
Multiple-Model Q-Learning for Stochastic Reinforcement Delays

Jeffrey S. Campbell1, Sidney N. Givigi2, and Howard M. Schwartz3

Abstract— The main contribution of this work is a novel
machine reinforcement learning algorithm for problems where
a Poissonian stochastic time delay is present in the agent’s
reinforcement signal. Despite the presence of the reinforcement
noise, the algorithm can craft a suitable control policy for
the agent’s environment. The novel approach can deal with
reinforcements which may be received out of order in time
or may even overlap, which was not previously considered in
the literature. The proposed algorithm is simulated and its
performance is compared to a standard Q-learning algorithm.
Through simulation, the proposed method is found to improve
the performance of a learning agent in an environment with
Poissonian-type stochastically delayed rewards.

Index Terms— Reinforcement learning, Markov Decision
Process, stochastic time delay, reward, cost, jitter, multiple
models

I. INTRODUCTION

Reinforcement learning (RL) is a machine learning control
scheme. It is useful for applications where an agent must
learn from its interactions with an environment for which it
does not have a complete model and lacks supervision. In
reinforcement learning, the agent learns to map actions to
states based on feedback in the form of a reinforcement sig-
nal (herein called a reward) [1]–[3]. Intuitively, the agent is
rewarded for desirable behaviour, and punished for behaving
poorly.

RL techniques have been applied to a diversity of control
problems, including adaptive PID tuning [4], arterial traffic
control [5], autonomous navigation control for virtual vehi-
cles [6], mobile robots [7], and engine emission control [8],
to name a few.

RL is often used to solve problems which can be modelled
by Markov Decision Processes (MDPs). MDPs are defined
by a state set S and an action set A. The decision maker can
perform an action a from A to move from state s to state s′

within S, with probability P(s,a,s′). Finally, actions in A can
incur rewards from the reward set R(s,a,s′). Thus, an MDP
can be expressed as a 4-tuple (S,A,P(s,a,s′),R(s,a,s′)) [1].

RL is useful because it can be simpler to define the
objectives that a solution must meet rather than explicitly
defining the solution itself. A designer can specify what
needs to be done rather than how it needs to be done
[9]. For example, if the objective is to make a robot walk

1J. Campbell is with the Department of Systems and
Computer Engineering, Carleton University, Ottawa, ON, Canada
campbelljeffrey@sce.carleton.ca

2S. Givigi is with the Department of Electrical and Computer En-
gineering, Royal Military College of Canada, Kingston, ON, Canada
sidney.givigi@rmc.ca

3H. Schwartz is with the Systems and Computer Engineering, Carleton
University, Ottawa, ON, Canada schwartz@sce.carleton.ca

quickly and smoothly, a designer may use an RL scheme
to give rewards for smoothness and speed. The robot will
then attempt to learn a method of movement which fulfils
these goals, removing the need for the designer to program
the behaviour itself. The robot may then invent superior
methods for doing things which would not have occurred to
the designer. Normally, it is assumed that the reward signal is
undelayed, that is, the designer’s rewards arrive immediately
after the robot’s behaviour which caused them.

In applications where control is decentralized, such as in
swarms of mobile robots, a single robot may not be able to
receive a reward signal immediately. For example, it may be
necessary to consult with other robots in the swarm first to
evaluate its control policy and produce a reward. As well, in
applications where network latency is a factor, jitter (variable
time delays) can be introduced [10]. In these ways, time
delays may be introduced into the reward signal. This paper
will argue that jitter can have a negative impact on traditional
reinforcement learning algorithms.

In the case where the reward signal is delayed by a con-
stant, it has been shown that the resulting deterministically
delayed Markov Decision Process (MDP) can be reduced to
an undelayed MDP by using a larger state space and more
complex cost structure [10], [11].

When the reward signal is delayed stochastically, the
problem has been modelled as a stochastically delayed MDP
(SDMDP) where the number of steps between the receipt of
successive rewards is assumed to be a non-negative random
variable. In other words, the time between rewards is random,
but they are always collected in the proper order. Under
this assumption, it has been shown that it is also possible
to reduce an SDMDP to an MDP with a larger state space
and more complex cost structure, as in the constant-delay
case [10].

