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Abstract1

Differential games are a class of game theory problems governed by differential2

equations. Differential games are often defined in the continuous domain and solved3

by the calculus of variations. However, modelling and solving these games are not4

straightforward tasks. Differential games, like game theory, are often involved with5

social dilemmas and social behaviours. Modelling these social phenomena with math-6

ematical tools is often problematic. In this paper, we modelled deception to increase7

the pay-off in differential games. Deception is modelled as a bi-level policy system, and8

each level is modelled with a fuzzy controller. Fuzzy controllers are trained using a9

novel hierarchical fuzzy actor-critic learning algorithm. A deceitful player plays against10

multiple opponents. Although there is one ultimate goal for the player, it can choose11

multiple fake goals as well. The intention is to find a strategy to switch between the12

fake goals and the true goal to fool the opponents. The simulation platform is the13

game of guarding territories, a specific form of the pursuit-evasion games. We propose14

a method to easily increase the number of defenders with minimum changes in the poli-15

cies. We create a universal structure that is not affected by the curse of dimensionality.16

We show that a discerning invader capable of using deception can improve its perfor-17

mance against the defenders by increasing the chance of invasion. We investigate the18

single-invader single-defender game and the single-invader multi-defender game. We19

study the superior invader and agents with the same speed. In all mentioned situations,20

the invader increases its pay-off by using deception versus being honest. A two-level21

policy system is used in this paper to model deception. The lower-level policy controls22

each goal’s invasion actions, while the higher-level policy controls deception where a23

successful game is not initially possible.24

Keywords: Multi-Agent Reinforcement Learning, Hierarchical Reinforcement Learning,25

Hierarchical Fuzzy Actor-Critic Learning, Pursuit-Evasion Game, Deception26

1 Introduction27

This paper proposes a method for learning deception in adversarial games. Reinforcement28

learning (RL) is implemented as the learning mechanism. Deception has multiple definitions29

provided by researchers from different fields. All definitions address an action or a sequence30

of actions to manipulate beliefs [1]. Delibration in the deceiver’s action is the keyword to31

distinguish the difference between definitions. Bond and Robinson present deception as any32

false communication intended to benefit the communicator [2]. Their definition addresses33

intentional as well as unintentional forms of deception, such as mimicry and camouflage.34

However, the papers on deliberate deception outnumber the papers on unintentional decep-35

tion. Skyrms recognizes deception as a systematically transmitted signal for the sender’s36

benefit [3], whereas he denotes a signal without intention as misinformation. The same ar-37

gument was previously noted in [4]. Whaley defines deception as intentional communication38

to manipulating some other agent [5]. In addition, Ettinger and Jahiel define deception as39

a process where actions are taken deliberately to manipulate beliefs and take advantage of40
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the other agent [6]. Unintentional forms of deception such as camouflage are the intrinsic41

characteristics of an animal or, more generally, an agent. Animals are equipped with tools to42

show deception unintentionally, and they cannot learn these during their lives. Whereas, it43

is believed that intentional forms of deception, such as lying, can be learned and improved by44

practicing and receiving feedback [7]. In this paper, we adopt the definitions that highlight45

the deliberate action to demonstrate deceptive behaviour. In our study, the deceiver and46

the deceived agents use the same dynamical models. Thus, the deceiver does not have any47

intrinsic property to enhance its deceptive behaviours. The only advantage of the deceiver48

is its policy, which makes the agent capable of deceiving with delibration, and only can be49

learned from an external source.50

Deception is studied in many fields, such as robotics [1, 8], cyber-physical systems [9],51

optimal control [10], and supervisory control [11].52

Interdependance theory and game theory are investigated to explore the area of deception53

from a robotic perspective in [1]. The authors sought for an algorithm to determine the social54

situation, where deception is warranted. They showed that by having the situation’s location55

in interdepandance space, the robot can decide whether to act deceptively or not. They also56

demonstrate that if the deceiver has the deceived agent’s model, it can perform better.57

Finally, they showed that learnt communication can be used as false signals to deceive an58

other agent.59

In [8], the researchers sought for deceptive strategies in robots, based on squirrel’s cache60

protection. By observing the squirrel’s behaviour is caching and protecting strategies, they61

provided a model to implement on robots. Their simulation consists of two robots, one62

gaining and protecting some goods, while the adversary tries to steal from the first one. It is63

shown that if the gaining robot implements a deceptive strategy, it can decrease its chance64

of being pilfered.65

An application of deception in the pursuit-evasion game is studied in [12]. The researchers66

studied robotic reception in the context of fuzzy signalling games and inspiration from nature.67

In [12], agents send a false signal (like sending pheromones among ants) to deceive the68

adversary. It is observed that the adversary can find out the trick after a few time steps.69

However, during the time when the adversary is wrong, the agent can take advantage and70

increase its pay-off.71

A practical problem with applications in autonomous vehicles is guarding a territory.72

Guarding a territory and its general form, the pursuit-evasion (PE) game, are among the73

well-studied differential game (DG). In the game of guarding a territory, three agents are74

defined within a playing field. There is a target, which can be assumed static [13–15] or75

dynamic [16, 17]. There is a defender, which actively protects the target from threats, and76

there is an invader, or sometimes referred to as an intruder, which is supposed to reach77

the target. Several methods are proposed to play this game based on geometric approaches78

[16,18], solving Hamiltonian-Jacobi-Isaacs (HJI) equations [17,19], game theoretical control79

methods [20], and machine learning [21–23].80

In [19], a geometric approach is proposed to solve the pursuit-evasion differential game.81

The researcher solved a two-defender single-evader game (called the cutters and fugitive82
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ship differential game) using the Apollonius circle. In this game, two pursuers cooperate83

to capture a single evader, where the evader’s speed is less than the pursuers’ speed. The84

validaty of the geometric method was later proven in [24]. However, the proposed approach85

suffers from the curse of dimensionality [17].86

The Apollonius circle is a powerful tool in cases that the pursuer’s/defender’s speed is87

more than evader’s/invader’s. However, it is argued that the Apollonius circle is the most88

conservative solution for finding the agent’s dominant region where the evader is faster than89

the pursuer [25]. In these cases, the capture is not guaranteed unless a positive capture90

radius is assumed for the pursuer. In games with an inferior pursuer with a positive capture91

radius, using Cartesian ovals is suggested [26].92

A multi-pursuer single-evader game is studied in [27]. They implemented a min-max93

solution over the game duration and solved the game via linear programming. To reduce94

the game’s complexity, they replace linear programming with a geometrical solution based95

on the Voronoi diagram.96

A two-pursuer one-evader case is addressed in [16]. In this paper, the researchers obtained97

a state feedback cooperative strategy to navigate the pursuers. In addition, a cooperative98

geometric approach is addressed in [20] for a multi-pursuer single-evader case. In both99

papers, the evader’s speed is less than the pursuers’.100

A two-defender one-invader game is studied in [28] for the game of guarding territory101

or reach-avoid game. The invader strives to reach the field’s boundary, while the defenders102

try to capture the invader. In the first stage, a reachability investigation is performed for103

the game, and in the second stage, the policies to accomplish the task are studied. The104

authors implemented the Apollonius circle and the Voronoi diagram to form strategies in105

their winning region. The approach is shown to be accurate and has low computational106

effort. Thus, it can be used as an online method for evaluating the policies. In addition, a107

reach-avoid game for two evaders and one-defender is studied in [29] from the game of kind108

and the game of degree perspective. The paper addresses cooperation between two evaders109

to reach the target region.110

In [30], a multiple-pursuer multiple-evader case is studied. The authors discussed the111

number of pursuers needed for each evader, the shortest time to capture and allocate pursuers112

for each evader. The researchers studied pure pursuit and constant bearing cases and used113

the Apollonius circle and the Apollonius curve to check if a pursuer is active or redundant.114

Pursuit-evasion games are classical game theoric problems, and the majority of the pro-115

posed solutions are based on geometric or analytic approaches. The significant issue in this116

game is the intractable growth of state numbers as the number of players increases. In ad-117

dition, there is not yet a comprehensive solution for the M-pursuer and N-evader cases. A118

significant shortcoming in all the mentioned papers is the agents’ limitations and constraints.119

