
International Journal of Innovative
Computing, Information and Control ICIC International c©2011 ISSN 1349-4198
Volume 7, Number 1, January 2011 pp. 1–10

DECENTRALIZED LEARNING IN GENERAL-SUM MATRIX GAMES:

AN LR−I LAGGING ANCHOR ALGORITHM

Xiaosong Lu and Howard M. Schwartz

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive, Ottawa, ON, Canada
luxiaos@sce.carleton.ca; schwartz@sce.carleton.ca

Received October 2009; revised March 2010

Abstract. This paper presents an LR−I lagging anchor algorithm that combines a lag-

ging anchor method with an LR−I learning algorithm. We prove that this decentralized

learning algorithm converges in strategies to Nash equilibria in two-player two-action

general-sum matrix games. A practical LR−I lagging anchor algorithm is introduced for

players to learn their Nash equilibrium strategies in general-sum stochastic games. Sim-

ulation results show the performance of the proposed LR−I lagging anchor algorithm in

both matrix games and stochastic games

Keywords: Multiagent learning, Matrix Games, Game Theory

1. Introduction. Multi-agent learning algorithms have received considerable attention
over the past two decades [1, 2]. Among multi-agent learning algorithms, decentral-
ized learning algorithms have become an attractive research field. Decentralized learning
means that there is no central learning strategy for all of the agents. Instead, each agent
learns its own strategy. Decentralized learning algorithms can be used for players to learn
their Nash equilibria (NE) in games with incomplete information [3, 4]. When an agent
has ”incomplete information” it means that the agent does not know its own reward func-
tion, nor the other players’ strategies nor the other players’ reward functions. The agent
only knows its own action and the received reward at each time step. The main challenge
for designing a decentralized learning algorithm with incomplete information is to prove
that the players’ strategies converge to a Nash equilibrium.

There are a number of multi-agent learning algorithms proposed in the literature that
can be used for two-player matrix games. Lakshmivarahan and Narendra [3] presented a
linear reward-inaction approach that can guarantee the convergence to a Nash equilibrium
under the assumption that the game only has strict Nash equilibria in pure strategies. The
linear reward-penalty approach, introduced in [4], can guarantee that the expected value of
players’ strategies converge to a Nash equilibrium in fully mixed strategies with the proper
choice of parameters. Bowling and Veloso proposed a WoLF-IGA approach that can
guarantee the convergence to a Nash equilibrium for two-player two-action matrix games
and the Nash equilibrium can be in fully mixed strategies or in pure strategies. However,
the WoLF-IGA approach is not a completely decentralized learning algorithm since the
player has to know its opponent’s strategy at each time step. Dahl [5, 6] proposed a
lagging anchor model approach that can guarantee the convergence to a Nash equilibrium
in fully mixed strategies. But the lagging anchor algorithm is not a decentralized learning
algorithm because each player has to know its reward matrix. Besides the design of
learning algorithms, other studies on matrix games have been conducted more recently
on finding Nash equilibria for some specific matrix games in [7, 8, 9].

1

2 X. LU, H. M. SCHWARTZ

In this paper, we evaluate the learning automata algorithm LR−I [3] and LR−P [4],
the gradient ascent algorithm WoLF-IGA [10] and the lagging anchor algorithm [5]. We
then propose the new LR−I lagging anchor algorithm. The LR−I lagging anchor algorithm
is a combination of learning automata and gradient ascent learning. It is a completely
decentralized algorithm and as such, each agent only needs to know its own action and
its own reward at each time step. This paper is an extension of the work in [11] from
two-player two-action zero-sum matrix games to two-player two-action general-sum matrix
games. We prove the convergence of the LR−I lagging anchor algorithm to Nash equilibria
in two-player two-action general-sum matrix games. Furthermore, the Nash equilibrium
can be in games with pure or fully mixed strategies. We then simulate three matrix games
to test the performance of our proposed learning algorithm.
The motivation for this research is to develop a decentralized learning algorithm for

teams of mobile robots. In particular, we are interested in robots that learn to work
together for security applications. We have structured these applications as stochastic
games such as the guarding a territory game or the pursuit-evasion game. These games
have multiple states and multiple players. In Section 3, we make theoretical advances
that prove convergence of our proposed LR−I lagging anchor algorithm for two-player
two-action general-sum matrix games. We further extend the works to the grid game
introduced by Hu and Wellman [12] and we demonstrate the practical performance of the
proposed algorithm.

2. Learning in Matrix Games. A matrix game is a tuple (n,A1, ...An, R1, ...Rn) where
n is the number of the players, Ai(i = 1, ..., n) is the action set for player i and Ri :
A1×· · ·×An → R is the reward function for player i. A matrix game is a game involving
multiple players and a single state. Each player i(i = 1, ..., n) selects an action from its
action set Ai = {ai1, a

i
2, · · · , a

i
mi
} and receives a reward. Player i’s reward function Ri is

determined by all the players’ joint actions from joint action space A1 × · · · × An.
In a matrix game, each player tries to maximize its own expected reward based on

the player’s strategy. A player’s strategy is defined as a probability distribution over the
player’s action set. To evaluate a player’s strategy, we have the following concept of a
Nash equilibrium.

Definition 2.1. A Nash equilibrium is a collection of all the players’ strategies
(σ1

e , ..., σ
n
e) such that, for i = 1, ..., n,

σi
eσ

−i
e Ri ≥ σiσ−i

e Ri, ∀σi ∈ PD(Ai) (1)

where PD(Ai) is the set of all probability distributions over the action set Ai, and σ−i is
a joint strategy for all the players except player i.

