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Abstract 
 

Traditional oscillators used in timing modules of 
CDMA and WiMAX base stations are large and 
expensive. Applying cheaper and smaller, albeit more 
inaccurate, oscillators in timing modules is an 
interesting research challenge. An adaptive control 
algorithm is presented to enhance the oscillators to 
meet the requirements of base stations during holdover 
mode. An oscillator frequency stability model is 
developed for the adaptive control algorithm. This 
model takes into account the control loop which creates 
the correction signal when the timing module is in 
locked mode. A Recursive Prediction Error Method is 
used to identify the system model parameters. 
Simulation results show that an oscillator enhanced by 
our adaptive control algorithm improves the oscillator 
performance significantly, compared to uncorrected 
oscillators. Our results also show the benefit of 
explicitly modeling the control loop. Finally, the 
cumulative time error upperbound of such enhanced 
oscillators is investigated analytically and comparison 
results between the analytical and simulated 
upperbound are provided. The results show that the 
analytical upperbound can serve as a practical guide 
for system designers.    

1.    Introduction 
 
The timing module accuracy is crucial to the 

normal operation of WiMAX and CDMA base 
transceiver stations. Generally, the timing module on 
the base station is phase locked by a pulse per second 
(1pps) signal from GPS (Global Positioning System) 
satellites. Once GPS signals are lost and the timing 
module enters holdover mode, the accuracy of the 
timing module is dependent on the local oscillator. The 
3GPP2 recommended that CDMA systems must not 
exceed 10 ݏߤ cumulative time error (CTE) for a period 
of no less than 8 hours in holdover mode [1].  WiMAX 
systems do not have a standard but a cumulative time 
error not exceeding 25 ݏߤ  for a period of 8 hours in 
holdover mode is a target [2].   

The time error ∆t  and the time duration T for 
which the frequency stability error is maintained are 
related to the stability of the oscillator ∆݂/ ଴݂ through 
Equation (1). The term ଴݂ is the nominal frequency and 
the term ∆݂ is the frequency error. 
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Applying Equation (1) to the CDMA cumulative 
time error of 10 ݏߤ over an 8 hour period in holdover 
mode, one can derive a maximum allowable frequency 
error of the oscillator of 0.35 ppb (parts per billion). A 
Double Oven Controlled Crystal Oscillator (DOCXO) 
is needed to meet the stability requirement over the 
75 Ԩ operation temperature range. The cost, size, and 
power consumption of a DOCXO increase as the 
frequency stability requirement rises. It is feasible to 
change this trend by using an adaptive model of the 
timing module during the locked mode and then using 
the resulting model to correct the oscillator frequency 
drift during holdover mode.   

This paper shows that a single oven controlled 
crystal oscillator (OCXO) can be used in the timing 
module. A Recursive Prediction Error Method (RPEM) 
is used to develop an adaptive control approach to 
compensate the OCXO. Using an OCXO in the timing 
module, the physical size and power consumption of the 
timing module are reduced. The resulting timing 
module can be integrated onto the base station modem 
card and the cost is further reduced.  

The paper also investigates the analytical 
cumulative time error upperbound of the timing module. 
This upperbound represents the performance bound of 
the timing module and determines the application range. 

The remainder of this paper is organized as 
follows: Section 2 describes the background 
information about oscillators, key factors affecting 
oscillator frequency stability, and related work on 
enhancing oscillator precision. Section 3 describes the 
timing module system in the base station and the digital 
control loop which creates the correction signal in 
locked mode. Section 4 describes the adaptive control 
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algorithm. In Section 5 the analytical CTE upperbound 
is investigated and Section 6 concludes the paper.  

2. Background  
 
Crystal oscillators are electronic circuits which use 

the mechanical resonance of vibrating crystals of 
piezoelectric materials to create periodically varying 
electrical signals. Crystal oscillators provide relatively 
accurate time and are the sources of relatively precise 
frequency. The frequency stability, low cost and small 
size of crystal oscillators have resulted in their 
ubiquitous usage as a frequency reference in electronic 
equipment. Crystal oscillators as frequency sources and 
frequency control components are widely used in the 
time and frequency research and production fields, such 
as the IT Industry, Communications, Electronic 
Instruments, Applied Electronic Techniques, 
Measurements, Aerospace Systems, Military Industry, 
etc. 

Temperature is a first-order factor which affects 
the frequency stability of crystal oscillators. In general, 
oscillator frequency stability exhibits cubic dependence 
on temperature. However, quadratic temperature 
dependence is often enough to create an oscillator 
temperature-stability model when the temperature is 
around the turnover point of the crystal.     

