
Multi-Objective Fuzzy Q-Learning to Solve Continuous
State-Action Problems

Amirhossein Asgharnia∗1, Howard Schwartz1, and Mohamed Atia1

1Department of Systems and Computer Engineering, Carleton university,
Ottawa, Canada

Abstract1

Many real world problems are multi-objective. Thus, the need for multi-objective2

learning and optimization algorithms is inevitable. Although the multi-objective op-3

timization algorithms are well-studied, the multi-objective learning algorithms have4

attracted less attention. In this paper, a fuzzy multi-objective reinforcement learn-5

ing algorithm is proposed, and we refer to it as the multi-objective fuzzy Q-learning6

(MOFQL) algorithm. The algorithm is implemented to solve a bi-objective reach-avoid7

game. The majority of the multi-objective reinforcement algorithms proposed address8

solving problems in the discrete state-action domain. However, the MOFQL algorithm9

can also handle problems in a continuous state-action domain. A fuzzy inference sys-10

tem (FIS) is implemented to estimate the value function for the bi-objective problem.11

We used a temporal difference (TD) approach to update the fuzzy rules. The proposed12

method is a multi-policy multi-objective algorithm and can find the non-convex regions13

of the Pareto front.14

Keywords: Reinforcement Learning, Differential Games, Q-Learning, Multi-Objective Re-15

inforcement Learning16

1 Introduction17

Reinforcement learning (RL) is a powerful class of machine learning methods that addresses18

the learning of sequential actions [1]. RL is different from supervised learning since the19

learning agent does not have prior knowledge of the proper or desired actions to take. Re-20

inforcement learning tries to maximize a long-term numerical performance index [2]. The21

numerical performance index is a function of a numerical signal, which is referred to as22

the reward signal. The reward signal rates the learning agent’s action given a state. The23

∗Corresponding author: amirhosseinasgharnia@cmail.carleton.ca

1

reward signal is calculated via the reward function and is given to the agent based on the24

consequence of taken actions.25

There are many studies on choosing and shaping the reward [3–5]. However, all these26

studies address a scalar reward signal. In other words, the agent will only learn the policy to27

maximize its long-term performance for only one objective [6]. Whereas, many applications28

in real-life are of a multi-objective nature [7–10]. For example, increasing the performance29

of a suspension system while decreasing the control signal [11], a robot that reaches as many30

targets as possible with the least number of turnings [12], and traffic light controllers to31

maintain a low fuel consumption, as well as lowering the trip times [13]. In these classes32

of applications, the performance indicator is not scalar anymore, and it can be defined as a33

vector [14]. Despite the growing effort in the past decade, there are few studies on problems34

where the reward signal is a vector, especially if the problem is in the continuous-action and35

the continuous-state domain.36

Multi-objective reinforcement learning can be regarded as a combination of reinforcement37

learning techniques and multi-objective optimization (MOO) [15]. One of the methods to38

optimize the MOO problem is to convert the objective functions into one fitness function.39

It is common to use scalarization methods such as the weighted sum method, the constraint40

method, the sequential method, and the min-max method [15]. The other standard method41

in MOO is finding all optimal answers in a single implementation. In the latter method, all42

solutions, which are non-dominated, are depicted via Pareto fronts. Similar to MOO, the43

multi-objective reinforcement algorithms are categorized into a single-policy or a multi-policy44

algorithm. Single-policy algorithms can only find one policy in a single implementation.45

Thus, the user may know the objective preferences or use methods to change the preferences46

as a function of time [16]. On the other hand, single-policy algorithms are time efficient and47

use less computational effort. The second class, multi-policy algorithms, give all optimal48

policies in the form of the Pareto front in a single implementation [17]. The Pareto front is49

a suitable tool to show the compromises between different objectives. Although multi-policy50

algorithms are more complicated and computationally inefficient, they can better show the51

relationship between the objectives.52

There are many algorithms introduced to train agents with a multi-objective reward53

function. However, most of them work on the discrete domain. Thus, the usage of the MORL54

algroithms for solving differential games is relying on discretization. The contributions of55

this paper are as follows:56

57

• We propose a new multi-objective reinforcement learning algorithm, which can operate58

in the continuous state and the continuous action domain.59

• The performance of the proposed methods is depicted in a proposed multi-objective60

differential game.61

This paper proposes a new multi-objective reinforcement algorithm for solving the prob-62

lems in the continuous-action continuous-state domain. To our best knowledge, it is the first63

2

MORL algorithm in the literature which uses a temporal difference scheme. The applica-64

tion of such a method is for learning control strategies, solving differential games, or any65

application in which the states and actions are represented in the continuous domain. There66

are many multi-objective reinforcement algorithms in the literature, which we introduced67

in section 2. However, they are whether in the discrete action-state domain or based on68

quantization of the states. Our proposed algorithm is based on the extension of the fuzzy69

Q-learning (FQL) algorithm [18] to the multi-objective domain. The proposed algorithm is a70

multi-policy MORL algorithm and approximates the global optimal Pareto front in a single71

implementation. It is shown that the algorithm can also achieve the solutions that are in72

the non-convex region of the Pareto front.73

This paper is organized in six sections. Section 2 presents a brief literature review. In74

section 3 we address the problem as well as the classical fuzzy Q-learning algorithm. Section75

4 proposes the multi-objective FQL algorithm. In section 5, we present simulations and76

comparisons. Finally, section 6 concludes the paper and presents the future studies.77

2 Background78

The earlier studies of multi-objective reinforcement learning go back to multiple objective de-79

cision making. In [7], a multi-criterion decision-making process for finding the shortest path80

is proposed. In addition, there are a few studies on multi-objective dynamic programming81

that were proposed in early 80s [19].82

A multi-criteria reinforcement learning (MCRL) algorithm is proposed in [14] in 2002.83

In [14], the problem is modelled in a multi-agent structure: a player is playing against the84

non-stationary moves of the environment, modelled as an adversarial player. The proposed85

method is studied in more depth in [20].86

Scalarization of the reward function is a straightforward task if the designer knows the87

preferences of the reward elements. For instance, in [21], the reward function has two com-88

ponents. The authors could find a set of weights to scalarize the reward function with the89

weighted sum method. However, the reward weights were stationary during the learning90

process. A time-varying reward weight for scalarization is proposed in [16].91

The scalarization methods in reinforcement learning are criticized in [9] for their defi-92

ciency in obtaining the non-convex parts of the Pareto front. The researchers address the93

limitation of converting a MOO problem to an SOO problem. Although algorithms such94

as the one proposed in [16] decrease the solution complexity, the non-convex regions of the95

Pareto front cannot be discovered. Authors in [9] provide three standard benchmarks for96

researchers to test their proposed MORL algorithms.97

A MORL algorithm is proposed to find all optimal policies in [17], which is called the98

convex hull value iteration algorithm. The algorithm still suffers from not being able to find99

the non-convex regions of the Pareto front. However, the article moved the multi-objective100

reinforcment learning to another level. The convex hull value iteration algorithm is able to101

find all possible policies for any combination of reward weights in a single run by extending102

the definition of the Bellman equation to a multi-objective domain.103

3

Empirical evaluation metrics for the performance and limitations of the MORL algorithms104

are addressed in [22]. Performance metrics for both multi-policy and single-policy MORL105

algorithms are proposed. The paper gives three benchmarks as well as their known Pareto106

fronts for researchers to compare their proposed algorithms. It is noted that for multi-policy107

algorithms, the metrics must show how well the algorithm approximates the Pareto front108

and how fast the algorithm finds the polices.109

The exploration-exploitation dilemma is a challenging problem in the reinforcement learn-110

ing algorithms. In single-objective reinforcement learning, exploration-exploitation strategies111

such as ε-greedy and softmax are well-studied. However, ε-greedy and softmax cannot be112

implemented in a multi-objective algorithm without modification. The hypervolume indica-113

tor is proposed as a metric to assess the quality of the action selection strategy in [23]. The114

researchers combined the idea of reinforcement learning and multi-objective optimization to115

develop a new algorithm called hypervolume-based MORL (HB-MORL).116

Until 2014, most of the studies on MORL were on single-policy algorithms. However,117

the number of studies on multi-policy MORL has rapidly increased. Authors in [15] give a118

comprehensive overview of the research path from the beginning of MORL to 2014.119