In other words, a Nash equilibrium is a collection of strategies for all the players such
that no player can do better by changing its own strategy given that the other players
continue playing their Nash equilibrium strategies.
A Nash equilibrium can be in fully mixed strategies or in pure strategies. If the prob-

ability of any action from the action set is greater than 0, then the player’s strategy is
called a fully mixed strategy. If the player selects one action with probability of 1 and
other actions with probability of 0, then the player’s strategy is called a pure strategy.
A Nash equilibrium is called a strict Nash equilibrium in pure strategies if each player’s
equilibrium action is better than all its other actions, given the other players’ actions [13].
For a two-player matrix game, we can set up a matrix with each element containing

a reward for each joint action pair. Then the reward function Ri for player i(i = 1, 2)

AN LR−I LAGGING ANCHOR ALGORITHM 3

becomes a matrix. Given that each player has two actions in the game, we can define a
two-player two-action general-sum game as

R =

[

r11 r12
r21 r22

]

, C =

[

c11 c12
c21 c22

]

(2)

where rlf and clf denote the reward to the the row player (player 1) and the reward to the
column player (player 2) respectively. The row player chooses action l ∈ {1, 2} and the
column player chooses action f ∈ {1, 2}. If the two players are fully competitive in the
game, we will have a two-player zero-sum matrix game with R = −C or rlf + clf = 0 for
l, f ∈ {1, 2}. Based on (2), the pure strategies l and f are called a strict Nash equilibrium
in pure strategies if

rlf > r−lf , clf > cl−f for l, f ∈ {1, 2} (3)

where −l and −f denote any row other than row l and any column other than column f
respectively.

Learning in a two-player matrix game can be expressed as the process of each player
updating its strategy according to the received reward from the environment. A learning
scheme is used for each player to update its own strategy toward a Nash equilibrium
based on the information from the environment. In order to address the limitations of the
previously published multi-agent learning algorithms for matrix games, we divide these
learning algorithms into two groups. One group is based on learning automata [14] and
another group is based on gradient ascent learning [15].

2.1. Learning Automata. Learning automation is a learning unit for adaptive decision
making in an unknown environment [14]. The objective of the learning automation is to
learn the optimal action or strategy by updating its action probability distribution based
on the environment response. The learning automata approach is a completely decentral-
ized learning algorithm since each learner only considers its action and the received reward
from the environment and ignores any information from other agents such as the actions
taken by other agents. The learning automation can be represented as a tuple (A, r, p, U)
where A = {a1, · · · , am} is the player’s action set, r ∈ [0, 1] is the reinforcement signal,
p is the probability distribution over the actions and U is the learning algorithm to up-
date p. There are two typical learning algorithms based on learning automata: the linear
reward-inaction (LR−I) algorithm and the linear reward-penalty (LR−P) algorithm.

2.1.1. Linear Reward-Inaction Algorithm. The linear reward-inaction (LR−I) algorithm
for player i(i = 1, ..., n) is defined as follows

pic(k + 1) = pic(k) + ηri(k)(1− pic(k)) if ac is the current action at k

pij(k + 1) = pij(k)− ηri(k)pij(k) for all a
i
j 6= aic (4)

where k is the time step, the superscripts and subscripts on p denote different players and
each player’s different action respectively, 0 < η < 1 is the learning parameter, ri(k) is
the response of the environment given player i’s action aic at k and pic is the probability
distribution over player i’s action aic(c = 1, · · · , m).

In a matrix game with n players, if each player uses the LR−I algorithm, then the LR−I

algorithm guarantees the convergence to a Nash equilibrium under the assumption that
the game only has strict Nash equilibria in pure strategies [3].

4 X. LU, H. M. SCHWARTZ

2.1.2. Linear Reward-Penalty Algorithm. The linear reward-penalty (LR−P) algorithm for
player i is defined as follows

pic(k + 1) = pic(k) + η1r
i(k)[1− pic(k)]− η2[1− ri(k)]pic(k) (if aic is the current action)

pij(k + 1) = pij(k)− η1r
i(k)pij(k) + η2[1− ri(k)]

[

1

m− 1
− pij(k)

]

(for all aij 6= aic) (5)

where 0 < η1, η2 < 1 are learning parameters and m is the number of actions in the
player’s action set.
In a two-player zero-sum matrix game, if each player uses the LR−P and chooses η2 <

η1, then the expected value of the fully mixed strategies for both players can be made
arbitrarily close to a Nash equilibrium [4]. This means that the LR−P algorithm can
guarantee the convergence to a Nash equilibrium in the sense of expected value, but not
the player’s strategy itself.

2.2. Gradient Ascent Learning. Gradient ascent learning can be used to update the
player’s strategy in the direction of the current gradient [15]. At each iteration, the player
will adjust its strategy based on its gradient in order to increase its expected reward. Using
a gradient ascent learning algorithm, Singh et al. [15] showed that the players’ strategies
do not converge to Nash equilibria for the general case of matrix games. However, there
are a number of gradient ascent learning algorithms that can guarantee the convergence
to Nash equilibria for specific matrix games such as two-player two-action matrix games.
These algorithms are the WoLF-IGA algorithm [10] and the lagging anchor algorithm [5].

