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1 Introduction

Classical sliding mode control is robust to model
uncertainties and external disturbances. A sliding mode
control method with a switching control law guarantees
asymptotic stability of the system, but the addition of the
switching control law introduces chattering into the system.
One way of attenuating chattering is to insert a saturation
function (Asada and Slotine, 1986) inside a boundary layer
around the sliding surface. Unfortunately, this addition
disrupts the Lyapunov stability of the closed loop system.
Classical sliding mode control has difficulty in handling
unstructured model uncertainties. One can overcome this
problem by combining sliding mode control and fuzzy
systems together. Fuzzy rules allow fuzzy systems to
approximate arbitrary continuous functions (Wang, 1997).
To approximate a time-varying nonlinear system, a fuzzy
system requires a large amount of fuzzy rules. This large
number of fuzzy rules will cause a high computational load.
The addition of an adaptation law to a fuzzy sliding mode
controller to online tune the parameters of the fuzzy rules in
use will ensure a moderate computational load.

A number of adaptive fuzzy sliding mode control
(AFSMC) algorithms have been proposed in the last decade
(Yoo and Ham, 1998, 2000; Wang et al., 2001; Guo and
Woo, 2003; Ho et al., 2004; Wai et al., 2004; Lin and
Hsu, 2004; Akbarzadeh-T and Shahnazi, 2005; Shahnazi
et al., 2006; Medhaffar et al., 2006). The adaptation
laws in these algorithms are designed based on Lyapunov
stability theory. Asymptotic stability of the closed loop
system for these algorithms is also proved in the sense of
Lyapunov. Adaptive fuzzy sliding mode controllers can
be classified into two categories: indirect adaptive fuzzy
sliding mode controllers and direct adaptive fuzzy sliding
mode controllers (Wang, 1994).

In an indirect adaptive fuzzy sliding mode control
method, the controller is used to estimate the parameters
of the system’s dynamics. Yoo and Ham (1998) proposed
a single-input single-output (SISO) fuzzy system to
approximate the unknown functions of a nonlinear system.
Based on Yoo and Ham (1998)’s approach , Medhaffar et
al. (2006) designed an indirect adaptive fuzzy sliding mode
control algorithm applied to robotic manipulators. The
multi-input multi-output (MIMO) fuzzy systems used in
Medhaffar et al. (2006)’s approach are applied to estimate
the dynamic equations of the robotic manipulator and the
fuzzy rules are reduced by introducing sliding surfaces as
the inputs. To avoid chattering in Yoo and Ham (1998)’s
algorithm, a fuzzy system is used to substitute for the
discontinuous control term in the algorithms proposed by
Medhaffar et al. (2006) and Wang et al. (2001).

In a direct adaptive fuzzy sliding mode control method,
the controller is used to directly adjust the parameters of
the control law without estimating the system’s dynamics.
Yoo and Ham (2000) proposed a MIMO fuzzy system
to compensate for model uncertainties of a robotic
manipulator. Unfortunately, using a MIMO fuzzy system
requires an inordinate number of fuzzy rules which leads to
a high computational load. Guo and Woo (2003) applied a
SISO fuzzy system to adjust the control gain in the control
law for a robotic manipulator which both decreased the

number of fuzzy rules and attenuated chattering. Different
from Guo and Woo (2003)’s method, Ho et al. (2004)
applied a PI controller inside a boundary layer to attenuate
chattering and the parameters of this PI controller are online
adjusted by adaptation laws. Wai et al. (2004) designed a
AFSMC method to estimate the bound of the approximation
error for electrical servo drives. However, algorithms
proposed by Yoo and Ham (2000), Guo and Woo (2003),
Ho et al. (2004) and Wai et al. (2004) can only tune the
consequence part of the fuzzy rules, which places the onus
of designing the premise part upon the designer. Therefore,
Lin and Hsu (2004) presented a direct AFSMC method
to online tune both the premise and consequence parts of
fuzzy rules. In Lin and Hsu (2004)’s algorithm, a fuzzy
controller and a compensation controller are proposed to
construct a control law and the bound of the compensation
controller is adjusted by adaptation laws. Since Lin and
Hsu (2004)’s algorithm is only designed for induction servo
motor systems, it is not applicable to robotic manipulators.