A Q-learning based multi-objective reinforcement algorithm is proposed in [24]. The algo-120

rithm can discover the Pareto front for finite episodic games. In addition, it was able to find121

the non-convex regions of the Pareto front. The authors compared three exploration mech-122

anisms, discovering that the hypervolume ε-greedy method can outperform other suggested123

methods.124

Learning a continuous approximation for the Pareto front via the gradient method is125

studied in [25]. The researchers proposed a method called the Policy Manifold Gradient126

Algorithm (PMGA), which returns a parametric function of a manifold that is an approx-127

imation for the local Pareto front. The function maps the objective space to the expected128

return. Unlike studies [14, 20], the proposed method does not need to use n optimizers to129

generate n trajectories to the Pareto front. Indeed, the learning is conducted in a single130

gradient ascent run. A deeper study on the proposed algorithm is presented in [26].131

In [27], the researchers combined a deepQ-learning network (DQN) with a multi-objective132

problem. The first study used the DQN to solve the MOMDP with a high-dimensional input133

set. They implement an idea similar to [16] in scalarization. Thus, the proposed algorithm134

can handle high-dimensional inputs without knowing the objective preferences. On the other135

hand, the algorithm is unable to find the non-convex parts of the Pareto front.136

A softmax exploration strategy is proposed for MORL algorithms in [28]. They implement137

the modified exploration mechanisms common in single-objective problems and study the138

method’s effectiveness in multi-objective cases.139

A temporal difference approach in multi-objective Q-learning, called MPQ-learning, is140

studied in [29]. The study addresses the algorithm in a discrete state domain. They illustrate141

that the algorithm is effective as a scalarization-based method. In addition, MPQ-learning142

can find the convex regions of the Pareto front.143

A modification to the algorithm that was proposed in [24] is presented in [30]. The144

proposed algorithm uses a multi-agent preference to find the Pareto front. The paper tries145

4

1+0.9*7

=6.6

3 4 7

0 0 0 0 0 0 00 0

r12=2

S1

S2 S3 S4

S5 S6 S7 S8 S9 S10 S11 S12 S13

r13=1 r14=1

r25=1 r26=2 r27=3 r38=2 r39=4 r3 10=1 r4 11=2 r4 12=4 r4 12=7

Figure 1: Example 1. An imaginary example for an action-state scenario where rewards are
scalars

to address the deficiency in the earlier algorithm in finding the global policy by using several146

searching agents.147

2.1 Difference Between the SORL algorithms and the MORL al-148

gorithms149

The primary difference between an MDP and a MOMDP is the reward. In a SORL algorithm,150

which is a solution method for the MDP, the reward signal is a scalar ([rt]1×1), whereas, in151

a MORL, which is a solution method for MOMDP, the reward signal is a vector ~rt =152

[r1t , r
2
t , · · · , rnt]T , where n is the number of objectives. As a result, in MORL algorithms, the153

Q-values associated with each action, given each state, is a set of non-dominated vectors. In154

a SORL, the reward function in a scalar, so the associated Q-value for an action given a state155

is a scalar. We provide two examples to show why the Q-values become a set of vectors.156

Example 1 shows the state-value calculation for a discrete game, where reward signals are157

scalars. Example 2 illustrates the state-value calculation for a discrete game, where reward158

signals are vectors.159

Example 1: This example shows an episodic game with three steps as in Figure 1.160

In each step, the agent can take three different actions. The game terminates after taking161

three actions. Thus, in the states after the second action, the value-functions are zero162

(V (S5) = V (S6) = · · · = V (S13) = 0). Each action, given each state, returns a reward rab,163

which means the reward of going from state a to state b. The Bellman equation is used to164

find the optimal value-functions, which is as follows for γ = 0.9,165

5

V(S1)

V(S2) V(S3) V(S4)

V(S5) V(S6) V(S7) V(S8) V(S9) V(S10) V(S12)V(S11) V(S13)

r12=[2 10]

S1

S2 S3 S4

S5 S6 S7 S8 S9 S10 S11 S12 S13

r13=[7 1] r14=[8 11]

r25=[1 6] r26=[8 1] r27=[9 1] r38=[6 7] r39=[8 4] r3 10=[7 1] r4 11=[5 3] r4 12=[7 1] r4 12=[6 3]

Figure 2: Example 2. An imaginary example for an action-state scenario where rewards are
vectors

V ∗(s) = max
π

V π(s) ∀s ∈ S,

V ∗(s) = max(rt+1 + γV ∗(st+1)),

V ∗(s2) = max(r25 + γV ∗(s5), r26 + γV ∗(s6), r27 + γV ∗(s7)) = max(1, 2, 3) = 3,

V ∗(s3) = max(r38 + γV ∗(s8), r39 + γV ∗(s9), r310 + γV ∗(s10)) = max(2, 4, 1) = 4,

V ∗(s4) = max(r411 + γV ∗(s11), r412 + γV ∗(s12), r413 + γV ∗(s13)) = max(2, 4, 7) = 7,

V ∗(s1) = max(r12 + γV ∗(s2), r13 + γV ∗(s3), r14 + γV ∗(s4)) = max(4.7, 4.6, 7.3) = 7.3.

Thus, the greedy policy is shown in Figure 1 with the dash line.166

Example 2: In this example, the rewards are 1 × 2 vectors. Let us calculate V ∗(S2),167

V ∗(S3), and V ∗(S4). In this scenario, a 1 × 2 reward vector cannot be added to a 1 × 1168

value-function. Thus, the value-functions of states 5 to 13 are assumed as [0, 0] instead of169

being 0 in Example 1. In other words,170

V ∗(s5) = V ∗(s6) = · · · = V ∗(s13) = [0, 0].

If we use the same method as in Example 1, the value-functions will be as follows,171

V ∗(s2) = max(r25 + γV ∗(s5), r26 + γV ∗(s6), r27 + γV ∗(s7)) = max([1, 6], [8, 1], [9, 1]),

V ∗(s3) = max(r38 + γV ∗(s8), r39 + γV ∗(s9), r310 + γV ∗(s10)) = max([6, 7], [8, 4], [7, 1]),

V ∗(s4) = max(r411 + γV ∗(s11), r412 + γV ∗(s12), r413 + γV ∗(s13)) = max([5, 3], [7, 1], [6, 3]),

where, the max() operator cannot be used in this situation. Vectors like [1, 6] and [9, 1] are172

incomparable and max([1, 6], [9, 1]) is meaningless. Instead of looking for a maximum, we173

will find the non dominated solutions. In order to calculate the value-functions, we modify174

the Bellman equation into a multi-objective domain. Our approach is similar to the Bellman175

6

equation that was used in [24] and was mentioned in (14). The Bellman equation is defined176

as follows,177

V ∗(s) = ND(
⋃
s′∈S

(~r + γV ∗(s′))), (1)

where ND() is the non-dominated sorting operator. The operator keeps the non-dominated178

vectors and deletes the dominated. With (1), the value-functions will be as follows,179

V ∗(s2) = ND
⋃

(r25 + γV ∗(s5), r26 + γV ∗(s6), r27 + γV ∗(s7))

= ND
⋃

([1, 6], [8, 1], [9, 1]) = [[1, 6], [9, 1]]T ,

V ∗(s3) = ND
⋃

(r38 + γV ∗(s8), r39 + γV ∗(s9), r310 + γV ∗(s10))

= ND
⋃

([6, 7], [8, 4], [7, 1]) = [[6, 7], [8, 4]]T ,

V ∗(s4) = ND
⋃

(r411 + γV ∗(s11), r412 + γV ∗(s12), r413 + γV ∗(s13)),

= ND
⋃

([5, 3], [7, 1], [6, 3]) = [[7, 1], [6, 3]]T .