For instance, most of the papers on pursuit-evasion games address agents with pedestrian120

differential equations. In a pedestrian model, the control signal is the agent’s heading. It121

is assumed that the agent adjusts its heading to the desired value as soon as it receives the122

control signal. However, in reality, a robot limits the heading rate. Thus, using learning123

methods has attracted much attention in pursuit-evasion games.124
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In [31], the cooperation mechanism of multiple pursuers against multiple evaders is stud-125

ied. The authors focused on how they can cluster similar evaders using reinforcement learning126

techniques. They proposed a new reward function to improve their results. Their proposed127

algorithm can outperform similar techniques in improving the flexibility and decreasing the128

capture time.129

Active target defence using reinforcement learning is studied in [21]. They compared130

the actor being trained with supervised and unsupervised learning. They mentioned the131

importance and difficulty of obtaining a suitable reward function in the active target defence132

game. Thus, the machine learning methods may not increase the performance under all133

circumstances.134

The Apollonius circle usage in building a reward function for reinforcement learning is135

addressed in [22]. The researchers studied training a superior invader and multiple defend-136

ers with the residual gradient fuzzy actor-critic learning (RGFACL) algorithm. They also137

employed the Apollonius circle to derive a reward function so that the defenders can make138

a formation without colliding. They showed that the RGFACL algorithm could train the139

agent to learn the optimal policy.140

In [32] a new reinforcement learning algorithm is proposed in the continuous state-action141

domain. The algorithm is implemented to solve a pursuit-evasion with two agents that142

have a conflict of interests. Unlike many algorithms proposed in the literature, where only143

the output parameters are being updated, the proposed residual gradient fuzzy actor–critic144

learning (RGFACL) algorithm is able to update the input parameters as well, with a residual145

gradient value iteration approach.146

Another application of reinforcement learning in differential games in presented in [33].147

The study tackles the difficulty of using reinforcement learning approaches in multi-agent148

problems. The authors proposed a reward shaping method to increase the efficiency of joint149

policy training.150

An extension to the game of guarding a territory is addressed in [14, 15], by adding151

more than one target to the game. In [14] deception is modelled for a grid-world game.152

The Q-tables were derived via the minimax Q-learning algorithm and the single-agent Q-153

learning algorithm. In addition, in [15], a deceitful invader confronts two defenders to reach154

a particular target among several targets. Although all targets are in the defenders’ capture155

region, the invader tries to take advantage of the defenders’ insufficient information. This156

game is created as a testbed for modelling deception. In [15], deception is modelled as a157

two-level hierarchical policy system. The lower-level policy contains the policy to invade158

each target, while the higher-level policy contains the proper switching instances between159

different goals. The lower-level policy is trained via the fuzzy actor-critic algorithm, whereas160

the higher-level policy is derived using the genetic algorithm. Although finding a fitness161

function for an optimization algorithm is a more straightforward task, the optimization162

algorithms such as the genetic algorithm limit the deception flexibility. For instance, the163

agents’ initial positions must remain within a single or a few points in the field. In addition,164

the approach in [15] will be hit by the curse of dimensionality if the number of defenders165

increases.166
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The motivation of this paper is twofold. On the one hand, the paper investigates the167

possibility of learning deception using reinforcement learning, where the only difference be-168

tween the deceiver and the deceived agent is the policy they use. We use a fuzzy inference169

system to accomplish this task. On the other hand, by using a deceptive strategy, we show170

an invader can improve its performance in the game of guarding a territory where the agents171

have constraints.172

In this paper, we address a deceptive one-invader multiple-defender game in a continuous173

domain. We also investigate the performance of a superior invader case and the agents174

with equal speed. Similar to [15], we developed a bi-level hierarchical policy system. The175

lower-level policy is trained via the fuzzy actor-critic algorithm in the continuous domain.176

However, unlike [15], where the higher-level policy was trained with the genetic algorithm,177

in this paper, the higher-level policy is trained via the fuzzy actor-critic algorithm in the178

discrete domain. In other words, instead of evaluating the consequence at the terminal state179

with a cost function, we try to assess each action with a reward function. The contributions180

of this paper are as follows,181

• Learning of deception with a hierarchical reinforcement learning,182

• Providing a new approach to construct the reward function for the game of guarding183

a territory, which does not need any external policy,184

• Proposing a new hierarchical fuzzy actor-critic learning algorithm to train both levels,185

• Implementing deception in a single-invader multiple-defender case, where the invasion186

without deception is not possible,187

• Comparing two speed scenarios, and studying difficult situations for using deception.188

The paper addresses solving a particular class of differential games. Differential games189

are a form of game theory problems that are played in the continuous domain. In order190

to increase the invader’s pay-off, we proposed using deception. Although the chosen game191

was guarding several territories, the nature of the game and the proposed method allow192

modelling deception in sports and economics [34]. There are different methods of using193

deception games. Many of them are only applicable to specific problems. Thus, comparing194

them is not a straightforward task. Some of the most recent publications on using deception195

in games are shown in Table 1. In comparison to the methods in Table 1, our proposed196

method does not need to know the detailed dynamics of the game since it uses reinforcement197

learning. In addition, the agent learns to deliberately use deception many times while playing198

the game by observation.199

This paper is organized into six sections. In section 2, we present the preliminaries,200

such as the game of guarding several territories and the fuzzy actor-critic learning (FACL)201

algorithm. Section 3 is dedicated to the proposed method in modelling deception and training202

the policies. In section 4 we demonstrate the simulations and results. Section 5 is the203

conclusion.204
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Table 1 Recent publications on deception

Ref Year Application Approach Algorithms Domain

[35] 2005 Decision making Game theory Not learning Discrete
[1] 2011 Decision making Game theory Not learning Discrete
[8] 2012 Decision making Biomimetics Not learning Continuous
[36] 2015 Decision making Pobability Gradient decsend Continuous
[37] 2019 Video games RL A2C Discrete
[12] 2019 Pursuit-evasion Game theory Gradient decsend Continuous
[38] 2020 Guarding a territory RL Deep RL Continuous
[39] 2020 Video games RL Deep RL Discrete
[14] 2020 Guarding territories HRL Q-learning Discrete
[15] 2020 Guarding territories RL FACL+GA Continuous
[11] 2021 Guarding territories Optimal control ADMM Discrete
[40] 2021 Decision making Game theory Not learning Continuous

Current work 2021 Guarding territories HRL FACL Continuous

2 Preliminaries and Problem Definition205

We take a brief look at the simulation platform of our learning strategy, which is the game206

of guarding several territories. The game of guarding several territories is similar to the207

classical game of guarding a territory [41] with more than one territory. The overall idea of208

our approach relies on the agents’ ability to pretend to be chasing a goal, which is not the true209

goal. An agent tries to confuse its opponent by repeatedly changing its intended territory.210

The robot controller returns a control signal from a continuous interval to invade or protect211

one particular target. Thus, we use the fuzzy actor-critic learning (FACL) algorithm in the212

continuous-action domain to train the lower-level controller. However, the goal number is213

selected from a discrete set. Thus, we use the FACL algorithm for the discrete-action domain214

to train the goal selection mechanism.215

2.1 The Game of Guarding several territories216

This paper’s simulation platform is similar to the game, which is defined in [15]. In this game,217

two kinds of agents are defined. The first agent is the invader, and the second agent is the218

defender. The invader(s) have to reach the target before being captured by the defender(s).219

Although the target may be moving, in this study, we assume the target is stationary. As220

mentioned in [15], there can be more than one agent of each kind playing the game. The221

invader and the defender are defined as bicycle robots with the following differential equation222
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[42]:223


ẋ = v.cos(θ)

ẏ = v.sin(θ)

θ̇ = u·v
L

, (1)

where, the tuple (x,y) is the agent’s location in the field, and the term θ is the agent’s224

heading with respect to x-axis. In addition, u is the robot’s steering angle, L is the axle225

length, and v is the agent’s speed. The robot’s position in the game is fully defined in the226

field by knowing the location (x,y) and the orientation (θ). In addition, u is being used as227

the control input. We do not need to consider v as a control input and set v to the maximum228

