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Abstract. The multiple pursuers and evaders game may be represented as a Markov game. Using this modeling,
one may interpret each player as a decentralized unit that has to work independently in order to complete a task.
This is a distributed multiagent decision problem and several different possible solutions have already been proposed.
However, most solutions require some sort of central coordination. In this paper, we intend to model each player as a
learning automata (LA) and let them evolve and adapt in order to solve the difficult problem they have at hand. We
are also going to show that using the proposed learning process, the players’ policies will converge to an equilibrium
point. Simulations of such scenarios with multiple pursuers and evaders are presented in order to show the feasibility
of the approach.
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1 Introduction

Game theory, introduced first by von Neumann and Morgenstern (1947), may be defined as the study of decision
making (Myerson, 1991) in order to solve conflicts. It is based on the idea that each player is given a utility function of
its own strategy and the strategies played by the other players. In the general approach, the game and the strategies
are discrete, therefore, matrices with strategies and payoffs may be assembled.

Several other views of game theory have been introduced since its inception, one of them, called differential games,
by Isaacs (1965). Differential games investigate how decision making takes place over time (Yeung and Petrosyan,
2006) considering continuous domains. To represent this game, one needs to specify the dynamic model of the process
under investigation by means of differential or difference equations.

Pursuit-evasion games are very much suitable to be modeled by a differential game. However, when dealing with
multiple pursuers and evaders, the modeling itself and the solution for the games become very cumbersome (Starr
and Ho, 1969).

In order to avoid this problem, herein we make use of a sort of games known as Markov games (van der Wal,
1980). In this class of games, the models of the environment and the interaction among players are considered to
be Markov chains (Filar and Vrieze, 1997). Players are able to influence the state transitions in a Markov chain by
taking actions (Hespanha and Prandini, 2001).

In all these classes of games, one is usually interested to study if there is some equilibrium points related to the
model. The most important type of equilibrium is known as the Nash equilibrium and the correspondent value of the
game (Nash, 1951). However, if the calculation of the Nash equilibrium is difficult, one may be satisfied with some
suboptimal solution for the game (Li and Cruz, 2006).
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One of the most interesting questions in the field is on how players would adapt and learn to play strategies.
This is the widely known problem of learning in games, which has been largely studied in the last couple of decades,
including includes several books (Fudenberg and Levine, 1998; Weibull, 1995) and recent research papers (Hofbauer
and Sigmund, 2003; Conlisk, 1993). Comparatively, fewer papers have dealt with learning in differential (Harmon
et al., 1995; Givigi et al., 2009) and Markov games (Littman, 2001).

In this article, we propose that the multiple pursuer-evader game be modeled by a Markov game. Moreover, each
decision-making unit (or player) is adaptive. They are known as learning automata. It will be shown that using such
an algorithm, the game converges to an equilibrium point.

The paper is divided as follows. We start by defining the multiple-pursuer multiple-evader game in terms of a
Markov game in section 2. This section introduces the notation used throughout the work (subsection 2.1), the
representation of the states of the system (subsection 2.2), the transition probabilities (subsection 2.3), the policies
available to each player (subsection 2.4), the rewards each player gets for each time step (subsect 2.5) and, finally, the
general model for Markov pursuit-evasion games with the formalization of the problem to be addressed in the next
sections (subsection 2.6). The main contribution of section 2 is in presenting a simple and powerful way to represent
pursuit-evasion games. In section 3 we detail the learning algorithm that will be used in the solution of the game.
Section 4 states the objective of the learning process, namely, achieving an optimal solution for the problem described
in section 2. Section 5 discusses the convergence of the approach used in three different levels: the convergence of
the learning procedure to an Ordinary Differential Equation (section 5.2), the convergence of the algorithm at each
state to a Nash equilibrium (section 5.3) and finally the convergence of the cost function of the game to the optimal
solution (section 5.4. In section 6, simulations of the system are presented in order to show the feasibility of the
solution. And, finally, section 7 presents our conclusions from theory and simulations and points to possible future
work.

2 Markov multiple-pursuers multiple-evaders games

In this section we are going to follow to some extent the model presented in (Hespanha et al., 2000). However,
some noticeable differences must be emphasized. First of all, in their work, Hespanha et al. (2000) consider a game
between only two players, wherein one player, the pursuers, is in fact a team of players. Therefore, either some sort
of sophisticated exchange of information among the pursuers or a central intelligence that controls all of them must
be assumed. In our approach, we are going to assume that each player, pursuers and evaders, behave as separate
entities. Moreover, we deal in here with a game with “rewards” (see subsection 2.5), whereas Hespanha et al. (2000)
deal with probabilities. Their cost function is in fact an expression of the probabilities of the pursuers to catch the
evader at the next time step. However, this optimization is only achieved if we assume nested information, i.e., if one
player, in this case the evader, has access to all the information available to the others plus information about its
own state that is available just to itself.

Before we go any further, let us first define some needed notation. The notation follows closely the ones provided
by (Hespanha et al., 2000) and (Hespanha and Prandini, 2001).

2.1 Notation

Throughout this work we use low cap bold face letters (or greek symbols) for random variables, therefore, x(t) is
going to denote a random variable. Also, given a random variable ξ ∈ Rn and some c ∈ Rn, we denote the probability
of the event happening as P(ξ = c). The same notation is used to represent conditional probabilities. The expected
value of ξ conditioned to an event A is denoted by E[ξ|A].

The symbols ∧ and ∨ signify the logical operators and and or, respectively. The symbols ∩ and ∪ signify the set
intersection and union, respectively. If A is a set, |A| represents its cardinality.

When x ∈ Rn, we denote ‖x‖ ∈ R as the euclidean norm of x. Also, for any x ∈ R, we define (van der Wal, 1980)
x+ = max{x, 0} and x− = min{x, 0}. Therefore, the absolute value is |x| = x+ − x−.

In order to simplify the notation, from now on we will use x(t) = xt. Therefore, for time t+ 1, we will use xt+1.
Finally, we are going to arbitrarily use the masculine pronoun “he” to refer to a pursuer, while using the feminine

pronoun “she” for an evader.

2.2 State Representation

We start by considering a grid with a finite set of cells X = {1, 2, · · · , nc}. Let us also consider that there are
two groups of players. One group is known as the pursuers and the other as the evaders. The set of pursuers is
U = {U1, · · · , Unp} and the set of evaders is D = {D1, · · · , Dne}. Therefore, there are np pursuers and ne evaders.
One may also define the set of all players as N = U ∪ D or N = {U1, · · · , Unp , D1, · · · , Dne}. It is clear that
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|N | = np + ne = η. Since the number of players is countable, we are simply going to denote a player by a positive
integer number k ∈ {1, · · · , η}.