2.2.1. WoLF-IGA Algorithm. Win or learn fast-infinitesimal gradient ascent (WoLF-IGA)
algorithm was introduced by Bowling and Veloso [10] for two-player two-action matrix
games. As a gradient ascent learning algorithm, the WoLF-IGA algorithm allows the
player to update its strategy based on the current gradient and a variable learning rate.
The value of the learning rate is smaller, when the player is winning and the learning rate
is larger when the player is losing. The term p1 is the probability of player 1 choosing
the first action. Then 1 − p1 is the probability of player 1 choosing the second action.
Accordingly, q1 is the probability of player 2 choosing the first action and 1 − q1 is the
probability of player 2 choosing the second action. The updating rules of the WoLF-IGA
algorithm are as follows

p1(k + 1) = p1(k) + ηα1(k)
∂V 1(p1(k), q1(k))

∂p1
(6)

q1(k + 1) = q1(k) + ηα2(k)
∂V 2(p1(k), q1(k))

∂q1
(7)

α1(k) =

{

αmin, if V
1(p1(k), q1(k)) > V 1(p∗1, q1(k))

αmax, otherwise

α2(k) =

{

αmin, if V
2(p1(k), q1(k)) > V 2(p1(k), q

∗

1)
αmax, otherwise

where η is the step size, αi(i = 1, 2) is the learning rate for player i(i = 1, 2), V i(p1(k), q1(k))
is the expected reward of player i at time k given the current two players’ strategy pair
(p1(k), q1(k)), and (p∗1, q

∗

1) are equilibrium strategies for the players. In a two-player two-
action matrix game, if each player uses the WoLF-IGA algorithm with αmax > αmin, the
players’ strategies converge to a Nash equilibrium as the step size η → 0 [10].
This algorithm is a gradient ascent learning algorithm that can guarantee the conver-

gence to a Nash equilibrium in fully mixed or pure strategies for two-player two-action

AN LR−I LAGGING ANCHOR ALGORITHM 5

general-sum matrix games. However, this algorithm is not a decentralized learning al-
gorithm. This algorithm requires the knowledge of V 1(p∗1, q1(k)) and V 2(p1(k), q

∗

1) in
order to choose the learning parameters αmin and αmax accordingly. In order to obtain
V 1(p∗1, q1(k)) and V 2(p1(k), q

∗

1), we need to know each player’s reward matrix and its op-
ponent’s strategy at time k. Whereas, in a decentralized learning algorithm the agents
would only have their own actions and reward at time k. Although a practical decentral-
ized learning algorithm called a WoLF policy hill-climbing method was provided in [10],
there is no proof of convergence to Nash equilibrium strategies.

2.2.2. The Lagging Anchor Algorithm. The lagging anchor algorithm for two-player zero-
sum games was introduced by Dahl [5]. As a gradient ascent learning method, the lagging
anchor algorithm updates the players’ strategies according to the gradient. We denote
player 1’s strategy as a vector v = [p1, p2, · · · , pm1

]T which is the probability distribution
over all the possible actions. Accordingly, player 2’s strategy is denoted as a vector
w = [q1, q2, · · · , qm2

]T . The updating rules are listed as follows

v(k + 1) = v(k) + ηPm1
R1Y (k) + ηγ(v̄(k)− v(k))

v̄(k) = v̄(k) + ηγ(v(k)− v̄(k))

w(k + 1) = w(k) + ηPm2
R2X(k) + ηγ(w̄(k)−w(k))

w̄(k) = w̄(k) + ηγ(w(k)− w̄(k)) (8)

where η is the step size, γ > 0 is the anchor drawing factor, Pmi
= Imi

− (1/mi)1mi
1T
mi

is
a matrix used to maintain the summation of the elements in the vector v or w to be one.
Y (k) is a unit vector corresponding to the actions of player 2. If the mith action in player
2’s action set is selected at time k, then the mith element in Y (k) is set to 1 and the other
elements in Y (k) are zeros. Similarly, X(k) is the unit vector corresponding to the actions
of player 1 and R1 and R2 are the reward matrices for player 1 and 2 respectively. In (8),
v̄ and w̄ are the anchor parameters for v and w respectively which can be represented as
the weighted average of the players’ strategies. In a two-player zero-sum game with only
Nash equilibria in fully mixed strategies, if each player uses the lagging anchor algorithm,
then the players’ strategies converge to a Nash equilibrium as the step size η → 0 [6].

This algorithm guarantees the convergence to a Nash equilibrium in fully mixed strate-
gies. However, the convergence to a Nash equilibrium in pure strategies has never been
discussed. Furthermore, the lagging anchor algorithm in (8) requires full information of
the player’s reward matrices R1 and R2. Therefore, the lagging anchor algorithm is not a
decentralized learning algorithm.

Table 1 compares these algorithms based on the allowable number of actions for each
player, the convergence to pure strategies or fully mixed strategies and the level of decen-
tralization. From this table, only the WoLF-IGA algorithm can guarantee the convergence
to both pure and mixed strategy Nash equilibrium (NE). But it is not a decentralized
learning algorithm. Although the LR−I algorithm and the LR−P algorithm are decentral-
ized learning algorithms, neither of them can guarantee the convergence to both pure and
mixed strategy NE. Therefore, the main motivation of this work is to design a decen-
tralized learning algorithm which can guarantee the convergence to both pure and mixed
strategy NE as shown in Table 1.

