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Abstract—The technology of autonomous vehicles is advancing
rapidly, relying heavily on high-precision simulations and high-
performance controllers. This study uses actual driving data to
model coupled lateral and longitudinal vehicle dynamics with
two neural network (NN) structures: a time-distributed multi-
layer perceptron and a long short-term memory (LSTM). In-
puts include accelerator pedal position, brake pressure, steering
wheel angle, gear number, and road slope, while outputs are
acceleration and yaw rate. Additionally, a bidirectional LSTM
(Bi-LSTM) predicts vehicle control inputs based on expert driver
data. A resolution of the path to be tracked is provided to the NN
driver, which generates control commands that are subsequently
fed into vehicle NN models. The vehicle’s output states are used
to compute the quadratic cost function for trajectory tracking.
The minimum cost is identified, and the corresponding control
inputs are selected as the optimal inputs for each prediction
horizon. A comparative analysis was performed between the
neural predictive controller (NPC) algorithm and the traditional
nonlinear model predictive controller (NMPC), utilizing the inte-
rior point optimizer (IPOPT). Incorporating high-fidelity models
within NMPC leads to substantial computational overhead. NPC
method maintains both computational efficiency and is adaptive
to road slope disturbances, without the need for a classical
adaptive control design, making it suitable for real-time control
applications.

Index Terms—Data-driven modeling, Autonomous vehi-
cle,Trajectory Tracking, Nonlinear model predictive con-
troller(NMPC), Iterative learning control

I. INTRODUCTION

Dynamic vehicle modeling in autonomous vehicles has
evolved significantly, progressing from simple abstractions [1]
to detailed data-driven representations [2]-[4] that capture
complex real-world behaviors. Early models primarily used
kinematic representations, considering the vehicle as a point
mass with simplified motion constraints. These basic models
were suitable for low-velocity scenarios but lacked the fidelity
needed for more dynamic driving situations [1].

Machine learning improves the modeling of vehicle dynam-
ics by eliminating the need for costly parameter estimation
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[5], while generating dynamic models that capture features
often neglected in traditional mathematical approaches. This
is achieved through the integration of sensory data and ad-
vancements in machine learning techniques [2]-[5]. Accurate
modeling of dynamics is crucial for the vehicle trajectory
tracking module [6]-[8], as it directly influences the ability
to maintain stability, follow trajectories precisely, and ensure
safe navigation under varying driving conditions. To achieve
this, model predictive control (MPC) [9], [10] has been widely
adopted for its ability to predict future system behavior and
optimize control inputs to minimize predefined cost functions.
The work in [11] introduces a data-driven MPC framework
for linear time-invariant system, using measured input-output
data instead of traditional system models. Researchers in [12]
employ deep neural networks with Koopman operators to
model and control autonomous vehicle, achieving accuracy
and efficiency with deep extended dynamic mode decompo-
sition MPC compared to traditional methods. However, the
dataset utilized for validation is entirely simulated.

The key contributions of this paper are as follows: This
paper introduces a novel neural predictive controller (NPC)
that leverages a bidirectional long short-term memory (Bi-
LSTM) to emulate driver behavior and generate optimal con-
trol commands for trajectory tracking. The NPC processes a
batch of planned paths, evaluates them using a quadratic cost
function accounting for trajectory errors and control effort,
and selects the path with the minimum cost, further refining
it through path augmentation. This iterative algorithm enables
the NPC to handle dynamic disturbances, for instance road
slopes, while maintaining real-time computational efficiency
and robust tracking accuracy. Additionally, the paper employs
data-driven modeling of coupled longitudinal and lateral ve-
hicle dynamics using time-distributed multi-layer perceptron
(TD-MLP) and long short-term memory (LSTM) architectures,
trained on a real-world driving dataset. These models enhance
the accuracy and adaptability of the NPC, ensuring precise
trajectory tracking under complex driving conditions. We
believe our research is the first in the literature to utilize actual
driving data for modeling vehicle dynamics, capturing the
complete process from pedal and steering wheel commands
to vehicle position. Additionally, our proposed controller is
uniquely inspired by real driver decision-making, offering a
novel approach to trajectory tracking and control.

