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MULTIPLE MODEL CONTROL
IMPROVEMENTS: HYPOTHESIS TESTING
AND MODIFIED MODEL ARRANGEMENT

A.S. Campbell* and H.M. Schwartz*

Abstract

This work demonstrates the fusion of two concepts in switching
systems, namely, hypothesis testing and multiple model adaptive
control. A hypothesis test switching method is defined to detect
parameter jumps in a stochastic environment and select new models.
The control of discrete-time systems with rapidly time-varying
parameters is simulated. Hypothesis test switching is compared to
the most frequently researched performance index switching method.
The proposed method is found to be unique because it achieves
lower control error and operates without user adjustment or a
priorsi knowledge of parameter behaviour and model placement. In
addition, a modification to the way multiple models are arranged is
proposed. Using the modified arrangement, performance increases
are demonstrated, stability is proven more easily, previously required
assumptions can be relaxed, and new switching methods can be

applied.
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1. Introduction

Multiple model adaptive control becomes necessary when
plant parameters move too quickly to be tracked by a single
estimation model. With proper model placement and
switching, improved control and stability can be achieved
during initialization, subsystem failures, and operating
environment changes. Typically, a finite number of models
are evaluated by a performance index and, at any instant,
the most suitable model’s controller is used to control
the plant [1-7]. The most researched model arrangement,
using N — 2 fixed models and two adaptive models [1-
6], is referred to as the classical model arrangement
throughout this paper. Each of the N models in the
classical model arrangement has an associated matched
controller. Switching to a fixed model that well represents
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the plant state, and then performing adaptation from that
point, yields the greatest benefit of the multiple model
approach (Section 3) [1-6].

Logic-based switching schemes have incorporated a
dwell-time [8] or hysteresis [9, 10] to prevent excessive
switching. Hysteresis switching is a popular area of re-
search and in some cases switching can cease within a finite
time [7], as necessary for stability. The scheme has yet to
be formally proposed for discrete-time stochastic systems.
In future work, such a scheme will be proposed so that the
hypothesis test method’s stability and performance can be
compared.

The problem of sudden changes in parameters is also
well researched in the statistics community. Hypothesis
testing is demonstrated useful for detecting parameter
jumps when performing system identification by means of a
Kalman filter [11, 12]. The Kalman residual is normalized
by its standard deviation and used as a Gaussian test
statistic [11]. In the event of a parameter jump, the
resulting change in mean or variance is detected by a
hypothesis test, allowing strategic re-initialization of the
filter for faster convergence to new values.

This paper demonstrates the fusion of two concepts in
switching systems: hypothesis testing and multiple model
adaptive control. A hypothesis test switching method is
defined to detect parameter jumps in a stochastic environ-
ment and perform model selection (Section 4). Hypothesis
test switching is compared to performance index switching,
the most researched and popular switching method. The
stability analysis of the proposed method requires similar
assumptions {Section 6). Simulations demonstrate that
the hypothesis test method is unique because it operates
optimally without user adjustment (i.e. tuning) or a pri-
ori knowledge of the time-varying conditions and model
placement (Section 7).

In addition, a modification to the classical model
arrangement is proposed (Section 5). Motivation for
this modified arrangement comes from the inherent in-
stability of the classical arrangement. The proposed
method excludes all fixed controllers but still benefits from
the existence of fixed models. Analysis and simulation
demonstrate that assumptions can be relaxed (Section
6), stability is improved, and performance is increased
(Section 7).
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9. Mathematical Preliminaries

A discrete-time plant with input u(k), output y(k), and
disturbance w(k) is described by the following equations:

y(k +1) = 07 (k)go (k) + w(k + 1) (1)

R TE (- I, ) ) W—
bng (k), c1(k), . ..y cno (k)] (2)

po(k)" = [—y(k), ..., —y(k —na),u(k),...,

ulk —np+1),wk),...,wlk—nc+1)] (3)
The disturbance is zero mean Gaussian with variance o?.
The plant is required to be of unity delay and have a
minimum phase transfer function. Adaptive control is
performed using ELS parameter estimation. The plant’s
order is known (i.e. na, ng, and ne) and the estimate of
(2) is expressed:

6T (k) =[a1(k), ... Gn, (k),b1(K), ...,
Bna(k)ial(k)a'-- :é‘nc(k)] (4)

The disturbance statistics, w(k),...,w(k—nc+1), in (3)
cannot be measured and are represented instead by the a
posteriori estimation errors, e(k),...,e(k —ng+1) (de-
fined below). The ELS regression vector is then defined:

¢(k)T = [~y(k), ..., ~y(k—na),ulk),. ..,
uwk—np+1),elk),...,e(k—ngc+1)] (5)

The a priori estimate of y(k+ 1) is defined §°(k+1)=
6T (k)p(k) and the a posteriori estimate is defined
G(k+1)=0T(k+1)p(k). Using the a posteriori er-
ror from time-step k, e(k)=y(k)—4(k), the parameter
estimation vector is updated as:

6T (k+ 1) = 67 (k) + P(k + 1)p(k)e(k) (6)

The initial state, §T(0), is known and the covariance
matrix, P(k+ 1), is calculated as:

_ P(k)oﬁ(k)cﬁT(k)P(k)) (7)
A+ ¢T (k)P (k) (k)

Pk+1) =1 (P(.Ic)

where the user-defined forgetting factor, A€ (0, 1), speci-
fies how quickly the algorithm discounts past sample in-
formation. Assuming that u(k) and w(k) are persistently
exciting, 6T (k) will converge asymptotically to 87T (k).

The a posteriort estimate is equated with the desired
plant output, y*(k+ 1), and the control error equation,
eclk+1)=ylk+1)—y*(k+1), is used as follows:

y(k+1)

Jk+1)+elk+1)
6T (k4 1)d(k) + ec(k + 1)

bi(k + Du(k) + 6% (k + 1)@(k) + ec(k + 1)
(8)
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where ¢(k)T, is the same as ¢(k)T from (5), except that
u(k) is replaced by a zero. With the certainly equiva-
lence principle, the control error is equal to the a poste-
riori estimation error. The control input is calculated by
rearranging (8) to be:

* _ AT I
(k) =¥ (k+ 12}1 (kf9+(llc)+ 1)¢(k) (©)

To ensure that u(k) is bounded, it is required that b; has
a positive, known lower bound, b, > 0. A more detailed
definition of the system and control law can be found in [3].

3. Multiple Model Adaptive Control of Stochastic
Systems

The multiple model method in [1--7] is well researched. The
method’s performance index is described in Section 3.1 and
its classical model arrangement is described in Section 3.2.

3.1 Performance Index Switching

Model M;, where i € {1,..., N}, is selected at the instant
it has the smallest associated performance index, J;(k). If
the disturbance statistics, plant parameters, and models
are time-invariant, then a sum-of-error is a suitable per-
formance index [2]. The performance index analyzed here,
(10), is designed for improved switching in time-varying
environments and is the most popular switching method
[2-7]. Model M; has the plant estimate output ;(k), which
is compared to y(k) to produce the model’s identification
error, e;(k) =y(k) — §i;(k). The performance index for M;
is calculated as:

d o ik
L) = ek + LD T (10)
=]

where the weights'd,, dz, and ds are heuristically adjusting
to achieve the desired switching behaviour. The compro-
mise of switching “too often” and reacting to parameter
changes “too slowly,” is made by adjusting the ratio d,:ds.
It is found that the ratio 1:2 yields suitable switching per-
formance in most situations [5]. Weight d3 €(0,1) is an
adjustable forgetting factor that determines the rate at
which past modelling errors are attenuated. When the
time-varying properties of the plant parameters are un-
known, there is no way of knowing what value for ds will
achieve minimum control error and, as a result, heuristic
adjustment of ds (i.e. tuning) is required. This process
of tuning ds is demonstrated in Section 7.1. The proof
of stability for performance index (10), which is discussed
in Section 6.1, requires a low disturbance level or dy=1
(undesirable assumptions).