3. LR−I Lagging Anchor Algorithm. In this section, we design an LR−I lagging anchor
algorithm which is a completely decentralized learning algorithm and can guarantee the
convergence to Nash equilibria in both pure and fully mixed strategies. We take the LR−I

algorithm defined in (4) as the updating law of the player’s strategy and add the lagging

6 X. LU, H. M. SCHWARTZ

Table 1. Comparison of learning algorithms in matrix games

Applicability

Existing algorithms
Our proposed

algorithm

LR−I LR−P WoLF-IGA lagging anchor
LR−I

lagging anchor

Allowable
no limit 2 actions 2 actions no limit 2 actions

actions

Convergence
pure fully mixed NE

both
fully mixed

both
NE (expected value) NE

Decentralized? Yes Yes No No Yes

anchor term in (8). Then the LR−I lagging anchor algorithm for player i is defined as
follows

pic(k + 1) = pic(k) + ηri(k)[1− pic(k)] + η[p̄ic(k)− pic(k)]
p̄ic(k + 1) = p̄ic(k) + η[pic(k)− p̄ic(k)]

}

if aic is the action
taken at time k

pij(k + 1) = pij(k)− ηri(k)pij(k) + η[p̄ij(k)− pij(k)]
p̄ij(k + 1) = p̄ij(k) + η[pij(k)− p̄ij(k)]

}

for all aij 6= aic (9)

where η is the step size and (p̄ic, p̄
i
j) are the lagging parameters for (pic, p

i
j). The idea

behind the LR−I lagging anchor algorithm is that we consider both the player’s current
strategy and the long-term average of the player’s previous strategies at the same time.
We expect that the player’s current strategy and the long-term average will be drawn
towards the equilibrium point during learning.
To analyze the above LR−I lagging anchor algorithm, we use ordinary differential equa-

tions (ODEs). The behavior of the learning algorithm can be approximated by ODEs as
the step size goes to zero. Thathachar and Sastry [16] provided the equivalent ODEs of
the LR−I algorithm in (4) as

ṗic =

mi
∑

j=1

picp
i
j(d

i
c − dij) (10)

where dic is the expected reward given that player i is choosing action aic and the other
players are following their current strategies.
Combining the above ODEs of the LR−I algorithm in (10) with the ODEs for the lagging

anchor part of our algorithm, we can find the equivalent ODEs for our LR−I lagging anchor
algorithm given as

ṗic =

mi
∑

j=1

picp
i
j(d

i
c − dij) + (p̄ic − pic)

˙̄pic = pic − p̄ic (11)

Based on our proposed LR−I lagging anchor algorithm, we now present the following
theorem.

AN LR−I LAGGING ANCHOR ALGORITHM 7

Theorem 3.1. We consider a two-player two-action general-sum matrix game and as-
sume the game only has a Nash equilibrium in fully mixed strategies or strict Nash equi-
libria in pure strategies. If both players follow the LR−I lagging anchor algorithm, when
the step size η → 0, then the following is true regarding the asymptotic behavior of the
algorithm.

• All Nash equilibria are asymptotically stable.
• Any equilibrium point which is not a Nash equilibrium is unstable.

Proof: Given a two-player two-action general-sum game defined in (2), we denote p1
as the probability of player 1 taking its first action and q1 as the probability of player 2
taking its first action. Then the LR−I lagging anchor algorithm becomes

ṗ1 =
2

∑

j=1

p1pj(d
1
1 − d1j) + (p̄1 − p1)

˙̄p1 = p1 − p̄1

q̇1 =
2

∑

j=1

q1qj(d
2
1 − d2j) + (q̄1 − q1)

˙̄q1 = q1 − q̄1 (12)

where d11 = r11q1 + r12(1 − q1), d
1
2 = r21q1 + r22(1 − q1), d

2
1 = c11p1 + c21(1 − p1) and

d22 = c12p1 + c22(1− p1). Then (12) becomes

ṗ1 = p1(1− p1)[u1q1 + r12 − r22] + (p̄1 − p1)

˙̄p1 = p1 − p̄1

q̇1 = q1(1− q1)[u2p1 + c21 − c22] + (q̄1 − q1)

˙̄q1 = q1 − q̄1 (13)

where u1 = r11 − r12 − r21 + r22 and u2 = c11 − c12 − c21 + c22. If we let the right hand
side of the above equation equal to zero, we then get the equilibrium points of the above
equations as (p∗1, q

∗

1) = (0, 0), (0, 1), (1, 0), (1, 1), ((c22 − c21)/u2, (r22 − r12)/u1) .To study
the stability of the above learning dynamics, we use a linear approximation of the above
equations around the equilibrium point (p∗1, q

∗

1, p
∗

1, q
∗

1). Then the linearization matrix J is
given as

J(p∗1,q
∗

1)
=



























(1− 2p∗1)(u1q
∗

1+
r12 − r22)− 1

1 p∗1(1− p∗1)u1 0

1 −1 0 0

q∗1(1− q∗1)u2 0
(1− 2q∗1)(u2p

∗

1+
c21 − c22)− 1

1

0 0 1 −1



























. (14)

8 X. LU, H. M. SCHWARTZ

If we substitute each of the equilibrium points (0, 0), (0, 1), (1, 0), (1, 1) into (14), we get

Jpure =



















−e1 − 1 1 0 0

1 −1 0 0

0 0 −e2 − 1 1

0 0 1 −1



















(15)

where

e1 = r22 − r12, e2 = c22 − c21 for (0, 0); (16)

e1 = r21 − r11, e2 = c21 − c22 for (0, 1); (17)

e1 = r12 − r22, e2 = c12 − c11 for (1, 0); (18)

e1 = r11 − r21, e2 = c11 − c12 for (1, 1). (19)

The eigenvalues of the above matrix Jpure are λ1,2 = 0.5[−(e1 + 2) ±
√

e21 + 4)] and

λ3,4 = 0.5[−(e2 + 2)±
√

e22 + 4)]. In order to obtain a stable equilibrium point, the real
parts of the eigenvalues of Jpure must be negative. Therefore, the equilibrium point is
asymptotically stable if

0.5[−(e1,2 + 2)±
√

e21,2 + 4)] < 0 ⇒

e1,2 + 2 >
√

e21,2 + 4 ⇒

e1,2 > 0 (20)

For the equilibrium point ((c22 − c21)/u2, (r22 − r12)/u1), the linearization matrix becomes