The remainder of this paper is structured in the following
way. Section II details the dataset and the data-driven approach
for modeling vehicle dynamics and a driver model. Section



III outlines the neural network (NN) models and training
parameters. Section IV describes the NPC algorithm. Section
V evaluates the data-driven vehicle dynamics model in com-
parison to ground truth data, comparing NPC with nonlinear
model predictive control (NMPC) for a simulated cloverleaf
trajectory. Section VI concludes the study.

II. DATA-DRIVEN MODELING

This section introduces the dataset and preprocessing and
then explains the relevance for modeling vehicle dynamics
using NNGs.

A. Dataset and preprocessing

In this work, the Inertial Odometry Vehicle Navigation
Benchmark Dataset (IO-VNBD) [13] is used for training and
testing NNs. From the dataset description, 40 hours of driving
data were recorded using the Racelogic VBOX Video HD2,
which captures data directly from the vehicle’s CAN bus
and GPS sensors with a 10 Hz sampling rate. This dataset
includes driving data collected with a Ford Fiesta under vari-
ous conditions, such as slippery roads, sharp turns, stationary
motion, winding roads, inner cities, traffic congestion, town
centers, and motorways, by eight drivers using both defensive
and aggressive driving styles. The dataset includes over 20
minutes of stationary vehicle data, specifically recorded to
estimate and correct sensor bias. Velocities below 2 m/s were
excluded from the analysis. During preprocessing, intervals
with GPS outages were manually identified and removed. The
GPS, inertial measurement unit, and odometry data were fused
using a Kalman filter [14]. Steering wheel angle biases were
corrected using straight-path sections. Finally, the processed
data were segmented into appropriate lengths for NN training
and testing.

B. Modeling of vehicle dynamics

This section describes NNs designed to process inputs that
represent steering wheel angle, accelerator pedal position,
brake pedal pressure, gear number, and road slope as distur-
bances, producing vehicle states as outputs. A vehicle system
can be expressed as follows:

Tt41 = f(mhutaw@)'

Here t represents the time step, x € R" is the state vector,
u € R™ stands for the inputs vector, wy describes the set of
uncertain parametric variables, and f is the vehicle transition
function. We define z = [X,Y, ¢,Um7vy,az,ay,¢] where,
X and Y are the vehicle’s center of gravity position in the
global coordinates, ¢ is the yaw angle, v,, and v, refer to the
longitudinal and lateral velocities at the center of gravity, and
a; and a, indicate the longitudinal and lateral accelerations at
the center of gravity. Instead of estimating the complete state
vector x in the output of the NN, it is feasible to estimate
solely the longitudinal acceleration on the rear axis a,, and
the yaw rate gb of the vehicle. Consequently, the remaining
state variables can be calculated using the following equations:

Va1 = Va,r, + Qg  dE, (D

Gri1 = Gy + Pyt 2
Xt+1 - Xt + Ve,ry * COS(¢t)dta (3)
Yiri =Y + g, - sin(¢y)dt. “)

where dt is the sampling time in seconds. Using this con-
figuration, a significant portion of the NN operation, which
integrates acceleration and yaw rate to reach other state
variables, is reduced. Thus, the NN model is as follows:

[z ry> Dt] = FNN. modet (Vs Uhy O, WN N m)- (5)

where NN, model (Vn, Un, 01, Wy, m) is the NN model func-
tion. Where v, = [Vyr,, Vary 15+ V2, n, ] 18 the history
of rear axle longitudinal velocity, up, = [us, Us—1, ..., Ut N, ]
is the history of control inputs of the system, 6, =
[04,0:—1,...,0:—n,] is the history of longitudinal road slope
as a disturbance input, and Wy, includes the weights
and biases of the NN model. N, is the history horizon.
Control inputs in the model are aligned with real-world driving
conditions, as defined in the benchmark dataset [13], where the
control input is specified as:

u= [67 APos.7 Bpye., G]T

Here 6 is the steering wheel angle of the vehicle, Apy, is the
position of the accelerator pedal, Bp. is the brake pressure,
and G is the gear number. Since acceleration and yaw rates
depend on velocity, the velocity history must be included as
part of the vehicle NN input.