3.2 Classical Model Arrangement
The classical model arrangement is used in [1-7]. Two

adaptive models and NV — 2 fixed models are used to iden-
tify the plant. Each of the N models has a corresponding
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Figure 1. (a) The classical model arrangement and (b) modified model arrangement.

matched controller. This combination of fixed and adaptive
models is considered a good compromise between compu-
tational complexity and performance [1]. The model that
contributes most to performance is the resetting adaptive
model. It strategically reinitializes whenever a fixed model
is selected and uses initial estimates taken from that fixed
model’s parameters. The classical model arrangement is
shown in Fig. 1(a), where the models are denoted as
follows: Mpizeq: is fixed model #1, Myizeqin—2) is fixed
model #N —2, M, is the adaptive resetting model,
and Myre. is the adaptive free-running model. Model
M;, where 1€ {1,..., N}, is associated with controller C;.
When model M; is selected, controller C; is used to control
the plant. Controller C; uses parameter estimates taken
from M; and the desired plant output, y*(k), to generate
its certainty equivalence control input, u;(k). If the newly
selected model, M;, is a fixed model, then M, 4.+ will reini-
tialize, using initial estimates taken from the parameter
vector, 67, of model M;.

4. Hypothesis Test Switching

An n-sample hypothesis test is proposed to detect plant
parameter jumps and enable model switching. If a switch
is allowed, the model that has the least plant output
estimation error during the n-sample test is selected. This
new method is suitable for use with both the classical
model arrangement and the modified model arrangement
(proposed in Section 5). The null hypothesis is stated as
follows:

Hy — no parameter jump has occurred

When the stochastic plant is controlled by means
of a perfectly matched controller, the control error,
ec(k)=y(k)—y*(k), is a Caussian statistic with zero
mean. In the event of a parameter jump, the change
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in statistics can be observed by the i-test result, to(k),
calculated as:

Sor s lec(k = 7)]

W) = =5 ive

(11)

The user-defined constant, n, is the sample size of past
control error and the running standard deviation, S(k), is
calculated as:

S lec(k — 1) — e.(k))?

r—1

SR

(12)

The sample mean control error, &.(k), is calculated as:

(13)

ee(k) = —— S ealk—7)
=0

The running standard deviation sample size, r, increases
by one with each time-step, k. When the null hypothesis,
Hy, is rejected, r is reset to the hypothesis testing sample
size, n (where r > n, always). If Hy is never accepted, S(k)
will saturate at a user-defined maximum, S,q;. A binary
decision rule is used to compare the t-test result, to(k), to
a user-defined rejection threshold, T}, which corresponds
to a significance level, o, using statistical tables. This is
a one-tailed test of significance. The decision rule for the
hypothesis test is stated as:

1. if to(k) <T), accept Hy (no parameter jump);

2. if to(k) > T, reject Hp (a parameter jump).

When Hyj is accepted, switching is not permitted and

no change occurs. When Hj is rejected, the model M;,
where i €{1,..., N}, with the smallest associated perfor-
mance index (14) is selected. The effect of the switch de-
pends on the type of model arrangement (classical arrange-
ment is defined in Section 3.2 and modified arrangement
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is defined in Section 5). In the event that the newly se-
lected model is the same as the previously selected model,
no change will have occurred (M cse; only resets when a
new fixed model is selected). The performance index is
defined as:

n~—1

Bk = = 3 ek~ 1) (14)

=0

where n is the number of samples used in the t-test (11).
Index J;(k) utilizes the past n timesteps’ model estimation
errors, €;(k), e;(k—1),...,ei(k—n+1). Using a larger
sample size, n, would increase the accuracy of the hypoth-
esis test, at a cost of reducing the speed in which a jump
can be detected [11, 12].

In the context of this hypothesis test implementation,
the following statistical terms are defined: « is the prob-
ability of falsely detecting a parameter jump {(a Type I
error) and 3 is the probability of missing a parameter
jump (a Type II error). With the proposed binary deci-
sion rule, a reduction in a will result in an increase in .
It is worth emphasizing that a falsely detected parameter
jump enables, but does not force, a model switch. This
is because the enabled performance index (14) switch may
determine that the current model is still the most suitable
model. As a result, it is best to allow a large e when forced
to implement hypothesis test switching without a priori
knowledge of the control problem.