Thus, we can calculate V ∗(s1) as follows,180

V ∗(s1) = ND
⋃

(r12 + γV ∗(s2), r13 + γV ∗(s3), r14 + γV ∗(s4)),

= ND
⋃

([2, 10] + 0.9[[1, 6], [9, 1]]T , [7, 1] + 0.9[[6, 7], [8, 4]]T , [8, 11] + 0.9[[7, 1], [6, 3]]T),

= ND
⋃

([[2.9, 15.4], [10.1, 10.9]]T , [[12.4, 7.3], [14.2, 4.6]]T , [[14.3, 11.9],[13.4, 11.9]]T),

= [[2.9, 15.4], [10.1, 10.9], [12.4, 7.3], [14.3, 13.7]]T ,

which show that the value-functions can be a set of vectors. The same results can happen for181

the FQL algorithm in section 3.1. In section 3.1, the Q-value corresponding to each action182

for each rule was a scalar. However, in the multi-objective case, the Q-value corresponding183

to each action for each rule will be a set of non-dominated vectors.184

3 Fuzzy Q-Learning and Multi-Objective Games185

We review the classical fuzzy Q-learning (FQL) algorithm. In addition, we introduce a186

new game to study the effectiveness of multi-objective reinforcement learning algorithms in187

continuous state space.188

7

3.1 Fuzzy Q-Learning189

The fuzzy Q-learning (FQL) algorithm was proposed in [18] as an extension to the ordinary190

Q-learning. The Q-values in the FQL algorithm are stored in a Takagi-Sugeno fuzzy inference191

system (FIS) instead of Q-tables. Thus, the algorithm can handle games with continuous192

state space like differential games. The FQL algorithm generates continuous actions. How-193

ever, the output parameters of the fuzzy logic controller (FLC) are selected from a discrete194

action set A = {a1, a2, · · · , an}. Since a Takagi-Sugeno FLC is used, the output parameter of195

the fuzzy inference system is the linear combination of action set members. In a differential196

game, the FLC generates the control signal. The control signal (U) is computed as follows,197

U(x̃) =
M∑
l=1

Φlal, (2)

where x̃ = (x1, x2, · · · , xn) is the input set, M is the total number of fuzzy rules, al is the198

action for given rule l and can be viewed as the output parameter. The term Φl is the firing199

strength for rule l, which is defined as follows,200

Φl =

n∏
l=1

µF
l
j (xi)

M∑
l=1

(
n∏
l=1

µF
l
j (xi))

, (3)

where µF
l
j (x̃) is the membership degree of the ith input in the jth membership function for201

the lth rule. To find the best als for (2), the FQL algorithm is implemented. In the FQL202

algorithm, a Q-value is assigned to each action for each rule. The greedy action selection in203

the FQL is selecting the action with the highest Q-value for each rule in the fuzzy inference204

system.205

The training process starts with the implementation of a suitable mechanism for the206

exploration-exploitation dilemma. To this end, to simulate an episode in the learning process,207

a fraction of als in (2) are selected randomly. We can use the Softmax function for selection.208

Thus, the action with a higher Q-value has a higher chance of being chosen. For each rule,209

the probability of choosing action ai for rule l is as follows,210

Pr(ali) =
exp(τq(l, ai))
|A|∑
j=1

exp(τq(l, aj))

, (4)

where Pr(ali) is the probability of choosing action ai for rule l, q(l, ai) is the Q-value of211

action ai given rule l, |A| is the cardinality of the action set A = {a1, a2, · · · , an}, and τ is212

the softmax temperature. Action selection is conducted once for a time step.213

8

An alternative to softmax function is the ε-greedy method. In the ε-greedy strategy, a214

random action is selected with the probability of ε given each rule, and the action, corre-215

sponding to the largest Q-value is selected with the praobability of 1− ε. Eq. (5) shows the216

method.217

al =

{
random action from A with probability ε

arg maxa∈A(q(l, a)) with probability 1− ε
. (5)

After an output parameter is selected for each rule, the control signal is calculated for218

each time step as follows,219

U(x̃t) =
M∑
l=1

Φl
ta
l
t, (6)

where U(x̃t) is the control signal at time step t, and Φl
t is the firing strength of rule l at220

time step t. The term alt is the selected action for rule l at time step t. The agent takes the221

action, moves to the new state, and receives the reward. The global Q-function is calculated222

as follows,223

Qt(x̃t) =
M∑
l=1

Φl
tqt(l, a

l
t), (7)

where Qt(x̃t) is the global Q-function for input x̃ at time step t. The term qt(l, a
l
t) is the224

Q-value of action alt, given rule l at time step t. The global Q-function with the maximum225

Q-values is calculated as follows,226

Q∗t (x̃t) =
M∑
l=1

Φl
t max
a∈A

qt(l, a), (8)

where max
a∈A

qt(l, a) is the maximum Q-value among all actions given rule l. By having (7)227

and (8), the temporal difference is calculated as follows,228

ε̃t+1 = rt+1 + γQ∗t (x̃t+1)−Qt(x̃t), (9)

where γ is the discount factor, rt+1 is the received reward at time step t + 1. The Q-values229

are updated in each time step as follows,230

qt+1(l, a
l
t) = qt(l, a

l
t) + αε̃t+1Φ

l
t, (10)

where α is the learning rate.231

9

3.2 Reach-Avoid Game232

A single agent game with two conflicting reward functions is proposed in this paper. A robot233

wants to reach a target (T) in the proposed game while avoiding a pit (P). The game is a234

differential game since the robot motion equations are described with differential equations235

as follows,236


ẋ = v · cos(θ)
ẏ = v · sin(θ)

θ̇ = U ·v
L

. (11)

where (x,y) is the agent’s location in the field, θ is the angle between the heading and the237

x-axis, U is the steering angle of the robot, as well as the output of the controller, v is the238

robot’s speed, and L is the axle length.239

The game states are defined with three parameters, as follows,240

Inputs = [αAP αAT dAT]. (12)

In (12), αAP is the angle between the agent’s heading and a straight line between the agent241

and the pit, αAT is the angle between the agent’s heading and a straight line between the242

agent and the target. The term dAT is the distance between the agent and the target. The243

three inputs in (12) are sufficient for defining the state of the system if the target and pit244

locations remain unchanged during the learning process. Figure 3 depicts the game, as well245

as the inputs.246

The proposed game has two conflicting objectives. The agent has to decrease its distance247

to the target. The agent has to increase its distance from the pit. The objectives are defined248

by the rewards as follows,249

{
R1 = dAT (t+ 1)− dAT (t)

R2 = dAP (t)− dAP (t+ 1)
, (13)

where R1 and R2 are the reward signals, dAT (t) is the distance between the agent and target250

in time step t, and dAP (t) is the distance between the agent and the pit in time step t.251

4 Multi-Objective Fuzzy Q-Learning (MOFQL)252

This section presents our multi-objective reinforcement algorithm, called the multi-objective253

fuzzy Q-learning (MOFQL) algorithm. The proposed algorithm is an extension to the clas-254

sical FQL algorithm, which was described in section 3.1. The proposed algorithm is multi-255

policy; therefore, it can find multiple optimal non-dominated policies simultaneously. On256

the other hand, the proposed algorithm can find the non-convex regions of the Pareto front.257

10

Agent

T

P

dAT

dAP

αAT
αAP

Figure 3: Reach-Avoid game with a target and a pit and one agent

4.1 Preliminaries258

We describe some of the preliminaries and definitions, which are used in our algorithm.259

4.1.1 Bellman Equation260

In the proposed MOFQL algorithm, we use the extended Bellman equation definition pro-261

posed in [24] as a premise for our definition. The Bellman equation used in [24] is as follows,262

Q̂set(s, a) = RRR(s, a)⊕ γNDt(s, a), (14)

where, Q̂set(s, a) is the Q-value of state s and action a, RRR(s, a) is the vector reward of action263

a in state s. The operator ⊕ adds a vector v to a set of vectors V as follows,264

v ⊕ V =
⋃
v′∈V

(v + v′). (15)

Unlike [24], we propose a temporal difference (TD) scheme to find the optimal policies.265

11

4.1.2 Non-dominated Q-values266

In the MOFQL algorithm, the Q-value given each rule and action is a set of non-dominated267

vectors as demonstrated in (16).268

qqq(l, a) =

q
1
1 · · · qn1
...

