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Abstract. In this paper, a framework is established to model a deceitful agent and train
it in an adversarial two-player game. In the game, a player uses multi-objective deception
to manipulate its opponent’s belief about its true intention. In this regard, the player is
trained to switch between different strategies based on its state in the game. There is a
lower-level policy, which stores the policy to carry out a primitive task. Moreover, there
is a higher-level policy, which changes the desired task in different states. The game
of guarding territories is utilized to investigate the control mechanism. The lower-level
policy is trained via the fuzzy actor-critic learning (FACL) algorithm, and the higher-level
policy is extracted via the non-dominated sorting genetic algorithm II (NSGA-II). The
results show that by implementing a two-level policy, the invader can increase its pay-off
against a non-deceptive situation. In addition, a comparison is conducted between the
higher-level policies based on their input information.
Keywords: Reinforcement learning, Hierarchical reinforcement learning, Multi-agent
systems, Deception, Guarding a territory

1. Introduction. Deception has a long and deep history among humans and animals.
They can take advantage of concealing the truth or acting dishonestly in nature. Gen-
erally, the deception concept can be present in any game with adversarial elements [25].
In other words, one may utilize deception in programming an agent to alter its perfor-
mance in a multi-agent system. Deception is addressed in many fields such as robotics
[31,34], active persistent threats (ATP) [5], and deception detection in the text by natural
language processing [29].

Several definitions are proposed to describe the deception concept. Despite the simi-
larity, there are a few differences between them [6, 13, 19, 34]. However, the definition by
Bond and Robinson is generally accepted. Bond and Robinson [6] define deception as any
conscious or unconscious, intentional or unintentional belief manipulation. Most of the
articles use a game theory approach to model deception [13,19].

In [28] deception detection is addressed in multi-agent systems. Although psychologists
can detect fraud by nonverbal clues, this paper proposes a reasoning process to detect
deceit. They followed a model to detect inconsistencies between the actions and the goal
[18]. They implemented a Bayesian network (BN) to predict the agents’ opinions based
on their relationship with others. Their results show the better performance of using BN
in deception detection rather than face-to-face evaluation.
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Another application of deception in robotics is studied in [34]. In this study, the re-
searchers investigate the algorithms to justify the usage of deception. They showed that
there are many cases where deception usage does not significantly improve the agent’s
performance. In other words, using deception does not guarantee a successful result for
the deceiver.
Robotic deception by using fuzzy inference system is studied in [19, 20]. In [19], the

researchers addressed deception and trust in a multi-agent game simultaneously. In the
paper, the researchers utilized game theory and fuzzy logic in a deceptive pursuit-evasion
game. Robotic deception is also studied in [4, 12] in terms of deceiving humans. In [12],
the authors conducted several experiments to study the effect of a robotic arm motion
to deceive a human about a robot’s target. An application of deception in an adversarial
strategic game is studied in [24]. In this study, the agents are two unmanned aerial vehi-
cles (UAVs) and decide their strategy. The results showed that by using deception, the
deceiving agent could have better performance.
Deception in a grid world game is studied in [25]. The researchers provided a grid world

game such that an agent is programmed to reach a particular cell. In the game, three
cells are considered the targets, while only one of them is the invader’s intended target.
An adversary tries to guess the intended target.
Deception can be studied in the differential games, where there are more than an agent

in the game. A deceitful agent can take advantage of using deception to increase its pay-
off. The game of guarding a territory is one of the examples [35], which can be used as
a testbed for studying deception. In the game of guarding a territory, the invader has a
target that it wants to invade. However, the desired purpose of the defender is to guard
the goal by capturing the invader. The defender has to intercept the invader as far as
possible from the target. There are many papers on studying the game of guarding a
territory [1-3, 8, 22, 27, 35].
In all mentioned papers, deception is studied from a single-objective point of view.

Often, the criterion to measure the deception performance is the number of the times
an agent successfully deceives another agent in many games. However, the other aspects
of the game are often neglected. For instance, if the deceitful agent uses deception a
lot, the deceived agent may learn the deception model and strives to counter deceive. In
addition, two different deceptive strategies may lead to a successful game for the deceitful
agent. However, one of strategies may come in a higher operation cost. Or, one of the
deceptive strategies may have more robustness in non-deterministic environments than
other deceptive strategies.
Pursuit-evasion games are a class of games that have applications in surveillance and

security missions. These games were initially studied by Isaacs in 1960s [17]. The initial
method to solve pursuit-evasion games was based on geometrical approaches, such as the
Apollonius circle. Research is abundant in solving pursuit-evasion games, using geometric
approaches [14, 15, 21, 26, 35]. In addition, there are several studies on using analytical
approaches, such as [14, 16]. However, in this study, we focus on the usage of machine
learning approaches in pursuit-evasion games, reinforcement learning in particular.
Guarding a territory in a grid world is investigated in [22]. The minimax Q-learning

algorithm and the win-or-learn-fast policy hill-climbing (WoLF-PHC) algorithm are com-
pared in this paper. It is shown that in both algorithms, the players’ policy has converged
to the Nash equilibrium. It is shown that WoLF-PHC is able to find the optimal strategy
in more games.
The game of guarding a territory in a continuous domain is simulated in [27]. The fuzzy

Q-learning (FQL) algorithm is implemented to train the invader, while the defender uses
an optimal policy based on the Apollonius circle.
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Guarding a territory in the presence of one invader and two defenders is the subject of
[1]. They investigate a game with one super invader in the presence of two defenders. The
fuzzy actor-critic learning (FACL) algorithm is implemented in their study. The results
show that both agents can learn their optimal policies simultaneously.

