
J Intell Robot Syst (2010) 59:3–30
DOI 10.1007/s10846-009-9380-4

A Reinforcement Learning Adaptive Fuzzy Controller
for Differential Games

Sidney N. Givigi Jr. · Howard M. Schwartz ·
Xiaosong Lu

Received: 4 June 2008 / Accepted: 28 September 2009 / Published online: 23 October 2009
© Springer Science + Business Media B.V. 2009

Abstract In this paper we develop a reinforcement fuzzy learning scheme for robots
playing a differential game. Differential games are games played in continuous time,
with continuous states and actions. Fuzzy controllers are used to approximate the
calculation of future reinforcements of the game due to actions taken at a specific
time. If an immediate reinforcement reward function is defined, we may use a fuzzy
system to tell what is the predicted reinforcement in a specified time ahead. This
reinforcement is then used to adapt a fuzzy controller that stores the experience
accumulated by the player. Simulations of a modified two car game are provided in
order to show the potentiality of the technique. Experiments are performed in order
to validate the method. Finally, it should be noted that although the game used as an
example involves only two players, the technique may also be used in a multi-game
environment.

Keywords Differential games · Learning · Pursuer-evader games ·
Intelligent systems · Reinforcement learning · Fuzzy control

S. N. Givigi Jr. (B)
Department of Electrical and Computer Engineering, Royal Military College of Canada,
P.O. Box 17000 Station Forces, Kingston, Ontario K7K 7B4, Canada
e-mail: Sidney.Givigi@rmc.ca

H. M. Schwartz · X. Lu
Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive,
Ottawa, Ontario K1S 5B6, Canada

H. M. Schwartz
e-mail: schwartz@sce.carleton.ca

X. Lu
e-mail: luxiaos@sce.carleton.ca

4 J Intell Robot Syst (2010) 59:3–30

1 Introduction

Learning in games has been largely studied in the last couple of decades. It already
includes several books [7, 24] and recent research papers abound in the specialized
literature [5, 13]. However, little attention has been given to learning in the differen-
tial game domain [12].

Game theory is basically the study of decision making [18] in order to solve
conflicts. It was introduced by von Neumann and Morgenstern [19]. Each player is
given a utility function (the reward or penalty it receives) of its own strategy and
the strategies played by all the other players (or a subset of them). In the general
approach, the game and the strategies are discrete, therefore, matrices with strategies
and payoffs (the rewards or penalties) may be assembled. Another way of viewing
a game was introduced by Isaacs [14] and is called differential games. Differential
games investigate how decision making takes place over time [25] considering
continuous domains, for example, when there is not a small number of strategies at
each player’s disposal. In order to represent this game, we need to model the dynamic
equations that are related to the process under investigation. These equations are
typically differential or difference equations.

When we approach a game from the point of view of learning, the question we
want to answer is if the game converges to an equilibrium point. This point may be
the Nash equilibrium or the value of the game, but not necessarily.

In the case of differential games, one of the most popular learning approaches
has been the use of reinforcement learning and Q-learning [11, 12]. However, there
is a disadvantage in this technique when we deal with continuous processes such
as the ones considered in differential games. Since Q-learning is based on the
construction of tables, several different actions must be considered coupled with
states in order to describe the possible behaviours of the players. This could lead to a
proliferation of updates that would make the approach infeasible for implementation
in a microcontroller. Moreover, it is not easy to discretize the action space as well as
the state space [6].

In order to avoid this problem, one could use a fuzzy controller. It is well known
that a fuzzy system is a universal approximator [23]. Therefore, we propose in this
work a fuzzy controller that is updated by a reinforcement learning algorithm. The
advantages of such approach are:

– A fuzzy controller can deal with noisy data [23] and uncertainties [1].
– Reinforcement learning updates is an adequate way of updating the fuzzy rules

on line [1].
– We could use a technique based on neural networks or genetic algorithms to

extract rules from data and then apply the approach proposed in order to speed
up the convergence of the controller.

– A fuzzy controller such as presented here could be easily implemented in a
microcontroller.

We may think of the pursuit-evasion differential game in two different scenarios.
The first is the typical one-on-one game, i.e., there is only one pursuer and one
evader. This game has been extensively studied in the literature [14, 17, 21]. However,
little attention has been given to how a player may learn how to play the game.
The other more complicated scenario is the multiplayer pursuit-evasion differential

J Intell Robot Syst (2010) 59:3–30 5

game, wherein there may be several pursuers and/or evaders. This is a less studied
case, but interesting results have also been published [8, 9]. In these papers, a
hierarchical structure is proposed which is based on numerical or analytical solution
of the pursuit-evasion game. Our learning approach, however, does not dwell on the
mathematical solution of the games. We are interested in the players to “learn” how
to play a game as it has been done in traditional game theory [2, 16]. Therefore, our
fuzzy controller obtained after training (or even during the execution of the task)
would determine the behaviour of the robot. Moreover, it must be noted that the
approach presented in the present article is not only applicable to pursuit-evasion
games. Other dynamic games would have rigorously the same type of learning
algorithm presented in here.

The paper is divided as follows. Section 2 introduces the notation of a differential
game. In Section 3 we present the control structure for the system. Section 4 reviews
the learning techniques used in games in general and introduces a fuzzy algorithm
for learning in differential games. In Section 5, we describe the system that will be
used in the simulations and experiments as well as how it relates to the notation
in Section 2. The hardware and software framework will also be introduced in this
section. Section 6 reports the identification of the robots’ models. In Section 7,
simulations of the system identified in the previous sections are presented. Section 8
presents the experimental results reached with the controller derived in the simu-
lation section. And, finally, Section 9 presents our conclusions from the simulations
and experiments and points to future work that will be done in the field.

2 Differential Games

In the general, nonzero-sum, N-player differential game, a player i tries to choose a
control signal ui to minimize the cost equation [21]

Ji = qi(x̄(T)) +
T∫

t0

gi (x̄(s), u1(s), · · · , uN(s), s)ds (1)

subject to the state dynamics

˙̄x(s) = f (x̄(s), ū1(s), · · · , ūN(s), s) , x̄(t0) = x̄0 (2)

where x̄(s) ∈ R
m is the state vector of dimension m, T is the terminating time (or the

time where the terminal state is reached), qi(·) is the payoff of the terminal state and
gi(·) is the integral payoff for player i ∈ N.