5. Modified Model Arrangement

The proposed modified model arrangement differs from the
classical model arrangement because it excludes all con-
trollers associated with the IV — 2 fixed models. As shown
in Fig. 1(b), only the controllers corresponding to the two
adaptive models are available to control the plant. The
benefit of the fixed models is still realized, as they provide
an initialization point from which model M., can adapt.
When model Mfree Or Mreser is selected, it operates as
defined in the classical model arrangement, and the corre-
sponding controller, Cf,ee OF Creset, is applied. Selection of
any fixed model, M ¢;zeq;, where i € {1,..., N —2}, causes
the immediate re-initialization of model My ¢s.: and appli-
cation of the matched controller, Creser. Model Myeger uses
initial estimates taken from parameter vector é};udi of the
selected fixed model, My;zeq:. As a result, the fixed models
are an extension to the adaptive model M, s.; and only
serve as strategic re-initialization points. The following
example illustrates how the modified model arrangement
behaves during two possible switches:

o At time-step k— 1, adaptive model M, . is the se-
lected model and its corresponding controller, Creget,
is controlling the plant.

e At time-step &, the switching logic selects fixed model
Myizeq1. Because a fixed model was selected, con-
troller Creser remains applied and continues to control
the plant. And for the same reason, model M, oget
reinitializes and takes initial estimates from parameter
G?iud] of model Myizeq1. The parameters of Crege:
have changed because it is a controller matched to
Mresef;-
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e At time-step &£ + 1, the switching logic selects adaptive
model Myre.. Because this is not a fixed model,
the associated controller, Cf.., becomes the newly
applied controller.

6. Stability and Switching Stability

The plant parameter vector (2) is assumed to be time-
invariant. The stability arguments made in this paper
require the following theorem as a foundation.

Theorem 1 (adapted from [2, Theorem 2]): The
system, given by (1)—(3) and adaptive control laws (4)—(9),
with N > 1 arbitrarily switching adaptive models yields
mean-square bounded signals and minimum variance con-
trol.

Proof of Theorem 1 is given by Narendra and Xiang
[2].

With the addition of fixed models, further analysis
is required. Any applied switching method must be an-
alyzed to show that no unstable, fixed controller-plant
combination can become “frozen” [2, 3]. This condition
(denoted in this paper as switching stability) requires
that the switching signal, i(k), converges such that a fixed
controller cannot be applied. Once switching stability is
shown, Theorem 1 provides proof of stability. Switching
stability is discussed for performance index (10) switching
in Section 6.1, hypothesis test switching in Section 6.2, and
the modified model arrangement in Section 6.3.

6.1 Classical Arrangement Switching Stability with
Performance Index Switching

Before discussing the conditions for switching stability
with performance index (10), the more simple performance
index must be considered:

k
H#) =13 ) (15)

T=1

Performance index (15) is equal to (10) with dy =0, ds =1,
and dz3=1. The indices for the N —2 fixed models are
denoted by in:redl(k)! in:ned?(k)'l CEEO jfi:red(N—E)(k)l and
those of the two adaptive models are denoted by Jreser(k)
and Jree(K).

Theorem 2 (adapted from [2, Section IV-C-II
and IV-C-III]): There exists a finite K and lower bound
€>0, such that performance index (15) converges as fol-
lows:

in:z:edi(k) = max{Jreset(‘!\"’)a Jfree(k)} b 2 H
I1<i<N-2andVk>K

Proof of Theorem 2 is given by Narendra and Xiang
[2]. An incremental approach is used to exhaustively
analyze all possible placements of fixed models. Theorem
2 states that at some time-step, K, the switching scheme
converges such that no fixed controller can be applied (this
is switching stability). Reference [4] states that Theorem 2
be extended to hold for performance index (10) given the
following.

—_



Assumption (A): The SNR is sufficiently large or
performance index (10) uses ds ~= 1.

It is worth noting that using d3 =~ 1 defeats the purpose
of this forgetting factor. As described in Section 3.1, index
(10) was defined for improving performance in time-varying
environments. Finding a stable lower bound for dj in
stochastic environments remains an open area of research.

6.2 Classical Arrangement Switching Stability with
Hypothesis Test Switching

The purpose of the hypothesis test is to enable and disable

switching according to performance index (14). Analysis

is first performed for Case (1), where the user-defined «
is “too large” and switching is always enabled. Then Case

(2) is considered, where a is “too small” and an unstable

model selection could go unnoticed.