The game can be converted into a suitable platform to study deception in artificial
intelligence. In this regard, several targets are added to the game. The invader has one
target. However, it can change its intended goal during the game to deceive the defender.
Such a game is studied in [3]. In [2], the game is played in a grid world. The Q-tables
are derived with the minimax Q-learning algorithm and the single-objective Q-learning
algorithm.

In this paper, the game of guarding several territories is simulated in a continuous
domain. Two agents are involved in the game: one invader and one defender. There are
also three targets in the game, and only one of them is the invader’s real goal. However, all
three targets are protected by the defender. We proposed a hierarchical strategy system
to utilize multi-objective deception.

The motivations of this paper are twofold. This study investigates the possibility of
learning deception using reinforcement learning and the genetic algorithm. Recent appli-
cations of the genetic algorithm are investigated in [36]. On the other hand, we investigate
the multi-objective deception by studying a mobile robot, which strives to manipulate an-
other robot by considering several objectives.

This paper’s contributions are as follows.

1) We model multi-objective deception in a continuous domain game.
2) We implement a combination of machine learning and evolutionary optimization

approaches to create a bi-level policy mechanism.
3) We test our deception model on the game of guarding several territories and create

a deceitful invader.
4) We implement the non-dominated sorting genetic algorithm II (NSGA-II) to find

the Pareto optimal strategy of the higher-level policy.

The rest of the paper is organized into five sections. In Section 2, the game of guard-
ing several territories is briefly presented. In Section 3, the fuzzy actor-critic learning
algorithm is described. Section 4 is dedicated to the proposed method. In Section 5, the
learning process is done, and several tests are conducted. Finally, Section 6 concludes the
paper.

2. Guarding Several Territories. Guarding a territory is a standard benchmark in
game theory and decision theory. Guarding a territory is the extended version of the
pursuit-evasion game, introduced by Isaacs [17], where there is also a target in the game.
The target may be stationary or moving [7]. In this game, normally, two agents exist other
than the target(s). One of them is an invader, and its goal is to reach a predefined target.
The other agent is a defender, which has to protect the goal by intercepting the invader.
This game’s terminal time is when either the invader reaches the target, or the defender
captures the invader. Figure 1 depicts the game.

Two agents and three territories are shown in Figure 1. In the figure, θI and θD are the
steering angles of the invader and the defender, while v is their speed. In Figure 1, G2 is
the true goal. Some of the game characteristics are as follows.

• The game field may be in any size or any shape. However, in this paper, we set a
square-shaped game field.

• If the defender is faster than the invader, it is called a superior defender, while the
invader is called an inferior invader. If the invader is faster than the defender, the
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invader is called a superior invader. In addition, the defender is called an inferior
defender. It is also possible to assume an equal speed for both agents.

• The agents are considered as cars, and their differential equations are as follows [30]:
ẋ = v cos(β)

ẏ = v sin(β)

β̇ =
vθ

L

(1)

where (x, y) is the car location, β is the heading with respect to the x-axis, and θ is
the steering angle. The term L is the distance between the two axles and is set to
0.3 units, which was suggested by [30].

• The action set of both agents is the steering angle of the robot, which is in the
interval of

[
−π

4
, π
4

]
. The action set is continuous.

• Unlike [1, 22, 27], in this paper, there is more than one territory. The goal set can
be presented as G = {G1, G2, . . . , Gn}. The defender is responsible for protecting all
the goals, while only one of them is the invader’s true goal.

v

v

Figure 1. The game of guarding a territory with two agents and three goals

In the deceptive game, the invader tries to transmit a false signal to the defender by
repeatedly choosing different fake goals. On the other hand, the defender has to guess
the invader’s true intention and tries to capture the invader.

3. The Fuzzy Actor-Critic Learning Algorithm. Reinforcement learning (RL) is
a branch of machine learning, where the agent tries to learn through direct interaction
with an unknown environment. In RL, the agent receives a suitable reward if it achieves
the desired outcome. The reward is a numerical value calculated by a reward function.
Q-learning is one of the well-studied kinds of RL. The Q-learning algorithm is a repetitive
process, which updates the state action values in each epoch. The state value of each
action is called Q-value.
In the Q-learning algorithm, the Q-values can be stored in arrays, called Q-tables.

However, a disadvantage of the Q-learning algorithm is the size of the Q-table, which
becomes intractable as the number of states grows. A solution to this problem is utilizing
a function estimator, such as a fuzzy inference system (FIS) or an artificial neural network
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(ANN). The FIS has two advantages over the ANN [1]. Firstly, it allows the human de-
signer to incorporate expert knowledge into design. Secondly, only the output parameters
of the FIS are updated at each time step. Therefore, with a limited number of IF-THEN
rules, the designer can estimate the state values with a reasonable amount of memory.

Two well-known algorithms for training in a continuous domain are the fuzzy Q-learning
algorithm (FQL) [27], and the fuzzy actor-critic learning (FACL) algorithm [11]. The FQL
algorithm is a modified form of the Q-learning algorithm. However, instead of arrays,
the approximation of the Q-values are stored as a fuzzy inference system. In the FQL
algorithm, discrete actions are evaluated in each state. Thus, the designer has to break
the action interval into some discrete actions. The algorithm dedicates a Q-value to each
action, and by using a temporal difference method, the output parameters of the FIS
are updated. There are many disadvantages to the FQL algorithm. The first one is that
the action set must be discrete. In addition, the action set interval is limited. Last but
not least, it is shown that the FACL algorithm can perform better than FQL in terms of
convergence speed and pay-off [1].

