
Multi-Robot Exploration Using Potential Games

by

George Philip, B.A.Sc.

A Thesis submitted to

the Faculty of Graduate and Postdoctoral Affairs

in partial fulfilment of

the requirements for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada

September 2013

Copyright c©

2013 - George Philip

The undersigned hereby recommends to the

Faculty of Graduate and Postdoctoral Affairs

acceptance of the Thesis

Multi-Robot Exploration Using Potential Games

Submitted by George Philip, B.A.Sc.

in partial fulfilment of the requirements for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Professor Howard Schwartz, Thesis Supervisor

Professor Sidney Givigi, Thesis Co-supervisor

Professor Roshdy Hafez, Chair
Department of Systems and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

September, 2013

ii

Abstract

In this thesis, we consider exploring a 2-D environment with multiple robots by mod-

elling the problem as a Potential Game rather than using conventional frontier-based

dynamic programming algorithms. A potential game is a type of game that results

in coordinated behaviours amongst players. This is done by enforcing strict rules

for each player in selecting an action from its action set. As part of this game, we

define a potential function for the game that is meaningful in terms of achieving the

greater objective of exploring a space. Furthermore, an objective function is assigned

for each player from this potential function. We then create algorithms for the ex-

ploration of obstacle-filled bounded spaces, and demonstrate through simulation how

it outperforms uncoordinated algorithms by reducing the time needed to uncover the

space.

iii

Acknowledgments

I would like to thank my supervisors Professor Howard Schwartz and Professor Sid-

ney Givigi for their guidance and mentorship through the course of my studies and

research. I would not have been able to complete my work successfully without their

invaluable support and expertise in the related field of study.

I would like to express my appreciation for the staff and professors I have had

the pleasure of meeting and interacting with over the course of my study at Carleton

University.

Finally, I would like to thank my mother for her unwavering support and encour-

agement during the difficult long hours and joyous breakthroughs.

