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1. Introduction1

Since the game theory had been proposed, many scholars had joined the research of the2

solution methods[1]. Due to the research demand of continuous systems, a kind of game,3

which was named as differential game, was developed[2, 3]. Nowadays, differential games4

are usually applied to describe the competitive scenarios of grid walking or ground territory5

guarding. However, for the vehicles in space, the space differential game is still a challenging6

problem because of more complex dynamics.7

When the differential game came to the field of aircraft combat, the proportional nav-8

igation method was attempted[4, 5]. This kind of technique made it possible to deduce a9

superior strategy of the pursuer in one game. However, it was not suitable for scenarios10

where both the pursuer and the evader need to derive their advantage strategies, and it was11

not suitable for the scenario of spacecraft game. In the past, for solving the space differential12

game, the two-side optimal theory, which was an extension of the traditional optimal theory,13

was found[6, 7]. In the aerospace pursuit-evasion field, the semi-direct collocation method14

was studied based on the two-side extremum principle[8]. Further, the semi-direct collocation15

method was extended to three-dimensional space for solving the spacecraft differential game,16

where the genetic algorithm was applied to find the initial values of the co-states[9–13]. To17

give the shortest space interception time, a two-step interception strategy and an open-loop18

control method was proposed[14]. As for qualitative spacecraft pursuit-evasion problem,19

the pursuit-evasion barrier was found, and the results of the space differential game were20

analyzed[15, 16]. However, the optimal strategy, which is strictly depended on the system21

information, can be only found when the system is totally known. Therefore, generally, the22

optimal strategy does not have the ability to deal with the uncertainties of the man-made23

model. In addition, the optimal strategy is open-looped, which makes the pursuer or the24

evader can not interact with the real environment to adjust the control policy.25

Reinforcement learning is one of the machine learning types, which is closely related to26

the dynamic programming theory and the optimal control theory[17]. The basic idea of27

reinforcement learning is to map states to actions so as to maximize a numerical reward[18].28

Since the classical Q-learning algorithm, which was based on a lookup table, had been widely29

studied[19, 20], some discrete games can be solved based on the technique of Q-learning and30

its branches. However, for a real agent which may have continuous states and actions, it will31

be hard to discrete all actions and states. After introducing neural networks or fuzzy systems32

to generalize the states and actions, the curse of dimensionality was solved[18]. Based on33

the technique of space generalization, the reinforcement learning can be introduced to solve34

many problems in continuous space, such as obstacle avoidance[21], autonomous control[22]35

and etc[23, 24]. In addition, the reinforcement learning had also been found effective in multi-36

agent systems[25], which means that it can also been employed in competitive scenarios with37

continuous multi-agent systems[26, 27]. The Actor-Critic algorithm, which is one of the most38

active branches of reinforcement learning, plays an important role when applying the learning39

process into continuous systems because of its ability for dealing with the large-scale space40

of states and actions. Recent years, the Actor-Critic algorithm has been attempted to solve41

some typical differential games under the unknown environment[28–31]. One of the typical42

games is the problem of territory guarding, which is a type of grid walking game on the43

ground[32]. In addition, the differential game between the pursuer and the evader with the44
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single control input separately has been considered in [33, 34].1

Due to the shortcomings of the optimal strategies which are totally depended on system2

information, it seems to be potential to re-solve the problem by reinforcement learning, as3

such a learning method can help the agent optimize its control strategy in an unknown4

environment. However, unlike the scenarios of grid walking, or pursuit-evasion problems in a5

limited square of ground, which are relatively easy to solve through reinforcement learning,6

the situation of state changing with action in outer space is more complicated. Therefore, in7

space differential game, it will be extremely hard to find the optimal strategies for the agents8

without any prior information. However, in the real world, we usually know some part of the9

environment. In order to solve the space differential game with an unknown environment, it10

is reasonable to find a compromise reinforcement learning method which can make use of the11

known part to the learning process. In this paper, we propose an innovative algorithm of pre-12

trained fuzzy Actor-Critic learning(PTFACL), which is based on the Actor-Critic framework.13

A virtual environment, which is defined as the known part of the unknown environment, can14

be taken advantage to the solution of the game. Compared with the previous Actor-Critic15

algorithms, we add a pre-trained process. The pre-trained process is conducted through the16

genetic algorithm, where the optimal strategies obtained from the virtual environment are17

set as the training data. The proposed algorithm covers two agents, the pursuer and the18

evader, and each agent has its x channel and y channel for learning separately. Under the19

help of the pre-trained process, it makes the learning process easier because of the utilization20

of known part of the environment information.21

The main contributions of this paper are as follows: (1) It is the first time to introduce22

fuzzy Actor-Critic learning (FACL) into space differential game. In the previous research, the23

FACL is designed for ground objects with single control output; (2) It is the first time to add24

a pre-trained process to reinforcement learning for solving space differential game. Because of25

the difficulty to directly apply reinforcement learning for solving the space differential game,26

it will be helpful to make use of the known part of the environment.27

The structure of this paper is as follows: Section 2 presents the dynamics and the environ-28

ment statement; Section 3 discusses the fuzzy inference system and its combination with the29

reinforcement learning for continuous systems; Section 4 applies the pre-trained fuzzy Actor-30

Critic learning algorithm to the space differential game; Section 5 simulates the proposed31

algorithm under three scenarios respectively; Finally, Section 6 draws the conclusions.32

2. Environment statement33

2.1. Dynamics of space differential game34

To facilitate the description of the problem, the following coordinate systems are estab-35

lished: (a) Earth centered inertial (OXY Z); (b) orbital coordinate system of the spacecraft36

(Oxoyozo); (c) orbital coordinate system of the virtual host spacecraft (Oxryrzr). In Oxryrzr,37

the state vector xi = [xi, yi, zi, v
x
i , v

y
i , v

z
i ]

T is denoted for the agent, where i = P,E.38

It is supposed that the research objects in this paper are one pursuing satellite and one39

evading satellite, which are also named as space pursuer and evader. Let P and E denote40

the pursuer and the evader, respectively, where the satellite P aims to track the satellite41