Ageing is another significant factor affecting 
frequency stability. Generally the ageing effect is not 
linear. However, when the ageing effect is considered 
over a short period of time, such as 24 hours, ageing 
can be considered as having a linear effect on frequency 
stability.  

Some researchers have developed adaptive control 
algorithms for oscillators to enhance the oscillator 
frequency stability based on a correction signal. In [4], 
the authors developed an algorithm for performing 
adaptive temperature and ageing compensation of 
oscillators. The performance of the algorithm is 
evaluated based on experiments using a TCXO, an 
OCXO, and a Rubidium oscillator. The algorithm 
improves the performance of all of these oscillators in 
holdover mode. However, [4] did not analyze the 
characteristics of the correction signal, and therefore the 
model does not reflect the correction circuitry of the 
system. In [5] and [6], the authors used the Kalman 
Filter method to develop algorithms for enhancing the 
oscillator stability in holdover mode. These algorithms 
compensate the ageing effect of oscillators over a long 
period of time. In these works, the researchers did not 

compensate for the temperature effect. The authors in [7] 
used the Kalman Filter method to develop an algorithm 
to compensate for the ageing and temperature effect. 
The work in [2] used the Batch Least Squares method 
to compensate for the temperature effect. The 
algorithms developed in [7] and [2] assume a linear 
temperature dependency of the oscillators.  

Our work in this paper has some distinct features 
and advantages.  First, a quadratic temperature and 
frequency stability relation is included and the ageing 
effect is considered as well in a single model. Second, 
the effect of the control loop on creating the correction 
signal is included. The effect of the control loop will be 
discussed later in the paper. Third, we provide an 
analytical upperbound for the system performance 
which is not investigated by other researchers. Our 
work is based on simulation results and Matlab is used 
as the simulation platform. 

3.   Timing Module System and Digital 
Control Loop 

 
The detailed system structure block diagram of the 

base station timing module is shown in Figure 1.The 
GPS receiver module offers a 1pps reference signal, 
which is coming from GPS satellites. Because all GPS 
satellites are equipped with ultra-high accurate 
rubidium atomic clocks, this 1pps reference signal is 
very precise. The stability of the GPS 1pps signal is not 
that high compared to its accuracy. Typically, the GPS 
receivers add a GPS noise ranging from 20ns to 30 ns 
rms (root mean square) jitter on the 1pps edge.  

The complete digital control loop includes the 
digital phase detector, correction signal calculator, and 
the adaptive oscillator model. All of these functional 
models are resident on a Field Programmable Gate 
Array (FPGA), which includes a processor. A 
frequency source which is generated from the frequency 
multiplier is used to count the time interval between the 
rising edges of the 1pps reference signal from the GPS 
receiver module. A 10MHz OCXO is used to feed this 
frequency multiplier. The digital phase detector counts 
the numbers of periods of the frequency source. 
According to the count value, the correction signal is 
computed by the correction signal calculator. This 
correction signal is applied to a Digital to Analog 
Converter (DAC) to control the 10 MHz OCXO and it 
is also used to feed the adaptive oscillator model which 
can be used when the system loses the GPS signal. A 
temperature sensor is used to collect the ambient 
temperature.
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Figure 1. Detailed Block Diagram of the Timing Module System [2] 

The 10MHz OCXO is the key component of the 
timing module, which is locked to the GPS reference 
signal through the control loop in the locked mode. In 
the holdover mode, the adaptive oscillator model 
creates the correction signal to the OCXO. 

The accuracy of the OCXO is mainly dependent 
on temperature and ageing. The correction signal 
generated by the control loop compensates for the effect 
of these factors on the accuracy of the OCXO. The 
OCXO frequency control signal is created by counting 
between adjacent rising edges of the GPS 1pps (pulse 
per second) signal. When the OCXO has no frequency 
drift, the count value is equal to the frequency of the 
frequency multiplier output +/- the error counts. These 
error counts represent the GPS noise.  

When the OCXO experiences frequency drift, this 
drift appears as a bias on the mean count value. A 
moving average filter is used by the control loop to 
divide the OCXO frequency drift from the GPS noise. 
The error counts are multiplied by the digital phase 
detector resolution to produce the time error between 
the OCXO and the received GPS 1pps signal. All time 
errors are integrated to create the cumulative time error 
(CTE). CTE can be recursively calculated through 
Equation (2). 