C. Driver modeling

Driving involves continuous monitoring of road conditions
and dynamic adjustments to vehicle control inputs, including
steering, throttle, and braking, which are influenced by the
vehicle’s state, the reference path, and the driver’s anticipated
trajectory. For example, when approaching a turn, precise
modulation of the steering and pedal inputs is required to
ensure safe and efficient navigation. Inspired by this, this paper
presents a novel data-driven model. This model is constructed
to derive a function that maps reference path segments, cou-
pled with a prediction horizon length, to the requisite control
inputs. Therefore the NN function for modeling the driver’s
behavior can be expressed in the following form:

[M]T = fNN, driver(mrefN s Yref 8refN s Urefn s GN, WNNd)

Where fnN, driver 1S the NN model of the driver, yref,, and Zref,
are the latitude and longitude of the path in local coordinates
from time step ¢t + 1 to the prediction horizon N. 6,
represents the slope values of the reference path. vy, consists
of the current vehicle velocity at time step ¢ and the reference
velocity derived from the discrete derivative of the reference
path—zrer, and yrer, . Gy refers to the gear number during
the prediction horizon, and Wy, represents the weights and
biases of the driver NN. M contains the predicted steering
wheel angle, dx; accelerator position, Apes, ; and brake pres-
sure, Bp., . The subindex IV represents the time steps from
t + 1 to the prediction horizon.
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Fig. 1: The proposed architectures: (left) TD-MLP for the vehicle
model, (middle) LSTM for the vehicle model, and (right) Bi-LSTM
for the driver model.

III. NN ARCHITECTURES

This study proposes two NNs architectures, namely the
TD-MLP and LSTM network, to model vehicle dynamics.
Additionally, a Bi-LSTM architecture is introduced to rep-
resent driver behavior. These architectures provide enhanced
flexibility by allowing the adjustment of prediction and control
horizons post-training, a capability that is often lacking in
conventional NN models.

A. Vehicle TD-MLP architecture

Fig. 1 (left) shows the proposed TD-MLP for vehicle
dynamics modeling. This model is fed with a total of Ny + 1
time steps of inputs, and each step lasts 0.1 seconds. After
the last TD layer, a flattening layer is used, and its output is
fed to two neurons with linear activation functions to predict
acceleration and yaw rate as outputs.

B. Vehicle LSTM architecture

Fig. 1 (middle) shows the LSTM NN for vehicle dynamics.
The input of this structure is the same as the TD-MLP NN, a
time span of NV, 41 steps of vehicle inputs, and each time step
lasts 0.1 seconds. According to the proposed architecture in
Fig. 1 (middle), the structure uses five LSTM layers with 80,
40, 20, 10, and 2 units, respectively. The final LSTM layer has
a linear activation function to perform regression operations.

C. Driver Bi-LSTM architecture

The driver model architecture is illustrated in Fig. 1 (right).
This structure consists of four Bi-LSTM layers and one final
LSTM layer. Since only one of the brake and accelerator
pedals has a non-zero value while driving, one unit with a
linear activation function is used in the output layer to predict
the values of these pedals’ commands and a second output unit
is used to predict the steering wheel angle. In this case, the
positive values of this unit correspond to the position of the
accelerator pedal, and the negative values represent the brake
pressure.

TABLE I: NN training hyperparameters

Parameter Value

Number of Epochs 50

Initial Learning Rate  0.01
Decay Steps 40
Decay Rate 0.998
Optimizer ADAM

D. NNs training

In NNs, the selection of optimal hyperparameters is highly
important, since it greatly impacts the final accuracy. Table I
presents the hyperparameters associated with the NN training.
Table II presents the RMSE values for the predicted states.
We utilized 20 hours of recorded driving data for training
and testing purposes. Approximately 70 minutes of data, was
reserved for testing. We ensured its selection based on its
diverse content, including scenarios with sharp turns, to pro-
vide a comprehensive and rigorous evaluation of the model’s
performance. To train the NNs, N}, is set to 9 and N to 10.