[27].229

In the deceptive version of the game, we add more targets into the game. The invader230

knows its true target, while the defender does not know the invader’s true intention. The231

defender must have the policies regarding defending each goal individually. On the hand,232

the invader must know the policy to invade every desired goal.233

Deception is a sociologic phenomenon. It is argued that deception can be learnt through234

trial and error and practice [7]. Although there are papers on analyzing deception via235

probability analysis, optimal control, or IF-THEN rules, the phenomenon is regarded as a236

black box in the majority of literature in Table 1. Thus, we utilized a reinforcement learning237

approach to learn deception as it is learnt naturally.238

2.2 The Fuzzy Actor-Critic Learning (FACL) Algorithm239

2.2.1 Continuous Action Space240

Different learning algorithms can be implemented to find the agents’ policies in the game of241

section 2.1. However, all of them must be in a continuous state domain. Thus, we need an242

approximator to map the states into an action. A comparison between the fuzzy Q-learning243

(FQL) and the FACL algorithms was conducted in [43] for a pursuit-evasion game. It is244

shown that the FACL algorithm can achieve a more significant pay-off in comparison to the245

FQL algorithm. Furthermore, it is shown that a fuzzy critic outperforms a neural network246

critic in [44]. In addition, a fuzzy network has greater explainability than neural networks.247

The FACL algorithm is a well-known learning method that can learn the optimal policy of248

the game [15]. The FACL algorithm uses two fuzzy inference systems (FISs); one fuzzy logic249

controller (FLC) as the actor and one FIS as the critic. In the algorithm, the actor stores the250

fuzzy controller’s values, while the critic stores the value function. The continuous action251

space FACL is adopted from [45].252

The output of the fuzzy controller is defined as follows:253

ut =
M∑
l=1

Φlωlt, (2)
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where ut is the control signal in time t, l is the rule number, M is the total number of rules,254

Φl is the firing strength of rule l, and ωlt is the output parameter of the actor’s lth rule in255

time t. It should be mentioned that to increase exploration, Gaussian random noise is added256

to the actor’s output (u′t = ut + σ(0, ν)). The firing strength is defined as follows:257

Φl =
∂u

∂ωl
=

n∏
i=1

µF
l
j (xi)

M∑
l=1

(
n∏
i=1

µF
l
j (xi))

. (3)

In (3), the term µF
l
j (xi) is the membership degree of the fuzzy set jth membership function258

of the lth rule. The critic stores an evaluation of the value function in the form of a FIS as259

follows:260

V̂t =
M∑
l=1

Φlζ lt, (4)

where, the term V̂t is an approximation of the state-value function at time t. The term ζ lt is261

the output parameter of the lth critic’s rule. In (4), the term Φl is similar to (3), and can262

be defined as follows:263

Φl =
∂V̂

∂ζ l
=

n∏
i=1

µF
l
j (xi)

M∑
l=1

(
n∏
i=1

µF
l
j (xi))

. (5)

The critic’s task is to give feedback on the quality of the state of the agent. The state-264

value function is the expected value of the accumulated future reward and is shown as265

follows:266

Vt = E{
∞∑
k=0

γkrt+k+1}. (6)

In (6), the term Vt is the state-value function at time t, γ is the discount factor, and rt is267

the received reward at time t. We define the temporal difference (TD) as follows:268

∆ = rt+1 + γV̂t+1 − V̂t. (7)

The temporal difference is implemented to train both the critic and the actor. In each time269

step, the control signal is calculated using (2). To enhance exploration, random Gaussian270
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Fig. 1 The FACL algorithm structure [45].

noise is added with ut. The agent takes action and receives the reward. The reward is used271

to calculate the temporal difference. Then, the output parameters of the actor and the critic272

are updated as follows:273

ωlt+1 = ωlt + βL∆(u′t − ut)
∂u

∂ωl

ζ lt+1 = ζ lt + αL∆
∂V̂

∂ωl
.

(8)

In (8), ωlt and ζ lt are the lth rule’s output parameters of the actor and the critic at time t,274

respectively. The term αL and βL are the critic’s and the actor’s learning rate. The term275

∂u
∂ωl is given by (3). The term ∂V̂

∂ωl is given by (5). The FACL algorithm structure is depicted276

in Fig. 1.277

2.2.2 Discrete Action Space278

In the FACL algorithm in continuous domain, the actions are real numbers in a defined279

interval. However, in the discrete action space algorithm, the actor’s output parameters280

are selected from a designated set of actions. Thus, a value function is assigned to each281

state-action pair. In this section, we present a modified version of the algorithm proposed282

in [46].283

In the discrete domain form, the actor’s output is calculated as follows:284

ut =
M∑
l=1

Ψl
tc
l, (9)

where, ut is the actor’s output, M is the total number of the rules, and cl is the output285

parameter of lth rule. The term cl is selected from an action set (cl ∈ A = {a1, a2, ..., an}),286
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with the softmax function. The term, Ψl is the firing strength of lth rule and is calculated287

as:288

Ψl
t =

∂ut
∂cl

=

n∏
i=1

µF
l
j (xi)

M∑
l=1

(
n∏
i=1

µF
l
j (xi))

. (10)

In (9), cl is chosen with an exploration-exploitation strategy. A possible exploration-exploitation289

approach is using the ε-greedy method, which is implemented for the fuzzy Q-learning al-290

gorithm in [45]. However, we use the softmax function to select the action in the training291

stage. The softmax function policy is defined such that the player chooses an action from292

the action set (A = {a1, a2, ..., an}). The softmax function selects a random action with293

probabilities proportional to their associated q-function.294

Ql =
exp(τq(l, a))∑

a∈A
exp(τq(l, a))

. (11)

In (11), Ql is a vector of normalized Q-values associated to all possible actions for lth rule.295

The term q(l, a) is the associated Q-value given the rule l and the action a ∈ A. Finally, τ is296

the temperature constant. After selecting the output parameters and calculating the output297

using (9), the agent takes the action and receives a reward. The critic output is calculated298

as:299

V̂t =
M∑
l=1

Ψlζ lt, (12)

where, ζ lt is the lth critic’s fuzzy output parameter at time step t. Temporal difference is300

calculated as:301

∆ = rt+1 + γV̂t+1 − V̂t. (13)

Finally, the actor and critic are updated as follows:302

qt+1(l, a) = qt(l, a) + βL∆
∂ut
∂cl

ζ lt+1 = ζ lt + αL∆
∂V̂

∂ζ l
.

(14)

In addition, ∂ut
∂cl

and ∂V̂
∂ζl

are calculated by (3) and (5), respectively.303
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2.3 Dominant Regions304

The dominant region of each agent is an area that the agent can reach before other agents.305

In games where the defender is faster than the invader, the defender can capture the invader.306

In these cases, the Apollonius circle (AC) can discriminate the agents’ dominant regions.307

A circle is defined as the loci of points with a constant distance (called the radius) from308

a fixed point, called the center. Apollonius gave another definition for a circle: A circle is309

a locus of points with a constant ratio of distances from two points, called foci. One of310

the foci is inside the circle, and one is outside the circle. The Apollonius definition gives311

a suitable tool to analyze the pursuit-evasion games [19]. The Apollonius circle determines312

the dominant region of each agent, which is the region that the agent can reach before its313

opponents. The Apollonius circle radius is defined as follows:314

R =
λ
√

(xd − xi)2 + (yd − yi)2
1− λ2

, (15)

where, (xd, yd) and (xi, yi) are the defender’s and the invader’s locations. The term, λ is the315

speed ratio (λ = Vd
Vi

). The circle’s center is as follows:316

C = (
xd − λ2xi

1− λ2
,
yd − λ2yi

1− λ2
). (16)

In games where the agents have the same speed, the dominant regions can be discrimi-317

nated with a line, denoted as the bisector line. The bisector line is the bisector of the line318

that connects the invader to the defender.319

In games where the invader is faster than the defender, the defender cannot capture the320

invader. Thus, a positive capture radius is assumed. A positive capture radius enables the321

defender to expand its dominant region in comparison to the results given by the Apollonius322

circle. In such a game, the dominant region can be discriminated by the Cartesian ovals323

(CO) [25,26]. The Cartesian oval is determined as follows:324

xco = xi +Rco(φco)cos(η + φco)

yco = yi +Rco(φco)sin(η + φco),
(17)

where,

Rco(φco) =
λρ+ dcos(φco)±

√
λρ+ dcos(φco)2− (1− λ2)(d2 − ρ2)

1− λ2
. (18)

for φco ∈ [−φico, φico], where,325

φico = arccos(

√
(1− λ2)(d2 − ρ2)− λρ

d
). (19)
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Fig. 2 The Apollonius circles and the Cartesian ovals of three defenders versus one superior
invader.