Consider also that the game is quantized in time. The positions of the players are defined for all time steps t ∈ T
for T = {1, 2, · · · }. If we denote by xt = (xt1, · · · ,xtη) ∈ X η the positions at time t then the state of the game is only

x(t). Notice that we assume that the number of possible states x ∈ X η of the system is finite, let us say ns ∈ Z+.
Hence, the cardinality of the set X η of possible states of the game is |X η| = ns.

2.3 Transition Probabilities

Transition probabilities of the game govern the evolution of the game from an arbitrary state xt ∈ X η at time t to
another state xt+1 ∈ X η at time t + 1. In order for the results to be described later to carry, the initial state x0 is
assumed to be independent of all the other random variables at time t = 0.

Each player k has a set of allowable actions. We denote this set by Ak and the actual set Ak depends on the
current state of the game. An action is the desired next allowable cell that the player wants to reach. Therefore, we
can define a vector of desired actions at time t for all the players involved in the game as

αt = [αt1, · · · , αtη] (1)

where each αtk is the action chosen by each player k at time t from his or her set of allowable actions Ak. Observe
then that αt ∈ Aη := A1 × · · · × Aη.

The Markov game formalism (van der Wal, 1980) requires that the probability of transition from one arbitrary
state to another is only a function of the action α ∈ Aη chosen by each of the players at time t when the game is
at state xt ∈ X η. Hereafter we assume a stationary transition probability, i.e., P(xt+1 = xt+1|xt = xt,a(t) = α) =
P(xt, α, xt+1), xt, xt+1 ∈ X η, α ∈ Aη, t ∈ T . The function P : X η × Aη × X η → [0, 1] is the transition probability
function.

Moreover, given the current state of the game xt, we assume that the positions of all players k at the next time
instant are determined independently by each action ak(t). Hence, the probability the state is going to change from
state xt to state xt+1 due to action α may be written as

P(xt, α, xt+1) =

η∏
k=1

P(xtk
αk→ xt+1

k ) (2)

where xtk ∈ X is the position of the kth agent before it moves and xt+1
k ∈ X is the position of the kth agent after it

moves.
Furthermore, the probability that a player effectively reaches the chosen cell is ρk. This translates into:

P((xtk)
αk→ xt+1

k ) =


ρk, xt+1

k = αk ∈ Ak(xtk)

1− ρk, xt+1
k = xtk ∧ αk ∈ Ak(xtk)

1, xt+1
k = xtk ∧ αk /∈ Ak(xtk)

0, otherwise

(3)

Observe that equation (3) applies to both pursuers and evaders. The probabilities ρk simulate the speed of the
players. If ρi = 1.0 for player i and ρj = 0.8 for player j, the speed ẋi > ẋj . Also, if two pursuers or two evaders try
to move to the same cell, it is assumed that none of them can move.

2.4 Players Policies and Strategies

A “policy” for a player is a rule the player uses to select which action to take. The choice is based on past observations
of how the game is played (Fudenberg and Levine, 1998). In this work, all policies are stochastic.

Let us say that at time t the state of the game is xt ∈ X η and the position of player k ∈ {1, · · · , η} is xtk ∈ X . A
policy for player k is a function ϕk : X η ×Ak(xk)→ [0, 1], such that (Hespanha et al., 2000)∑

αk∈Ak(xk)

ϕk(xt, αk) = 1, ∀xt ∈ X η (4)

In the following sections we will use the term ϕtk = ϕk(xt, αk). In order to represent the time evolution of the
policy, (ϕtk)n will be used, meaning that it is the nth update of the policy vector.
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A stochastic strategy πk for the kth player is a sequence π0
k, π

1
k, · · · . Since the game is Markovian, the strategy for

the kth player is going to be realized by a policy. Therefore, if we understand the superscript to be the time index
for the state the game, we can represent his or her strategy by the sequence πk = {ϕ0

k, ϕ
1
k, · · · }. This is so because

πtk(α) depends only on the present state. This means that πtk(α|(x0, · · · , xt)) = ϕk(xt, α) = ϕtk. Notice that without
loss of generality we assume that at time t the game is at state xt. Therefore, t is also the state identifier and this is
why the notation ϕtk can be used.

Now, let π = {π0, π1, · · · }, where for each t = 0, 1, · · · each term πt of the sequence π, represented by πt =
{πt1, · · · , πtη}, is the set of strategies for all players at time t. We can then define probability measures dependent on

π and state xt ∈ X η and denote it by Pπ,xt . Therefore, Pπ,xt(E) denotes the probability of event E happening when
strategy π is used (Derman, 1970) and the state is xt. Also, if the probability measure is dependent only on policy
πk, we are going to denote it by Pπk,xt . In the same fashion, we may also define the expectation Eπ,xt [.]. Notice also
that the policies ϕk and ϕj , j 6= k are conditionally independent of all random variables representing the states and
actions at times smaller or equal to t.

2.5 Rewards

Consider that at each time step t, as given above, the state of the game xt changes from the state xt = xt ∈ X η to
another state xt+1 = xt+1 ∈ X η due to the action αt (Derman, 1970). Whenever the transition occurs, let us consider
that each player k gets a “reward” associated with the transition from state xt under the actuation of action αt. We
are going to denote this reward by Rk(xt, αt) (Howard, 1960), where Rk : X η ×Aη → R.

One may observe that the reward Rk(xt, α) is also a random variable

Rtk(α) = Rk(xt, α) (5)

Hence, one may also define the expected value of the random variable. If we consider the policies π, action α and
state xt, we may define

Eπ,xt [Rtk] =
∑
αt∈Aη

Pπ,xi(xt, αt)Rk(xt, αt) (6)

Observe that equation (6) is only the definition of the expected value for a discrete random variable, and, the
probability on the right hand side is

Pπ,xt(xt, αt) = (

η∏
k=1

ϕk(xt, αt)) (7)

and, therefore,

Eπ,xt [Rtk] =
∑
α∈Aη

(

η∏
j=1

ϕj(x
t, αt))Rk(xt, αt) (8)

We are going to investigate equations (6), (7) and (8) further in the next sections.

2.6 Pursuit-Evasion Games Model

Markov games (Shapley, 1953) are extensions of the Markov decision process (van der Wal, 1980). In a Markov game,
actions are the joint result of multiple agents choosing an action individually (Vrancx et al., 2008).

Since the game may be only in states that belong to the set X η, we may denote by Atk(xk) the action set available
to player k ∈ {1, · · · , η} when the game is found in state xt ∈ X η. Furthermore, recall that the sets Atk(xk) follow
some rule that may be different for each kth player.