௞ܧܶܥ ൌ ௞ିଵܧܶܥ ൅ ߚ  ൈ  (2)     ݐ݊ݑ݋ܿ ݎ݋ݎݎ݁

The term ߚ  represents the digital phase detector 
resolution. The correction signal is created by 
combining the CTE and a moving average of the former 
correction signals. 

ݐܿ݁ݎݎ݋ܿ ൌ ௥௘௙ݐܿ݁ݎݎ݋ܿ െ  (3)     ݌݉ܽ݀/௞ܧܶܥ

The term ܿݐܿ݁ݎݎ݋௥௘௙ is the average of the last 
ܰ correction signals. The term ݀ܽ݉݌ is a constant 
which suppresses the GPS noise. A digital to analog 
converter (DAC) is used to convert the digital 
correction signal into an analog tuning voltage. The 
whole process of determining the tuning voltage 
follows these steps: first, the correction signal, which is 
digital and expressed in ppb (parts per billion), is 
divided by the OCXO tuning sensitivity (Kvco), which 
is expressed in ppb/volt. Therefore, the voltage which is 
applied to the tuning port of the OCXO is obtained. 
Second, the tuning voltage is divided by the DAC 
resolution, which is the ratio of the control voltage 
range to the total number of DAC steps. Thus the actual 
number of DAC steps is obtained, which is a binary 
word. The calculation of the DAC steps is: 

௦௧௘௣௦ܥܣܦ ൌ ሺݔ݂݅
௖௢௥௥௘௖௧௜௢௡ ௦௜௚௡௔௟

௄௩௖௢כ஽஺஼ೝ೐ೞ೚೗ೠ೟೔೚೙
ሻ (4) 

The operator ݂݅ݔሺ·ሻ truncates the arguments in the 
brackets toward zero. This DAC step value is fed into 
the DAC to obtain the real control voltage. 

4.    The Adaptive Control Algorithm 
 
The OCXO frequency stability is dependent on 

ageing and ambient temperature. The oscillator 
frequency stability model is shown in Equation (5).  

௦௧௔௕ሺ݇ሻܿݏܱ ൌ ܽ · ଶሺ݇ሻݑ ൅ ܾ · ሺ݇ሻݑ ൅ ܿ ൅ ݀ · ݇  (5) 
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The term ܱܿݏ௦௧௔௕ሺ݇ሻ  represents the oscillator 
frequency stability and its unit is ppb. The term ݑሺ݇ሻ 
represents the ambient temperature. The terms a and b 
are coefficients of the temperature. The term c 
represents a non-zero initial offset. The term d is the 
ageing rate.  The task of the adaptive control algorithm 
is to identify parameters a, b, c, and d while in locked 
mode and to create the correction signal to compensate 
for the oscillator frequency error while in holdover 
mode.  

The correction signal equation is based on the 
digital control loop described in Section 3.  

ሺ݇ሻݕ ൌ ቀ
ଵ

ଶ଴଴଴
ቁ כ ∑ ሻ௞ିଵݐሺݕ

௧ୀ௞ିଶ଴଴଴ െ ቀ
ଵ

ଵହ଴
ቁ כ

               ∑ ሼ6.25 כ ݐሺݒሾሺݔ݂݅ ൅ 1ሻ െ ሻݐሺݒ ൅ ܽ ௞ିଵכ
௧ୀ଴

ݐଶሺݑ                ൅ 1ሻ ൅ ܾ כ ݐሺݑ ൅ 1ሻ ൅ ܿ ൅ ݀ כ ሺݐ ൅ 1ሻ ൅

               0.0229 כ ݔ݂݅ ቀ
௬ሺ௧ሻ

଴.଴ଶଶଽ
ቁሻ/6.25ሿሽ                         (6) 

In Equation (6), the term ݕሺ݇ሻ  represents the 

correction signal. The term ቀ
ଵ

ଶ଴଴଴
ቁ כ ∑ ሻ௞ିଵݐሺݕ

௧ୀ௞ିଶ଴଴଴  

represents ܿݐܿ݁ݎݎ݋௥௘௙ in Section 3 and is the average of 
the last 2000 correction signals. The damp term in 
Section 3 is set to be 150. The value 6.25 is the digital 
phase detector resolution and its unit is ns. The term 
6.25 כ ሺݔ݂݅

·

଺.ଶହ
ሻ guarantees that the resulting value is a 

multiple of 6.25. The value 0.0229 corresponds to the 

DAC resolution and 0.0229 כ ሺݔ݂݅
௬ሺ௧ሻ

଴.଴ଶଶଽ
ሻ  guarantees 

that the correction signal is a multiple of 0.0229 ppb.  