iv

Table of Contents

Abstract iii

Acknowledgments iv

Table of Contents v

List of Tables viii

List of Figures ix

List of Acronyms xi

List of Symbols xii

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Statement . 4

1.3 Contributions and Publications . 5

1.4 Organization of Thesis . 6

2 Background and Literature Review 8

2.1 Game Theory . 9

2.2 Cooperative and Noncooperative Games 10

2.3 Cooperative Control Problems and Potential Games 11

v

2.3.1 Potential Games . 12

2.4 Example Games . 14

2.5 Holonomic and Nonholonomic Constraints 15

2.6 Algorithm Runtime . 18

2.7 Summary . 20

3 Weakly Acyclic and Potential Games 21

3.1 Weakly Acyclic Game . 21

3.1.1 Initialization . 24

3.1.2 Action Selection . 24

3.1.3 Baseline Action and Turn Sequence 24

3.1.4 Convergence of Weakly Acyclic Games 26

3.2 Potential Game . 27

3.3 Potential Game Setup . 37

3.3.1 Spatial Adaptive Play (SAP) and Restricted Actions 38

3.3.2 An Algorithm for Exploration 41

3.4 Unbounded Game Simulation . 43

3.5 Summary . 47

4 Modified Potential Game Algorithms 49

4.1 Modified Algorithm for Bounded Spaces 49

4.2 Simulation of Exploration Algorithm 50

4.3 Computational Complexity of Algorithm 57

4.4 Improved Exploration Algorithm . 66

4.4.1 Effect of Obstacles on Exploration Time 76

4.5 Summary . 79

vi

5 Conclusions 81

5.1 Summary of Contributions . 82

5.2 Future Work . 83

List of References 85

Appendix A Code of Exploration Algorithms in NetLogor 88

A.1 Uncoordinated Exploration Algorithm 89

A.2 Algorithm 2 . 98

A.3 Algorithm 4 . 107

vii

List of Tables

2.1 Payoff matrix for prisoner’s dilemma 15

2.2 Payoff matrix for stag hunt . 15

viii

List of Figures

2.1 Angle between the heading and the wheels of a car [1] 17

2.2 Holonomic 45 degree turn . 17

2.3 Nonholonomic 45 degree turn [1] . 18

3.1 A robot’s predicted future positions for each two-step action sequence 25

3.2 6× 6 grid game with two robots . 31

3.3 Unbounded simulation with 5 robots 46

3.4 Final orientation of robots after reaching Nash equilibrium 46

3.5 Nash equilibrium in unbounded grid game 47

4.1 Simulation setup for Algorithm 2 and Algorithm 3 52

4.2 Comparison of exploration time of Algorithm 2 and Algorithm 3 with

ε = 0.3 and sensRange = 2 grid points 53

4.3 Comparison of exploration time of Algorithm 2 and Algorithm 3 with

ε = 0.3 and sensRange = 3 grid points 54

4.4 Comparison of exploration time of Algorithm 3 for a sensRange of 2,3,

and 4 grid points . 55

4.5 Comparison of exploration time of Algorithm 2 for a sensRange of 2,3,

and 4 grid points, and ε = 0.3 . 55

4.6 Comparison of exploration time of Algorithm 2 and Algorithm 3 with

ε = 0.3 and sensRange = 4 grid points 56

ix

4.7 Comparison of exploration time of Algorithm 2 and Algorithm 3 with

ε = 0.1 and sensRange = 4 grid points 56

4.8 Player i considering each two-step action sequence 60

4.9 Example of a square enclosing sensor’s radial coverage 63

4.10 Example to illustrate decision process of a robot using objective func-

tion (4.4) . 69

4.11 Comparison of exploration time of Algorithm 2 and Algorithm 4 with

ε = 0.1 and sensRange = 2 grid points 75

4.12 Comparison of exploration time of Algorithm 2 and Algorithm 4 with

ε = 0.3 and sensRange = 2 grid points 75

4.13 Comparison of exploration time of Algorithm 2 with ε = 0.3 and Algo-

rithm 4 with ε = 0.1, and sensRange = 2 grid points for both algorithms 76

4.14 Simulation setup for analyzing the effect of obstacles on exploration time 78

4.15 Comparison of exploration time of Algorithm 4 in a setup with one

obstacle and in a setup with two obstacles 78

x

List of Acronyms

Acronyms Definition

CML Concurrent Mapping and Localization

DMDP Deterministic Markov Decision Process

LRF Laser Range Finder

MDP Markov Decision Process

NE Nash Equilibrium

SAP Spatial Adaptive Play

SLAM Simultaneous Localization and Mapping

WLU Wonderful Life Utility

xi

List of Symbols

Symbols Definition

Ai action set consisting of all possible actions a player i can

play at a given time

ai the action a player i decides to play at time t from its action

set Ai (i.e. ai ∈ Ai)

abi baseline action

a the joint actions of all players played at time t (i.e. a =

(a1, a2, ..., an))

A the set of all joint actions that can be played

a−i joint actions of all players except player i

n number of players in a Potential game

N the set of all players in a Potential game (i.e. N =

{1, 2, 3, ..., n})

Ni the set of all players, except the ith player (i.e. Ni =

N\{i})

xii

Ui local objective function of player i in a game

U the set of all local objective functions of all players in a

game

G representation of a game (i.e. G = (N,A,U))

∆(Ai) probability distribution over a player i’s action space Ai

∆(A) probability distribution over joint action space A

pi(t) strategy of a player i in Spatial Adaptive Play (SAP) in se-

lecting an action from its action set Ai (i.e. pi(t) ∈ ∆(Ai))

ε exploration rate determining how often a player is allowed

to update its action

β exploration parameter in SAP that determines how likely

a player will select a suboptimal action

αi action sequence set consisting of all possible two-step action

sequences a player i can play over two time steps

γ the joint two-step action sequence of all players played over

two time steps

α the set of all joint two-step actions sequences that can be

played over two time steps in a Potential game

(axi , a
1
i) the two-step action sequence a player i decides to play at

time t from the set αi (i.e. (axi , a
1
i) ∈ αi)