The game is considered over when all the evaders are captured. This happens when a pursuer i ∈ {1, · · · , np}
occupies the same cell as all the evaders j ∈ {1, · · · , ne}. Clearly, this implies that np ≥ ne. Consider xp,i as being
the cell location of the ith pursuer and xe,j as being the location of the jth evader. Likewise, xp is a vector with the
position of all pursuers and xe is the vector with the position of all evaders, then x = (xp, xe) ∈ X η. Therefore, we
formally define the set X ηover = {(xp, xe) ∈ X : xe,j = xp,i, ∀j ∈ {1, · · · , ne}, and for some i ∈ {1, · · · , np}} as the
game-over set. We assume that all players can detect when the game enters Xover.

Hence, we may say that a pursuer’s objective is to choose an action that would move him towards a faster end of
the game (i.e., he will achieve a point in the game-over set Xover) and an evader’s objective is to choose an action
that would make her more difficult for the pursuers to catch. These actions are dependent on the rewards that each
player gets. We can then formally define the pursuit-evasion game as follows.
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Definition 1 A Markov multiple pursuer-evader game is represented by the tuple Γ = {N,X η,Aη, π,R(.)}.

Moreover, we also assume the following.

Assumption 1 Each player k ∈ {1, · · · , η} does not have full information about any other player j ∈ {1, · · · , η}
such that k 6= j. In particular, player k does not know the reward function Rj(·), action space Aj and strategy πj.

Now that the definition of the game is formally completed, we want to focus on the existence of an algorithm that
would lead the game to a solution. This is going to be done in the following sections.

3 The Learning approach

The problem of learning in a Markov process has had a lot of interest in the social sciences (Suppes and Atkinson,
1960; Norman, 1972) and in engineering (Wheeler and Narendra, 1986).

The technique that we are going to use is known as “Learning Automata” (Thathachar and Sastry, 2004). Using
these automata, we want to solve the online stochastic optimization problem (Posnyak and Najim, 1997) of finding
the best policies for each player.

The automata we are going to focus on in this work is known as Finite Action Learning Automata (FALA). This
is so because the actions available to each player at each time step is finite. More specifically, we are going to focus
on the subclass of algorithms known as linear reward-penalty algorithms (Thathachar and Sastry, 2004). Moreover, it
must be emphasized that no pre-adaptation is required and all the quantities necessary are computed online during
the operation of the algorithm.

3.1 The Learning Algorithm

The algorithm we are going to use is a variation of the linear reward-penalty automaton (Thathachar and Sastry,
2004), or LR−P .

Let us consider an n-action automaton, i.e., an automaton that has n different actions from which it can choose.
Also, as described in section 2.5, when an action is chosen, the automaton receives some reward R(α) from the
environment (Thathachar and Sastry, 2004).

Suppose that at time step t, the action chosen from the n possible actions {αk1, · · · , αkn} by player k is αtk = αki.
Let us also consider the probabilities of choosing any one of the actions as a vector ϕtk = [ϕtk1 · · ·ϕtkn] where
n∑
j=1

ϕtkj = 1. Recall that this is what we previously called the policy vector. Then the vector ϕtk is updated as follows

(Thathachar and Sastry, 2004, p. 17)

(ϕtki)
n+1 = (ϕtki)

n + λ1R
t
k(αt)(1− (ϕtki)

n)− λ2(1−Rtk(αt))(ϕtki)
n (9)

(ϕtkj)
n+1 = (ϕtkj)

n − λ1Rtk(αt)(ϕtkj)
n + λ2(1−Rtk(αt))(

1

n− 1
− (ϕtkj)

n), j 6= i (10)

The rewards Rtk(αt) are stochastic and, in general, different. Therefore, if we have two different agents k and j,
the rewards Rtk(αt) and Rtj(α

t) are, in general, Rtk(αt) 6= Rtj(α
t). In real applications, the rewards Rtk(αt) represent

rewards or penalties from the environment. In the scenario presented in section 6, they are the distance between the
players. In a case of a robot following a line, for example, it would be the sensor reading of the distance of the robot
from the line.

The rationale behind equations (9) and (10) is that the action that is chosen (i) will receive a positive reward,
while all others (all j’s) will receive a penalty that is equally distributed among all of them in order to keep the total
probability equal to 1. In this way, if the system converges, one of the ϕkl will converge to a value close to 1.

3.2 Learning Algorithm Applied to the Pursuer-Evader Game

Now, let us return to the game defined in section 2.6. Recall that at each time t ∈ T , each αtk ∈ Ak is the desired
position for player k (who may be a pursuer or an evader) at the next time instant. These are called the actions at
each player’s disposal. Therefore, we assume here the one-step motion for both players are constrained, since Ak ⊂ X .
In the same way, recall that Ak(xk) is the set of reachable cells given its current position xk and we say that these
cells are adjacent to xk for player k. Let us discuss an example.

Let us consider that there are two pursuers (np = 2) and one evader (ne = 1) in the game. Let us further assume
that the cells reachable to each pursuer are those neighboring cells located at north, south, east and west. Therefore,
unless the pursuer k is located at the sides of the grid, he has five possible actions at his disposal, the four neighboring
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Fig. 1: Grid of the Markov Game

cells plus to keep his own position, and |Ak(xk(t))| = 5. For the evaders, let us assume that they can move to north,
south, east, west plus the diagonals. Therefore, unless the evader j is located at the sides of the grid, she has nine
actions at her disposal, the eight neighboring cells plus to keep her own position, and |Aj(xj(t))| = 9. This is shown
graphically in figure 1.

In the game described in figure 1, ns = 49 × 49 × 49 = 117649 states. It is easy to see that as we increase the
number of cells or the number of players, the number of states grows very fast. This has an impact on the speed
of the learning of the system, for each decision is based on the states of the game. Recall that the policies of each
player (section 2.4) is a mapping from the state space and action space into a simplex. Therefore, in order to decide
the action that is going to be taken, the players must check a table that stores the probability of each action being
executed given the state in which the game is. In the beginning of the game, it is assumed that all probabilities are
the same and the player behaves erratically and randomly.

When the player chooses an action, the probabilities for a given state are updated as described in equations
(9) and (10). After the game is played enough times it is expected that the overall performance of the players will
improve. The whole game procedure is given in algorithm 1.

