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Abstract

Kernel machines represent one of the best machine learning algorithms applied to

the problem of pattern recognition. The most popular type of kernel machine used

for pattern recognition is the support vector machine (SVM). SVMs are often used

in offline environments when all training data is present at the same time and the

training of the SVM is accomplished by solving a constrained quadratic programming

(QP) problem.

The problem of online pattern recognition has two additional features when com-

pared to offline pattern recognition. The first feature is training data arrives in a

streaming fashion for a possibly infinite time. The second feature is that the process

generating the training data can change over time. Stochastic gradient descent is

traditionally used for training online kernel machines since this method has linear

computational complexity over time, and it can adapt to changes in input.

The primary research problem addressed in this thesis is the improvement of kernel

machines operating in online environments. There are four liked subproblems that are

inter-related and are addressed in this thesis. First, the computational efficiency of

kernel machines is important in online applications. Second, the online adaptability

of kernel machines is necessary when there is a change in the nature of the input data

stream. Third, the estimation accuracy of kernel machines is important because of the

online training methods used. Fourth, the limited memory of the online environment

combined with stochastic gradient descent gives rise to truncation error in the kenel
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machine estimation.

The research in this thesis addresses one or more of the previously discussed

problems. For each proposed solution, experimental evaluation was conducted on

simulated, benchmark, and/or real data and the advantages and disadvantages of

each solution are discussed. As well, the contribution of the proposed solution is

explained with references to existing literature.

Ideally, fully solving these four problems would allow online intelligent systems to

have the same level of accuracy as offline batch systems but have a suitable computa-

tional complexity for online systems. This goal represents an asymptotic boundary as

online processing will always have additional restrictions in terms of time and memory

space when compared to offline processing. It is the finding of this thesis that there

is significant room for improvement in the performance of online kernel machines and

this thesis takes some of the necessary steps towards the ideal boundary.
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Chapter 1

Introduction

Pattern analysis refers to the process of finding relations amongst a set of data. Pat-

tern analysis finds extensive use in many modem intelligent systems that we find in

everyday life. Examples of such intelligent systems are consumer electronics, house-

hold appliances, industrial processing and manufacturing equipment, robotic control

systems, and smart phones and tablets.

Intelligent systems will generally have one or more of the following characteristics:

the ability to generalize from incomplete data, make decisions based on state and

input, and plan, reason, and learn from previous experience.

The inclusion of pattern analysis in an intelligent system enables the system to

discover the relations within the data and then apply these relations to new data. If

the relations exist as classification rules, regression functions, or cluster structures,

the usual statistical pattern recognition approaches can be used [2].

1.1 Description of Kernel Machines

Kernel machines operate by the implicit mapping of an input pattern to a high-

dimensional feature space, and then find an optimal separating hyperplane in that

space [1] [3] [4]. Support Vector Machines (SVMs) are but one member of the kernel
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machine family. When SVMs are applied to classification or regression problems, they

are referred to as support vector classification (SVC), and support vector regression

(SVR) methods, respectively. SVMs are currently one of the best alternatives to

other statistical learning methods found in general texts on artificial intelligence [5],

and neural networks [6].

There are both advantages and disadvantages to using kernel machines in intelli-

gent systems. Some advantages are:

• A SVM is trained to maximize the margin between different classes of data as

opposed to minimizing the sum-of-squares error. Maximizing the margin creates

a robust classifier with good generalization characteristics even in the presence

of sparse training data [1].

• A SVM is commonly formulated as a quadratic programming (QP) problem

that is convex and therefore has a global optimum solution.

• SVMs can be formulated to be resistant to outliers in the training set.

Some disadvantages include:

• Training an SVM involves solving a quadratic programming problem where

the number of variables to be optimized equals the number of training samples.

Training with a large number of variables can be problematic in terms of memory

requirements and training time.

• SVMs are kernel based approaches, and depending on the kernel function used,

parameters may have to be defined a priori to training, through trial and error,

or cross-validation.
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1.2 Applications of Kernel Machines

SVMs are used for classification or regression, and have found use in systems for

vehicle recognition [7], visual human motion recognition [8–11], road sign recognition

[12], and motion blur detection [13]. SVMs are used in systems that have pattern

recognition or regression requirements. For instance, Moustakidis et al. [14] applied

SVMs for subject recognition from human gait signals. In the work of Zhu et al. [15],

a novel SVM regression algorithm was proposed, and experiments were conducted

with well known datasets from a robotic arm and from the Boston real estate market.

Zhang et al. [16] investigated an algorithm that combined use of wavelet techniques

when developing a kernel function for use with a SVM and the resulting algorithm

was referred to as the “wavelet support vector machine”.

SVMs have also been applied in the area of mechatronics. SVMs were recently

used in the work of Liu et al. for the recognition of electromyographic signals [17].

Wang et al. used support vector machine regression to model friction in servo-motion

systems [18]. In the research of Li et al, SVMs were used as part of a system for

dynamics identification in haptic displays [19].

In the work of Bellocchio et al. [20], the authors use Hierarchical Radial Basis

Function (HRBF) networks for surface reconstruction. The HRBF neural network

applies radial basis functions to regression, which is a similar approach to the use

of kernel machines using a RBF kernel function. In Ming et al. [21], the authors

use kernel machines for human gait recognition. Further, in the research of Wan et

al. [22], kernel machines were used for pattern recognition for a human brain-computer

interface.
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1.3 Illustrative Example

It is helpful to present an illustrative example of SVMs in the offline batch setting. For

binary classification applications, the SVM will predict the class of an input vector.

Due to the SVM formulation, the input data is classified by the SVM output either

as +1 or −1.

The goal of a machine learning algorithm is to produce a hypothesis about the

nature of observed data. In this example, the SVM will use ten discrete two dimen-

sional data points to produce a decision hypothesis about the nature of the data

and investigate the use of a SVM for identifying dangerous conditions in a robotic

environment. Assume that there is a unmanned aerial vehicle (UAV) operating in a

extreme environment. It is determined through simulation that the UAV will crash

due to system failure or due to improper maneuvering under specific temperature and

altitude conditions.

The process of developing the decision hypothesis is referred to as training the

SVM. Chapter 2 will give specifics about the notation and terminology used through-

out this thesis when discussing kernel machines such as SVMs. Below is the notation

that is helpful with this particular example:

• d ∈ N+: In this example d = 2.

• k ∈ Rd × Rd → R. The function k is referred to as the kernel function for the

SVM. In this example the radial basis function (RBF) kernel is used, k (x1, x2) =

e−γ‖x1−x2‖
2

.

• x ∈ Rd: A d-dimensional input vector. Input vectors can be used for training,

for classification of new data, or both.

• α ∈ R: A scalar value or weighting that is used for producing the SVM output.

The value of any particular α is determined from the training algorithm.
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• y ∈ ±1: A label value that identifies which class the input vector belongs. Each

data vector has an associated label. If the label is known, the input vector

and label can be used to train or test the accuracy of the SVM. If the label is

unknown, a trained SVM can be used to provide a prediction of the unknown

label.

• b ∈ R: A scalar bias value that adjusts the output of the SVM.

• fSVM ∈ Rd → ±1: The output of the SVM. The output is a prediction of the

class label for any particular input vector.

Readers wanting to become more familiar with the terminology surrounding SVMs

and kernel machines are encouraged to read Chapter 2 or consult [1, 4]. Table 1 lists

the simulation results. If the UAV crashed the simulation result is assigned a label

of -1, otherwise it is assigned a value of +1. Table 1 lists the simulation trials in the

order the experiments were performed.

Table 1: UAV Simulation Results.

Simulation Trail Number Temp (C) Altitude (m) Result

1 -12.0 80 -1

2 -5.5 110 -1

3 -5.0 60 -1

4 -2.0 80 -1

5 0.0 100 -1

6 1.0 90 +1

7 2.5 105 +1

8 5.0 85 +1

9 10 140 +1

10 12 110 +1

The SVM is trained with the data presented in the above table and is placed
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into two dimensional vector/label pairs for training the SVM. The following format

is used: xtrial = [temperature, altitude], ytrial. For example, the third simulation trial

would create the following vector/label pair, x3, y3 = [−5.0, 40] ,−1. Equation (1)

determines the output of the SVM. The summation term in Equation (1) is referred

to as the kernel expansion of the SVM. The kernel expansion consists of m terms.

When training is performed, the values of each αi are determined.

fSVM (x) = sgn

(
m∑
i=1

αik (x,xi) + b

)
(1)

The training of a SVM is accomplished by solving a constrained convex quadratic

programming (QP) problem. Equation (2) gives the formulation of the QP problem.

The greatest advantage of using the SVM over an artificial neural network (ANN)

for classification is that the QP problem has a globally optimal solution [1]. After

training, the SVM is a maximal margin classifier that will generalize better than an

ANN that is non-optimal [1, 3, 4]. The parameter C in Equation (2) allows for a

trade-off between allowable error and regularization in the SVM output.

maximize
α∈Rm

Z (α) =
m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyjk (xi,xj)

subject to: 0 ≤ αi ≤ C
m
,∀i = 1 . . .m

m∑
i=1

αiyi = 0

(2)

Figure 1 gives the resulting output of the SVM (without computing the sgn ()

function) when using different parameters for γ and C. The parameters are usually

found using minimum error on a separate test set of data or through the use of cross-

validation. For illustration purposes in this example, the specific choice of γ and C

is not as important as the computational complexity of finding suitable values for γ

and C before the SVM is used to classify unknown data.
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Figure 1: a) The RBF kernel function parameter γ is too large resulting in too low
of a similarity between stored vectors. In this case while the decision surface
accurately represents the training data, this SVM will not generalize well to
unknown data. The decision surface is too complex and requires more regular-
ization. b) The regularization parameter, C, is too small yielding a SVM with
a smooth decision surface, but the SVM does have an error on the training set.
The error on the training set indicates that the SVM does not provide a good
estimate for the UAV simulation data.

Figure 2 illustrates a suitable parameterization for the SVM when predicting the

outcome of the UAV flight. The choice of γ and C give accurate results while yielding

a smooth decision surface for good generalization between classes.

The resulting SVM can be implemented in an embedded real-time operating en-

vironment on the UAV in this example. The SVM bias, b, and all xi, and αi corre-

sponding to αi 6= 0 need to be stored in computer memory. Any xi, corresponding

to αi 6= 0 are referred to as the support vectors (SVs) of the SVM. Figure 3 shows

the structural organization of the SVM used in the embedded environment of UAV.

The structure of the SVM is similar to a single layer ANN, but the most significant

difference is the training algorithm used.

All the problems addressed in this thesis have a common theme. The kernel ma-

chine is operating in an online environment. It must be efficient in its execution

but also must adapt and learn from new data arriving in a sequential fashion. The
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Figure 2: SVM output across all temperature and altitude.
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Figure 3: Structural organization of the SVM.

computational complexity in evaluating Equation (1) scales with the number of SVs
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stored in the kernel machine (O (m)). It is evident from Equation (2) that in or-

der to solve the quadratic programming problem, all data must be present in the

form of kernel function evaluations between data vectors. Additionally the tuning

of γ and C maybe needed in order to preserve the optimality of the SVM, which is

computationally inefficient when using additional test sets or n-fold cross-validation

techniques.

1.3.1 Special Considerations of Online Environments

Online learning is necessary in situations when the data arrives in an infinite stream.

In this situation, there is no guarantee that the properties of the arriving data will

remain fixed or in other words, the arriving data may have non-stationary char-

acteristics. The online learning scenario means the kernel machine can adapt to

non-stationary data. Figure 4 illustrates the online learning with kernel machines.

Data Source
tx Online Training

Algorithm

Kernel Machine

Memory Buffer

t

Kernel Machine

 tt xf 1

Figure 4: General view of kernel machines in online environments. At time t, new
data arrives and the training algorithm will produce a scalar weight value, αt for
the support vector xt. The training algorithm will also use the kernel machine
output for determination of αt.

The kernel function used by a kernel machine allows the input data to be implicitly
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mapped to a high dimensional space. The type of kernel function used and the kernel

parameterization needs to be determined. The parameterization of the kernel function

depends on the nature of the input data.

The traditional approach for training support vector machines has two main flaws

when used in an online setting. The first flaw is that the traditional training approach

considers all data at once, with no concept of “when” the data set was acquired. It

is important for any online learning algorithm to be able to adapt to changes over

time [23]. The second flaw is that the traditional training approach is usually com-

putationally expensive. It is important that the kernel machine is computationally

efficient yet accurate enough to be used in the online system.

1.4 Background Literature Regarding Online Ker-

nel Machines

The most simple and effective method for using a kernel machine in an online envi-

ronment is to make use of a sliding window on the data. Sebald and Bucklew [24]

introduce decision feedback using a windowed SVM for non-linear equalization. In

their work they discuss the benefits of a online support vector machine algorithm

verses a quadratical program training method. In the work of Cauwenberghs and

Poggio [25] an incremental-decremental algorithm for training support vector ma-

chine is presented. Their algorithm introduces the idea of adiabatic increments for

the support vector weights. While the approach is accurate, there is no guarantee for

the number of updates required. A projection method was presented by Castó and

Opper [25] in terms of Gaussian processes (similar to SVMs). The drawback to Castó

and Opper’s algorithm is the need for a matrix multiplication in each step and the

dimensionality of the matrix scales with the number of kernel functions used [26].
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Kivinen et al. [26] introduce the NORMA as an efficient method for classification,

regression and novelty detection [26]. The NORMA uses linear loss and a time decay

regularization technique to enforce simplicity in the kernel machine’s output. The

NORMA training algorithm has a computational complexity of O (m), making it

useful for online applications. The use of time decay regularization produces a biased

estimator and can negatively impact performance of the kernel machine [27]. Engel et

al. developed the Kernel Recursive Least-Squares Algorithm (KRLS) [28] which has

an explicit sparsification method for providing regularization of the kernel machine.

The computational complexity of training KRLS is O (m2).

The kernel least-mean-square algorithm by Liu et al. [27, 29] is similar to the

NORMA in that it trains the kernel machine using stochastic gradient descent, but

requires no explicit regularization. The time complexity for training KLMS is stated

as O (m2) in [29] but stated as O (m). KLMS with a training time complexity of

O (m) will be considered in this thesis. Due to their computational complexity the

NORMA and KLMS will be used as starting points when addressing the problems

described in Section 1.5.

1.5 Problems Addressed

Section 1.3 describes an example of a SVM used as a solution to a classification

problem. Without the loss of generality, all kernel machines must evaluate a kernel

expansion to produce an output. Equation 3 describes a generic kernel expansion

equation.

f (x) =
m∑
i=1

αik (x,xi) (3)

The primary goal of this research is to improve upon the performance of kernel
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machines in online environments. Equation (3) shows that the computational effi-

ciency and the memory efficiency of a kernel machine is bounded by the number of

expansion terms that make up the kernel machine. In the case of online environments,

the computational complexity and memory complexity will grow over time.

Some fundamental concepts must be introduced before formalizing the problem

addressed by this thesis. The goal of pattern recognition is to develop a hypothesis

about the nature of observed patterns. In other words, given a pattern and label pair,

x, y (x, y can be thought of as a single pattern as well), the hypothesis is produced by

the function f . The generalized loss function is described by the real-valued function

l (x, y, f (x)). The loss function is synonymous to an error function and can take

many forms but it must be a non-negative function.

To avoid loss of generality is assumed that the pattern and label are defined on

the sets X and Y respectively and there exists a probability distribution P (x, y).

The risk of the hypothesis function f is defined in Equation (4). The risk cannot be

calculated because P (x, y) is unknown. The empirical risk of a given function can

be calculated by the use of Equation (5) an a collected test set of k pattern and label

pairs.

R [f ] =

∫
X×Y

l (x, y, f (x))dP (x, y) (4)

Remp [f ] =
1

k

k∑
j=1

l (xj, yj, f (xj)) (5)

Equation (5) gives a method for measuring the accuracy of the hypothesis function

on a specific test set of data. It is important to note that Equation (5) does not give

insight if the function f is over fitting the given data. Section 2.3 gives more details

on the concepts of risk and loss. Regularized risk is introduced so that both the loss

and complexity of the function f is considered. The regularized risk is described by
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Equation (6).

Rreg [f ] = Remp [f ] +
λ

2
‖f‖H

2 (6)

The term ‖f‖H
2 is a measure of the function complexity in a possibly infinite

dimensional Reproducing Kernel Hilbert Space (RKHS). The parameter λ allows the

amount of complexity to be adjusted. Kernel functions represent dot product in

RKHS and allows for the casting of classification and regression tasks from input

space to RKHS. The importance of Equation (6) becomes obvious that minimizing

the empirical risk reduces the loss and also the complexity of the hypothesis. Equation

(6) is convex since the loss function is non-negative and ‖f‖H
2 is also convex.

The Representer theorem as introduced in the work of Kimeldorf and Wahba [30]

and generalized in the work of Schölkopf and Smola [1] makes an important statement

about the nature of minimizing the regularized risk functional. The Representer

Theorem states that if there is a function f ∈ H such that the regularized risk is

minimized, then f can be expressed as in Equation (7).

f (x) =
m∑
i=1

αik (x,xi) (7)

Equation (7) is exactly the same has the kernel expansion described in Equation

(3). The Representer theorem does not indicate how many of the α terms will be

zero, but it does explicitly state that the representation will span the set of training

vectors. It is therefore implied that in the online setting illustrated in figure 4, that

as time progresses, the number of expansion terms, m, will also grow without bound

which is computationally infeasible for online applications. The Representer theorem

provides a lower bound of O (m) on the computational complexity for training and

evaluating kernel machines.

In addition to Equation (6) and the Representer theorem, the nature of online
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learning offers significant challenges for the online use of kernel machines. Time is now

a factor when considering the input patterns used for training and testing, and also

the functional dependency between pattern labels and input patterns. For example

in terms of probabilities, P (x) 6= P (x, t) and P (y|x) 6= P (y|x, t) indicate concept

drift. The inequalities are what is referred to as concept drift. The singular problem

of online learning with kernel machines can be broken down into four inter-related

subproblems. This thesis presents novel work that focuses on the four problems

described in sections 1.5.1 to 1.5.4.

1.5.1 Computational Efficiency

The example in Section 1.3 started with ten training vectors. After training, only

4 vectors were used to determine the SVM output for any input vector. It is very

common for support vector machines to have a smaller subset of support vectors

compared to the total number of training vectors. Throughout this thesis I will often

refer to the number of support vectors by the variable m. Assuming the computa-

tional complexity of evaluating the kernel function is O (1) then the computational

complexity of evaluating Equation (1) scales in O (m). Linear time complexity can be

an issue in online systems if the number of support vectors grow linearly with time.

The Representer Theorem as introduced in the work of Kimeldorf and Wahba [30],

implies that the number of support vectors can grow linearly with the number of

training vectors in the training set [26]. Online environments deal with an infinite

stream of data and therefore the time required for kernel machine evaluation in such

an environment can also grow without bound.

The process of training a kernel machine involves finding the solution to a QP

problem in a batch fashion. General purpose QP solvers can be used for finding the

QP solution to Equation (2), but are more computationally expensive than specialty

algorithms. Classical QP solvers operate with a computational complexity of O (n2)
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to O (n3) [31]. Sequential minimal optimization (SMO) introduced by Platt [32] is

the most popular QP solver for off-line batch SVMs. SMO has a computational

complexity between O (n) and O (n2) [32].

Modern approaches to the online training of kernel machines involves the use of

stochastic gradient descent on a loss functional. Two important kernel machine train-

ing algorithms that use stochastic gradient descent are the Naive Online Rreg Mini-

mization Algorithm (NORMA) [26], and the Kernel Least-Mean-Square (KLMS) algo-

rithm [27,29]. As with SVMs, the NORMA and KLMS trained kernel machines have

O (m) complexity for their evaluation. Training a kernel machine with the NORMA

or KLMS is accomplished with O (m) computational complexity. The NORMA and

KLMS scale in terms of the number of support vectors that are retained, and as the

case with batch SVMs, the number of support vectors can grow linearly with the

number of training vectors used.