The fuzzy actor-critic learning algorithm is formed from two parts: the actor and the
critic. The actor stores the actions in each state, while the critic gives an estimation of
future performance. It is possible to implement different kinds of estimators as the actor
or the critic in an actor-critic learning algorithm. It is shown that the FIS outperforms
the ANN in terms of learning time and performance [11]. In this paper, a Takagi-Sugeno
fuzzy logic controller (FLC) is utilized for the actor. The critic is a Takagi-Sugeno fuzzy
inference system and estimates the state values.

The output of the actor is calculated as follows [32],

ut =
M∑
l=1

Φlωl
t (2)

where ωl is the output parameters of the fuzzy controller. The term Φl is the firing strength
of the rule l and is defined as follows,

Φl =
∂u

∂ωl
=

∏n
i=1 µ

F l
i (xi)∑M

l=1

(∏n
i=1 µ

F l
i (xi)

) (3)

where µF l
i (xi) is the membership degree of the fuzzy set F l

i (xi). In each time step, ωl is
updated via

ωl
t+1 = ωl

t + βL

{
∆

(
u′
t − ut

σ

)}
∂u

∂ωl
(4)

where βL ∈ (0, 1), is the actor’s learning rate, and u′
t = ut + ν(0, σ). The term ν(0, σ) is

a white noise and it is added to the control signal (ut) to increase the exploration rate.
The critic’s task is to estimate the state value in each time step. Similar to the Q-

learning algorithm, we can define the state values as the expected sum of the discounted
rewards over time, which is defined as

Vt = E

{
∞∑
k=0

γkrt+k+1

}
(5)

where Vt is the state value at time step t, γ ∈ (0, 1) is the discount factor, and rt+k+1 is
the received reward at time step t+ k + 1. We can write (5) in a recursive form as

Vt = rt+1 + γVt+1 (6)

After taking each action, the critic gives an approximation on the quality of the new
state. The agent can estimate the state value as
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V̂t =
M∑
l=1

Φlζ lt (7)

where V̂t is the state value approximation, and ζ lt is the output parameter of the critic
FIS. The prediction error (∆), also known as the temporal difference, is given as

∆ = rt+1 + γV̂t+1 − V̂t (8)

The critic consequence parameters are updated as

ζ lt+1 = ζ lt + αL∆
∂V̂

∂ζ l
(9)

where
∂V̂

∂ζ l
is

∂V̂

∂ζ l
= Φl =

∏n
i=1 µ

F l
i (xi)∑M

l=1

(∏n
i=1 µ

F l
i (xi)

) (10)

4. Proposed Method. We establish a framework to model a multi-objective deceptive
scheme in a two-player game. One of the players uses deception to find a trade-off between
its desired pay-offs. The deceitful player implements deception by changing its strategy,
based on its state in the game. Its opponent has to find the strategy, then selects a suitable
policy to confront the player. The mentioned strategy can be implemented in different
games and applications, where there are two groups of fully competitive agents, like chess
or pursuit-evasion games. In this paper, the simulation platform is the game of guarding
several territories (Section 2) with a deceptive invader. The defender must guard all the
targetsG = {G1, G2, . . . , Gn}. However, only one of the members of G is the invader’s true
goal. The defender tries to guess the true goal by a predefined function, called the belief
function. The invasion of the true goal is not always possible. Therefore, to increase the
invader’s pay-off, the invader may initially pretend to invade a false goal. We define the
invader’s strategy to pretend to invade a fake goal as the deceptive strategy. The proposed
method is based on a two-level hierarchical policy system. The first level is called the
lower-level policy (LLP), and the second level is called the higher-level policy (HLP).

4.1. Lower-level policy. In a deceptive game, there are multiple lower-level policies.
Each LLP stores the policy to achieve a particular goal or accomplish a task. In the
example provided in this paper, the LLP of each agent returns the primitive action,
which is the steering angle. The LLP tells the invader which action to take at each state
to invade the currently selected goal. The LLP tells the defender which action to take at
each state to defend the same goal.
In a discrete world such as the game represented in [22], the states can be defined the

occupied tiles number. However, it is more efficient to define the states by the agents’
location with respect to each other and the goal in a continuous domain. In [1, 27], the
states are defined by three parameters. These parameters were the invader’s and the
defender’s position with respect to each other and the orientation with respect to the
goal. In other words, the distance of the agents to the goal was neglected. In those studies,
the goal was stationary. In addition, only one goal was involved in the game. Thus, those
parameters were sufficient to define the states. However, in this study, we are considering
several goals. The LLP must be able to give the proper action to defend or invade each
of them. Thus, more parameters are needed to define the game states. In this study, the
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states are represented by four parameters. These parameters are the actor (FLC) inputs
and the critic (FIS) inputs. The invader’s and the defender’s inputs are as follows,

Invader’s LLP input = [dID dIG αI βI ]

Defender’s LLP input = [dID dDG αD βD]
(11)