(a′−i, a
′′
−i) joint two-step action sequences of all players except i

xiii

φ potential function or global objective function in a Poten-

tial game

gridpts set of 2-D Cartesian coordinates of all the grid points

posei(t) pose or orientation of player i at time t

loci(t) 2-D Cartesian coordinates of player i

posi(t) vector consisting of loci(t) and posei(t); posi(t) =

(loci(t), posei(t))

pos−i(t) position and heading vector of every player except player i

sensRange range of the sensor in terms of the number of grid points

that can be detected vertically or horizontally from where

the sensor is located

discP tsi(t) set of Cartesian coordinates of the grid points that have

been discovered by player i up until time t

discP ts−i(t) set of Cartesian coordinates of the grid points that have

been discovered by all players except player i up until time

t

asfi action selection function, which compares the utility for

each two-step action sequence and selects the action se-

quence that would provide i the most utility

Z number of horizontal and vertical divisions in a grid game

xiv

Chapter 1

Introduction

The field of robotics has seen much development and research in recent years. The

problem of exploring an unknown environment and generating a map for it remains

an active area for research and is at the heart of mobile robotics. There are many

applications for this such as in planetary exploration, reconnaissance, rescue, etc., in

which complete coverage of a terrain is important [2]. Recently, these applications

have been extended to include underwater systems in accomplishing various tasks

using Autonomous Underwater Vehicles (AUVs). This includes mapping of mines

underwater and the mapping of the topography under polar ice caps [3]. Further-

more, applications involving the use of multiple robots in achieving cooperative tasks

have received a considerable amount of attention. A multi-agent system consists of

a number of intelligent agents that interact with other agents in a multi-agent en-

vironment. An agent is an autonomous entity that observes the environment and

takes an action to satisfy its objective based on its knowledge [4]. The major chal-

lenge in multi-agent systems arise from the fact that agents have limited knowledge

about the status of other agents, except perhaps for a small subset of neighbouring

agents. Agents are endowed with a utility function or reward that depends on their

own strategies and the strategies of other agents. As such, in situations where agents

know nothing about the structure of their utility functions or how their own utility

1

CHAPTER 1. INTRODUCTION 2

depends on the actions of other agents, the only course of action for them is to observe

rewards based on experience and “optimize” on a trial and error basis [5]. Also, as all

agents are trying simultaneously to optimize their own strategies, even in the absence

of noise, an agent trying the same strategy twice may see different results because of

the non-stationary nature of the strategies of other agents.

There are often three categories of problems that are referred to within this um-

brella of mobile robotics. They are Guidance, Navigation, and Control. Guidance

involves intelligent decision making of where the vehicle should go and which path or

trajectory should be taken to reach the goal [6]. Navigation is the ability of the robot

to perceive or localize itself in the environment in order to ensure it is on the proper

course. Finally, control is the method by which the robot determines the signals to

send to the vehicle actuators [6].

The exploration and the mapping of an environment is a challenge in that the

environment is completely unknown and there is no preexising map for a robot to

localize itself within. Having multiple robots explore and map out the space adds

to the complexity because as with any multi-agent system the environment becomes

dynamic and complex [4]. Not only do robots have to simultaneously explore the

environment while avoiding obstacles and barriers and locate these features on a

map, but they also have to coordinate themselves so that their numbers can be

used to efficiently navigate the space. In addition, since each robot does not follow

the same path or trajectory to explore the space, they have a different view of the

environment. These different views of the environment have to be merged together to

create a unified view or map of the environment. Robots that simultaneously explore

an environment to map it while localizing itself within that environment is solving

what is known as the Simultaneous Localization and Mapping Problem (SLAM) or

the Concurrent Mapping and Localization problem (CML) [7,8].

CHAPTER 1. INTRODUCTION 3

1.1 Motivation

In most applications today that involve the use of multiple robots to explore a space,

a variation of the frontier-based dynamic programming algorithm introduced in [2] is

utilized. This approach involves choosing appropriate target points for the individ-

ual robots so that they simultaneously explore different regions of the environment.

Coordination is achieved by simultaneously taking into account the cost of reaching

a target point and its utility [2]. Whenever a target point is assigned to a specific

robot, the utility of the unexplored area visible from this target position is reduced

for the other robots. In this way, different target locations are assigned to indvidual

robots [2]. Using this approach every robot is required to keep track of the frontier

cells, which is the boundary between unexplored and explored cells. To determine the

cost of reaching the current fontier cells, the optimal path from the current position

of the robot to all frontier cells is computed based on a deterministic variant of value

iteration, a popular dynamic programming (DP) algorithm [9, 10]. Thus, the cost of

reaching each cell in the explored space must be calculated. As it can take several

iterations to converge to a final cost value for each cell, the computational complexity

grows as the robots explore more space. In fact, the computational complexity is of

quadratic order of the size of the explored area. The second issue with this approach

is that much information has to be shared among robots to achieve coordination.