In the online learning scenario there is an infinite stream of data. The training

and evaluation computational complexity can therefore grow without bound, posing

a problem for online systems where computational resources can be limited. The

problem of computational efficiency is addressed when a kernel machine has a com-

putational complexity of O (m) or lower regarding training and evaluation.

1.5.2 Adaptability

When using kernel machines in offline environments there are many useful techniques

for tuning various parameters of the kernel machine. Cross-validation, leave-one-out

error estimates, and the use of error rates on a separate set of data are a few such

approaches [1,27]. In online systems, these types of system optimizations are far from

practical, if not impossible, without failing real-time requirements.

Another problematic area for online use of kernel machines is concept drift [26,33].

The main idea behind kernel machines in that they produce a hypothesis about the
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input based on past inputs. Concept drift is a change in the underlying process that

produces the input for the kernel machine. There are two types of concept drift.

First, the nature of the data can change slowly over time and in this case the data

is referred to as drifting. Second, the nature of the data can change abruptly at a

specific time and in this case the data is referred to as switching. Concept drift poses

a significant problem for effective use of kernel machines in online situations because

SVMs have no capability to adapt to concept drift. When training SVMs, all training

data is treated equally valid when solving the QP problem, and in this case it makes

little sense to use a batch learning algorithm [26].

Adapting kernel parameters (depending on the type of kernel used) will have a

direct effect on the regularized risk, Rreg[f ] of the kernel machine as it can affect both

the empirical risk, 1
k

k∑
j=1

l (xj, yj, f (xj)) and the complexity of the kernel machine in

RKHS, λ
2
‖f‖H

2.

1.5.3 Accuracy

Efficient online kernel machine training algorithms such as the NORMA and KLMS

have to balance between approximation accuracy and adaptability. Both the NORMA

and KLMS have a learning rate parameter [26, 29] that can be set depending on the

required performance of a given situation. Determining the learning rate in the online

learning scenario can be done offline with cross-validation.

The NORMA and KLMS are truly online algorithms for the training of kernel

machines because they attempt to minimize the instantaneous risk,, of the kernel

machine, rather than the empirical risk, Remp [f ]. The instantaneous risk as defined

in the NORMA [26] by Equation (8).

Rinst [ft, xt, yt] = l (xt, yt, f (xt)) +
λ

2
‖f‖H

2 (8)
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Equation (9) gives the general idea behind stochastic gradient descent that is

used to train the NORMA [26]. It will be shown later in section 4.2 that KLMS also

uses the same type of stochastic gradient descent. The update of ft+1 at time t only

depends on the current input pattern, label and kernel expansion.

ft+1 ← ft − ηt
∂ (Rinst [f ])

∂f
(9)

The learning rate, ηt can also be adapted using cross-validation and can provide

excellent results but is computationally expensive. There is limited literature in terms

of true online learning rate adaptation for kernel machine algorithms. In the work of

Kivinen et al [26] it is suggested that learning rate decay be employed for better online

results. While Vishwanathan et al. [31] introduce a learning rate adaptation algorithm

referred to as Stochastic Meta-Descent (SMD) that allows the online adaptation of

the learning rate for the NORMA. The use of SMD requires more computational

effort but the NORMA using SMD still has a computational complexity of O (m). As

discussed in the literature [1, 26, 27, 29, 31], adaptation of learning rate can improve

the accuracy of the online kernel machine.

Since both the NORMA and KLMS are based upon stochastic gradient descent.

Improving upon this basic building block is a significant open ended research problem.

Equation (9) shows that there is an opportunity for improvement of the minimization

of the regularized risk of a kernel machine trained using the NORMA of KLMS.

Gradient descent methods rarely converge to an optimal solution in one step as shown

in Equation (9). When this problem is addressed it can improve upon online kernel

machine accuracy and still keep the computational complexity within O (m).



18

1.5.4 Memory Limitations

Similar to the computational complexity of online kernel machines, the memory space

complexity is also O (m). Due to the Representer Theorem [30], the amount of re-

quired computer memory required for storing the support vectors of a kernel machine

will grow without bound [1, 26]. In the case of limited memory space one or more

support vectors must be discarded to make room for a new support vector. There

exists a trade off that becomes evident when comparing Equations (1) and (2) in

Section 1.3. In Equation (1), it can be seen that the accuracy of the kernel machine

is dependent on the number of support vectors stored. In the batch example from

Section 1.3, solving the QP problem described by Equation (2) can be accomplished

by ignoring any α that will be removed to make space in computer memory.

In the online case, all online training algorithms for kernel machines use the kernel

machine evaluation to determine the new value of α. In the work of Kivinen et al.,

the authors define the concept of truncation error for kernel machines with finite

memory. Truncation error poses a significant problem for online kernel machines due

to the fact that existing training methods do not account for finite memory during

the learning process.

Given the kernel expansion in Equation (3), it can be seen that the memory com-

plexity also grows with O (m). From a practical engineering perspective, the use of

a finite sized memory buffer requires the replacement of an existing expansion term.

The NORMA and the KLMS algorithm do not address this problem in their formu-

lation. The problem of truncation error is formalized with the difference between two

risk functionals in Equation (10).

∆ = ‖R [ft+1]−R [ft]‖ (10)

At time t and t + 1 there will be a total of m terms in the kernel expansion and



19

∆ > 0 represents the difference in risk minimization between ft+1 and ft. If the risk

could be calculated directly and efficiently the problem of truncation error would be

solved. Empirical risk could be substituted instead of the risk functional, but this

is not computationally feasible. The loss for each vector stored in the buffer would

have to be calculated resulting in O (m2) evaluations. Accuracy verses computational

complexity must be considered when addressing the problem of truncation error.

1.5.5 Connection Between Problems Addressed

There are connections between the four problems discussed in sections 1.5.1 to 1.5.4.

Figure 5 illustrates the relationship between the four problems on how they relate

to online environments and the characteristics of kernel machines. The blue shaded

bubbles in Figure 5 are the problems related to kernel machine evaluation and imple-

mentation and are heavily dependent on the number of terms in the kernel expansion.

The green shaded bubbles relate to problems related to effective training of the ker-

nel machine and are therefore directly linked to risk minimization. The Representer

theorem is directly linked to both the implementation and training of online kernel

machines. The Representer theorem is linked to the implementation of kernel ma-

chines since it implies that the number of expansion terms can grow linearly with

time [26]. It is also linked to risk minimization because it is the training algorithm

which minimizes the regularized risk of the kernel machine.

The characteristics of the online environment therefore have a direct effect on all

four problems due to the Representer theorem. The online environment can provide

an infinite stream of data which affects both the computational efficiency and the

memory complexity of the kernel machine. The online environment can also exhibit

concept drift which has an effect on the minimization of the regularized risk.

The linkages in figure 5 only provide a high level view of how the problems ad-

dressed fit into a online risk minimization framework. There are also dependencies
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Figure 5: A high level view of how the online learning environment relates to the
problems addressed in this thesis.

between the problems directly. For example, the use of kernel parameter adaptation

or learning rate adaptation can affect the accuracy and the size of the kernel expan-

sion. As well, virtually all online kernel machine training algorithms must evaluate

the kernel expansion, therefore the efficiency of the kernel machine evaluation has a

direct effect on the efficiency of the training of the kernel machine.

1.6 Thesis Scope

The goal of this thesis is to develop computationally efficient, accurate, and adaptable

pattern recognition algorithms for intelligent systems in online environments. More

specifically, this thesis seeks to improve upon existing online training algorithms for
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kernel machines by addressing the problems described in Section 1.5. Kernel ma-

chines have proven to be among the best pattern recognition algorithms in an offline

environment and online use of kernel machines is an open research question. The

following describes the methodology that was used in the research conducted in this

thesis.

After a review of existing literature and analysis of the problems outlined in Sec-

tion 1.5, it became evident that there was a need for a novel contribution to this

subject area. The algorithms described within this thesis are tested against a base-

line algorithm for comparison of performance. Comparisons are performed against

simulated data sets and benchmark data sets that are commonly used in the field of

pattern recognition.

When describing the computational complexity of an algorithm, execution time

is tested and asymptotic bounds are determined. When examining the performance

of kernel machine classifiers, percentage of misclassification or correct classifications

are given. For kernel machine regression, the use of total error against the test data

is compared. In the case of novelty detection, contour plots are provided for both the

baseline algorithm and the improved kernel machine. The following is an outline of

the rest of this thesis including an explanation of the contribution, advantages, and

possible disadvantages of the algorithms proposed.

Chapter 2 provides background, preliminary theory and notation that is useful

when discussing kernel machines. This chapter also describes two key algorithms

(KLMS and the NORMA) for the use of kernel machines in online environments. If

the reader is familiar with the topic of kernel machines, these sections in chapter can

serve as a reference. The motivation for online kernel machine algorithms is described

with a survey of the innovations in the field.

Chapter 3 introduces the stochastic subset selection (S3) algorithm. The S3 algo-

rithm has been published in [34]. The S3 algorithm addresses the problem of efficiency
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of evaluation and training described in Section 1.5.1. The use of a stochastic subset

of support vectors for expansion evaluation allows for a kernel machine to be efficient

in its execution and training while still being adaptable to changes in the input. The

size of the stochastic subset is chosen a priori depending on the computational com-

plexity required. The disadvantage to using a stochastic subset for kernel machine

evaluation is that noise is introduced in the output of the kernel machine. The S3

algorithm was validated through experiments involving simulated data, a benchmark

handwritten digit recognition [35] dataset, and a benchmark online non-stationary

dataset [36]. Computational complexity of the S3 algorithm is also validated using

simulated data.

Chapter 4 describes the partitioned kernel machine (PKM) algorithm [37]. The

PKM algorithm improves the accuracy of training the online kernel machine, and

was discussed in Section 1.5.3. The use of a similarity measure for training the

kernel machine allows for adaptation to the nature of the input. While the use of

a similarity measure increases the computational requirement of training the kernel

machine, it scales to the same computational complexity of the existing online kernel

machine algorithms. In addition, validation of the PKM algorithm is performed on a

simulated time series function and a benchmark chaotic time series used commonly

in adaptive filter literature [27].

Chapter 5 describes the Smooth-Delta-Corrected-KLMS (SDC-KLMS) algorithm.

The SDC-KLMS addresses the problem of limited memory situations as discussed

in Section 1.5.4. The SDC-KLMS algorithm improves upon the traditional KLMS

algorithm [29] by adapting the training procedure to compensate for buffer truncation

error and also adding in-place updates to the traditional KLMS algorithm. Stability

of the KLMS training algorithm is considered when truncation error is present. The

issue of truncation error was raised in the work of Kivinen et al. but was not addressed

in the algorithm design of the NORMA. For the KLMS algorithm in the work of Liu



23

et al. [29] problems associated with finite memory were not addressed. Validation

of the SDC-KLMS algorithm is accomplished with a comparison of error rates with

the standard KLMS algorithm. The first dataset to be tested was a simulated time

series. The second dataset was the same benchmark chaotic time series from chapter

4. The third dataset to be tested was real-world 3D trajectory data collected from a

haptic device.

Chapter 6 describes an online algorithm for the adaptation of the RBF kernel

machine parameter. The RBF kernel is a popular choice for the implementation

of non-linear kernel machines. Input space statistics are used for input to a fuzzy

controller that adapts the RBF kernel parameter. Kernel parameter adaptation is

a method for adapting the online kernel machine to changes to the nature of the

input. Kernel parameter adaptation addresses the problem of adaptability described

in 1.5.2. Experiments were conducted using the fuzzy logic controller with a kernel

machine for data reconstruction over a lossy communications channel. Dropped data

samples were simulated using a random process. Two different signals were used for

testing, a simulated sinusoidal time series and the same haptic trajectory as used in

Chapter 5. The fuzzy logic control provided a better error rate when reconstructing

dropped data in the case of the sinusoidal time series.

Chapter 7 presents the Active Set (AS) algorithm for the training of online ker-

nel machines that can be used for anomaly detection, density estimation and mode

tracking. The AS algorithm deviates from the other chapters in this thesis because

it optimizes a quadratic programming problem that was first proposed by Scholköpf

et al. [38]. In [38] a special version of SMO is used to train what the authors refer

to as a ν-single class SVM. In a similar fashion to SMO, the AS algorithm performs

optimization of the QP problem, but does so with online processing in mind. The

training of a single class ν-SVM using the AS algorithm is faster than using Mat-

lab’s built in medium-scale QP solver (quadprog()). The AS algorithm was used to
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estimate the density of a 2D simulated dataset.

Chapter 8 is a summary of the findings from each chapter and an overall conclusion

on the state of online learning with kernel machines.



Chapter 2

Background, Preliminary Theory and

Notation

2.1 Mathematical Notation

A consistent mathematical notation is used throughout this thesis. Scalar variables

are represented by italicized lowercase letters, and vector variables by bold lowercase

letters while matrices are italicized capitalized letters. All vectors are assumed to be

column vectors. When referring to a component dimension of an input vector, round

bracketing is used. For example, the ith dimension of the vector x, is stated as x (i).

Subscripting is used when discussing the time sequence of data, describing the source

of the data, or when referring to a specific item within a data structure, such as a

buffer.

The following is a description of some of the functions and variables used in this

paper:

• x ∈ Rd: A vector of dimensionality d. x can be an unknown vector to serve as

the input for the kernel machine, or it can be a vector to be used for training

the kernel machine.

25
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• pt ∈ Rt: A possibly infinite time-series of data values.

• m: The number of support vectors or kernel basis functions stored within the

kernel machine buffer.

• n: The size of the training set for an offline SVM.

• y ∈ R or ±1: The desired value or binary label that the kernel machine is

trained with for kernel machine regression or classification respectively.

• α ∈ Rm: A vector of weights that scale the kernel functions centered on the

observed input vectors. Sometimes for convenience, when referring to the ith

component of α, it is written αi.

• k : Rd × Rd → R: Defines a kernel function that represents a dot product in

Reproducing Kernel Hilbert Space (RKHS), between the two input vectors, x1

and x2. Throughout this thesis, a Gaussian kernel function is used, k (x1,x2) =

e−γ‖x1−x2‖2 .

• γ : Width parameter of the Gaussian kernel function.

2.2 Pattern Recognition and Preliminaries

The process of pattern recognition involves an input pattern (also referred to as input

datum, observation, input sample, or instance), x, and an output decision, y. The

input and output of the pattern recognition algorithm are often real values. More

specifically the pattern recognition task can be described as in Equation (11).

y = f (x) (11)
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Unless otherwise stated, x ∈ Rd and y ∈ R or ±1. The pattern recognition

algorithm can be considered as a functional mapping, f : Rn → R. It is the primary

goal of a pattern recognition algorithm to try to produce y as close to the true value

as possible. The form of the true value will determine whether we are performing

binary classification or regression. In the case of binary classification, f : Rn → {±1}.

Given an input pattern, the output will determine the class that the input pattern

belongs to. The decision values {±1} are used due to mathematical convenience as

will be discussed later in this chapter. Regression is a more general case where y ∈ R.

In the case of regression, f will be approximating a real-valued function.

The problem of machine learning can be summarized in the following way. As-

sume that f is not known, and that a set of input patterns, and corresponding output

pairs, {(x1, y1) , (x2, y2) , (x3, y3) · · · , (xm, ym)} are available. The purpose of a ma-

chine learning algorithm is to find an optimal f , in an automated fashion. Common

vector operations will be made use of when discussing the theories behind support

vector machines, namely the dot product ( Equation (12) ) and the euclidean norm (

Equation (13) ).

〈w,x〉 =
d∑
i=1

w (i) x (i) (12)

‖x‖ =
√
〈x,x〉 (13)

‖x‖ =

√√√√ d∑
i=1

x (i)2 (14)

2.3 Loss and Regularized Risk

For a detailed review of the concepts of this section, readers should refer to [3] and [1].

Given a set of input patterns, {(x1, y1) , · · · (xm, ym)}|x, y ∈ Rd,R as an example of
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a regression application, some fundamental ideas in the area of machine learning can

be examined. Figure 6 shows the set of input patterns that can be used to develop

the approximating functions, f1 and f2.

Figure 6: An example of two estimating functions where f1 is an example of over
fitting and f2 is an example of under fitting [1].

Assume that f1 and f2 were both determined from the input pattern set. They

are examples of over fitting and under fitting, respectively. The function f2 appears

too simple to represent the data and the fact that f2 does not go through any of the

samples shows us that there is error. The function f1 has no error with respect to

the test patterns, but it seems too complex to accurately represent the underlying

functional relationship.

To generalize about the example shown in Figure 6, assume that there is a under-

lying probability distribution that generated the data, defined as P (x, y), and there
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are m observable samples. The loss, or the error associated with the prediction is

defined by a loss function, c(x, y, f(x)). The loss can be interpreted as the amount

of error that the function f(x) has compared to the empirical data, y, at a specific

value of x. Equation (15) describes a squared loss function, and Equation (16) [1] [3]

describes the ε-insensitive loss function. The risk, R[f ], is defined in Equation (17) [1]

and is the expected value of the loss function across all samples. The square brackets,

[ ], are used when operators on a functional are required.

c(x, y, f(x)) = (f(x)− y)2 (15)

c(x, y, f(x)) = max {|f(x)− y| − ε, 0} (16)

R[f ] :=

∫
x,y

c(x, y, f(x))dP(x, y) = E [c(x, y, f(x))] (17)

Only the set of patterns are known, and we do not know dP(x, y). It is assumed

that a probability density exists based empirically on the set of patterns. The em-

pirical risk, Remp, is defined with Equation (18) [1]. As opposed to the expected risk,

the empirical risk is amenable to calculation. In this particular case the empirical

risk is simply the average loss between f and the set of patterns.

Remp[f ] :=
1

x

m∑
i=1

c(x, y, f(x)) (18)

F represents an infinite set of possible functions that attempt to describe the set of

patterns. Assuming that we can choose any function f ∈ F , finding f that minimizes

Remp is insufficient to find the ideal description of the pattern set. The empirical risk

gives a method for evaluating the fitness to the test data, but gives no indication on

performance to unseen data. The addition of a regularization term, Ω [f ], overcomes
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this problem by implicitly defining F as a compact set, and gives an indication of

the complexity of f . The regularized risk [4] [1] functional, Rreg with regularization

parameter λ is defined in Equation (19).

Rreg [f ] = Remp [f ] + λΩ [f ] (19)

If the expression for the regularized risk were to be minimized, the problem of

over fitting would be avoided. Furthermore, if both Remp [f ] and λΩ [f ] are convex

functions, then a global solution is available.

2.4 Kernels

The concept of a kernel function is central to the development of many successful

pattern analysis methods including kernel machines. To avoid loss of generality, the

input space will now be considered to be X rather than Rd. For instance, one may

wish to perform pattern classification or regression on other types of data such as

strings, complex numbers, or graphs. In discussing SVMs, one often refers to the

feature space, H. Assume that there is a function, Φ(), that maps from input space

to feature space, Φ : X → H. The kernel function is defined as k : X ×X → R, and

can be thought of as a inner product, or dot product, in the feature space described

by Equation (20).

k(x1,x2) = 〈Φ (x1) ,Φ (x2)〉 (20)

The use of kernels is central to the success of kernel machines because ker-

nels allow for the expression of non-linear relationships in the data. Assuming

that the kernel function is positive definite and H is a Reproducing Kernel Hilbert

Space (RKHS), [26] [1] the kernel function has the reproducing property such that
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〈f, k (x, •)〉 = f (x) , for x ∈ X and f ∈ H are linear combinations of kernel func-

tions [26]. Expressions 21, 22, and 23 illustrate linear, polynomial (with embedded

offset), and the RBF kernel respectively.

k (x,y) = 〈x,y〉 (21)

k (x,y) = (〈x,y〉+ 1)d (22)

k (x,y) = e−γ‖x−y‖
2

(23)

The polynomial kernel is parameterized by the degree, d, required to be specified

by the designer. The RBF kernel is parameterized by the width, γ, of the Gaussian

function. Therefore SVMs that utilize kernels can be applied to specific problems by

design of the kernel function, and possible parameterization of the kernel.