In (17-19), d is the distance between the invader and the defender, η is the line-of-sight angle326

from the defender to the invader, and ρ > 0 is the capture radius.327

The Apollonius circles and the Cartesian ovals are depicted in Figure 2. In the scenario in328

the figure, the capture radius is set to 1.0 unit, the defenders’ speed is 1.0 units per second.329

The invader’s speed is 1.1 units per second. It is observed that the optimal capture point330

given by the AC and the CO are very close to each other for the mentioned parameters.331

3 Proposed method332

In this paper, the goal is to create a deceptive invader that can deceive the defenders. We333

implement the game of guarding several territories as our testbed. The presented game334

in section 2.1 has several goals. In such a game, the invader is able to demonstrate a335

deceptive behaviour by consistently changing its goal. We utilize a hierarchical strategy,336

simillar to the strategy that was proposed in [15]. In this paper, we expand the idea to a337

game with one invader and several defenders. In this strategy, the invader initially knows its338

true goal; however, the defenders do not know the invader’s intention. Since the defenders’339
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performance lies in knowing the goal, they must guess the goal by observing the invader’s340

behaviour. In states where the invader cannot invade the goal, because it will be captured341

by the rational defenders, then the invader feigns toward a fake goal. Thus, the invader342

misleads the defenders. Although the defenders will soon find the invader’s new intention,343

the invader can take advantage of changing the game’s states. The idea leads us to two344

levels of policies, working simultaneously. We refer to the first level as the lower-level policy345

(LLP). The LLP leads the invader to seek a target and leads the defenders to defend a target.346

The LLP can be programmed as an artificial neural network, fuzzy inference system, or a347

hardcoded function such as the solution of the HJI equation or a series of IF-THEN rules.348

We call the second policy level the higher-level policy (HLP). Unlike the LLP, the HLP deals349

with a goal. It returns the goal that the invader should pretend as its true target. The HLP350

also returns the goal that the defender should protect. The control structure is depicted in351

Fig. 3. In following sections, we present how we trained the LLP and the HLP.352

To train the structure depicted in Fig. 3, we implement a hierarchical FACL algorithm.353

The hierarchical FACL algorithm firstly trains the LLP and after obtaining the optimal354

policies, starts training the classifier of the HLP. The training phases are connected in an355

order that keeps the policies deterministic.356

3.1 The Lower-Level Policy357

The agents’ lower-level policy is a controller and returns a suitable action, given the game’s358

states at each time step. In this paper, we implement a fuzzy logic controller, which is359

trained via the FACL algorithm. To define the state, each agent will have four inputs. The360

defenders’ input is as follows:361

Defender ith’s input= [dDiI βDi
dDiG αDi

]. (20)
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In (20), dDiI is the distance between the ith defender and the invader. The term βDi
is362

the angle between the heading and a straight line from the ith defender to the invader. In363

addition, dDiG is the distance between the ith defender and the goal, whereas the term αDi
364

is the angle between the heading and a straight line from the ith defender to the goal. The365

invader’s input is as follows:366

Invader input= [dID βI dIG αI ]. (21)

In (21), dID is the distance between the closest defender and the invader. The term βI is the367

angle between the heading and a straight line from the invader to the closest defender. In368

addition, dIG is the distance between the invader and the goal, whereas the term αI is the369

angle between the heading and a straight line from the invader to the goal.370

In a one-invader one-defender game, the information provided in (20) and (21) are suf-371

ficient to define each agent with respect to the other agent and the goal. The agents’372

information is enough to take a decision to invade or defend the goal. It is possible to de-373

crease the amount of information by some simplifications. For instance, in [41], the invader’s374

inputs were the Manhattan distance from the defender and the heading to the defender.375

However, in [41], the goal was assumed to be fixed in one location during training and test,376

and the initial conditions were limited to specific regions in the field. Since in our study we377

are generalizing the initial conditions, we needed to add more information.378

In [15], the invader sees all the defenders. In the beginning, this assumption looks helpful379

for the invader. However, by increasing the number of defenders, the rule base will be hit380

by the curse of dimensionality. In this paper, an invader with (21) as inputs only sees the381

closest defender. It means that unlike the method proposed in [19] and [15],the invader will382

have the same number of inputs, regardless of the number of the defenders. This selection383

has two advantages. Firstly, the invader overcomes the well-known curse of dimensionality384

by limiting the number of states [22]. For instance, if we consider all defenders’ coordinates385

in the invader’s inputs and use a fuzzy controller with five membership functions for each386

input, the number of rules is multiplied by 25 for each extra defender. Secondly, the invader387

might not know how many defenders are involved in the game. With (21), the invader can388

use the same policy, regardless of the number of the defenders. On the other hand, as in389

(20), the defenders only see the invader and the goal, but not each other. Thus, one may390

add as many defenders to the game without changing the policies. The inputs are depicted391

in Fig. 4 (a).392

In games with a limited number of states and actions, such as grid worlds, it is more393

common to use a terminal reward function. In addition, if the game is complicated, it is394

possible to assign a reward to bottleneck states [47] or use the option-critic artichtecture395

[48]. However, another approach is to assign a reward for each action, referred to as an396

instantaneous reward function. This approach is suitable for problems with continuous state-397

space [41]. In this paper, we use an instantaneous reward function to train the LLP since it398

is observed that a terminal reward function cannot train the controller. The invader’s task399

is to reach the goal while it is avoiding the defenders. Thus, we shape the reward function400
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Fig. 4 The game inputs for an imaginary single-invader two-defender game: (a) The inavder’s
and the defender’s LLP inputs. (b) The invader’s HLP inputs.

as a summation of two components; getting closer to the goal at each time step and keeping401

distance from the defenders. Eq. (22) shows the invader’s reward function:402

Rinv =
WI

2vinv∆t
[dIG(t)− dIG(t+ 1) + vinv∆t]

+
1−WI

2(vdef + vinv)∆t
[dID(t+ 1)− dID(t) + (vdef + vinv)∆t],

(22)

where, Rinv is the invader’s reward, dIG(t) is the distance between the invader and the403

goal at time t, while dID(t) is the distance between the invader and the closest defender at404

time t. The term ∆t is the time step. Finally, WI is a weight in the interval of [0, 1] and405

determines the importance of approaching the goal rather than keeping distance from the406

closest defender. The controller’s performance relies on a suitable value for WI . We propose407

a method to find the best WI in section 4.408

The defenders’ task is to capture the invader. A simple strategy is to follow the invader at409

each time step. In this method, the defenders’ heading is aligned along the defender-invader410

line of sight. This strategy is called pure pursuit and is studied in [30]. Another strategy is411

proposed in [22], where pursuers follow a capture point by estimating the invader’s heading.412

In this paper, the defenders’ reward function is defined for the invader’s location and the413

goals’ location. Thus, a reward function is defined to lead the defenders to simultaneously414
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approach the goal and the invader. Eq. (23) shows the defenders’ reward function:415

Rdefi =
1−WD

2vdef∆t
[DiG(t)− dDiG(t+ 1) + vdef∆t]

+
WD

2(vdef + vinv)∆t
[dDiI(t)− dDiI(t+ 1) + (vinv + vdef )∆t],

(23)

where, Rdefi is the ith defender’s reward, dDiG(t) is the ith defender’s distance to the goal,416

and dDiI(t) is the ith defender’s distance to the invader. The term WD is a weight in the417

interval of [0, 1] and determines the importance of pure chasing versus moving toward the418

goal.419

The learning process starts with the fuzzy controllers’ initialization. The fuzzy controllers’420

output parameters will be set to zero. The training process starts, and each agent chooses an421

action based on its actor component. After taking the action and receiving the reward, the422

actor and the critic are updated via (8), respectively. The game continues until a terminal423

state is met or the game’s maximum simulation time is over. In this situation, the game is424

restarted, while the actor and the critic will continue to adapt.425

The process is decentralized since the defenders are learning separately [22]. However, it426

is predicted that the defenders’ actor and critic would converge to a single array of output427

parameters after several epochs. The training process must be done for different values of428