II. CONTRIBUTIONS AND OUTLINE

The main contribution of this paper is to provide a novel
method for generating a control policy when the assumption
of successive reward collection is relaxed. This means that
the rewards may arrive out of order, or even overlap. As
well, the paper explores and comments on different aspects
of the problem of stochastic reward delay using MATLAB
simulations. We begin by introducing mathematical prelim-
inaries in Section III. Section IV contains simulation results
which demonstrate the deteriorating performance of an RL
agent in an environment where the rewards are stochastically
delayed. The effect of larger delays and larger environment
sizes is also examined.

Section V contains the contribution of the novel method
which can improve the quality of the control policy that
the agent learns in a stochastic environment, even as the
number of states in the environment grows. This method
combines Q-learning with multiple model approaches used in
control problems where plant parameters are prone to change
[12]. Section VI briefly describes and refers to the proof of
convergence for the novel algorithm which was presented
in another paper. Simulation results which demonstrate the
improved performance of this novel method are presented
and discussed in Section VII. Finally, Section VIII contains
concluding remarks.

III. MATHEMATICAL PRELIMINARIES

A. Reinforcement Learning

Reinforcement learning problems can be expressed as a
finite Markov Decision Process (MDP) in terms of a 5-
tuple (S,A,P,R,γ) where S is the set of states within the
environment, A is the set of actions the agent may choose,
and P maps S×A×S 7→ [0,1] which is the probability that
taking action a ∈ A while in state s ∈ S will lead to state
s′ ∈ S. R is defined as the reward signal which maps S 7→ R
and γ is the discount factor to be applied to future rewards
[11].

The aim of learning is to produce a control policy, π : S 7→
A. This policy maps the states to appropriate actions so as
to maximize a value function, which is the expectation of
future cumulative discounted rewards, given by:

V π(s) = R(s)+ γ ∑
s′

P(s,π(s),s′)V π(s′) (1)

where 0 < γ < 1. This can be thought of as the expected
utility of being in state s and following policy π(s) thereafter
[11].

B. Q-learning

In this reinforcement learning algorithm, the agent updates
a table Q with entries Q(s,a). When the agent transitions
from state s at time t to new state s′ at time (t +1), having
taken action a at time t, the table is updated according to:

Qk+1(s,a)← Qk(s,a)

+α[r+ γ max
a

Qk(s′,a)−Qk(s,a)] (2)

where 0 ≤ α < 1 is a learning rate, γ is a discount factor,
and r is a reward received at time t [1].

C. Variably Delayed Markov Decision Processes

For the purpose of the present paper, a Variably Delayed
Markov Decision Process (VDMDP) is defined as an MDP
where the reward signal suffers from a Poissonian time delay.
This means that if the agent performs an action, it will not
receive the corresponding reward immediately. A VDMDP
can be characterized by a 6-tuple (S,A,P,R,γ,λ) where λ

represents the mean and variance of the Poisson distribution
for the time delay.

Fig. 1. 3×3 grid world simulation environment

IV. SIMULATION ENVIRONMENTS

Simulations were conducted in grid-world environments of
differing sizes. In particular, square grid-worlds of size 3×3,
5×5, and 9×9 were used. In each of these environments,
the agent begins in a random state. The top left-most state
yields a reward of 10 for any action and moves the robot
to the bottom right-most state. Bumping into a wall yields
a reward of −1. Thus, an optimal policy is any which has
the robot moving directly from bottom-right to top-left along
some path of minimum distance. Note that diagonal moves
are not allowed. A 3×3 grid world is shown in Fig. 1.

The normalized performance x of a learning algorithm at
time t with mean Poisson time delay of λ can be evaluated
as:

xλ (t) =
1
t

t
∑

i=1
rλ (i)

t
∑

i=1
r0(i)

(3)

where rλ (i) is the series of rewards received in an environ-
ment with Poisson delay of mean λ and r0(i) is the series
of rewards received when normal Q-learning is used without
delay present. In the undelayed case, when the learning rate
is sufficiently reduced over time and sufficient exploration
is allowed, the agent’s policy will converge to the optimal
policy [1]. The performance of a delayed agent’s policy is
therefore expressed as a percentage of an optimal policy, as
achieved by Q-learning, for an arbitrary MDP. This allows
us to compare results across different environments in a
reasonable way.