The Gram matrix is often used when discussing kernel functions [27]. Given a set

of k vectors, the Gram matrix has a dimension of k x k and is defined in Equation

(24). It is a matrix representing kernel evaluations between a set of vectors.

Ki,j = k (xi,xj) (24)

The Gram matrix appears in the QP optimization problem for support vector

machines. For use in online processing it can be computed with O (k) computational

complexity, and O (k2) memory complexity.
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2.5 Support Vector Machines

SVM algorithms compute a decision function, f , based on an initial set of data called

the training set. As described previously in Section 2.3, it is not adequate to search

for a minimum in the amount of error that f incurs on the training set. SVMs

address this problem by maximizing the margin between classes, while minimizing

the amount of loss that f exhibits. The most common approach to finding f , termed

training, is through solving a constrained nonlinear optimization problem or nonlinear

programming problem. While it is not necessary to be well versed in optimization

theory, readers can consult [39] for further reading on constrained optimization using

the method of Lagrange, and the Karush-Kuhn-Tucker (KKT) optimality conditions.

All kernel machines operate under the principle that a subset of the training set will

be used in the evaluation of f .

While a detailed derivation of all SVMs will not be reproduced here, it is advan-

tageous to look at the problem of optimal separating hyperplanes for the purpose

of classification. This problem is also termed the “hard margin” SVM, due to the

inability of the method to cope with data that is not linearly separable. Assume that

we are given a training set, {(x1, y1) , (x2, y2) , . . . (xm, ym)} , x ∈ R2, y ∈ {±1}. A

two dimensional illustration of the training set is given in Figure 7. In the figure,

training sample class labels, y = +1 and y = −1, are represented by circles and

squares, respectively.

Equation (25) formulates f as canonical hyperplane that for every two dimensional

input sample, xi, will calculate the corresponding yi. In Figure 7 the areas where

f (xi) evaluates to f (x) ≤ −1, −1 ≤ f (x) ≤ 1, and f (x) ≥ 1 are indicated by the

pink, yellow, and blue regions respectively, while the boundaries where f (x) = ±1

and ,f (x) = 0 are indicated by the dashed and solid lines respectively.
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Figure 7: Classification using a hyperplanes to separate two classes of data [1].

f (xi) = yi = sgn (〈w,xi〉+ b) given that w,xi ∈ R2, yi ∈ {±1} (25)

The hyperplane that separates the two classes is characterized by w and b. To

look to find a w and b that properly separates the data, the decision function f would

exhibit no empirical risk. It is evident from Figure 7 that there are an infinite number

of possible decision functions that would correctly separate the data. Minimizing
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the empirical risk will be prone to over fitting as described in Section 2.3. The

generalization ability of the classifier can be loosely described as the ability of the

classifier to correctly identify new, or unseen data. In using the training set as a

basis for finding w and b, one can rationalize that it is advantageous to maximize

the generalization ability and minimize the empirical risk. Making a modification to

Equation (25), with Equation (26), expresses the fact that the optimal hyperplane

will compute values in R. Figure 8 introduces the idea of a margin between the

two classes in the training set. In this example, the optimal hyperplane will assign

f̂ (x1) = +1, and f̂ (x2) = −1. Notice that if one was to find such a hyperplane, only

x1 and x2 would be needed to find the appropriate values for w and b, other training

patterns are not needed.

f̂ (xi) = 〈w,xi〉+ b given that w,xi ∈ Rn (26)

In this example, the margin of the hyperplane is defined as the projected distance

on the normal vector, w, between f̂(xi) = 0 and yif̂(xi) = 1. As a result, there can

be modifications made to the definition of the margin. Multiplying by yi allows the

inclusion of both sides of the class assignment. The margin, ρ is formalized in terms

of w by Equation (27).

〈w,x1〉+ b = 1

〈w,x2〉+ b = −1

〈w,x1 − x2〉 = 2〈
w
‖w‖ ,x1 − x2

〉
= 2
‖w‖

ρ = 1
‖w‖

(27)
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Support

Vectors

Figure 8: Illustration of a maximized margin [1]

With the definition of the margin, one can control the complexity of the function

f̂ . In the case of a canonical hyperplane, controlling the size of the margin effectively

finds the “flattest” plane the separates the data while still upholding f̂(x1) = 1 and

f̂(x1) = 1. The margin can be increased by decreasing ‖w‖. The margin gives us a

method to enforce regularization to the classification problem.

The general problem of finding a separating hyperplane can be summarized by the
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primal optimization problem in Equation (28). The margin is maximized, minimiz-

ing the objective function while enforcing the restriction that the hyperplane must

separate the data according to class label.

minimize
w,x∈Rn,b∈R

τ (w) = 1
2
‖w‖2

subject to: yi (〈xi,w〉+ b) ≥ 1,∀i = 1 . . .m

(28)

The form of the optimization problem is easier solved by derivation of the dual

representation of Equation (28). First the Lagrangian is introduced in Equation (29),

allowing for introduction of the classification constraints into the objective function

along with the corresponding Lagrange multipliers, αi. Taking the derivatives of the

Lagrangian with respect to w, and b and setting them to 0, as in Equation (30), yields

Equation (31) and (32).

L (w, b,α) =
1

2
‖w‖2 −

m∑
i=1

αi (yi (〈w,xi〉+ b)− 1) (29)

L (w, b,α)

∂b
= 0,

L (w, b,α)

∂w
= 0 (30)

m∑
i=1

αiyi = 0 (31)

w =
m∑
i=1

αiyixi (32)

Substituting 31 and 32 into 29 yields the corresponding dual optimization prob-

lem in Equation (33). There are three advantages in using the dual for solving the

problem. The first advantage is that the expression for the hyperplane is in terms

of the training samples, we do not directly calculate w. The classification decision
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function, f (x) can now be expressed in 34.

The second advantage is that due to KKT theory, αi values that are non-zero

due to the solution of 33 correspond to the training samples where yi (〈xi,w〉+ b) =

1,∀i = 1 . . .m. These points lay exactly on the margin and in our previous example,

would correspond to x1 and x2. These special points represent the support vectors

of the classifier and are the only points required to evaluate f (x). Therefore given

a large set of training samples, the support vectors are kept and the rest can be

discarded if no further training samples are introduced.

Finally the third advantage is that 33 is a standard quadratic programming prob-

lem, that is convex and has a globally optimal solution. There is a rich body of

literature regarding quadratic programming problems in optimization theory and any

established algorithm can be used to train the classifier.

maximize
α∈Rm

W (α) =
m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyj 〈xi,xj〉

subject to: αi ≥ 0,∀i = 1 . . .m

m∑
i=1

αiyi = 0

(33)

f (x) = sgn

(
m∑
i=1

αiyi 〈x,xi〉+ b

)
(34)

Kernel functions are used to represent non-linear relationships in the data. Sec-

tion 2.4 introduced the idea of a kernel function representing the implicit dot product

in a feature space, H. The advantage of using kernels in this case is that Φ(x) need

not be calculated, only the inner product or dot product is important for the formu-

lation of the classifier. Equations (35) and (36) show the described classifier using

kernel functions. It is important to use a positive definite kernel in these formulations

to ensure that the optimization problem remains convex and does not introduce local
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minima. When using kernel functions it is assumed that w ∈ H therefore Equation

(32) cannot be used to calculate w because H is an implicit RKHS. The previously

described classifier is called a hard margin support vector classifier.

maximize
α∈Rm

W (α) =
m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyjk (xi,xj)

subject to: αi ≥ 0,∀i = 1 . . .m

m∑
i=1

αiyi = 0

(35)

f (x) = sgn

(
m∑
i=1

αiyik (x,xi) + b

)
(36)

2.5.1 C-SVC

The primary problem that existed in the previous section was that we made the

assumption that the data was linearly separable. In other words, that there was a

separating hyperplane between the two classes of data. The use of a kernel function

allows for a possible mapping to a higher dimensional space, H, as in Equation (37).

yi (〈Φw,Φ (x)〉+ b) ≥ 1 ∀i = 1 . . .m , given that w,Φ (x) ∈ H, b ∈ R (37)

There must be an allowance for points to lie on the incorrect side of the margin, as

shown in Figure 9. The approach used by [40] is to introduce slack variables [1]. Each

training sample is given an associated slack variable, ξi ≥ 0,∀i = 1 . . .m to allow for

possible error. Although the error is now formalized it is to be avoided when finding

an optimal separating hyperplane. The average of all slack variables in the training

set is added to the primal objective function in Equation (38) and the constraint is

modified to account for the possibility of error. The parameter C is added so that
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the influence of the error incurred by the slack variables can be user adjusted. This

formulation is referred to as a soft margin support vector classifier.

Figure 9: Introduction of slack variables [1].
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minimize
w,Φ(x)∈H,b∈R

τ (w) = 1
2
‖w‖2 + C

m

m∑
i=1

ξi

subject to: yi (〈w,Φ (xi)〉+ b) ≥ 1− ξi,∀i = 1 . . .m

ξi ≥ 0,∀i = 1 . . .m

(38)

A similar dual derivation can be found as in the previous section, the result of

which is given in 39. The only difference to the resulting quadratic program is the

introduction of a limit to the maximum value that any Lagrange multiplier, αi can

reach. The parameter C > 0 has the effect of allowing for the trade-off between

minimizing the total error and maximizing the margin of the classifier. Large C

brings the classifier closer to the hard margin case, while smaller C allows for more

error. The selection of an appropriate parameter is usually done through testing on

a set of training and test data, or through leave-one out (LOO) estimates.

maximize
α∈Rm

W (α) =
m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyjk (xi,xj)

subject to: 0 ≤ αi ≤ C
m
,∀i = 1 . . .m

m∑
i=1

αiyi = 0

(39)

2.5.2 SV Novelty Detection

It has been shown in previous sections that a functional representation could be drawn

from a set of training data. The training data consisted of an input vector, x, and

the observed desired output, y. In the case of classification, y represents the class

in which the training sample belongs, and for regression y is the real value that the

function should take. If we only have x and not y, the problem of binary classification

and regression reduce to a single-class classification problem. Other terms used to

describe the problem are novelty detection and quantile estimation [38] and [1].
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The objective of kernel machine novelty detection is to predict if a specific pattern

was produced by an underlying probability distribution. In other words, the kernel

machine attempts to detect whether an input pattern is an anomaly based on previous

samples. SV novelty detection [38] formulates a hyperplane such that it is separated

from the origin by a margin of ρ
‖w‖ . Figure 10 illustrates this special situation. It is

desirable to have a soft margin in the case of novelty detection to account of possible

errors. The standard slack variables, ξi are used to allow for samples to lay on the

incorrect side of the hyperplane. Rather than use the term “error”; points on the

wrong side of the hyperplane can be considered as outliers to the process that is

being estimated.

Figure 10: Hyperplane separation from the origin for SV novelty detection [1].

The primal optimization problem is given in Equation (40). The use of the pa-

rameter ν is similar to previous formulations in that it provides a lower bound on the



42

fraction of support vectors that are taken from the training set, and an upper bound

on the fraction of outliers existing in the training set. The dual optimization problem

is given in Equation (41).

minimize
w,Φ(x)∈H,ρ∈R

τ (w) = 1
2
‖w‖2 + 1

υm

m∑
i=1

(ξi − ρ)

subject to: 〈w,Φ (xi)〉 ≥ ρ− ξi,∀i = 1 . . .m

ξi ≥ 0,∀i = 1 . . .m

(40)

minimize
α∈Rm

W (α) = 1
2

m∑
i,j=1

αiαjk (xi,xj)

subject to: 0 ≤ αi ≤ 1
υm
,∀i = 1 . . .m

m∑
i=1

αi = 1

(41)

The decision function for the novelty detector is given in Equation (42). Instead

of the traditional bias, b, the margin scale factor ρ is used. The details in computing

an optimal value for ρ will be addressed when discussing current training methods

for support vector based novelty detection.

f (x) = sgn

(
m∑
i=1

αik (xi,x)− ρ

)
(42)

The discussion of the various SVM algorithms has involved solving the dual QP

problem with m variables. When the SVM is trained with m input samples, some of

QP variables become zero and are no longer needed in the formulation of the decision

function. At this point the variable m is still used but now represents the number of

non-zero Lagrange multipliers and their associated input patterns. In other words,

m represents the number of input samples before training, and then represents the

number of support vectors. The execution efficiency of a SVM is directly related to
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the number of support vectors.

2.6 Naive Online Rreg Minimization Algorithm

The Naive Online Rreg Minimization Algorithm (NORMA) operates by training a

kernel machine using stochastic gradient descent such that the regularized risk func-

tional becomes smaller with each time step. Equation (43) describes the regularized

risk functional that the NORMA uses when training a kernel machine. The empirical

risk is defined as in the previous section. The regularization term is parameterized

such that the amount of regularization can be controlled by setting the parameter λ.

Rreg [f ] = Remp [f ] +
λ

2
‖f‖2

H (43)

The NORMA represents a wide family of kernel machine algorithms. Equations

(45) and (46) describe the parameter updates for a binary classifier kernel machine and

a support vector novelty detector respectively. An interested reader should consult

[26] for full explanation of the NORMA.

σt =


1 f (x) < ρ

0 otherwise

(44)

(αi, αt, b)← ((1− ηλ)αi, ησtyt, b+ ησtyt) (45)

(αi, αt, b)←


((1− η)αi, η, ρ+ η (1− ν)) f (x) < ρ

((1− η)αi, 0, ρ− ην) otherwise

(46)

Equation (46) requires a slight modification due to an arithmetic error. Taking the
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derivative of the hinge loss function and applying stochastic gradient descent yields

the update for a support vector novelty detector in Equation (47).

(αi, αt, b)←


((1− η)αi, η, ρ− η (1− ν)) f (x) < ρ

((1− η)αi, 0, ρ+ ην) otherwise

(47)

The update procedure of the NORMA requires the kernel expansion be calculated

with every time step. The computational complexity of training a kernel machine

using the NORMA is O (t) where the number of time steps equals the number of

support vectors stored in the kernel machine (t = m).

2.7 Online Kernel Methods for Regression Tasks

Kernel machines use multidimensional inputs for regression tasks and it is often re-

quired to use the technique of time embedding. Figure 11 illustrates the use of time

embedding on the time series pt.

a t

Xa

y
a

p

Figure 11: An illustration of the time embedding procedure used in this thesis.
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A consistent method for time embedding is used in this thesis. The first step is

to define the input dimension, n. The input dimension will effect the computational

complexity of the kernel evaluation. The second step is to window the data with

a window size of n + 1. At any time t, xt and yt are defined in Equation (48) and

Equation (49) respectively. All cases of time embedding within this work use t ≥ n+1.

xt = {pt (t− n) · · ·pt (t− 1)} (48)

yt = pt (t) (49)

2.8 Kernel Least Mean Square Algorithm

The kernel least mean square (KLMS) adaptive filter algorithm makes use of the well

known least mean square (LMS) adaptive filter to provide kernel machine algorithm

that can be used for regression and function approximation. The KLMS algorithm

takes advantage of inner products in RKHS to build a stable non-linear filter in the

kernel machine’s input space. An interested reader can consult the works of Liu

et al. [27, 29] for more details on the KLMS algorithm. Algorithm 1 describes the

training procedure for KLMS.

Algorithm 1 The KLMS Algorithm [27].

1: Input: Step Size η, Kernel Function, k ()
2: Initialize: Support Vector Buffer X ← ∅
3: while t <∞ do
4: From Input, get {xt, yt}

5: ŷt−1 =
t−1∑
i=1

α (i) k (x,xi)

6: α (t)← η (yt − ŷt−1)
7: X ← X ∪ xt
8: end while
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We will see later in Chapter 5 that the algorithm for KLMS will be unstable under

certain conditions when using a finite size buffer for storing the support vectors.



Chapter 3

Stochastic Subset Selection

Online learning needs to be adaptive to changes in the concepts the learner is trying to

predict. The process of changing concepts over time is called concept drift and many

approaches can be used in dealing with or detecting concept drift. One approach is

using an ensemble of multiple experts to detect and adapt to concept drift [36,41–44].

The use of an ensemble of classifiers has an advantage that classifiers can be removed

from the ensemble if their learned concepts are no longer valid.

A different approach can be used where a window of retained knowledge is kept

and the size of the window can be adjusted depending on how much concept drift

has occurred [33]. SVMs and other kernel machines are good candidates for this

approach because the samples in the data steam serve as a basis for the classification

or regression hypothesis. Under certain types of concept changes, it is most effective

to clear all the support vectors from the kernel machine [45].

The method proposed in this chapter allows a mixing of these two approaches.

Only one classifier is used as well as a stochastic indexing technique that makes it

more probable to pick recent data to form a decision hypothesis. At the same time

the computational complexity of evaluating the kernel expansion is reduced because

only a subset of kernel machine vectors are used for evaluation and training.

47
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3.1 Chapter Outline

The first section of this chapter describes a computationally efficient method for the

generation of index values. These index values will be used for choosing the kernel

machine vectors that will make up the subset for the kernel expansion evaluation. The

second section will describe the novel Stochastic Subset Selection (S3) algorithm. The

third and fourth sections describe the effect of induced stochastic noise in the classifier

output as an effect of the S3 algorithm and compensation of this noise respectively.

The fifth section gives experimental results on simulated and benchmark datasets.

3.2 Fast Variate Generation

There are m support vectors to contribute to the classifier output, and the m support

vectors fill the available buffer space. Since a subset of all available support vectors

need to be selected, the ordered set of SVs can be accessed by their respective in-

dex values. The buffer storing the support vectors is a first-in-last-out (FILO) data

structure. The SVs are indexed from 0 to m− 1, 0 being the most recently included

support vector, and the m− 1th SV being the oldest support vector.

The ability of a kernel machine to adapt to changes in its environment depends on

how much old, non-relevant information is stored in it’s memory. The S3 algorithm

uses random variates when choosing buffer index values for the kernel expansion

evaluation and to allow for adaption to a changing environment, the variate generation

is based on a modified exponential probability density function (pdf). The exponential

pdf allows the system designer to specify how likely recent data in the buffer will be

used in the kernel expansion.

An inverse transform sampling on the interval [0 . . . 1) of the cumulative distri-

bution function (cdf) of the modified exponential distribution is used to generate a
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single variate. The pdf, g (x), and cdf, G (x), used in the S3 algorithm are given in

equations 50 and 51 respectively.

g (x) =


a

1−e−a e
−ax x ∈ [0, 1.0)

0 otherwise

(50)

G (x) =

∫
g (x) dx =


1−e−ax

1−e−a x ∈ [0, 1.0)

0 otherwise

(51)

Figure 12 illustrates the effect of the parameter a on the cdf. The functions g (x),

and G (x) are referred to as modified exponential distributions due to the normaliza-

tion of G (x) on the range x ∈ [0, 1.0). The cdf, G (x) will evaluate to 1.0 as x→ 1.0.

A biased random number generator using X and its associated G (x) can be used to

favor smaller values of x or generate uniform values on the range x ∈ [0, 1.0). As

a → 0.0 the random number generator will generate uniform values on the range

x ∈ [0, 1.0), as a gets larger, the random number generator will be biased towards

smaller values on the range x ∈ [0, 1.0).

To generate a random variate, we use a uniformly distributed random variable, X

on the range [0 . . . 1). The random variate is calculated from Equation (52).

i =

⌊
− ln (1− x (1− e−a))

a
×m

⌋
(52)

Assuming the generation of the random variable X is an elementary operation

operating in O (1) time, the variate generation also operates in O (1) time.
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Figure 12: Examples of how the shape of the cdf, G (x), changes with different values
of the rate parameter, a. The exponential distribution has been normalized such
that the probability of x ≤ 1.0 will always be 1.0.

3.3 The Stochastic Subset Selection Algorithm

One of the the main contributions of the work presented in this thesis is the Stochas-

tic Subset Selection (S3) algorithm. The fast variate generation method given by

Equation (52) is used to generate index values for the buffer of support vectors. All

support vectors are assumed to reside in a FILO buffer of size m, and are indexed

from 0 to m− 1. The S3 algorithm makes use of two sets while selecting a subset of

support vectors from the buffer. The first set, M , is initially an ordered set of integers

(M = [0, 1, · · · ,m− 2,m− 1]). The second set, B, is initially empty (B = ∅) and
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will contain the selected kernel terms for the expansion evaluation. As in the previous

section, the variable x is sampled from a uniformly distributed random variable, X.