Algorithm 1 Adaptation algorithm

1: Initialize the states of the system and a table of actions to each player k ∈ {1, · · · , η} according to the rule Ak(xk).
2: Initialize the learning parameters λ1 and λ2 to the desired values.
3: Place all players k ∈ {1, · · · , η} randomly in the play grid.
4: while All the evaders are not captured do
5: Get the state of the system xt = [xt1, · · · , xtη]
6: for All evaders j do
7: Calculate her next action αtj ∈ Aj(xtj).
8: if Player moves to αtj with probability given by (3) then

9: xt+1
j = αtj

10: end if
11: end for
12: for All pursuers i do
13: Calculate his next action αti ∈ Ai(xti).
14: if Player moves to αti with probability given by (3) then
15: xt+1

i = αti
16: end if
17: end for
18: for All players k ∈ {1, · · · , η} do
19: Calculate reward Rtk(αt)
20: Learn according to equations (9) and (10).
21: end for
22: end while

In the next section, we are going to present some theorems that show that the algorithm given provides a framework
for the convergence to the Nash equilibrium of the game.
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4 Objective of Learning

4.1 Cost Functions

Let us consider that the pursuit game is played and that the current time step is t ∈ T . The question that arises is
what is the accumulated reward. The expected reward for player k is dependent on the initial state x0 ∈ X η and the
strategies π that are played by each player (van der Wal, 1980). Therefore, it may be defined as

vtk(x0, π) = Eπ,x0 [

t−1∑
j=0

Rjk(α) + v(xt)] (11)

The term v(xt) on the right hand side of equation (11) is the terminal payoff of the game and it is defined as

v(xt) =

{
vover, if x

t ∈ Xover
0, otherwise

(12)

Notice that in Game Theory, the usual term for reward is payoff and this is the reason for the change of nomen-
clature. In this paper, both terms may be considered synonyms. However, we will use reward when we discuss the
learning algorithm and payoff when discussing the convergence of the game.

Moreover, in order for the right hand side of equation (11) to be properly defined, we must have (van der Wal,
1980)

Eπ,x0 [

t−1∑
j=0

‖Rjk(α)‖] <∞ , ∀x0 ∈ X η (13)

Eπ,x0 [‖v(xt)‖] <∞ , ∀x0 ∈ X η (14)

Since there may be different reward functions for different players, equation (11) implies that, in general, it is
impossible to find an optimal policy for all agents playing as a group (Vrancx et al., 2008). In other words, individual
optimization does not imply group optimization (Wheeler and Narendra, 1986). The problem of finding some kind
of individual optimization that would lead to group optimization is a design problem and we will discuss it further
when we present our simulations.

Let us define a function f : X η ×Aη → X η as a Markov mapping from a state to another depending on an action
α. Therefore, equation (11) could be written iteratively as (Bertsekas, 1995)

v0k = v0 (15)

vt+1
k (xt, π) = Eπ,xi [Rtk(α) + vtk(f(xt, α), π)] (16)

where xt+1 = f(xt, α) is a mapping from the current state xt to xt+1.
Since equations (11) and (16) represent the same quantity, in the next subsections we are going to state the

objective of the game interchangeably using any one of these equations.

4.2 Optimal Solution

Before we go any further, we must define what an optimal (or nearly optimal) solution for the problem means. This
is referred as the Nash equilibrium of a multi player game (Sastry et al., 1994).

Definition 2 The array of strategies π∗ = (π∗1 , · · · , π∗η) is called a Nash equilibrium if for each k, 1 ≤ k ≤ η,

∀π ∈ [0, 1]A, we have

vtk(x0, (π∗1 , · · · , π∗η)) ≥ vtk(x0, (π∗1 , · · · , π∗k−1, πk, π∗k+1, · · · , π∗η)) (17)

Definition 2 means that the optimal solution for the game is the maximization of the cost functions of each
individual player. Furthermore, this definition refers to the strategies used by each player. However, recall that since
the game is Markovian, the strategies are realized, at each time instant t ∈ T , by a policy as described in section 2.4.
We are going to discuss the relationship between strategies and policies further when we discuss the convergence of
the learning algorithm.
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4.3 Statement of Objective

The objective of the game is to find the optimal (or suboptimal) solution for each player in a decentralized fashion.
The format of the reward may vary from player to player, but they are written in such a way that all the players try
to maximize their gains.

Furthermore, it must also be emphasized that no prior computation must be performed in order to pre-adapt
some parameters (Wheeler and Narendra, 1986) and that only minimal (or no) communication is allowed among the
players. Therefore, the problem may be formalized as follows.

Problem Statement 1 Find the policy πk for each player k ∈ {1, · · · , η} such that the cost functions described in
equation (11) are maximized (or nearly maximized) for all players k.

The expected value in equation (11) is justified by the fact that the learning algorithm does not operate in the
space of actions (Thathachar and Sastry, 2004, p. 58), but it updates the probability distributions ϕk for the actions
of all automata k ∈ {1, · · · , η}.

5 Convergence

As stated before, we are interested to know if the game defined in section 2.6 with the learning algorithm as defined
in section 3.2 will converge to the Nash equilibrium as discussed in section 4.2.

In order to show that the optimal play may be found, it is sufficient to show that the learning process takes
the system to a mapping that maximizes the cost of equation (11). The problem could be solved by using dynamic
programming; however, the problem is that in order to do so it is required that the players have access to all possible
payoffs ahead of time and the number of combinations grows very fast (Wheeler and Narendra, 1986).

Therefore, this section is divided as follows. We will start, in section 5.1, by presenting a sketch of the proof
that will be presented in the next subsections. In this section, we will also link the notation of learning in automata
systems to the notation we are using so far. Section 5.2 shows that an Ordinary Differential Equation can be used in
place of the difference equation used to describe the algorithm. Then, in section 5.3 we will state the theorems that
show that the learning automata system converges to the equilibrium point as required. Finally, section 5.4 shows
that the game converges to the desired Nash equilibrium.

5.1 Sketch of the Proof

In order to prove that the learning algorithm of equations (9) and (10) converges to the strategy that achieves the
Nash equilibrium of definition 2, we need to prove three separate theorems. Theorem 1 deals with the possibility
to represent the algorithm by an Ordinary Differential Equation (ODE). Theorem 2 deals with the convergence of
the algorithm to some stable optimal policies (a Nash equilibrium). Finally, theorem 3 states the convergence of the
strategies to the Nash equilibrium (definition 2).

We are going to state all theorems in this section and will prove them separately in the subsequent sections.
Notice that there are two different time steps involved in the algorithm. The first is the change of states of the

game and is referred to as t. This index is used as a superscript in the state xt ∈ X η, for example. The other time
instant will be referred to as n and it refers to the number of times a given state is visited and is used in referencing
the evolution of the policies. Therefore, ϕnk (xt, αt) refers to the nth visit that player k makes to state xt. For short,
we are going to use ϕnk (αn) = ϕnk (xt, αt) = (ϕtk)n in the remaining of the article, unless it is strictly necessary to
explicitly include the state xt.