E, and the satellite E aims to escape from the satellite P . The reference orbit frame, Fo,42
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is established, where the origin point o is located near the two satellites. The position1

relationship among the pursuer, the evader, and the virtual host point o is drawn in figure 1.2

Figure 1: The location of the pursuer and the evader

In this space differential game, the pursuer and the evader can be abstracted as the3

agents, which have the ability of interacting with the environment. By inputting the current4

states and the maneuvering strategy, the agent is able to obtain the reward for preparing the5

correction of its control policy.6

This pursuit-evasion game is supposed to occur in the neighborhood of a near circular7

reference orbit. In addition, it is supposed that there may exist an external disturbance force8

acting on the pursuer and the evader. Denote the position of satellite P as xP = [xP , yP , zP ]T,9

while the position of satellite E as xE = [xE, yE, zE]T.Therefore, the dynamics of the agent10

is expressed as below (i = P,E)[35]:11 

ẋi (t) = vxi (t)

ẏi (t) = vyi (t)

żi (t) = vzi (t)

v̇xi (t) = 2
µ

r3 (t)
xi (t) + 2ω (t) vyi (t) + ω̇ (t) yi (t) + ω2 (t)xi (t) + TPu

x
i (t) + dxi

v̇yi (t) = − µ

r3 (t)
yi (t)− 2ω (t) vxi (t)− ω̇ (t)xi (t) + ω2 (t) yi (t) + Tiu

y
i (t) + dyi

v̇zi (t) = −ω2 (t) zi (t) + Tiu
z
i (t) + dzi

(1)

where µ represents the Earth’s gravitational constant, ω (t) represents the instantaneous12

angular velocity of the reference orbit, r (t) represents the instantaneous radius of the orbit,13

uji (j = x, y, z) represents the force in the corresponding channel and Ti(i = P,E) represents14

the maximum unit mass thrust of the agent.15

2.2. Statement of optimal strategies and the reinforcement learning16

As the pursuer aims to track the evader while the evader aims to escape from the pur-17

suer, which is a typical zero-sum two-player differential game, the relative position is always18
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focused. Therefore, the symbol D is defined to represent the objective function which the1

pursuer and the evader fight for.2

D (t) =
1

2

(
(xp (t)− xe (t))2 + (yp (t)− ye (t))2 + (zp (t)− ze (t))2

)
(2)

Further, if we want to describe the specific missions of the pursuer and the evader in details,3

the cost functions should be introduced. In our case, the initial time is set as t0, and the4

terminal time is fixed as tn. Therefore, the cost function for the pursuer is designed as5

J = D (tn) +

∫ tn

t0

Ḋdt = Φ +

∫ tn

t0

`dt (3)

where Φ = D (tn) represents the terminal cost and ` represents the accumulating cost. Denote6

the symbols gx, gy and gz as7

gx = (xp (t)− xe (t))

gy = (yp (t)− ye (t))

gz = (zp (t)− ze (t))

(4)

then, the expression of ` is shown below.8

` = gx (ẋp (t)− ẋe (t)) + gy (ẏp (t)− ẏe (t)) + gz (żp (t)− że (t))

= gx
(
vxp (t)− vxe (t)

)
+ gy

(
vyp (t)− vye (t)

)
+ gz

(
vzp (t)− vze (t)

) (5)

Because of the characteristics of the zero-sum game, it is noticed that under the cost function,9

J , the pursuer aims to minimize the function, and the evader aims to maximize the function10

at the same time.11

u∗P= min J (xP ,xE,uP ,uE, t0, tf ) (6)
12

u∗E= max J (xP ,xE,uP ,uE, t0, tf ) (7)

When the pursuer and the evader find their optimal strategies, the following condition should13

be satisfied14

J (u∗P ,uE) ≤ J (u∗P ,u
∗
E) ≤ J (uP ,u

∗
E) (8)

where u∗P and u∗E represent the optimal strategy of the pursuer and that of the evader,15

respectively.16

Reinforcement learning is a type of algorithm that interacts with the environment. The17

agent optimizes its behaviour through the rewards obtained from the environment for max-18

imizing the total benefits. In Markov process, the value function of reinforcement learning19

can be expressed as20

V = E {rm+1 + γrm+2 + · · ·+ γτrm+τ+1}

= E

{
τ∑
k=0

γkrm+k+1

}
(9)

where γ ∈ [0, 1) is the discount factor, m represents the current time, and rm is the immediate21

reward which is obtained from the environment. It is seen that reinforcement learning is an22

algorithm that accumulates the rewards during the learning process. An agent under such a23

learning framework is expected to get the maximum accumulating discounted rewards.24
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For the pursuer, to make the agent judge its policy of actions during the learning process,1

the reward is defined as follows.2

rm+1|P = D (m)−D (m+ 1)

rm+τ+1|P = −D (tn)
(10)

It is seen that under the above reward functions, the agent, P , will get positive reward if it3

decreases the relative distance from the evader E at the next time step. Besides, the agent4

will get a negative reward if it fails to make the terminal relative distance zero, and the5

amplitude of the reward depends on the value of the terminal distance. As for the evader,6

the reward functions are designed below7

rm+1|E = −D (m) +D (m+ 1)

rm+τ+1 |E = D (tn)
(11)

where the functions are opposite from the functions of the pursuer.8

2.3. Optimal strategy solving under the virtual environment9

Recall the cost function in the space differential game as below.10

J = D (tn) +

∫ tn

t0

Ḋdt = Φ +

∫ tn

t0

`dt (12)

Now it is supposed that we know some part of the real environment because one can build a11

mathematical model according to the orbital dynamics. The known part of the real environ-12

ment is defined as a virtual environment, which is used for deriving the optimal strategies13

for the agents. Define x̂ = [x̂P , x̂E]T as the state variable in the virtual environment, where14

x̂P=
[
xp, yp, zp, v

x
p , v

y
p , v

z
p

]T
and x̂E=[xe, ye, ze, v

x
e , v

y
e , v

z
e ]

T. By denoting the estimated ω as ω̂,15

the dynamics of the pursuer and the evader in the virtual environment can be expressed as16

˙̂x = Ax̂+ TPBPuP + TEBEuE (13)

where17

A =

[
AP (t) 06×6
06×6 AE (t)