IV. NPC DESIGN

Although the driver model is used to emulate driver be-
havior to generate the required control inputs for navigating
a desired path, two significant challenges persist. Firstly, it
is crucial to acknowledge that this NN at best approximates
driver behavior. Given that drivers do not consistently provide
optimal control commands, the output of the driver NN is not
always optimal either. Secondly, the challenges extend where
discrepancies between the controlled environment and real-
world scenarios arise. During training, the vehicle consistently
starts from the same initial position as the reference path. How-
ever, such ideal conditions rarely occur in actual situations,
leading to differences between the vehicle’s initial position
and reference path during maneuvers. This underscores the
controller’s capability to manage scenarios that may deviate
from those that driver NN had seen during training process.
To design the NPC, it is assumed that the vehicle’s position
at the current time step, k = 0, differs from the starting point
of the reference path. In other words, we have:

V zrefk,Q + yrefk2 > 0. (6)

where, for k = 0, y.r and x.¢ are the coordinates of the first
point on the reference path in the vehicle’s local coordinates
attached to the body. This means that y.s and x.¢ denote the
location of the first point from the perspective of the vehicle
itself, rather than in an absolute coordinate system. Because of
inequality (6), a path planning method is required to guide the
vehicle to the reference path. It is not the primary objective of
this study to address the problem of path planning. Therefore,
a simple path planning approach, as described in (7)-(10), is
utilized to design the desired path components x,, and ypp, ,
where “pp” denotes the planned path. The values y,, and z,,
indicate the trajectory that the vehicle would follow, taking
into account its current velocity and steering wheel angle,
within the prediction horizon. These values are determined
through calculations based on (1) to (5).

Tppy, = Tpy, + (xfefk - ‘rpk) : Singid(ka Caa Cc)a (N
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Fig. 2: Generated trajectories toward the reference path using different
curvature.

Ypp,, = Yp,, + (yref;c - ypk) : Singid(k7 Ca, Cc)v (3
1

1 —+ e_ca(k_cc) ’ (9)

E={1,...,N}. (10)

Here, the sigmoid curve is shaped by parameters C, and

C.. The parameter C, represents the maximum slope in the

sigmoid curve, while C. represents a centrosymmetric point.
In this work, C, = 40%6 is considered, indicating that:

sigmoid(k = 0,C,,4.6/C,) = 0.01.

sigmoid(k, Cy, C.) =

Accordingly, for all values of C,, the sigmoid function al-
ways has a value close to zero at £ = 0. Different values
of C, have been considered in the range C, € [0.3,1].
Consequently, by considering P different number of C,
values and combining all z,, = [y, =1, -.,Zpp,=n] and
Yop = [Yppo=1>- -+ Ypp,=N], Which are generated using (7)
and (8), P? new paths with different curvature intensities are
created towards the reference path. As depicted in Fig. 2, we
generated a total of P? planned trajectories. Fig. 2 shows these
generated paths in red. This quantity can vary depending on the
computational resources available. In the next step, these P?
paths are fed as a batch input to the driver NN. As a result, the
driver NN generates a batch of P? control command vectors
to navigate through these paths. Thus, the shape of the matrix
is P x P x N. This implies that:
[5[P2><N]7 (Apos. or BPre.)[szN]]T

(1)

= fNN,driver(xpp[PQ «N]? ypp[Pz «N)?
opp[szN] ) 'Upp[szN] ) G[PQXN] ) WNNL{)'

Where 0, and v, are the road slope and velocity corre-
sponding to the planned paths. We ignore any deviation in
heading angle between the vehicle and the reference path at
k = 0, assuming that the difference is negligible during the
maneuver.

The generated control inputs are then fed into the vehicle
model in (5), and model predicted paths are calculated by
combining (1)-(4). By having the control inputs and their
model predicted paths, (13) calculate the corresponding costs.