Functions qi(·) and gi(·) are chosen in order to achieve an objective. Function
f (·) determines the dynamics of the system. They are also called the constraints
of the system and could be represented by inequalities [21]. When solving a game
theoretically, one also assumes that one agent (or player) has access to the states of
the other players involved in the game at all times as well as their cost functions. This
is called the perfect information assumption. For the learning procedure presented in
this work, though, we do not assume that each player knows the cost functions of all
the others. Also, notice that the perfect information assumption is not necessary for
the system to learn since we are using a fuzzy system that is intrinsically designed to
deal with noise.

6 J Intell Robot Syst (2010) 59:3–30

Our only assumption is that all the robots have the same dynamics. Lastly, one
must notice that the game may have different solutions and the achievement of the
optimal solution is not guaranteed for the general case.

If the game under study is (as it is for this paper) between only two players, the
system dynamics may be written [15]

˙̄x(s) = f
(
x̄(s), φ̄(s), ψ̄(s), s

)
, x̄(t0) = x̄0 (3)

where φ̄ and ψ̄ are the strategies played by each player. The payoff, now represented
as P

(
φ̄, ψ̄

)
, is given in the form

P
(
φ̄, ψ̄

) = q
(
t∗, x̄(t∗)

) +
t∗∫

t0

g
(
x̄(s), φ̄, ψ̄, s

)
ds (4)

where t∗ is the first time the states x̄(t) intersect a given final condition. In this case it
is also assumed that the player who uses strategy φ̄ wants to maximize the payoff P(·),
whereas the player using strategy ψ̄ wants to minimize it. Therefore, the objective of
the game is to find control signals φ̄∗ and ψ̄∗ such that [3]

P
(
φ̄∗, ψ̄

) ≥ P
(
φ̄∗, ψ̄∗) ≥ P

(
φ̄, ψ̄∗) , ∀ φ̄, ψ̄ (5)

In Section 5 we are going to present a simple model that fits the equations
presented above. However, before doing that, we need to describe the control
structure in Section 3 and to establish in Section 4 how a robot could learn how to
play a game using a fuzzy inference system.

3 Controller Structure

In Fig. 1 we show the proposed structure for the controller [4].
In this section, we are going to focus on the structure of each block, more

specifically the controller and the critic. The reinforcement block is particular to
applications and will be dealt with in Section 7. Also, the learning procedures will
be postponed until the next section.

We assume that the controller in Fig. 1 is a fuzzy controller. More specifically,
it is a fuzzy controller implemented by Takagi-Sugeno (TS) rules with constant

Fig. 1 Architecture of the
control system

),0(v σ
)1(k +

+ + +

+
+

+

rx ûu
Controller ReinforcementGame

)1 γ(kV
Critic

Critic
)_(kV

Δ

J Intell Robot Syst (2010) 59:3–30 7

Fig. 2 Triangular membership
functions used

0.8

0.2

x

μ

1 2 2.8 4 5

consequents [22]. It consists of M rules with n fuzzy variables as inputs and one
constant number as consequent. Therefore, each rule is of the form [6]

Rl : IF x1 is Fl
1, · · · , and xn isFl

n (6)

T HEN u = cl (7)

where xi are the values passed to the controller, Fl
i is the fuzzy set related to the

corresponding fuzzy variable, u is the rule’s output, and cl is a constant that describes
the center of a fuzzy set.

Therefore, if we use the product inference for fuzzy implication [23], t norm,
singleton fuzzifier and center-average defuzzifier, the output of the system is [6]

u(x̄) =

M∑
l=1

((
n∏

i=1
μFl

i (xi)

)
· χl

)

M∑
l=1

(
n∏

i=1
μFl

i (xi)

) (8)

where cl in Eq. 7 is represented by χl for the controller.
Throughout the paper, the membership functions used are triangular ones such as

the ones depicted in Fig. 2.
For the critic, we also assume a TS system with constant consequents [4]. However,

it must be noted that this is not the only possible choice. A time-delay neural network
(TDNN) could be used instead [6]. There are advantages and disadvantages in this
choice for both cases. We chose the fuzzy system just for its simplicity. Therefore, just
as in the case of Eq. 8, the output of the critic is [4] an approximation to the value of
the state V(·)

V̂(X̄) =

M∑
l=1

((
n∏

i=1
μFl

i (xi)

)
· ζl

)

M∑
l=1

(
n∏

i=1
μFl

i (xi)

) (9)

where cl in Eq. 7 is represented by ζl .

8 J Intell Robot Syst (2010) 59:3–30

4 Learning

In the context of Game Theory, learning may be understood as strategy adjustments
[2]. These adjustments may be functions of several different sets of variables.

Different types of continuous-time models of learning have been proposed for
games. In the case of games in extensive form, Arslan and Shamma [2] describe some
models discussed in the literature, including the well known replicator dynamics,
where one player tries to approximate the way the other (or others) will play in order
to decide which strategy is more profitable for it to play. However, in the special case
of differential games, the learning techniques presented in the literature are very
different. Most of them are based on reinforcement learning [20].

Let us consider a game between two players as described in Eqs. 3 and 4. Notice
that the approach presented here may be used for any number of players, but, for
simplicity sake, we present the technique for just two-player games. In this case, the
learning dynamics may be described by

˙̄δ1 = fδ̄1

(
x̄, δ̄1, δ̄2

)
(10)

˙̄δ2 = fδ̄2

(
x̄, δ̄1, δ̄2

)
(11)

Notice, also, that the functions fδ̄1
(·) and fδ̄2

(·) must take into consideration the
cost Eq. 4 in such a way that the saddle point (for the case of a two-player game) in
Eq. 5 is reached. Also, the strategy adjustments in Eqs. 10 and 11 will be functions of
the strategies played by both players at a given time as well as their states. Therefore,
we assume that the players play their strategies synchronously. Also, we assume that
they know the strategies (the control signal) played by all the other players, although
they do not know how they chose those strategies.

The problem of Eqs. 10 and 11 is that the strategies played by each player are
continuous. This means that the strategy vectors δ̄1 and δ̄2 should have dimensions of
infinity. Another approach would be to try to discretize the action space and then use
a Q-learning algorithm to calculate the strategy vectors. Although, there is another
problem; we would have to discretize the state space as well and this is not easily
done for most differential games. In order to avoid these potential problems, we use
the architecture shown in Fig. 1.