WI and WD, to find the weights that lead to a terminal capture point that is the same as429

the Apollonius circle capture point.430

3.2 The Higher-Level Policy431

3.2.1 Invader’s Higher-Level Policy432

A genetic algorithm (GA) was used to train the HLP in [15]. In evolutionary algorithms,433

the policy is fixed at the beginning of a game, and the policy remains unchanged. The434

algorithm may change the policy only after the game is terminated. After the terminal time,435

a fitness function evaluates the consequence. As a result, all the actions in the policy are436

given credit, even if only a few actions have critical impacts. Even the actions that might437

not occur are given credit [49]. Whereas, in the methods that learn a value function, such438

as the FACL algorithm (section 2.2), each action is given credit by a reward function and439

the policy changes during the simulation.440

Reinforcement learning strives to maximize the cumulative reward. On the other hand,441

the genetic algorithm tries to optimize a fitness function based on the result in the terminal442

state. The major disadvantage of using a genetic algorithm is the initial condition problem.443

The initial location of the agents profoundly changes the game result. For instance, if the444

invader’s initial location is too close to the defender, the invader will be captured faster.445

The cost function defined in [15] can handle few initial locations, while in the RL method, a446

random initial location is visited at the beginning of each episode. The methods see deception447

from two different perspectives. The RL method can be used when the agents’ initial location448
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is unknown, whereas the GA method provides a suitable framework for studying multi-449

objective deception. In the latter case, by using an algorithm such as NSGA-II, a trade-off450

point with respect to many objectives can be achieved.451

In contrast to [15], in this paper, we use the FACL algorithm in the discrete domain to452

train the invader’s HLP. Thus, the HLP will be able to work properly for any initial location.453

The invader’s HLP is modelled as a fuzzy classifier. The invader’s HLP has four inputs as454

follows:455

Invader’s input= [XIG YIG XID YID]. (24)

In (24), (XIG, YIG) is the Manhattan distance between the invader and the true goal. In456

addition, (XID, YID) is the Manhattan distance between the invader and the closest defender.457

Fig. 4 (b) shows the invader’s HLP inputs in the game.458

The invader’s HLP sees the true goal and the closest defender. The invader’s HLP does459

not see the other goals. However, since the goals’ locations are fixed, the invader’s HLP460

learns how choosing a fake goal affects the invader’s trajectory. The invader’s HLP must be461

trained for each goal separately. For instance, the policy to invade goal one is different from462

the policy to invade goal two.463

The difficulty of using the FACL algorithm for the higher-level policy is finding a proper464

reward function. We use a terminal reward to train the invader’s HLP. The terminal reward465

function is assigned when the invader is captured or invades the true goal. The HLP’s466

terminal reward function is as follows:467

RHLP
inv =

{
+100, True goal is invaded

−100
√

(xter − xTG)2 + (yter − yTG)2, The invader is captured
, (25)

where, RHLP
inv is the invader’s terminal HLP reward, (xter, yter) is the invader’s capture point,468

and (xTG, yTG) is the true goal’s location. Eq. (25) shows that the training prcess is only469

relies on the performance in the terminal state.470

Remark 1: To avoid quick changes in the HLP output, the HLP only changes the goal471

once in several time steps. The invader’s and defenders’ selected goal remains unchanged for472

a few time steps after setting. The HLP updating time is reffered to tr.473

Remark 2: the actor’s output is a real number in the interval of [1, 3]. However, the474

output must be mapped in the set {1, 2, 3}. We implemented the HLP as a fuzzy classifier.475

Each fuzzy rule will be as:476

Rule l : IF x1 is F l
1 , ..., and xn is F l

n THEN x is ci, (26)

where, x = [x1, x2, ..., xn] is the input, F l
n is the nth membership function of lth rule. The477

term ci is one of the actions and is selected from {1, 2, 3}. In our approach, first, the fired478

rules are grouped based on their output parameters. In each group, the fired rules have479
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the same output parameter from {1, 2, 3}. For each group, the firing strength of each rule480

is calculated and summed. The output parameter of the rule corresponding to the highest481

summed firing strength is selected as the invader’s HLP output. In the update section, only482

the rules in the selected group are updated.483

We showed how we trained the LLP and the HLP. Training the LLP is done prior to484

training the HLP. In other words, we trained the HLP with the assumption of knowing485

the optimal LLP. We investigated training the LLP and the HLP simultaneously, which486

is possible in certain applications [48]. However, in our application, training individually487

is more effective. The reason is the added noise in the LLP, which makes the policy non-488

deterministic during the training phase [50]. The whole training process is depicted in Fig. 5.489

Fig. 5 shows the cooperation between the two policy levels. Table 2 presents the parameters490

used in Fig. 5.491

We chose the Takagi-Sugeno fuzzy inference system for our application due to its sim-492

plicity and fast learning. The authors previously utilized the FACL algorithm in [15], and493

it demonstrates a suitable performance. It should be mentioned that using different kinds494

of the artificial neural networks (ANN) may seem tempting. However, each type of ANN495

has its unique application. ANNs usually need a large number of parameters, which may be496

unnecessary. For the HLP, we chose the FACL again because it has a suitable performance.497

However, using a fuzzy classifier in the HLP using a fuzzy classifier in the HLP helps one498

to understand the intelligent deceptive actions due to the explainability of the underlying499

fuzzy system. For specific purposes, such as economic analysis, training the HLP with an-500

other classifier may result in excellent performance, but it is essential to know the knowledge501

behind the deception. In other words, one may want to understand in which situation using502

deception is beneficial and a fuzzy interpretation helps these applications.503

3.2.2 Defenders’ Higher-Level Policy504

The defenders’ HLP returns a number, which represents one of the goals. In our study,505

the defenders are not learning an HLP, instead the defenders use a hardcoded function to506

guess the goal by observing the invader’s position. Thus, this paper studies deception and507

not counter-deception as mentioned in [51]. The defenders believe that the invader has508

approached the true goal in the past td seconds. In the early time steps, the defenders’ belief509

function returns the closest goal to the invader. Eq. (27) shows the defenders’ HLP:510

For t > td

D = arg min
j∈{1,2,..,n}

(
√

(xtI − xGj
)2 + (ytI − yGj

)2 −
√

(xt−tdI − xGj
)2 + (yt−tdI − yGj

)2)

For t ≤ td

D = arg min
j∈{1,...,n}

√
(xtI − xGj

)2 + (ytI − yGj
)2,

(27)

where, D is the defenders’ belief, (xtI , y
t
I) and (xGj

, yGj
) is the invader’s location at time step511

t. The term (xGi
, yGi

) is the jth goal location.512

18



Lower Level Policy Training Process Using FACL in Continuous Domain

Start Initialize the FACL
hyperparameters

Initialize the output parameters: 
ωl

inv(0,0)=ζl
inv(0,0) 

=ωl
def(0,0)=ζl

def(0,0)=0 

Yes
j < MaxTime 

T=0 

Obtain the invader's and
the defender's inputs. 

Calculate the steering angles
via actors: udef(i,j) and udef(i,j) 

Calculate the state values via
critics: Vinv(i,j)and Vdef(i,j) 

Simulate the game via solving
its differential equations. 

Obtain the rewards: 
Rinv(i,j+1) and Rdef(i,j+1) 

Calculate the state values via
critics: Vinv (i,j+1) and Vdef(i,j+1) 

Obtain the invader's and the
defender's states at j+1. 

Calculate the temporal
differences Δinv and Δdef 

Obtain the output parameters: 

ωl
inv(i,j), ωl

def(i,j) End

Update the output parameters: 

ωl
inv(i,j+1), ζl

inv(i,j+1), 

ωl
def(i,j+1), ζl

def(i,j+1) 

u'def=udef+n(0,σ) 

u'inv=uinv+n(0,σ) 

i=0 
Initialize the agents' initial

location randomly. 
Initialize the goal
location randomly. 

T = 0 
j=0 

j==j+1 

Yes

No i < MaxEp 

Start Initialize the FACL
hyperparameters

Higher Level Policy Training Process Using FACL in Discrete Domain

Initialize the output parameters: 
ω' linv(0,0)=0, Q' linv(0,0)=0 

Invader selects a goal
using the actor: Ginv. 

A set of cls are selected with
softmax function given Qls. 

Defender selects a goal using its
belief function: Gdef 

Calculate the steering angles via the
LLPs' actors: uinv and udef 

Run the game. The invader and
the defender move to new state. 

Obtain the invader's and
the defender's LLP inputs. 

Obtain the invader's inputs
for the invader's HLP at j. 

i=0 
Initialize the agents' initial

location randomly. 
Initialize the goal
location randomly. 

T = 0 
j=0 

t=0 

Yes

t < tr 

T==0 
t=t+1 

Obtain the invader's inputs
for the invader's HLP at j+1. 