]
(14)

18

AP = AE (t) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω̂2 0 0 0 2ω̂ 0
0 0 0 −2ω̂ 0 0
0 0 −ω̂2 0 0 0

 (15)

19

BP =

 03×3
I3×3
06×3

 BE =

 06×3
03×3
I3×3

 (16)
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According to the optimal theory, the Hamiltonian function is defined as1

H = λT ˙̂x+ `

= λP
T (AP x̂P + TPuP ) + λE

T (AEx̂E + TEuE)

+ gx
(
vxp (t)− vxe (t)

)
+ gy

(
vyp (t)− vye (t)

)
+ gz

(
vzp (t)− vze (t)

) (17)

where λ = [λP ,λE]T represents the co-states, and it also has the following relationship.2

λP =
[
λPx , λ

P
y , λ

P
z , λ

P
vx , λ

P
vy , λ

P
vz

]T
(18)

3

λE =
[
λEx , λ

E
y , λ

E
z , λ

E
vx , λ

E
vy , λ

E
vz

]T
(19)

To find the optimal strategy of the pursuer and that of the evader, it should satisfies that4

u∗P = argmin
‖uP ‖≤1

H u∗E = argmax
‖uE‖≤1

H (20)

Therefore, the optimal strategies of the pursuer and the evader are expressed below.5 

uxP = − λẋP√
λ2ẋP + λ2ẏP + λ2żP

uyP = − λẏP√
λ2ẋP + λ2ẏP + λ2żP

uzP = − λżP√
λ2ẋP + λ2ẏP + λ2żP

(21)



uxE =
λẋE√

λ2ẋE + λ2ẏE + λ2żE

uyE =
λẏE√

λ2ẋE + λ2ẏE + λ2żE

uzE =
λżE√

λ2ẋE + λ2ẏE + λ2żE

(22)

The differential equation of the co-states is shown as follows6

λ̇ = −
(
∂H

∂x

)T

(23)

which can also be written as below.7 

λ̇Px =− 3ω2λPvx

λ̇Py = 0

λ̇Pz = ω2λPvz

λ̇Pvx = −λPx + 2ωλPvy − gx
λ̇Pvy = −λPy − 2ωλPvx − gy
λ̇Pvz = −λPz − gz



λ̇Ex =− 3ω2λEvx

λ̇Ey = 0

λ̇Ez = ω2λEvz

λ̇Evx = −λEx + 2ωλEvy + gx

λ̇Evy = −λEy − 2ωλEvx + gy

λ̇Evz = −λEz + gz

(24)
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The terminal condition of the co-states is expressed as1

λ (tf ) =

(
∂Φ

∂x

)∣∣∣∣
tf

(25)

and the details of the expression are also shown.2 

λPx (tf ) = xp|tf − xe|tf = gx|tf
λPy (tf ) = yp|tf − ye|tf = gy|tf
λPz (tf ) = zp|tf − ze|tf = gz|tf
λPvx (tf ) = 0

λPvy (tf ) = 0

λPvz (tf ) = 0



λEx (tf ) = −gx|tf
λEy (tf ) = −gy|tf
λEz (tf ) = −gz|tf
λPvx (tf ) = 0

λPvy (tf ) = 0

λPvz (tf ) = 0

(26)

Therefore, the original problem can be described as a two-point boundary value prob-3

lem(TPBVP).4

˙̂x = A (t) x̂+ TPu
∗
P + TEu

∗
E

λ̇ = −
(
∂H

∂x̂

)T (27)

For this kind of problem, there are mainly two kinds of methods for solving. One is to5

apply shooting/multiple-shooting method to find the optimal strategies, u∗P and u∗E. The6

other method is to transfer the problem into a single-side optimal problem. Then, the7

Gauss-Lobatto collation method can be applied, which transfers the original problem into a8

mathematical programming problem. Through these two ways, the TPBVP can be solved.9

2.4. Consistency between the optimal strategy and the reinforcement learning10

When the pursuer or the evader applies the optimal control, it will utilize the system11

information to minimize or maximize the cost function J . The cost function, J , will be12

calculated according to the terminal cost and the accumulating process costs. However, in13

reinforcement learning, the agent will recognize the current reward as the highest priority,14

and the future rewards will be discounted. In this way, the agent will discounts the termi-15

nal reward most times, which makes an ambiguity between the optimal strategy and the16

reinforcement learning.17

However, in a scene of fixed time, we can set the discount parameter, γ, as the value of18

one. Therefore, we can make the environment under the optimal strategy and that under19

the reinforcement learning consistent.20

The symbol Rt is defined as the return at time step t in reinforcement learning, which is21

the goal for an agent to maximize.22

Rt = rt+1 + rt+2 + · · ·+ rt+τ+1 =
τ∑
k=0

rt+k+1 (28)
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Take reward functions of the pursuer as an example, the return can be rewritten as1

Rt|P = rt+1|P + rt+2|P + rt+3|P + · · ·+ rt+τ+1|P
= rt+τ+1|P + [rt+1|P + rt+2|P + · · ·+ rt+τ |P ]

= −D (tn) + [D (t)−D (t+ 1) +D (t+ 1)−D (t+ 2) + · · ·+D (t+ τ − 1)−D (t+ τ)]

= −D (tn)− [D (t+ 1)−D (t) +D (t+ 2)−D (t+ 1) + · · ·+D (t+ τ)−D (t+ τ − 1)]

= −D (tn)−
[
Ḋ
∣∣∣t+1

t
+ Ḋ

∣∣∣t+2

t+1
+ · · · Ḋ

∣∣∣t+τ
t+τ−1

]
= −D (tn)−

∫ tn

t

Ḋdt

(29)
If it is set that when the first rt+1 is obtained, the initial time is t0, then, the following2

relationship is satisfied.3

u∗P = max {Rt|P} = min {J} (30)

It is seen that, from the optimal strategy view, the goal of the pursuer is to minimize the4

cost J , and from the reinforcement learning view, the goal is to maximize the return Rt. For5

the same reason, we also have the following relationship.6

u∗E = max {Rt|E} = max {J} (31)