In this figure we see the addition of two blocks called critic. This block is
used to approximate the value function for reinforcement learning [6]. It could be
implemented by a time-delay neural network [6] or a fuzzy system [4]. The learning
is practically the same for both cases. The value function for approximation of the
reinforcement rewards has the format

V(k) = E

{ ∞∑
i=k

γ i−kr(i + 1)

}
(12)

where γ ∈ [0, 1) is known as the forgetting factor and r(·) is the immediate external
reward from the environment. Notice that we can rewrite Eq. 12 in a recursive
fashion as

V(k) = r(k + 1) + γ V(k + 1) (13)

J Intell Robot Syst (2010) 59:3–30 9

With this approximation, we may compare it with the expected reward such that
we generate a prediction error of the prediction V̂(k) [4] that is the output of the
critic so that

� =
[
r(k + 1) + γ V̂(k + 1)

]
− V̂(k) (14)

as shown in Fig. 1. This difference error is then used to train the critic. Supposing it
has parameters ζ to be adapted, the adaptation law would then be [6]

ζ j(k + 1) = ζ j(k) + α�
∂V̂(k)

∂ζ j
(15)

where α ∈ (0, 1) is the learning rate for the adaptation. Observe that we do not want
α to be too big in order to avoid instability in the generated system. Also the partial
derivative in Eq. 15 is easily calculated to be from Eq. 9

∂V̂(k)

∂ζ j
=

n∏
i=1

μF j
i (xi)

M∑
l=1

(
n∏

i=1
μFl

i (xi)

) (16)

The controller in Fig. 1 is a fuzzy controller implemented by Takagi-Sugeno rules
with constant consequents [22]. Observe that to its generated control signal u(k) is
added a random white noise v(0, σ). This is done in order to promote exploration
of the action space [6]. With the noisy signal u′(t), taking χ as the parameters to be
adapted, we may establish the controller update law [4]

χ j(k + 1) = χ j(k) + β�

[
u′(k) − u(k)

σ

]
∂u(k)

∂χ j
(17)

where β ∈ (0, 1) is the learning rate for the controller adaptation. Note that we want
β < α, meaning that we want the controller to converge slower than the critic. This
is done in order to avoid instability in the controller. Also notice that the initial fuzzy
controller can give a bad performance for the player. The partial derivative in Eq. 17
is easily calculated to be from Eq. 8

∂u(k)

∂χ j
=

n∏
i=1

μF j
i (xi)

M∑
l=1

(
n∏

i=1
μFl

i (xi)

) (18)

Notice that the partial derivatives in Eqs. 16 and 18 are rigorously the same and
need to be calculated just once. Also notice that at no time we have a “desired”
trajectory and, therefore, we have no error signal. The update laws in Eqs. 15 and 17
are based on a “forecasted” improvement of the cost function (Eq. 4).

In the next section, we describe the game we will solve with the technique des-
cribed so far. In Section 7 we present the particular case of the equations presented
in this section to the problem under study.

10 J Intell Robot Syst (2010) 59:3–30

5 Pursuer Evader Model

In this section we will introduce the model used in the coming simulations and
experiments. The section will be divided in two subsections. In the first one, we will
describe the general mathematical model for the robots and the game itself. The
second subsection will describe the hardware involved in the experiments, consisting
of the communication framework and how the robots were constructed.

5.1 Mathematical Model

Let us assume that we have a game where two robots are present. One of them
is called the pursuer and tries to catch another one, called the evader. The model
(kinematic equations) for the pursuer may be represented by

ẋp = Vp cos(θp)

ẏp = Vp sin(θp)

θ̇p = Vp

Rp
δp (19)

In the same way, the model for the evader may be described as

ẋe = Ve cos(θe)

ẏe = Ve sin(θe)

θ̇e = Ve

Re
δe (20)

In Eqs. 19 and 20, xi and yi, i = {e, p} are the positions of the robots; Vp is the
speed of the pursuer, Ve is the speed of the evader, and Vp > Ve; θp is the orientation
of the pursuer and |θp| < π ; θe is the orientation of the evader and |θe| < π ; Rp is the
rate of turn for the pursuer, Re is the rate of turning of the evader, and Rp > Re and
they are such that Vp

Rp
< Ve

Re
. Finally, |δp| ≤ 1 is the control signal for the pursuer and

|δe| ≤ 1 is the control signal for the evader. In words, the pursuer is faster, but the
evader can make sharper turns. This game is known as the “game of two cars” [14].

Let us now assume a coordinate frame centered in the pursuer with its y′-axis in
the direction of the pursuer’s velocity vector [3] as shown in Fig. 3. The pair (x′, y′) is
the relative position of the evader in this coordinate frame [3].

If we define ψ = θe − θp, then the differential equations for this game are of the
form

ẋ′ = Ve sin ψ − Vp

Rp
y′δp (21)

ẏ′ = Ve cos ψ − Vp + Vp

Rp
x′δp (22)

ψ̇ = − Vp

Rp
δp + Ve

Re
δe (23)

J Intell Robot Syst (2010) 59:3–30 11

Fig. 3 Relative position for
the evader with respect to the
pursuer

y

P

E

'y

PV

l

eV

'x

x

θ

ψ

Equations 21 to 23 describe how the vector from the point P in Fig. 3 to point E
in the same figure behaves over time. Let us now define that interception happens
when

x′2 + y′2 ≤ l2 (24)

where l is an arbitrarily defined distance from the pursuer to the evader.
The cost equation (Eq. 4) in this particular case is such that

P(δp, δe) =
(

x′2 + y′2
)

|t=t f +
t f∫

t0

1ds (25)

Therefore, the functions q(·) and g(·) in Eq. 4 are

q
(
x̄′(T)

) = x′2 + y′2 (26)

g
(
x̄′(s), δp(s), δe(s), s

) = 1 (27)

The Hamiltonian is then found as [3]

H = λx′ ẋ′ + λy′ ẏ′ + λψψ̇ + 1 (28)

where λx′ , λy′ and λψ are lagrange multipliers.

12 J Intell Robot Syst (2010) 59:3–30

By solving the hamiltonian, we may find the optimal play. Another approach to
find the best capture time is by solving the similar equation [17]

min
φ

max
ψ

(
dP
dt

)
= min

φ
max

ψ

[
Px′

(
Ve sin ψ − Vp

R
y′φ

)

Py′

(
Ve cos ψ − Vp + Vp

R
x′φ

)

Pψ

(
− Vp

Rp
δp + Ve

Re
δe

)]

= −1 (29)

where P is the cost function of the game and Px′ , Py′ and Pψ are, respectively, its
partial derivatives with respect to x′, y′ and ψ .