In this paper, we will revise the adaptation laws of
the algorithm proposed by Lin and Hsu (2004) so that
it is suitable for the robotic application. We then prove
Lyapunov stability of the closed loop system for the revised
algorithm. We will also discuss stability issues for the
algorithms proposed by Yoo and Ham (2000), Guo and Woo
(2003), Wang et al. (2001) and Medhaffar et al. (2006):
Lyapunov stability in a practical sense for the algorithms
proposed by Yoo and Ham (2000) and Guo and Woo (2003)
and problems on the proof of Lyapunov stability for the
algorithms proposed by Wang et al. (2001) and Medhaffar
et al. (2006).

This paper is organized as follows: an overview of
fuzzy systems and fuzzy rules; the design of the revised
algorithms for robotic manipulators; the stability analysis
of four algorithms in the sense of Lyapunov; and, the
conclusion.

2 Fuzzy Systems

The fuzzy rule base of a multi-input multi-output (MIMO)
fuzzy system is comprised of the following fuzzy if-then
rules

R(l) : If x1 is Al
1 and · · · and xn is Al

n,

then y1 is Bl
1 and · · · and ym is Bl

m (1)

where l = 1, 2, · · · ,M denotes the number of fuzzy if-
then rules; x1, · · · , xn and y1, · · · , ym are the input and
output variables of the fuzzy system. A MIMO fuzzy system
can be decomposed into a collection of multi-input single-
output(MISO) fuzzy systems (Wang, 1997). A MISO fuzzy
rule base consists of a collection of fuzzy IF-THEN rules in
the following form (Wang, 1994):

R(l) : If x1 is Al
1 and · · · and xn is Al

n, then y is Bl

where x1, · · · , xn are input variables and y is the output
variable. The membership functions of the fuzzy sets Al

i and
Bl are defined as µAl

i
(x), µBl(y). The MISO fuzzy systems

with center average defuzzifier, product-inference rule and



singleton fuzzifier are of the following form (Wang, 1994):

y(x) =

M∑
l=1

yl(
∏n

i=1 µAl
i
(xi))

M∑
l=1

(
∏n

i=1 µAl
i
(xi))

(2)

where l = 1, · · · ,M denotes the number of fuzzy if-then
rules, i = 1, · · · , n denotes the number of input variables,
and yl is the point at which µBl(y) achieves its maximum
value (we assume µBl(yl) = 1). Rewrite (2) as follows:

f(x) =
M∑
l=1

θlξl(x) = θT ξ(x) (3)

where θ = [θ1, · · · , θM ]T , ξ(x) = [ξ1(x), · · · , ξM (x)]T ,
and

ξl(x) =
n∏

i=1

µAl
i
(xi)/

M∑
l=1

(
n∏

i=1

µAl
i
(xi)). (4)

For a single-input single-output(SISO) fuzzy system, each
fuzzy if-then rule is represented as the form of

R(l) : If x is Al, then y is Bl (5)

The SISO fuzzy system is described as

f(x) =
M∑
l=1

θlξl(x) = θT ξ(x) (6)

where θ = [θ1, · · · , θM ]T , ξ(x) = [ξ1(x), · · · , ξM (x)]T ,

and ξl(x) = µAl(x)/
M∑
l=1

µAl(x). In order to use fuzzy

systems to estimate nonlinear functions, we introduce the
following universal approximation theorem (Wang, 1997).

Theorem 2.1. For any given real continuous function g(x)
on a compact set U ⊂ Rn and arbitrary ε > 0, there exists
a fuzzy logic system f(x) in the form of (3) such that

sup
x∈U

|f(x) − g(x)| < ε . (7)

3 Design of adaptive fuzzy sliding mode controller
for robotic manipulators

The dynamic equation of an m-link robotic manipulator is

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (8)

where q = [q1, · · · , qm]T is an m × 1 vector of joint
position, M(q) is an m × m inertial matrix, C(q, q̇) is an
m×m matrix of Coriolis and centrifugal forces, G(q) is an
m × 1 gravity vector and τ = [τ1, · · · , τm]T is an m × 1
vector of joint torques.