The number of elements in the subset produced by the S3 algorithm is user defined

by the parameter β ∈ [0.0, 1.0].

Algorithm 2 The S3 Algorithm

Initialize:

• M ← [0, 1, · · · ,m− 2,m− 1]

• B ← ∅

• n← m

while |B| ≤ bβmc do
x← X

i =

⌊
− ln(1−x(1−e−a))

λ
× n

⌋
B ← B ∪M [i]
M ←M\M [i]
n← n− 1

end while
Return f̂ (•) =

∑
j∈B

α (j)k (•,xj)

The S3 algorithm uses m elementary operations during initialization, and bβmc

elementary operations inside the while loop. The S3 algorithm has O (m) time com-

plexity, but in practice it will perform faster than using all kernel expansion terms

because the computational complexity of the kernel function evaluation dominates

the computational effort of expansion evaluation.

3.4 Analysis of Noise

The S3 algorithm uses a stochastic subset of the stored SVs for kernel expansion eval-

uation, and therefore represents an approximation of the classification function the

kernel machine is representing. Equation (53) describes the amount of approximation
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error, that the S3 algorithm introduces into the kernel evaluation. The approximation

error is referred here as noise, because it varies as a stochastic process that resembles

additive noise in the classifier output. The set Q contains the buffer index values that

are not included in the subset selection, therefore |Q| = b(1− β)mc. The approxi-

mation error, εβ (x), is both a function of the chosen subset factor, β, and the input

pattern being classified.

εβ (xt) = f (xt)− f̂ (xt)

=

(∑
i∈M

αik (xt,xi)

)
−

(∑
j∈B

αjk (xt,xj)

)

=
∑
l∈Q

α (l) k (xt,xl)

(53)

Equation (54), ‖ε̂β (x)‖, approximates the magnitude of the noise in the classifier

output. The random variable AK is used to represent all α (l) k (x,xl) evaluations

that are indexed by the set Q. The underlying probability distribution for AK is

unknown, but it is dependent on the training method used to determine α (l), the

type of kernel function used, k (x,xl), and the nature of the input data, x.

‖ε̂β (xt)‖ = b(1− β)mcE [‖AK‖] (54)

The summation term is removed in Equation (54) and the expected value operator

is used along with a scaling factor that is based on β. As the value of β becomes

lower, the number of index values in Q grows larger, in effect leaving more kernel

expansion terms out of the evaluation. As Q becomes larger the magnitude of the

noise also becomes larger. The effects of the noise are presented in Section 3.6.
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3.5 Noise Compensation

The S3 algorithm provides an efficient method for evaluating the decision function of

the on-line kernel machine classifier, but it also creates noise in the resulting decision

function. To compensate for the noise, two moving average filters are utilized on the

output of the kernel machine. Figure 13 illustrates how the S3 algorithm can be used

in a machine learning system in conjunction with NORMA.

Kernel Machine

Evaluation

Using S3

Algorithm

1ty

Moving Average

Filter

(Negative)

Moving Average

Filter

(Positive)

NORMA

and

Buffer 

Management

True

False

Figure 13: A system diagram showing the parallel output filters and feedback that
occurs when learning is being performed. The output of the kernel machine at
time t, using the S3 algorithm is f̂ (xt). The input label at time t is yt.

The parallel filters prevent the noise from interfering with the learning mechanism

provided by the NORMA. Equation 54 illustrates that the nature of the noise is

dependent on various system parameters and the input (β, k (), α, and x). How the

filters are designed is dependent on how the system designer makes use of the kernel

machine and the nature of the input. Equation (54) can give some guidance to the

amount of noise added to the output of the SVM.

When using the S3 algorithm in a learning scenario, such as in Figure 13, yi for

each input pattern is available, and is used for determining in which output filter to

place the noisy output. The output of the filter is then used as the kernel expansion

evaluation used in NORMA. The use of the S3 algorithm in this way requires no

modification of the learning algorithm.
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Figure 14 illustrates a scenario that uses the kernel machine for classification only

(no additional data will be added to the kernel expansion). The classification system

benefits from the efficiency of the S3 algorithm, but must employ f̂ (x) for deciding

which filter to use.

Kernel Machine

Evaluation

Using S3

Algorithm

Moving Average

Filter

(Negative)

Moving Average

Filter
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Support Vector

Buffer 
True

False

< 0.0

Figure 14: Evaluation of the kernel expansion still makes use of the parallel output
filters. In this setting, the stochastic estimate, f̂ (xt) exhibits noise.

The primary drawback in Figure 14 is that the state of the filters will change as

inputs are evaluated. The noise is non-linear, and the output filters will drift away

from their respective classification labels.

3.6 Experimental Results

The performance of the S3 algorithm was tested in three different settings. The first

setting involved the classification of low dimensional input patterns. The second set-

ting involved the classification of handwritten digit recognition in a high dimensional

input space using the popular MNIST [35] dataset. Finally, the third setting involves

a large benchmark dataset that was introduced in the work of Street and Kim [36].

In each setting, where appropriate, various aspects of the S3 algorithm were verified

including the ability to track changes in input, execution efficiency, effect of noise,

and learning ability. The S3 algorithm was combined with NORMA (S3+NORMA)
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and was validated against both NORMA and the kernel perceptron.

3.6.1 Classification Results of Low Dimensional Synthetic

Data

One thousand two dimensional data points were generated from two Gaussian ran-

dom variables both with the same parameters, Φ (µ = 0.0, σ = 1.0). The associated

labels, yi, for each sample were determined by which quadrant on the Cartesian

plane the point fell into. The label yi = +1 when (x (1) ≥ 0.0 ∧ x (2) ≥ 0.0) ∨

(x (1) < 0.0 ∧ x (2) < 0.0), and yi = −1 otherwise. To introduce switching concepts

into the data, the label assignment was reversed every 120 time steps. Finally two

types of drifting was introduced in the label assignment, slow drifting and fast drift-

ing. In the slow drifting case, the label boundaries were rotated clockwise about the

Cartesian plane at a rate of 0.72 degrees per time step. In the fast drifting case, the

label boundaries were rotated clockwise about the Cartesian plane at a rate of 5.76

degrees per time step. Figure 15 illustrates the label assignments in the stationary,

switching and drifting cases.

y=-1

y=-1

y=+1
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cba
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Figure 15: (a): Stationary labeling, 1000 samples. (b): Switched labeling every
120 samples in sequence. (c): Slow drifted labeling, labeling regions rotated at
a rate of w = 0.72 degrees per sample. Fast drifted labeling, labeling regions
rotated at a rate of w = 5.76 degrees per sample.
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The same Gaussian kernel was used for all experiments involving the above de-

scribed datasets. Although kernel machines are a non-parametric tool for regression

and classification, depending on the kernel used, an optimal kernel parameter (γ)

must be calculated. The NORMA uses stochastic gradient descent of the regularized

empirical risk function [26] to learn a classification boundary, and an appropriate

learning rate, η, must also be calculated. Two-fold cross-validation and a particle

swarm optimization (PSO) [46] algorithm is used to find the best values for γ and η.

Cross validation techniques are statistically sound methods for evaluating the perfor-

mance of a predictive model while guarding against over fitting of the training data,

but must be used on stationary data. When the appropriate parameters for NORMA

are found, the S3 algorithm is tested on the switching, slow and fast drifting datasets.

All experiments used a fixed buffer size of 60 samples.

The empirical risk (using a linear loss function) of the classifier on the training set

is used during our evaluations rather than the error rate, because it gives a smoother

objective function to optimize over. Equations (55) and (56) define the linear loss

and empirical risk functions respectively.

l (f (xi) , yi) =



1− f (xi) yi = 1 ∧ f (xi) < 1

1 + f (xi) yi = −1 ∧ f (xi) > −1

0 otherwise

(55)

Remp (f,X, Y ) =
t∑
i=1

l (f (xi) , yi) (56)

Figure 16 illustrates the use of the PSO algorithm using 2-fold cross validation.

Caption (a) illustrates the separation between +1 and -1 classes. In caption (b) of

Figure 16, the PSO algorithm finds the optimal γ and η values when optimizing the

empirical risk, Remp (f,X, Y ) on the two-dimensional dataset. After optimal kernel
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and learning rate parameters are found, the S3 algorithm is run varying β and a in

a grid pattern, which is illustrated in caption (c). The dark contour line illustrated

in the plot of caption (c) represents the empirical risk associated with a NORMA

classifier learning the classification of positive and negative labels. For stationary

data the S3 enhancement has little effect. No matter which values we choose for β

or a, the loss is greater than using all the vectors stored in the kernel machine. This

result makes sense because there are no changes in either the input features, X, or

the concept generating the labels, Y .

Captions (d), (e) and (f) of Figure 16 reveal some significant information regard-

ing the performance of the classifier using the S3 algorithm. In all three captions the

area above and to the right of dark contour line represent areas exhibiting smaller

amounts of empirical risk than if the NORMA algorithm was used directly, without

the stochastic indexing that the S3 algorithm offers. Caption (d) illustrates the per-

formance of the S3 algorithm in the presence of switching labels. Every 120 samples

the labels swap positions as described in caption (a) in Figure 15. The parameters

β = 0.57 and a = 17.4 were chosen visually from the plot minimize the empirical risk

verses the number of kernel terms used in the expansion of the classifier. In a similar

fashion, captions (e) and (f) in Figure 16 illustrate the parameter choices for the slow

and fast drifting concept changes.

Figure 17 shows the execution performance of 4 different kernel classifiers. The

NORMA and Kernel Perceptron classifiers exhibit linear execution profiles as their

buffers grow. In the case of both NORMA+S3 and NORMA+S3 (without output

filtering), the execution time is limited directly by the number of vectors used to make

up the kernel expansion. The bottom plot in Figure 17 shows the linear growth of

the kernel machine depending on the subset selection factor, β. In the bottom plot

in Figure 17 it is evident that the use of moving average filters has a negligible effect

on the kernel machine’s execution time.
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Figure 16: (a): Two dimensional scatter plot of the 1000 point stationary dataset.
Blue squares are +1 labeled samples, and red circles are -1 labeled samples.

(b): A contour plot of Remp (f,X, Y ) =
t∑
i=1

l (f (xi) , yi) using 2-fold cross

validation. Optimum found at γ = 2.06, η = 0.935. (c): A contour plot

Remp (f,X, Y ) =
t∑
i=1

l (f (xi) , yi) using NORMA+S3 (no output filter) on the

1000 sample stationary dataset. Dark contour line represents empirical risk us-
ing the entire buffer of samples. (d): S3 operating point chosen at β = 0.57,
a = 17.4. (e): S3 operating point chosen at β = 0.63, a = 14.6. (f): S3
operating point chosen at β = 0.65, a = 18.0.
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Figure 17: In the upper graph time is expressed in milliseconds taken to learn a
single sample. Timing is dynamic depending on the training algorithm used
and becomes more deterministic when the buffer is eventually filled. S3 param-
eters chosen are β = 0.5, a = 0.0. In the lower graph time is the number of
milliseconds to examine the entire 1000 sample dataset.
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Table 2: Classification results for 2D stationary and switching data.

2D Stationary Dataset

Training Algorithm Parameters % Error

NORMA λ = 0.0 12.3

NORMA+S3 (no output filter) λ = 0.0 20.2

NORMA+S3 λ = 0.0 18.7

NORMA λ = 0.1 20.2

NORMA+S3 (no output filter) λ = 0.1 27.1

NORMA+S3 λ = 0.1 26.4

Kernel Perceptron N/A 10.5

2D Switching Dataset

Training Algorithm Parameters % Error

NORMA λ = 0.0 25.6

NORMA+S3 (no output filter) λ = 0.0 25.3

NORMA+S3 λ = 0.0 28.5

NORMA λ = 0.1 25.6

NORMA+S3 (no output filter) λ = 0.1 25.4

NORMA+S3 λ = 0.1 28.5

Kernel Perceptron N/A 34.6

Table 2 describes the classification accuracy results for the 2D stationary and

switching concept drift experiments. Different values of the NORMA regularization

parameter, λ, were used so that the effect of regularization of the S3 algorithm and

NORMA can be compared. The stationary dataset shows the the regularization

effect the S3 algorithm has on the classifier accuracy is the same as the NORMA

using λ = 0.1. The S3 algorithm will evaluate the classifier output more efficiently

because only a subset of support vectors are being used. In the presence of switching

in the input data the S3 algorithm performs slightly better than the NORMA, but

will be less computationally expensive. Finally output filtering has a positive effect

on accuracy when the data is stationary, and a negative effect on accuracy when the

data exhibits concept drift.

Table 3 describes the experimental results for the 2D drifting data experiments.

The use of subset selection produces a classifier that has similar accuracy to the

NORMA with λ = 0.1. This effect can be attributed to the time based penalization
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Table 3: Classification results for 2D slow and fast drifting non-stationary data.

2D Slow Drifting Dataset

Training Algorithm Parameters % Error

NORMA λ = 0.0 27.6

NORMA+S3 (no output filter) λ = 0.0 21.3

NORMA+S3 λ = 0.0 26.0

NORMA λ = 0.1 22.1

NORMA+S3 (no output filter) λ = 0.1 22.1

NORMA+S3 λ = 0.1 25.7

Kernel Perceptron N/A 34.8

2D Fast Drifting Dataset

Training Algorithm Parameters % Error

NORMA λ = 0.0 48.2

NORMA+S3 (no output filter) λ = 0.0 45.8

NORMA+S3 λ = 0.0 48.1

NORMA λ = 0.1 44.8

NORMA+S3 (no output filter) λ = 0.1 44.9

NORMA+S3 λ = 0.1 46.1

Kernel Perceptron N/A 49.3

that the NORMA uses on the kernel expansion weights to enforce regularization. The

S3 algorithm enforces the time based penalization in having a higher probability of

selecting more recent support vectors to include into the execution subset. This has

the benefit of using fewer support vectors for execution therefore reducing the execu-

tion time. The fast drifting data experiment is an extreme case where all classifiers

have poor performance when tracking the drift in the data. The benefit of regular-

ization is evident here because the Kernel Perceptron algorithm has no regularization

technique and it has the worst error rate.

3.6.2 Classification Results of Optical Character Recognition

The MNIST handwritten digit dataset [35] consists of 60,000 training patterns, and

10,000 test patterns. Each pattern is a 28 x 28 grey scale image of a hand written

numeral ranging from 0 to 9. In the MNIST dataset, each image has been resized and

filtered so that the handwritten numeral is centered within the image. The MNIST
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dataset is a subset of the National Institute of Standards and Technology (NIST)

handwritten digit dataset. Figure 18 illustrates sample images from the training

pattern portion of the MNIST dataset. The MNIST dataset is comprised of vectors

with 784 dimensions and is used to benchmark machine learning algorithms. For

these experiments, a buffer size of 50 was used for all kernel machines. Two hundred

samples of either the digit 8 or 1 were randomly drawn from the training set and were

used as the sequential stationary dataset for our experiments, e.g. Figure 18 caption

(a). A switched dataset was created by reversing the class labels every 50 time steps.

Figure 18, caption (b) illustrates two-fold cross validation, and optimization on the

empirical risk to determine the optimal kernel machine parameters. Caption (c) shows

how the S3 algorithm does not offer any reduced empirical risk for stationary data.

Caption (d) reveals that in the presence of rapid switching, that the S3 algorithm

can produce a classifier with lower empirical risk at many different values of β, and

a. Since β directly influences the computational complexity of the kernel machine

we recommend choosing β based on design requirements, then select an appropriate

stochastic selection rate, a, to minimize the empirical risk of the classifier. Figure 18

caption (e), plots the number of milliseconds taken to learn a single sample.

Table 4 summarize the classifier accuracy on our subset of MNIST samples. The

NORMA classifier had the best performance in the stationary case, and when the

S3 algorithm was used in the switching scenario, the accuracy of the classifier was

greatly enhanced due to the regularization effect. The positive effect of the output

filtering in stationary cases, and negative effect in non-stationary cases is repeated

with MNIST results as well.

3.6.3 Classification Results of SEA Dataset

The Streaming Ensemble Algorithm (SEA) dataset [36] is commonly used to evalu-

ate machine learning in online, streaming environments. The SEA dataset consists
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Figure 18: (a): Some random samples from the MNIST dataset. (b): Optimum
point after doing 2-fold cross validation at γ = 0.02,η = 1.0 (c): Stationary
set cannot be optimized by the S3 algorithm. (d): S3 operating point at β =
0.47,a = 11.6. (e): Number of milliseconds taken to learn a single sample.
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Table 4: Classification results for MNIST data.

200 Sample Stationary MNIST Dataset

Training Algorithm Parameters % Error

NORMA λ = 0.0 5.5

NORMA+S3 (no output filter) λ = 0.0 10.5

NORMA+S3 λ = 0.0 9.0

Kernel Perceptron N/A 6.0

200 Sample Switching MNIST Dataset

Training Algorithm Parameters % Error

NORMA λ = 0.0 39.5

NORMA+S3 (no output filter) λ = 0.0 22.5

NORMA+S3 λ = 0.0 31.0

Kernel Perceptron N/A 26.5

of 60,000 three dimensional vectors having values between 0.0 and 10.0, with four

different concepts. The dataset is broken into four segments of 15,000 points each,

and are labeled as +1 according to x (1) + x (2) ≤ θ. For each of the blocks, values

for θ are 8, 9, 7, and 9.5 [36].

Cross validation was inappropriate in this case due to the drifting nature of the

data. The first 2000 samples from the SEA dataset were taken and the kernel machine

parameters were optimized to minimize the empirical risk function. Figure 19, caption

(a) illustrates the optimal parameters that exhibit the lowest empirical risk with

respect to the first 2000 samples of the dataset.

Figure 19, caption (b) shows how the parameter selection for the S3 algorithm

affects the empirical risk of the classifier. There is no parameterization that will yield

a classifier with lower empirical risk than the classifier using it’s entire buffer. The

contour lines are warped nearer the upper right corner of the figure. This trend means

that there is concept drift present. A parameterization was chosen that is close to the

upper right corner of the plot. A buffer of 100 samples was used for all experiments

with the SEA dataset.

Table 5 gives the classification results involving the SEA dataset. The classifier

using the S3 algorithm exhibits only a marginal improvement to its classification
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Figure 19: (a):Optimum found at γ = 6.336e − 05, η = 0.083. (b): S3 operating
point at β = 0.8,a = 18.0.

Table 5: Classification results for SEA dataset.

60,000 Sample SEA Dataset

Training Algorithm Parameters % Error

NORMA λ = 0.0 37.6

NORMA+S3 (no output filter) λ = 0.0 37.5

NORMA+S3 λ = 0.0 38.4

Kernel Perceptron N/A 28.6

rate. The S3 algorithm can perform better than a classifier with a fixed buffer when

there is a concept change present in the data. But since the S3 classifier uses less

kernel terms in the evaluation of the kernel expansion, the stochastic noise and lack

of expressiveness in the classification output will generally cause the kernel machine

to perform worse than the classifier itself.

3.7 Conclusions and Applications

Based on the results given in Tables 2, 3, 4, 5 the S3 algorithm is useful in settings

where concept drift is present. Superior classification rates can be achieved along with

lower computational requirements. The two primary drawbacks of the S3 algorithm

are the parameters a and β are chosen by offline optimization and the S3 algorithm
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has a larger misclassification rate for stationary data sources.

The S3 algorithm allows for an efficient method of selecting a subset of support

vectors for evaluation of a kernel machine classifier. The resulting classifier produced

by the S3 algorithm has additive noise that is inversely proportional to the size of the

subset used for evaluation of the kernel classifier. The use of exponentially distributed

random variates allows for the S3 algorithm to focus on more recently acquired SVs,

allowing the classifier to track switching and drifting changes effectively and efficiently.

The S3 algorithm can be used in conjunction with any on-line kernel machine

training technique. It is important for online kernel machines to be computationally

efficient because of the real time requirements of online environments. The S3 al-

gorithm is an important contribution because it scales linearly with the number of

training samples, and is compatible with other time based regularization approaches.