Jmixed =



















−1 1 p∗1(1− p∗1)u1 0

1 −1 0 0

q∗1(1− q∗1)u2 0 −1 1

0 0 1 −1



















. (21)

The characteristic equation of the above matrix is

λ4 + 4λ3 + (4 + e3)λ
2 + 2e3λ+ e3 = 0 (22)

where e3 = −p
∗

1(1−p∗1)q
∗

1(1−q∗1)u1u2. We set up the Routh table to analyze the locations
of the roots in (22) as follows

λ4 1 4+e3 e3
λ3 4 2c3
λ2 4+0.5e3 e3
λ1 (e23 + 4e3)/(4 + 0.5e3)
λ0 e3

(23)

Based on the Routh-Hurwitz stability criterion, if (22) is stable, then all the coefficients
of (22) must be positive and all the elements in the first column of the Routh table in
(23) are positive. In order to meet the Routh-Hurwitz stability criterion, we must have

AN LR−I LAGGING ANCHOR ALGORITHM 9

e3 > 0. Therefore, the equilibrium point ((c22 − c21)/u2, (r22 − r12)/u1) is asymptotically
stable if

e3 = −p
∗

1(1− p∗1)q
∗

1(1− q∗1)u1u2 > 0 ⇒

u1u2 < 0 (24)

Case 1: strict Nash equilibrium in pure strategies
We first consider that the game only has strict Nash equilibrium in pure strategies.

Without loss of generality, we assume that the Nash equilibrium in this case is both
players’ first actions. According to the definition of a strict Nash equilibrium in (3), if
the Nash equilibrium strategies are both players’ first actions, we can get

r11 > r21, c11 > c12. (25)

Since the Nash equilibrium in this case is the equilibrium point (1, 1), we can get e1 =
r11 − r21 > 0 and e2 = c11 − c12 > 0 based on (19) and (25). Therefore, the stability
condition in (20) is satisfied and the equilibrium point (1, 1) which is the Nash equilibrium
in this case is asymptotically stable.

We now test the other equilibrium points. We first consider the equilibrium point
((c22 − c21)/u2, (r22 − r12)/u1). According to (24), if this equilibrium point is stable, we
must have u1u2 < 0. To be a valid inner point in the probability space (unit square), the
equilibrium point ((c22 − c21)/u2, (r22 − r12)/u1) must satisfy

{

0 < (c22 − c21)/u2 < 1
0 < (r22 − r12)/u1 < 1

(26)

If u1u2 < 0, we can get
{

r11 > r21, r22 > r12
c11 < c12, c22 < c21

if u1 > 0, u2 < 0 (27)

{

r11 < r21, r22 < r12
c11 > c12, c22 > c21

if u1 < 0, u2 > 0 (28)

However, the conditions in (27) and (28) conflict with the inequalities in (25). Therefore,
the inequality u1u2 < 0 will not hold and the equilibrium point ((c22 − c21)/u2,(r22 −
r12)/u1) is unstable in Case 1.

For the equilibrium points (0, 1) and (1, 0), based on (17), (18) and (20), the stability
conditions are r21 > r11, c21 > c22 for (0, 1) and r12 > r22, c12 > c11 for (1, 0). How-
ever, these stability conditions conflict with the inequalities r11 > r21, c11 > c12 in (25).
Therefore, the equilibrium points (0, 1) and (1, 0) are unstable in Case 1.

For the equilibrium point (0, 0), the stability condition is r22 > r12, c22 > c21 based
on (16) and (20). From (3), we can find that this stability condition also meets the
requirement for a strict Nash equilibrium (both players’ second actions) in (3). Therefore,
the equilibrium point (0, 0) is stable only if it is also a Nash equilibrium point.

Thus, the Nash equilibrium point is asymptotically stable while any equilibrium point
which is not a Nash equilibrium is unstable.

Case 2: Nash equilibrium in fully mixed strategies
We now consider that the game only has Nash equilibrium in fully mixed strategies.

Singh et al. [15] showed that a Nash equilibrium in fully mixed strategies for a two-player
two-action general-sum matrix game has the from of

(pNE
1 , qNE

1) =

[

c22 − c21
u2

,
r22 − r12

u1

]

(29)

10 X. LU, H. M. SCHWARTZ

where (pNE
1 , qNE

1) denotes the Nash equilibrium strategies over players’ first actions which
happens to be the equilibrium point of (13). According to (24), the equilibrium point
((c22 − c21)/u2, (r22 − r12)/u1) is asymptotically stable if u1u2 < 0. If we assume u1u2 > 0,
we can get

{

0 < (c22 − c21)/u2 < 1
0 < (r22 − r12)/u1 < 1

(u1u2 > 0)⇒

{

r11 > r21, r22 > r12
c11 > c12, c22 > c21

if u1 > 0, u2 > 0 (30)

{

r11 < r21, r22 < r12
c11 < c12, c22 < c21

if u1 < 0, u2 < 0 (31)

According to (3), the above equations contain multiple Nash equilibria in pure strategies:
(pNE

1 , qNE
1) = (1, 1), (0, 0) if u1 > 0, u2 > 0 and (pNE

1 , qNE
1) = (0, 1), (1, 0) if u1 < 0, u2 < 0.