Now, let us go back to equations (9) and (10). Consider that λ2 is set to zero, i.e., λ2 = 0. If we also set λ1 = λ,
this would result in the evolution of the policies ϕk to (Thathachar and Sastry, 2004)

ϕn+1
k = ϕnk + λG(ϕnk , ξ

n
k ) (18)

where ξnk = [αnk , R
n
k ] and the function G(·) is the updating given by equations (9) and (10).

For the case described above, consider that eαnk is a unit vector with the same dimension of ϕnk with the unit at
the position that represents the action αnk . Also, let us represent ξnk = [αnk , R

n
k ] = [ξnk1, ξ

n
k2], then function G(·) is

G(ϕnk , ξ
n
k ) = Rnk (eαnk − ϕ

n
k )

G(ϕnk , ξ
n
k ) = ξnk2(eξnk1 − ϕ

n
k ) (19)

One could observe that even the equations (9) and (10) could also be described with equation (18). In order to do
so, the only thing necessary is to set λ as a vector encompassing λ1 and λ2 and change the definition of G(·). This
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would not change our results considerably. However, some details would become more cumbersome and we chose to
simplify the approach taken.

Moreover, let us assume, without loss of generality, that the reward ξnk2 = Rnk ∈ [0, 1], i.e., it is normalized. Also,
let us represent G(·) = [G1(·), · · · , Grk(·)] where rk is the number of actions at player k’s disposal, therefore

Gi(ϕ
n
k , ξ

n
k ) ∈ [0, 1], ∀i = 1, · · · , rk (20)

With these considerations, we turn our attention to the sketch of the proof that will be implemented in the next
subsections.

The first theorem (theorem 1) states that the learning algorithm in its discrete form can be represented by an
ODE. After this is established, we can state theorem 2 that guarantees that, in any given state, the learning algorithm
results in the convergence to the Nash equilibrium (Thathachar and Sastry, 2004) in the policy space. And finally,
with the statement of theorems 1 and 2, we can prove the convergence of the game defined in section 2.6 to the Nash
equilibrium defined in 4.2. In other words, the learning algorithm converges to the optimal policies independent of
the initial state x0 ∈ X η.

5.2 Analysis of the ODE

In this subsection, since it is clear that we are discussing a feature that is common to all players k ∈ {1, · · · , η},
we are going to drop the subscript k from the equations that describe the evolution of the learning algorithm. We
also introduce the notation ϕn,λ, ξn,λ, Gλ(·) etc. to emphasize that the evolution of the processes is dependent on a
parameter λ that is supposed to be small.

Let us again consider the process {G(ϕn, ξn)} in equation (19). Recall that ξn = [αn, Rn]. Now, let us assume
that the process {ξn} depends on the states of the game in a Markovian way. We are going to deal with the actual
form of this dependency later. But, for now, it suffices to notice that the reward Rnk is dependent on the strategies
π used and, therefore, must depend on the past actions taken so far.

Let us next define the expected value of G(·) as (Kushner and Yin, 1997, p. 37)

E[G(ϕn, ξn)|ϕi, ξi, i ≤ n] = G(ϕn, ξn) (21)

From equation (20) it may also be concluded that

{G(ϕn,λ, ξn,λ);λ, n} is uniformly integrable (22)

And also define

θn = G(ϕn, ξn)− E[G(ϕn, ξn)]

θn = G(ϕn, ξn)− G(ϕn, ξn) (23)

Then, we can rewrite equation (18) as

ϕn+1 = ϕn + λG(ϕn, ξn) + λθn (24)

where θn are martingale differences. However, the conditional mean term G(ϕn, ξn) is not simple (Kushner and Yin,
1997) due to the fact that the evolution of {ξn} depends on the evolution of the sequence {ϕn}.

Since we are interested in studying the asymptotic behavior of ϕn,λ, it is useful to introduce a process wherein
the parameter ϕ is kept constant. Let {ξn(ϕ)} denote a Markov chain that results from {ξn} when the parameter
ϕn,λ is held constant at value ϕ (Kushner and Yin, 1997, p. 37). If λ is small, then ϕn,λ varies slowly and it may be
argued that the law of large number suggests that

Ḡ(ϕ) = Eϕ[G(ϕ, ξn(ϕ)|ϕ] (25)

where Ḡ(ϕ) is a continuous function of ϕ. Henceforth, we want to show that the algorithm in equation (24) may be
represented by

ϕ̇ = Ḡ(ϕ) (26)

Notice that since the process {ϕn,λ} is bounded, the limit set represented by equation (26) is also bounded.
Furthermore, one should notice that we are looking for the zeros of Ḡ.

We can now enunciate the theorem.

Theorem 1 For any initial condition ϕ0, if we assume the algorithm described in equation (18), the sequences {ϕn}
are trajectories of equation (26).
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Proof. This theorem is satisfied if the conditions of theorem 8.4.4 of (Kushner and Yin, 1997, p. 247) are satisfied. The
condition on the uniform integrability of G(ϕn,λ, ξn,λ) is satisfied according to the discussions that led to equation
(22). Observe also that according to equation (21), function G(·) does not depend explicitly on n and λ and the noise
term assumed in the theorem of (Kushner and Yin, 1997) can be taken to be zero.

Now, observe that G(·) is also bounded and continuous. Therefore, small variations on the parameters ϕ will not
lead to large variations in the update of the algorithm as described by equation (24). Therefore, conditions A4.16′

and A4.17′ of (Kushner and Yin, 1997, p. 247) are readily satisfied.
Let us now, focus on condition A.4.6 of (Kushner and Yin, 1997, p. 239) and let us write the equation according

to the conditions of the present problem

lim
N→∞

1

N

jN+N−1∑
i=jN

E[G(ϕ, ξi(ϕ))− Ḡ(ϕ)]

= lim
N→∞

1

N

jN+N−1∑
i=jN

E[G(ϕ, ξi(ϕ))− Eϕ[G(ϕ, ξi(ϕ))]]

Observe that the term G(ϕ, ξi(ϕ))−Eϕ[G(ϕ, ξi(ϕ))] is only white noise with an unknown distribution. Therefore,
it may be concluded that the limit goes to zero and condition A.4.6 holds.

Finally, recall that the tightness of {ξn,λ} is guaranteed by the definition of the rewards Rn and the boundedness
of {G(·)}. Therefore, the function

P(ξ, A|ϕ) = P (ξn+1,λ ∈ A|ϕn,λ = ϕ, ξn,λ = ξ)

is measurable for all the range space of ξ and the remaining conditions of the theorem are satisfied.
Therefore, the evolution of policies may be represented by equation (26). �

Now that we have shown that the game may be approximated by the ODE, we are ready to prove the convergence
of the policies as updated by the learning automata algorithm to the Nash equilibrium.