Among other variables that must be shared, each robot has to share with other

robots its cost of reaching the frontier cell that is closest to it. Furthermore, as part

of the coordination scheme each player has to consider the decision the other players

would take at a given time and the respective payoffs they would receive before the

player can evaluate its own payoff for a particular action choice. Thus, considering the

aforementioned facts about frontier-based dynamic programming algorithms, it would

be of interest to investigate a method that may reduce computational complexity for

CHAPTER 1. INTRODUCTION 4

large search spaces; have a robot determine the action it should take without having

to calculate the decision of other robots; and that reduces the information that needs

to be shared among robots. It is generally known that game theory offers advantages

in that it leads to decentralized systems and reduces computational complexity [1].

In this regard, we come up with a method of exploring a space using multiple robots

by modelling the problem as a Potential Game.

1.2 Problem Statement

In this thesis we look at using multiple robots for the purpose of navigating and

exploring a bounded 2-D space that consists of obstacles. We are more interested

in the navigation algorithms employed by robots to fully explore a space than the

mapping aspect.

In [1], a mechanism known as a Simple Forward Turn Controller was devised to

solve the Consensus problem as a Potential game. The Consensus problem entails

getting multiple robots to meet at a common location in a distributed fashion without

any one robot having pre-existing knowledge of where that location is. As part of

the Potential game, a global objective function or a Potential function was defined

that captures the overall objective of consensus among robots. Moreover, a local

objective function was assigned for each robot to work towards so that consensus

could be realized in maximizing the function. The Simple Forward Turn Controller

served as the framework for simulating nonholonomic behaviour of real-world robots

by coercing robots to play certain actions at certain times. In this thesis, we aim

to create a similar Potential game under the same framework of the Simple Forward

Turn Controller, but instead of Consensus being the objective, we seek to solve the

exploration problem. The exploration problem can be described as follows: while

there is an unknown territory, allocate each robot a target to explore and coordinate

CHAPTER 1. INTRODUCTION 5

team members in order to minimize overlaps [11]. Given this, we define a meaningful

Potential function and assign each player an objective function that is coherent with

the overall goal.

1.3 Contributions and Publications

The main contributions of this thesis are:

1. The collaborative mapping of an unknown environment with a team of robots

using Potential games. As part of this contribution, we extend the definition of

a Potential game so that it can be modelled under the framework of the Simple

Forward Turn Controller.

2. We define the potential function for our Potential game, which will be a summa-

tion of the objective function of each player in the game. The objective function

itself will be based on the number of grid points that a player would discover in

playing an action sequence from its action set. Moreover, update rules for cru-

cial variables in the Potential game will be presented. The combination of the

potential function and the objective function for each player will be shown to

satisfy the WLU family of utility structures. We then prove that our Potential

function in conjunction with the local objective function of a player constitutes

a Potential game.

3. The modification of the Simple Forward Turn Controller so that a player chooses

its action from its best response set. The significance of this modification to

our game will be discussed.

4. Simulations in NetLogo signifying how our Potential game algorithm outper-

forms an uncoordinated algorithm in terms of the time required to explore a

CHAPTER 1. INTRODUCTION 6

finite bounded space. Numerous simulation results using different parameter

values will be presented.

5. Runtime analysis of our Potential game algorithm, which will be found to have

a lower runtime order than frontier detection algorithms.

6. Improvement of our initial Potential game algorithm. The improvement stems

from having a robot predict the future location of every other robot when it

decides to turn. New update rules will also be presented for key variables as

part of this new algorithm.

The related publications are:

1. G. Philip, S. N. Givigi, and H. M. Schwartz, “Multi-Robot Exploration Us-

ing Potential Games,” in IEEE International Conference on Mechatronics and

Automation (ICMA), 2013, (Takamatsu, Japan).

2. G. Philip, S. N. Givigi, and H. M. Schwartz, “Cooperative Exploration Using

Potential Games,” in IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 2013, (Manchester, UK). to be published..

The publication to the IEEE ICMA 2013 conference has been nominated for best

conference paper.