. . .
...

q1m · · · qnm


m×n

, (16)

where, qqq(l, a) : <2 ← <m×n and n is the number of the objectives, and m is the number of269

non-dominated Q-value assigned to action a, given rule l. This paper addresses a bi-objective270

algorithm; thus n = 2. The Q-value of rule l and action a for an imaginary policy may look271

as follows,272

qqq(l, a) =

q11 q21
q12 q22
q13 q23


3×2

, (17)

where qqq(l, a) is a bi-objective Q-value with three non-dominated members. In (17), the273

matrix elements are scalars. We define the Bellman equation as in (1).274

4.1.3 Global Q-function275

In a single-objective FQL, the global Q-function maps the states into a scalar to show the276

quality of the state. As shown in (7), by choosing the maximum Q-value of each action, given277

each rule. In a multi-objective the definition of maximum Q-value changes to non-dominated278

Q-values. Since usually there are more than one non-dominated Q-value given each action, in279

a multi-objective FQL, there would be more than one global Q-function. Thus, the Bellman280

equation must be used multiple times to take all global Q-functions into account.281

4.2 Exploration-Exploitation282

Action selection strategies in a multi-objective reinforcement learning algorithm are ad-283

dressed in [24] and [28]. The ε-greedy and softmax function methods cannot be implemented284

in MORL without augmentation. Thus, in [24], three alternative approaches are presented285

and their performances are compared. The first exploration-exploitation strategy is the use286

of the hypervolume indicator. The hypervolume maps the quality of a Pareto front into a287

scalar [31]. To use the hypervolume method, the hypervolume of the non-dominated mem-288

bers of an action given a state are computed [23]. The action with the highest hypervolume289

is expressed as the greedy action. The other method in [24] is called cardinality evaluation.290

In cardinality evaluation, the action with the highest number of members in the Pareto front291

is considered as the greedy action. The third exploration-exploitation approach in [24] is the292

12

Pareto set evaluation. In the third method, the actions that have members in the Pareto293

front have a higher chance of being selected by the agent. It is shown that the hypervolume294

method outperforms other approaches by having a better convergence rate, as well as col-295

lecting the highest reward in the end. In addition to the mentioned approaches, thresholded296

lexicographic ordering (TLO) is implemented in [28]. TLO evaluates the Q-values of each297

action, given each state. In this paper, we used the hypervolume method for the exploration-298

exploitation dilemma. The action selection process is done at each time step. At each time299

step, the softmax function calculates the probability of selecting each action.300

The hypervolume is the volume (area in a bi-objective problem) surrounded by the points301

in the Pareto front and a reference point chosen by an external source. Figure 4 (a) illustrates302

the hypervolume for a bi-objective problem. In Figure 4 (a) the reference point is (0,0). In303

the hypervolume method, the action with a higher hypervolume is more likely to be selected.304

In [24], the ε-greedy method was used, where the action with the highest hypervolume is305

chosen with probability of 1− ε and a random action is chosen with the probability of ε. In306

this paper, we use the softmax function to find the likelihood of each action being selected.307

The probability of action j, being selected as the output parameter of rule l is shown as308

follows,309

Pr(ajl) =
exp(τ · cjl)
|A|∑
i=1

exp(τ · cil)
, (18)

where, A is the action set, |A| means the cardinality of A. The term τ is the softmax310

temperature. The term cil is the normalized hypervolume of the action i, given rule l and is311

calculated as follows,312

cil =
HV i

l + 2|min(HV i
l)|+ 0.01

|A|∑
i=1

(HV i
l + 2|min(HV i

l)|+ 0.01)

. (19)

In (19), HV i
l is the hypervolume of the action i, given rule l.313

Figure 4 (b) illustrates the hypervolume of the Q-values for four actions, given a single314

rule, qqq(l, a). The hypervolume for each action is shown in a distinct colour for a common315

reference point. The reference point is at (0,0). Figure 4 (b) shows the actions whose Q-316

values are in the middle (actions b and c) have a higher hypervolume. In contrast, the actions317

in the boundaries have less hypervolume (actions a and d). Thus, the probability of actions318

b and c being selected is more than actions a and d. Table 1 shows the hypervolume of the319

actions in Figure 4, their normalized value, and the output of the probability of each action320

being selected for τ = 1.0 in (18).321

13

Figure 4: The hypervolume. (a) The hypervolume of a set of non-dominated Q-values in
2-Dimensional domain. (b) The hypervolume of four actions.

Table 1: The hypervolume of the actions in Figure 4, their normalized value, and the output
of the probability of each action being selected for τ = 1.0.

Action Hypervolume Normalized
hypervolume

Probability
based on
hypervolume

a 0.37115 0.24581 0.24779
b 0.47256 0.27138 0.26079
c 0.41032 0.25569 0.25173
d 0.29698 0.22712 0.23869

14

4.3 Calculating The Global Q-Function322

The output parameters of the FLC are selected by using the hypervolume method in sec-323

tion 4.2. Since a softmax function is implemented as in (19), the output parameters are324

a combination of exploitation and exploration. The FLC returns an action by computing325

the agent’s state as in (2). The agent takes an action, moves to a new state, and receives326

a vector reward. As in the single-objective FQL, shown in section 3.1, a global Q-function327

must be calculated. In the single-objective FQL, the global Q-function was calculated by328

substituting the maximum Q-value of each action given a rule as the output parameters329

as in (8). In a multi-objective FQL, we have a set of non-dominated Q-values for each330

action, given each rule. Thus, any arbitrary Q-values on the Pareto front can be used to331

calculate the global Q-function. Ideally, all members of the Pareto front must be used to332

calculate multiple global Q-functions. However, such a process has a huge computational333

burden. We propose to extract several but a limited number of global Q-functions. We334

note the number of selected global Q-function as the parameters H. The difference between335

the calculated global Q-function is the influence of each objective. For instance, one of the336

global Q-functions only considers the influence of the first objective, one of them considers337

the influence of the second objective, and the rest are divided among them. First, we define338

G∗l as the non-dominated union of all qqq(l, a)s for all a ∈ A, given rule l as follows,339

G∗l = ND(
⋃
a∈A

qqq(l, a)), l = 1, 2, · · · ,M. (20)

In (20) G∗l is a m × n matrix, where n is the number of objectives, which is two in this340

study. The term m is the number of non-dominated Q-values.341

342

Example 3: Let us assume that we have Q-values of three actions, given one rule as343

follows,344

qqq(l, a1) =

10 1
9 3
5 4


qqq(l, a2) =

6 1
8 3
2 4


qqq(l, a3) =

[
9 7
8 8

]
,

where, the term G∗l will be as follows,345

15

G∗l = ND(
3⋃
i=1

qqq(l, ai)) = ND(



10 1
9 3
5 4
6 1
8 3
2 4
9 7
8 8


) =

10 1
9 7
8 8

 .

346

The union of Q-values of all the actions given rule l is illustrated in Figure 5 (a). Figure347

5 (b) shows the non-dominated union of Q-values of all the actions given rule l. The non-348

dominated Q-values on Figure 5 (b) are the elements of G∗l . Now, the goal is to select some of349

G∗l members uniformly to calculate the global Q-functions. To do so, we calculate the angles350

of each Q-value with respect to the x-axis and a reference point. The process is shown in351

Figure 5 (b), where the colour points are the points defined by the rows of G∗l ’s matrix. Each352

colour represents an action in the action set A = {a1, a2, · · · , am}, where m is the number of353

actions. There are H dash lines and their angles with x-axis are uniformly distributed in the354

interval of [0, π
2
]. We refer to each dashed line by its angle as θj (j = 1, · · · , H). The angle355

of each dashed line with the x-axis indicates the influence of each objective. For instance,356

the dashed line with θ = 0, only considers the influence of the first objective. The dashed357

line with θ = π
2

only considers the influence of the second objective. The dashed line with358

the slope of θ will be as follows,359

Objective 1

Objective 2
= tan(θ). (21)

The number of dash lines is set at the beginning of the algorithm. For each dashed line,360

given rule l, the closest Q-value on the Pareto front to the dash lines is selected. In Figure 5361

(b), selected Q-values are shown with green circle. We refer to the selected Q-values as G∗lθj .362

The process is repeated for each rule. In the end, we will have H points for each rule. Each363

of the points is associated with a slope θj, which gives different credit to each objective. The364

global Q-functions will be as follows,365

Q∗θj(xn) =
M∑
l=1

Φl(xn)G∗lθj , j = 1, · · · , H. (22)

In (22), the term Q∗θj(xn), is the global Q-function for the non-dominated Q-value, given xn366

as the input. Since G∗lθj is a (1 × 2) vector, Q∗θj(xn) will be a (1 × 2) vector. There is one367

Q∗θj for each dashed line.368

It should be noted that the MOFQL algorithm addresses the continuous action-state369

domain. Thus, the real Pareto front is not discrete but a continuous manifold. However,370