Solving either way, the optimal control for the pursuer and evader may be found
(given some constraints) such that [3]

δp = sgn(λx′ y′ − λy′ x′ + λψ) (30)

δe = sgn(λψ) (31)

If we define some constraints and values for the parameters in Eqs. 19 and 20, the
solution may be further simplified, but this is not our objective in here. The interested
reader is referred to Isaacs [14] and Bryson and Ho [3] for more details.

However, for the experiment we are going to change the objectives of the game.
The reason for that is due to the limitations of the experimental setup to be discussed
in the next section. A game of two cars would tend to last longer and run farther than
the range that our sensors would allow. Therefore, we are going to use a variation
where there is a target that the evader tries to reach while the pursuer tries to
intercept the evader. This is depicted in Fig. 4. The pursuer is also supposed to be
farther to the target than the evader. The strategy that the evader follows is to get

Fig. 4 Conceptualization
frame where the game is
played

(223, 202)

Evader
 Target
(200, 113)

Pursuer

(11, 25)

J Intell Robot Syst (2010) 59:3–30 13

the closest to the target as possible. In our simulations, the pursuer is assumed to not
know the dynamics of the evader and its strategy.

Some remarks may be made with regard to Eqs. 19 and 20. First, notice that the
transfer functions for θp and θe describe an integrator. This is not quite the case, but,
as it will be discussed in Section 6, this is a good assumption. Moreover, in an actual
system, Vp and Ve are not constant. There is some transient response that must be
taken into account. Therefore, in Section 6 we will also identify equations for this
transient response, such that we will have

Vp(s)
up(s)

= b p

s + ap
(32)

Ve(s)
ue(s)

= b e

s + ae
(33)

Furthermore, we are actually going to identify the transfer function for the angular
velocity instead of the one for the angle. This means that, for the pursuer, we will
identify the transfer function

ωp(s)
δ(s)

=
Vp

Rp

s + aωp

(34)

The same identification procedure will be performed for the evader, resulting in

ωe(s)
δ(s)

=
Ve
Re

s + aωe

(35)

However, as it will be seen in Section 6 the poles of Eqs. 34 and 35 will be very
“fast” and the transfer functions will be similar to an integrator, which makes the
approximations in Eqs. 19 and 20 valid.

5.2 Experimental System

We want to implement the mathematical model of the previous subsection in an
experimental set up. In order to do that, we built some robots in our lab. Figure 5
depicts one individual robot that may be used as pursuer or evader.

This robot is equipped with a Motorola 68HC11 microprocessor and two motors
that may drive the robot forward or backward. By changing the PWM duty cycle in
each motor, it is also possible to turn the robot to the right and to the left.

Fig. 5 An individual robot

14 J Intell Robot Syst (2010) 59:3–30

Fig. 6 Experimental system
used for implementing the
differential game

Noise

Camera
+

Fuzzy Controller

Computer Mobile
Robots

Bluetooth

Position
+

Orientation

The whole system for the experiment is shown in Fig. 6 and it may be divided in
the following modules:

– Sensory—a camera and the filtering system coupled to it;
– Communication—after receiving the information from the sensors, it has to be

sent to the robots;
– Controllers—implemented directly in the robots.

The first thing that must be decided is the information that is required to be mea-
sured. Equations 19 and 20 require that we know the positions and orientations of
each one of the robots. Therefore, the camera has to measure the states of all the

Fig. 7 An evader and a
pursuer robots

Target

Evader

Pursuer

θ

ψ

J Intell Robot Syst (2010) 59:3–30 15

robots. So, a webcamera is used to read the positions (in pixels) and the orientations
(in radians) of each robot. The positions and orientations are measured by the
use of a colour code. Each robot has two rectangles over it as shown in Fig. 7. A
system implemented in the computer station runs filters that locate the center of
such rectangles. By making use of this data, the position and the orientation may be
acquired. Obviously, the data is intrinsically noisy. However, it is supposed that the
controllers may deal with such noise. Also, we assume that such noise is gaussian
white. Moreover, the camera is not synchronous and the time elapsed between
measurements is not constant. These are supposed to be nonlinear effects (or noise)
and we suppose the controllers have to deal with it as well.

The message is then sent from the camera to a computer. The computer, on its
turn, assembles a packet with the positions and orientations of each robot. This
message is finally sent to the mobile robots through a bluetooth link. Notice that
both robots receive the same set of data. However, each one of them will then handle
the information differently. There is no protocol that guarantees the delivery of the
messages and some packets may not be received correctly. Indeed, this is the case in
our experiments.

Both robots have embedded controllers that will determine the strategy that each
one of them will execute. The pursuer is supposed to run the controller structure
defined in Section 3. The evader, however, runs a simpler control law that only guides
it towards a fixed target as shown in Fig. 7. Notice also that the measurements of the
angles depicted in Fig. 7 are also noisy.

In order to simulate the Eqs. 19 and 20, we have to first identify the transfer
functions for the angle variation and the speed of each robot. This will be done in the
next section.

6 Identification

In order to simulate the system of equations presented in Section 5.1, we need to
identify the parameters of the equations. Namely, we need to know what are the

Fig. 8 Time in one arbitrary
run of a robot

0 5 10 15 20 25 30 35
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sample

T
im

e
st

ep
 (

s)

Time
Mean

16 J Intell Robot Syst (2010) 59:3–30

Fig. 9 Displacement for one
arbitrary run of a robot

0 5 10 15 20
0

100

200

300
Displacement

0 5 10 15 20
0

10

20

30
Speed

velocities Vp in Eq. 19 and Ve in Eq. 20. Moreover, we need to determine the
differential equations for θp in Eq. 19 and θe in Eq. 20.

The necessity of having a model is that we are going to pre-train the controller
offline in order to have some useful control signal for our experiments. Clearly, the
modeling is only approximate. This is not a big problem, for a fuzzy controller should
be able to deal with such uncertainties [23]. Moreover, we assume that the dynamics
of the robots change slowly and smoothly over time. Therefore, the online adaptation
would take care of these small variations.

For each robot, we are going to identify two difference equations that determine
how the robot behaves. The first one is how the forward velocity of the robot changes
when a nominal signal u(t) is applied to both motors. The second one is related to
the angular velocity when a specific differential signal δ is applied to the motors.