3.1 Revised Lin and Hsu’s algorithm

The adaptive fuzzy sliding mode controller can only tune
the consequence part of their respective fuzzy rules in the
algorithms proposed by Yoo and Ham (1998), Yoo and
Ham (2000), Wang et al. (2001), Guo and Woo (2003),

Ho et al. (2004), Wai et al. (2004), Akbarzadeh-T and
Shahnazi (2005), and Medhaffar et al. (2006). Lin and
Hsu (2004) surpassed this limitation by presenting a number
of adaptation laws that are capable of online tuning of
both the premise and consequence parts of the fuzzy rules
in question. Since Lin and Hsu (2004)’s algorithm is
specifically applied to an induction servomotor drive, we
need to revise this algorithm for the control of robotic
manipulators which we refer to as the revised Lin and Hsu’s
algorithm.

We define the tracking error as

e = q − qd (9)

where qd = [q1d, · · · , qmd]T is the desired trajectories. The
sliding surface is given as

s = ė + λe (10)

The reference state is given as

q̇r = q̇ − s = q̇d − λ e (11)
q̈r = q̈ − ṡ = q̈d − λ ė . (12)

The control input is given by

τ = M̂q̈r + Ĉq̇r + Ĝ − F̂ (s) − Fcp(s) (13)

where F̂ (s) = [f̂1(s1), · · · , f̂m(sm)]T and Fcp(s) =
[fcp1(s1), · · · , fcpm(sm)]T . The fuzzy system f̂j(sj)(j =
1, · · · ,m) is defined as

f̂j(sj) = θT
j Φj(sj) (14)

where θj = [θ1
j , θ2

j , · · · , θM
j ]T and Φj(sj) = [Φ1(sj),

Φ2(sj), · · · ,ΦM (sj)]T . Assume
M∑
l=1

µAl
j
(sj) = 1 and (14)

becomes

f̂j(sj) = θT
j Φj(sj) =

M∑
l=1

θl
jµAl

j
(sj)

M∑
l=1

µAl
j
(sj)

=
M∑
l=1

θl
jµAl

j
(sj)

(15)
where µAl

j
(sj) = Φl(sj) = exp

[
−(σl

j(sj − αl
j))

2
]
(l =

1, · · · ,M) . Define f̃j such that

f̃j = fj − f̂j(sj)

= f̂∗
j (sj) − f̂j(sj) + ∆j

= θ∗
j

T Φ∗
j − θT

j Φj + ∆j (16)

where θ∗
j and Φ∗

j are the optimal values based on the
universal approximation theorem in (7). We define θ̃j =
θ∗

j − θj , Φ̃j = Φ∗
j − Φj and (16) is rewritten as

f̃j = (θj + θ̃j)T (Φj + Φ̃j) − θT
j Φj + ∆j

= θT
j Φ̃j + θ̃T

j Φj + θ̃T
j Φ̃j + ∆j (17)

We take Taylor series expansion of Φj around two vectors
αj and σj where αj = [α1

j , · · · , αM
j ]T and σj =

[σ1
j , · · · , σM

j ]T ( αl
j and σl

j are defined in (15)):

Φ∗
j = Φj +

∂Φj

∂αj
α̃j +

∂Φj

∂σj
σ̃j + h.o.t. (18)



where α̃j = α∗
j −αj , σ̃j = σ∗

j −σj and h.o.t. denotes the
higher order terms. We rewrite (18) as

Φ̃j =
∂Φj

∂αj
α̃j +

∂Φj

∂σj
σ̃j + h.o.t.