In this way, it is proved that the environment under the optimal strategy and that under the7

reinforcement learning are consistent, which makes it possible to utilize the information from8

the optimal strategy for helping the agent in reinforcement learning.9

3. Reinforcement learning in continuous systems10

3.1. The fuzzy inference system11

In order to apply the reinforcement learning in large-scale continuous state space and avoid12

the curse of dimensionality, a generalization technique, the zero order Takagi-Sugeno(T-S)13

fuzzy system, is employed as the approximator. It is assumed that the fuzzy system has L14

rules and n input variables. The fuzzy inference rule is15

Rule l : IF s1 is F
l
1, · · · , and sn is F l

n THEN zl = φl (32)

where si (i = 1, · · · , n) represents the ith input of the fuzzy system, F l
i represents the fuzzy16

set of the ith input variable, zl represents the output of the lth rule and φl represents the17

consequent parameter. It is noticed that all of the consequent parameters form the consequent18

set, which is important for an agent (pursuer or evader) to generate its control variable. With19

h membership functions of each si, the output of the fuzzy system is expressed as20

Z (s) =

∑L
l=1

[(∏n
i=1 µ

F li (si)
)
φl
]

∑L
l=1

(∏n
i=1 µ

F li (si)
) =

L∑
l=1

Ψl (s)φl (33)

9



where s = [s1, · · · , sn]T is the state vector, and µF
l
i is the membership function of si under1

the lth rule. In addition, the expression of Ψl (s) is as follows.2

Ψl (s) =

∏n
i=1 µ

F li (si)∑L
l=1

(∏n
i=1 µ

F li (si)
) =

ωl (s)∑L
l=1 ωl (s)

(34)

However, when the number of membership functions is arising, the burden for calculating3

will be heavy. Therefore, the applied membership functions here are triangular membership4

functions for saving the computing cost, which are shown in figure 2.

0

1

Distance

Figure 2: The membership functions for one input

5

From figure 2, it is seen that for each input, the input will only active two membership6

functions at one time, which will be beneficial for the case with a large number of membership7

functions. In this way, the computing cost will be saved. If it is supposed that there are two8

inputs, then, the inputs will active four membership functions at one time, which is shown9

in figure 3.
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Figure 3: The fuzzy inference system for two inputs
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3.2. The fuzzy Actor-Critic learning algorithm11

In order to solve the Markov decision problem in continuous space, a type of reinforce-12

ment learning algorithm called Adaptive Heuristic Critic(AHC) has been widely studied and13

applied. In AHC algorithm, the value function and the policy function are approximated14

respectively. In this way, the learning structure is called Actor-Critic framework. In such a15

learning algorithm, the Critic part is used to estimate the value function, while the Actor16

10



part is used to generate the action. To generalize the state space and the action space, the1

Critic part and the Actor part are both composed of T-S systems. To apply temporal differ-2

ence(TD) learning method, we need two Critic parts for estimating the current value function3

V̂t (st) and the next value function V̂t (st+1). The temporal difference can be expressed as4

below.5

∆t = rt + γV̂t (st+1)− V̂t (st) (35)

Denote Ξ as the variance of the difference signal, which is shown as6

Ξ =
1

2
∆2
t (36)

and the adaptive update rule of the parameters in the Critic is expressed as7

φC (t+ 1) = φC (t)− α ∂Ξ

∂φC
(37)

where α is the learning rate of the Critic.8

Furthermore, according to the gradient descent method, it is shown that9

∂Ξ

∂φC
= ∆t

[
γ
∂Vt (st+1)

∂φC
−∂Vt (st)

∂φC

]
(38)

To sum up, we have10

φC (t+ 1) = φC (t)− α [Rt + γVt (st+1)− Vt (st)]

[
γ
∂Vt (st+1)

∂φC
−∂Vt (st)

∂φC

]
(39)

11

∂Vt (st)

∂φC
= [Ψ1 (st) ,Ψ2 (st) , · · · ,ΨL (st)] (40)

12

∂Vt (st+1)

∂φC
= [Ψ1 (st+1) ,Ψ2 (st+1) , · · · ,ΨL (st+1)] (41)

Combining with eq.(34), eq.(39) can be solved.13

To explore the potential better rewards, a rand noise, σ, will be added to the output of14

the Actor, ut.15

uc = ut + σ (42)

Therefore, the update rule of the output parameter, φA, is expressed as16

φA (t+ 1) = φA (t) + β∆t
∂ut
∂φA

(uc − ut) (43)

where β is the learning rate of the Actor. The partial derivative of ut is expressed as follows.17

∂ut
∂φA

= [Ψ1 (st) ,Ψ2 (st) , · · · ,ΨL (st)] (44)

11



4. Pre-trained fuzzy Actor-Critic learning for space differential game1

In Section 2.1, the dynamic model employed in our scene, which has been introduced in2

eq.(1), is selected as the real environment for the agent in reinforcement learning. The target3

of the agent is to optimize its control strategy under such an environment.4

In reinforcement learning, the agent will interact with the environment to adjust its action5

set, which means that the algorithm is totally model-free. However, unlike some game cases6

on the ground, the relative state between the pursuer and the evader in the space differential7

game is unlimited due to the effect of the gravity force from the Earth. Besides, the relative8

state will be changed with the actions of the agents sensitively, which may also cause unlimited9

relative states. Therefore, it will be extremely hard to directly solve the space differential10

game by reinforcement learning without any prior information.11

However, in the real world, for space differential game, we actually know some information12

about the environment. Therefore, in this paper, we propose a pre-trained fuzzy Actor-13

Critic learning(PTFACL) to make the learning more solvable by making use of the known14

information.15

4.1. Pre-trained process based on the genetic algorithm16

To utilize the optimal strategies under the virtual environment, a pre-trained process is17

needed to generate the set of consequent parameter based on these strategies.18

In our case, there are two channels and each channel has two inputs. The two channels19

are x-channel and y channel, with the inputs {x, vx} and {y, vy}, respectively. It is seen20

that, for each channel, there are two inputs, where the first one is the relative distance and21

the other is the relative velocity from the evader to the pursuer. It is noticed that from our22

research, when it is supposed that the pursuer and the evader are on the same orbital plane,23

the motions of the agents in the orbital plane are always playing important roles, but the24

motions out of the orbital plane have very weak effect on the results. Therefore, z channel is25

not recommended in this paper.26

Through the two inputs, the corresponding membership functions will be activated. For27

the relative distance, there exist 13 membership functions, and for the relative velocity, there28

exist 7 membership functions, which are shown in figure 4 and figure 5, respectively.29