Obtain the reward: 
Rinv

HLP(i,j+1) 
No

Calculate the state values via
critics: V'inv(i,j+1) 

i < MaxEp 

Calculate the state values via
critics: V'inv(i,j+1) 

Calculate the temporal
differences Δ'inv 

Update the output parameters: 

ω'linv(i,j+1), Ql
inv(i,j+1) 

Obtain the output parameters: 

ω'linv(i,j) No End

Yes

j < MaxTime 
T=0 

j==j+1 i==i+1 No

Yes

H
LP

 is
 tr

ai
ne

d 
af

te
r t

ra
in

in
g 

th
e 

H
LP

i==i+1 No

Fig. 5 The training process of the invader’s and the defender’s LLP and the invader’s HLP
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Table 2 The parameters used in Fig. 5

Parameters Description

L
ow

er
-l

ev
el

p
ol

ic
y

ωlinv(i, j) The invader’s actor output parameter given rule l at epoch i and time step j
ωldef (i, j) The defender’s actor output parameter given rule l at epoch i and time step j
ζ linv(i, j) The invader’s critic output parameter given rule l at epoch i and time step j
ζ ldef (i, j) The defender’s critic output parameter given rule l at epoch i and time step j
i Epoch counter
T Terminal state indicator. (0: non-terminal state, 1:terminal state)
j Time step counter
uinv Invader’s steering angle before added noise
udef Defender’ steering angle before added noise
u′inv Invader’s steering angle after added noise
u′def Defender’s steering angle after added noise
Vinv(i, j) Invader’s state value at epoch i and time step j
Vdef (i, j) Defender’s state value at epoch i and time step j
Rinv(i, j) Invader’s reward at epoch i and time step j
Rdef (i, j) Defender’s reward at epoch i and time step j
∆inv Invader’s temporal difference at epoch i and time step j
∆def Defender’s temporal difference at epoch i and time step j
MaxTime Maximum simulation steps in a single epoch
MaxEp Maximum epochs

H
ig

h
er

-l
ev

el
p

ol
ic

y

ω
′l
inv(i, j) The invader’s actor output parameter given rule l at epoch i and time step j

Ql
inv(i, j) The invader’s critic output parameters given rule l at epoch i and time step j.

This parameter is a vector. Each element represents the state-action value of a
particular action

i Epoch counter
T Terminal state indicator. (0: non-terminal state, 1:terminal state)
j Time step counter
uinv Invader’s steering angle before added noise at epoch i and time step j
udef Defender’ steering angle before added noise at epoch i and time step j
V ′inv(i, j) Invader’s state value at epoch i and time step j
R

′HLP
inv (i, j) Invader’s reward at epoch i and time step j

∆′inv Invader’s temporal difference at epoch i and time step j
MaxTime Maximum simulation steps in a single epoch
MaxEp Maximum epochs
tr Updating time
Ginv Invader’s selected goal
Gdef Defender’s selected goal
cl Selected output parameter using softmax function given rule l
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4 Simulation and Results513

In this section, we implement the proposed method in section 3 for the game of guarding514

several territories as presented in section 2. The FACL algorithm is implemented to train515

both the LLP and the HLP.516

4.1 Preliminaries517

4.1.1 The Game518

The game field can be in any shape and size; however, we set the field as 50 × 50 units519

square. We are going to investigate the effect of more agents in the game. We examine two520

scenarios: 1) single-invader single-defender case (SISD), 2) single-invader multi-defenders521

case (SIMD). We will also compare the effectiveness of deception under two speed scenarios:522

1) superior invader 2) agents with equal speed. We set the agents’ speed to 1.0 unit/sec in523

the equal speed case. We set the defenders’ speed as 1.0 unit/sec and the invader’s speed as524

1.1 units/sec in the superior invader case. The agents are robots as modelled in (1), where525

their axle length (L in (1)) is 0.3 units. The positive capture radius of the defender is set to526

1.0 unit. In addition, the target radius is also set to 1.0 unit. Finally, the time step is 0.1527

seconds, and the maximum time for the game is 200 seconds. If the game does not finish in528

200 seconds, no reward is given to the agents in training both the LLP and the HLP.529

4.1.2 The Lower-Level Policy530

To train the LLP, we set the discount factor (γ) to 0.7. With this choice, the agent tries531

to increase the current reward and the reward of a few steps ahead. In addition, we set αL532

and βL in (8) to 0.05 and 0.025, respectively. Finally, the maximum LLP training epoch is533

set to 50,000 and the initial σ is set to 1.0. It should be noted that αL, and βL are decayed534

by 10log10(
0.01

MaxEp
) in each epoch, where MaxEp is the maximum number of epochs. In other535

words, at the final epoch, αL, βL will be 0.01 of their initial values. The exploration rate (σ)536

is also decayed by 10log10(
0.1

MaxEp
) in each epoch. The parameters MaxEp, αL, βL, and σ are537

selected with trial and error. After learning for half of the MaxEp, the policy has almost538

converged.539

A Takagi-Sugeno FLC is used as the LLP’s actor component, and a Takagi-Sugeno FIS is540

implemented as the critic component. The LLP has four inputs, as mentioned in section 3.1.541

The domain of each input is uniformly covered with five triangular membership functions.542

The distance inputs are in the interval of [0, 50
√

2], and the angle inputs are in the interval543

of [−π, π].544

4.1.3 The Higher-Level Policy545

To train the HLP, we set the discount factor (γ) to 0.9995. The reason behind this discount546

factor is the existence of a terminal reward function in the training process. We want to train547

the invader’s deceptive behaviour to see the terminal reward from the first step of the game.548
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Thus, the invader can select the best deceptive actions from the beginning. In addition, we549

set αL and βL in (14), to 1.0 and 0.5, respectively. The softmax temperature in (11) is set to550

2, and it is not changing during the training process. The domain of each input is uniformly551

covered with 20 triangular membership functions. The inputs are in the interval of [−50, 50].552

The term (td) in (27), and HLP updating time (tr) in Fig. 5 are set to be 20 time steps553

(td = tr = 2 seconds). It is observed that increasing td from 1 time step to 20 time steps554

decreases the defenders’ chance to make a wrong belief. However, decreasing tr causes to555

much changes in the invader’s and the defenders’ selected goal.556

The coopration between the LLP and the HLP is depicted in Fig. 3.557

4.2 Training the LLP558

4.2.1 Single-Invader Single-Defender559

The invader and the defender are trained via the FACL algorithm for continuous actions. The560

training process starts by initializing the agents’ locations. The invader’s and the defender’s561

locations are initialized randomly in the field. The x coordinates and the y coordinates are562

selected from the interval of [0, 50] via the uniform random number generator. In addition,563

the headings are selected from the interval of (−π, π]. The same as agents, the goal location564

is selected randomly. At each time step, an action is selected by the defender’s and the565

invader’s actors and is summed with Gaussian random noise. After taking the actions and566

receiving the rewards, the actor and the critic components are updated via (8). In this part,567

the agents’ LLP input are (20) and (21) and the output is the steering angle given by (2).568

In [15], the authors found the weights by trial and error. First, they derived the optimal569

capture point via the Apollonius circle. Then, they chose the reward weights that would570

reach the same capture point. In this paper, we proposed a min-max method to find the571

reward weights (WI and WD in (22) and (23)), which is an expanded and modified version572

of the method in [41]. In our approach, we used the terminal distance between the invader573

and the goal as the pay-off. The invader strives to minimize the pay-off, while the defender574

tries to maximize the pay-off. The terminal distance between the invader and the goal is as575

follows:576

d =
√

(xterinv − xG)2 + (yterinv − yG)2, (28)

where, (xterinv, y
ter
inv) is the invader’s terminal location, and (xG, yG) is the goal’s location. Table577

3 shows d for different WI and WD in the equal speed scenario. For the data in Table 3,578

the invader’s initial location is (5,5), the defender’s initial location is (30,30), and the goal’s579

location is (10,40).580

The defender is supposed to capture the invader at the furthest possible distance from581

the goal. Thus, we choose the weight, which leads the defender to have a relatively larger582

terminal distance. As shown in Table 3, for WD = 0.75 the term d is at its maximum. In583

contrast, the invader must reach the closest possible distance to the goal. For WI = 0.50,584