The measurement noise is ݐሺݒ  ൅ 1ሻ െ ሻݐሺݒ . The 
reason for choosing ݒሺݐ ൅ 1ሻ െ ሻݐሺݒ  rather than 
ݐሺݒ ൅ 1ሻ is as follows. The measurement noise of the 
system comes from the GPS noise jitter. The GPS 
receiver receives the GPS 1 pulse per second (pps) 
signal. If there is no GPS noise jitter, the distance 
between GPS pulses should be exactly 1 second. 
However, GPS noise always exists and the distortion of 
the jitter has to be added into the distance between 
pulses. For example, if both the first and second GPS 1 
pps signals are distorted by a +10 ns jitter, both the first 
and second pulse edges move +10 ns. Then the distance 
between two pulse edges is still 1 second. The 
perceived measurement noise is 0 ns. If the first 1 pps 
signal is distorted by a +10 ns jitter and the second 1 
pps signal is distorted by a -10 ns jitter, the first edge 
moves +10 ns and the second edge moves -10 ns. The 
distance between two pulse edges is 1 second minus 20 
ns. The perceived measurement noise in this case is -20 
ns. Hence, the measurement noise is given by ݐሺݒ  ൅
1ሻ െ  .ሻݐሺݒ

Equation (6) has to be rearranged to apply the 
system identification algorithm to identify parameters a, 
b, c, and d. We set 

ܻ1ሺ݇ሻ ൌ ሺെ150ሻ כ ሺ݇ሻݕ ൅ ቀ
ଵହ଴

ଶ଴଴଴
ቁ כ ∑ ሻ௞ିଵݐሺݕ

௧ୀ௞ିଶ଴଴଴   (7) 

According to (6),  

ሺെ150ሻ כ ሺ݇ሻݕ ൌ ൬െ
150

2000
൰ ෍ ሻݐሺݕ

௞ିଵ

௧ୀ௞ିଶ଴଴଴

൅ ෍ሼ6.25 כ

௞ିଵ

୲ୀ଴

ݐሺݒሾሺݔ݂݅ ൅ 1ሻ െ ሻݐሺݒ

൅ ܽ כ ݐଶሺݑ ൅ 1ሻ ൅ ܾ כ ݐሺݑ ൅ 1ሻ ൅ ܿ 

                                  ൅݀ כ ሺݐ ൅ 1ሻ ൅ 0.0229 כ

ሺݔ݂݅                                   
௬ሺ௧ሻ

଴.଴ଶଶଽ
ሻሻ/6.25ሿሽ       (8)   

Hence, 

ሺെ150ሻ כ ሺ݇ሻݕ ൅ ൬
150

2000
൰ כ ෍ ሻݐሺݕ

௞ିଵ

௧ୀ௞ିଶ଴଴଴

ൌ ෍ሼ6.25

௞ିଵ

௧ୀ଴

כ ݐሺݒሾሺݔ݂݅ ൅ 1ሻ െ ሻݐሺݒ

൅ ܽ כ ݐଶሺݑ ൅ 1ሻ ൅ ܾ כ ݐሺݑ ൅ 1ሻ ൅ ܿ

൅ ݀ כ ሺݐ ൅ 1ሻ ൅ 0.0229  כ

ሺݔ݂݅                              
௬ሺ௧ሻ

଴.଴ଶଶଽ
ሻሻ/6.25ሿሽ                    (9) 

Hence, 

ܻ1ሺ݇ሻ ൌ ∑ ሼ6.25௞ିଵ
௧ୀ଴ כ ݐሺݒሾሺݔ݂݅ ൅ 1ሻ െ ሻݐሺݒ ൅ ܽ כ

ݐଶሺݑ              ൅ 1ሻ ൅ ܾ כ ݐሺݑ ൅ 1ሻ ൅ ܿ ൅ ݀ כ

             ሺݐ ൅ 1ሻ ൅ 0.0229 כ ሺݔ݂݅
௬ሺ௧ሻ

଴.଴ଶଶଽ
ሻሻ/6.25ሿሽ         (10) 

The ∑ in Equation (10) can be removed by 
calculating the difference between ܻ1ሺ݇ሻ  and  ܻ1ሺ݇ െ
1ሻ. 