The S3 algorithm is a novel contribution in that it differs from the ensemble ap-

proaches used in the works of [36,41–44] by using a single kernel machine for learning

and evaluation. The S3 algorithm also distinguishes itself from the work of Klinken-

berg and Joachims [33] by addressing the problem of computational complexity and

adapting to concept drift simultaneously.

The application area for the S3 algorithm is hybrid systems that require pat-

tern recognition in an online environment. Online systems such as computer vision,

robotics, telecommunications, mobile computing, and embedded control systems are

examples of such systems. It is necessary for the S3 algorithm to be combined with

concept drift detection [45] and an online method for adapting the S3 parameters is

also needed.



Chapter 4

The Partitioned Kernel Machine

Algorithm

The previous chapter investigated the use of a subset technique for a binary classifica-

tion system using kernel machines in an online environment. This chapter makes use

of a subset selection method that is based on a similarity measure with the current

kernel machine input. The purpose of this chapter is to develop a training algo-

rithm for an online kernel machine that will provide greater accuracy than current

techniques while still being adaptable to the input, xt.

4.1 Chapter Outline

The use of partitioning within the kernel machine buffer is examined in this chapter.

The partitioning is done during training and it involves a similarity measure with the

current input to the kernel machine. The first section introduces the partitioned kernel

machine algorithm. The second section gives experimental results of the partitioned

kernel machine algorithm.

67
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4.2 Partitioned Kernel Machine Algorithm

The fundamental component of the Partitioned Kernel Machine (PKM) algorithm

is an update procedure that focuses on a subset of the stored vectors in the kernel

machine buffer. This is in contrast to standard online kernel machine algorithms

because the NORMA and the KLMS algorithm only update the weight of the current

input vector at time t. In the PKM algorithm the subset of α’s associated with the

vectors are updated in place within the kernel machine buffer in two stages. First, a

similarity function is defined between two vectors as r : <a×<a → <. The similarity

measure is the Gaussian kernel since all kernel pairs are already computed with each

kernel machine evaluation. Once all vectors in the kernel machine buffer are assigned

a similarity score to the current input, a percentage of the top scored vectors have

their α weights repeatedly updated. This process ensures that common vectors in the

kernel machine buffer are updated more frequently than outliers.

The KLMS algorithm presented in the work of Liu et al. [29] does not describe a

method for updating kernel machine weights in place.

Many parallels can be drawn between the kernel least mean square (KLMS) algo-

rithm [29] presented in the work of Liu et al., and the naive on line Rreg algorithm [26]

(NORMA) presented in the work of Kivenen et al. This derivation follows the work

of [26] while using the work of [29] to make claims of stability and self regulariza-

tion. The SDC-KLMS derivation uses stochastic gradient descent of a per-sample

risk functional without the use of explicit regularization. This algorithm also uses

a correction factor to compensate for single sample truncation error, and also uses

in-place training to smooth previous effects of kernel machine initialization.

To begin the derivation of this algorithm the definition of empirical risk commonly

defined in statistical learning theory [1], [3] is used. Equation (57) defines the empir-

ical risk of a kernel machine. The empirical risk defines the average amount of loss
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incurred for the kernel machine. The loss function used in this work is the squared

loss, and is defined in Equation (58).

Remp [ft] =
1

m

m∑
i=1

l (ft,xi, yi) (57)

l (ft,x, y) =
1

2
(y − ft (x))2 (58)

In a similar motivation to the work of Kivinen et al. [26], stochastic gradient

descent is applied to the current prediction function, minimizing the empirical risk.

The problem with the expression for Remp, is that it requires evaluation of ft on

every pattern in the kernel machine buffer. The computational complexity scales in

O (m2) to perform a single iteration of the training algorithm. Equation (59) defines

another risk functional the is similar to the “instantaneous” risk defined in [26]. The

key difference is that this particular risk functional defines the loss incurred for any

expansion term in the buffer.

R̂i [ft] = l (ft,xi, yi) =
1

2
(yi − ft (xi))

2 (59)

Equations (60), (61), (62), and (63) give the derivations of the update equations

for the ith kernel expansion term. Equation (60) begins the update procedure with

an update to the kernel machine prediction function. The update is performing

stochastic gradient descent on R̂i [ft], therefore any expansion term in the buffer can

be chosen for optimization. If one were to optimize every parameter in the buffer, this

can be considered a full iteration of gradient descent. Optimizing the kernel machine

across all terms in the buffer with n iterations would have O (nm2) computational

complexity. This algorithm will select a subset of size j terms yielding a computational

complexity of O (njm).
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f
′

t ← ft − η
∂
(
R̂i [ft]

)
∂ft

(60)

Equation (60) denotes the updated prediction function to be f
′
t . Since an existing

expansion term is chosen, there is no new support vector being added to the buffer.

The time index t stays the same, and the expansion term weight α (i) will be updated.

f
′

t ← ft + η (yi − ft) (61)

Equation (61) reveals that the update to the kernel machine will be scaled error

between the stored value, y (i) and the prediction of y (i)) at time t. The use of

gradient descent for training kernel machines was explored in [1] and [26]. The key

difference between this work and that of [1] and [26] is that there is no form of explicit

regularization of the risk functional in this case.

m∑
b=1

α (b)k (xi,xb) =
m∑
b=1

α (b)k (xi,xb) + η (yi − ft (xi)) (62)

Equation (62) re-writes Equation (61) is terms of their weight parameters by fixing

all other indices of the expansion terms. In this case m refers to the size of the buffer

used, and the first term in the buffer is indexed at 1.

α
′
(i)← α (i) + η

(yi − ft (xi))

k(xi,xi)
(63)

Throughout this chapter a radial basis function kernel is used, where k(xi,xi) =

1.0. The final update is expressed in Equation (64).

α
′
(i)← α (i) + η (yi − ft (xi)) (64)

The update rule is of the exact same form as the update rule for the kernel adatron
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algorithm [47]. The kernel adatron algorithm is a batch algorithm for the training

of kernel machine classifiers, while the KLMS algorithm is specifically designed for

dealing with on line use for regression applications. An update rule is needed for new

data produced from the time embedding process, ft+1 ← ft. The instantaneous risk

at time t is used to update the prediction function. Equation (62) can be directly used

for updating the kernel machine prediction function to the next time step. Equation

(65) describes the update ft+1 ← ft, which is identical to that of KLMS [29] [27].

α (t)← η (yi − ft (xt)) (65)

The partitioned kernel machine (PKM) algorithm creates a partition of the most

similar vectors to the current input for updating with Equation (64). A time based

stochastic subset technique for kernel machine classifiers was discussed in Chapter 3.

The PKM algorithm differs significantly from the subset technique in Chapter 3 in

that it uses a similarity measure with the input (xt) to select support vector weights for

update. The PKM algorithm must be used following the KLMS algorithm, therefore

the PKM algorithm is an enhancement to the traditional KLMS algorithm. The PKM

algorithm is described in Algorithm 3.

Based on the description of algorithm 3, the computational complexity of the PKM

algorithm is in the order of O (l log l). If the computational complexity of the kernel

evaluations outweigh the sorting operation in PKM, then the overall computational

complexity will be very similar to O (l). The execution time will be explored in our

experimental results.
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Algorithm 3 The PKM Algorithm.

Input:

• p: percentage of top similarity scores to partition.

• i: Number of updates performed across the partitioned vectors.

• X: Buffer of vectors used in the KLMS algorithm.

• A: Buffer of training weights used in the KLMS algorithm.

• xn: Current input for the kernel machine.

Initialize:

• Ordered Set, Keys = ∅

for j = 1→ n− 1 do
xj ← X (j)
Keys← {r (xj,xn), j}

end for
Sort Keys in descending order based on similarity value in each tuple.
for k = 1→ i do

for j = 1→ b(n− 1) pc do
{r (xindex,xn) , index} ← Keys (j)
Update A (index) by Equation (64).

end for
end for
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Figure 20: Panel A: The optimal parameters for the KLMS algorithm were found
at η = 1.0, γ = 0.04536. Panel B: The optimal parameters for the PKM
algorithm (p = 0.01, i = 3) were found at η = 1.0, γ = 0.2640. All parameters
were found by performing a two dimensional pattern search across η and γ.
The pattern search minimized the total absolute error (shown above by contour
lines) of the kernel machine. The size of η is limited to 1.0 to maintain numerical
stability [29]. All parameterizations and results are summarized in Table 8 in
Section 4.4.

4.3 Experiments

The PKM algorithm was tested on two different datasets. The first dataset involves

non-linear function approximation with noise. The second dataset involves the pre-

diction of a benchmark chaotic time series. The parameters η and γ are optimized

to give the lowest possible total absolute error before investigating the effect of the

PKM parameterizations. Two examples of the optimization of η and γ are shown in

Figure 20. Finally a timing analysis was performed to investigate the computational

properties of the PKM algorithm.

4.3.1 Function Learning

Equation (66) describes the continuous function that will generate the discrete time

series. Noise was added to the time series with a mean of 0.0 and standard deviation of
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Figure 21: The following kernel machines were used to approximate the time series
for the continuous function ts: KLMS (η = 1.0, γ = 0.04536), PKM (η = 1.0,
γ = 0.2640, p = 0.01, i = 3), PKM (η = 1.0, γ = 0.1692, p = 0.05, i = 3).
The PKM with p = 0.01 and p = 0.05 update 1% and 5% of the most similar
vectors stored in the kernel machine respectively.

0.01. The function was sampled at 50Hz and ran from 0.0 to 10.0 seconds, producing

a time series with 501 points. A time embedding dimension of a = 10 was used.

ts (t) = sin (4πt) + sin (0.8πt) +N (0.0, 0.01) (66)

Figure 21 illustrates the original time series from 0.9 seconds to 2.5 seconds. The

following kernel machines were tested: KLMS (η = 1.0, γ = 0.04536), PKM (η = 1.0,

γ = 0.2640, p = 0.01, i = 3), PKM (η = 1.0, γ = 0.1692, p = 0.05, i = 3). All

three kernel machines exhibit errors in approximating the time series initially but the

errors diminish as time progresses.

The error curves for the three separate kernel machines are shown in Figure 22.
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Figure 22: A plot of errors incurred by all three kernel machines. The PKM algo-
rithm has an advantage over the KLMS algorithm used alone. As p is increased,
the overall accuracy is improved.

The error curves show two interesting features. First, it can be seen that the PKM

errors drop dramatically at about 2.75 seconds, indicating the speed at which the

PKM has adapted to estimating the function. Second, the PKM using p = 5%

outperforms p = 1%, indicating that updating more of the stored vectors in the buffer

is correlated with a better error performance. The improvement to error performance

comes at a computational cost. The advantage of using a similarity measure to

partition the vectors stored in the kernel machine is investigated in Section 4.4.

Table 6 shows that updating more of the stored vector weights in place yields less

total error in the function approximation.
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Table 6: Summary of Function Learning Experimental Results

Experiment Kernel Machine Algorithm Total Error

Function Learning KLMS (η = 1.0, γ = 0.04536) 46.1617

Function Learning PKM (η = 1.0, γ = 0.2640, p = 0.01, i = 3) 35.3178

Function Learning PKM (η = 1.0, γ = 0.1692, p = 0.05, i = 3) 27.8368

4.3.2 Chaotic Time Series Prediction

The Mackey-Glass chaotic time series is often used as a benchmark test in time series

forecasting applications and is described by the differential equation given in Equation

(67). Simulink was used to generate the time series with the following parameters:

b = −0.1, c = 0.2, τ = 30, ts(0.0) = 1.2, start time = 0.0, stop time = 6000, fixed

time step = 6.0, and solver = ode3. To each sample a small amount of normally

distributed random noise was added with µ = 0.0 and σ2 = 0.01. A time series of

1001 points was generated, and a time embedding dimension of a = 15 was used.

d (ts (t))

dt
= −bts (t) +

cts (t− τ)

1 + ts (t− τ)10 (67)

Parameter optimization and experiments involving accuracy were performed on

the time range of t = 1200 to t = 3600 (time series points 200 to 600). Figure 23

shows a plot of the Mackey-Glass time series. The results are similar to the previous

section in that the PKM outperforms the KLMS algorithm in terms overall accuracy.

The use of a similarity measure to partition the vectors stored in the kernel machine

is investigated in Section 4.4.

Table 7 gives the cumulative error of the kernel machines when approximating the

Mackey-Glass time series. As with the previous experiment, updating more expansion

weight in place yields a lower cumulative error.
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Figure 23: A time plot of the Mackey-Glass time series and the time series estimates
from both the KLMS and PKM algorithms. The PKM parameters for this
experiment were i = 3 and p = 0.05.

Table 7: Summary of MGTS Experimental Results

Experiment Kernel Machine Algorithm Cumulative Error

Chaotic Time Series KLMS (η = 0.7400, γ = 0.7467) 25.1368

Chaotic Time Series PKM (η = 1.0, γ = 0.5103, p = 0.01, i = 3) 15.3680

Chaotic Time Series PKM (η = 1.0, γ = 0.4259, p = 0.05) 11.2531
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4.4 Results

Table 8 shows the cumulative errors of both the function approximation and the

chaotic time series experiments. The total absolute error was reduced by approx-

imately 30%-50% by using the PKM algorithm. It is worth noting that while the

use of a larger value of p will yield better performance in terms of overall error, the

extra computational cost in updating more vector weights may be a significant design

decision.

As well Table 8 illustrates the improvement of using a similarity score when parti-

tioning the kernel machine while training. The second and fourth blocks from the top

in Table 8 illustrate the advantage of using a similarity score to partition the kernel

machine verses random partitioning. A better error performance can be achieved

when using the similarity score as a heuristic for selection of vectors to be updated.

PKM performs better with i = 5 and p = 0.01 verses random partitioning with twice

the number of iterations (i = 10 vs i = 5) and five times the partition size (p = 0.05

vs p = 0.01).

Table 8: Summary of Experimental Results

Experiment Kernel Machine Algorithm Total Error

Function Learning Random Partitioning (η = 1.0, γ = 0.2640, p = 0.01, i = 5) 36.2406

Function Learning PKM (η = 1.0, γ = 0.2640, p = 0.01, i = 5) 31.3987

Function Learning Random Partitioning (η = 1.0, γ = 0.1692, p = 0.05, i = 10) 32.5429

Function Learning PKM (η = 1.0, γ = 0.1692, p = 0.05, i = 10) 21.8626

Chaotic Time Series Random Partitioning (η = 1.0, γ = 0.5103, p = 0.01, i = 5) 19.7222

Chaotic Time Series PKM (η = 1.0, γ = 0.5103, p = 0.01, i = 5) 14.1370

Chaotic Time Series Random Partitioning (η = 1.0, γ = 0.4259, p = 0.05, i = 10) 15.5720

Chaotic Time Series PKM (η = 1.0, γ = 0.4259, p = 0.05, i = 10) 9.2517

Figure 24 illustrates the growth of the computational complexity as more vectors

are added to the kernel machine buffer. Timing measurements were taken with each

input vector while running the function learning experiment described in Section 4.3.1.

It is evident that the execution time scales in the order of O(m) for all three kernel
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Figure 24: The execution time scales in the order of O(m) for all three kernel ma-
chines. The computational effect of sorting the similarity values in the PKM
algorithm is negligible when compared to kernel function evaluation when con-
sidering a small enough time series.

machines. The computational effect of sorting the similarity values in the PKM

algorithm is negligible when compared to kernel function evaluation, when considering

a small enough time series (small m).

4.5 Conclusions and Applications

The results from the experiments indicate that selecting a subset of support vectors

for additional optimization yields an increase in accuracy at the cost of increased



80

computational effort. The PKM algorithm scales in O (t) computational complexity

as long as the size of the partition is held constant, making it suitable for online appli-

cations. Table 8 shows the benefit the similarity measure for choosing the partition.

In all cases the similarity measure produced a more accurate kernel machine than the

use of randomized partitioning when kernel machine parameters were held constant.

The PKM algorithm is intended to be used together with the KLMS algorithm to

improve the overall accuracy in kernel machine regression applied to time series data.

The use of a similarity measure between vectors stored in the kernel machine buffer

and the current input vector allows for more common vectors to be updated more

often. Kernel machines represent an important area of machine learning research, and

have many useful applications including time series prediction. The results achieved

in this chapter illustrate that the proposed PKM algorithm can achieve superior error

performance while still scaling linearly in computational effort.

The PKM algorithm is a significant novel contribution because it extends upon

the use of stochastic gradient descent in online environments. In the work of Liu

et al. [27, 29], KLMS is shown to be an effective algorithm for non-linear time-series

forcasting. The PKM algorithm advances the use of KLMS in two ways. The first

way is by providing in-place updates of expansion term weights which allows the error

to be reduced significantly. The second contribution is the use of a similarity measure

with the current input which further increases the accuracy of the kernel machine.

The PKM algorithm algorithm was designed to be used in conjunction with the

KLMS algorithm for online regression tasks. The application scope for kernel machine

regression is diverse since kernel machines are well suited for estimating non-linear

relationships. Problems that require online non-linear regression are non-linear filter-

ing, computer vision, non-linear embedded control systems, telecommunications, and

signal processing to name a few.



Chapter 5

Smooth Delta Corrected Kernel Machine

In online applications involving kernel machines there are usually two goals that a

system designer is trying to meet. First, the system needs to be computationally

efficient. In other words, the system must be able to keep up with the stream of

incoming data. Second, there will be a finite amount of memory associated with

the system. It is the goal of this chapter to investigate the effect of memory buffer

truncation error on the performance of the KLMS algorithm in order to correct for

truncation error.

5.1 Chapter Outline

Preliminary material on the Kernel Least Mean Square (KLMS) [29] [27] algorithm

and on the Naive Online Rreg Minimization Algorithm [26] (NORMA) can be found

in Section 2.8 and 2.6 respectively. The KLMS algorithm offers an computationally

efficient method for training kernel machines for time series prediction. Preliminary

material on the concept of time-embedding in the use of kernel machines for regression

and time series prediction applications please refer to Section 2.7.

Section 5.2 will explore the topic of truncation error in terms of a finite memory

buffer. After exploring the problem of truncation error, Section 5.3 will introduce the

81
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Smoothed Delta Compensated Kernel Least Mean Square (SDC-KLMS) algorithm,

which is a solution to the problem of truncation error with the KLMS algorithm. Sec-

tion 5.5 of this chapter will give experimental validation of the SDC-KLMS algorithm

and concluding remarks will be given in Section 5.6.

5.2 The KLMS Algorithm and Truncation Error

The primary goal of an online kernel machine for regression tasks is to make pre-

dictions of times series values based on previous observations. The kernel machine

estimates a prediction function, ft and makes a prediction on yt given the input vec-

tor xt. Equation (68) defines the prediction function as a linear combination of m

weighted kernel functions. This linear combination of often referred to as the kernel

expansion and each term in the expansion is referred to as an expansion term. The

values for xi and α (i) are stored in memory for each subsequent prediction, so the

execution time of the kernel machine scales linearly in O (m).

ft (xt) =
m∑
i=1

α (i) k (xt,xi) (68)

Throughout this thesis it is assumed that the kernel expansion contains m terms

and there is a buffer with space for m expansion terms. At each time step the time

embedding process will produce a xt and yt. Each time step will add xt which will

update the kernel machine (ft → ft+1). Equation (68) can then be re-written as

Equation (69), assuming a circular buffer is used where index values are mapped

back between 1 and m.

ft (xt) =
t∑

i=t−m

α (i) k (xt,xi) (69)

In the field of statistical learning, the concept of loss and risk functions are used
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extensively. An interested reader can consult [1], [3], and [26] for further reading.

In the work of Kivinen et al. [26], the authors propose a bound on the truncation

error created by the use of a finite size buffer for storing expansion terms. Given

‖k (x, •)‖ ≤ X and {∃i : ‖α (i)‖ ≤ C}, Equation (70) from [26] places a upper bound

on the error between an ideal kernel machine with an infinite buffer, and a kernel

machine with a finite buffer.