5.3 Analysis of the Learning Algorithm

We now turn our attention to the problem of the convergence of the algorithm in each state to the Nash equilibrium,
i.e., given that the game is at state xt ∈ X η, the policies of the kth player converge to a set of policies that maximize
the gains that the player will have.

Recall that we defined the reward at time t ∈ T for a game starting at state x0 and player k to be equation (11).
Also, let us define the payoff function βk(xt, α) as

βk(xt, α) = Rk(xt, α) + vk(f(xt, α), π) (27)

We can then define the expected payoff due to an action.

Definition 3 Functions Fxik :
η∏
j=1

Aj → [0, 1] for k ∈ {1, · · · , η} and xt ∈ X η are defined by

Fx
t

k (α) = Eπk,xt [βk(xt, α)|α ∈ Aη] (28)

Furthermore, the players have no knowledge of the payoff functions given by the environment, they only have access
to the payoff signals (the βk(xt, α)).

This definition actually encompasses some assumptions as well. The first is that the players have incomplete
information on the environment and on the behaviour of the other players. This is done in order to approximate the
algorithm with real life situations. Also, it may be noticed that

vt+1
k (xt, π) =

∑
α∈A

(

η∏
i=1

ϕi(α))Fx
t

k (α) (29)

Let us now define the vector of policies Φxt ∈ Ψxt as being the policies when the game is in state xt ∈ X η, i.e,

Φxt = [ϕx
t

1 , · · · , ϕx
t

η ]. We now define yet another set of functions Vxtk : Ψxt → [0, 1] as

Vx
t

k (Φxt) = Eπk,xt [βk(xt, α)|Φxt ] (30)
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i.e., the payoff for the kth player under the set of policies Φxt . Therefore, functions Fxtk are the expected payoffs due

to the action chosen while Vxtk are the expected payoffs due to the policy profile (or probability distribution).
Now we are ready to determine what a maximal point for state xt ∈ X η is (Thathachar and Sastry, 2004, p. 59)

Definition 4 Consider the set of policies Φ∗xt = [ϕx
t

1

∗
, · · · , ϕxtη

∗
]. We say that Φ∗ is a maximal point (and in this

context a Nash equilibrium) of the game at stage xt ∈ X η if for each k ∈ {1, · · · , η}

Vx
t

k (Φ∗xt) ≥ Vx
t

k (Φxt)

for all Φ such that Φ = [ϕx
t

1

∗
, · · · , ϕxtk−1

∗
, ϕx

t

k , ϕ
xt

k+1

∗
, · · · , ϕxtη

∗
], with ϕx

t

k ∈ |Ak| is a probability vector different from

ϕx
t

k

∗
, i.e., ϕx

t

k 6= ϕx
t

k

∗
.

In the same fashion, we may also define the maximal point for the set of actions (a modal point) as follows
(Thathachar and Sastry, 2004, p. 61)

Definition 5 The the set of actions α∗ = [α∗1, · · · , α∗η] is a modal point (and in this context also a Nash equilibrium)

of the game at stage xt ∈ X η if for each k ∈ {1, · · · , η}

Fx
t

k (α∗) ≥ Fx
t

k (α)

for all α = [α∗1, · · · , α∗k−1, αk, α∗k+1, · · · , α∗η] such that αk 6= α∗k.

We also need an extra assumption before we proceed to prove the theorem.

Assumption 2 For every xt, k and α, Fxtk (α) has a finite number of maxima, all in a compact set and has no
maxima at infinity.

This assumption, which is in line with equation (13), is somewhat intuitive since the game should actually have
a finite number of maxima due to the fact that it has a finite number of states (Givigi, 2009).

The evolution of each individual policy j for each player k of array Φxt is given by the ODE in equation (26) and
may be rewritten as

dϕx
t

kj

dt
= Ḡx

t

kj (Φxt) (31)

for all players k ∈ {1, · · · , η} and individual policy 1 ≤ j ≤ |Ak| at each state xt.

Let us now define αjk as the unit vector with unity in position 1 ≤ j ≤ |Ak|, i.e., the kth player chooses action j.
Now, we can define the function

fx
t

kj (Φxt) = Eπ,xt [βtk|ϕx
t

l , k 6= l, αjk] (32)

Function fx
t

kj (Φxt) is the expected payoff function given that player k chooses action j and all other players l 6= k
play their expected mixed strategy defined by vectors ϕl. Observe that if we define the set Υ ⊂ Aη as the set of all
actions with the kth player always choosing action j but all other players choosing every possible combination, we
get

fx
t

kj (Φxt) =
∑
α∈Υ

(
∏
i 6=k

ϕi(α))Fx
t

k (α) (33)

One could also write the function Vxtk (Φxt) in terms of functions fkj(Φxt)

Vx
t

k (Φxt) =

|Ak|∑
l=1

fx
t

kl (Φxt)ϕ
xt

kl (34)

Finally, we can write each term Ḡxtkj (Φxt) of vector Ḡxtk (Φxt) in terms of fx
t

kj (Φxt) as (Givigi, 2009)

Ḡx
t

kj (Φxt) = ϕx
t

kjf
xt

kj (Φxt)− (ϕx
t

kj)
2fx

t

kj (Φxt)−
∑
q 6=j

ϕx
t

kqϕ
xt

kjf
xt

kq (Φxt) (35)

Now we can enunciate theorem 2.
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Theorem 2 With the updating rule of equation (24), the algorithm presents the following characteristics.

i. All strict Nash equilibria in pure policies are asymptotically stable.
ii. Any equilibrium point which is not a Nash equilibrium in pure or mixed strategies is unstable.

Proof. We now consider the first part of the theorem.

i. Let Φ∗xt = [e∗α1
, · · · , e∗αη ] be a pure maximal point. Now, define a region Φρxt = {Φxt ∈ Aη|Φxt = [ϕx

t

1 , · · · , ϕx
t

η ]}
such that each ϕx

t

k , k ∈ {1, · · · , η}, is a probability vector of dimension |Ak| close to the vector e∗αk by a distance
of ε > 0.
Now let Φxt ∈ Ψρxt such that Φxt = [e∗α1

, · · · , e∗αk−1
, ϕk, e

∗
αk+1

, · · · , e∗αη ]. Then, substituting equation (35) into

equation (31), we would have

dϕx
t

kl

dt
= ϕx

t

kjf
xt

kj (Φxt)− (ϕx
t

kj)
2fx

t

kj (Φxt)−
∑
q 6=j

ϕx
t

kqϕ
xt

kjf
xt

kq (Φxt) (36)

Terms fx
t

ki and ϕki are in the interval [0, 1]. Hence, the two last terms in the RHS of equation (36) are negative.