= Bjα̃j + Djσ̃j + h.o.t. (19)

where

Bj =



∂Φ1
j

∂α1
j

∂Φ2
j

∂α1
j

· · · ∂ΦM
j

∂α1
j

∂Φ1
j

∂α2
j

∂Φ2
j

∂α2
j

· · · ∂ΦM
j

∂α2
j

...
∂Φ1

j

∂αM
j

∂Φ2
j

∂αM
j

· · · ∂ΦM
j

∂αM
j


(20)

Dj =



∂Φ1
j

∂σ1
j

∂Φ2
j

∂σ1
j

· · · ∂ΦM
j

∂σ1
j

∂Φ1
j

∂σ2
j

∂Φ2
j

∂σ2
j

· · · ∂ΦM
j

∂σ2
j

...
∂Φ1

j

∂σM
j

∂Φ2
j

∂σM
j

· · · ∂ΦM
j

∂σM
j


. (21)

We substitute (19) into (17):

f̃j = θT
j (Bjα̃j + Djσ̃j + h.o.t.) + θ̃T

j Φj

+θ̃T
j Φ̃j + ∆j

= θT
j Bjα̃j + θT

j Djσ̃j + θ̃T
j Φj + εj (22)

where εj = θT
j (h.o.t.) + θ̃T

j Φ̃j + ∆j is assumed to be
bounded by |εj | ≤ Ej . Ej is a constant and the value of Ej

is uncertain to the designer. We define E∗ as the real value
and the estimation error is given by

Ẽj = E∗
j − Ej (23)

We produce an adaptation law to online tune the following
parameters: θj in (14), σl

j , αl
j in (15) and the bound Ej in

(23). The adaptation laws are given as

θ̇j = ηj2sjΦj (24)
α̇j = ηj3sjB

T
j θj (25)

σ̇j = ηj4sjD
T
j θj (26)

fcpj (sj) = Ejsgn(sj) (27)

Ėj = ηj1|sj | (28)

where ηj1, · · · , ηj4 are positive constants, αj =
[α1

j , α
2
j , · · · , αM

j ]T , σj = [σ1
j , σ2

j , · · · , σM
j ]T and fcpj (sj)

is the compensation term defined in (13).

3.2 Stability proof of the revised Lin and Hsu’s
algorithm

We define the following Lyapunov function candidate:

V =
1
2
sT Ms+

1
2

m∑
j=1

(
Ẽ2

j

ηj1
+

θ̃T
j θ̃j

ηj2
+

α̃T
j α̃j

ηj3
+

σ̃T
j σ̃j

ηj4

)
(29)

We take the time derivative of V :

V̇ = sT Mṡ +
1
2
sT Ṁs +

m∑
j=1

 Ẽj
˙̃Ej

ηj1
+

θ̃T
j

˙̃θj

ηj2

+
α̃T

j
˙̃αj

ηj3
+

σ̃T
j

˙̃σj

ηj4

)
(30)

where Ẽj = E∗
j − Ej , θ̃j = θ∗

j − θj , α̃j = α∗
j − αj ,

σ̃j = σ∗
j −σj . Since Ṁ−2C is a skew-symmetric matrix,

we can get sT Mṡ + 1
2sT Ṁs = sT (Mṡ + Cs). From (8)

and (11)-(13) we get

Mṡ + Cs = F − F̂ (s) − Fcp(s) (31)

where F = ∆Mq̈r + ∆Cq̇r + ∆G, ∆M = M̂ − M ,
∆C = Ĉ − C and ∆G = Ĝ − G. Then V̇ becomes

V̇ =
m∑

j=1

sj(fj − f̂j(sj) − fcpj ) −
m∑

j=1

(
ẼjĖj

ηj1
+

θ̃T
j θ̇j

ηj2

+
α̃T

j α̇j

ηj3
+

σ̃T
j σ̇j

ηj4

)

=
m∑

j=1

sj(θT
j Bjα̃j + θT

j Djσ̃j + θ̃T
j Φj + εj − fcpj )

−
m∑

j=1

(
ẼjĖj

ηj1
+

θ̃T
j θ̇j

ηj2
+

α̃T
j α̇j

ηj3
+

σ̃T
j σ̇j

ηj4

)

=
m∑

j=1

[
θ̃T

j

(
sjΦj −

θ̇j

ηj2

)
+ α̃T

j

(
sjB

T
j θj −

α̇j

ηj3

)

+σ̃T
j

(
sjD

T
j θj −

σ̇j

ηj4

)]
+

m∑
j=1

(
sjεj − sjfcpj

− ẼjĖj

ηj1

)
(32)