A. Effect of Larger Delays

Fig. 2 shows that as the mean delay λ grows larger, the
performance of the learning agent decreases. When the mean
delay is small, there is a significant chance that the reward
will be assigned to the correct cause because there are only
nine states. However, as the delay grows, the chance that the

Fig. 2. Effect of increasing the mean delay λ in a 3×3 grid world

reward will be correctly assigned decreases and the agent’s
learning is hampered.

B. Effect of Environment Size

Simulations in 3×3, 5×5, and 9×9 square grid world
environments, such as that in Fig. 1, showed that as the
environment size increased, the performance of the learning
agent decreased relative to the optimal policy for each
respective environment. Using λ = 5 arbitrarily, the larger
environment size had a negative effect on performance as
can be seen in Fig. 3. As the environment size increases, the
+10 reward state becomes relatively rarer and performance
falters.

Fig. 3. Effect on performance of increasing the grid world size

As a result, the problem of stochastically delayed rewards
becomes more important as the number of states in the
environment grows in size because it becomes less likely
that the agent will stumble luckily upon the reward state.
As well, it becomes less likely that the agent will assign

a reward to the proper state-action pair as the number of
states increases because the correct state becomes relatively
rarer. Because real-world problems often have large state
spaces and because we want to an agent to be robust despite
large reward delays, a new algorithm is needed to facilitate
learning under these new constraints.

V. MULTIPLE-MODEL Q-LEARNING

A contribution of this paper is a solution to the observation
that assigning the rewards becomes more difficult as the
mean delay and environment become larger because the
correct state-action cause becomes relatively rarer. When the
mean delay is unknown, the agent still assigns credit properly
some of the time by chance, and some learning takes place,
but such luck cannot be counted on in large environments
with large mean delays.

To address this, assume temporarily that the mean reward
delay is known to be λ and any rewards are attributed to the
actions that are most likely to be responsible. This means
that the agent will assume that the cause of any reward is
the state-action pair which occurred λ time steps in the past
because this is the peak of the Poisson distribution. In other
words, the most likely outcome of the Poisson distribution
is the mean, λ . When this idea is implemented into Q-
learning, it performs significantly better because credit is
assigned properly more frequently. Observe that in Fig. 4,
the performance of the agent takes on the shape of a Poisson
distribution approximately centered around the true mean
delay λ . Let the agent’s estimate of the true mean λ be λ̂ .
When the agent assumes that the mean delay is λ̂ = λ + i, the
estimate strays farther from the most probable state-action
cause and the agent’s performance worsens. For example, if
the true mean delay is λ = 17, but the agent assumes that it
is λ̂ = 20, then we have an error of i = 3.

Fig. 4. 9 x 9 grid world - Performance after 150k iterations for errors in
the delay estimate i = λ̂ −λ

Thus, if an estimate of the mean delay, λ̂ , is available the
Q-table can be updated in a novel way:

Qk+1(st−λ̂
,at−λ̂

)← Qk(st−λ̂
,at−λ̂

)

+α[rt + γ max
a

Qk(s′t−λ̂
,a)]

−α[Qk(st−λ̂
,at−λ̂

)] (4)

where the index t− λ̂ refers to the time step which happened
λ̂ time steps in the past. For example, if λ̂ = 5, then we are
updating the state-action pair which occurred five time steps
ago. This requires that we maintain a memory of all state-
action pairs up to some threshold λ̂max, which we reasonably
define based on the needs of the application.

If we keep track of different delay estimates in parallel,
then the agent can gradually learn which is most valuable and
learn more from its environment than before. This brings us
to our proposed algorithm.

A. Multiple Model Q-Learning

This is the main contribution of this paper. It may not
be possible to know the mean delay a priori, but the agent
can be made to learn the delay over time using a multiple-
model method for learning the mean reward delay. Rewards
can be assigned to the state-action pairs which are most
likely to have caused them and policy quality is increased
significantly.

Let λ̂max be the maximum feasible time delay for a par-
ticular application as estimated by the designer. The action-
space is augmented with N estimates for the mean reward
time delay, increasing its size to A×N. These estimates run
from 0 time steps to λ̂max time steps at some resolution. (E.g.
if the resolution is 1, then N = λ̂max+1 if λ̂max is an integer)
Thus, for each state, the agent must now select both an action
and a delay estimate. The models can be visualized as in Fig.
5. In each time step, a candidate model λ̂ is selected and its
Q-table is made active for decision making during that time
step. The dashed lines indicate inactive models, which are
still updated based on decision made by the active model.