In (11), dID is the invader’s distance to the defender, dIG is the invader’s distance to
the goal, dDG is the defender’s distance to the goal, αI is the angle between the invader’s
heading and a straight line between the invader and the defender, while βI is the angle
between the invader’s heading and a straight line between the invader and the goal.
In addition, the term αD is the angle between the defender’s heading and a straight line
between the defender and the invader, and βD is the angle between the defender’s heading
and the straight line between the defender and the goal. Figure 2 depicts the parameters
in the game. As shown in the figure, there is no global coordinate in the game setup
and the agents use information that describes their relative position and orientation with
respect to each other. Selecting respective coordinates in our game makes the fuzzy rule-
base smaller. In addition, in the mentioned setup, the policies can be used without major
changes if the environment changes.

v

v

Figure 2. The inputs used in the game to evaluate the states

Different types of reward functions can be suggested for the game. Two primary reward
functions are the terminal reward function [22], and the instantaneous reward function
[27]. In RL problems, with the terminal reward function, the agent only receives the
reward if it reaches a terminal state. Terminal reward functions can show satisfactory
performance in problems with a small number of states, such as a grid world game, or a
single-agent game [22]. However, in continuous domain games, using a terminal reward
function can make the learning process slower or, in many cases, impossible [27]. In this
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paper, we implement an instantaneous reward function to train the LLP, similar to [27].
The reward function of the invader is defined as follows,

Rinv = (1−WI)[dID(t+ 1)− dID(t)] +WI [dIG(t)− dIG(t+ 1)]

Rdef = WD[dID(t)− dID(t+ 1)] + k(1−WD)[dDG(t)− dDG(t+ 1)]
(12)

In (12), Rinv and Rdef are the invader’s and defender’s reward functions, respectively.
The term WI is a weight that amplifies the importance of reaching the goal in comparison
to keeping a distance from the defender. The term WD is a weight that amplifies the
importance of chasing the invader rather than moving toward the goal. The term k is
1 if dDG(t) − dDG(t + 1) > 0 and otherwise it is zero. Equation (12) shows that both
reward functions consist of two conflicting objectives. Thus, the reward function could be
written as vectors instead of scalers. Such a problem with a vector reward function is called
a multi-objective Markov decision process (MOMDP). Although there are a few multi-
objective RL algorithms to solve MOMDP, such as [23, 33], they are all in the discrete
domain. Therefore, in this paper, we will find WI and WD with a different approach.
The learning process starts with initializing the agents’ and target’s locations randomly.

In addition, the actor’s and critic’s output parameters
(
ωl
0 and ζ l0

)
are set to zero. In

each state, the agents choose their actions by utilizing the actor component. The action,
which is the steering angle of the car, is calculated via (2). White noise is added to the
output to increase the exploration rate. After taking an action and receiving the reward,
the critic value is calculated by (7). The prediction error is calculated via (8). The output
parameters of the actor and the critic (ωl and ζl) are updated by (4) and (9).
If a terminal state is met or the simulation time is reached, then the game will be

restarted by reinitializing the agents’ locations. However, the actor’s and the critic’s output
parameters continue adapting.

4.2. Higher-level policy (HLP). The most essential element in a deceptive game is
the HLP. The HLP is a controller, which can change the current LLP to another. Thus,
the HLP changes the agent’s task or goal. The quality of deception lies on the state, where
the HLP returns another task or goal.
In the game of guarding several territories, the HLP returns a goal number at each time

step. The goal number may be the real goal or a fake goal. Then, the invader calculates
its goal-related inputs, such as dIG and βI for the selected goal. There are many states
for which, the invader is not able to win the game against an optimal defender. In these
states, the invader’s HLP may return a fake goal. Thus, the invader pretends it is trying
to invade another goal and conceals its real goal. The defender also has an HLP, which is
called the belief function. The belief function guesses the intention of the invader. If the
invader repeatedly changes its goal, it misleads the defender’s belief function.

4.2.1. Defender’s higher-level policy. The defender has a belief about the invader’s true
intention at each time step. In this paper, a hardcoded function is defined to model the
defender’s HLP. Equation (13) describes the belief function. The defender knows the exact
location of the invader and the goals. Thus, by inspecting the invader’s location at each
time step, it guesses the invader’s probable target. The belief function returns the goal
number that the invader has gotten closer to in the past time step. If the invader is in its
first time step, the belief function returns the closest goal to the invader. Equation (13)
shows the defender’s belief function.

For t > 1

D = argmin
j∈{1,2,...,n}

(√(
xt
I − xGj

)2
+
(
ytI − yGj

)2 −√(xt−1
I − xGj

)2
+
(
yt−1
I − yGj

)2)
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For t = 1 (13)

D = argmin
j∈{1,...,n}

√(
xt
I − xGj

)2
+
(
ytI − yGj

)2
where

(
xt
I , y

t
I

)
is the invader’s location at time step t,

(
xGj

, yGj

)
is the location of goal j.

In addition, D is the defender’s belief. The term n is the total number of the goals. In
each time step, the defender’s goal-related inputs, such as dDG and βD, are calculated for
goal D.

4.2.2. Invader’s higher-level policy. The invader’s HLP tells the invader the best goal
to follow to maximize the defined pay-off. In other words, the invader can conceal its
true goal and manipulates the defender’s belief function by changing its goal repeatedly.
Therefore, unlike the LLP, where the output is the steering angle of the agent, in the HLP
the output is a goal number. The output of the HLP may be the real goal, or a fake goal.

To create the invader’s HLP, a Takagi-Sugeno FIS structure is formed. The goal is to
find the proper output parameters of the FIS. To find the best goal to chase, the invader
may have different information about the game states. It seems trivial that if the invader
has more information, it can perform a better deceptive behaviour. As such, we want to
measure the deception performance for different sets of input parameters for the invader’s
HLP. Thus, we introduce three deceptive cases by choosing different sets of parameters as
the inputs. Then, we examine the performance of those input sets. Different FIS input
sets are presented.