1.4 Organization of Thesis

The outline of this thesis is as follows:

Chapter 2 - Background and Literature Review. We review some of the ear-

lier work on using multiple robots for the exploration of spaces as well as the use

of Potential games in solving other problems such as the Consensus problem.

CHAPTER 1. INTRODUCTION 7

Furthermore, fundamental concepts and knowledge relating to this thesis will

be introduced including game theory, cooperative and noncooperative games,

cooperative control problems, Potential games, Nash equilibrium, holonomic

and nonholonomic constraints, and algorithm runtime analysis.

Chapter 3 - Weakly Acyclic and Potential Games. The Potential game and

its superclass, the Weakly Acyclic game, will be formally defined. As part

of our Potential game, we define a meaningful potential function and objective

function for each player. We briefly discuss how the Consensus problem was

modelled in previous work as a Weakly Acyclic game under the framework of

the Simple Forward Turn Controller, and adapt the Simple Forward Turn Con-

troller for our goal of exploring a space. Finally, the resulting Potential game

algorithm will be simulated for an unbounded or infinite space.

Chapter 4 - Modified Potential Game Algorithms. The Potential game algo-

rithm introduced in Chapter 3 will be modified so that bounded finite spaces

can be explored by a team of robots. Simulation results with varying parameter

values will be presented, which show that the modified Potential game algorithm

reduces exploration time compared to an uncoordinated exploration algorithm.

Furthermore, the runtime of the modified Potential game algorithm will be an-

alyzed and shown to be less than the runtime of frontier-detection algorithms.

Finally, an improvement to the modified Potential game algorithm will be sug-

gested that is based on having a robot predict the future location of every other

robot when it is deciding on a turn. Simulations results indicate this algorithm

to perform slightly better than the modified Potential game algorithm.

Chapter 5 - Conclusions. We conclude the thesis by reviewing the main findings

and contributions in prior chapters along with future research directions in

multi-robot exploration using Potential games.

Chapter 2

Background and Literature Review

The goal of exploration is to gain as much new information as possible of the environ-

ment within bounded time [11]. As mentioned in the previous section, frontier-based

dynamic programming algorithms have been widely used for coordinating multiple

robots to explore a space. However, there are other methods too that have been iden-

tified or have been implemented in systems to solve mobile robotics problems. For

example, before game theory had been considered for solving cooperative robotics

problems, an established way of solving problems in multi-robot applications was us-

ing the leader and follower approach where one robot assigns individual behaviours

and tasks to other robots [12]. With this approach, however, the leader is a high value

target, which in military applications can have disastrous consequences. Another

method that has recently been used in the field is based on decentralized partially

observable Markov decision processes (MDP) that provide a mathematical framework

for cooperative planning in an uncertain environment [1,13]. However, as the group of

robots get large, the computational complexity of this method increases substantially.

More recently, the emergence of cooperative behaviours in the realm of simul-

taneous multi-agent learning have been studied. In [14], co-evolutionary processes

involving genetic programming (GP) methods were used to achieve cooperative be-

haviours among multiple robots playing a soccer game.

8

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

With regard to the use of game theory in cooperative robotics, Marden et al.

showed in [15] how a Weakly Acyclic game could be implemented in a decentralized

manner in a holonomic environment. The Dynamic Sensor Coverage problem, which

is the problem of arranging a group of sensors throughout a space so as to provide the

maximum probability of detection of an intruder, was formulated as a Weakly Acyclic

game [15]. Furthermore, the Consensus problem, which is the problem of getting a

group of autonomous robots to meet at a point without having a centralized algorithm

telling the robots where that point is, was formulated and solved in [5] as a Weakly

Acyclic game. In [1], a mechanism known as a Simple Forward Turn Controller

was devised as part of a Weakly Acyclic game to solve the Consensus problem in

a nonholonomic environment. In this thesis, we integrate the Simple Forward Turn

Controller in our multi-robot Potential game for the exploration of a space.

The following subsections briefly discuss some of the major concepts and knowl-

edge that form the foundation of this thesis.

2.1 Game Theory

Game theory was first introduced by Von Neumann and Morgenstern in their publi-

cation “The Theory of Games and Economic Behaviour” in 1944 [16]. Since then it

has found major applications in the field of economics, behavioural and social science,

evolutionary biology, political science, and military strategy.