16

0 0.2 0.4 0.6 0.8 1

Objective
1

0

0.2

0.4

0.6

0.8

1
O

b
je

ct
iv

e
2

0 0.2 0.4 0.6 0.8 1

Objective
1

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
iv

e
2

Figure 5: Golbal Q-function

the MOFQL algorithm can approximate the continuous Pareto front with discrete points.371

Increasing the number of calculated Q∗θj increases the Pareto front approximation accuracy.372

At the same time, increasing the number of H, increases the computation effort. To control373

the computational complexity, we limit the number of calculated Q∗θj . We will discuss this374

further in section 4.4.375

4.4 Updating the rules376

In the single-objective FQL algorithm, we could write the temporal difference as (9). At377

each time step, the fired rule is updated by having the scalar reward signal and Q∗t in (10).378

However, since there is only one Q∗t , the rules are updated once in a time step. In a multi-379

objective FQL, we have defined several global Q-functions based on the influence of each380

objective as in section 4.5. Thus, we will have several optimal expected future discounted381

rewards. We update the fired rules for each Q∗θj separately. Then, we combine all the382

updated rules in an array. Finally, we only store the non-dominated updated Q-values and383

eliminate the dominated Q-values. In the MOFQL algorithm, we have H different temporal384

differences, representing the dash lines in Figure 5 (b).385

Before continuing the rest of the algorithm, let us define two mathematical operators, ⊕386

and 	.387

17

2 3
4 6

1 2
4 3
6 1

3 5
6 6
8 4
5 8
8 9

10 7

Figure 6: The ⊕ operator

The operator ⊕ and 	 are defined as,388

Vm×n ⊕Wh×n =
m⋃
i=1

h⋃
j=1

Vi(1:n) +Wj(1:n)

Vm×n 	Wh×n =
m⋃
i=1

h⋃
j=1

Vi(1:n) −Wj(1:n),

(23)

where, Vi(1:n) and Wj(1:n) are the elements of ith and jth row of matrix V and W , respectively.389

Example 3: The result of V ⊕W for two given matrices V and W are as follows,390

V ⊕W =

[
2 3
4 6

]
⊕

1 2
4 3
6 1

 =


3 5
6 6
8 4
5 8
8 9
10 7

 . (24)

Figure 6 illustrates the ⊕ operator.391

The temporal difference is defined as follows,392

ε̃
θj
l (t+ 1) = ~rt+1 + γQ∗θj(xt+1)	 qqqt(l, al), (25)

where ε̃
θj
l (t+ 1) is the temporal difference with respect to the jth Q∗θj(xt+1) given rule l. In393

(25), ~rt+1 and Q∗θj(xt+1) are 1 × 2 vectors. However, qqqt(l, a
l) is an n × 2 matrix. Thus, we394

18

use the 	 operator, which adds the 1 × 2 vector to each row of qqqt(l, a
l), individually. The395

dimension of ε̃
θj
l (t+ 1) will be the same as qqq(l, al). Finally, qqq(l, a) is updated as follows.396

qqqt+1(l, a
l
t) = ND(

⋃
j=1,2,··· ,H

(qqqt(l, a
l
t)⊕ α · ε̃

θj
l (t+ 1) · Φl

t)), (l = 1, 2, · · · ,M). (26)

In (26), α is the learning rate. The term Φl
t is the firing strength of rule l at time step t397

and is calculated with (3). The term H, is the number of Q∗θjs, or dash lines in Figure 5 (b),398

which is set by the user. The term M , is the number of rules. For each Q∗θj , the temporal399

difference is calculated by (25). The temporal difference is multiplied by the firing strength400

of the rule and the learning rate. Then, the temporal difference is added to the Q-values by401

⊕ operator. The process is done for all H global-Q-functions individually. After taking the402

union of all newly calculated Q-values, the non-dominated sorting operator is affected. The403

new dimension of qqqt+1(l, a
l
t) will be unknown, but it is usually more than the dimension of404

qqqt(l, a
l
t). Since in each time step a union of multiple temporal differences is being assigned to405

qqqt+1(l, a
l
t), the dimension of Q-values may increase exponentially. Thus, only a few Q-values406

are being kept. We keep the Q-values with the largest crowding distance and eliminate the407

others. Thus, we can control the Q-value density and keep them more uniform.408

In order to sum up the MOFQL algorithm, the procedure is given in Algorithm 1.409

Algorithm 1: MOFQL algorithm (Bi-objective)

Set H as the number of Q∗s
Initialize q(l, a) = [0, 0]
For Each time step do

Calculate the action selection probability for all actions given each rule by
(18),

Choose an action for each rule by their selection probability,
Compute the control signal via (2),
Take the action and receive ~rt+1 (~r is a 1×2 vector)
Compute G∗l via (20)
Compute Q∗θj(xt+1) via (22)

Compute ε̃θj for each j = 1, · · · , K with (25),
Update qqq(l, al) with (26),
Keep the non-dominated Q-values and delete the rest (qqq(l, al)← ND(qqq(l, al))).

End For

4.5 Global Policy410

The method discussed above finds the non-dominated Q-values as the Pareto front for each411

rule individually. It is beneficial to look at each rule individually for action selection and up-412

dating procedure. However, in the end, the global policies must be extracted. The proposed413

19

MOFQL algorithm is a multi-policy learning algorithm, which means it can find more than414

one policy in a single implementation. To extract the global policies, we took an approach415

similar to [30]. In our approach, Q-values with the same influence for different objectives416

(similar θs) are selected from each rule. The action corresponding to each Q-value will be417

chosen as the output parameter for that rule. Figure 7 shows the selected Q-values for418

three rules. As shown in Figure 7, several lines with different slopes are depicted. Each line419

represents the importance of one objective with respect to the other one, as shown in (21).420

For instance, the solid line has the slope of 30◦. The action corresponding to the closest421

solution of each rule, which is the closest solution to the solid line, is selected as the FLC422

output parameters. By doing this procedure for lines with different slopes, several policies423

are retrieved. The difference between extracted policies are the influence of each objective.424

There are multiple benefits from the proposed algorithm. The MOFQL algorithm is425

able to find the non-convex regions of the Pareto front. The algorithm can estimate a426

continuous Pareto front manifold with discrete points. In addition, the proposed algorithm427

can find several policies in a single implementation without knowing the preferences of each428

objective.429

This paper does not include a formal convergence proof for our proposed MOFQL algo-430

rithm. However, updating the rules in this paper is based on the classical FQL algorithm.431

Since both FQL and MOFQL algorithms follow the updating process as Q-learning, the432

proof precedure can follow the same way [29,32].433

5 Simulation And Discussion434

We implement the proposed algorithm in section 4 to solve the reach-avoid problem pre-435

sented in section 3.2. We used the hypervolume method for the action selection mechanism436

as presented in section 4.2. This sectioncompares the effects of choosing different hyper-437

parameters in our algorithm. The comparisons involve the effect of the discount factor (γ),438

the softmax function temperature (τ), the maximum number of Q-values for each action,439

and the number of global Q-functions used for updating the rules (H).440

5.1 Preliminaries441

The reach-avoid game is presented in section 3.2. The game has one moving agent, modelled442

as a robot. The robot’s speed is set to 5.0 units/sec. The game field is a square with a443

side of 50.0 units. The goal is located at (40,40), and the pit is located at (30,10). The444

agent’s information structure consists of three inputs as shown in (12). A trained fuzzy logic445

controller (FLC) returns the steering angle of the robot. The axle length of the robot is set446

to 0.3 units. The FLC has five triangular membership functions for each input. Figure 8447

illustrates the membership functions.448

We use the hypervolume of the global policy as the performance indicator. It should be449

noted that the use of the hypervolume in this comparison is different from the exploration-450

exploitation mechanism discussed in section 4.2. The hypervolume method discussed in451

20

0 0.5 1

Objective
1

0

0.2

0.4

0.6

0.8

1
R

u
le

 1

O
b
je

ct
iv

e 2

0 0.5 1

Objective
1

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
iv

e 2

0 0.5 1

Objective
1

0

0.2

0.4

0.6

0.8

1

R
u

le
 2

O
b
je

ct
iv

e 2

..
.

..
.