The first deceptive case contains four parameters given as

Input 1 = [XIG YIG XID YID]

where (XIG, YIG) is the Manhattan distance between the invader and the true goal. In
addition, (XID, YID) is the Manhattan distance between the invader and the defender.

The second deceptive case with four parameters is

Input 2 = [XIG YIG βI dID]

where βI is the line of sight from the invader toward the defender, and dID is the distance
between the invader and the defender.

The third case has four inputs given as

Input 3 = [XIG YIG dID θD]

where the term θD is the defender’s heading. We can assume that the invader knows or
can estimate the defender’s heading with a Kalman filter.

To find the output parameters of the FIS, we implement the non-dominated sorting
genetic algorithm II (NSGA-II). NSGA-II is an iterative and population-based optimiza-
tion algorithm. Each population member (called the chromosome) represents the output
parameters of the FIS. The chromosomes are formed of smaller components, called genes,
which contain each rule’s output parameter. The game is simulated for each chromosome
as the fuzzy output parameters separately. The fitness functions are calculated based on
the simulation result. We should notice that each game may have two conclusions: 1) the
invader wins the game by a successful invasion, or 2) the defender captures the invader
before it reaches the target. We are interested in successful invasions. So if the defender
captures the invader, a penalty function is assumed, resulting in a poor fitness evaluation.
Equation (14) shows the two fitness functions and the assigned penalties.



1676 A. ASGHARNIA, H. SCHWARTZ AND M. ATIA

The invader successfully reaches the target:Fitness1 = min 1√
(xter

D −xter
I )

2
+(yterD −yterI )

2

Fitness2 = min m

The defender captures the invader:{
Fitness1 = 1,000

Fitness2 = 1,000

(14)

where
(
xter
D , yterD

)
is the defender’s location in the terminal state and

(
xter
I , yterI

)
is the

invader’s location in the terminal state. The term m is the number of times that the
invader changes its goal.
Equation (14) represents two objectives as fitness functions in the two cases. The first

case is assigned if the invader can reach the goal. In this case the objectives are 1) to be
far from the defender at the terminal state, and 2) to perform the game with a minimum
number of goal changes. The second case is for the times that the invader fails to reach
the target. In this case, penalty functions are assigned, which can be two large numbers.
In this case, we assigned a penalty of 1,000. Thus, the chromosomes that lead the game
to failure will be poorly evaluated, and they will be eliminated from the population.
To produce a suitable compromise between two objectives, we utilized the concept of

Pareto dominance. For every pair of vectors v⃗, v⃗′ ∈ R, v⃗ dominates v⃗′
(
v⃗ ≽ v⃗′

)
iff there

exists a dimension i such that vi > v′i and for no dimension j there is vj < v′j. If v⃗ does

not dominate v⃗′ and v⃗′ does not dominate v⃗, we say v⃗ and v⃗′ are non-dominated. For a
given set V ∈ Rn, the set of non-dominated vectors (ND(V )) is called Pareto front and
is defined as follows,

ND(V ) =
{
∀v⃗ ∈ V |@v⃗′ ∈ V, v⃗′ ≻ v⃗

}
(15)

We utilized the Pareto front to show the fitness functions in (14).
The invader’s HLP optimization flowchart is depicted in Figure 3. In the figure, two

main blocks are depicted. The first block represents the NSGA-II algorithm. The second
main block shows how a game is simulated to calculate the objective functions. The FIS

Figure 3. The HLP optimization flowchart
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output parameters will be derived for the objective functions by repeating the NSGA-II
operators (non-dominated sorting, crossover, and mutation) on the chromosomes.

4.3. Optimal strategy. The classical optimal strategy can be found using the perpen-
dicular bisector method if both agents’ speeds are equal [17]. In this approach, the optimal
capture point is the closest point on the agents’ bisector line to the goal. However, if the
speeds are not the same, and the defender has a higher speed than the invader, the Apol-
lonius circle may be implemented to evaluate the optimal strategy [1]. In the game of
guarding a territory with two agents, foci represent the invader and the defender. If the
invader and the goal are on the same side of the circle, the invasion will be guaranteed. If
not, the closest distance between the goal and the Apollonius circle is the optimal capture
point. The Apollonius circle always encircles the inferior agent, which is the invader. In
games that the defender is superior, it can capture the invader at a point. However, in
games that the invader’s speed is higher, a positive radius is defined for the defender, not-
ed as the capture radius. In the games that the invader’s speed is higher, and a positive
capture radius is assumed, implementing Cartesian ovals is proposed [14]. Cartesian ovals
are described as follows,

xco = xi +Rco cos(η + ϕco)

yco = yi +Rco sin(η + ϕco)
(16)

where

Rco(ϕco) =
λρ+ d cos(ϕco)±

√
λρ+ d cos(ϕco)2 − (1− λ2)(d2 − ρ2)

1− λ2
(17)

for ϕco ∈ [−ϕi
co, ϕ

i
co], where

ϕi
co = arccos

(√
(1− λ2)(d2 − ρ2)− λρ

d

)
(18)

In (16)-(18), d is the distance between the invader and the defender, ρ is the capture
radius, and η is the line-of-sight from the defender to the invader. In this paper, we
implemented the Cartesian ovals to find the reward weights in (12).