N
JP = Z wd(eﬁ,k)2 + wzp(ei,kf +ws (Ad})?
k=1
T WA, (AAlgos.k)2 + WB, (ABIZ;re.k)2
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Fig. 3: The green dot indicates the minimum value of the costs
associated with P2=256 planned paths.
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Here, J? represents the cost associated with the pth control
inputs and the corresponding model predicted path. In (13), the
first two terms refer to the distance and heading error of the
vehicle, respectively. A represents the change in the control
inputs between consecutive time steps. The terms Z,, 1, and 3,
represent the predicted position in local coordinates for the kth
time step. Weighting coefficients wq, wy,, ws, Wa,,, , and wg,,
are chosen based on experience and controller performance.
When the values of J? are computed for p = 1,2,..., P?,
the path with the minimal cost, represented by the green color
in Fig.2, is determined among the P? generated paths. Fig. 3
shows the cost function values that correspond to the example
shown in Fig. 2.

® Reference initial point
—— Reference path

*  Vehicle initial point
—— Augmented paths
—— Path with min. cost (old)
8 = = Path with min. cost (new)

Y (m)

Fig. 4: Augmented paths and path with minimum cost found in the
first iteration of path augmentation.

After identifying the lowest-cost path in the first iteration,
the process transitions to the path augmentation phase. This
phase refines the selected path by introducing random Gaus-
sian noise to the velocity and yaw rate, enabling a higher-
resolution search for potentially lower-cost paths. The new
trajectories are computed using (2)-(4), and the noise variance



Refrence path .
B
i pat

XYV ‘

Fig. 5: Block diagram of the proposed NPC algorithm. The plant
is the vehicle NN model, and the actual vehicle image is for
visualization.

progressively decreases in successive iterations to improve
resolution. Path augmentation continues until the stopping
criteria are met, defined as follows:

Jmin,i < Thcost
or
Jmin,i

- Jmin,i—l

(16)

< Thgig. 1> 1

J . ) cost
min,s

Here, Juin,; is the minimum cost at iteration 4, Thee is the
threshold for acceptable cost, and Thg;, , is the threshold for
acceptable cost difference. These thresholds depend on the
cost scale. In the NPC algorithm, receding horizon control
(RHC) is employed as the final step. Once the minimum-cost
path is identified, the corresponding optimal control commands
are derived from the driver NN. Following RHC principles,
only the first control input is applied to the system, and the
process repeats at the next time step for the updated state. This
iterative optimization continues until the end of the path. Fig.
5 illustrates the block diagram of the proposed NPC controller.

Fig. 2 illustrates an example of planned paths (red) gener-
ated using (7) and (8), where the green path represents the
one with the lowest cost. Fig. 4 then shows the augmented
paths (red) generated around the best path (solid green) during
the path augmentation phase. The dashed green line in Fig. 4
represents the newly optimized path after augmentation.

V. RESULTS AND DISCUSSION
A. Vehicle modeling results

The initial evaluation of the NN model follows the standard
validation approach used during training, where predictions
are tested over short time horizons to asses immediate, step-
by-step accuracy. The open-loop test uses 100 seconds of
sequential control inputs to evaluate how well the model
maintains accuracy over time, highlighting potential error
accumulation or drift that may not appear in short-horizon
tests.

« NN model evaluation

The test data is divided into segments of 10-time step length
series, as mentioned in the methodology where this number
is Np + 1 and Ny, is set to 9. According to (5), the vehicle
model is utilized to predict the values of a,, r¢, and ¢;. The
performance results of the TD-MLP, LSTM and Bi-LSTM are
presented in Table III. It is clear from the results that the
TD-MLP architecture has performed slightly better than the
LSTM.

« Open-loop test
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Fig. 6: A 100-second sample of control commands and road slope.
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Fig. 7: Comparison of actual vehicle states with predicted states from
the proposed NN models, including TD-MLP and LSTM.