Fig. 10 Identified system and
actual collected data

0 5 10 15 20
0

5

10

15

20

25

30

35

Time (s)

P
ix

el
/s

Predicted
Actual

J Intell Robot Syst (2010) 59:3–30 17

Fig. 11 Simulation of the
identified system

0 5 10 15 20
0

50

100

150

200

250

Time (s)

D
is

ta
nc

e
(p

ix
el

)

Predicted
Actual

The relationship between the signals u(t) and δ(t) is as follows. Let us suppose
that we decide to drive the robot around a nominal input of u(t) = 50, where 50 is
related to the duty cycle of the PWM. The forward speed of the robot increases until
it reaches a steady state. Then we decide to turn the robot to the right. In order
to do this, we increase the duty cycle of the left motor by δ(t) = 25, where 25 is an
experimentally determined value, and decrease the duty cycle in the right motor by
the same value, such that, if uR(·) is the signal for the right motor and uL(·) is the
signal for the left one. Mathematically, the signals to each motor are represented by

uR(t) = u(t) − δ(t) (36)

uL(t) = u(t) + δ(t) (37)

Fig. 12 Angular displacement
for one arbitrary run of a robot

0 5 10 15 20
-2

-1

0

1

2
Angular displacement

0 5 10 15 20
-0.5

0

0.5

1
Angular speed

18 J Intell Robot Syst (2010) 59:3–30

Fig. 13 Simulation of the
identified system

0 5 10 15 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

A
ng

le
 (

ra
di

an
s)

Predicted
Actual

Observe that the forward speed is unchanged by the changes of the signals of the
motors, since the average input is still the same.

After some tests, we determined that a first order transfer function was enough to
represent the behaviours listed above. For the forward velocity, we want to identify
the parameters av and b v of the difference equation

v[k + 1] = avv[k] + b vu[k] (38)

Observe that the velocities Vp and Ve in Eqs. 19 and 20 are the steady state values
of Eq. 38 for each one of the robots.

For the angular velocity, we want to identify the parameters aω and bω of the
difference equation

ω[k + 1] = aωω[k] + bωδ[k] (39)

Fig. 14 Simulation of the
identified system

20 40 60 80 100 120

60

80

100

120

140

160

X pixel

Y
 p

ix
el

Actual
Predicted

J Intell Robot Syst (2010) 59:3–30 19

Fig. 15 Prediction of the
position of the robot when
turning right

60 80 100 120 140 160

80

100

120

140

160

180

X pixel

Y
 p

ix
el

Actual
Predicted

The data collection is done through successive runs of the robots for different
values of the signal δ(t). The nominal value for the motors u(t) is the same for all the
runs. Since, as discussed in the previous section, the time step for the measurements is
not constant, the first step is to determine the mean value for this time. This is shown
in Fig. 8. Notice that the time steps vary a lot. Any difference around the mean value
depicted in this figure is considered as nonlinear noise. We assume that this noise will
be small if compared to the linear behaviour of the system.

The data representing the forward displacement and the numerically calculated
forward speed for one arbitrary run of a robot is shown in Fig. 9.

Then we use a least squares algorithm in order to identify the system. A figure
with the predicted (identified) system and actual data is shown in Fig. 10.

We then simulate the identified system in order to compare its result with the
actual data collected. Numerically calculating Eq. 38, and comparing it to the actual
values read in the experiment, we have the results shown in Fig. 11.

The same steps have to be taken for the identification of Eq. 39. Let us take as
an example a robot turning to the left. The data representing the angle over time is
shown in Fig. 12.

After taking the derivative of the data and identifying the system with a least
squares algorithm, we numerically integrate Eq. 39 (Eqs. 19 and 20 use the turning
rate and not the angular speed) and get the data shown in Fig. 13. One may notice
that the agreement is very good.

After doing the identification, one may numerically integrate Eqs. 19 and 20 and
end up with the simulation shown in Fig. 14.

If we apply a signal for the robot to turn to the other side, we can predict its
position as shown in Fig. 15.

Table 1 Difference equations
for the pursuer

Variable Difference equation

Angular speed ωe[k + 1] = 0.3624ωe[k] + 0.1569δp[k]
Forward speed ve[k + 1] = 0.5380ve[k] + 9.1477u[k]

20 J Intell Robot Syst (2010) 59:3–30

Table 2 Difference equations
for the pursuer

Variable Difference equation

Angular speed ωe[k + 1] = 0.2243ωe[k] + 0.1775δe[k]
Forward speed ve[k + 1] = 0.5156ve[k] + 5.4471u[k]

Observe that in all the graphs, we use only the predicted value and do not use
actual data to update the estimation. This means that if y[k] is the actual data and
ŷ[k] its prediction, Figs. 11, 13 and 14 use the following relationship

ŷ[k + 1] = aŷ[k] + bu[k] (40)

and not

ŷ[k + 1] = ay[k] + bu[k] (41)

As such, the difference seen in Figs. 14 and 15 represent the integration of a very
small modeling error.

Therefore, the agreement is indeed very good and the equations found may be
used to simulate the system to a very good degree of accuracy.

Table 1 summarizes the difference equations found for the pursuer robot using
the procedure discussed in this section. Table 2 summarizes the same information for
the evader robot. In both cases the sampling period is 0.09 s. In the next section we
are going to simulate the system found in order to train a fuzzy controller that will
drive the pursuer robot to catch the evader robot.

7 Simulation

In this section we are going to assess how the structure presented in Sections 3 and
4 may be used to solve the problem described in Section 5. For this evaluation, we
suppose that the evader plays the optimal control to get to the target disregarding
the position of the pursuer. In fact, this may be shown to be the optimal solution of
the game given the constraints on the initial conditions of the game to be described.
Since just one player adapts its strategy while the other plays its optimal strategy,
it is expected that eventually the one who is learning will improve its response for
capture time in Eq. 29.