Case (1) — Large oz The null hypothesis is always
rejected and as such, switching is always enabled. Perfor-
mance index (14) is analyzed for the following.

Assumption (B): The SNR is sufficiently large or
performance index (14) uses n k.

Assumptions (B) and (A) are similar and (14) be-
comes equal to (15), for which Theorem 2 holds. Assump-
tion (B) is no more desirable than (A ), however, with
Case (1), the system reduces to performance index switch-
ing alone, which is not the method’s intended purpose.

Case (2) — Small a: An incorrectly applied model
could create a long-lasting, unstable controller-plant com-
bination. The ensuing proof serves to show that no such
combination could become “frozen.” In other words, Hy,
would be rejected at some time-step, X, permitting a
model switch. As defined in Section 4, Hy is rejected when
the t-test result, £5(k), is greater than the threshold, T,
(associated with the significance level, a).

Assumptions:

(C) An unstable controller-plant combination yields con-
trol error that is increasing in magnitude, such that
lec(k)| — 0o, as k — oco.

(D) After one or more rejections of the null hypothesis,
H,, an adaptive model is selected.

Theorem 3: There exists a time-step K, such that:

WK)>2T,, 0<K <co

Proof: With Assumption (C), the running stan-

dard deviation (12) increases as follows: S(k) — Ssqq, as
lec(k)| — 00, where Section 4 defines S.u: <oo0. With
S(k) = Ssat, the t-test (11) increases as follows:
n—1
k—
_ZTZO lec( ™)l —00, as |e. (k)| — o0 (16)

Ssat/V/n ’

Thus, there exists some time-step, K, where to(K)>T,,
and proof of Theorem 3 is given. As a result, a model
switch is permitted and there can be no unstable and
“frozen” controller-plant combination. Bounded control is
guaranteed and upon the selection of an adaptive model
(Assumption (D)), convergence occurs. Because Theorem
3 applies for any user-defined sample size n > 0, Assump-
tion (B) and Theorem 2 provide for switching stability. [J
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6.3 Modified Model Arrangement Switching Sta-
bility with Any Switching Logic

Switching stability, as defined in the beginning of Section
6, requires that the switching signal, i(k), converges such
that no fixed controller is applied. Without the presence
of fixed controllers, there is no risk of there being an
unstable, “frozen” controller-plant combination and con-
vergence occurs for each model selection. Thus, the re-
quirement for switching stability can be relaxed to only
require that switching converges to any one model. This
condition guarantees that M,..e; is not continually reset.
Note that it is also acceptable if there is random switching
between the two adaptive models. Simulation studies show
that Assumption (A) with Theorem 2 can be relaxed
for performance index (10) switching: switching stability
was achieved using lower bounds for ds (simulation studies
were also necessary for such an analysis in [4]). When us-
ing the modified model arrangement with hypothesis test
switching, Assumptions {C) and (D) are no longer nec-
essary. Given a chosen switching method satisfies these
relaxed conditions for switching stability, Theorem 1 can
be applied.

Comment 1: Considering that any model selection
results in convergence and unnecessary switching can in-
troduce performance degrading re-initialization of that
process, stability can be alternately discussed given the
following condition.

Assumption (E): Switching occurs at a frequency less
than some maximum, fq..

Provided that a switching method satisfies A ssump-
tion (E), model M,ege; will adapt and bounded control
can be achieved. This is demonstrated using simulations
in Section 7.2. Defining a stable upper bound for fi,. is
an open area for research.

Comment 2: In [3] it was stated that “mathemat-
ically, fixed models only serve to provide better initial
points from which the resetting model can adapt.” How-
ever, analysis in [2] and simulations in Section 7 demon-
strate that incorrectly selected fixed models actually cause
instability of the classical model arrangement. This stated
purpose of fixed models is truly realized with the modified
arrangement, for which it is intrinsic that any controller-
plant combination utilizes an adaptive model’s controller
and is convergent.