With regard to our focus in this thesis, game theory has been applied to many

problems in the field of robotics and autonomous systems in recent years. In this

setting, each player i ∈ N is assigned an action set Ai and a local objective function

Ui : A→ R, where A =
∏

i∈N Ai is the set of joint actions [15].

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

A game, G, can be expressed as a triplet [1].

G = (N,A,U) (2.1)

Section 2.4 will provide two examples of games formulated using the above expression.

2.2 Cooperative and Noncooperative Games

Most games can be either categorized as a cooperative game or a noncooperative

game. A cooperative game is a game in which the players form coalitions, and the

coalition reinforces the cooperative behaviour [17]. In a noncooperative game or

competitive game on the other hand, players interact with one another to maximize

their own rewards or achieve their own goals, and each player cannot enforce contracts

on what other players may do on future moves [1]. Therefore players compete and

do not work together. An important assumption that each player makes about other

players in noncooperative games is that they are rational. Checkers and chess are

examples of noncooperative games.

Cooperative and noncooperative games can be distinguished from one another

based on the reward structure or function of each of the players. If all players have

the same reward function, the game is a fully cooperative game or a team game [4].

If one player’s reward function is always the opposite sign of the other player’s, the

game is called a fully competitive or zero-sum game. A zero sum game receives its

name from the fact that the gains of one player is offset by the losses of another player.

Cooperative and noncooperative games can be thought of as two ends of a spectrum.

Games that have all types of reward functions fall between these extremes and are

known as general-sum stochastic games [4]. The stag hunt game and the prisoner’s

dilemma game are examples of a cooperative and noncooperative game respectively.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

Both these games will be presented in Section 2.4.

2.3 Cooperative Control Problems and Potential

Games

Cooperative control problems entail several autonomous players seeking to collectively

accomplish a global objective [15]. The challenge in cooperative control problems is

obtaining local objective functions for each of the players so that collectively they

accomplish the desired global objective. In [15], a game theoretic approach to coop-

erative control problems was introduced that involved assigning each player a local

objective function, albeit it was for solving the consensus problem rather than for

exploring a space using multiple robots as is our interest in this thesis. The formu-

lation of a game as seen in Section 2.1 was used to represent the game. The idea

was that if each player’s assigned utility function, Ui, were to fall under a suitable

category of games, one could appeal to algorithms with guaranteed properties for all

games within that category [15]. More precisely, a category of games that guaranteed

a Nash equilibrium (which will formally be defined in the following subsection) was

sought to solve the Consensus problem. This category of games was identified to be

the Potential game. Not only does the Potential game guarantee a Nash equilibrium,

but it also asserts the notion of utility alignment (as presented in [18]) so that each

player’s objective function is appropriately “aligned” with the objective of the global

planner [15]. This addresses how a player’s local objective contributes to the greater

cooperative objective or goal in a cooperative control problem. As stated in the con-

tributions of this thesis, we design a utility Ui for each player as part of a Potential

game for the purpose of exploring a space. Furthermore, we utilize the same learning

dynamics for each player in the game as [15] where the decision of any player i at

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

time t is made using only observations from the game played at time t − 1. This is

referred to as single stage memory dynamics [15].

2.3.1 Potential Games

In this subsection, we present the definition of a Potential game as it appeared in [15].

Suppose that the objective of a the global planner is captured by a potential function

φ : A→ R, and let

a−i = (a1, ..., ai−1, ai+1, ..., an)

denote the collection of actions of players other than player i. The joint action a will

be expressed as (ai, a−i) henceforth.

Definition 2.1 (Potential Games) Player action sets {Ai}ni=1, together with player

objective functions {Ui : A → R}ni=1, constitute a potential game if, for some

potential function φ : A→ R,

Ui(a
′′
i , a−i)− Ui(a′i, a−i) = φ(a′′i , a−i)− φ(a′i, a−i)

for every player i ∈ N , for every a′i, a
′′
i ∈ Ai, and for every a−i ∈ ×j 6=iAj.