The NN models, in an open-loop method, receive driver
control inputs u = [§, Apes., Bpre., G]T, path slopes, and
initial vehicle velocities from test data. Vehicle state values
are then updated using (1)-(5). It is worth noting that, in
the long-term open-loop test, numerical integration over an
extended horizon can lead to the accumulation of integration
errors. Therefore, the fourth-order Runge—Kutta method was
employed to compute X and Y, instead of the simpler forward
Euler approach used in (3) and (4).

Fig. 6 illustrates a 100-second sample of control inputs and
road slope applied to the NN models for long-term prediction.
This figure presents the steering wheel angle in degree units in
the top plot, percentages of accelerator pedal position (values
greater than zero) and brake pressure in psi (absolute values
less than zero) in the middle plot, as well as gear numbers
and road slope in the bottom plot.

Corresponding to the inputs shown in Fig. 6, Fig. 7 il-
lustrates the long-term prediction of acceleration, yaw rate,
velocity, and yaw angle in the (a), (b), (c), and (d) respectively.
The predictions generated by the NN models for acceleration
and yaw rate states demonstrate remarkable accuracy, closely
matching the actual values observed in the test data.

As shown in Fig. 7(c), over the 100-second timeframe,
the cumulative impact of predicted acceleration errors had
minimal influence on the velocity output, which closely aligns
with the actual data. Observing the predicted yaw angle in Fig.
7(d), the overlap between NN model predictions and the actual
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TABLE II: TD-MLP, LSTM, Bi-LSTM RMSE in train and test.

Model Output  Unit RMSE (train) RMSE (test)
2

TDMLP X&) m/s 0.0847 0.0995
deg/s 0.0307 0.0370
LSTM Aary M2 0.0901 0.1135
deg/s 2.008 1.862
Apos. % 0.0901 0.1135
Bi-LSTM  Bpye, psi 1.691 1.933
d deg 1.777 2.174

TABLE III: RMSE for NN models in the open-loop test.

Model  a(y,) (m/s?) ¢ (deg/s) v (m/s) ¢ (deg)
TD-MLP 0.2141 0.0261 0.5804 0.2364
LSTM 0.1528 0.0426 0.4940 0.1195
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Fig. 9: The effects of road slope on the predicted acceleration by NN
models.

vehicle values indicates the effectiveness of the NN models in
capturing lateral vehicle dynamics.

The predicted and ground truth trajectory, covering more
than one kilometer, is shown in Fig. 8. During this 100-second
interval, the input conditions pose significant challenges, with
continuous variations in throttle and brake inputs leading to
fluctuations in vehicle speed within the range of 7 m/s to 22.5
m/s. Additionally, the gear selection transitions frequently, and
the road gradient exhibits a wide range of values. Despite
these challenges, the NN models demonstrate robustness in
accurately predicting the trajectory under diverse conditions.

One of the primary goal of NN modeling is to analyze
the relationship between road slope and vehicle dynamics,
emphasizing its role in controller design and highlighting
variables often overlooked in analytical models. For instance,
Fig. 9 shows that traveling uphill requires more gas pedal
pressure to maintain constant velocity. To evaluate the NN
models’ response to slope changes, a test was conducted
with fixed inputs: steering wheel angle (§ = 0°), accelerator
position (Apys. = 25%), brake pressure (Bp. = 0), gear

TABLE 1V: Controller Parameters

Control Parameter Value
History horizon, Ny, 9
Prediction horizon, N 10

Time step, ¢ 0.1s
Distance error weight, wgq 0.5
Heading error weight, wy, 0.5
Steering wheel angle weight, ws 0.0001
Pedal input weight, w A, , WBy, 0.001
NMPC termination tolerance 1x 106

Minimum cost threshold, Theost 0.1
Cost difference threshold, Thgit,,, 5%

number (G = 3), and an initial velocity of 10m/s. The
slope was varied from -8 to 8 degrees. Results showed that
acceleration was positive downhill and turned negative uphill,
confirming that NN models accurately capture the slope-
acceleration relationship. This test highlights the adaptability
of NN models to real-world vehicle dynamics by isolating the
slope’s impact on acceleration.