ܻ2ሺ݇ሻ ൌ ܻ1ሺ݇ሻ െ ܻ1ሺ݇ െ 1ሻ             

                ൌ  6.25 כ ሺ݇ሻݒሾሺݔ݂݅ െ ሺ݇ݒ െ 1ሻ ൅ 

                           ܽ כ ଶሺ݇ሻݑ ൅ ܾ כ ሺ݇ሻݑ ൅ ܿ ൅ ݀ כ ݇ 

                           ൅0.0229 כ ሺݔ݂݅
௬ሺ௞ିଵሻ

଴.଴ଶଶଽ
ሻሻ/6.25ሿ   (11) 

We introduce 

ሺ݇ܤ            െ 1ሻ ൌ 0.0229 כ ሺݔ݂݅
௬ሺ௞ିଵሻ

଴.଴ଶଶଽ
ሻ           (12) 
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So, 

ܻ2ሺ݇ሻ ൌ 6.25 כ ሺ݇ሻݒሺሺݔ݂݅ െ ሺ݇ݒ െ 1ሻ ൅       

                ܽ כ ଶሺ݇ሻݑ ൅ ܾ כ ሺ݇ሻݑ ൅ ܿ ൅ ݀ כ ݇     

൅ܤሺ݇ െ 1ሻሻ/6.25ሻ             

    ൌ ሺ݇ሻݒ െ ሺ݇ݒ െ 1ሻ ൅ ܽ כ  ଶሺ݇ሻݑ

                 ൅ܾ כ ሺ݇ሻݑ ൅ ܿ ൅ ݀ כ ݇ ൅ ሺ݇ܤ െ 1ሻ 

              ൅6.25 כ ሺ݇ሻݒሺሺݔ݂݅ െ ሺ݇ݒ െ 1ሻ ൅ 

     ܽ כ ଶሺ݇ሻݑ ൅ ܾ כ ሺ݇ሻݑ ൅ ܿ ൅ 

  ݀ כ ݇ ൅ ሺ݇ܤ െ 1ሻሻ/6.25ሻ 

              െሾݒሺ݇ሻ െ ሺ݇ݒ െ 1ሻ ൅ ܽ כ  ଶሺ݇ሻݑ

                            ൅ܾ כ ሺ݇ሻݑ ൅ ܿ ൅ ݀ כ ݇ ൅ ሺ݇ܤ െ 1ሻሿ  (13) 

  We introduce 

2ሺ݇ሻܻߜ ൌ 6.25 כ ሺ݇ሻݒሺݔ݂݅ െ ሺ݇ݒ െ 1ሻ 

                ൅ܽ כ ଶሺkሻݑ ൅ ܾ כ ሺ݇ሻݑ ൅ ܿ 

                      ൅݀ כ ݇ ൅ ሺ݇ܤ െ 1ሻ/6.25ሻ െ 

                     ሾݒሺ݇ሻ െ ሺ݇ݒ െ 1ሻ ൅ ܽ כ  ଶሺ݇ሻݑ

    ൅ܾ כ ሺ݇ሻݑ ൅ ܿ ൅ ݀ כ ݇ 

                    ൅ܤሺ݇ െ 1ሻሿ                  (14) 

So,  

ܻ2ሺ݇ሻ ൌ ሺ݇ሻݒ െ ሺ݇ݒ െ 1ሻ ൅ ܽ כ ଶሺ݇ሻݑ ൅ 

ܾ כ ሺ݇ሻݑ ൅ ܿ ൅ ݀ כ ݇ ൅ 

ሺ݇ܤ                    െ 1ሻ ൅  2ሺ݇ሻ                (15)ܻߜ

We define ܻ3ሺ݇ሻ as the difference between ܻ2ሺ݇ሻ 
and ܤሺ݇ െ 1ሻ. 

ܻ3ሺ݇ሻ ൌ ܻ2ሺ݇ሻ െ ሺ݇ܤ െ 1ሻ                               

   ൌ ሺ݇ሻݒ െ ሺ݇ݒ െ 1ሻ ൅ ܽ כ  ଶሺ݇ሻݑ

                 ൅ܾ כ ሺ݇ሻݑ ൅ ܿ ൅ ݀ כ ݇ ൅  2ሺ݇ሻ     (16)ܻߜ

The term 2ܻߜሺ݇ሻ represents the quantization error 
caused by the digital phase detector resolution. This 
error is limited between -6.25݊ݏ and +6.25݊ݏ. 

Equation (16) is an ARMAX model except for the 
inclusion of a quantization error 2ܻߜሺ݇ሻ. The standard 
ARMAX model is shown in Equation (17). 