Let us start by assigning values to the parameters of the model presented in
Section 5 according to the identification done in Section 6. Calculating the steady
state value for the speed of the difference equations presented in Tables 1 and 2
for a unit step input (i.e., u[k] = 1), we find that Ve and Vp in Eqs. 20 and 19 are
Ve = 11.235 and Vp = 19.800. In the same way, finding the steady state values for
ωe and ωp for unit step inputs (δp[k] = δe[k] = 1), we find that Ve

Re
= 0.2285 and

Vp

Rp
= 0.1969. One may calculate then that Re = 49.17 and Rp = 100.56. Therefore,

the pursuer is almost twice as fast as the evader; and the radius of turning of the
pursuer is twice that of the evader. Moreover, we remind the reader that the control
signal for the pursuer and the evader are bounded and dependent on some internal
dynamics; however, the pursuer is faster than the evader, who, on the other hand, can
turn sharper than the pursuer. Also, the pursuer knows the orientation of the evader
by checking its evolution over time. In other words, it may very well be noisy. The

J Intell Robot Syst (2010) 59:3–30 21

Fig. 16 Architecture of the
pursuer-evader model system

evader, on the other hand, has perfect information on the states of the pursuer. Of
course, this last statement is only true for the simulation and not for the experiments.

Let us now redefine the architecture defined in Fig. 1 in order to make it particular
to the problem of Section 5. The new structure is shown in Fig. 16. First let us consider
the reinforcement function r(·). This is the function that returns how well the control
actuated so that the game came closer (or farther) to a solution. Since the objective
of the game for the pursuer is to minimize the time to capture and capture is related
to distance, it is clear that the reinforcement should be related to the variation of
distance. Let us then define a function distance

D(x̄′) =
√

x′2 + y′2 (42)

and based on this function, let us define a variation of the distance

�D
(
x̄′) ≈ D

(
x̄′(k + 1)

) − D
(
x̄′(k)

)
(43)

Observe that we can define, based on Eq. 43, an approximation of the derivative
of the distance when the step size �t is small (which is our case) such that

Ḋ
(
x̄′ (k + 1)

) = �D
(
x̄′ (k + 1)

)
�t

(44)

Therefore, �D(x̄′) and Ḋ(x̄′) are used in order to find the solution of Eq. 25.
�D(x̄′) is related to function q(·) in Eq. 26, while Ḋ(x̄′) relates to function g(·)
in Eq. 27. Therefore, if the approach speed is big, then the capture time tends to
decrease.

The reinforcement is then the output of a fuzzy system with only one rule [4]

r(k + 1) = min
[
μsmall

(
�D

(
x̄′ (k + 1)

))
, μbig

(
Ḋ

(
x̄′ (k + 1)

))]
(45)

As previously, the membership functions for these two cases are triangular. An
example of such functions is depicted in Fig. 17. The center of the derivative of

Fig. 17 Sets for calculation of
the reinforcement signal

22 J Intell Robot Syst (2010) 59:3–30

Fig. 18 Membership functions
for the antecedent of the fuzzy
rules

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
Fuzzy partitions for the angle

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
Fuzzy partitions for the angle rate

the distance is the maximum approach speed, calculated as the difference Ve − Vp

(introduced in Section 5).
The reinforcement signal in Eq. 45 means that if the pursuer is getting closer to the

evader at the maximum possible speed, the reinforcement is improved. Notice that if
the pursuer is approaching the evader at Vmax in Fig. 17, the reinforcement signal is
determined only by the distance. Also, notice that the reinforcement is not simply an
error signal as in Dai et al. [6] and Buijtenen et al. [4]. The distance and its derivative
alone cannot represent error. Also, usually one requires errors to go to zero and in
the case presented in Eq. 45, this is not what we want, since we require the approach
speed to be the maximum. Furthermore, the pursuer does not have a “desired” path
to follow, just a “desired” behaviour (catching the evader) and it is very difficult to
define error based on behaviours [10].

Fig. 19 Initial control surface
of the fuzzy controller

-3
-2

-1
0

1
2

3

-1.5
-1

-0.5
0

0.5
1

1.5

-1

-0.5

0

0.5

1

angle

angle rate

J Intell Robot Syst (2010) 59:3–30 23

Table 3 Initial values for the
control signal

Angle Angle rate

NB NS ZE PS PB

NB 1.5000 1.0000 0.5000 0.2500 0.2500
NS 1.0000 0.5000 0.2500 0.2500 0.1250
ZE 1.5000 1.0000 0 −1.0000 −1.5000
PS −0.1250 −0.2500 −0.2500 −0.5000 −1.0000
PB −0.2500 −0.2500 −0.5000 −1.0000 −1.5000

The input variables for the controller are the angle difference ε = θ − ψ (both
angles defined in Fig. 3) and its derivative, i.e., ε̇. In order to define the fuzzy
controller, ε and ε̇ are set to be our fuzzy variables. Notice that this defines a “PD-
like” type of control. Each one of the fuzzy variables has five fuzzy sets labeled:
negative big (NB), negative small (NS), zero (ZE), positive small (PS) and positive
big (PB). The fuzzy sets for each of these fuzzy variables are depicted in Fig. 18.

The game takes place in a rectangle with the same dimensions as the camera
range. The rectangle has its bottom-left point at (11, 25) and its top-right point at
(193, 202). The target is assumed to be at the position (0, 0). This set up information
is represented in Fig. 4.

The critic has the same inputs as the controller. The output is the predicted
reinforcement for the game that the critic seeks to approximate. In order to avoid
too much time for the controller to converge due to errors in the critic, it is advisable
to perform an off line training for a previous convergence of the critic [4]. This is just
an introductory learning phase and we play only 100 instances of the game for this
to take place. During this phase, the learning rate α in Eq. 15 is set to 0.1 for a fast
adaptation. Also, throughout the simulations we use γ in Eq. 14 as 0.95 that is a small
forgetting factor, meaning the critic uses only around 20 past signals for adaptation.

The initial control surface is shown in Fig. 19. This figure represents the fuzzy table
shown in Table 3.

Fig. 20 Control surface of the
fuzzy controller after learning

-3

-2

-1

0

1

2

3

-1.5
-1

-0.5
0

0.5
1

1.5

-1

-0.5

0

0.5

1

angle

angle rate

24 J Intell Robot Syst (2010) 59:3–30

Table 4 Final values for the
control signal

Angle Angle rate

NB NS ZE PS PB

NB 1.3592 0.9442 0.6582 0.7440 0.2500
NS 0.9783 0.4072 2.2847 2.2105 0.1250
ZE 1.4988 0.4933 −0.3137 −0.4743 −1.4989
PS −0.1250 −1.7160 −1.9857 −0.4134 −0.9737
PB −0.2500 −0.7555 −0.6608 −0.9753 −1.3260

We then run the adaptation law in Eq. 17 for 1000 instances of the game with
random initial positions that satisfy the constraints of the game. Namely,

– the distance from the evader to the target is smaller than the distance from the
pursuer to the target;

– the evader is supposed to be in front of the pursuer, i.e., angle θ in Fig. 3 is
supposed to be in the interval

[−π
2 , π

2

]
;

– in the initial positions, if the optimal solution is played, the pursuer is able to
catch the evader before it reaches the target.