B. NPC tracking results

This section compares NPC with two NMPC variants, both
based on solving a finite-horizon optimal control problem with
the same quadratic cost function and the same weights, system
dynamics, and constraints, as in NPC (12)-(16). Two NMPC
versions were considered: NMPC, with less strict stopping
conditions, and NMPC-2, which used stopping conditions
similar to NPC. Both NMPC variants utilized the interior point
optimizer (IPOPT) algorithm [15], a robust method for solv-
ing nonlinear optimization problems. The NN vehicle model
served as the prediction model for both NMPC and NPC, with
the reference trajectory being a cloverleaf interchange, a non-
level intersection. For all trajectory-tracking experiments, a
constant reference velocity of v = 10 m/s was assumed. This
constant-speed assumption directly determines the temporal
spacing of the reference path (Zyef, Yrer), ensuring uniform
sampling of the desired trajectory in time. As shown in the
slope profile of the reference trajectory visible in Fig. 11(a),
this scenario includes both positive and negative road slopes.
The gear number was fixed to 4. This choice reflects the typical
operating condition observed in the dataset, where speeds of
9-11 m/s and slopes between -6° and +6° were predominantly
driven in 4th gear. Gear control is outside the scope of this
study but could be integrated into the NPC without modifying
the core method. Although the vehicle and driver NN models,
and consequently the optimization algorithm, are capable of
receiving slope information, the road slope was intentionally
set to zero in NPC and NMPC to introduce uncertainty during
operation. This setup allows us to evaluate the robustness of
both controllers in the presence of a slope disturbance. The
value of controller parameters are listed in Table IV. As shown
in Fig. 10, positive values represent accelerator pedal position,
while the absolute values of negative data indicate brake
pressure. NMPC-2 exhibited poor control outcomes, including
significant oscillations in control values. Unlike NMPC, which
allows more iterations, NMPC-2’s limited optimization steps
make it more sensitive to prediction errors and disturbances,
amplifying high-frequency variations. The key difference is the
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Fig. 10: Pedal inputs generated by NMPC-2, NMPC, and NPC.

truncated optimization process in NMPC-2, which limits its
ability to optimize smooth control commands effectively. Due
to its subpar performance, subsequent analyses focus solely
on NPC and NMPC.

Fig. 11 should be observed sequentially: (a)-(c)-(e) and
(b)-(d)-(f). Fig. 11(a) illustrates the reference trajectory slope
profile with zero, positive, and negative values, enabling an
analysis of pedal control responses to slope changes. In
Fig. 11(c), negative slopes (downhill) prompt the controller
to reduce accelerator input and engage the brakes, while
positive slopes (uphill) increase accelerator input. As shown
in Fig. 11(e), the vehicle closely follows the reference path
with a velocity near 10m/s. Initially, a one-meter position
offset causes a slight velocity increase, corrected by reducing
accelerator input to maintain a constant 10 m/s.

In Fig. 11(d), the controllers initially applied a steering
wheel angle of about 90 degrees to account for the vehicle’s
offset from the reference path in Fig. 12. This caused a slight
heading angle deviation in Fig. 11(f), which the controllers
promptly corrected. Figure 11(b) illustrates the road curvature,
a primary factor governing vehicle steering. Variations in
curvature, shown in Fig. 11(b), lead the controllers to adjust
the steering wheel angle (Fig. 11(d)), which subsequently
drives the evolution of the vehicle’s heading angle over time
(Fig. 11(f)). Throughout the scenario, the controllers consis-
tently generated steering commands that corresponded to the
curvature of the reference path.

At the 10th and 150th seconds, significant changes occurred
in the road gradient, shifting from 0 degrees to -5 and from
5 degrees to 0 degrees, respectively. As a result of these
abrupt changes in slope, the vehicle experienced a momentary
increase in velocity, exceeding the 10 m/s target. At the 10th
second, the control system reduced the accelerator pedal
input and applied the brakes, while at the 150th second, the
controllers decreased the accelerator input to maintain the
reference velocity. Furthermore, at the 70th and 90th seconds,
when the road incline steepened by 5 degrees, the vehicle’s ve-
locity decreased. In these instances, the controllers responded
by reducing brake pressure and increasing accelerator pedal
input to restore the velocity to the desired reference value
10 m/s. It is worth noting that no input saturation was observed
in the conducted simulation.