22



the term d is at its minimum. Thus, in training the LLP, the weights are set to WD = 0.75585

and WI = 0.50.586

Table 3 Terminal distance between the invader and the goal (d in (28)) for different reward
weights in (22) and (23) in the equal speed scenario

WD

WI 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.700 Invaded 10.41 10.18 10.44 11.09 11.76 12.15 12.34 12.78
0.725 11.29 10.85 10.64 11.04 11.57 12.04 12.45 12.79 12.99
0.750 11.43 11.00 10.69 11.12 11.62 12.17 12.63 12.92 13.20
0.775 11.37 11.02 10.58 11.16 11.50 12.09 12.60 12.87 13.25

The same table is created for the superior invader scenario. Table 4 shows the terminal587

distance between the invader and the goal. It is shown that for WD = 0.75, the invader is588

captured at a relatively long distance from the goal. The invader reaches a closer distance to589

the goal if WI = 0.50. The term Invaded in Table 3 and 4 means the defender has failed to590

capture the invader, although the goal is in the capture zone of the defender. A WD should591

not be selected if there is at least one successful invasion case in its row since the invader592

can find a policy to reach the goal.593

Table 4 Terminal distance between the invader and the goal (d in (28)) for different reward
weights in (22) and (23) in the superior invader scenario

WD

WI 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.700 8.51 8.53 8.26 8.68 9.51 10.00 10.60 11.08 11.22
0.725 8.81 8.66 8.30 8.65 9.51 10.19 10.66 11.21 11.39
0.750 8.55 8.30 7.68 Invaded Invaded Invaded Invaded Invaded Invaded
0.775 8.42 8.20 7.23 Invaded Invaded Invaded Invaded Invaded Invaded

Fig. 6 shows the LLP training outcome for both speed scenarios with the selected weights594

for each case. As shown in the Fig. 6, the capture point is very close to the optimal capture595

points in section 2.3. In Fig. 6, the bisector line is drawn for the equal speed scenario. In596

addition, the Cartesian oval is plotted for the superior invader case. In the LLP, we did not597

use the bisector nor the Cartesian oval to train the policy or find the trajectory. We used598

them to find the optimal capture point (the closest point on the discrimination line to the599

goal). Then, we showed that the learning algorithm could train the policy that has the same600

terminal point. Although we showed the performance for a few initial conditions in Fig. 6,601

the terminal point is almost the same as the optimal capture point for any initial condition.602
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Fig. 6 The discrimination lines and the LLP training outcome. For the equal speed scenario
WD = 0.75 and WI = 0.50. For the superior invader scenario WD = 0.725 and WI = 0.50.
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Fig. 7 The discrimination lines and the LLP training outcome. The same policy derived in
section 4.2.1 is implemented. For the equal speed scenario WD = 0.75 and WI = 0.50. For
the superior invader scenario WD = 0.725 and WI = 0.50.

4.2.2 Single-Invader Multi-Defender603

We investigate the possibility of reusing the policy, derived in section 4.2.1 in a single-invader604

multi-defender (SIMD) case. As presented in section 3.1, the invader only sees the closest605

defender, and the reward function is calculated based on the location of the closest defender.606

On the other hand, the defenders only see the invader, and they do not communicate or607

share information. Thus, we use the same policy derived in section 4.2.1 in the SIMD case.608

Fig. 7 shows the trajectory of a single-invader three-defender case. It is shown that the609

capture point is close to the optimal capture point, derived via the bisector method and the610

Cartesian oval.611

4.3 Training the invader’s HLP612

The LLP policies from section 4.2 are used in training the invader’s HLP. As mentioned in613

section 4.1, there are three goals in the game. The primary task of the invader’s HLP is to614

switch the invader’s intended goal in the applicable states when the invader cannot reach615

the true goal. In all cases, the defenders’ HLP are the same, calculated via (27). In cases616

with more than a single defender, all defenders have the same belief.617
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It should be noted that the invader’s HLP only has the coordinates of the true goal and618

not the other goals. Meanwhile, the coordinates of the other goals are fixed with respect619

to the true goal. The invader’s HLP can learn how switching between goals affects the620

invader’s performance. Thus, the invader’s HLP must be trained for each goal seperately621

[15]. As mentioned in section 3.2.1, the invader’s HLP has four inputs as in (24). The invader622

only sees the closest defender. Table 5 shows some of the parameters to train the invader’s623

HLP.624

Table 5 Parameters used in the invader’s HLP

Parameters Values

Goals G1=(10,40), G2=(40,10), G3=(40,40)
Invader’s initial location Any point on the boundary
Invader’s initial heading Perpendicular to the boundary

Defender’s initial location (SISD) (25,25)
Defender’s initial heading (SISD) (−3π

4
)

Defenders’ initial location (SIMD) (25,50),(50,50),(50,25)
Defenders’ initial heading (SIMD) (−π

2
),(−3π

4
),(π)

Table 5 shows that the defenders’ initial location is set to a fixed point. Although we625

fixed the defenders’ location close to the goals in our simulations, the proposed algorithm626

can be implemented for any initial conditions. Based on the initial location of the agents,627

using deception might be more effective or might have little effect. If all the defenders start628

from the same location, the result will be identical to a game with one defender. The reason629

is the defenders use the same policies so that they will have the same trajectory. This630

situation makes deception more effective since the game will be the same as a one-invader631

one-defender game. Another example may happen if the defenders’ initial locations are632

far from the invader and far from the goals. In such an example, deception will be more633

effective because the invader has enough time to play deceptively before the defenders get634

close. Another example may happen if all the defenders’ initial conditions are located very635

close to the invader. In such a situation, deception will be less effective because the invader636

has little time to manipulate the defender. Thus, considering a random initial location for the637

defenders makes the presentation more complicated because of the numerous combinations.638

As such, we arrange the defenders close to the goals and highlight the strong effects of639

deception.640

4.4 Results and Discussion641

Figs. 8-11 show the performance of the non-deceptive cases. In these cases, the invader’s642

HLP returns the true goal during the simulation. However, the defenders do not know the643

true goal, and they have to guess it via the defender’s belief function in (27). Fig. 8 and 9644

show the non-deceptive game for the SISD case. The first row shows the agents’ trajectory,645
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Fig. 8 The SISD game performance without using deception in the superior invader scenario

while the second row shows the HLP output. To keep the section concise, we describe the646

most challenging game in each figure, which is the game where TG = 3.647

Fig. 8 shows three SISD examples with a superior invader. In case (c), the true goal is648

G3. The invader takes G3 from the beginning, and the defender’s belief is G1 as shown in649

Fig. 8 (d). At t = 2 seconds, the defender’s belief is changed to 3. The invader is captured650

at (19.1,13.3) at t = 21.1 seconds.651

Fig. 9 shows three SISD examples with equal speed agents. In case (c), the true goal652

is G3. The invader takes G3 from the beginning to the end, as shown in Fig. 9 (d). The653

defender’s HLP returns G1 at the beginning , and at t = 2 seconds, the defender chooses goal654

G3. The game is terminated after 22.4 seconds, where the invader is at point (18.2,13.1).655

Figures 10 and 11 show three examples of the non-deceptive SIMD game. In cases656

depicted in Figure 10, all defenders have an equal speed of 1.0 unit/sec, while the invader’s657

speed is 1.1 units/sec. Since the game is non-deceptive, the invader takes true goals. We658

describe case (c). In case (c), the invader starts from (0,0) by taking G3 as its true target.659

However, the defenders take G1 from the beginning until t = 2 seconds. The game finishes660

at t = 29.8 seconds when two defenders capture the invader simultaneously at (23.7,22.6).661

Figure 11 shows the SIMD game where the agents’ speed is set to 1.0 unit/sec. In case662

(b), the invader goes toward G3, the true goal. The defenders choose G1 in the beginning.663

But, at t = 2 seconds, they switch their intended goal to G3. The game finishes at t = 31.6664

seconds when two defenders at (23.0,21.6) capture the invader.665

Fig. 12 shows a deceptive SISD game. In this figure, the invader’s speed is 1.1 units/sec,666

while the defender’s speed is 1.0 unit/sec. We describe case (c), where the true goal is G3.667