0

1

Distance10 20 6050-10-20-50-60

Figure 4: The membership functions for the relative distance
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0

1

Velocity1 2 3-1-2-3

Figure 5: The membership functions for the relative velocity

From figure 4 and figure 5, it is seen that the boundary of the membership functions set1

is equal to one in case that the value of the input is over the normal covered range. Denote2

the symbols, φPx and φPy , to represent the consequent set in x channel and in y channel of3

the pursuer, and the symbols, φEx and φEy , to represent the consequent set in x channel and4

y channel, respectively. The structure of φPx , φPy , φEx and φEy is a two-dimension matrix.5

The row number of the matrix is depended on the number of membership functions of the6

first input, while the column number is depended on that of the second input. Under the7

membership functions described in figure 4 and 5, it is clear that those consequent set are8

13 × 7 matrices. Besides, the goal of the pre-trained process is to find the initial values of9

the set, φPx , φPy , φEx and φEy .10

Based on the optimal strategies of the pursuer and the evader, it is supposed that we can11

obtain N pairs of training data. To approximate the training pairs through fuzzy inference12

system, the genetic algorithm (GA) is applied here to conduct the pre-trained process.13

The fitness function during the pre-trained learning is the type of mean square error,14

which is expressed as below15

M =
1

2

N∑
i=1

(uA − utr (i))2 (45)

where uA is the output of the fuzzy inference system, and utr (i) is the control value of the16

ith training pair. The GA will be employed in the x, y channel of the pursuer and the x, y17

channel of the evader, respectively, but it is the same process in different channels or different18

agents. Therefore, we take the x channel of the pursuer as an example.19

The diagram of GA process is described in figure 6. The inputs for GA in x channel20

are the x and vx, which will be input to the fuzzy inference system with the membership21

functions described in figure 4 and figure 5. From figure 6, it is seen that the “ chromosome”22

is a consequent set which is composed of the “genes ”. The “ genes” are also shown as the23

consequent parameters. The mean square error, M , is calculated according to the values of24

utr from the training data and the values of uA obtained from the fuzzy inference system.25

Sorted by the fitness error, the current chromosome will be updated through making the26

crossover and the mutation on genes. According to the GA technique, which can be found27

in [36], the consequent set will be optimized to approximate the training data better.28

4.2. Re-adapt to the real environment by fuzzy Actor-Critic learning29

The proposed learning framework in this paper is single-looped, and covers two agents,30

the pursuer P and the evader E. In addition, each agent has two channels, x channel and y31

channel. Each channel has two inputs, the relative distance and the relative velocity of the32

current channel.33

13
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Figure 6: The diagram of the pre-trained process

Take the x channel of the pursuer as an example, its inputs for fuzzy systems are expressed1

as2

s1 = x s2 = vx (46)

Denote ϕl as the consequent parameter in the consequent set ϕxP of the Critic, then, the3

inference rule is shown as4

Rl : IF s1 is A
l
1 and s2 is A

l
2 THEN Zl = ϕl (47)

Further, the output can be calculated.5

Ψl (s) =

∏2
i=1 µ

F li (si)∑4
l=1

(∏2
i=1 µ

F li (si)
) =

ωl (s)∑4
l=1 ωl (s)

(48)

6

V̂ x
P =

4∑
l=1

(Ψl) · (ϕl) (49)

The fuzzy inference process of the Actor part is similar to that of the Critic part and the7

difference lies in the consequent parameter to each membership degree. Denote φl as the8

consequent parameter of the consequent set ut of the Actor, then the output of the Actor is9

shown as below.10

ut =
4∑
l=1

(Ψl) · (φl) (50)

To add a noise σ for exploring, the control variable is expressed as follows.11

uxP = ut + σ (51)

14



The designed reward function, rt, is expressed as1

rt|xP = Dx (t− 1)−Dx (t)

rtn |
x
P = −Dx (tn)

rt|yP = Dy (t− 1)−Dy (t)

rtn |
y
P = −Dy (tn)

rt|xE = −Dx (t− 1) +Dx (t)

rtn |
x
P = Dx (tn)

rt|yP = −Dy (t− 1) +Dy (t)

rtn |
y
P = Dy (tn)

(52)

where Dx (t) and Dy (t) are the components of Dt (t).2

Dx (t) =
1

2
(xp (t)− xe (t))2

Dy (t) =
1

2
(yp (t)− ye (t))2

(53)

The whole diagram of learning logic is illustrated in figure 7. In figure 7, it is shown that
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Figure 7: The diagram of learning logic

3

there are two agents, the pursuer and the evader. Each agent has two channels, x channel4

and y channel, and each channel has two Critic parts and one Actor part. The two Critic5

parts are applied to estimate the value of current time, V̂ (t), and the value of next time,6

V̂ (t+ 1). Take the x channel of the agent P as an example. The state of the current time7

is the combination of x and vx, which will be input to the Critic part and the Actor part to8

generate the estimated value V̂ x
P (st) and the control variable uxP respectively. Acting with9

15



the control uP , the agent will interact with the environment, which means that the next1

state st+1 and the reward r|xP are expected to be obtained. According to r|xP , V̂ x
P (st) and2

V̂ x
P (st+1), the time difference, ∆t, is calculated. The consequent parameters of the Critic3

part and the Actor part can be adjusted according to ∆t.4

To sum up, the proposed learning algorithm of PTFACL is as follows.5

Algorithm 1 Pre-trained fuzzy Actor-Critic learning

1: Maintain the virtual environment
2: Derive the optimal strategies u∗P and u∗E of the pursuer and the evader respectively
3: Solve the TPBVP problem
4: for each agent (P and E) do
5: for each channel (x and y) do
6: Obtain N pairs of training data
7: end for
8: end for
9: Initialize the membership functions