The learning rate β in Eq. 17 is set to 0.01. At the same time, the critic continues to
adapt at a learning rate of 0.1. After learning takes place, the control surface changes
to the one shown in Fig. 20 that corresponds to the Table 4.

The surface shown in Fig. 20 changes in a very important way if compared to the
initial control surface in Fig. 19. First of all, the area where the control signal is on the
bounds, i.e., δp = {−1, 1}, is significantly increased. Since we know from Eq. 30 that
the optimal solution is in the set {−1, 0, 1}, this is very suggestive. (Although, notice
that we do not use this information in our training). Moreover, the inclination of the
curve changes considerably. It is much sharper in Fig. 20. Also, the absolute value of
the control signal increases or remains the same at every point of the surface, thus
making the pursuer catch the evader more quickly.

Let us now see how effective the learning is. Let us define initial conditions for
the evader (xe = 50, ye = 110 and θe = 0o) and for the pursuer (xp = 15, yp = 30

Fig. 21 Pursuer not able to
catch the evader before
learning

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Evader
Pursuer

J Intell Robot Syst (2010) 59:3–30 25

Fig. 22 Pursuer catching the
evader after learning

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Evader
Pursuer

and θp = 72o) that were never presented during the training phase. Figure 21 shows
that with the initial controller of Table 3 the pursuer does not intercept the evader
before the evader reaches the target. In fact, the pursuer “overshoots” the evader
due to its higher speed. As it is not able to turn sharply, it misses the evader. In
Fig. 22, however, we show the pursuer catching the evader after learning takes
place and it uses the learnt values of Table 4. The point of interception (evader’s
position) is (129, 110). For the matter of comparison, using the optimal controller,
the interception occurs at (127, 110).

In order to prove the resilience of the controller, noise was added to the mea-
surements for the simulations depicted in Fig. 22. Another advantage of this method
compared to genetic algorithms, for example, is that the convergence happens in a
much faster way. Learning takes, in total, only 1100 epochs, which take only few
minutes to run in a medium level computer.

The complete algorithm for the simulation discussed in this section, including
the adaptation of the fuzzy controller and the fuzzy critic is shown in the following
algorithm.

8 Experiments

Experiments are necessary in order to guarantee that the controller found in the
previous section works in a real application.

As mentioned in Section 5.2, the measurements are sent to the robots by a
computer through a Bluetooth link. The packets are assembled with the positions
of the robots (the evader and the pursuer) and their orientations, the position of the
target and the time of the reading, as shown in Fig. 23.

Fig. 23 Packet sent to the
robots xe θy ye e xp θp p xT yT t y

26 J Intell Robot Syst (2010) 59:3–30

Algorithm 1 Adaptation algorithm
1: Initialize the controller with the desired structure. The values for the antecedents

of the rules are the ones shown in Fig. 18. The initial values for the consequent
of the controller are the ones shown in Table 3.

2: Initialize the critic with the same antecedents as the controller. As for the
consequents, it is all zeros. The output of the critic is not a control signal, but
the expected reinforcement.

3: Initialize the Reinforcement Block with a fuzzy system that will return the reward
for some specific state. This block is initialized with the fuzzy sets in Fig. 17 and
the output is as in Eq. 45.

4: γ ← 0.95 (Eq. 13)
5: α ← 0.1 (Eq. 15)
6: β ← 0.01 (Eq. 17)
7: for i = 1 to 1000 do
8: while The game does not finish do
9: Get the state of the system

x̄[k] = [ε, ε̇]T

10: Calculate the output of the controller

u(k) ←

M∑
l=1

((
n∏

i=1
μFl

i (xi[k])
)

· χl

)

M∑
l=1

(
n∏

i=1
μFl

i (xi[k])
)

11: Calculate the output of the critic

V̂(k) ←

M∑
l=1

((
n∏

i=1
μFl

i (xi[k])
)

· ζl

)

M∑
l=1

(
n∏

i=1
μFl

i (xi[k])
)

12: Run the game for the current time step
13: Get the states for the reinforcement

ȳ[k + 1] = [d, ḋ]T

14: Calculate the reinforcement signal

r(k + 1) ← min
[
μsmall(�D(k + 1)), μbig

(
Ḋ(k + 1)

)]

15: Get the new states of the game

x̄[k + 1] = [ε, ε̇]T

J Intell Robot Syst (2010) 59:3–30 27

Algorithm 1 (continued)
16: Calculate the output of the critic with the new states

V̂(k + 1) ←

M∑
l=1

((
n∏

i=1
μFl

i (xi[k + 1])
)

· ζl

)

M∑
l=1

(
n∏

i=1
μFl

i (xi[k + 1])
)

17: Calculate the delta signal

� ←
[
r(k + 1) + γ V̂(k + 1)

]
− V̂(k)

18: Calculate the critic gradient

∂V̂(k)

∂ζ j
←

n∏
i=1

μF j
i (xi[k])

M∑
l=1

(
n∏

i=1
μFl

i (xi[k])
)

19: Train the critic

ζ j(k + 1) ← ζ j(k) + α�
∂V̂(k)

∂ζ j

20: Calculate the controller gradient

∂u(k)

∂χ j
←

n∏
i=1

μF j
i (xi[k])

M∑
l=1

(
n∏

i=1
μFl

i (xi[k])
)

21: Train the controller

χ j(k + 1) ← χ j(k) + β�

[
u′(k) − u(k)

σ

]
∂u(k)

∂χ j

22: end while
23: end for

In order to avoid too much noise in the calculation of the derivative ε̇, a low-pass
filter was implemented for the camera. Since the time step is not constant, the noise
is amplified and outliers may become common, making it more difficult for the fuzzy
controller to be efficient. The filter implemented is a simple discrete running average
low-pass filter.