However, under our assumption, the game in Case 2 only has a Nash equilibrium in fully
mixed strategies and Nash equilibria in pure strategies do not exist. Therefore, we always
have u1u2 < 0 in Case 2 and the equilibrium point ((c22 − c21)/u2, (r22 − r12)/u1), which
is also the Nash equilibrium point, is asymptotically stable.
For the other equilibrium points, based on (16)-(19) and (20), the stability conditions

become

r22 > r12, c22 > c21 for (0, 0); (32)

r21 > r11, c21 > c22 for (0, 1); (33)

r12 > r22, c12 > c11 for (1, 0); (34)

r11 > r21, c11 > c12 for (1, 1). (35)

As already noted, the game in Case 2 only has a Nash equilibrium in fully mixed strate-
gies and we always have u1u2 < 0. Then the inequalities in (27) and (28) are true
in Case 2. However, the stability conditions in (32)-(35) for the equilibrium points
(0, 0), (0, 1), (1, 0), (1, 1) conflict with the inequalities in (27) and (28). Therefore, the
equilibrium points other than ((c22 − c21)/u2, (r22 − r12)/u1) are unstable in this case.
Thus we can conclude that the Nash equilibrium point is asymptotically stable while

the other equilibrium points are unstable in Case 2.

Example 3.1. We provide an example to illustrate the stability of the Nash equilibrium
points. We consider the following two-player zero-sum matrix game

R1 =

[

r11 2
3 −1

]

, R2 = −R1 (36)

where r11 ∈ R. We denote p1 as the probability over player 1’s first action and q1 as the
probability over player 2’s first action. Based on the analysis in (3) and (29), we can find
the Nash equilibrium points (pNE

1 , qNE
1) for different values of r11. Fig. 3.1 shows the plot

of Nash equilibrium points for r11 ∈ [−10, 10]. When r11 > 2, we have strict Nash equilib-
rium in pure strategies

(

pNE
1 = 1, qNE

1 = 0
)

. When r11 < 2, we have fully mixed strategy

Nash equilibrium
(

pNE
1 = 4/(6 − r11), q

NE
1 = 3/(6 − r11)

)

. At r11 = 2, we have multiple

Nash equilibria
(

pNE
1 = 1, qNE

1 ∈ [0, 0.75]
)

. According to Theorem 3.1, we consider the
stability of the strict Nash equilibrium in pure strategies or the Nash equilibrium in fully
mixed strategies which are the Nash equilibrium points (1, 0) and

(

4/(6−r11), 3/(6−r11)
)

.
The stability condition for the Nash equilibrium point (1, 0) can be found in (34). Based
on the reward function in (36), we find that the stability condition for (1, 0) is r11 > 2.
Similarly, the stability condition for the Nash equilibrium point

(

4/(6− r11), 3/(6− r11)
)

AN LR−I LAGGING ANCHOR ALGORITHM 11

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r11

N
as

h
E

qu
ili

br
iu

m
 S

tr
at

eg
ie

s

p1*

q1*

Figure 1. players’ Nash equilibrium strategies vs r11

can be found in (28). After we substitute the rewards in (36) into (28), we find that the
stability condition for

(

4/(6−r11), 3/(6−r11)
)

is r11 < 2. Therefore, the Nash equilibrium

points (1, 0),
(

4/(6− r11), 3/(6− r11)
)

are asymptotically stable.

4. Simulation. We now simulate three matrix games to show the performance of the
proposed LR−I lagging anchor algorithm. We first take the matching pennies game for
example. This game is a two-player zero-sum game and each player has two actions:
Heads or Tails. If both players choose the same action, then player 1 gets a reward 1 and
player 2 gets a reward -1. If the actions are different, then player 1 gets -1 and player 2
gets 1. Based on the reward matrix in Table 2 (a), the Nash equilibrium in this game is
in fully mixed strategies such that each player plays Heads and Tails with a probability
of 0.5. We set the step size η = 0.001 in (9) and p1(0) = q1(0) = 0.2. We run the
simulation for 30000 iterations. In Fig. 2(a), the players’ probabilities of taking their first
actions start from (0.2, 0.2) and move close to the Nash equilibrium point (0.5, 0.5) as
the learning proceeds.

The second game we simulate is a two-player general-sum game called the prisoners’
dilemma. In this game, we have two players and each player has two actions: defect or
cooperate. A player receives a reward of 10 if it defects and the other player cooperates,
or receives a reward of 0 if it cooperates and the other player defects. If both players
cooperate, each player receives a reward of 5. If they both defect, each player receives
a reward of 1. The reward matrix is shown in Table 2 (b) where one player’s reward
matrix is the transpose of the other player’s reward matrix. This game has a unique Nash
equilibrium in pure strategies which is both players playing defect. We set the step size
η = 0.001 in (9) and p1(0) = q1(0) = 0.5. We run the simulation for 30000 iterations.
Figure 2(b) shows that the players’ strategies move close to the Nash equilibrium strategies
(both players’ second actions) as the learning proceeds.

The third game we simulate in this paper is the rock-paper-scissors game. This game
has two players and each player has three actions: rock, paper and scissors. A winner
in the game is determined by the following rules: paper defeats rock, scissors defeats
paper, and rock defeats scissors. The winner receives a reward of 1 and the loser receives
-1. If both players choose the same action, each player gets 0. The reward matrix is
shown in Table 2 (c). This game has a Nash equilibrium in fully mixed strategies which
is each player choosing any action with the same probability of 1/3. We set the step
size η = 0.001, p1(0) = q1(0) = 0.6 and p2(0) = q2(0) = 0.2. We run the simulation
for 50000 iterations. Although we only prove the convergence for two-player two-action

12 X. LU, H. M. SCHWARTZ

Table 2. Examples of two-player matrix games

(a) Matching Pennies (b) Prisoners’ Dilemma (c) Rock-Paper-Scissors

R1 =

[

1 −1
−1 1

]

, R1 =

[

5 0
10 1

]

, R1 =





0 −1 1
1 0 −1
−1 1 0



 ,

R2 = −R1. R2 = (R1)T . R2 = −R1.