ܻ3ሺ݇ሻ ൌ ܽ כ ଶሺ݇ሻݑ ൅ ܾ כ ሺ݇ሻݑ ൅ ܿ        

                    ൅݀ כ ݇ ൅ ሺ݇ሻݒ ൅ ݁ כ ሺ݇ݒ െ 1ሻ       (17) 

The term ݁ is the coefficient of GPS noise 
received in last second. From Equation (16), ݁ should 
be -1. However, the quantization error 2ܻߜሺ݇ሻ causes 
݁ to be close to, but not exactly, -1. Hence, we use 
݁ כ ሺ݇ݒ െ 1ሻ  to represent 2ሺ݇ሻܻߜ  െ ሺ݇ݒ െ 1ሻ . Thus, 
Equation (17) can be solved by the Recursive Prediction 
Error Method [3]. After parameter estimates are 
calculated, the estimated ෠ܻ3ሺ݇ሻ in holdover mode is 
obtained as 

෠ܻ3ሺ݇ሻ ൌ  ොܽ כ ଶሺ݇ሻݑ ൅ ෠ܾ כ ሺ݇ሻݑ ൅ ܿ̂ ൅ መ݀ כ ݇     (18) 

Hence, the estimated correction signal ݕොሺ݇ሻ  in 
holdover mode is calculated as Equation (19) according 
to Equation (6).  

ොሺ݇ሻݕ ൌ ൬
1

2000
൰ כ ෍ ሻݐොሺݕ

௞ିଵ

௧ୀ௞ିଶ଴଴଴

െ ൬
1

150
൰  כ

               ∑ ሼ6.25 כ ሾሺݔ݂݅ ෠ܻ3ሺݐ ൅ 1ሻ ൅௞ିଵ
௧ୀ଴  

0.0229 כ ሺݔ݂݅
௬ොሺ௧ሻ

଴.଴ଶଶଽ
ሻሻ/6.25ሿሽ             (19) 

 

The ambient temperature profile is fixed and 
shown in Figure 2. The range of temperature variation 
in Figure 2 is 60Ԩ. The cycle of temperature variation 
is 8 hours. This temperature range is large enough to 
represent the real working environment, although the 
operation temperature range is 75Ԩ. The 8 hours cycle 
guarantees that we obtain the simulation results fast 
enough. For illustrating the performance of a corrected 
OCXO, 100 simulations are run and the maximum CTE 
is shown in Figure 3. The CTE for the uncorrected 
OCXO is also shown in Figure 3 as a comparison. The 
timing modules are in locked mode for 6 hours and then 
in holdover for 8 hours.  

The simulation results indicate that the adaptive 
control algorithm provides a 100 fold improvement in 
the cumulative time error over the uncorrected 
oscillator. There is a sharp spike in corrected OCXO 
figure when training process just starts. The reason is 
that a non-zero initial offset exists in the system model 
and it does not affect the CTE improvement. 
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Figure 2. Ambient Temperature Profile 

 

 

Figure 3. CTE for corrected and uncorrected OCXO during locked and holdover mode. Holdover initiated at 6 
hours. 

Other papers such as [2] [4] [5] [6] [7] have used a 
more direct modeling approach for the parameter 
identification.  Equation (20) is a model created through 
this more direct modeling approach. Here the correction 
signal is directly related to temperature and ageing and 
does not take into consideration the control circuitry 
implementation as in Equation (17). 

ሺ݇ሻݕ   ൌ ܽ כ ଶሺ݇ሻݑ ൅ ܾ כ ሺ݇ሻݑ ൅ ܿ ൅ ݀ כ ݇ ൅  ሺ݇ሻ  (20)ݒ

A Recursive Least Squares method can be used to 
identify the parameters of this model. Simulation results 
show that the performance of the model of Equation (20) 
is not as good as the model of Equation (17). Figure 4 
shows the comparison results. We run 100 simulations 
and the maximum CTE for Equation (17) and Equation 
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(20) are compared. In Figure 4, the dashed line 
represents the CTE for the model of Equation (20) and 
the solid line represents the CTE for the model of 
Equation (17). In the remainder of the paper, we call the 
model of Equation (17) the model that includes the 
control loop and the model of Equation (20) is called 
the direct model.  The model that includes the control 
loop has better performance than the direct model. The 

reason is that the correction signal in locked mode is 
generated by the control loop. Therefore, the direct 
model, which omits the control loop, may produce 
errors in determining the correction signal in holdover 
mode. The model that includes the control loop more 
precisely captures how the correction signal is created 
in locked mode.  

 

Figure 4. CTE for direct model of Equation (20) and more complex model of Equation (17). Holdover initiated 
at 5 hours. 