5. Simulation and Results. In this section, the simulation results, the comparisons
and the discussion are presented. The control structure to model deception, which was
presented in Section 4 is trained using the FACL algorithm, which was presented in Section
3. The LLP is trained via the FACL, while the HLP is trained via NSGA-II. A comparison
between the fuzzy Q-learning and the FACL is done in [1] and the results indicate that
the FACL algorithm has a better performance.

5.1. Preliminaries. The game field is a 50 × 50 units square. The game has three sta-
tionary goals for testing the implementation of deception in the game. These goals are
presented in Table 1. The goal radius rG and the capture radius rC are set to 1.00 unit.
There are two agents in the game: one invader and one defender. The agents cannot leave
the field, and if they hit the wall, they will remain at the boundary.

Table 1. The goals that are defined for the tests

Goals x y
G1 10 40
G2 25 25
G3 40 10



1678 A. ASGHARNIA, H. SCHWARTZ AND M. ATIA

Two speed scenarios are proposed to evaluate the effect of deception in the game. In the
first scenario, both agents have an equal speed of 1.00 unit/second. In the second scenario,
the invader is superior. The defender’s speed is 1.00 unit/second, while the invader’s speed
is 1.10 units/second.
The FACL algorithm is implemented for training the LLP. In the training process,

γ is set to 0.9 [1]. In addition, αL and βL, which are the learning rates in (4) and (9)
are selected as 0.1 and 0.05, respectively [1]. These two coefficients are decayed over the

training by 10log(
0.1

MaxEpoch ) in each epoch, where MaxEpoch is the total number of epochs
and is equal to 20,000 games. Therefore, in the last epoch, αL and βL are 10% of their
initial values. On the other hand, σ is assumed to be 1.0 radian. The maximum simulation
time of each game is 200 seconds, with a time step of 0.1 seconds. Each input has 10
triangular membership functions, distributed uniformly within the interval. The inputs
that are distances (dID, dIG, dDG) are in the interval of

[
0, 50

√
2
]
. The angular inputs

(αI , αD, βI , βD) are in the interval of [−π, π]. There are 5× 5× 5× 5 = 625 rules for the
LLP of each agent.
The NSGA-II algorithm is utilized for training the invader’s HLP. We implement the

non-dominated sorting algorithm from [10] with integer uniform crossover, and insertion
mutation [9]. The total number of epochs is set to 400, while the population is set to 1,000.
Each invader’s HLP has LM rules, where L is the number of membership functions, and
M is the number inputs. There are seven triangular membership functions, distributed
uniformly in the interval. Each gene contains the output parameter of one of the rules
chosen from the set {1, 2, 3}, which represents a goal. Finally, the mutation probability
is 20%, while the crossover probability is 80%.
A fuzzy controller such as (2) maps a real input vector to another real value. Thus,

in order to discretize the HLP’s output, we implemented a uniform clustering. If the
fuzzy output is within the [1, 1.666) it is mapped to 1. If the fuzzy output is within the
[1.667, 2.333) it is mapped to 2, and if the fuzzy output is within the [2.333, 3], it is
mapped to 3.

5.2. Training the agent’s LLP. The invader and the defender learn their LLPs si-
multaneously. Ideally, their output parameters converge to their Nash equilibrium after
multiple epochs. In the beginning, the FACL algorithm is initialized by setting ωl

0 and
ζ l0 to zeros. A uniform random number generator (URNG) sets random initial positions
and headings for each agent. In this stage, we want to train the agent’s LLP to handle
any goal location in the game field. Thus, in each epoch, a random location is chosen
for the goal by the URNG. With this approach, the agent’s LLP will return the suitable
action for any chosen goal, including the three goals mentioned in Section 5.1. The agents
choose their actions by the actor component. At each time step, a reward is received, and
the actor and critic output parameters are updated via (4) and (9), respectively. The
process continues until the maximum simulation time is over or a terminal state is met.
If the game finishes, the agents and goal locations are reinitialized in random locations.
However, the output parameters of the actor and critic continue to adapt. The simulation
of each game is considered as one epoch.
The process is done for each speed scenario separately. Thus, in the end, there are three

sets of output parameters for the superior defender scenario, the equal speed scenario, and
the inferior defender scenario.
The reward function weights (WI and WD) in (12) have a significant effect on the LLP

performance. Different weights will cause different terminal states in the game. The reason
for using the optimal policy given by Cartesian ovals is to evaluate WI and WD in the
reward function (12). In this paper, we find the weights by trial and error that match
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the optimal policy. The training process is done for different WIs and WDs, separately.
When a training process is done, a test is conducted to find the terminal state. In the
test, three goals are used in the evaluation of the weights, which are shown in Table 1.
The weights that result in the LLP has the same terminal state as the policy given by
the Cartesian ovals are selected. In the test, the invader is initialized at (5, 5), and the
defender is initialized at (30, 30). With these initial locations, the defender can capture
the invader for all the goals in Table 1. Thus, we can compare the performance by the
location where capture has occurred. The optimal capture point is calculated for each
of three speed scenarios and each of the three goals, separately. For each case, the LLP
must have the same performance as the optimal policy. Figure 4 depicts the performance
of the LLP and compares it to the optimal policy. The weights to obtain the results were
WI = 0.65 and WD = 0.50. It is shown that by a proper set of weights, the FLC can have
same performance as the policy given by the Apollonius circle.
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Figure 4. Optimal terminal states in the game and the LLP performance
(WI = 0.65 and WD = 0.50)

Figure 4 shows that in all cases, the capture point of playing the game by using the
derived LLP is close to the capture point given by optimal policy. This means that the
FACL is able to learn the optimal policy, which validates the results in [1].