We also mentioned in Section 5.2 that our robots are driven by motors controlled
by a Motorola 68HC11 microprocessor built in a Handyboard. The message handling
for both robots and the fuzzy controller for the pursuer were implemented in

28 J Intell Robot Syst (2010) 59:3–30

Fig. 24 Initial conditions for
the experiment

the microprocessor using C. Care had to be taken in order to guarantee that the
calculations were made in an efficient way. The signals to the motors must be
calculated quickly in order to avoid nonlinearities in the robots’ behaviours.

The initial positions of the robots are the same as the initial positions for the
simulations shown in Figs. 21 and 22. This is done for the comparison with the
simulation to be meaningful. The real positions of the robots are shown in Fig. 24.

With the controller of Table 4 implemented in the microprocessor of the pursuer
and the same control strategy as the one presented in the simulation implemented for
the evader robot, the experiment yielded the behaviour shown in Fig. 26. Figure 25
shows the simulation considering the real size of the robots. In other words, capture
occurs when the pursuer and the evader robots physically touch.

As it may be seen from a comparison of Figs. 25 and 26, the experiment and the
simulation agree very well. This shows that the identification and derivation of the

Fig. 25 Simulation results

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Evader
Pursuer

J Intell Robot Syst (2010) 59:3–30 29

Fig. 26 Experimental results

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

X pixel

Y
 p

ix
el

Evader
Pursuer

controller were successful. Moreover, the learning was efficient in finding the best
controller for an actual application.

Several other instances of the game were executed and the results invariably met
the ones reached in the simulation. This shows that the controller found is suitable
for the experimental set up.

One last remark must be stated regarding the experiment. The learning engine
was turned off during the experiment. The reason for that is the limited range of our
sensors. The games finish too soon for a reasonable learning to take place. In order to
take advantage of the learning, we would have to have a larger range for the game.
We are working on this and in the future we intend to have a fully experimental
environment where no simulation is required for the learning to take place.

9 Conclusion

In this paper we showed a method for learning in differential games. A fuzzy
controller adapted by reinforcement learning is presented. An architecture derived
from Dai et al. [6] and Buijtenen et al. [4] is shown to be suitable for learning in a
continuous environment.

A simulation of a modified version of the game of two cars is described. We
suppose that only one of the players (the pursuer) adapts its behaviour. The evader
is supposed to play its optimal strategy. Results show that the pursuer learns to catch
the evader in an effective way. The controller adapted using the scheme described
in Section 4 is superior to the initial controller. Also, we show that the controller is
resilient to noise.

We then implemented the derived control system in actual robots. Results show
that the quality of the response is similar to the simulation, illustrating that our
approach is reasonable. Moreover, adaptation may continue in the robots in order
for them to deal with changes in their dynamics.

30 J Intell Robot Syst (2010) 59:3–30

References

1. Andrecut, M., Ali, M.K.: Fuzzy reinforcement learning. Int. J. Mod. Phys. C 13(5), 659–674 (2002)
2. Arslan, G., Shamma, J.S.: Anticipatory learning in general evolutionary games. In: Proceedings

of the 45th IEEE Conference on Decision and Control, pp. 6289–6294 (2006)
3. Bryson, A.E., Ho, Y. (eds.): Applied Optimal Control: Optimization, Estimation, and Control.

Taylor & Francis, Levittown (1975) (Rev. printing)
4. Buijtenen, W.M., Schram, G., an H. B. Verbruggen, R.B.: Adaptive fuzzy control of satellite

attitude by reinforcement learning. IEEE Trans. Fuzzy Syst. 6(2), 185–194 (1998)
5. Conlisk, J.: Adaptation in games: two solutions to the crawford puzzle. J. Econ. Behav. Organ.

22, 25–50 (1993)
6. Dai, X., Li, C., Rad, A.B.: An approach to tune fuzzy controllers based on reinforcement learning

for autonomous vehicle control. IEEE Trans. Intell. Transp. Syst. 6(3), 285–293 (2005)
7. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT, Cambridge (1998)
8. Ge, J., Tang, L., Reimann, J., Vachtsevanos, G.: Hierarchical decomposition approach for

pursuit-evasion differential game with multiple players, p. 7 (2006)
9. Ge, J., Tang, L., Reimann, J., Vachtsevanos, G.: Suboptimal approaches to multiplayer pursuit-

evasion differential games, pp. 5272–5278 (2006)
10. Givigi, S.N., Schwartz, H.M.: Swarm robot systems based on the evolution of personality traits.

Turkish Journal of Electrical Engineering & Computer Sciences (Elektrik): Special Issue on
Swarm Robotics 15(2), 257–282 (2007)

11. Harmon, M.E., III, L.C.B.: Residual advantage learning applied to a differential game. In:
Proceedings of the International Conference on Neural Networks, pp. 1–6 (1996)

12. Harmon, M.E., III, Baird, L.C., Klopf, A.H.: Reinforcement learning applied to a differential
game. Adapt. Behav. 4(1), 3–28 (1995)

13. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Am. Math. Soc. 40(4), 479–519
(2003)

14. Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and Pur-
suit, Control and Optimization. Wiley, New York (1965)

15. Ishibuchi, H., Sakamoto, R., Nakashima, T.: Learning fuzzy rules from iterative execution of
games. Fuzzy Sets Syst. 135, 213–240 (2003)

16. Mannor, S., Shamma, J.: Multi-agent learning for engineers. Artificial Intelligence, Special issue
on “Foundations of Multi-Agent Learning”, pp. 417–422 (2007)

17. Merz, A.W.: The homicidal chauffeur. AIAA J. 12(3), 259–260 (1974)
18. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1991)
19. von Neumann, J., Morgenstern, O.: The Theory of Games and Economic Behavior, 2nd edn.

Princeton University Press, Princeton (1947)
20. Sheppard, J.W.: Colearning in differential games. Mach. Learn. 33, 201–233 (1998)
21. Starr, A.W., Ho, Y.C.: Nonzero-sum differential games. J. Optim. Theory Appl. 3(3), 184–206

(1969)
22. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and

control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)
23. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall, Englewood Cliffs (1997)
24. Weibull, J.W.: Evolutionary Game Theory. MIT, Cambridge (1995)
25. Yeung, D.W.K., Petrosyan, L.A.: Cooperative Stochastic Differential Games. Springer,

New York (2006)

	A Reinforcement Learning Adaptive Fuzzy Controller for Differential Games
	Abstract
	Introduction
	Differential Games
	Controller Structure
	Learning
	Pursuer Evader Model
	Mathematical Model
	Experimental System

	Identification
	Simulation
	Experiments
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