5.    Cumulative Time Error Upperbound 
 
A problem for wireless network providers is that 

they want to know the holdover worst case scenario. 
Therefore, we investigate the analytical CTE 
upperbound of the timing module. The first step is to 
identify the distribution of the parameter estimates. 
According to Equation (17), there are 5 parameters 
which need to be estimated. However, there are only 4 
parameters in Equation (16). The parameter ݁  in 
Equation (17) is the noise parameter, which is not used 
in estimating the correction signal. We only need the 
parameter estimates ොܽ, ෠ܾ, ܿ̂ and መ݀  to create the 
correction signal for compensating the oscillator. 
Hence, in the remainder of this paper, we set ߠ଴ ൌ
ሾܽ  ܾ  ܿ  ݀ሿ்  and ෠ߠ  ൌ ൣ ොܽ  ෠ܾ  ܿ̂  መ݀൧

்
. Through analyzing 

 ෠, the characteristics of the parameter estimatesߠ ଴ andߠ
can be obtained. According to [8], the parameter 
estimates vector ߠ෠ has a Gaussian joint distribution with 
mean value ߠ଴ , where ߠ଴ is the true parameter value, 
and covariance matrix ேܲ which is given as,  

෠ߠ െ ଴ߠ א ܰሺ0, ேܲሻ       (21) 

Since ேܲ is the covariance matrix of the joint 
distribution of vector ෠ߠ െ ଴ߠ , the covariance and 
correlation between the different components of ߠ෠ െ
 ଴ can be obtained. Hence, we know thatߠ

൫ߠ෠ െ ଴൯ߠ
்

ேܲ
ିଵሺߠ෠ െ ଴ሻߠ א ߯ଶሺ݀ሻ      (22) 

Equation (22) is a direct application of the 
definition of the ߯ଶ distribution. The probability of 

|θ෠ െ θ଴|PN
షభ

ଶ  can be represented by  Pሺหθ෠ െ θ଴ห
PN

షభ
ଶ

ሻ . 

Hence, by checking the  ߯ଶ statistical table, we know 

ܲ ቀหߠ෠ െ ଴หߠ
௉ಿషభ
ଶ

ቁ ൌ ܲ ൬൫ߠ෠ െ ଴൯ߠ
்

ேܲ
ିଵ൫ߠ෠ െ ଴൯൰ߠ ൌ 95%   

when ൫ߠ෠ െ ଴൯ߠ
்

ேܲ
ିଵ൫ߠ෠ െ ଴൯ߠ ൑ 9.49 , because the 

degree of freedom of the ߯ଶdistribution is 4 [9].  

The estimate of the oscillator frequency stability 
can be approximated as, 

ሻݐොሺݕ ൌ ොܽ · ሻݐଶሺݑ ൅ ෠ܾ · ሻݐሺݑ ൅ ܿ̂ ൅ መ݀ ·  (23)        ݐ

Hence, the cumulative time error is 
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ܧܶܥ ൌ | ∑ ൫ݕොሺݐ௜ሻ െ ௜ሻ൯ேݐሺݕ
௜ୀଵ | (24) 

The CTE 95% probability upperbound is the 

maximum value of CTE subject to ൫ߠ෠ െ ଴൯ߠ
்

ேܲ
ିଵ൫ߠ෠ െ

଴ሻߠ ൑ 9.49. 

CTE୫ୟ୶ ൌ max
ఏ෡

อ෍൫ݕොሺݐ௜ሻ െ ௜ሻ൯ݐሺݕ

ே

௜ୀଵ

อ   

෠ߠ൫ ݐ݄ܽݐ ݄ܿݑݏ െ ଴൯ߠ
்

ேܲ
ିଵሺߠ෠ െ ଴ሻߠ ൑ 9.49   (25) 

An eigenvector method is used to solve Equation 
(25). First, the column vectors  ܼ ൌ ෠ߠ െ ଴ߠ  and ܴ ൌ
ሾ∑ ௜ሻݐଶሺݔ

ே
௜ୀଵ   ∑ ௜ሻݐሺݔ

ே
௜ୀଵ   ܰ   ∑ ௜ݐ

ே
௜ୀଵ ሿ் are defined. The 

problem of finding the 95% maximum value of 
ห∑ ൫ݕොሺݐ௜ሻ െ ௜ሻ൯ேݐሺݕ

௜ୀଵ ห is equivalent to Equation (26). 

max
ఏ෡

൭෍൫ݕොሺݐ௜ሻ െ ௜ሻ൯ݐሺݕ

ே

௜ୀଵ

൱

ଶ

ൌ ሺ்ܼݔܽ݉ כ ܴሻଶ

ൌ ሺ்ܼݔܽ݉ כ ሺܴ כ ்ܴሻ כ ܼሻ  

்ܼ ݐ݄ܽݐ ݄ܿݑݏ                      
ேܲ
ିଵܼ ൑ 9.49         (26) 

We set ܫܲ  ൌ ேܲ
ିଵ . The generalized eigenvalue 

problem of ܴ כ ்ܴ can be solved by Equation (27). 