As depicted in Fig. 12, the NMPC algorithm demonstrates
a slight performance advantage over NPC, particularly within
the initial 10 meters of the path, as it reaches the reference
trajectory slightly ahead of NPC. This improved performance
can be attributed to the looser stopping conditions employed
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Fig. 12: Trajectory tracking performance of NPC and NMPC.
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Fig. 13: Distance error for NMPC and NPC.

in IPOPT, which lies at the heart of the NMPC algorithm.

Fig. 13 reveals that NPC outperformed NMPC during
downhill segments (10th to 70th second, -5-degree slope) and
was even more effective during uphill segments (90th to 150th
second, 5-degree slope). This demonstrates NPC’s reliability
in handling road slope disturbances. The path augmentation
method consistently reduced the optimal control cost by
4-20% across all scenarios. Smaller improvements (= 4-8%)
occurred when the road slope was zero, since the initially
planned paths were already close to optimal. Larger reductions
(=~ 8-20%) appeared in uphill and downhill segments, where
position errors were greater.
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In this research, conducted on an Intel Core i7, 8 processor
(1.90 GHz) and 16 GB DDR4 RAM computer, we found
that P = 16 was the optimal value for achieving real-
time performance of NPC on our hardware. Increasing the
number of generated paths beyond 256 could impact real-time
performance, especially on less powerful hardware. However,
more capable systems can handle a higher number of paths
without affecting performance. The simulations are conducted
at 0.1-second intervals. As depicted in Fig. 14, a standard
Core i7 computer completes each time step in approximately
0.075 seconds for the NPC method, 2 seconds for the NMPC
method, and 0.2 seconds for the NMPC-2 method. The longer
computation time for NMPC results from the complexity of
optimizing NN dynamics.

NPC benefits from prior knowledge through the driver NN,
allowing efficient optimization by predicting control com-
mands within the horizon. Its batch processing feature enables
simultaneous evaluation of cost functions, speeding up the
search for optimal inputs.

In contrast, NMPC uses the IPOPT algorithm, a gradient-
based method that iteratively computes gradients to find opti-
mal solutions. Using offline trained NN models in NMPC’s
online optimization increases computation time, making it
less efficient for real-time applications. Additionally, unlike
NMPC, which requires solving a constrained nonlinear pro-
gram at each time step, NPC enforces input limits through
a lightweight clipping mechanism. This eliminates the need
for constraint gradients [15] and the overhead associated with
iterative solvers, thereby significantly reducing computational
complexity while preserving tracking performance and demon-
strating adaptive behavior under road slope disturbances.

VI. CONCLUSION

This article presents a coupled longitudinal and lateral
dynamic modeling of a vehicle using NNs. The NN models
map real control inputs to acceleration and yaw rate. The
section IV introduces the NPC technique, where a predefined
path horizon is provided to driver NN models, generating
control inputs. These commands are applied to the vehicle
model to produce vehicle states and calculate a batch of cost
functions. The algorithm identifies the path with the minimum
cost, then augments new paths around it to seek further cost
reductions. This iterative process continues until cost changes
become negligible. The process repeats for subsequent control
horizons until the path is complete. The study also considers
road slope as a disturbance factor, with controllers receiving
a constant slope value of zero during the simulation while the
test scenario has -5 to +5 degrees road slope. NPC effectively

generates control inputs to maintain constant velocity without
classic adaptive designs.

Although the path planning method in this study was
intentionally simplified, as it was not the primary focus, future
work could explore more advanced path planning techniques
to further enhance trajectory tracking performance. Moreover,
NPC could be extended to autonomous aerial vehicles, neces-
sitating the collection of sensory data tailored to the unique
dynamics and control requirements of aerial systems.
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