0 0.5 1

Objective
1

0

0.2

0.4

0.6

0.8

1

O
b

je
ct

iv
e 2

0 0.5 1

Objective
1

0

0.2

0.4

0.6

0.8

1

R
u

le
 n

O
b
je

ct
iv

e 2

0 0.5 1

Objective
1

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
iv

e 2

Figure 7: Action selection for a few rules

21

Distance (unit)

D
eg

re
e

o
f

m
em

b
er

sh
ip

MF1 MF2 MF3 MF4 MF5

Heading (Radian)

D
eg

re
e

o
f

m
em

b
er

sh
ip

MF1 MF2 MF3 MF4 MF5

Figure 8: The membership functions for distance and angle inputs

22

section 4.2 is applied to each rule individually to assess each action’s likelihood of being452

selected. However, to evaluate the algorithm performance, first, we extract the global poli-453

cies as discussed in section 4.5. The game is played for each policy, and the accumulated454

discounted reward is calculated. The summation of the accumulated discounted reward for455

the global policies forms a Pareto front, and its hypervolume is reported as the performance456

metric. Since our objective is to maximize the accumulated reward, the higher hypervolume457

means a better solution.458

For all simulations, the maximum epoch is set to 2,000 epochs. We observed that in less459

than 2,000 epochs, the hypervolume of the global policy has converged. The learning rate,460

α, is the same in all simulations. The initial value of α is 0.01 and it decays to 0.0001 in461

the final epoch. The number of Q-values for each action may increase during learning and462

become intractable [29]. The reason is the union operator in (26). In each time step, the463

union of several other non-dominated Q-values is substituted as the Q-value of the next time464

step. We set a limit for the maximum number of Q-values for each action given each rule.465

The maximum number of Q-values for each action given each rule is set to 30 Q-values that466

are selected with the crowding distance method [33]. The Q-values with a higher crowding467

distance are selected, and the rest are eliminated. We will show the effect of this selection468

in discussion section. In order to investigate the effect of the number of calculated global Q-469

functions (H), we set H to 3, 5, 7, and 9. The global Q-functions are calculated as presented470

in (22). It must be mentioned that before extracting the policies, the Q-values are mapped471

into the inteval of [0,1].472

We also investigate the effect of the discount factor γ. We set the discount factor to473

0.0, 0.2, 0.4, 0.6, and 0.8. A discount factor of 0.0, means that we optimize the solution to474

get a maximum reward on the very next step. Whereas a discount factor of 0.8 will choose475

a solution to maximize the reward from approximately the next five steps. The softmax476

temperature is set to 0, 2, 4, 6, 8, and 10. The temperature of zero means the actions are477

selected randomly, while the temperature of 10 means selecting the greedy action more often.478

In order to have a fair comparison, the reference point of the global policies’ hypervolume479

is the same in all the simulations of this paper. The reference point is the minimum of each480

objective in the global policy, among all the simulations in this paper.481

5.2 Simulation Results482

We simulated the learning process four times for each case with different discount factors,483

the softmax function temperature, and the number of calculated global Q-functions. The484

random number generator’s seed was differentfor each simulation given each case. Thus,485

these simulations are conducted with the same hyper-parameters and different initial random486

numbers for the action selection mechanism.487

Let us depict the final Q-values calculation of some of the rules in a simulation in Figure488

9. The first column of Figure 9 shows the union of all the action Q-values for a particular489

rule. The second column shows the non-dominant union of the action Q-values for the same490

rule. For each rule, the closest solution to the dashed lines is selected and used as the output491

parameter of that rule as one of the global policies. Five global policies can be created with492

23

the five dashed lines in Figure 9. In Figure 9, γ = 0.6 and τ = 2.0. The same process493

of retrieving the global policies is done for all other discount factors, the softmax function494

temperature, and the number of calculated global Q-functions.495

Ten different policies are extracted in the final epoch of the training as discussed in section496

4.5. Each solution represents a series of output parameters with different preferences over497

the reward functions. The solution with the maximum value for the first reward function498

represents single-objective learning with only reward 1 as its reward function. For instance,499

in the simulated game, we expect that the agent goes directly toward the goal if the policy500

corresponding to θ = 0 is selected. The solution with the highest value for reward 2 repre-501

sents a series of output parameters that maximizes reward 2, without considering reward 1.502

However, since the terminal state of the game is when the agent reaches the target, reward503

1 is more important. Thus, we retrieved the Pareto fronts from θ = 0 to θ = 45◦. Pareto504

optimal solutions corresponding to these regions guarantee that the agent will reach the505

goal. Figure 10 shows the Pareto solutions for different softmax function temperatures and506

different discount factors. All solutions in Figure 10 are a subset of the whole Pareto front507

that covers θ = 0 to θ = 45◦. In Figure 10, the parameter H is set to 9, which means nine508

global Q-functions are calculated to update the output parameters.509

All the cases in Figure 10 show that the solutions are non-dominated. However, it should510

be noted that some solutions may become dominated, especially in initial epochs, where the511

Q-values are not converged. In order to have a quantative comparison, we calculated the512

hypervolume of the Pareto fronts in Figure 10 and reported them in Table 2. The reference513

point for hypervolumes is set to [-0.00341,-0.228], which is 0.01 less than the minimum514

accumulated rewards of all the simulations in this paper. The first element of the reference515

point is close to zero, meaning the first argument must be a value that makes the agent516

always seek the goal. In Table 2, it is shown that the maximum hypervolume is for τ = 2.0.517

However, as the discount factor increases, the accumulated reward gets larger.518

Table 2: The hypervolume of the global policy for Figure 10

τ = 0.0 τ = 2.0 τ = 4.0 τ = 10.0

γ = 0.0 0.0899 0.0984 0.1003 0.0994
γ = 0.2 0.1085 0.1201 0.1158 0.1068
γ = 04 0.1347 0.1564 0.1528 0.1260
γ = 0.6 0.1758 0.2174 0.2000 0.1783
γ = 0.8 0.2687 0.4067 0.3640 0.3022

5.2.1 Discussion519

We investigate the effect of changing the hyper-parameters. We set the maximum number of520

each Q-value to be 30. The maximum number of each Q-value must be limited; otherwise,521

the number of Q-values for each action, given each rule, increases exponentially and will522

be intractable [29]. Choosing a very high limit for the number of the Q-values does not523

24

0.5 0.55

(a)

0.1

0.15

0.2
R

u
le

 3
3

0.52 0.54 0.56

(b)

0.15

0.2

0.5 0.55

(c)

-0.25

-0.2

-0.15

-0.1

R
u
le

 3
8

0.5 0.55

(d)

-0.2

-0.15

-0.1

0.5 0.55

(e)

-0.4

-0.35

-0.3

R
u
le

 4
3

0.52 0.54 0.56

(f)

-0.36

-0.34

-0.32

-0.3

-0.28

-0.26

0.5 0.55

(g)

-0.4

-0.3

-0.2

R
u
le

 6
8

0.5 0.55

(h)

-0.35

-0.3

-0.25

-0.2

Figure 9: The final Q-values. In this simulation the hypervolume method is used as the
action selector with τ = 2.0. The discounted factor is 0.6, and the parameter H = 30.

25

0.2 0.3 0.4

Reward 1

-0.05

0

0.05

=

0
.0

 R
e
w

a
rd

 2
=0.0

0.20.30.4

Reward 1

0

0.05

0.1

 R
e
w

a
rd

 2

=0.2

0.2 0.3 0.4

Reward 1

0

0.05

0.1

 R
e
w

a
rd

 2

=0.4

0.2 0.3 0.4

Reward 1

-0.1

0

0.1

 R
e
w

a
rd

 2

=10.0

0.20.30.4

Reward 1

-0.1

0

0.1

=

0
.2

 R
e
w

a
rd

 2

0.20.30.4

Reward 1

-0.1

0

0.1

 R
e
w

a
rd

 2

0.2 0.3 0.4

Reward 1

-0.1

0

0.1

 R
e
w

a
rd

 2

0.2 0.3 0.4

Reward 1

-0.1

-0.05

0

0.05

 R
e
w

a
rd

 2
0.2 0.4

Reward 1

-0.1
-0.05

0
0.05

=

0
.4

 R
e
w

a
rd

 2

0.2 0.4 0.6

Reward 1

-0.1

0

0.1

 R
e
w

a
rd

 2

0 0.5

Reward 1

0

0.1

0.2

 R
e
w

a
rd

 2

0.3 0.4 0.5

Reward 1

-0.1

-0.05

0

0.05

 R
e
w

a
rd

 2

0.4 0.6

Reward 1

-0.2

-0.1

0

0.1

=

0
.6

 R
e
w

a
rd

 2

0.4 0.6

Reward 1

-0.1

0

0.1

 R
e
w

a
rd

 2

0.4 0.6

Reward 1

-0.1

0

0.1

 R
e
w

a
rd

 2

0.5 0.6

Reward 1

-0.1

-0.05

0

0.05

 R
e
w

a
rd

 2

0.5 1

Reward 1

-0.2

-0.1

0

0.1

=

0
.8

 R
e
w

a
rd

 2

0.8 1

Reward 1

-0.1

0

0.1

0.2

 R
e
w

a
rd

 2

0.5 1

Reward 1

0

0.2

0.4

 R
e
w

a
rd

 2

0.9 1

Reward 1

0.02

0.04

 R
e
w

a
rd

 2

Figure 10: The Pareto optimal solutions of the game with different softmax tempratures and
different discount factors for H = 9.