NE in fully mixed strategies NE in pure strategies NE in fully mixed strategies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1 (probability of player 1 playing heads)

q1
 (

pr
ob

ab
ili

ty
 o

f
pl

ay
er

 2
 p

la
yi

ng
 h

ea
ds

)

(p1(0), q1(0))

(a) Matching Pennies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1 (probability of player 1 playing cooperate)

q1
 (

pr
ob

ab
ili

ty
 o

f
pl

ay
er

 2
 p

la
yi

ng
 c

oo
pe

ra
te

)

(p1(0), q1(0))

(b) Prisoners’ Dilemma

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1 (probability of player 1 playing rock)

p2
 (

pr
ob

ab
ili

ty
 o

f
pl

ay
er

 1
 p

la
yi

ng
 p

ap
er

)

00.10.20.30.40.50.60.70.80.91
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q1 (probability of player 2 playing rock)

q2
 (

pr
ob

ab
ili

ty
 o

f
pl

ay
er

 2
 p

la
yi

ng
 p

ap
er

(q1(0), q2(0))

(p1(0), p2(0))

(c) Rock-Paper-Scissors

Figure 2. Trajectories of players’ strategies during learning in matrix games

games, the result in Fig. 2(c) shows that the proposed LR−I lagging anchor algorithm
may be applicable to a two-player matrix game with more than two actions.

AN LR−I LAGGING ANCHOR ALGORITHM 13

5. Extension of Matrix Games to Stochastic Games. A stochastic game is a tuple
(n, S, A1, . . . , An, T, γ, R1, . . . , Rn) where n is the number of the players, S is a finite state
space, T : S×A1× · · ·×An×S → [0, 1] is the transition function, Ai(i = 1, . . . , n) is the
action set for the player i, γ ∈ [0, 1] is the discount factor and Ri : S×A1×· · ·×An×S → R

is the reward function for player i. The transition function in a stochastic game is a
probability distribution over next states given the current state and joint action of the
players. The reward function Ri(s, a1, . . . , an, s′) denotes the reward received by player i in
state s′ after taking joint action (a1, . . . , an) in state s. A matrix game can be considered
as a special case of stochastic games with S = ∅.

The proposed LR−I lagging anchor algorithm is designed based on matrix games. In
this section, we extend the algorithm to the more general stochastic games. Inspired by
the WoLF-PHC algorithm in [10], we design a practical decentralized learning algorithm
for stochastic games based on the LR−I lagging anchor approach in (9). The practical
algorithm is shown in Algorithm 1.

Algorithm 1 A practical LR−I lagging anchor algorithm for player i

1: Initialize Q(s, a) ← 0 and π(s, a) ←
1

|Ai|
. Choose the learning rate α, η and the

discount factor γ.
2: for Each iteration do

3: Select action ac at current state s based on mixed exploration-exploitation strategy
4: Take action ac and observe the reward r and the subsequent state s′

5: Update Q(s, ac)

Q(s, ac) = Q(s, ac) + α
[

r + γmax
a′

Q(s′, a′)−Q(s, ac)
]

6: Update the player’s policy π(s, ·)

π(s, ac) = π(s, ac) + ηQ(s, ac)
[

1− π(s, ac)
]

+ η
[

π̄(s, ac)− π(s, ac)
]

π̄(s, ac) = π̄(s, ac) + η
[

π(s, ac)− π̄(s, ac)
]

π(s, aj) = π(s, aj)− ηQ(s, ac)π(s, aj) + η
[

π̄(s, aj)− π(s, aj)
]

π̄(s, aj) = π̄(s, aj) + η
[

π(s, aj)− π̄(s, aj)
] for all aj 6= ac

7: end for
(

Q(s, a) is the action-value function, π(s, a) is the probability of player i taking action

a at state s and ac is the current action taken by player i at state s
)

We now apply Algorithm 1 to a stochastic game to test the performance. The stochastic
game we simulate is a general-sum grid game introduced by Hu and Wellman [12]. The
game runs under a 3 × 3 grid field as shown in Fig. 3(a). We have two players whose
initial positions are located at the bottom left corner for player 1 and the bottom right
corner for player 2. Both players try to reach the goal denoted as “G” in Fig. 3(a). Each
player has four possible moves which are moving up, down, left or right unless the player
is on the sides of the grid. In Hu and Wellman’s game, the movement that will take the
player to a wall is ignored. Since we use the exact same game as Hu and Wellman, the
possible actions of hitting a wall have been removed from the players’ action sets. For
example, if the player is at the bottom left corner, its available moves are moving up or
right. If both players move to the same cell at the same time, they will bounce back to
their original positions. The two thick lines in Fig. 3(a) represent two barriers such that
the player can pass through the barrier with a probability of 0.5. For example, if player
1 tries to move up from the bottom left corner, it will stay still or move to the upper

14 X. LU, H. M. SCHWARTZ

(a) Grid Game

P2P1

(b) Nash equilibrium
path 1

P2P1

(c) Nash equilibrium
path 2

Figure 3. An example of a general-sum grid game

cell with a probability of 0.5. The game ends when either one of the players reaches the
goal. To reach the goal in minimum steps, the player needs to avoid the barrier and first
move to the bottom center cell. Since both players cannot move to the bottom center cell
simultaneously, the players need to cooperate such that one of the players has to take the
risk and move up. The reward function for player i (i = 1, 2) in this game is defined as

ri =











100 player i reaches the goal

−1 both players move to the same cell (except the goal)

0 otherwise

(37)

According to [12], this grid game has two Nash equilibrium paths as shown in Fig. 3(b)
and Fig. 3(c). Starting from the initial state, the Nash equilibrium strategies of the
players are player 1 moving up and player 2 moving left or player 1 moving right and
player 2 moving up.
We set the step size as η = 0.001, the learning rate as α = 0.001 and the discount factor

as γ = 0.9. The mixed exploration-exploitation strategy is chosen such that the player
chooses a random action with probability 0.05 and the greedy action with probability
0.95. We run the simulation for 10000 episodes. An episode is when the game starts with
the players’ initial positions and ends when either one of the players reaches the goal.
Figure 5 shows the result of two players’ learning trajectories. We define p1 as player
1 ’s probability of moving up and q1 as player 2 ’s probability of moving up from their
initial positions. The result in Fig. 2(c) shows that the two players’ strategies at the
initial state converge to one of the two Nash equilibrium strategies as (player 1 moving
right and player 2 moving up). Therefore, the proposed practical LR−I lagging anchor
algorithm may be applicable to general-sum stochastic games.