Building upon the Sarsa algorithm from [1], the agent
learns as detailed in Algorithm 1. First, the agent selects
the most valuable time delay estimate λ̂ ∗ where:

λ̂
∗ = argmax

λ̂

Q(s,a, λ̂) (5)

and then assumes that this estimate is correct. Then, as
normal, the agent selects the most valuable action according
to:

a∗ = argmax
a

Q(s,a, λ̂ ∗) (6)

given that the agent is currently in state s under the assump-
tion that λ = λ̂ ∗. The agent then performs action a∗ and
arrives at state s′. A reward is produced, but the agent will
not receive this reward until the stochastic delay has elapsed.

During this time step t, a reward is received which may
be the sum of several rewards (caused by several actions),
a single reward (caused by one action) or no rewards at all
(a reward of zero). Overlap is possible as a result of the
relaxation of the assumption that the rewards are delivered

Fig. 5. Activation of a candidate model in Multiple-Model Q-Learning

in proper order. For example, a reward may be delayed by
six time steps and then the next reward is delayed by five
time steps. In five time steps, the agent would receive the
sum of the two rewards.

Next, the agent cycles through all N estimate models and
assigns the reward at time step t to the state-action pair at
time step t− λ̂ such that:

Qk+1(st−λ̂
,at−λ̂

, λ̂)← (1−α)Qk(st−λ̂
,at−λ̂

, λ̂) (7)

+α

[
rt + γ max

λ̂ ,a
Qk(s′t−λ̂

,a, λ̂)

]

where λ̂ is the λ̂ th model of N total models. In this way, the
agent repeatedly evaluates N different estimates at once. The
agent then chooses the next best candidate estimate model
λ̂ and the cycle continues until sufficient exploration of the
environment is achieved.

After learning is finished, a policy a = π(s, λ̂) can be
produced by finding the most valuable parallel Q-table, then
the most valuable action for the current state within that Q-
table. This procedure is the same as during learning, except
the agent is no longer allowed to explore randomly. Instead,
it strictly behaves according to its Q-table.

Alternatively, the agent could create a probabilistic control
policy. First, the most valuable model λ̂ ∗ is chosen for the
current state s. Then, the policy a= π(s, λ̂ ∗) indicates that the
agent should select action a when in state s with probability

Algorithm 1 - Multiple Model Q-Learning

Set λ̂max
Initialize state-action memory of sufficient length
Initialize α,γ (e.g. α = 0.1,γ = 0.9)
Initialize Q(s,a, λ̂) arbitrarily (e.g. optimistic initializa-
tion)
for episode do

Initialize s
repeat

select λ̂ ∗ using policy from Q (e.g. ε-greedy)
select a∗ using policy from Q assuming λ̂ ∗ is correct
(e.g. ε-greedy)
execute action a∗

observe rt and s′

for λ̂ from 0 to λ̂max do

Qk+1(st−λ̂
,at−λ̂

, λ̂)← (1−α)Qk(st−λ̂
,at−λ̂

, λ̂)

+α

[
rt + γ max

λ̂ ,a
Qk(s′t−λ̂

,a, λ̂)

]
end for
s← s′

until s is terminal or behaviour is acceptable
end for

p where:

p(a|s) =
Q(s,a, λ̂ ∗)−min

a
Q(s,a, λ̂ ∗)

|A|
∑

a=1
Q(s,a, λ̂ ∗)

(8)

where |A| is the total number of actions. In this way, the
agent will continuously use different paths to reach its goal.

VI. CONVERGENCE

Multiple-model Q-learning converges in a stochastic sense,
as shown in [13]. The proof is an extension of the work in
[14], which states that if the following four assumptions are
true, and if xi = xi +α(Fi(x)− xi +wi), then x(t) converges
to x∗ with probability 1.

Assumption 1 For any i and j, lim
t→∞

τ i
j(t) = ∞, with proba-

bility 1.

Assumption 2 Any random variables are defined within a
probability space (Ω,F ,P) and there exists an increasing
sequence [F (t)]∞t=0 of subfields of F such that: a)

1) x(0) is F (0)-measurable;
2) For every i and t, wi(t) is F (t +1)-measurable;
3) For every i, j, and t,αi(t) and τ i

j(t) are
F (t)-measurable.