‖f − ft‖ ≤
t∑

i=t−m

CX = mCX (70)

After considering the maximum bound that Equation(70) places on the truncation

error, a prediction error can be assigned to the kernel machine output. Assuming

that the buffer is full and a new term is to be added by replacing the ith term in the

expansion, Equation (71) describes the error incurred.

δ = ‖ft+1 − ft‖ = α(i)k (xt+1,xi) (71)

The significance in Equation (71) describes an incurred error in the output of the

kernel machine as a result of losing an expansion term due to finite size buffer. The

error will be compensated for in the novel kernel machine learning algorithm.

5.3 Smoothed Delta Compensated-KLMS (SDC-

KLMS) Algorithm

The pseudo-code presented in Algorithm 4 describes our SDC-KLMS algorithm. The

SDC-KLMS algorithm combines equations 65, 64, and 71 into a sequential algorithm

that compensates for truncation error, while providing faster convergence through

the smoothing of the kernel weights. The SDC-KLMS algorithm was designed with
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run time efficiency in mind. A circular buffer is used so that any modifications

to expansion weights and vectors can be performed in place in computer memory,

avoiding costly shifting and copying of data.

The SDC-KLMS also has a common characteristic to the kernel affine projection

algorithm (type I) (KAPPA-1) [27]. In KAPPA-1, the operation of KLMS is improved

by updating a block of j-expansion terms from xt−j+1 to xt, in addition to adding the

current term, xt. SDC-KLMS randomly picks j index values across the entire buffer.

Since the truncation error occurs because of a loss of the oldest expansion term, it is

better to smoothly distribute expansion term updates across the entire buffer. The

computational complexity of adding and new expansion term to the buffer using SDC-

KLMS is O (jm) where j is the number of expansion term to update before adding

xt and yt.

5.4 Stability of KLMS

It is interesting to point out that the KLMS algorithm presented in [29] and [27]

is equivalent to the NORMA parameterized with λ = 0.0, and update rules based

on a quadratic loss function. When looking at the stability of SDC-KLMS any as-

sumptions made on the upper bound on η still hold as derived in [27]. The need for

explicit regularization to prevent over fitting in SDC-KLMS is avoided due to the

self-regularizing property of KLMS. The conservative upper bound for η in KLMS

using an RBF kernel, an infinite buffer, and a total of N observed values, is given in

Equation (72) [27].

η <
N

N∑
i=1

k (xi,xi)

< 1.0 (72)

This conservative upper limit does not take truncation error into account and it



85

Algorithm 4 The SDC-KLMS algorithm.

1: Initialize:

• Circular buffer, D = ∅, size m

• f0 = 0

• j ← Number of existing expansion terms to optimize.

• γ ← kernel parameter.

• η ← learning rate.

2: while t <∞ do
3: if t ≥ m then
4: At time t, take sample and label pair p→(xt, yt) from input.
5: z ← (t+ 1)mod (m+ 1) + 1
6: r ← (t)mod (m+ 1) + 1
7: for w = 1 to j do
8: q ←Uniform random index value, not including z.
9: δz,q = α(z)k (xz,xq)
10: α

′
(q)← α (q) + η (yq − ft (xq + δz,q))

11: end for
12: δz,r = α(z)k (xz,xr)
13: α (r)← η (yt − ft (xt + δz,r))
14: else
15: At time t, take sample and label pair p→(xt, yt) from input.
16: z ← (t+ 1)mod (m) + 1
17: r ← (t)mod (m) + 1
18: for w = 1 to j do
19: q ←Uniform random index value, not including z.
20: α

′
(q)← α (q) + η (yq − ft (xq))

21: end for
22: α (r)← η (yt − ft (xt))
23: end if
24: Store at position r in D ← yt,xt
25: end while
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is shown experimentally that η < 1.0 does not guarantee convergence of the KLMS

algorithm.

5.5 Experiments

The KLMS algorithm and the novel SDC-KLMS algorithm is tested in three separate

settings. In the first setting a time-series representing a sine function in both noisy

and ideal conditions is simulated. The second setting is a noisy chaotic time-series

that has pseudo-periodic properties. Finally, the third setting is a time series that

was acquired from a 6 degree-of-freedom (DOF) haptic instrument [48].

5.5.1 Sine Wave Simulations

The first test of the algorithm seeks to show an extreme effect of truncations error.

Equation (71), states that the most extreme error will occur when the kernel machine

needs to replace a kernel expansion term that has both a large weight term (α (i)),

and is similar to the current input vector (xt ≈ xi). For the first test, p (t) is produced

by sampling the function s (t) = sin (2πt) at a sampling rate of 100Hz was used over

a duration of 2.0 seconds. Unless otherwise stated, the time embedding process uses

a dimension of 11, xt ← [p (t− 9) · · · p (t)] and yt = p (t+ 1). Figure 25 shows the

predictions produced by both KLMS and SDC-KLMS.

The truncation error is evident at t = 111. At this point KLMS is replacing

the oldest expansion term stored in the buffer, which in this case was the input at

t = 11. The weight for the 1st expansion term stored at t = 11 was large and

xt ≈ x1, therefore the truncation error reaches a maximum at t = 111. The effect

of truncation error is completely eliminated by the delta correction feature in the

SDC-KLMS algorithm.

Figure 26 shows the effect learning rate has on the mean squared error of both
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Figure 25: Truncation error is the most evident when t=111.

KLMS and SDC-KLMS in this particular case. The learning rate is an important

consideration when looking at truncation error because it is the learning rate that

determines the magnitude of the kernel expansion term weights. Figure 27 shows

that in this particular case increasing the number of updated kernel expansion terms

does little to improve the accuracy of SDC-KLMS.

The next test creates p (t) by sampling s (t) = sin (4.34πt) + N (0.0, 0.03) with

a sampling frequency of 50Hz for a duration of 20 seconds. A small amount of

normally distributed noise with µ = 0.0 and σ2 = 0.03 is added to each sample to

avoid repeated inputs. The top panel in Figure 28 shows the time series p (t) with

blue circles and the predicted values of the time series produced by KLMS. The scale

has been expanded to illustrated where the truncation error is the worst. The middle

panel gives a color plot of the expansion term weights as a function of time. With

KLMS once a sample is placed in the buffer it’s value does not change, as can be seen

by the horizontal striping effect. The lower panel shows the sorted range of kernel

evaluations for each expansion term and the current input. This plot is helpful for
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Figure 26: It is evident that the error gap between SDC-KLMS and KLMS is
a trade off between low learning rates creating low truncation error but slow
convergence, and high learning rates which create faster convergence but greater
truncation error.
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Figure 27: Increasing the number of updated kernel expansion terms does little to
improve the accuracy of SDC-KLMS. This will not always be the case, especially
in noisy highly dynamic environments.

deciding the kernel width parameter, γ. If γ is set to too large a value, most kernel

evaluations will evaluate to 0.0, and the kernel machine will not generalize well. If γ

is set to too small a value, most kernel evaluation will be close to 1.0, and the kernel

machine will not distinguish between different inputs.

Figure 29 highlights the differences between KLMS and SDC-KLMS. The trunca-

tion error in the top panel in not visible as with KLMS. The middle panel in figure 29

also illustrates the smoothing effect that the SDC-KLMS algorithm has on the ex-

pansion term weights in the buffer. By spreading the values of similar terms out, the

effect of replacing a particular term is minimized with respect to the kernel machine

output.

Figure 30 shows the error curve for the output of both SDC-KLMS and KLMS as a

function of time. Even though SDC-KLMS compensates for truncation error, it does

experience a small increase in error after for t > 511. When using this method for
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Figure 28: The top panel illustrates the truncation error is worse in the time series
prediction. The middle panel shows the static nature of KLMS, and the buffer
size becomes evident by the vertical shift in the magnitude of the expansion
term weights. It can be seen that once old values start to get replaced in
the kernel machine buffer, KLMS adjusts for this in the weights following the
replacement. The bottom panel shows the values of the kernel evaluations for
each input stored in the buffer. This is useful for setting the kernel width
parameter.
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Figure 29: The smoothing effect on the weights of the kernel expansion terms is
visible in the middle panel.

truncation compensation, the contribution of the old expansion term being replaced

is added to the new expansion term in the kernel machine. The total number of terms

is reduced by one, and that may have an effect on the accuracy of the kernel machine

overall. The change in error for SDC-KLMS appears relatively constant rather than

a large spike exhibited by KLMS.

5.5.2 Mackey-Glass Chaotic Time Series Simulation

The Mackey-Glass chaotic time series is often used in time series forecasting ap-

plications and is described by the differential equation given in Equation (73). I

implemented a simulation of the differential equation in Simulink with the following

parameters: b = −0.1, a = 0.2, τ = 30, s(0.0) = 1.2, start time = 0.0, stop time =

6000, fixed time step, and solver = ode3. To each sample a small amount of normally

distributed random noise was added with µ = 0.0 and σ2 = 0.01.
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Figure 30: The absolute value of the error between the predicted value and the
actual value of p (t+ 1) for each time step t. KLMS corrects for truncation
error over time, while SDC-KLMS does not experience the truncation error it
has one less expansion term to use for prediction.

d (s (t))

dt
= −bs (t) +

as (t− τ)

1 + s (t− τ)10 (73)

The Mackey-Glass time-series can exhibit periodic tendencies, as shown by the

curve with blue circles the top panel in Figure 31. KLMS is shown with red squares

and for t > 510 the truncation error starts to have a noticeable effect. KLMS then

adapts to the truncation error and the transient error fades away. The error curve

between KLMS and SDC-KLMS can be found in Figure 32. It has very similar

characteristics to the noisy sine wave experiment from the previous section. This is

significant because the Mackey-Glass time series is a benchmark dataset that is often

used to test regression algorithms.

Figure 33 shows a interesting example of how great an effect truncation error can

have on the performance of KLMS. The time series pt is shown with the blue curve
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Figure 31: The top panel shows p (t) (blue circles) and the KLMS output, and
the bottom panel shows p (t) (blue circles) and the SDC-KLMS output. Time
scales have been adjusted to show when old expansion terms are replaced by
new ones.

Figure 32: The absolute value of the error between the predicted value and the
actual value of p (t+ 1) for each time step t. As before, KLMS corrects for
truncation error while SDC-KLMS does not experience the truncation error.
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Figure 33: In this instance the top panel shows how KLMS becomes unstable when
trying to predict the Mackey-Glass time series. The lower panel shows how
the weight smoothing and delta correction features of SDC-KLMS keep the
prediction function stable.

and circular markers. The top panel shows that the output of the KLMS predictor has

turned unstable. This result is interesting because the learning rate is set to η = 0.7

which is less than the conservative bound of η < 1.0 [29] [27]. The bottom panel of

figure 33 shows how our SDC-KLMS algorithm does not experience the instability

that KLMS does.

5.5.3 PhantomTM 3-Axis Trajectory Capture

This final experiment involves the use of KLMS and SDC-KLMS in the prediction of

three dimensional trajectories from a Sensible PhantomTM haptic device. The three

dimensional time series was captured from a haptic device at a sampling rate of 60Hz

and is shown in figure 34. The 3D haptic time series can be considered three separate

time series, px, py, and pz. For this experiment a time embedding dimension of 31,
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Figure 34: A 3D view of the captured trajectory used in our experiment.

Figure 35: Kernel plot showing the distribution of kernel evaluations over time.

xt =
[
px (t− 9) ,py (t− 9) ,pz (t− 9) · · ·px (t) ,py (t) ,pz (t)

]
and yt = x (t− 1) was

used. By performing time embedding in this manner information is coupled from all

three axis in the input of the kernel machine. The output of the kernel machine is

predicting the next value for the x-axis coordinate. Three kernel machines would be

required if we wished to predict all three axis coordinates.

There are some times where is common compared to all other expansion terms

in the buffer. While other times the kernel evaluation is almost 0.0 across the entire

buffer, this can be attributed to the motion of tracing the fingers on the hand and

returning to the same point on the hand during the motion.
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The error curves for this time series using KLMS and SDC-KLMS are almost iden-

tical as shown in figure 36. This is an indication that truncation error is not playing

a significant role in the error characteristics of either kernel machine. The kernel

machines have the following parameterizations throughout our experiments: SDC-

KLMS (η = 0.2, γ = 25.0,m = 300, j = 10) and KLMS (η = 0.2, γ = 25.0,m = 300).

After running the experiment the mean squared prediction error for SDC-KLMS and

KLMS was 1.86× 10−5mm2 and 2.0318× 10−5mm2 respectively. The fact that SDC-

KLMS has a slightly better MSE for predicting the x-coordinate time series can be

attributed to the extra j weight updates at each iteration.

Referencing Equation (71), it is known that the truncation error will be the largest

when two conditions are met. If the expansion term being replaced (at position i in

the buffer) has a large weight value and the current term being added to the buffer

has a large kernel evaluation with the term being removed (i.e. for the RBF kernel

used in our work, k (xt,xi). These two conditions give us some insight into why our

haptic experiment does not experience truncation error.

Figure 35 shows that at certain times the kernel evaluations across the entire

buffer are close to 1.0. This kernel evaluation corresponds to slow motion where time

series values are very similar to each other (i.e. ↑ k (xt,xi)). The term weights are

determined by the error that that term has with the prediction function and this

error is lower for slow motions (i.e. ↓ α (i)). For fast motion, the opposite is true,

↓ k (xt,xi) and ↑ α (i). These two trends will keep the truncation error low in this

case.

These trends are subject to the size of the buffer used m, and the rate of change

of the time series being predicted. Depending on the particular situation, it is likely

to have severe truncation error in time series generated by haptic instruments and

kinematic systems.
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Figure 36: SDC-KLMS (η = 0.2, γ = 25.0,m = 300, j = 10) and KLMS
(η = 0.2, γ = 25.0,m = 300)

5.6 Conclusions and Application Scope

There are two conflicting issues when using kernel machines in online systems re-

quiring time series prediction. The first issue is the accuracy of the predictor in the

system. The second concern in the computational load required to make a prediction.

Due to the online nature of the kernel least mean square algorithm, truncation

error can be a significant issue for the accuracy of the kernel machine. The novel

contribution presented in this chapter, the Smoothed Delta Corrected Kernel Least

Mean Square (SDC-KLMS) algorithm, provides two mechanisms for a more accurate

prediction function. The first mechanism combines compensation for truncation error,

which we refer to as delta compensation. The second mechanism uses stochastic

gradient descent using randomized indexes across all kernel expansion terms stored

in the buffer to provide faster convergence of the predictor function. Truncation error

is verified in these experiments using both simulated and benchmark data.

The SDC-KLMS algorithm can be applied in online intelligent systems with strict



98

finite memory requirements. This thesis has given much attention to computational

complexity when considering online applications. Restricted memory resources are

present especially in the are of micro controllers and embedded computing environ-

ments. I believe that SDC-KLMS is especially useful for online regression for embed-

ded control and signal processing applications as these systems are not tolerant to

possible truncation error instabilities.



Chapter 6

Online Kernel Adaptation

Online processing of information requires not only that a system be computationally

efficient, but also that also it can adapt to the changing requirements of it’s operating

environment. It is the purpose of this chapter to look for an efficient but robust

method for the adaption of a RBF kernel parameter within a kernel machine.

6.1 Chapter Outline

For preliminary material on the concept of time-embedding in the use of kernel ma-

chines for regression applications please refer to Section 2.7. Section 6.2 of this chap-

ter will introduce some of the current work on kernel parameter adaptation from the

point of view of kernel machines. Section 6.3 will introduce the idea of fuzzy logic

based kernel parameter adaptation in terms of online kernel machines and data re-

construction in online environments. The experimental results of fuzzy logic based

kernel adaptation are given in Section 6.4. Finally, Section 6.7 will give conclusions

and insights on the results presented in this chapter.

99
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6.2 Online Kernel Parameter Adaptation

The objective when tuning a kernel in an online fashion is to achieve an acceptable

balance between processing time and desired accuracy. The kernel function can be

viewed as a similarity measure between inputs and/or support vectors in the kernel

expansion. The Gaussian kernel has a universal approximating capability, and is

numerically stable [27]. When using the Gaussian kernel in a kernel machine, the

choice of kernel width is the most important decision regarding the accuracy of the

kernel machine.

There are three common approaches to tuning a kernel parameter. First, given

a batch of training data, one can tune the parameter by trial and error until the

desired accuracy is achieved. This can be time consuming, inaccurate, and may not

be appropriate for an online situation. The second approach involves cross-validation

techniques. Cross-validation uses a dataset that is split up for testing and training and

can provide an unbiased measure of the accuracy of the kernel machine. It can avoid

over fitting to the dataset, but it is also a time consuming process. The third method

involves the use of Bayesian inference to determine the model parameters. In [27],

the authors describe using kernel recursive least-squares and Bayesian methods to

determine kernel model parameters. This approach also requires a dataset to operate

on, and requires iterative optimization.

Recent research in the area of online adaptation of kernel parameters can be

found in [49], [50], [51]. For instance, in the work of Ucak and Oke [49], the authors

used adaptive kernel parameter tuning in adaptive PID control tuning. The authors

achieved positive results in tuning the kernel parameter using gradient descent, while

using an online least square support vector machine (LSSVM) model in their PID

system.

In the work of Singh and Principe [51], the kernel parameters within a time delay
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neural network are adapted using information theoretic cost functions. The results

of the authors work show that their system converges more quickly by adaptation of

the kernel parameter during training.

Further, Sun [50], takes a novel approach in kernel parameter tuning by using a

curve fitting method to avoid evaluating the kernel machine in the adaptation phase.

The work presented in this thesis takes a similar approach by not relying on the

output of the kernel machine to adapt the kernel parameter. Instead of using a

distance metric in RKHS, as in [50], the solution in this chapter uses input space

statistics and fuzzy logic adaptation of the kernel function parameter.

6.3 Fuzzy Logic Kernel Parameter Adaptation

This approach is unique because it makes use of the simple observation that similar

data vectors should produce a kernel evaluation closer to 1.0 than 0.0. In a similar

fashion, dissimilar vectors should produce a Gaussian kernel evaluation closer to 0.0

than 1.0. Figure 37 illustrates this online approach to adaptation of the Gaussian

kernel parameter using both input statistics and the similarity measure in RKHS.

The kernel parameter is tuned using a fuzzy logic inference system (FIS).

The use of the moving average filter in Figure 37, allows the sensitivity of the

adaptation process to be tuned to more recent observations or to older observations.

Throughout this research, the following relationship is used to produce the moving

average, xAV E = 0.05xt + 0.95xAV E. The adaptation of γ is performed at each time

step by the update equation, γ = γ + c∆γ.

The Mamdani FIS was implemented using the Fuzzy Logic Toolkit within Matlab,

and has the following input membership functions:

• muchLessThan (trapmf): [-1 -1 -0.8 -0.6]
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Figure 37: The adaptation procedure used in this work. By using a moving average
procedure in the input space of the filter, it is possible to adapt the kernel
parameter based on multiple previous inputs.

• lessThan (trimf): [-0.8 -0.4 -0.05]

• equal (trimf): [-0.1 0 0.1]

• greaterThan (trimf): [0.05 0.4 0.8]

• muchGreaterThan (trapmf): [0.6 0.8 1 1]

The output membership functions are as follows:

• decreaseGammaMuch (trapmf): [-1 -1 -0.8 -0.6]

• decreaseGamma (trimf): [-0.8 -0.4 0]

• keepConstant (trimf): [-0.2 0 0.2]

• increaseGamma (trimf): [0 0.4 0.8]

• increaaeGammaMuch (trapmf): [0.6 0.8 1 1]

The fuzzy linguistic rules are the following:
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• If input is equal then output is keepConstant.

• If input is lessThan then output is increaseGamma.

• If input is muchLessThan then output is increaseGammaMuch.

• If input is greaterThan then output is decreaseGamma.

• If input is muchGreaterThan then output is decreaseGammaMuch.

The rules are combined using the centroid method and the crisp output is scaled

by a tunable factor, c, to produce γ.

6.4 Experiments with Data Reconstruction

All experiments follow the time embedding process and notation described in Sec-

tion 2.7. The fuzzy logic controller was implemented combination with a KLMS [29]

filter for evaluation. For evaluating the data recovery procedure, a time-series dataset

was used in two ways. First, we measured the accuracy of the KLMS filter with

and without the adaptive kernel parameter and also with a static kernel parameter.