7. Simulations

The stochastic plant (1) has the parameter vector:

0T (k) = lax(k) az(k) bi(k) bak) ci(k) ca(k))
(17)
where the actual parameter values are defined uniquely
in Sections 7.1 and 7.2. The adaptive models Missor
and Mpy,q. use forgetting factor values Ayeser =0.97 and
Afree =0.98, respectively. The reference signal is persis-
tently exciting and defined as:

* . [ 27k . [ 2k
Yy (k -+ ].) = 8in <H) —+ sin (ﬁ)



7.1 Comparing Performance Index (10) and Hy-
pothesis Test Switching

Using random numbers, &, dgz,...,033, uniformly dis-
tributed on the interval [—1, 1], the plant parameters and
three fixed models are defined:

6T =[61 &2 1.068; &4 0s), k<500
6T =[66 67 0.5 85 dg b10], 500 < k < 1000
0T =[611 12 1.5 813 614 B1s),

1000 < k < 1500 (end) (19)
O izeas = 07 +0.20[616 617 b18 d19 G20 ar] (20)

0T (k) =

é%zed2:9§+0.20[522 823 dag Oas bz o] (21)

9?€x€d3:5g+0.20[528 620 030 631 32 d33] (22)

The classical arrangement’s fixed models (20)-(22)
are defined to be in the neighborhood of the three plant
states (19) with a maximum parameterization error of
0.20. A unique control scenario is created by using a
unique seed for generating w(k} and &y, ds,...,d33. Fifty
such unique control scenarios are generated, and in each,
the performance index (10) and hypothesis test switching
method are independently tuned. In all scenarios, w(k) is
zero-mean Gaussian with variance o = 0.01.

Tuning performance index (10) involves simulating
once using a certain forgetting factor ds, recording the
MSE, then iteratively trying again with an adjusted value
for d3. One hundred tuning attempts are allowed for
each control scenario, using values for dg between 0.01 and
1.0 (tuning attempt 5 uses d3 =0.01j, where j=1,2,...,
100). Tuning the hypothesis test method involves adjust-
ing the rejection threshold, T, in the same methodical
manner. These 100 tuning attempts use values for T, be-
tween 0.1 and 10.0 (tuning attempt j uses T}. =0.15, where
§i=1,2,...,100).

A two-dimensional filled contour presents the MSE
values from the 100 tuning attempts of each control sce-
nario. Fig. 2(a) represents this whole tuning process for
the performance index switching method and Fig. 2(b)
represents the same for the hypothesis test method. The
unique control scenario numbers are labelled on the left
vertical axis as #1, #2,..., #50. Each control scenario
number in (a) is the same control scenario as in (b). The
values being changed during the 100 tuning attempts (ds
for performance index (10) or 7). for the hypothesis test
method) is labelled on the bottom horizontal axis. The
MSE control error resulting from each tuning attempt (i.e.
for each control scenario # and switching method’s value,
d3 or T,.} is plotted on the contours using grayscale.

The MSE calculation employs a user-defined threshold
of 1 to identify, and act as a ceiling to, what is consid-
ered outliers. As a result, each tuning attempt’s MSE is
without bias from extraordinarily large transient samples
(allowing convergence times to affect the MSE). Using a
larger threshold would place more quantitative value on
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the magnitude of transient error. Using a smaller threshold
would place more value on the speed at which the transient
€ITOr COonverges.

The tuning process for the performance index method
was unique for each control scenario (i.e. different MSE
values were obtained in each scenario). For example, in
control scenario #30 (labelled on the left vertical axis) a low
MSE (shaded black) was achieved using d3 = 0.4. However,
using this same ds value in scenario #29 resulted in a large
MSE (shaded white) and d3 =0 was necessary to produce
a low MSE. Because there is no way of knowing what
value for d3 is suitable for a new control scenario without
performing tuning, this switching method is heuristic.

The tuning process for the hypothesis test method
achieved very consistent MSE results for all control sce-
narios. For example, in control scenario #10 (labelled
on the left vertical axis) a low MSE (shaded black) was
achieved using T, <8. And in scenario #20, using T, <8
also produced a low MSE. For all eontrol scenarios a low
MSE was achieved using T, =5 (shown as a vertical dashed
line in Fig. 2(b)). This line was drawn to illustrate how a
low control MSE could be achieved for all control scenarios
without adjustment of the threshold 7). (no such line could
be drawn in Fig. 2(a) because heuristic switching was
used). This trend demonstrates that the hypothesis test
switching method actually does not require tuning when
plant parameter jumps and model placements are unique
or unknown. For example, if a new control scenario, #51,
was generated, the sequence w(k) and the parameters of
0Tk} B s 0 izedzr and é}_,edg, would be unknown, but
Ty =5 would produce a low MSE. This switching method
is not heuristic because, a priori to implementation, it
is known what value for T is best for such new control
scenarios.