The invader’s initial choice is heading toward G1. The invader keeps choosing G1 for 20668
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Fig. 9 The SISD game performance without using deception in the equal speed scenario
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Fig. 10 The SIMD game performance without using deception the superior invader scenario
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Fig. 11 The SIMD game performance without using deception in the equal speed scenario

seconds. The defender chooses G1 in the beginning. At t = 20 seconds, the invader changes669

its goal to G2 and at t = 26 seconds, the invader chooses the true goal, G3. Meanwhile,670

the defender discovers the invader’s intention and changes its goal to G2 at t = 22 seconds.671

During this transition, the defender misses the invader at around (5.4,18.9). The defender672

chooses G3 at t = 30 seconds when it is too late for capturing the invader. The game finishes673

at t = 63.3 seconds by a successful invasion. Almost the same process is carried out in cases674

(a) and (b).675

Fig. 13 shows a deceptive SISD game for agents with equal speed. This game is more676

challenging than a superior invader game since the invader is weaker in comparison to the677

game in Fig. 12. In case (c) the true goal is G3. The invader starts from (0,0). The invader678

chooses G1 in the beginning. The defender chooses the same goal in the beginning. The679

invader changes its goal at t = 20 seconds. The invader’s HLP returns G2. The defender680

discovers the invader’s new goal and chooses G2 at t = 22 seconds. The invader changes its681

goal to G3 at t = 26 seconds , and by this transition, it successfully dodges the defender at682

around point (5.1,17.1). The defender discovers the new goal at t = 32 seconds, when it is683

too late to capture the invader. The invader successfully invades G3 at t = 68.5 seconds.684

Figs. 14 and 15 show the SIMD deceptive cases. In these cases, the game is more685

complex, and the number of changes in the invader’s HLP is significantly higher than the686

single-invader single-defender cases.687

Fig. 14 shows the cases that the invader is faster than the defenders. We describe case688

(c). In this case, the invader starts from point (0,0) by choosing G1 as its fake goal. The689

defenders’ initial belief is G1 as well. The defenders change their goal to G3 at t = 2 seconds690

and keep it for two seconds. After two seconds, the defenders choose G1 again. The invader691
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Fig. 12 The SISD game performance with using deception in the superior invader scenario
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Fig. 13 The SISD game performance with using deception in the equal speed scenario
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chooses G3 at t = 8 seconds. After two seconds, the defenders choose G3 as well. The692

invader chooses G2 at t = 18 seconds. The defenders choose G2 after two seconds. The693

invader chooses G1 at t = 24 seconds, G2 at t = 26 seconds, and G1 at t = 28 seconds.694

During this time, the defenders keep their belief to G2. However, at t = 30 seconds, the695

defenders choose G3 and keep it for 2 seconds. At t = 32 seconds, the defenders choose696

G1. To this point, the invader has successfully dodged the defenders. At t = 54 seconds,697

the invader chooses G3. The invader dodges the defenders at around point (8.7,37.0). The698

defenders discover the true goal at t = 56 seconds when it is too late. The invader has699

successfully invaded the target at t = 83.3 seconds.700

Fig. 15 shows a more challenging version of the game in Fig. 14, since the agents’ speeds701

are equal. In this case, the number of changes in the HLP is higher than in the superior702

invader case. In the beginning, the invader chooses G2, and the defenders choose G1. At703

t = 2 seconds, the invader chooses G1, and simultaneously, the defenders choose G3. After704

two seconds, the invader chooses G1 and keeps G1 for four seconds. At t = 8, the invader705

chooses G1. The invader chooses G2 after 4 seconds and chooses G1 after four seconds.706

Between t = 20 seconds to t = 32 seconds, the invader changes its goal from G1 to G2 and707

from G2 to G1 every two seconds. As shown in Fig. 15 (c), the invader is performing a708

Zig-Zag maneuver. In response, the defender changes its goal multiple times between t = 8709

seconds to t = 36 seconds. After multiple changes in the HLP of both agents, the invader710

takes G2 as its fake goal at t = 32 seconds. Meanwhile, the defenders choose G2 at t = 36711

seconds. The HLPs remain unchanged until t = 60 seconds. At t = 60 seconds, the invader’s712

HLP selects G3. After four seconds, the invader chooses G1, and at t = 68 seconds, the713

invader chooses G3. The defenders choose G3 at t = 62 seconds, G1 at t = 66 seconds, and714

finally G3 at t = 70 seconds. The game finishes at t = 90.7 seconds by a successful invasion.715

Multiple tests are done to challenge the robustness of the proposed method in cases with716

different initial conditions. In these tests, the invader’s initial locations are different, and the717

comparison is made based on the number of successful invasions. In each test, the defenders’718

initial locations are fixed in the field as in Table 5. However, the invader’s initial locations are719

points on the field’s boundary. One hundred points on the boundary are selected with equal720

distance. The initial heading is perpendicular to the boundary. The number of successful721

invasions among those 100 games is reported in Table 6 for the non-deceptive case. Table 6722

shows that in the SISD game with equal speeds, there are 32, 31, and 32 successful invasions723

out of 100, if the true goal is G1, G2, and G3, respectively. In the SISD game, with a superior724

invader, the number of successful invasions is increased to 67, 68, and 74 successful invasions,725

respectively. In the SIMD game, with equal speeds, the number of successful invasions are726

24, 25, and 20 successful invasions for G1, G2, and G3, respectively. In the SIMD game, with727

a superior invader, the number of successful invasions increases to 29, 27, and 23 successful728

invasions for G1, G2, and G3.729

Table 7 shows the result of the same test as Table 6 for a deceptive game. Table 7 shows730

that the number of successful invasions in the SISD game and equal speeds has risen from731

32, 31, and 32 to 68, 59, and 57 successful invasions for G1, G2, and G3, respectively. The732

number of successful invasions for the SISD game and a superior invader has risen from 67,733
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Fig. 14 The SIMD game performance with using deception in the superior invader speed
scenario
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Fig. 15 The SIMD game performance with using deception in the equal speed scenario
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Table 6 Number of successful invasions out of 100 games in the non-deceptive game

Single-Invader Single-Defender (SISD) Single-Invader Multi-Defender (SIMD)
True Goal Equal Speed Superior Invader Equal Speed Superior Invader

1 32 67 24 29
2 31 68 25 27
3 32 74 20 23

68, and 74 successful invasions to 93, 93, and 91 successful invasions for G1, G2, and G3,734

respectively. The performance improvement is also observed for the SIMD games. In the735

SIMD game with equal speeds, the number of successful invasions has risen from 24, 25, and736

20 successful invasions to 30, 31, and 22 successful invasions for G1, G2, and G3, respectively.737

Finally, the number of successful invasions in the SIMD case with a superior invader has risen738

from 29, 27, and 23 successful invasions to 53, 52, and 45 successful invasions, for G1, G2,739

and G3, respectively.740

Table 7 Number of successful invasions out of 100 games in the deceptive game

Single-Invader Single-Defender (SISD) Single-Invader Multi-Defender (SIMD)
True Goal Equal Speed Superior Invader Equal Speed Superior Invader

1 68 93 30 53
2 59 93 31 52
3 57 91 22 45

5 Conclusion741

This paper investigates a deceptive version of the game of guarding several territories. In742

the game, the single-invader single-defender case is studied and the single-invader multi-743

defender case. In addition, we investigated the agents with equal speeds as well as the744

superior invader cases. The deception was modelled using a hierarchical policy system.745

The FACL algorithm is used to train the policies hierarchically. The results show that746

using a hierarchical policy system to model deception can significantly improve the invader’s747

performance in the example game. Deception and its application in real life have a long748

history. The results show that deception is beneficial in differential games. Although the749

simulation platform of this paper was a class of pursuit-evasion games, the nature of the750

differential games allows the designer to apply the model to any application which involves751

agents with conflict of interests. These applications justify using fuzzy controllers and fuzzy752

classifiers over artificial neural networks since the fuzzy explainability helps the human user753

understand the logic behind using deception in a particular state.754

The proposed method cannot handle multiple invaders because of the assignment prob-755

lem: when there are multiple invaders inside the game, which invader is assigned to each756
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defender? Although the problem is not solved in this paper, the solution is proposed im-757

plicitly. A new policy level can be defined for the defender, so the defenders can actively758

select the best invader to follow. Last but not least, the defenders use a hardcoded func-759

tion to guess the invader’s intention. Defining a policy level to guess the invader’s intention760

based on observing the invader’s actions can be an exciting topic of further research. All the761

mentioned problems are also applicable to applications involving conflict of interest among762

multiple intelligent agents.763
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