10: Initialize the consequent set of the Actor φxP = 013×7, φ
y
P = 013×7, φ

x
E = 013×7, φ

y
E = 013×7

11: for each agent (P and E) do
12: for each channel (x and y) do
13: Initialize a set of chromosomes
14: for each iteration do
15: Calculate the fitness values of all the chromosomes by eq.(45)
16: Sort the entire chromosomes according to their fitness values
17: Obtain the new generation by crossover and mutation
18: end for
19: end for
20: end for
21: Obtain the initial consequent set φxP , φyP , φxE and φyE after the pre-trained process
22: Initialize the consequent set of the Critic ϕxP = 013×7, ϕ

y
P = 013×7, ϕ

x
E = 013×7, ϕ

y
E = 013×7

23: for each episode do
24: Initialize states of the pursuer and the evader
25: for all Time step do
26: Calculate the output of the Critic V̂ x

P (st), V̂
y
P (st), V̂

x
E (st), V̂

y
E (st) from eq.(49)

27: Calculate the output of the Actor uxP , uyP , uxE, uyE through eq.(50) and eq.(51)
28: Interact with the environment
29: Obtain the reward rt|xP , rt|yP , rt|xE, rt|yE
30: Calculate the output of the Critic V̂ x

P (st+1), V̂
y
P (st+1), V̂

x
E (st+1), V̂

y
E (st+1)

31: Calculate the time difference ∆t from eq.(35)
32: Update ϕxP , ϕyP , ϕxE, ϕyE and φxP , φyP , φxE, φyE according to eq.(37) and eq.(43),

respectively
33: end for
34: end for

16



5. Simulation1

A pursuer and an evader in space, which are denoted as P and E are simulated in this2

paper. It is supposed that the reference orbit is a circular orbit with the radius with 6.9×103
3

km. Denote the symbols, xP0 and xE0 as the initial states of the pursuer and the evader4

respectively, where the first three items of the vectors represent the position in m and the5

last three items represent the velocity in m/s of the agent.6

Table 1: Initial states of the pursuer and the evader

State Value

xP0

[
−0.4220;−24.0804; 0; 2.678× 10−2;−4.715× 10−5; 0

]T
xE0

[
9.91774; 24.1154; 0;−2.678× 10−2;−5.608× 10−3; 0

]T
Besides, it is assumed that TP = 0.03×9.8×10−3 and TE = 0.01×9.8×10−3, which means7

that the pursuer is supposed to have greater maneuver ability than the evader. Because in8

such a situation that the pursuer has more mobility than the evader, we can judge whether9

the proposed algorithm is effective by whether the pursuer can change the situation that is10

not good for itself.11

To conduct the simulation, the software Matlab R2013 and an Intel Core i7 computer12

with a 2.4 GHz clock frequency and 4.0GB of RAM are employed.13

5.1. Scenario with 600s : the pre-trained process14

To illustrate that how the pre-trained process works, a scenario with 600s is selected where15

the real environment is set as the same as the virtual environment. The initial positions of the16

pursuer and the evader are shown in table 1. In this scenario, we want to show the difference17

between the algorithm with the pre-trained process and the algorithm without this process.18

Therefore, the trajectory of the evader is fixed. In this way, the control strategy of the19

pursuer derived from the optimal strategy (OS), and the strategy obtained after pre-trained20

process (PTFACL), as well as the strategy learned from FACL are drawn and compared,21

respectively.22

The trajectories of the pursuer and the evader under the optimal strategy are shown23

in figure 8(a) and the trajectories under the pre-trained strategy are shown in figure 8(b).24

Besides, the control curves of the purser under the three methods are drawn in figure 9. It is25

seen that the trajectories of P and E under OS and those under PTFACL are similar, which26

demonstrates that the pre-train process performs well. Therefore, it is effective to transfer27

the optimal strategies into the the consequent set of the fuzzy inputs of the relative position28

and the relative velocity. If we do not consider the optimal strategy and the GA process29

for pre-training, the consequent set are φxP = φyP = φxE = φyE = 013×7. With the learning30

rate of the Critic, α = 0.01, the learning rate of the Actor β = 0.001, and the random noise31

σ = 0.05, the algorithm comes to the FACL, which is applied in figure 8(c). From this figure,32

we can see that the trajectory trend the pursuer is somehow different from the result under33

the optimal strategy. From one point, the FACL is a single-looped algorithm which ignores34
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Figure 8: Trajectories of the pursuer and the evader in the scenario with 500s

coupling effects between the x and y channel. And from the other point, there will exist error1

when the fuzzy inference system is applied to deal with the totally unknown environment,2

because both of the number of the membership functions and the number of inputs will affect3

on the learning results. Besides, the relative positions between the pursuer and the evader4

under OS, PTFACL and FACL are compared in figure 10. It is shown that the moving trend5

under PTFACL is very similar to that under OS because of the effectiveness of the pre-trained6

process. But in the the terminal error graph, it is also seen that the terminal tracking error7

under PTFACL is larger than that under OS due to reasons of the GA accuracy and the8

fuzzy inference accuracy. In addition, the moving trend of the relative position under FACL is9

also drawn in figure 10, which further expresses the difference between FACL and PTFACL.10

However, the algorithm still works because it definitely get the moving trend of the evader.11

In order to indicate the cost time of the PTFACL and FACL, the values of cost seconds12

are shown in table 2. From the table, we can see that the PTFACL has taken 230.24s in13

total, and it has two processes to compose its cost time. One is the OS, which takes 12.14s14

and the other is the GA process, which takes 218.10s. As for the FACL, it does not have the15
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Figure 10: Variations of the relative positions between the pursuer and the evader under OS, PTFACL and
FACL

OS process and GA process, and it has taken 426.90s to complete the learning process from1

the unknown environment without any prior information. Therefore, it is seen that the time2

cost of PTFACL has saved by 46% compared with FACL because of the utilization of the3

virtual environment.4

If we accumulate all the rewards collected during the flight, the values under the ideal5

condition, OS, PTFACL and FACL are shown in table 3 respectively. If we suppose that6

both the pursuer and the evader are smart enough, as the pursuer is given more powerful7

maneuver ability, there exist the ideal values of the pursuer and the evaders.8

From table 3, it is seen that the values of total rewards under OS is nearly the same as9

the ideal values. The small value difference is due to the calculating accuracy. Compared10

with the values under the OS, the values of the pursuer under PTFACL are decreased a11

little because of the accuracy of the GA process and the error of the fuzzy inference systems.12