Then the KLMS filter was evaluated with the adaptive kernel on the same dataset,

but dropouts were introduced. Figure 38 illustrates both cases, with and without

dropouts.

6.5 Sinusoid with Noise

Equation (74) describes the first time series used to evaluate this algorithm.

pt = 0.2 (rand (0, 1)− 0.5) + sin

(
2πt

1000

)
+ 1.0 (74)
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Figure 38: (A): ŷt represents the output of the KLMS filter when data arrives within
a specified time deadline. (B): When a dropout occurs, the kernel parameter is
not adapted. xt contains the previous time-series values but yt is not available,
therefore the kernel parameter is not adapted.

Figure 39 shows how the kernel parameter, γ is adapted over time. The average

set value, a, is reached and the kernel evaluation oscillates around the set point due

to the oscillation of the input vector.

Figure 40 illustrates the case of an instantaneous change in the nature of the input.

At t = 5000, the amplitude of the sinusoid was increased by a factor of 1.3. Figure 40

shows how the approach adapts to the changing input to maintain the same kernel

evaluation.

To simulate the effect of dropouts a probability of 0.1 per time step of a dropout

occurring was used. If a dropout did occur, a duration of 1 to “Max Duration” time

steps was randomly selected. Both randomizations were from a uniformly distributed

distribution. Table 9 gives the results of function estimation with simulated commu-

nication dropouts. It can be seen that the effect of dropout does have an effect on

the accuracy, but if the duration is low enough, the error can be minimized.

An identical experiment was conducted using a constant value of γ = 4.0 with no
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Figure 39: The time progression of the kernel parameter adaptation technique. γ
was initially set to 1.0.

Table 9: Experiment parameters were as follows: m = 400, η = 0.8, n = 7, c = 0.01.
A parallel experiment with constant γ = 4.0 was carried out with no dropouts,
and the error incurred was 0.0859.

Sinusoidal Error Rates

Max Duration Mean Error

No Dropout 0.0653

7 0.0681

8 0.0763

10 0.1030
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Figure 40: The time progression of the kernel parameter adaptation technique. γ
was initially set to 1.0 and at time 5000 the amplitude of the sin wave was
adjusted. The FIS adapts the kernel parameter to compensate for the change
in the input. The system recovers within 50 time steps.

data dropouts, the mean error incurred was 0.0859. The benefit of using fuzzy logic

adaptation is evident because even in the presence of dropouts, the error performance

is superior when using fuzzy logic to adapt the kernel parameter. Only when the

maximum dropout duration reaches 10 time steps did the error performance become

worse than the constant γ case.
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6.6 Sensable 6DOF Phantom Haptic Device

The second test scenario involved the capture of position data from a 6 degree-of-

freedom (DOF) haptic device. The Sensable Phantom (TM) was used, and the sam-

pling rate used to capture the trajectories was 60 Hz. The 3D position represented

the end tip of the device, and a tracing motion was used on top of a person’s hand to

capture common trajectories that would occur when interacting with a soft material.

Figure 41 illustrates the captured trajectory of the x and y coordinates only. This

gives a top down view of the path. Three KLMS filters were used in parallel with

adjustment of the kernel parameters done individually for each kernel machine.

Figure 41: A x-y view of the 3D trajectory capture from the Sensable Phantom.

Figure 42 shows the adaptation of γ for the x axis trajectory only. Due to the high

variation of the trajectory at some instances of the experiment, the value of gamma

was adjusted to a very small value. The use of input statistics is a disadvantage in

two particular cases. In the first case for time sequences where the position varies

widely from one time step to the next, the fuzzy logic controller cannot adapt the
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kernel parameter fast enough. In the second case the position does not change from

one time step to the next, and therefore the adaptation has no effect.

Figure 42: Extreme swings in the time embedded input vectors make it difficult
to adapt the γ parameter. Equally distorting are constant values in the input,
causing the kernel function to evaluate to 1.0 regardless of the parameter γ.

Table 10: Experiment parameters for the x, y, and z axis were as follows: m = 100,
η = 1.0, n = 10, and for the adaptation on the x-axis, c = 0.00001.

Phantom 3D Error Rates

Max Duration Mean Error x (mm) Mean Error y (mm) Mean Error z (mm)

No Dropout 0.8203 1.2632 1.1102

4 0.9831 - -

6 1.8492 - -

15 3.9344 - -

Aggressive tuning of the kernel parameter has little effect when the input exhibits

great amplitude changes but will have extreme effects on the accuracy of the filter. As

with the previous experiment, when dropouts are introduced the accuracy is impacted

only slightly until the duration of the dropout increases to 6 time steps or higher.

Table 10 shows that this adaptive approach achieves accuracies in the range of 1 mm

during the experiment. Although table 10 does not illustrate the advantage of fuzzy
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logic tuning of the kernel parameter, it does show that data reconstruction is possible

using the proposed approach.

6.7 Conclusions and Application Scope

In this chapter is a novel method for tuning the width of the Gaussian kernel function

in a kernel machine for online applications. The use of fuzzy logic allows for human

reasoning to be placed into the control of the capacity of the kernel machine.

The results from this chapter show that fuzzy logic can be successfully applied to

the problem of RBF kernel parameter tuning. Fuzzy logic allows linguistic expressions

to define the nature of the tuning and is easy for system designers build an adaptation

scheme for their intelligent systems. Fuzzy logic adaptation is also successful in cases

of switching data as shown in Figure 40. Input space statistics is a simple tool

for evaluating the performance of the adaptation procedure, but it has degraded

performance in the case of extremely noisy data as shown by the the results from

the haptic device experiment. The introduction of dropouts in the data does have a

negative effect on the accuracy of the kernel machine. But having the ability to adapt

the model to the nature of the input is in line with a true online learning scenario,

such is the case of data recovery in tele-haptic and tele-operation environments.

The novel contribution of fuzzy logic control of online adaptation of the RBF

kernel parameter is fundamentally different from the research conducted in [49–51].

The use of fuzzy logic in this chapter is similar to the research of Sun [50] in that

the output of the kernel machine is not required for adaptation of the parameter.

The difference from [50] is the use of input space statistics to avoid computationally

expensive kernel expansion optimization. The use of fuzzy logic allows the integration

of linguistic rules for kernel machine specification.

Application area for fuzzy logic adaptation of the RBF kernel parameter is in
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online signal processing and control. The input space statistics used in this chapter are

time based and cannot be used in an offline learning scenario. Time based processing

of input data is useful for signal processing applications such as non-linear filtering,

non-linear control, and non-linear online regression applications.



Chapter 7

An Online Kernel Machine for Anomaly

Detection and Mode Tracking

Kernel based algorithms for multivariate density estimation, mode tracking and

anomaly detection have provided some effective solutions to problems in the area

of pattern recognition and analysis. Some examples are: object tracking using the

mean-shift [52], the family of ν-SVND [38] and NORMA [26] algorithms. The purpose

of this chapter is to develop a training algorithm that solves the quadratic program-

ming problem of a ν-SVND while at the same time addressing the problems of online

adaptability and training efficiency.

7.1 Chapter Outline

Preliminary material on ν-SVND the NORMA can be found in Sections 2.5.2 and 2.6

respectively. Section 7.2 introduces the application area of the algorithm presented in

this chapter. Section 7.3 describes the Active Set (AS) algorithm for solving the QP

problem with considerations of online use. Next, results for two different experimental

settings are explained in Section 7.4. Finally, in Section 7.5 an iterative mean shift

equation is given that can find the maximum of a kernel density estimator.
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7.2 Application Setting

The use of online methods for anomaly detection and mode tracking have the require-

ment of computationally efficient execution. In the work of Schölkopf et al. [38] the

extension of the traditional support vector machine approach was used to develop an

algorithm for anomaly detection, specifically novelty detection. The use of a separat-

ing hyperplane between the origin and the data points in Reproducing Kernel Hilbert

Space (RKHS) allows for a non-linear separation in the input space. Section 2.4

and 2.5.2 give more details on RKHS and support vector novelty detection (SVND),

respectively.

An online extension of the work in [38] was provided by Kivinen et al. [26]. Instead

of solving a quadratic programming problem to train the kernel machine, they make

use of stochastic gradient descent of a regularized risk functional. The two primary

drawbacks to this approach are the following:

• The use of stochastic gradient descent is error driven and there is no balance

between function complexity and points lying outside the hyperplane.

• The use of regularization in the risk functional yields an estimator that favors

newer samples over older ones [26]. This technique has been shown to produce

a biased solution in other kernel machine implementations [27].

In an online system data arrives in a streaming fashion, while in an offline system,

data is acquired and then processed in a batch fashion. The active set algorithm

makes use of a similarity measure between previous data points and the current one

to update all weights in the kernel machine. The use of an internal kernel matrix

means that the storage requirement will grow in O (m2), where m is the total number

of vectors stored in the kernel machine buffer.
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7.3 The Active Set Kernel Machine Algorithm

The goal of the active set algorithm is to incorporate newly introduced data into

the kernel machine while still making positive progress in the optimization of the

quadratic programming objective function. The Radial Basis Function kernel is used

exclusively in this chapter. The use of chunking was explored extensively by Osuna et

al. [53], and Platt [32]. Chunking optimizes a subset of variables in the QP problem at

a time. Sequential minimal optimization (SMO) is an extreme example of chunking

where only pairs of variables are optimized.

In the development of the AS algorithm in this chapter proceeded in a similar

fashion to a SMO-like approach in that only pairs of variables are optimized with

each iteration of the algorithm. Equation (75) states the QP problem that must

be minimized to train the support vector novelty detector. The minimal solution

will yield a maximum margin hyperplane that separates the data from the origin in

RKHS.

7.3.1 Pair-wise Optimization

Novelty detection using SVMs was described in Section 2.5.2. The QP problem

is revisited in this chapter with Equation (75). Equations (76) and (77) give the

constraints that are applied to the QP problem. The box constraint in Equation (76)

restricts that maximum and minimum values that can be assigned to expansion term

weights.

Z (α) =
1

2

m∑
i,j=1

α (i)α (j)Ki,j (75)

0 ≤ α (i) ≤ 1

νm
(76)



114

m∑
i=1

α (i) = 1 (77)

Depending on the value of α (i), there are three important distinctions that can be

made about vectors that are retained in the kernel machine buffer. After optimization

the following will apply to all vectors in the kernel machine buffer:

• α (i) = 0: xi is not a support vector in the kernel expansion, and does not need

to be included during the evaluation of the kernel expansion (f (xi) > ρ).

• 0 < α (i) < 1
νm

: xi sits exactly on the hyperplane in RKHS. This particular

vector is referred to as a non-bound support vector. (f (xi) = ρ).

• α (i) = 1
νm

: xi is outside the hyperplane and is referred to as a bound support

vector (f (xi) < ρ).

The significance of these three types of vectors in the kernel machine buffer will

play an important role in the optimization of the quadratic program. Since only pairs

of variables are optimized in any one iteration, these two variables are referred to

as αa = α (a) and αb = α (a). The change in notation is merely for convenience.

Equation (78) separates αa and αb from the summation term in Equation (75).

Z (α) = 1
2
α2
aKa,a + 1

2
αa

[
m∑

i 6=a,b
αiKa,i

]
+ 1

2
α2
bKb,b

+1
2
α2
bKb,b + 1

2
αb

[
m∑

i 6=a,b
αiKb,i

]
+ 1

2

m∑
i,j 6=a,b

αiαjKi,j

+1
2
αaαbKa,b + 1

2
αbαaKb,a

(78)

The following substitutions can be made:
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Ka,b = Kb,a

χa = 1
2

[
m∑

i 6=a,b
αiKa,i

]

χb = 1
2

[
m∑

i 6=a,b
αiKb,i

]

C = 1
2

m∑
i,j 6=a,b

αiαjKi,j

(79)

Yielding the a simplified form for Equation (75):

Z (α) =
1

2
α2
aKa,a +

1

2
α2
bKb,b + αaχa + αbχb + αaαbKa,b + C (80)

Equation (80) is written only in terms of the variables αa and αb, with all other

variable being held constant. The equality constraint given in Equation (77), allows

αb to be written in terms of αb (Equation (81)).

αb = 1−
m∑

i 6=a,b

αi − αa (81)

Since the QP objective function can be written fully in terms of αa, the derivative

of Z (α) is taken with respect to αa. Equation (82) gives the derivative of αb in terms

of αa. Equation (83) takes the derivative of Equation (80) while using Equation (82)

to keep the entire expression in terms of a single variable αa.

∂ (α2
b)

∂αa
= −2

(
1−

m∑
i 6=a,b

αi − αa

)
(82)

∂Z (α)

∂αa
= αaKa,a−

(
1−

m∑
i 6=a,b

αi − αa

)
Kb,b+χa−χb+

(
1−

m∑
i 6=a,b

αi − 2αa

)
Ka,b (83)
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By setting the derivative of the objective function to zero, the minimum of the

objective function can be found. These are shown in Equations (84) and (84).

αaKa,a−Kb,b+Kb,b

m∑
i 6=a,b

αi+αaKb,b+χa−χb+Ka,b−Ka,b

m∑
i 6=a,b

αi−2αaKa,b = 0 (84)

αa =

Kb,b

(
1−

m∑
i 6=a,b

αi

)
−Ka,b

(
1−

m∑
i 6=a,b

αi

)
− χa + χb

Ka,a +Kb,b − 2Ka,b

(85)

Finally, using the RBF kernel as the kernel function, all kernel evaluations across

the diagonal of the Gram matrix K are 1.0. Therefore Equation (85) can be further

simplified to Equation (86).

αa =
1

2

(
1−

m∑
i 6=a,b

αi

)
+

χb − χa
2 (1−Ka,b)

(86)

Once two vectors are chosen in the kernel machine buffer (indices a and b) to have

their α weights optimized, Equation (86) is used to directly solve for αa and Equation

(81) is used to recover αb.

The question still remains as to how the index values for a and b are determined.

Osuna’s theorem states that for positive progress to be made in the optimization

problem, only vectors in the kernel machine that violate the Karush-Kunn-Tucker

(KKT) conditions for optimality should be optimized [32]. The KKT violators can

be identified by testing the vectors stored in the kernel machine buffer to see if any

of the previously described non-support vectors or support vectors violate the below

equivalences:
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f (xi) < ρ⇔ αi = 1
νm

f (xi) > ρ⇔ αi = 0

f (xi) = ρ⇔ 0 < αi <
1
νm

(87)

Following a similar procedure to the work of Schölkopf et. al. [38] for determining

when a vector violates one of the KKT conditions described in Equation (87), a KKT

violation can be detected by the use of the boolean expression described by Equation

(88).

((f(xindex)− ρ)αindex < 0) ∨
(

(ρ− f(xindex))

(
1

νm
− α (i)

)
> 0

)
(88)

7.3.2 The Active Set (AS) Algorithm

It is assumed that data arrives in an online fashion at time index t. The AS algo-

rithm works in a similar fashion to the modified SMO algorithm presented in [38],

by optimizing two variables at once. The AS algorithm trains the kernel machine in

three novel ways.

The first contribution is the margin parameter ρ is calculated as the average of

all non-bound support vectors. In the offline batch setting SMO assumes that any

single non-bound support vector can be used to recover ρ. This technique is only true

when the QP problem has been fully solved. In the case of SMO the value of ρ gets

updated with each optimization step and it converges to its true value. This approach

is not suitable for an online environment. The QP objective function changes with

each time step as a new data vector is added to the kernel machine buffer. Taking

the average of each non-bound support vector prevents the value of ρ from changing

dramatically.
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The second novel contribution is the use of a similarity measure when iterating

over the set of points that violate the KKT conditions (this set is considered the

active set). The RBF kernel evaluation can be viewed as a similarity between two

vectors in the input space. All kernel evaluations between the input vector and all

vectors stored within the kernel machine buffer are performed for the optimization of

the QP problem. These values can also be used to impose and ordering of all KKT

violating points. Looking at Equation (86) it can be seen that the value of αa will

be larger when choosing a closer vector index for αb than one that is further away.

Then when solving for αb using Equation (81), this value will have a smaller value

to maintain the equality constraint of the QP objective function. This will act help

to enforce sparsity in the number of bound and non-bound support vectors stored in

the buffer. There are multiple assignments of αb and only one assignment of αa per

time step, allowing αa to become a support vector and at the same time promoting

smaller weight values for vectors already in the buffer.

Finally, the third contribution is a result of the fact that the calculation of ρ is

only done at the start and the end of a full iteration. Contrasting to the modified

version of SMO from [38], ρ is calculated after every pair-wise optimization. The

computational complexity will be examined further in Section 7.4.

The AS algorithm is presented below in Algorithm 5. The AS algorithm operates

in two stages, whereby the first stage assigns an initial value to α (t) based on the

evaluation of ft−1 (xt) and then adjusts all other α values to account for the increase

of vectors in the kernel machine buffer. The second stage identifies KKT violations

and performs the pairwise optimization step between the input and all KKT violating

vectors.

Algorithm 6 describes the pairwise optimization of all KKT violating vectors.

Once the input vector has been added to the kernel machine buffer at time t, it’s α

weight is initialized based on ft−1 (xt). Then it is treated like all other vectors in the



119

Algorithm 5 The Active Set Kernel Machine Algorithm

1: Initialize:

• Kernel Machine Buffer, X ← ∅

• Expansion Term Buffer, A← ∅

• Kernel Matrix, K ← ∅

• ρ← ∅

• Number of stored vectors, m← 0

2: while t < inf do
3: xt ← from input stream.
4: X ← X ∪ xt
5: if t = 0 then
6: α (0)← 1.0
7: K1,1 ← k (xt,xt)
8: ρ← 1.0
9: else
10: if ft−1 (x) < ρt−1 then
11: α (t)← 1

ν(m+1)

12: else if ft−1 (x) > ρt−1 then
13: α (t)← 0.0
14: else
15: α (t)← 1

2ν(m+1)

16: end if
17: α← α

(
m
m+1

)
18: m← m+ 1
19: for i← 1 to m do
20: K (i,m)← k (xi,xm)
21: K (m, i)← k (xi,xm)
22: end for
23: index keys ← sort(K (1 · · ·m,m))
24: optKKT(α,X,ν,γ,index keys)
25: end if
26: end while
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kernel machine buffer. If it is identified as a KKT violator it will be assigned index a

for pairwise optimization. If it is not identified as a KKT violation then the closest

KKT violator to the current input will be assigned index a.

Algorithm 6 optKKT(α,X,ν,m,γ,index keys)

1: ρ← calculate rho(α,X,γ)
2: KKT Violation List, V KKT ← ∅
3: for i= 1 to m do
4: index ← index keys(i)
5: xindex ← X (index)
6: if Equation (88) evaluates to TRUE . then
7: V KKT ← V KKT ∪ (i)
8: end if
9: end for
10: a ← V KKT ∪ (1)
11: for i= 2 to m do
12: b ← V KKT ∪ (i)
13: α (a),α (b)← by equations 86 and 81.
14: end for

Algorithm 7 calculate rho(α,X,ν,m,γ)

1: c←0
2: ρ←0
3: for i= 1 to m do
4: if 0 < α (i) < 1

νm
then

5: ρ← ρ+ f(xi)
6: c← c+ 1
7: end if
8: end for
9: return ρ/c

7.4 Experiments

The first experiment that was performed to evaluate the AS algorithm was on 2-

dimensional data points. The following points were used to train the novelty detector
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xt=1 = [0.00.0], xt=2 = [1.00.0], xt=3 = [−1.00.0], xt=4 = [0.01.0], xt=5 = [0.0− 1.0],

xt=6 = [2.02.0].

Figure 43 illustrates the resulting novelty detectors, ND1 and ND2. The two top

panels (a and b) within the figure show the resulting kernel expansion evaluations.