ܴ כ ்ܴ כ ܸ ൌ ܫܲ כ ܸ כ  (27)  ܦ

The matrix D is a diagonal matrix with the 
generalized eigenvalues of ܴ כ ்ܴ on the main diagonal. 
The matrix V is a full matrix whose columns are the 
corresponding eigenvectors of D. The maximum value 
of the elements on D’s main diagonal is denoted ݄, and 
the corresponding index is denoted ݇.  Let ݒ௞ denote the 
k-th column of V, which corresponds to the maximum 
eigenvalue h. From Equation (27), we get  

ܴ כ ்ܴ כ ௞ݒ ൌ ݄ כ ܫܲ כ  ௞   (28)ݒ

Equation (28) multiplied by ݒ௞
்  on the left side 

gives 

௞ݒ 
் כ ܴ כ ்ܴ כ ௞ݒ ൌ ௞ݒ

் כ ݄ כ ܫܲ כ  ௞      (29)ݒ

ܼ  is calculated as follows: 

ܼ ൌ ට
ଽ.ସଽ

௩ೖ
௩ೖכ௉ூכ′

כ  ௞   (30)ݒ

Thus,  

ݔܽ݉ ൭෍൫ݕොሺݐ௜ሻ െ ௜ሻ൯ݐሺݕ

ே

௜ୀଵ

൱

ଶ

ൌ ሺ்ܼݔܽ݉ כ ܴ כ ்ܴ כ ܼሻ 

                                        

ൌ ඨ
9.49

௞ݒ
ᇱ כ ܫܲ כ ௞ݒ

כ ௞ݒ
ᇱ כ ܴ כ ܴᇱ

כ ඨ
9.49

௞ݒ
ᇱ כ ܫܲ כ ௞ݒ

כ  ௞ݒ

                      ൌ
ଽ.ସଽ

௩ೖ
ᇲכ௉ூכ௩ೖ

כ ௞ݒ
ᇱ כ ܴ כ ܴᇱ כ  ௞ݒ

                               ൌ
9.49

௞ݒ
ᇱ כ ܫܲ כ ௞ݒ

כ ௞ݒ
ᇱ כ ܫܲ כ ௞ݒ כ ݄ 

                     ൌ 9.49 כ ݄            (31) 

Therefore, the 95% maximum cumulative time 
error can be obtained by computing the square root of 
the maximum ଶ|ܧܶܥ|   when ߠ෠ is located on the 95% 
probability confidence ellipsoid boundary. This 
maximum CTE is our analytical 95% probability CTE 
upperbound. 

We use the Monte Carlo simulation method to 
verify this analytical 95% CTE upperbound [10]. Figure 
5 shows the comparison among 95% probability 
analytical CTE upperbound, Monte Carlo maximum 
CTE upperbound, and Monte Carlo 95% probability 
CTE upperbound. In the simulation, 100 simulations are 
run. The 5௧௛ maximum CTE of 100 simulations is used 
to represent the Monte Carlo 95% probability CTE 
upperbound and the maximum CTE of 100 simulations 
to represent the Monte Carlo maximum CTE 
upperbound. The analytical upperbound of the CTE 
actually lies between the maximum CTE and the 95% 
upperbound of CTE. The reason is that a ߠ෠  which is 
located outside the 95% probability confidence ellipsoid 
does not always result in a larger CTE than all ߠ෠ in the 
95% probability confidence ellipsoid.   
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Figure 5. Comparison Result between Analytical CTE Upperbound and Monte Carlo CTE Upperbound 

6.    Conclusions 
 
In this paper, an adaptive control algorithm is 

introduced to enhance the frequency stability of OCXO 
in timing modules of base stations. A model which 
includes the control loop is created and the Recursive 
Prediction Error Method (RPEM) is used to identify the 
parameters.  The simulation results show that this 
method provides better performance of the oscillator 
than the uncorrected oscillator and the oscillator 
corrected using a direct model proposed in the 
previously published literature.  The analytical 
oscillator cumulative time error in holdover mode is 
investigated and a good result is obtained. The 95% 
maximum error bound in holdover mode for the 
oscillator is determined analytically and in comparison 
to the Monte Carlo Method.  
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