6. Conclusions. In this paper, we investigate the existing learning algorithms for matrix
games. The analysis of the existing learning algorithms shows that the learning automata
technique including the LR−I algorithm and the LR−P algorithm is a good candidate for
decentralized learning. But none of them can guarantee the convergence to Nash equilib-
ria in both pure and fully mixed strategies. The lagging anchor algorithm considers the
player’s current strategy and the long term average strategy during learning. Although
the lagging anchor algorithm can guarantee the convergence to a Nash equilibrium in fully
mixed strategies, it is not a decentralized learning algorithm. Inspired by the concept of
lagging anchor, we propose an LR−I lagging anchor algorithm as a completely decentral-
ized learning algorithm. We prove that the LR−I lagging anchor algorithm can guarantee

AN LR−I LAGGING ANCHOR ALGORITHM 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1 (probability of player 1 moving up)

q1
 (

pr
ob

ab
ili

ty
 o

f
pl

ay
er

 2
 m

ov
in

g
up

)
(p1(0), q1(0))

Figure 4. Learning trajectories of players’ strategies at the initial state in
the grid game

the convergence to a Nash equilibrium in pure or fully mixed strategies in two-player two-
action general-sum matrix games. Through simulations, we show the performance of the
proposed LR−I lagging anchor algorithm in three matrix games and the practical LR−I

lagging anchor algorithm in a general-sum stochastic grid game. Simulation results show
the possibility of applying the proposed LR−I lagging anchor algorithm to a two-player
matrix game with more than two actions and the possibility of applying the proposed
practical LR−I lagging anchor algorithm to general-sum stochastic games.

Future research will examine the proof of convergence to Nash equilibria for general-
sum matrix games with more than two players. We will also extend this work to the
multi-player grid game of guarding a territory.

REFERENCES

[1] P. Stone and M. Veloso, Multiagent systems: a survey from a machine learning perspective, Au-
tonomous Robots, vol.8, no.3, pp.345-383, 2000.

[2] L. Buşoniu, R. Babuška and B. D. Schutter, A comprehensive survey of multiagent reinforcement
learning, IEEE Trans Syst Man Cybern C, vol.38, no.2, pp.156-172, 2008.

[3] S. Lakshmivarahan and K. S. Narendra, Learning algorithms for two-person zero-sum stochastic
games with incomplete information, Mathematics of Operations Research, vol.6, no.3, pp.379-386,
1981.

[4] S. Lakshmivarahan and K. S. Narendra, Learning algorithms for two-person zero-sum stochastic
games with incomplete information: a unified approach, SIAM J. Control and Optimization, vol.20,
no.4, pp.541-552, 1982.

[5] F. A. Dahl, The lagging anchor algorithm: reinforcement learning in two-player zero-sum games
with imperfect information, Machine Learning, vol.49, pp.5-37, 2002.

[6] F. A. Dahl, The lagging anchor model for game learning – a solution to the Crawford puzzle, Journal
of Economic Behavior & Organization, vol.57, pp.287-303, 2005.

[7] D. Jiang, Realizablity of expected Nash equilibria of n-person condition games under strong knowl-
edge system, International Journal of Innovative Computing, Information & Control, vol.2, no.4,
pp.761-770, 2006.

[8] D. Jiang, Static, completely static, and rational games of complete information and their different
Nash equilibria, International Journal of Innovative Computing, Information & Control, vol.4, no.3,
pp.651-659, 2008.

[9] D. Jiang, Analysis of optimal situation distributions in a special 2 × 2 bi-matrix game, International
Journal of Innovative Computing, Information & Control, vol.6, no.7, pp.3229-3237, 2010.

16 X. LU, H. M. SCHWARTZ

[10] M. Bowling and M. Veloso, Multiagent learning using a variable learning rate, Artificial Intelligence,
vol.136, no.2, pp.215-250, 2002.

[11] X. Lu and H. M. Schwartz, Decentralized learning in two-player zero-sum games: a LR−I lagging
anchor algorithm, 2011 American Control Conference, San Francisco, CA, 2011.

[12] J. Hu and M. P. Wellman, Nash Q-Learning for General-Sum Stochastic Games, Journal of Machine

Learning Research, vol.4, pp.1039-1069, 2003.
[13] M. J. Osborne, An Introduction to Game Theory, Oxford University Press, USA, 2003.
[14] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An Introduction, Prentice Hall,

Englewood Cliffs, 1989.
[15] S. P. Singh, M. J. Kearns and Y. Mansour, Nash convergence of gradient dynamics in general-sum

games, Proc. of 16th Conf. on Uncertainty in Artificial Intelligence, San Francisco, CA, pp.541-548,
2000.

[16] M. Thathachar and P. Sastry, Networks of Learning Automata: Techniques for Online Stochastic

Optimization, Kluwer Academic Publishers, Boston, Massachusetts, 2004.