Besides, under the FACL, it is seen that the total rewards of the pursuer are much lower13

than the ideal values, which means that the pursuer cannot track the evader as well as ideal14

19



Table 2: Cost time of PTFACL and FACL in the scenario with 600s

Algorithm OS Time cost(s) GA Time Cost(s) Total Time cost(s)

PTFACL 12.14 218.10 230.24
FACL — — 426.90

Table 3: Total rewards under ideal condition, OS, PTFACL and FACL

Value P in x channel P in y channel E in x channel E in y channel

Ideal 53.45 1161.42 -53.45 -1161.42
OS 53.44 1161.41 -53.44 -1161.41

PTFACL 53.43 1151.09 -53.43 -1151.09
FACL -12.04 1129.89 12.04 -1129.89

expectation, and such a result is also indicated in figure 8(c).1

5.2. Scenario with 1500s : the environment has perturbed reference orbit2

In this scenario, we suppose that there is a deviation between the real reference orbit3

and the estimated reference orbit in the virtual environment, where the condition ω − ω̂ =4

8 × 10−4rad/s exists. In figure 11, the trajectories of the pursuer and the evader with the5

consequent set obtained from the pre-trained process are shown. From figure 11(a), it is seen6

that, under such a perturbation, the pursuer still keeps the ability to follow the moving trend7

of the evader, but the tracking error has been generated because the unsuitable consequent8

set does no suit well in the real environment. With the learning rate of the Critic, α = 0.01,9

the learning rate of the Actor β = 0.001, and the random noise σ = 0.1, the proposed10

PTFACL is processed. The trajectories of the pursuer and the evader are shown in figure11

11(b) after 1640 iterations. In this figure, it shows that the pursuer can track the evader12

better because of more suitable consequent set. In this process, the pursuer will seek a better13

consequent parameter for different relative states. In this way, the consequent set is updated,14

which makes the pursuer tends to get closer and closer to the evader. At the same time, the15

evader also seeks a better consequent set for getting far away from the pursuer. However,16

as the pursuer has more powerful control capability, the evader is finally approached by the17

pursuer.18

To illustrate the learning process, the variations of the total accumulating rewards of the19

pursuer and the evader in x and y channel along with learning times are shown in figure 1220

and figure 13. From this figure, we can see that at the initial condition, the total rewards21

of the pursuer in x channel and in y channel are negative, and the values are relative large.22

Combined with the trajectories shown in figure 12, it shows that the reason is because that23

the pursuer can not track the evader well at the initial condition. Besides, the values of the24

total rewards of the evader in x channel and in y channel are opposite to the values of the25

pursuer in the corresponding channel, which proves that this differential game is the type26
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Figure 11: Trajectories of the pursuer and the evader under perturbed reference orbit

of zero-sum. These values are relatively large, because the evader is not tracked well by the1

pursuer, which means the condition is relatively good for the evader. The values of the total2

rewards have been varied along with the learning times. When it comes to the last episodes,3

the terminal values are denoted in figure 12. It is seen that the total reward of the pursuer4

in x channel and y channel have been increased to 53.45 and 1115.35, respectively.5
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Figure 12: Variations of the total rewards of the pursuer

To show the total rewards in details, the values in different conditions are shown in table6

4, where the value under the initial condition means the total rewards collected by the pursuer7

and the evader in the real environment with the consequent set from the pre-trained process.8

In table 4, it is seen that, compared with the initial values of the pursuer, the values under9

PTFACL has been attenuated to the ideal values a lot, which also means that the pursuer10

can track the evader better after the learning process, and the evader has been decreased its11

total rewards due to the principle of zero-sum. If we set the ideal values as a baseline, it also12

comes to conclude that the value of the pursuer has increased by 99.99% in x channel while13

96.09% in y channel.14

The variations of time differences of the pursuer and the evader in x channel and y channel15
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Table 4: Total rewards of the pursuer and the evader under the initial condition, ideal condition and the
PTFACL

Value P in x channel P in y channel E in x channel E in y channel

Initial -6703.03 -249.78 6703.03 249.78
Ideal 53.45 1161.42 -53.45 -1161.42

PTFACL 53.44 1115.36 -53.44 -1115.36

are shown in figure 14 and figure 15. It is shown that the time differences of the different1

agent in different channel have been decreased along with the learning times. It is noticed2

that as the time difference decreases, the updating process will be slow down, which will3

waste a lot of time to make the time difference attenuate to zero but contribute less to the4

update of the consequent set. Therefore, it is supposed to be acceptable to end the learning5

process when the norm of the time difference is less than 20.6

5.3. Scenario with 1500s : the environment has perturbed external force7

In this scene, we consider another kind of difference between the virtual environment and8

the real environment. The real environment in this scene is supposed to have the external9

disturbance forces as dxt = 0.8× 10−5 and dyt = 0.8× 10−5, but the virtual environment does10

not have. Therefore, the consequent set obtained from the pre-trained process is not suitable11

enough when we put the agents in the real environment. The trajectories of the pursuer12

and the evader before the learning process are shown in figure 16(a), where it is shown that13

the pursuer can not track the evader well because of unsuitable consequent set. With the14

learning rate of the Critic, α = 0.01, the learning rate of the Actor β = 0.001, and the15

random noise σ = 0.1, in figure 16(b), the trajectories of the pursuer and the evader after16

the learning process are drawn, and it is seen that the pursuer has improved the ability to17

track the evader. From the small graph of terminal condition in figure 16(b), it indicates that18

there still exists some tracking error when the learning process is finished due to the fuzzy19

inference accuracy and the channel coupling effect, which are the same as the phenomenon20
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Figure 14: Variations of the time difference of the pursuer
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Figure 15: Variations of the time difference of the evader

shown in the small graph of figure 11(b).1

In figure 17(a), it shows the trajectories when the learning times comes to 20. Compared2

with the figure 16(a), it is seen that the moving trend of the pursuer has been changed to3

approach the evader while the evader is also changing its moving trend to keep away from4

the pursuer. Compared with the results in figure 17(a), the evader in figure 17(b) tries to5

avoid the pursuer by turning. But at the same time, the pursuer also changed its strategy to6

adapt to the new trajectory of the evader.7

To further show the effectiveness of the learning process, we now change the control8

strategy of the evader. It is supposed that the control strategy of the evader comes to9

uxE = uyE = 0.5m/s2. In figure 18(a), the trajectories of the pursuer and the evader before10

the learning process are shown. It is seen that the pursuer cannot track the evader well.11