Let us then analyze the term ϕx
t

kjf
xt

kj (Φxt). Since it is supposed that Φxt is close to Φ∗xt , a Taylor expansion around

Φ∗xt is valid. Then, a Taylor expansion of (33) is

ϕx
t

kjf
xt

kj (Φxt) = ϕx
t

kj [Fx
t

k (α)−Fx
t

k (α∗)] + high− order terms

where α = [α∗1, · · · , α∗k−1, αk, α∗k+1, · · · , α∗η], i.e., α 6= α∗ just by its kth element.

By definition 5 it is clear that ϕx
t

kjf
xt

kj (Φxt) < 0, ∀α 6= α∗ and ϕ̇x
t

kl < 0.

We now consider a Lyapunov function defined over Φρxt as

Vk(Φxt) =
∑
k

∑
l 6=αk

ϕx
t

kl (37)

Note that we are dealing with pure policies as such
∑
l 6=αk

ϕx
t

kl = 0 and then Vk(Φ∗xt) = 0. Also, since Φ∗xt is supposed

to be a strict maximal point, for every other Φxt 6= Φ∗xt , Vk(Φxt) > 0. Let us now take the derivative of Vk(·) with
respect to time

V̇k(Φxt) =
∑
k

∑
l 6=αk

˙ϕx
t

kl

< 0, ∀l 6= α∗k

Therefore, Φ∗xt is asymptotically stable.
ii. Let Φ∗ be an equilibrium point of the game Γ . Since it is supposed not to be a Nash equilibrium, it is not a

maximal point. Therefore, by definition 4, we have

Vx
t

k (Φ∗xt) < Vx
t

k (Φxt)

for some Φxt in the neighbourhood of Φ∗xt . This implies that (Basar and Olsder, 1999) there is a fx
t

kj (Φ∗xt) such
that

fx
t

kj (Φ∗xt) > Vx
t

k (Φ∗xt) (38)

Now, consider that Ḡxtkj (Φxt) may be rewritten as (Givigi, 2009)

Ḡx
t

kj (Φxt) = ϕx
t

kj [f
xt

kj (Φxt)−
∑
q

ϕx
t

kqf
xt

kq (Φxt)]

Using equation (34), we get

Ḡx
t

kl (Φxt) = ϕx
t

kl [f
xt

kl (Φxt)− Vx
t

k (Φxt)]

And, by equation (38) we have that Ḡxtkl (Φxt) > 0, which means that

dϕx
t

kl

dt
(Φxt) > 0

Therefore, in small neighbourhoods of Φ∗xt the policies will diverge and the policy set Φ∗xt is unstable.

This completes the proof of the theorem. �
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5.4 Analysis of the Game

Finally, in order to prove that the game with the learning algorithm described so far will converge to the Nash
equilibrium in the strategy space, we need to prove that the maximization in the policy space as shown in theorem 2
will lead to the optimal solution for the Markov game. Before we proceed to theorem 3, let us enunciate the following
lemma.

Lemma 1 Consider that algorithm 1 is given enough time to converge and let vtk
∗
(x0, π∗) be the optimal value for

the cost function

vtk(x0, π) = Eπ,x0 [

t−1∑
j=0

Rjk(α) + v(xt)] (39)

at time t ∈ T for player k. Then, the maximization defined by equation

vt+1
k (xt, π) = max

Φxt∈Ψxt
Eπ,xi [Rtk(α) + vtk(f(xt, α), π)] (40)

leads to the optimal value vtk
∗
(x0, π∗) and, moreover, the strategy π∗k = {ϕx0

k

∗
, · · · , ϕxt−1

k

∗
} is optimal.

Proof. The maximization derived in theorem 2 may be explicitly written as equation (40) (Givigi, 2009). Also notice
that since the game we are considering is Markovian, the optimal value vtk

∗
(x0, π∗) for equation (39) is

vtk
∗
(x0, π∗) = max

ϕx
0

k ,··· ,ϕxt−1

k

{Ex0 [Rk(x0α0) + Ex1 [Rk(x1, α1) + · · ·

+Ext−1 [Rk(xt−1, αt−1) + v(xt)] · · · ]]}
vtk
∗
(x0, π∗) = max

ϕx
0

k

{Ex0 [Rk(x0, α0) + max
ϕx

1

k

{Ex1 [Rk(x1, α1) + · · ·

+ max
ϕx
t−1

k

{Ext−1 [Rk(xt−1, αt−1) + v(xt)]} · · · ]}]} (41)

By using equation (40) in equation (41) sequentially, we get

vtk
∗
(x0, π∗) = max

ϕx
0

k

{Ex0 [Rk(x0, α0) + max
ϕx

1

k

{Ex1 [Rk(x1, α1) + · · ·

+vtk(xt, ϕkπ)]} · · · ]}
vtk
∗
(x0, π∗) = max

ϕx
0

k ,··· ,ϕxt−1

k

{Ex0 [Rk(x0α0) + vtk(x1, π)]}

vtk
∗
(x0, π∗) = vtk(x0, π)

Since the right hand side and the left hand side of the equation above are equal, it shows that the use of equation
(40) at each step of the optimization process indeed leads to the optimal solution for the problem. Also, the equation

makes it explicit that the strategy π∗k = {ϕx0

k

∗
, · · · , ϕxt−1

k

∗
} maximizes equation (40) at every time step related to

each state xi ∈ X η, i = 0, · · · , t. �

With the proof of lemma 1, we can finally introduce theorem 3. Before we do so, notice that we assume that at
time t the game reaches one of the final states, i.e., that xt ∈ Xover.

Theorem 3 With the updating rule of equation (24) applied to all possible states xt ∈ X η, the game defined in
definition 1 converges to the optimal strategy profile as defined in definition 2.

Proof. Lemma 1 shows that the maximization of equation (40) found in section 5.3 converges to the optimal solution.
Now, we only need to prove that this optimal solution is the Nash equilibrium in the space of strategies.