26

0.1 0.15 0.2 0.25 0.3

(b) Reward 1

-0.5

-0.45

-0.4

-0.35

-0.3

R
e
w

a
rd

 2

0.1 0.15 0.2 0.25 0.3

(a) Reward 1

-0.5

-0.45

-0.4

-0.35

-0.3

R
e
w

a
rd

 2

Figure 11: The effect of the limit on the maximum members of the Pareto front

necessarily increase the algorithm’s accuracy. Instead, it slows down the algorithm. However,524

decreasing the limit jeopardizes the quality of action selection. We show this problem with an525

example. Figure 11 shows the non-dominant Q-values for rule 44 for two different simulations.526

Figure 11 (a) shows a case where the maximum number of the Q-values of each action is set527

to be 30. Figure 11 (b) shows a case where the maximum number of the Q-values of each528

action is set to be 5. As shown in Figure 11 (a), each action is fully separated from other529

actions. There is no Q-value of action from a colour inside the region of another colour.530

Figure 11 (b) shows that each action’s Q-values are less dense and farther from each other.531

The values of the Q-values are almost the same. Thus, the limit does not have a considerable532

effect on the values. However, there is one Q-value of action blue in the region of action533

green. The action is shown with a small arrow.534

Figure 12 compares the effect of the parameter H, the discount factor, and different535

softmax temperatures. Figure 12 (a) shows that for γ = 0.0, the number of calculated global536

Q-function does not affect the performance. For all Hs, the solutions are the same. The537

performance is also independent of the softmax temperaturesince there is no selectable peak538

in the figure. Although, in this case, the union of Q-values of different actions may form a539

Pareto front given each rule, there is only one Q-value for each action.540

Figure 12 (b)-(e) show the global policy’s hypervolume of cases that γ > 0. There is a541

peak for the softmax function temperaturein all these cases. The peak always happens for542

τ = 2.0. Since we normalized the softmax function’s input via (19), selecting τ = 2.0 is also543

a suitable choice for different games. Figure 12 (b)-(e) also show that H does not necessarily544

enhance the algorithm’s performance. However, in a game with more actions, the effect of545

H may be more visible.546

We use the best performance achieved for each case, given each discount factor and the547

27

0 2 4 6 8 10

(a) in (19)

0.09

0.095

0.1

0 2 4 6 8 10

(b) in (19)

0.1

0.11

0.12

0 2 4 6 8 10

(c) in (19)

0.12

0.14

0.16

H
y
p
er

v
o
lu

m
e

o
f

th
e

g
lo

b
al

 p
o
li

cy

0 2 4 6 8 10

(d) in (19)

0.15

0.2

0 2 4 6 8 10

(e) in (19)

0.3

0.35

0.4

H=3 H=5 H=7 H=9

Figure 12: The hypervolume of the global policy for different softmax temperatures and
action-selection mechanisms

28

parameter H. Figure 13 shows the convergence of the hypervolume method during the548

training. As we expected, the hypervolume of the global policy converged after half of the549

maximum epoch. For this simulation, the global policy is extracted every 50 epochs, and the550

hypervolume of the accumulated discounted reward is calculated. Again the reference point551

is assumed to be [-0.00341,-0.228], which is 0.01 less than the minimum accumulated reward.552

It should be mentioned that the figure is drawn for four simulations with different seeds for553

their random number generator. As could be expected, by increasing γ, the hypervolume554

increases. The reason is that the agent can see more future rewards.555

Figure 14 shows the trajectory of different selected policies from the Pareto front, given556

different discounted factors and the parameter H. It should be mentioned that five non-557

dominated global policies are extracted to depict Figure 14. Five Q-values from the Pareto558

front of each rule are selected. The selected normalized Q-values are closest to lines with559

a slope of 0, 11.25, 22.50, 33.75, and 45 degrees regarding the x-axis and a reference point.560

The reference point has the minimum value of each dimension. It is observed that as γ561

increases, the trajectory will have a slightly steeper curve. However, since the reward signal562

is instantaneous, the difference in the trajectory is not vivid. The steeper curve is more563

obvious where γ is set to 0.6 and 0.8 in comparison to the smaller discounted factors. In the564

game of our paper, which has five actions in the action set, the effect of H is not visible.565

Finally, Table 3 shows the training CPU time for different cases. We used Matlab 2019b566

on a Linux Ubuntu 18.04 machine to conduct the training process. The simulation time is567

the average of four simulations for each case. It is observed that for γ = 0.0 the simulation568

time is lower than other cases. On the other hand, as H increases, the calculation burden569

increases, and as a result, the cases with higher H have higher simulation time. It is observed570

that in cases that τ = 0.0, the simulation time is the highest. In these cases, the actions are571

selected randomly, and as a result, the learning is not optimal.572

6 Conclusion and future works573

In this paper, a novel multi-objective reinforcement learning algorithm is proposed. The574

proposed algorithm is an extension of the classical FQL algorithm for the multi-objective575

case. A reach-avoid game is implemented as the simulation platform of this study. We used576

the well-known hypervolume based action selector to address the exploration-exploitation577

mechanism. In this study, we investigated the effect of the softmax temperature on the578

proposed algorithm. It was shown that the softmax temperature significantly affects the579

algorithm’s performance. In addition, we found the best temperature that returns the highest580

reward. The proposed MOFQL algorithm can find the non-convex regions of the Pareto front,581

and it is a good choice for the problems in the continuous action-state domain.582

The proposed algorithm opens a window to many applications in control systems and583

multi-agent systems. The MOFQL algorithm is one of the first multi-objective reinforcement584

learning algorithms in the continuous action-state domain. Our next study will use the585

proposed algorithm for multi-agent game training agents such as in [21, 34]. Our focus will586

be on pursuit-evasion games, where the agents’ reward functions are a summation of different587

29

Figure 13: The hypervolume of the global policy for different action-selection mechanisms
(Best τs are selected for each method given each γ)

30

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

0 25 50
0

25

50

Goal Pit H=3 H=5 H=7 H=9

Figure 14: The agent’s trajectory for different policies from the Pareto front given different
γs

31

Table 3: The simulation time for different cases
M = 3 τ = 0.0 τ = 2.0 τ = 4.0 τ = 6.0 τ = 8.0 τ = 10.0

γ = 0.0 1580 1358 1504 1388 1383 1443
γ = 0.2 17391 15719 13345 15202 12633 10811
γ = 0.4 17959 13363 12428 17696 13719 10303
γ = 0.6 17327 16453 15031 11811 12770 12250
γ = 0.8 16528 14160 13595 11248 14689 11817

M = 5 τ = 0.0 τ = 2.0 τ = 4.0 τ = 6.0 τ = 8.0 τ = 10.0

γ = 0.0 1965 1514 1644 1543 1592 1624
γ = 0.2 22128 18050 17894 17976 18562 11407
γ = 0.4 22412 23044 19470 17740 13984 13429
γ = 0.6 21052 19887 18480 20157 14839 13618
γ = 0.8 21019 20961 13374 16614 11436 11196

M = 7 τ = 0.0 τ = 2.0 τ = 4.0 τ = 6.0 τ = 8.0 τ = 10.0

γ = 0.0 1879 1606 1748 1634 1685 1752
γ = 0.2 28062 24133 25765 24247 19799 15501
γ = 0.4 29888 22214 27974 24045 23394 20888
γ = 0.6 27955 27325 18042 23184 18802 17587
γ = 0.8 25410 23153 22658 20599 21455 19670