We substitute the adaptation law (24)-(28) into (32) and get

V̇ =
m∑

j=1

[
sjεj − sjEjsgn(sj) − Ẽj |sj |

]
≤

m∑
j=1

[
|sj ||εj | − E∗

j |sj |
]

=
m∑

j=1

[
|sj |(|εj | − E∗

j )
]
≤ 0 (33)

where V̇ is negative semidefinite. We define V̇j = sjεj −
sjEjsgn(sj) − Ẽj |sj | and rewrite (33) as

m∑
j=1

V̇j ≤
m∑

j=1

[
|sj(t)|(|εj | − E∗

j )
]
≤ 0 (34)

From V̇j ≤ 0, we can get sj(t) is bounded. We assume
|sj(t)| ≤ ηs and rewrite V̇j ≤ |sj(t)|(|εj | − E∗

j ) as

|sj(t)| ≤
1

E∗
j

|sj(t)||εj | −
1

E∗
j

V̇j ≤ ηs

E∗
j

|εj | −
1

E∗
j

V̇j (35)



Then we take the integral on both sides of (35):∫ t

0

|sj(ν)|dν ≤ ηs

E∗
j

∫ t

0

|εj |dν +
1

E∗
j

(Vj(0) − Vj(t))

≤ ηs

E∗
j

∫ t

0

|εj |dν +
1

E∗
j

(|Vj(0)| + |Vj(t)|)

(36)

If εj ∈ L1, we can get sj ∈ L1 from (36). Since we can
prove ṡj is bounded (see proof in (Wang, 1994)), we have
ṡj ∈ L∞ and sj is uniformly continuous. Given that the
right hand side of (36) is bounded, then by using Barbalat’s
lemma, we can get limt→∞ sj(t) = 0 and limt→∞ ej(t) =
0.

3.3 Simulation results

The dynamic equation of a two-link robotic manipulator is
given as

M(q)q̈ + C(q, q̇)q̇ = τ (37)

where

M(q) =
[

P1 + 2P2 + 2P2cos q2 P2 + P2cos q2

P2 + P2cos q2 P2

]
,

C(q, q̇)q̇ =
[

−2P2q̇1q̇2sin q2 − P2q̇
2
2sin q2

P2q̇
2
1sin q2

]
;

P1 = m1l
2 = 1.0 and P2 = m2l

2 = 2.0 (m1, m2 are mass;
links 1 and 2 have the same length of l); q1 and q2 are joint
positions of the links 1 and 2. Since robotic manipulators
cannot follow a step sequence instantaneously, the desired
trajectory will be the output of a filtered sequence of unit
steps. We define the transfer function of the pre-filter for
each joint of the robotic manipulator:

Wm(s) =
4

s2 + 4s + 4
. (38)

The initial values of the robotic manipulators’ joint positions
are set to 0.5 radians. The estimated mass and Coriolis
matrices are given by

M̂ =
[

P̂1 + 2P̂2 + 2P̂2cos q2 P̂2 + P̂2cos q2

P̂2 + P̂2cos q2 P2

]
(39)

Ĉ =
[

−P̂2q̇2sin q2 −P̂2q̇1sin q2 − P̂2q̇2sin q2

P̂2q̇1sin q2 0

]
(40)

where P̂1 = 2, P̂2 = 4. The number and the type of
membership functions for each input variable are chosen to
be consistent and comparable with the algorithms proposed
by Lin and Hsu (2004). We define five membership
functions for each input variable in (15) (l = 1, · · · , 5). The
parameters of the adaptation laws in (24)-(28) are selected
as ηj2 = ηj3 = ηj4 = 100, ηj1 = 200(j = 1, 2) and
σ1(0) = σ2(0) = [1, 1, 1, 1, 1]T by trial and error.

