algorithm I in the case of nonpersistent excitation.
In the following, we will establish the boundedness of Pt

for the case of persistent excitation for Algorithm I. First,
we will show that Pt is bounded from above. Then based on
the symmetric property between Pt and Rt , we show that Pt

is also bounded from below.

Lemma 4.1. Assume that { t} is a bounded persistently
exciting sequence of s steps. Then any vector x of unit
length can be represented by

x =
t+s∑

i=t+1

1x(i; t) t ;

where the scalar 1x(i; t) is uniformly bounded, that is, there
is a positive number d such that |1x(i; t)|6d for all t and
x, |x|= 1.

Lemma 4.1 is proposed in Bittanti, Bolzern, and Campi
(1990b) and is needed in the proof of the following theorem.

Theorem 4.1. Assume that ’t is persistently exciting in
s steps. Then the covariance matrix Pt of Algorithm I is
bounded from above for all t.

Proof. Basically we follow the approach of Bittanti et al.
(1990b).
Since Pt ¿ 0, one can write Pt as Pt = M 2

t , where Mt is
a positive de�nite matrix. Thus, xTPt+sx = |Mt+sx|2. From
(86) we have

| t |= |’t |√
-+ |’t |2

6 1: (87)

Then based on Lemma 4.1 we can get

xTPt+sx = |Mt+sx|2

6
t+s∑

i=t+1

12
x(i; t)|Mt+s i|2:
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That is

xTPt+sx6
t+s∑

i=t+1

12
x(i; t) 

T
i Pt+s i: (88)

From (83) we can get the following inequality

Pt 6 Pt−1 + 0 t T
t

6 Pt−1 + 0I: (89)

Recursively applying inequality (89) to the right hand side
of (88) for all of the terms in the form  T

i Pk i, where i¡ k,
until all of them having the form:  T

i Pi i, one can get the
following inequality:

xTPt+sx6
t+s∑

i=t+1

12
x(i; t) 

T
i Pi i +

t+s−1∑
i=t+1

0x(i; t)| i|2; (90)

where 0x(i; t)¿ 0 is a function of 12
x(i; t), i∈ [t + 1; t + s−

1] and 0. The uniform boundedness of 1x(i; t) leads to the
uniform boundedness of 0x(i; t).
Based on (86) we have ’t = at t , where at satis�es

at =
√

-+ |’t |2¿
√
-:

From (83) we can get

 T
t Pt t =

r T
t Pt−1 t

r + ’T
t Pt−1’t

+ 0( T
t  t)2

= r
 T
t Pt−1 t

r + a2t  T
t Pt−1 t

+ 0| t |4

6
r
a2t

a2t  
T
t Pt−1 t

r + a2t  T
t Pt−1 t

+ 0| t |4

6
r
a2t

+ 0

6
r
-
+ 0: (91)

Substituting (91) into (90) we have

xTPt+sx6
( r
-
+ 0
) t+s∑

i=t+1

12
x(i; t) +

t+s−1∑
i=t+1

0x(i; t): (92)

Noting that s is a �nite integer, then from (92) and the
uniform boundedness of 1x(i; t) and 0x(i; t), we conclude that
xTPtx is bounded from above for all x (|x|= 1) and t.

Remark 4.1. In Cao and Schwartz (2001b), the vector  t is
chosen as  t = bt’t+1 for some positive scalar bt , and it is
shown that Pt is bounded from above for the case of bounded
regressor ’t . Here, by choosing  t as (86), we have proven
that Pt is bounded from above without the assumption that
’t is bounded.

Theorem 4.2. Assume that ’t is bounded and persistently
exciting. Then there is a scalar �¿ 0 such that Pt¿ �I .

Proof. Since ’t is bounded and persistently exciting, Eqs.
(83) and (85) are completely symmetric and Rt must have
the same behavior as that of Pt . Then from Theorem 4.1
we see that there is a positive number 1 such that Rt6 1I .
From (84) it follows that

Pt = R−1
t + 0 t t¿R−1

t

¿ 1−1I:

Remark 4.2. Unlike the upper bound of Pt established in
Theorem 4.1, the lower bound established in Theorem 4.2
is dependent on the assumption that ’t is bounded. As in-
dicated in Salgado et al. (1988), �I6Pt6 �I is the key
property in establishing the basic error properties of a al-
gorithm, which are very useful in a wide range of applica-
tions in adaptive �ltering and control (see also Goodwin &
Sin, 1984). It is also indicated that these properties should
hold irrespective of the boundedness of the regressor. In this
context, Algorithm I may have some weakness if it is used
in an adaptive control system because it is not theoretically
proven that Pt¿ �I in the case of unbounded regressor. For-
tunately, as remarked in Parkum et al. (1992) the basic error
properties can be established based on the weaker condi-
tion Pt ¿ 0. Thus, Algorithm I can guarantee the basic error
properties in the case of unbounded regressor.