M = 9 τ = 0.0 τ = 2.0 τ = 4.0 τ = 6.0 τ = 8.0 τ = 10.0

γ = 0.0 2017 1731 1882 1768 1791 1875
γ = 0.2 35066 29782 30112 31786 27924 21485
γ = 0.4 34243 29247 34956 28689 24655 27818
γ = 0.6 33780 33075 30937 27038 23092 21229
γ = 0.8 34694 31990 21368 22656 20814 20683

32

conflicting reward signals. One interesting question in studying a multi-agent multi-objective588

game will be how the Pareto front will look. In addition, we will study a new multi-objective589

reinforcement algorithm based on the fuzzy actor-critic learning algorithm.590

Acknowledgement591

This research is funded by the Natural Sciences and Engineering Research Council of Canada592

(NSERC). (No. RGPIN-2017-06379 and No. RGPIN-2017-06261)593

References594

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”595

Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.596

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,597

2018.598

[3] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward transformations599

: Theory and application to reward shaping,” Sixteenth International Conference on600

Machine Learning, vol. 3, pp. 278–287, 1999.601

[4] M. Babes, E. M. De Cote, and M. L. Littman, “Social reward shaping in the Prisoner’s602

dilemma,” Proceedings of the International Joint Conference on Autonomous Agents603

and Multiagent Systems, AAMAS, vol. 3, no. Aamas, pp. 1357–1360, 2008.604

[5] H. Zhang, D. C. Parkes, and Y. Chen, “Policy teaching through reward function learn-605

ing,” Proceedings of the ACM Conference on Electronic Commerce, pp. 295–304, 2009.606

[6] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey of multi-objective607

sequential decision-making,” Journal of Artificial Intelligence Research, vol. 48, pp. 67–608

113, 2013.609

[7] D. J. White, “The set of efficient solutions for multiple objective shortest path prob-610

lems,” Computers and Operations Research, vol. 9, no. 2, pp. 101–107, 1982.611

[8] A. Castelletti, G. Corani, A. E. Rizzoli, R. Soncini Sessa, and E. Weber, “Reinforcement612

learning in the operational management of a water system,” Modelling and Control in613

Environmental Issues 2001, pp. 325–330, 2002.614

[9] P. Vamplew, J. Yearwood, R. Dazeley, and A. Berry, “On the limitations of scalarisation615

for multi-objective reinforcement learning of pareto fronts,” pp. 372–378, 2008.616

[10] T. Brys, A. Harutyunyan, P. Vrancx, A. Nowé, and M. E. Taylor, “Multi-objectivization617

and ensembles of shapings in reinforcement learning,” Neurocomputing, vol. 263, pp. 48–618

59, 2017.619

33

[11] N. Nariman-Zadeh, M. Salehpour, A. Jamali, and E. Haghgoo, “Pareto optimization of a620

five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity621

genetic algorithm (MUGA),” Engineering Applications of Artificial Intelligence, vol. 23,622

no. 4, pp. 543–551, 2010.623

[12] I. Showalter and H. M. Schwartz, “Neuromodulated multiobjective evolutionary neuro-624

controllers without speciation,” Evolutionary Intelligence, vol. 14, no. 4, pp. 1415–1430,625

2021.626

[13] M. A. Khamis and W. E. S. A. Gomaa, “Enhanced multiagent multi-objective rein-627

forcement learning for urban traffic light control,” Proceedings - 2012 11th Interna-628

tional Conference on Machine Learning and Applications, ICMLA 2012, vol. 1, no. 2,629

pp. 586–591, 2012.630

[14] S. Mannor and N. Shimkin, “The steering approach for multi-criteria reinforcement631

learning,” vol. 14, 2002.632

[15] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning: A comprehensive633

overview,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45,634

no. 3, pp. 385–398, 2015.635

[16] S. Natarajan and P. Tadepalli, “Dynamic preferences in multi-criteria reinforcement636

learning,” in Proceedings of the 22nd international conference on Machine learning,637

pp. 601–608, 2005.638

[17] L. Barrett and S. Narayanan, “Learning all optimal policies with multiple criteria,”639

Proceedings of the 25th International Conference on Machine Learning, pp. 41–47, 2008.640

[18] P. Y. Glorennec and L. Jouffe, “Fuzzy Q-learning,” in IEEE International Conference641

on Fuzzy Systems, vol. 2, pp. 659–662, 1997.642

[19] H. Daellenbach and C. De Kluyver, “Note on multiple objective dynamic programming,”643

Journal of the Operational Research Society, pp. 591–594, 1980.644

[20] S. Mannor and N. Shimkin, “A geometric approach to multi-criterion reinforcement645

learning,” Journal of Machine Learning Research, vol. 5, pp. 325–360, 2004.646

[21] A. Asgharnia, H. M. Schwartz, and M. Atia, “Deception in a multi-agent adversar-647

ial game: the game of guarding several territories,” 2020 IEEE Symposium Series on648

Computational Intelligence, SSCI 2020, pp. 1321–1327, 2020.649

[22] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker, “Empirical evalua-650

tion methods for multiobjective reinforcement learning algorithms,” Machine Learning,651

vol. 84, no. 1-2, pp. 51–80, 2011.652

[23] K. Van Moffaert, M. M. Drugan, and A. Nowé, “Hypervolume-based multi-objective653

reinforcement learning,” pp. 352–366, 2013.654

34

[24] K. Van Moffaert and A. Nowé, “Multi-objective reinforcement learning using sets of655

pareto dominating policies,” The Journal of Machine Learning Research, vol. 15, no. 1,656

pp. 3483–3512, 2014.657

[25] M. Pirotta, S. Parisi, and M. Restelli, “Multi-objective reinforcement learning with658

continuous pareto frontier approximation,” Proceedings of the National Conference on659

Artificial Intelligence, vol. 4, pp. 2928–2934, 2015.660

[26] S. Parisi, M. Pirotta, and M. Restelli, “Multi-objective reinforcement learning through661

continuous pareto manifold approximation,” Journal of Artificial Intelligence Research,662

vol. 57, pp. 187–227, 2016.663

[27] H. Mossalam, Y. M. Assael, D. M. Roijers, and S. Whiteson, “Multi-objective deep664

reinforcement learning,” arXiv preprint arXiv:1610.02707, 2016.665

[28] P. Vamplew, R. Dazeley, and C. Foale, “Softmax exploration strategies for multiobjec-666

tive reinforcement learning,” Neurocomputing, vol. 263, pp. 74–86, 2017.667

[29] M. Ruiz-Montiel, L. Mandow, and J. L. Pérez-de-la Cruz, “A temporal difference668

method for multi-objective reinforcement learning,” Neurocomputing, vol. 263, pp. 15–669

25, 2017.670

[30] Z. Daavarani Asl, V. Derhami, and M. Yazdian-Dehkordi, “A new approach on multi-671

agent multi-objective reinforcement learning based on agents’ preferences,” 19th CSI672

International Symposium on Artificial Intelligence and Signal Processing, AISP 2017,673

vol. 2018-Janua, pp. 75–79, 2018.674

[31] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, “Performance675

assessment of multiobjective optimizers: An analysis and review,” IEEE Transactions676

on evolutionary computation, vol. 7, no. 2, pp. 117–132, 2003.677

[32] C. Watkins and P. Dayan, “Q-Learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,678

1992.679

[33] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective680

genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6,681

no. 2, pp. 182–197, 2002.682

[34] J. Zhang, Z. Wang, and H. Zhang, “Data-based optimal control of multiagent systems:683

A reinforcement learning design approach,” IEEE transactions on cybernetics, vol. 49,684

no. 12, pp. 4441–4449, 2018.685

35

	Introduction
	Background
	Difference Between the SORL algorithms and the MORL algorithms

	Fuzzy Q-Learning and Multi-Objective Games
	Fuzzy Q-Learning
	Reach-Avoid Game

	Multi-Objective Fuzzy Q-Learning (MOFQL)
	Preliminaries
	Bellman Equation
	Non-dominated Q-values
	Global Q-function

	Exploration-Exploitation
	Calculating The Global Q-Function
	Updating the rules
	Global Policy

	Simulation And Discussion
	Preliminaries
	Simulation Results
	Discussion

	Conclusion and future works