4) For every i and t, we have E[wi(t)|F (t)] = 0;
5) and there exist (deterministic) constants A and B such

that

E[w2
i (t)]≤ A+B max

j
max
τ≤t

∣∣x j(τ)
∣∣2∀i, t

Assumption 3 For every s,
∞

∑
t=0

αs(t) = ∞, w.p.1. (9)

There exists some (deterministic) constant C such that for
every s,

∞

∑
t=0

α
2
s (t)≤C, w.p.1. (10)

Assumption 4 Defining the norm || · ||v on Rn as

||x||v = max
i

|xi|
|vi|

(11)

there exists a vector x∗ ∈ Rn, a positive vector v, and a
scalar γ ∈ [0,1), such that

||F(x)− x∗||v ≤ γ||x− x∗||v ∀x ∈ Rn (12)

The work in [13] shows that these four assumptions
are satisfied, and that therefore, Qk(s,a, λ̂) converges to
Q(s,a, λ̂)∗ with probability 1.

VII. SIMULATION

Simulations were conducted in a 9 x 9 grid world to
demonstrate how the novel algorithm can derive a control
policy for the problem. The simulations were performed in
a grid world environments to demonstrate the significant
effect of stochastic time delays even in a relatively small and
simple environment. The solutions described in this paper are
intended to be carried on to other more complex applications,
especially in mobile robotics, where grid world simulations
are useful for testing algorithms.

During simulation, the mean delay is set to λ = 13, and the
highest feasible delay estimate is set to 50 time steps. This
sets the maximum number of parallel estimate models which
must be maintained. Other parameters are set as the examples
in Algorithm 1. Fig. 6 shows the improved performance from
using the multiple-model Q-learning algorithm in a 9× 9
grid world. The multiple-model Q-learning method achieves
a performance of about 95% relative to single-model Q-
learning in an undelayed environment. In comparison, tabular
Q-learning achieves a performance of about 0% relative to
the undelayed environment.

When learning is finished, the agent has travelled through
the states and explored the environment, as in Fig. 7. Then, if
a deterministic control policy is formed using the maximally
valuable entries in the Q-table, the learning agent will behave
as in Fig. 8. If the agent were to begin in state 81, (9,9) then
it would move roughly along the diagonal to reach the reward
state. The optimal path consists of taking some combination
of the actions up and left to reach the reward state directly.
Through the states most visited during learning, the preferred
actions tend to be up (light blue) and left (pink). Indeed, the
multiple model Q-learning policy is optimal, but performance
during learning is reduced by the forced exploration present
in the ε-greedy strategy. This is why performance during
learning is 95% of optimal, and after learning it is 100% of
optimal.

Fig. 6. Relative performance of multiple-model Q-learning vs single-model
Q-learning in the 9×9 grid world with random delays present

Similarly, Fig. 9 shows the probabilistic policy formed
from the same Q-table, where the agent will move in each
direction with a given probability based on the current state,
as described by the color scale. Warmer colors indicate a
higher probability of taking that action in that state.

Fig. 7. How often each state is visited during learning when using multiple-
model Q-learning

A. Comparison to Q-learning

As seen in Fig. 6, when using the basic Q-learning algo-
rithm, the agent does not achieve a positive reward, meaning
that no significant learning takes place. The following results

Fig. 8. Deterministic policy formed using multiple-model Q-learning

Fig. 9. Probabilistic policy formed using multiple-model Q-learning

describing the behaviour of the agent demonstrate that single-
model Q-learning (wherein the delay is assumed to be λ = 0)
is unable to solve the problem when stochastically delayed
rewards are present. The Fig. 10 visitation information shows
that if single-model Q-learning is used within the VDMDP,
the agent becomes stuck in a loop during learning and
explores poorly. The agent was stuck around state (6,4).

Fig. 11 displays the problematic deterministic policy
formed from the exploration in Fig. 10. No clear path
emerges which would move the agent from bottom-right to
the reward state at top-left. Instead, the agent becomes stuck
in a loop. However, the agent does learn to avoid the walls,
although it fails to reach the goal state.

Fig. 12 is the probabilistic policy formed from Q-learning.
The poor exploration leads to a policy of mostly random
behaviour because most of the states have not been visited
extensively. Note that warmer colors indicate more decisive
behavior.