4.2.2. Directional tracking algorithm with varying
rank Qt

In this algorithm, Qt has exactly the same form as the
information matrix in the EWLS algorithm (refer to (81)),

Qt = /Qt−1 + 0 t T
t : (93)

In (93)  t is chosen as (86). The algorithm is

�̂t = �̂t−1 + Kt(yt − ’T
t �̂t−1);

Kt =
Pt−1’t

r + ’T
t Pt−1’t

;

Pt = Pt−1 − Pt−1’t’T
t Pt

r + ’T
t Pt−1’t

+ Qt;

Qt = /Qt−1 +
0

-+ ’T
t ’t

’t’T
t :

and is called Algorithm II.
We see that the tracking direction of Algorithm II depends

not only on the current regression vector but also on the old
regression vector, whose e4ects are discounted by the for-
getting factor /¡ 1. We decompose Qt into Qt=Qt;o+Qt;p

based on Theorem 2.1. Then based on the well established
properties for the information matrix in a EWLS algorithm,
one can see that Qt;o will tend to zero if there is an unexcited
subspace. Therefore, tracking directions will be asymptoti-
cally limited to the excited subspace and Algorithm II has
the ability to choose tracking directions. Obviously, the rank
of Qt is dependent on the excitation condition.
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To show that Algorithm II is windup free, we need to
prove that Pt;o is bounded from above when there exists an
unexcited subspace. We can establish the following theorem
based on Corollary 3.2.

Theorem 4.3. Assume that there exists an l-dimensional
unexcited subspace in Rn. Decompose Pt of Algorithm II
as Pt = Pt;o + Pt;p along the excited subspace. Then Pt;o is
bounded from above.

Proof. De�ne Nt as

Nt = V TQtV;

where V is an n× l matrix whose columns constitute a basis
of the unexcited subspace. Then we have

Nt = /Nt−1: (94)

Therefore,
∞∑
i=1

Ni =N1 + N2 + N3 + · · ·

= (1 + / + /2 + · · ·)N1

=
1

1− /
N1 ¡∞: (95)

The conclusion follows from Corollary 3.2.

Next, we consider the property of Pt for the case where
the regressor ’t is persistently exciting. Noting that  t is
bounded and also persistently exciting, from Johnstone,
Johnson, Bitmead, and Anderson (1982) we have

q1I6Qt6 q2I; (96)

where q2 ¿q1 ¿ 0.
Based on the above inequality, it can be shown that

Pt ¿Qt¿ q1I: (97)

That is, Pt is bounded below away from zero. Furthermore,
this does not depend on the bounded regressor assumption.
On the other hand, following the same procedure as in

the proof of Theorem 4.1, we can establish the upper bound
of Pt as stated in the following theorem.

Theorem 4.4. Assume that ’t is persistently exciting, then
for Algorithm II the matrix Pt is bounded from above for
all t.

4.2.3. Comparison between Algorithms I and II
Algorithm II can provide more choices than Algorithm I.

If / is chosen very close to 1, then tracking directions do not
change much at each update and the Algorithm II’s behavior
is expected to be similar to the standard Kalman �lter in
the case of persistent excitation. On the other hand, if / is
very small, then the old tracking directions are discounted
quickly and Algorithm II’s behavior is expected to be close
to that of Algorithm I. Therefore, generally it can be said

that Algorithm II is something between the standard Kalman
�lter and Algorithm I.
To illustrate the possible di4erence between Algorithms I

and II, let us assume the system to be estimated is described
by

yt = ’T
t �0;

where �0 is a constant vector. De�ne the parameter estimate
error

�̃t = �̂t − �0: (98)

Introduce the Lyapunov function

Vt = �̃tP−1
t �̃t : (99)

It can be proven that

Vt6 �̃Tt−1(Pt−1 + J T
t QtJt)−1�̃t−1; (100)

where Jt is de�ned by

Jt = I + r−1’t’T
t Pt−1:

For Algorithm I, since Qt has rank one the matrix J T
t QtJt is

positive semide�nite. From (100) we have

Vt6 �̃Tt−1P
−1
t−1�̃t−1 = Vt−1 (101)

which shows that Vt is not increasing.
For Algorithm II, since Qt is positive de�nite in the case

of persistent excitation the matrix J T
t QtJt is also positive

de�nite. Thus, from (100) we have

Vt ¡ �̃Tt−1P
−1
t−1�̃t−1 = Vt−1 (102)

which shows that Vt is strictly monotonically decreasing.
Comparison between (101) and (102) shows that Algo-

rithm II may have better convergence property than Algo-
rithm I since its Lyapunov function is strictly monotonically
decreasing irrespective of the direction of �̃t .

Finally, the boundedness of the Pt matrix for Algorithm II
is independent of the assumption of regressor boundedness;
while for Algorithm I only the upper bound of Pt is estab-
lished without the same assumption. This di4erence could
be a theoretical advantage of Algorithm II over Algorithm
I when they are involved with the stability analysis of an
adaptive control system.

5. Conclusions

A theoretical framework for analyzing the behavior of pa-
rameter estimation algorithms has been developed based on
an orthogonal decomposition approach. The application of
this approach to the analysis of the Kalman �lter based algo-
rithm has shown that this framework is especially e4ective
in the case where an unexcited subspace exists. This frame-
work is not only suitable to the analysis of the Kalman �lter
based algorithms, but also applicable to the analysis of the
other kinds of algorithms, such as the exponential weighted
least squares algorithm and its variants. By the orthogo-
nal decomposition approach, the behavior of the covariance
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matrix can be analyzed in terms of two decomposed parts
whose boundedness are much easier to investigate than the
overall covariance matrix. Su6cient and necessary condi-
tions to avoid windup has been established for the Kalman
�lter based algorithm, which provide useful directions for
deriving new algorithms free of windup.
The idea of directional tracking has been introduced for

the Kalman �lter based algorithm, which is similar to the
concept of directional forgetting introduced for the expo-
nential forgetting least squares algorithm. Two kinds of di-
rectional tracking algorithms have been proposed, which
can overcome the windup problem in the standard Kalman
�lter. In addition, it has been shown that these algorithms
have a bounded covariance matrix in the case of unsu6cient
and/or unbounded excitation. These algorithms will enrich
the family of parameter estimation algorithms and provide
more choices to the designer especially in the �eld of adap-
tive control.

Appendix.

Proof (Proof of Lemma 2.1). If y=Ax∈ S⊥, then V Ty=0,
B0x = AV (V TAV )−1V Ty = 0. Therefore, x∈Ker B0.
On the other hand, if x∈Ker B0, then 0 = B0x = AVz,

where z = (V TAV )−1V TAx. Noting that the columns of V
are the basis of S, we have Vz 
= 0 unless z = 0. Therefore,
AVz=0 leads to z=0 orVz ∈Ker A. First, assumeVz ∈Ker A.
Since the columns of V constitute a basis of S, we also have
Vz ∈ S. Therefore, Vz ∈Ker A ∩ S. However, A satis�es the
decomposition condition Ker A∩ S =0. Therefore, we have
Vz=0 and hence z=0. From z=0 we get V TAx=0, which
indicates the vector y = Ax is orthogonal to the basis of S.
Thus we conclude y = Ax∈ S⊥.

Proof (Proof of Theorem 2.2). From BV = AV we have
D=V TBV =V TAV . Then from the condition S ∩Ker A=0
and Lemma 2.1 in Cao and Schwartz (2001a) we can see
that D is positive de�nite and S ∩ Ker B = 0. Therefore, B
satis�es the decomposable condition. Based on Theorem 2.1
we can decompose B as B=B1+C1, where B1V =BV =AV
and C1¿ 0, and furthermore, rank B1 = m and rank C1 =
rank(B)− m. Thus, we have

A= B+ C = B1 + (C1 + C):

Noting that the pair B1 and C1 +C is the unique orthogonal
decomposition of A, it must satis�es

B0 = B1 = B− C1;

C0 = C + C1:

Since C1¿ 0, we conclude that B06B and C0¿C.
From B06B, one immediately gets (13). Similarly, from

C0¿C one gets

rank(C)6 rank(C0) = rank(A)− m: (103)

On the other hand, from A= B+ C one can get

rank(A)6 rank(B) + rank(C): (104)

Combining (103) and (104) we get (14).
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