5.3. Optimization of invader’s HLP. The invader pretends to choose different goals
during the simulation. Therefore, it can manipulate the defender’s belief function in (13).
An FIS acts as the invader’s HLP to select the goal. However, the defender uses a hard-
coded function as its HLP or its belief function.

In order to find the output parameters of the invader’s HLP, an integer NSGA-II al-
gorithm is used. In the beginning, a set of chromosomes, which represents the output
parameters of the FIS rule-base, is created randomly. The genetic algorithm tries to
minimize the two objective functions in (14) by optimizing the output parameters. The
invader’s initial location is (5, 5), and the initial orientation is π/4 radians. The defender’s
initial location is (30, 30), and the initial orientation is −3π/4 radians.
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A unique invader’s HLP is needed to invade each goal under different speed scenarios.
For instance, the invader’s HLP to invade G1 under the superior defender scenario differs
from the invader’s HLP to invade G3 under the inferior defender scenario. In this paper,
we are comparing three speed scenarios and three goals. Thus, we have a total number of
nine different invader’s HLPs, which must be obtained by using the NSGA-II algorithm.
The results and tests are presented in the following section.

5.4. Results and discussion. We describe a non-deceptive situation. In a non-deceptive
game, the invader knows its true goal. It chooses the true goal as its primary goal and
does not pretend to change it over the time. For instance, if the true goal is G2, the term
βI in the invader’s LLP is only calculated for the second goal. On the other hand, the
defender does not know the true goal, and it has to guess it via (13). The performance of
the non-deceptive cases is depicted in Figures 5 and 6. It is shown that in all cases, the
invader is not able to reach the target. In the following of this section, first we present
the optimization results. And then we present the performance results.
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Figure 5. Non-deceptive case for the equal speed case

Figure 5 shows the performance of the non-deceptive case, where the agents’ speed
is equal to 1.00 unit/sec. It is observed that for all three goals the invader has been
captured by the defender. Although in Figure 6 the invader is superior, it is captured by
the defender.

5.4.1. The invader’s HLP optimization result. In the deceptive case, the invader pretends
to change its intention by using its HLP until it finds a proper state to capture the goal.
However, there might be cases where winning a game is still impossible [34]. The term
Fitness1 in (14) is defined to minimize the number of times the invader pretends to
change its goal, while Fitness2 is defined to increase the defender’s terminal distance to
the invader (if the invader reaches the goal). If the defender captures the invader, then
penalty functions are returned. This will have the effect of eliminating that chromosome
from the Pareto front and the chromosome will not be selected in the next generations.
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Figure 6. Non-deceptive case for the superior invader case

Figure 7. Pareto fronts for Fitness1 and Fitness2 in (14) in bi-objective
optimization. The Pareto fronts are for the three invaders’ HLP under two
speed scenarios for the invasion of each goal.

Figure 7 depicts the optimization results in the form of Pareto fronts for Fitness1 and
Fitness2. The figure shows the Pareto front at the final epoch.

Remark 5.1. In order to keep the description tractable, we refer the phrase “the invader’s
HLP with Input n” as “Input n”. For example, instead of writing “the invader’s HLP with
Input 3”, we write “Input 3”.
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The Pareto fronts for Fitness1 and Fitness2 in (14) are shown in Figure 7. The fitness
function values in the figure are calculated in the final epoch of the invader’s HLP opti-
mization. Each row is dedicated to a speed scenario, while each column shows the results
for the invasion of each goal. In all cases (a)-(f), the solutions for Input 1 dominate all
other solutions. In addition, in all cases except (c), the solutions for Input 3 dominate the
solutions for Input 2. However, to compare the result with numerical values, we brought
the hypervolume parameter of each case in Table 2. Hypervolume indicates the quality
of the Pareto front. The reference point for calculating the hypervolume is (40, 1). Table
2 shows that in the equal case, Input 1 has almost the highest hypervolume. In other
words, the Input 1 gives the best quality in the results. Input 3 returns the second best
results in most of the cases and Input 2 stands in the last. Probably, Input 3 has a better
quality in the results, since it has some information from the defender. However, Input 1
gives the best information about the agents location in the game. In the superior invader
case, the same result is repeated. Input 1 has the best result, while Input 2 has the worst
result.

Table 2. The hypervolume of the Pareto front of each input and goal

Equal speed Superior invader
Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

G1 0.88 0.856 0.894 0.922 0.891 0.909
G2 0.935 0.858 0.911 0.937 0.904 0.929
G3 0.857 0.833 0.766 0.87 0.887 0.842

5.4.2. The invader’s HLP testing result. Each member on the Pareto fronts of Figure 7
represents a set of output parameters. These members are non-dominated. Thus, all of
the solutions on the Pareto fronts can be selected. However, a designer can select one of
the non-dominated solutions based on other aspects of the design. We prefer to choose the
solutions that have relatively smaller Fitness2. This selection helps the invader to success-
fully invade the target with less changes in the HLP. In addition, to have a fair comparison
between different types of HLPs, we choose the Pareto front members that have roughly
the same Fitness2. Table 3 shows the fitness functions of the selected solutions, from the
Pareto fronts in Figure 7. As shown in Table 3, in each speed scenario and goal case
(the columns), the selected output parameters have almost the same Fitness2, which are
among the smallest ones. The output parameters corresponding to these fitnesses will be
used in further simulations.
For the results in Table 3, we freeze the value of fitness 2. We tried to select solutions,

close to the trade-off point. It is shown that for equal numbers of fitness 2, Input 1 has
the best result. Input 3 stands on the second stage, while Input 2 is the worst.