At the same time, we apply the consequent set after the learning process, which is also12

applied in figure 16(b), the trajectories of the pursuer and the evader are shown in figure13

18(b). In addition, when the pursuer takes a PD controller, the trajectories are drawn in14

figure18(c). Compare with the figures from 18(a) to 18(c), it is clear that the pursuer has15

the most powerful tracking ability in figure 18(b), because it is after learning. To give an16

23



−50 0 50 100
−40

−20

0

20

40

60

x/m

y/
m

 

 

Pursuer

EvaderStart

Start

End

End

(a) Trajectories before learning

−20 0 20 40
−40

−20

0

20

40

60

80

x/m

y/
m

 

 

Pursuer

Evader

 

 

80

60

10 20

Start

Start

End

(b) Trajectories ater learning

Figure 16: Trajectories of the pursuer and the evader under perturbed external force
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Figure 17: Trajectories of the pursuer and the evader under perturbed external force during the learning
process

additional experiment, we reset the control strategy of the evader as uxE = −0.5m/s2 and1

uyE = 0.5m/s2. Then, the trajectories of the pursuer and evader before the learning process2

are shown in figure 19(a) while the trajectories after the learning process are shown in figure3

19(b). This case also proves the effectiveness of the learning process, because the pursuer is4

able to approach the evader better with more suitable consequent set. It is noticed that the5

pursuer in figure 18(b) and 19(b) seems to perform better than in figure 16(b), because the6

evader has not applied an optimal strategy and learned during the learning process.7

To show the total rewards under the PTFACL in this scenario and the total rewards of8

the scenes which we have changed the strategies of the evader, we denote “ case : a ” to9

represent the case under the PTFACL, where both the evader and the pursuer are learning,10

and we denote “case : b” to represent the case where uxE = uyE = 0.5m/s2, as well as “case11

: c” to represent the case where uxE = −0.5m/s2 and uyE = 0.5m/s2. Therefore, the total12

rewards of different cases are shown in table 5.13
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Figure 18: Trajectories of the pursuer and the evader with ux
E = uy

E = 0.5m/s2
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Figure 19: Trajectories of the pursuer and the evader with ux
E = −0.5m/s2 and uy

E = 0.5/s2

From table 5, it shows that the values of the pursuer in case (a) performs well in x channel1

but bad in y channel initially, which means that the consequent set obtained from the pre-2

trained process is suitable for the pursuer in x channel but not as well in y channel. After3

the learning process, the total rewards of the pursuer increased by 99.85% in y channel, but4

decreased a little in x channel. This means that the pursuer has learned to adapt to the5

new environment in y channel well, but as the evader is escaping, it has lost a little rewards6

in x channel due to the accuracy of pre-trained process, accuracy of fuzzy inference system7

and accuracy of reinforcement learning. In case (b), it also shows that the pursuer does not8

perform in y channel at initial condition, but it has learned to perform well after the learning,9

which means that the value in y channel has been attenuated to the ideal value and increased10

by 96.06% compared with the initial value. As for case (c), compared with the initial values,11

it shows that the pursuer has improved its performance by 91.30% in the x channel and by12

96.90% in the y channel, which also notices that the more difference between the initial value13

to the ideal value, the smaller effect of the algorithm accuracy will happen.14
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Table 5: Total rewards of the pursuer and the evader in case (a), case (b) and case (c)

Value P in x channel P in y channel E in x channel E in y channel

Ideal 53.45 1161.42 -53.45 -1161.42
Initial:(a) 53.23 225.55 -53.23 -225.55
Case:(a) 30.31 1160.05 -30.31 -1160.05

Initial:(b) 53.59 796.86 -53.59 -796.86
Case:(b) 53.12 1147.08 -53.12 -1147.08
Initial:(c) 50.92 757.75 -50.92 -757.75
Case:(c) 53.23 1148.93 -53.23 -1148.93

6. Conclusion1

To provide a method to space differential game in unknown environment, a pre-trained2

fuzzy Actor-Critic learning (PTFACL) algorithm, which is based on reinforcement learning,3

is proposed in this paper. To utilize the the known part of the environment, a virtual4

environment is defined to find the optimal strategies for the pursuer and the evader. By5

introducing the fuzzy inference systems, the game can be separated into the motions in x6

channel and y channel with the inputs of the relative position and the relative velocity in7

each channel. With the help of the genetic algorithm, the optimal strategies can be reloaded8

into the consequent set of the pursuer and the evader, and this part is seen as a pre-trained9

process. An Actor-Critic framework is selected to refine the consequent set of the pursuer and10

the evader in the real environment. Through comparing the PTFACL and the FACL in the11

scenario with 600s, it shows that the pursuer tracks the evader better under the PTFACL, and12

saved the time cost by 46% compared with the FACL. When there is a difference between the13

reference orbit of the real environment and that of the virtual environment, the experimental14

results indicates that the value of total rewards of the pursuer increased by 99.99% in the15

x channel, by 96.06% in the y channel compared with the initial values. In addition, when16

there exist an external disturbance force in the real environment compared with the virtual17

environment, the pursuer increases its total rewards 99.85% in y channel but decreases a little18

in x channel due to the accuracy of pre-trained process and the coupling effect. When the19

control strategy of the evader is fixed to a specific policy, it shows that the pursuer increases20

its total reward by 96.06% in y channel under uxE = uyE = 0.5m/s2, besides, 91.30% in x21

channel and 96.90% in y channel under uxE = −0.5m/s2 and uyE = 0.5m/s2.22
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