7.2 Incorrect Switching of the Classical and Modi-
fied Model Arrangement

Switching can be incorrect if it is improperly applied (e.g.,
not tuned) or if disturbances are significantly large. Such
an incorrect switching signal, i(k), is independently ap-
plied to both model arrangements. For each arrangement’s
simulation, the plant parameters and fixed models (19)-
(22) use the same seed for generation of the random values.
Because this simulation is only of length k=500, the pa-
rameters (19) are time-invariant with T =67 =[0.6 0.2
1.0 0.5 -04 0.4]. Thedisturbance, w(k), is zero-mean
Gaussian with variance o2 = 0.20.

The classical and modified arrangements’ control error
SEqUENCes, €c(clas) (k) and e (moa)(k), are plotted in Fig. 3.
Model M, ¢se; was initially selected. In response, both
arrangements applied controller Crese, causing ec(cjas) (k)
and ec(moa)(k) to converge. Model My;zeqn was then se-
lected at time-step k=250. The control error ec(cqs)(k)
became unbounded because the unmatched controller,
Clized2, was applied by the classical arrangement. This
same switch caused different behaviour for the modified ar-
rangement: Mg reinitialized (using fﬂ;set (50) = é}r'!rerﬂ
and Areser = 0.97) and Cregse: remained applied (parameters
of Creser changed because it is matched to M,ese;). Little
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Figure 2. (a) Performance index switching and (b) hypothesis test switching, two-dimensional filled contour plots of the
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repetitive tuning for each of the 50 control scenarios with each switching method.
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Figure 3. The classical model arrangement’s control error, ec(dus)(k), and the modified model arrangement’s control error,

€c(mod) (K), due to arbitrary model switching.

transient error was observed in e.(moq) (k) because My eger
adapted quickly. When Mp;z.q1 was selected at k=406,
€c(mod) (k) had its most apparent transient error. This in-
crease was partly due to My;zeq being the most unmatched
model (from observing e(ciqs)(203) and e,ciqs)(406)), and

so 0T, had a large initial parameterization error. The
large ec(moq) (k) was also due to the reference signal (18)
being large during the switch (y*(406) = 0.9, whereas when
Myizeq1 was last selected, y*(206) = 0).

These two simulations demonstrate that the classical
arrangement’s convergence is completely dependent upon
switching and such a constraint does not exist for the mod-
ified arrangement. The incorrect switching of the modified
arrangement caused, at worst, performance degradation.
Section 6.3 provides a stability discussion relating to this.

8. Conclusions and Recommendations

The paper demonstrated that the proposed hypothesis test
switching method could achieve little control error without
user tuning or a priori knowledge of the control problem.
In comparison, the performance index switching method
did not possess this ease-of-implementation attribute and
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it required repetitive heuristic tuning. In additional simu-
lations which could not be included due to considerations
for space, it was found that, in general, the hypothesis test
switching method yielded lower control error. Future work
will compare the hypothesis test method to other switching
methods. In particular, it may be found to have behaviour
similar to that of a hysteresis-based switching method.

The arguments for stability of the classical model
arrangement required performance-hindering assumptions
and intricate analyzes of applied switching methods. Sim-
ulation showed instability with this arrangement when the
switching logic was improperly tuned. No such behaviour
was observed for the proposed modified arrangement. The
modified arrangement’s stability analysis showed that the
definition of switching stability and undesirable assump-
tions could relaxed. As a result, switching methods that
would compromise the classical arrangement’s stability can
be applied. In future work, such new and existing switch-
ing methods could be implemented to benefit from this
arrangement. When comparing the modified model ar-
rangement to the classical model arrangement, computa-
tional complexity was the same, stability was improved,
and performance was increased.

[



Both hypothesis test switching and the modified model
arrangement contributed to improve the control of time-
varying stochastic systems. The most significant perfor-
mance and stability improvements can be achieved when
combining the two methods to form a new multiple model
adaptive control method.
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