Table 3. Selected results from the Pareto front

G1 G2 G3

Fitness 1 Fitness 2 Fitness 1 Fitness 2 Fitness 1 Fitness 2

Equal
Input 1 4 0.091 3 0.062 3 0.127

speed
Input 2 4 0.217 4 0.163 3 0.144
Input 3 4 0.108 3 0.124 5 0.173

Superior
Input 1 3 0.073 4 0.043 1 0.363

invader
Input 2 6 0.086 4 0.072 3 0.112
Input 3 3 0.077 4 0.754 1 0.363
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Figure 8 shows the game, where the invader’s HLP uses Input 1 and the agents’ speeds
are equal. We describe case (b). The invader chooses G3 in the beginning and keeps it
for 23.9 seconds. The defender changes its belief to G1 at t = 25.2 seconds. The defender
changes its belief at t = 28.7 seconds to G2. However, after less than two seconds, the
invader chooses G1. The defender chooses G1 after less than a second. The invader changes
its goal to G2 at t = 49.3 seconds and keeps it until the end. The defender mistakenly
chooses G1 at t = 45.4 seconds. The defender corrects its belief at t = 62.8 seconds by
changing its goal to G2.

Figure 8. Deceptive case, where the speeds are equal and the invader’s
HLP uses Input 1

Figure 9 shows the game, where the invader’s HLP uses Input 2 and the agents’ speeds
are equal. We describe case (a). The invader and the defender choose G2 in the beginning.
The invader changes its goal to G1 at t = 8.3 seconds. The defender finds out the invader’s
goal after less than a second. The invader chooses G2 at t = 24.4 seconds and keeps it for
three seconds. The defender chooses G2 at t = 26 seconds and G3 at t = 26.5 seconds.
After 1 second, the defender chooses G1. The game finishes with a successful invasion at
t = 40.1 seconds.

Figure 10 shows the game, where the invader’s HLP uses Input 3 and the agents’
speeds are equal. We describe case (c). The invader and the defender choose G2 in the
beginning. The invader chooses G1 at t = 11.7 seconds. The defender chooses the G1 at
t = 12 seconds. The invader chooses G2 at t = 23 seconds. In this time, the defender
starts to switch between 2 and 3. At t = 31.5 seconds, both agents take G3 as the chosen
goal. However, it is too late for the defender to capture the invader.

Figure 11 shows the game, where the invader’s HLP uses Input 1 and the invader is
superior. We describe case (c). The agents take G2 in the beginning. At t = 15.4 seconds,
the invader choosesG3. In 0.4 of a second, the defender finds out the goal change. However,
it is too late for capturing the invader. The game finishes at t = 36.7 seconds with a
successful invasion.
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Figure 9. Deceptive case, where the speeds are equal and the invader’s
HLP uses Input 2
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Figure 10. Deceptive case, where the speeds are equal and the invader’s
HLP uses Input 3

Figure 12 shows the game, where the invader’s HLP uses Input 2 and the invader is
superior. We describe case (b). The invader and the defender choose G2 in the beginning.
At t = 6.7 seconds the invader chooses G3. In less than a second, the defender finds out
the invader’s decision. At t = 25.9 seconds, the invader chooses G2, and after 2 seconds,
the invader chooses G1. Finally, the invader chooses G2 at t = 35.4 seconds. The defender
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Figure 11. Deceptive case, where the invader is superior and the invader’s
HLP uses Input 1

Figure 12. Deceptive case, where the invader is superior and the invader’s
HLP uses Input 2

chooses G1 at t = 28 seconds. The defender’s HLP returns G2 at 35.6 seconds. The game
finishes at 46.1 seconds with a successful invasion.

Figure 13 shows the game, where the invader’s HLP uses Input 3 and the invader is
superior. We describe case (c). The agents take G2 in the beginning. At t = 15.4 seconds,
the invader choosesG3. In 0.2 of a second, the defender finds out the goal change. However,
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Figure 13. Deceptive case, where the invader is superior and the invader’s
HLP uses Input 3

it is too late for capturing the invader. The game finishes at t = 36.7 seconds with a
successful invasion. This solution is very similar to the one with Input 1.

6. Conclusion. In this paper, an application of deception in a multi-agent game is pre-
sented. A two-level policy strategy is defined to model deceptive behaviour in a multi-
agent two-player competitive game. A modified version of the game of guarding a terri-
tory is used as the simulation testbed. In the modified version, there are several targets
instead of one, which gives a suitable background for studying deception. In the game, the
invader acts deceptively by changing its goal consistently. Thus, the invader can conceal
its true intention and deceive the defender. The results show a significant improvement
in the invader’s pay-off when it uses deception in comparison to the non-deceptive mode.
While in the non-deceptive mode, the invader fails to reach the targets in all nine cases.
In most deceptive cases, the invader wins the game by a successful invasion. Although
the proposed deceptive strategy was not initially designed to address the curse of dimen-
sionality, it has a significant effect on the size of the rule base. A system with four LLP
inputs and four HLP inputs deals with two sets of 625 rules. At the same time, modelling
deception within a single-level eight input policy needs 390,625 rules.
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