Assume that all players j 6= k play their optimal strategies, but player k plays something different, say π̃k. Also,
without loss of generality, assume that only the policy at time step t− 1 is different from the optimal, i.e.,

π̃k = {π1
k
∗
, · · · , πt−2k

∗
, π̃t−1k }

and we call this set of strategies π̃ = {π∗1 , · · · , π∗k−1, π̃k, π∗k+1, · · · , π∗η}
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Hence, we could write the cost function vtk(·) as

vtk(x0, π̃) = {Ex0 [Rk(x0α0) + Ex1 [Rk(x1, α1) + · · ·
+Ext−1 [Rk(xt−1, αt−1) + v(xt)|π̃t−1k ] · · · |π1

k
∗
]|π0

k
∗
]}

vtk(x0, π̃) = max
ϕx

0

k

∗
{Ex0 [Rk(x0, α0) + max

ϕx
1

k

∗
{Ex1 [Rk(x1, α1) + · · ·

+Ext−1 [Rk(xt−1, αt−1) + v(xt)|π̃t−1k ]]}]

Since only the policy for state xt−1is supposed to be different of the optimal, we may conclude that the reward
received will not be larger than the one received if the optimal policy according to lemma 1 was used. Therefore,

vtk(x0, π̃) ≤ vtk(x0, π∗) �

5.5 Conclusions of the proofs

The proofs of the three theorems allow us several conclusions.
The first one is that even when the payoffs are not supposed to be independent, the algorithm presented will

converge to a Nash equilibrium. This is discussed in theorem 1. In (Thathachar and Sastry, 2004), all the cases
discussed assume that the payoffs are independent of each other. In our problem, however, the payoffs depend on the
past decisions and values of the policy parameters ϕ such that independence cannot be assumed.

The second conclusion is that the stable maximal points are those with pure strategies. This is in fact a charac-
teristic of the Finite Action Learning Automaton (FALA) (Thathachar and Sastry, 2004) that is made explicit by
theorem 2. One should notice that depending on the problem under study, mixed policy Nash equilibria could also
arise. However, for the pursuit-evasion game studied in this paper, intuitively these mixed policies do not arise. The
general proof of this characteristic is still an open question.

The third conclusion is that given enough time the algorithm will lead to Nash equilibria in the strategy space.
This is a result similar to the one reached by Dynamic Programming. However, it must be emphasized again that the
process to get to the solution is very different in the approach used in this paper, since the maximization is achieved
iteratively through the learning procedure of algorithm 1 and not through the investigation of all possible transitions.

6 Simulation

We now discuss a simulation that shows the feasibility of the suggested approach. In it, only the pursuers learn using
the algorithm 1 described so far and we consider a game played in a 7× 7 grid.

For this simulation, we place in the grid 2 pursuers and 1 evader. The set of pursuers is defined by U = {1, 2}
and the set of evaders by D = {3}. The pursuers have as the reachable cells the neighboring cells located at north,
south, east and west as depicted in figure 1. The evader can move to north, south, east, west plus the diagonals as
also depicted in figure 1.

The evader plays some fixed strategy defined as getting as far from the pursuers as possible. In fact, the evader
tries to occupy cells that cannot be reached by the pursuers at the next time step. In doing so, the evader actually
postpones the capture time by at least one time step.

Furthermore, the probability that the pursuers will move, ρ1 and ρ2, is only 0.8, meaning that 20% of the time
the players do not change position when commanded to do so. However, the evader moves all the time, i.e., ρ3 = 1.0.
These numbers simulate the speed of the players. Therefore, the pursuers are substantially slower than the evader.
Also, notice that the evader is more maneuverable than the pursuers, for she can move to more cells than the
pursuers. Hence, in order to capture the evader the pursuers must work together, otherwise the evader can always
avoid capture.

The reward function Rk(xt, αt) for the pursuers is only a normalized version of the Manhattan distance from
the pursuer to the evader. The Manhattan distance is the distance between the players measured along axes at
right angles. Suppose that the pursuer is located at position xp = (xp, yp) and the evader is located at position
xe = (xe, ye). The Manhattan distance between both is simply |xp − xe|+ |yp − ye|.

The expected value vtk(·) for each state xt ∈ X η is calculated numerically. Since the policies are evolving and we
want the expected value given to the use of the current policy, we need to use some time of forgetting factor in order
to guarantee the convergence of the game. We use a forgetting factor of 0.95 meaning that the expected value is
calculated based on the past 20 visits to that state.

In order to establish a baseline for comparison, we run the game 100 times and collect the time required for the
pursuers to capture the evader. The mean time for capture and the standard deviation are depicted in table 1.
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Table 1: Mean and standard deviation of capture before training.

Mean Standard Deviation

12, 990.11 14, 064.27
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Fig. 2: Performance of the training

We then train the pursuers for 1000 games. We collect the times for capture and in intervals of 10 games calculate
the average time for capture. The data is plot in figure 2

In fact, in order to guarantee that the game converges to the optimal solution, the number of iterations (the
number of different games played) should be even greater due to the fact that we would need to visit all the states
of the game a considerable number of times so the expected values could be evaluated and converge to its real value.
Therefore, the game converges to the optimal solution given the current expected values, but it would take longer for
the optimal solution to be found. Regardless, one may observe that the average time for capture decreases sharply
with training.

In order to assess how well the training is, we run the game for more 100 time and recalculate the mean time
and standard deviation for capture. The results are show in table 2. The decrease shows that the pursuers actually
“learn” to capture the evader. Although the choice of rewards take into account only the benefit for the player
himself actually leads him to cooperate with the other. In summary, the pursuers learn to work together towards an
objective.

Table 2: Mean and standard deviation of capture after training.

Mean Standard Deviation

249.0000 214.0179

One should also observe how large the standard deviations in tables 1 and 2 are in comparison with the mean
values. The reason for this is the stochastic nature of the game, especially the choices of ρ1 = ρ2 = 0.8. If we choose
this number to be 1.0 the standard deviation decreases substantially. However, we think that leaving it 0.8 brings
some good features to the system, since it forces the pursuers to work together besides simulating delays and noise
in their commands.
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7 Conclusion

In this paper we have shown how a pursuit-evasion game may be modeled with Markov chains. We have also shown
that using a learning automata will lead to the optimal solution of the finite time/finite state game with incomplete
information.

Simulations were provided in order to show the feasibility of the approach. It is shown that the learning phase leads
to a considerable improvement in the response of the game when compared to the initial configuration of policies.
Moreover, it is shown that players can learn to cooperate even when they optimize only their own cost function.
However, it must be emphasized that the optimization achieved is not the optimal group optimization. This would
only be accomplished it there was a global cost function to be optimized and if full information were assumed, which
is not the case.

One drawback of the technique is that convergence to the optimal can only be proved if the player have full
representation of all possible states of the system. As either the number of players or the size of the grid increases, the
calculation would become too cumbersome. In the future, we intend to use a fuzzy representation of the environment
in order to reduce the complexity of the game. However, this would make it impossible to prove a theoretical
convergence to the optimal policy.
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