It can be seen from Figure 1 that the tracking error
errors are with the range [-0.022,0.012] radians after 4
seconds. The tuning methodology utilized in the premise
and consequence parts of the fuzzy rules allows the fuzzy
system to approximate the control input. The drawback is
the chattering phenomenon appearing in Figure 2.
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Figure 1: (a) Tracking and (b) errors of joint 1 in the revised
Lin and Hsu’s algorithm. Dash line:desired trajectory; solid
line: actual trajectory.
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Figure 2: (a) Control input and (b) sliding surface of joint 1
in the revised Lin and Hsu’s algorithm.

4 Stability issues for adaptive fuzzy sliding mode
control algorithms as proposed in the literature

In this section, we briefly discuss some of the difficulties
and drawbacks of the stability results achieved in much of
the published literature on AFSMC.

During our investigation of the AFSMC algorithms
proposed in the literature, a couple of key stability issues
arose. One issue is associated with the need to know the
bound in the universal approximation theorem in (7) and
the other issue is based on the need to approximate the
discontinuous sign function. The requirement to know the
bound in (7) causes a practical problem in implementing
and designing these controllers. The requirement to
approximate the sign function results in a theoretical
problem.

4.1 Case 1: Lyapunov stability in a practical sense

In Yoo and Ham (2000)’s method, to meet the requirement
of Lyapunov stability, they need to choose a constant KDj

to make |sjKDj | > |ωj |(sj 6= 0) where ωj is defined as the
minimum approximation error. According to the universal
approximation theorem in (7), there exists an optimal fuzzy
system to estimate the given function and the approximation
error ωj is as small as possible. However, in real life,
we can only define a fuzzy system with finite number of
membership functions and fuzzy if-then rules. Therefore,
we cannot find an optimal fuzzy system and the minimum
approximation error ωj which is as small as possible.
The same situation happened in Guo and Woo (2003)’s
algorithm where we need to choose a positive constant aj



to make aj |sj | > γ|sj | ≥ |ωj |(sj 6= 0). Since ωj can not
be found in real applications, one cannot guarantee that the
criterion aj |sj | > |ωj |(sj 6= 0) is satisfied.

Therefore, one must design the controller by simulation
and experimentation trial and error. The algorithm proposed
in this paper does not suffer from these practical problems.

4.2 Case 2: Problems on the proof of Lyapunov
stability

To prove Lyapunov stability of the closed loop system, the
following definitions are applied in the algorithms proposed
by Wang et al. (2001) and Medhaffar et al. (2006).

In Wang et al. (2001)’s method, a fuzzy system
ĥ(s|θh) = θT

h φ(s) is designed to estimate the switching
control term usw and the optimal fuzzy system ĥ(s|θ∗h) is
defined as

ĥ(s|θ∗h) = (D + η∆ + ωmax)sgn(s) . (41)

However, according to the universal approximation theorem
in (7), we can only find an optimal fuzzy system to estimate
any given real continuous function. Since the sign function
in (41) is a discontinuous function, we cannot find an
optimal fuzzy system ĥ(s|θ∗h) to estimate the discontinuous
function (D + η∆ + ωmax)sgn(s).

In Medhaffar et al. (2006)’s algorithm, a fuzzy system
ĥi(si|θ∗hi

) = θT
hi

ξhi(si) is designed to estimate the
discontinuous function (Di + ηi∆)sgn(si). Since the
universal approximation theorem can only deal with the
real continuous function, we cannot find the optimal fuzzy
system ĥi(si|θ∗hi

) based on (7).
Therefore, the above two algorithms have difficulty

proving the convergence of the overall system based on the
universal approximation theorem. The method proposed in
this paper does not suffer from these theoretical difficulties.

5 Conclusion

Lin and Hsu (2004) created a methodology of learning
both the premise and the consequence part of the fuzzy
rules. Since this method is only designed for induction
servomotor systems, we redesign this algorithm for robotic
manipulators and the Lyapunov stability for the redesigned
algorithm is proved. Simulation results demonstrate the
effectiveness of the method. The Lyapunov stability in a
practical application cannot be guaranteed in the algorithms
proposed by Yoo and Ham (2000) and Guo and Woo
(2003). According to the universal approximation theorem,
a discontinuous function cannot be estimated by the fuzzy
systems defined in the algorithms proposed by Wang et al.
(2001) and Medhaffar et al. (2006).
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