Green squares represent non-bound support vectors, while red ’exs’ represent bounded

support vectors. The value of the margin parameter ρ only depends on non-bound

support vectors, so those particular vectors have an effect on ρ. Panels c and d

show the resulting QP objective function for the novelty detectors ND1 and ND2

respectively. The red line represents the equality constraint that any solution must

enforce. Panel c shows that the optimal point for the QP occurs when xt=6 = [2.02.0]

becomes a bound support vector (due to box constraints in the QP) and xt=1 =

[0.00.0] becomes a non-bound support vector. The choice of ν determines the location

of the box constraints. In panel d, both vectors are non-bound support vectors. The

choice of RBF kernel parameter γ affects the curvature of the QP objective function.

The experiment illustrated in Figure 44 was performed by alternate sampling of

two separate, two dimensional distributions, xt=ODD=[N (µ = −2.0, σ = 0.5),

N (µ = −2.0, σ = 0.5)] and xt=EV EN=[N (µ = 2.0, σ = 0.5),N (µ = 2.0, σ = 0.5)]. A

total of 100 samples were generated starting with t = 1 and then alternating between

xt=EV EN and xt=ODD.

Panels a and c, and panels b and d in Figure 44 represent two novelty detectors

each trained with the same parameters for ν and γ respectively. In one case the

novelty detector was trained using the AS algorithm (panel a and c), and in the other

case the novelty detector was trained using Matlab’s quadprog() optimizer (panel b

and d).

It can be seen that there are some differences between the resulting solutions.

Matlab’s quadprog() optimizer will provide a precise solution to the quadratic pro-

gram. The resulting number of non-bound support vectors in the active set solution
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Figure 43: a) A contour plot of a novelty detector, ND1, trained using the AS al-
gorithm. Data point 1 and 6 were added at time steps t = 1 and 6 respectively.
b) A contour plot of a novelty detector, ND2, trained using the Active Set algo-
rithm. Data point 1 and 6 were added at time steps t = 1 and 6 respectively. c)
Due to parameterization of ν and γ point 6 becomes a bounded support vector,
while point 1 is a non-bounded support vector. d) Due to parameterization of
ν and γ both points 6 and 1 become a non-bound support vectors.

are greater than the QP solution.

Figure 45 illustrates a similar result to that of Figure 44. In this case the kernel

parameter was increased, yielding similar novelty detectors. It is evident that the

result of averaging non-bound support vectors during optimization will yield more

non-bound support vectors.
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Figure 44: Comparisons between two different support vector novelty detectors. a
and b) In this setting the value of γ remains fixed while ν is adjusted. Training
was accomplished by the AS algorithm. c and d) The same data set and pa-
rameters were used as in panels a and b. Training was accomplished by using
Matlab’s quadprog() quadratic programming solver. ρ was calculated in the
same manner as in the AS algorithm.

Table 11 shows that the solution obtained by the AS algorithm and the QP opti-

mized solution both tend to enforce the same ν property as in the work of Schlkopf

et. al. [38]. The ν property sets bounds for both the number of non-bound and bound

support vectors, and the number of outlier data points across all observed data. The

set of outliers is defined in the following sense, O = [i|i ∈ {1 · · · t} ∧ ft (xi) < ρ].



124

Figure 45: Similar to the plots found in Figure 44, but in this instance the width
of the kernel function was made smaller by increasing γ. The resulting novelty
detector from the AS algorithm produces a kernel machine with more non-bound
support vectors.

In the case of the number of outliers, the ν-bound places an upper limit on the

outliers that will occur on the training set. In the case of the number of support

vectors, the ν-bound represents an upper limit on the total number of support vectors

(bound and non-bound) that will be produced from training.

The results in Table 11 are in line with Figures 44 and 45. The AS algorithm

operates in an incremental fashion, incorporating new values at every time step. The
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Table 11: Summary of results for novelty detectors illustrated in figures 44 and 45.

Novelty Detector ν-bound Number of SVs Number of outliers (|O|)

AS ND1 (ν = 0.2,γ = 0.1) 20 30 20

AS ND2 (ν = 0.8,γ = 0.1) 80 90 83

AS ND3 (ν = 0.2,γ = 2.0) 20 52 18

AS ND4 (ν = 0.8,γ = 2.0) 80 89 78

QP Solver ND1 (ν = 0.2,γ = 0.1) 20 21 19

QP Solver ND2 (ν = 0.8,γ = 0.1) 80 82 79

QP Solver ND3 (ν = 0.2,γ = 2.0) 20 34 21

QP Solver ND4 (ν = 0.8,γ = 2.0) 80 82 81

total number of support vectors produced tends to be higher than that of an optimal

QP solution because KKT violator pairs are only optimized once per time step. The

outlier count also appears to break through the nu-bound in the case of AS ND2.

Since the value of ρ is calculated by averaging across all non-bound support vectors,

the value of ρ will converge to a value that will enforce the ν-bound as more values are

added to the kernel machine buffer. The behavior of tracking an input distribution is

desirable for an algorithm that processes data in an online manner. Table 12 provides

evidence of the convergence of the algorithm to the ν-bound by running the exact

same experiment as above, but this time with 300 samples. Any cases where the

ν-bound is broken in the QP trained novelty detectors is due to round off errors and

machine precision. Matlab’s quadprog() function can return values very close to 0.0.

Any α (i)’s that were close to 0.0 or close to 1
νm

were set to 0.0 or 1
νm

respectively.

Figure 46 illustrates how using the AS algorithm archives better computational

complexity than the use of a specialized quadratic programming solver. General

purpose QP solvers will scale in O (m3) [32,38] computational complexity, where m is

the number of variables being optimized. The AS algorithm scales in computational

complexity according to O (mk) where m is the number of variables being optimized

and k is the number of KKT violators. Algorithm 7 line five shows that the kernel
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Table 12: Summary of results for novelty detectors illustrated in figures 44 and 45.

Novelty Detector ν-bound Number of SVs Number of outliers (|O|)

AS ND1 (ν = 0.2,γ = 0.1) 60 68 60

AS ND2 (ν = 0.8,γ = 0.1) 240 250 239

AS ND3 (ν = 0.2,γ = 2.0) 60 135 71

AS ND4 (ν = 0.8,γ = 2.0) 240 244 230

QP Solver ND1 (ν = 0.2,γ = 0.1) 60 62 59

QP Solver ND2 (ν = 0.8,γ = 0.1) 240 242 241

QP Solver ND3 (ν = 0.2,γ = 2.0) 60 69 59

QP Solver ND4 (ν = 0.8,γ = 2.0) 240 242 241

expansion is evaluated for each KKT violator. Since the number of KKT violators

will be less than the number of vectors being optimized the computational complexity

of the AS algorithm will scale between O (m) and O (m2). Interestingly enough this

is the same computational complexity as the SMO algorithm [32]. The training is

done on a step by step basis in the As algorithm, so the number of KKT violators

will usually remain low, giving a computational complexity closer to O (m) than to

O (m2). Figure 46 shows the near linear computational complexity of the AS training

algorithm.

Execution of kernel machines will be faster than any other density estimator that

does not enforce a sparsification technique. The use of a Parzen window estimator

is a good example of the online computational complexity of incorporating each in-

put vector into the density estimate. The computational complexity of evaluating

a Parzen window estimator will scale in O (t) computational complexity. In other

words, with each time step, one more vector is added to the kernel machine buffer

that must be evaluated in the kernel expansion expression. The key advantage of

kernel machines is that only a subset of observed data is used in the kernel expansion

evaluation. The computational complexity of evaluating a kernel machine trained

using the active set approach is O (n), where n is the total number of bound and
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Figure 46: Training using Matlab’s quadprog() quadratic programming solver was
accomplished by solving a successively larger QP problem at each time step.
The AS algorithm executes faster because it incorporates each new input into
the existing kernel machine.

non-bound support vectors.

Figure 47 compares the execution performance of both a Parzen window estimator

and a novelty detector trained using the AS algorithm. Both algorithms operate with

linear computational complexity. The kernel machine novelty detector is subject to

the Representer Theorem [1]. The sparsification employed by the kernel machine

results in better linear computational complexity due to hidden constants. Run-time

efficiency is a highly desirable characteristic in online kernel machine applications.
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Figure 47: Evaluation time was compared to a Parzen Window kernel density es-
timator (KDE). A Parzen Window estimator is equivalent to ν-SVND when
ν=1.0, and therefore every input becomes a bound support vector. The result-
ing AS trained ν-SVND performs better because only support vectors make up
the expansion evaluation.

7.5 Mode Tracking

A kernel machine used as a novelty detector can also be used as a density estimator

and mode tracker for the underlying probability distribution that the input data is

drawn from. It is important to point out that the parameterization of the kernel

function is important when using a ν-SVND to estimate a density function on the

input data. Figure 45 panels a and c illustrate that depending on parameterization,

f (x) may not accurately reflect the probability distribution that the input data is

being drawn from. Panels a and c use ν = 0.2 which will place an upper bound on



129

the number of outliers in the training set to 20% of the training set size. The number

of support vectors are lower bounded to 20% of the training set size. The kernel

width is too small in this case, and the effect is that f (x) does not resmble the actual

probability distribution. Panels b and d show that increasing ν = 0.8 will allow more

support vectors to be included into the kernel expansion and then the shape of f (x)

is more representative of the actual probability distribution.

In the work of Comaniciu and Meer [54] and Comaniciu et. al. [52] the authors

explore the use of using the mean shift for input space mode detection and object

tracking in a sequence of images respectively. In their work for mode detection Co-

maniciu and Meer define the kernel density estimator using a Parzen window esti-

mator [54]. Equation (89) illustrates the complete formulation of a Parzen window

kernel density estimator. Equation (90) gives the changes made to Equation (89) to

fit within the use of kernel machines.

f̂ (x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
(89)

In Equation (89), the number of kernel functions used in the density estimate is

defined by the parameter n. The kernel function evaluation is based on a euclidean

metric that is scaled by a bandwidth parameter, h raised to the power of the dimen-

sionality, d, of the input. Equation (90) simplifies the kernel expansion by weighting

each kernel function by 1/m. While the contributions of each kernel function will no

longer satisfy certain statistical properties, the modification only changes the scale of

the density estimate. The shape of the density estimate is still the same and since

the mean shift procedure seeks the maximum of the density estimate, removal of the

bandwidth parameter will have no effect on the result. In the case of Equation (91),

the constant weighting on each kernel function is replaced by an input dependent

weighting. This is the familiar form of the kernel expansion that we use in our AS
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algorithm.

f̂ (x) =
1

m

m∑
i=1

k (x, xi) (90)

f (x) =
m∑
i=1

α (i) k (x, xi) (91)

Equations (92) and (93) give the original expression for the mean shift and the

modified version that can be used in the kernel expansion form of the active set

algorithm. In Equation (92) the term g() is equivalent to −k′(). When using the

RBF kernel in this example the -ve sign and the effect of the parameter γ cancel out

in the numerator and the denominator. In [54] the constant weighting on each kernel

term is factored out of the mean shift procedure. Equation (93) has to account for

the variable weight terms.

xMS =

n∑
i=1

xig (xMS, xi)

m∑
i=1

g (xMS, xi)
(92)

xASMS =

n∑
i=1

xiα (i) k (xASMS, xi)

m∑
i=1

α (i) k (xASMS, xi)
(93)

The modified version of the mean shift procedure is illustrated in Figure 48. Initial

points were chosen at xneg = [−4.0 − 4.0] and xpos = [4.04.0]. Equation (93) was

repeatedly applied until there was little change in the either density maximum. The

large square markers settle at the two maximum points of the density estimate.

The primary benefit it the modified version of the mean shift algorithm presented

in this work is that the update procedure need only to use non-zero α weights. In

other words, as with the density estimate itself, the search for the maximum of the
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Figure 48: A modified version of the mean-shift algorithm was used to find the max-
imum of the resulting density estimate produced by the kernel machine (large
square markers). Starting points before using the mean-shift are illustrated by
the arrows in the plot.

density function only depends on bound and non-bound support vectors. This will

have the same computational benefit as the evaluation of the kernel expansion.

7.6 Conclusions and Application Scope

In this chapter an efficient training algorithm for a ν-support vector novelty detector

was presented. The active set training algorithm makes use of averaging across non-

bound support vectors for calculation of the margin parameter ρ. The calculation of

ρ in this manner is suitable for online applications where the QP problem objective
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function changes over time. The use of a similarity measure for ordering updates to

α weights with respect to the current input allows the kernel machine to optimize the

QP objective function, while at the same time optimize weights in a fashion that is

directed by the input.

A modified mean shift procedure was presented and evaluated for the kernel expan-

sion as defined by this active set algorithm. This computationally efficient modified

mean shift procedure can be used for tracking the maximum in a given kernel density

estimate, or for the detection of changes in the estimated probability density estimate.

The results of the AS algorithm provide both quantitative and qualitative evi-

dence of its effectiveness. Qualitatively the results of the AS algorithm output and

QP optimized kernel machine output look very similar in shape. The AS algorithm

tends to produce more margin support vectors, but has a computational complexity

lower than that of a generic QP optimizer. In the work of Schölkopf et al. [38] the

authors provide bounds on the number of support vectors and outliers that their SMO

algorithm produces. The results presented in this thesis do follow the bounds stated

in [38], but the AS algorithm does not converge to the same exact solution as in [38]

due to its online nature.

The novel contributions of the AS algorithm are outlined in section 7.3.2. Addi-

tionally, the mode tracking approach presented in this chapter is novel contribution

that follows Comaniciu’s work [52, 54] for the tracking of the maximum of a kernel

density estimator. Since the kernel machine enforces regularization in the QP solu-

tion the resulting mean shift procedure will only use the support vectors allowing for

a more computationally efficient evaluation of the mean shift.

The application scope of the AS algorithm is in novelty detection and mode track-

ing. The training of an efficient kernel machine novelty detector can find use in

computer vision, control systems, decision support systems and signal processing to

name a few. Mode tracking can be directly used for the tracking of objects in video.
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The advantage of using a kernel machine for mode tracking is that support vectors

are used as a basis for the object being tracked, allowing for fewer expansion term

evaluations when computing the mean shift.



Chapter 8

Concluding Remarks

Online environments give rise to four main problems in the effective use of kernel

machines in intelligent systems. In Chapter 1 five separate algorithms were presented

to deal with one or more of the following problem areas. From the research conducted

in this thesis, conclusions can be made about the nature of each problem and the

solution given. Below is a summary of all conclusions made for the problems addressed

in this thesis.

• Computational efficiency in kernel machine evaluation and training:

The primary conclusion regarding the efficiency of kernel machines in online

environments is that the time taken to perform the kernel evaluations is the

largest obstacle to efficient evaluation. Throughout this thesis the computa-

tional complexity was considered in terms of the training set size, or in terms

of the number of expansion terms used for kernel machine evaluation. This

thesis provide two contributions to the efficient execution or training of kernel

machines.

First, the S3 algorithm described in Chapter 3 gave a computationally efficient

method of selecting a subset of support vectors for training and evaluation of a

kernel machine classifier. The S3 algorithm can significantly reduce the number

134
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of kernel expansion terms used for classification. The primary disadvantages of

the S3 algorithm is that the accuracy of the classifier suffers in the presence of

stationary data, and optimization of S3 parameters must be done offline.

Second, the AS algorithm presented in Chapter 7 provides a kernel machine that

can be used for learning in online situations by solving the QP problem in an

online fashion. The AS algorithm optimizes a QP problem that yields a result

that is close to the traditionally QP trained ν-support vector novelty detector.

The AS algorithm is more computationally efficient than using a QP solver on

a growing window of data. The disadvantage of the AS algorithm is that if the

number of KKT violators is close to the training set size, the computational

complexity will be close to O (m2).

Solving the problem of computational complexity is significant because if kernel

machines are to be used in embedded or resource limited environments they

must operate as efficiently as possible.

• Adaptability of the kernel machine to the time-varying nature of the

input data: The results of this thesis show that online data sources can provide

an infinite, time-varying data stream. The time-varying nature of the data is in

direct contrast with the training method of offline kernel machines. If the data is

time-varying, the kernel machine must be able to adapt the previously computed

kernel weights and any required kernel parameters. There are five contributions

to the adaptability of kernel machines to time-varying data presented in this

thesis.

First, the S3 algorithm of Chapter 3 selects support vectors based on their age

and can therefore adapt to non-stationarity in the input stream. Second, the

PKM algorithm of Chapter 4 uses a similarity measure to repeatedly update ex-

pansion weights using the KLMS update procedure. Third, the SDC algorithm
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in Chapter 5 iteratively updates more expansion term weights randomly across

the whole kernel machine buffer rather than just applying the KLMS algorithm

to the newly arrived input. Fourth, the algorithm given in Chapter 6 shows how

the RBF kernel parameter is updated based on kernel machine input statistics

and fuzzy logic. Fifth, the AS algorithm makes use of a similarity measure

with the current input when selecting KKT violation pairs for optimization.

The disadvantage these algorithms is the extra computational complexity that

is involved with the adaptation procedure. The computation complexity was

kept within O (m) (except for the AS algorithm which is close to O (m)) which

still makes the solutions suitable for online use. Extra computational overhead

may not be appropriate in all situations.

The adaptation of kernel machines is significant because it maintains the accu-

racy of the kernel machine during online use on time-varying data. There are

many online situations where adaptation is a system critical requirement such

as in control systems and signal processing applications.

• Accuracy of the resulting kernel machine in online situations: The

results presented in this thesis clearly show that it is possible to improve upon

the classification or regression accuracy of both the NORMA and the KLMS

algorithm in online applications. The use of stochastic gradient descent allows

the kernel machine to take a step in minimizing the empirical risk with each

new input. Both the NORMA and the KLMS algorithm operate with O (m)

computational complexity but only update the weight of the current input vec-

tor. A similarity measure between the current input and the stored support

vectors allows for update of kernel machine weights and also prioritizes updates

to weights that have the greatest effect on the current output. There are three

contributions in this thesis when considering the accuracy of kernel machines.
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First, the PKM algorithm presented in Chapter 4 uses a similarity measure

for updating more than one expansion term weight per input time step. This

represents a stochastic gradient descent of an empirical risk functional for the

kernel machine. Second, the SDC-KLMS algorithm in Chapter 5 uses random

selection method for updating more than one kernel expansion weight, and also

uses an error correction heuristic when adding a new input to a finite sized

buffer. Third, the AS algorithm in Chapter 7 achieves near the same level

of accuracy as an offline QP solution for a kernel machine used for novelty

detection. The contributions discussed are significant because solving the QP

problem allows increased accuracy, but comes at a higher computational cost

of between O (m) and O (m2) [32].

• The effect of limited memory environments on the accuracy of kernel

machines: The results presented in this thesis illustrate the effect of truncation

error when using a finite size memory for kernel machines. The representer

theorem states that the number of support vectors will increase without bound

over time [26]. Therefore memory space will become a limited resource issue

and older support vectors will have to be deleted in favor of new ones. The

results described in Chapter 5 clearly illustrate the effect truncation error can

have of the accuracy and stability of the KLMS kernel machine. The SDC-

KLMS algorithm addresses the effect of truncation error [26] that occurs when

a support vector is replaced in the memory buffer. The SDC-KLMS algorithm is

significant because it addresses an issue with accuracy and also with stability for

the use of kernel machines in online environments. The application scope of the

SDC-KLMS algorithm is for finite memory applications. There are situations

where memory is not an issue but the computational complexity of evaluating

the kernel expansion is too high. In this case the buffer can be limited in
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size to limit computational cost creating an issue with truncation error. The

SDC-KLMS algorithm can be used in this setting as well.

There are many future research directions on the topic of specialized online kernel

machines. One research area is the potential combination of the algorithms presented

in this thesis. For example, both the S3 algorithm, and the PKM algorithm make use

of the idea of subsets. It is possible to add a similarity measure to the S3 algorithm

and use this metric instead of a metric based on age of the support vector in the buffer

when composing the subset. As well it is possible to examine the idea of truncation

error compensation with any of the other algorithms in this work.

Another interesting area of research is the optimization and integration of online

kernel methods into hybrid intelligent systems. How the kernel machine is used within

the framework of an online hybrid intelligent system can have a large impact on the

effectiveness of the kernel machine. As in the last decade with offline kernel machines,

there are many opportunities for the development of kernel machines in the area of

online intelligent systems.
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