After running both policies for 1,000 iterations after

Fig. 10. How often each state visited during learning when using single-
model Q-learning

Fig. 11. Deterministic policy formed from using single-model Q-learning

Fig. 12. Probabilistic policy formed from using single-model Q-learning

learning is complete, the multiple-model Q-learning control
policy achieves an average reward of 0.59 (+10 in 17 steps,
the optimal) and the Q-learning policy achieves an average
reward of 0.0 (it becomes stuck in a loop). These results
mean that the novel method facilitates more learning than
the Q-learning method, despite the stochastic reward delay.

VIII. CONCLUSIONS

This paper introduced a novel method for learning in
environments where stochastic time delays are present in
the agent’s reward signal. The contributions of this paper
were simulations demonstrating the worsening performance
of traditional reinforcement learning schemes for increasing
time delays and environment size, and a novel solution which
suggests a way to assign credit so as to increase the proba-
bility of learning taking place under these circumstances.

By simulation, the current paper has shown that intro-
ducing a Poissonian time delay into the reward signal of
a reinforcement learning agent reduces the performance of
standard Q-learning. Further, it is shown in simulation that
the proposed multiple-model algorithm for assigning credit
for a reward to state-action pairs which are delayed in the
past by an amount near to the mean reward time delay can
significantly improve performance of the learning agent and
enable more learning to take place.

Future work will delve into new ways of processing the
parallel delay estimate updates in parallel rather than serial
fashion, since the updates are independent. It may also be
fruitful to investigate using a kernel to assign less reward to
delay estimates which are far from the most valuable delay
estimate, λ̂ ∗. As well, the method will be applied to new
control problems and mobile robot experiments.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[2] P. Kulkarni, “Introduction to Reinforcement and Systemic Machine
Learning,” Reinforcement and Systemic Machine Learning, pp. 1-21,
2012.

[3] M. P. Deisenroth, G. Neumann, J. Peters, “A Survey on Policy Search
for Robotics,” Foundations and Trends in Robotics, 2011.

[4] M. N. Howell, T. J. Gordon, M. C. Best, “The application of contin-
uous action reinforcement learning automata to adaptive PID tuning,”
Learning Systems for Control (Ref. No. 2000/069), IEE Seminar,
pp.2/1,2/4, 2000.

[5] J. C. Medina, A. Hajbabaie, and R. F. Benekohal, “Arterial traffic con-
trol using reinforcement learning agents and information from adjacent
intersections in the state and reward structure,” 13th International IEEE
Conference on Intelligent Transportation Systems, no. 3, pp. 525-530,
Sep. 2010.

[6] N. Lianqiang, Li Ling, “Application of Reinforcement Learning in
Autonomous Navigation for Virtual Vehicles,” Hybrid Intelligent
Systems, 2009. HIS ’09. Ninth International Conference on , vol.2,
pp.30,32, 12-14 Aug. 2009.

[7] K. Ito, Y. Imoto, H. Taguchi, and A. Gofuku, “A study of reinforcement
learning with knowledge sharing,” in IEEE International Conference
on Robotics and Biomimetics, 2004.

[8] P. Shih, B. C. Kaul, S. Jagannathan, J. A. Drallmeier, “Reinforcement-
Learning-Based Output-Feedback Control of Nonstrict Nonlinear
Discrete-Time Systems With Application to Engine Emission Control,”
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transac-
tions on , vol.39, no.5, pp.1162,1179, Oct. 2009

[9] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” arXiv preprint cs/9605103, Jan. 1996.

[10] K. V Katsikopoulos, “Markov decision processes with delays and
asynchronous cost collection,” Automatic Control, Jan. 2003.

[11] T. Walsh, A. Nouri, L. Li, and M. Littman, “Planning and learning
in environments with delayed feedback,” Machine Learning: ECML
2007, Jan. 2007.

[12] A. S. Campbell and H. M. Schwartz, “Multiple model control improve-
ments: hypothesis testing and modified model arrangement,” Control
and Intelligent Systems, Jan. 2007.

[13] J. S. Campbell, S. N. Givigi and H. M. Schwartz, “Multiple Model
Q-learning for Stochastic Time-Delayed Reinforcement Learning,”
submitted to Journal of Intelligent & Robotic Systems, 2014.

[14] J. N. Tsitsiklis, “Asynchronous Stochastic Approximation and Q-
learning”, Machine Learning, 16, 1994, pp. 185-202.