The implication of the definition above for a Potential game is the that there

be perfect alignment between the global objective function and each player’s local

objective function. In other words, if a player unilaterally changed its action (i.e.

from a′i to a′′i in Definition 2.1), the change in its objective function has to be equal

to the change in the potential function [15]. This is what is expressed by the equality

in Definition 2.1, and is what captures the notion of utility alignment that Potential

games are known for. Therefore, any gain in utility that a player receives from

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 13

changing its action must be fully accounted for in the potential function. A very

good example of a class of problems being modelled as a Potential game can be found

in [15], which details how the Consensus problem can be formulated as a Potential

game. There is a weaker notion of a Potential game, known as a Weakly Acyclic

game, which will be discussed in Section 3.1. As stated earlier, learning algorithms

for Potential games guarantee convergence to a (pure) Nash equilibrium, which is

of importance to us as it will be seen in Section 3.4. Furthermore, we extend the

definition of a Potential game in Section 3.2 as one of our contributions.

A Nash equilibrium is a set of strategies of players such that “the strategy of each

player is a best response to the strategies chosen by all other players” [19]. Another

way of perceiving a Nash equilibrium is that it is a set of strategies where no player

can do better by unilaterally changing its strategy. The formal definition of a Nash

Equilibrium is as follows [15], and is premised on the assumption that all players are

rational.

Definition 2.2 (Nash Equilibrium) An action profile a∗ ∈ A is called a pure Nash

equilibrium if for all players i ∈ N ,

Ui(a
∗
i , a
∗
−i) = max

ai∈Ai

Ui(ai, a
∗
−i).

From the definition of a Potential game and the Nash equilibrium above, it can

be seen that in Potential games, any action profile maximizing the potential function

is a pure Nash equilibrium. Thus, every potential game has at least one such equilib-

rium, but there may also be suboptimal pure Nash equilibria that do not maximize

the potential function [15]. The definition of a Nash equilibrium will be illustrated

through the example games presented in the following section.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

2.4 Example Games

In this section, we provide two examples of games to illustrate the concepts discussed

in Section 2.1, Section 2.2, and Section 2.3; namely the definition of a game, the

difference between a cooperative and a noncooperative game, and Nash equilibrium.

The first example we present is the prisoner’s dilemma, which is a very well known

noncooperative game. As in (2.1), we denote this game G as G = (N,A,U). In

this game, two prisoner’s are held in separate cells and interrogated simultaneously.

They are offered deals in the form of lighter jail sentences for betraying their fellow

inmate. They can “cooperate” with the other prisoner by not snitching, or “defect”

by betraying the other prisoner. Thus, each prisoner has two actions available for

them to choose from. The set of all joint actions A is represented in Table 2.1, which

is a typical payoff matrix for this game. Each entry in the matrix represents the

payoff for both prisoners for a joint action. Note that lower jail sentences correspond

to higher payoffs in the matrix. There are thus 4 possible joint actions in A, and

the payoffs for both prisoner’s over each of the joint actions define U . According to

this reward structure, the top-left corner of the matrix cannot be a Nash equilibrium

because a rational prisoner would snitch on the other prisoner to increase his/her

reward from 3 to 5. We again emphasize a rational player here as the definition of

a Nash equilibrium deems it to be necessary (see Section 2.3.1). Likewise, the top-

right and bottom-left corner are not stable because the other prisoner could defect to

increase their reward from 0 to 1. In this situation, the Nash equilibrium is for both

prisoners to not cooperate and defect each other out. Neither prisoner can unilaterally

change their action from defecting on the other player to increase their reward.

The second game we look at is the stag hunt game, which is a cooperative game

that was first introduced by Jean Jacques Rousseau in “A Discourse on Inequality”

[20]. In this game two players may choose to hunt a stag or a rabbit. Hunting a stag

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

Table 2.1: Payoff matrix for prisoner’s dilemma

Prisoner1 \ Prisoner2 Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

Table 2.2: Payoff matrix for stag hunt

Player1 \ Player2 Stag Rabbit

Stag 10,10 0,7

Rabbit 7,0 7,7

is difficult and failure would be the result if one was to hunt a stag alone. Also, a

stag provides more meat than a rabbit. Table 2.2 is a typical payoff matrix for this

game. Note that there are two different Nash equilibriums. They are (10, 10) and

(7, 7), but (10, 10) is clearly the optimal Nash equilibrium. This game is different

from the prisoner’s dilemma game because the maximum reward for each player is

obtained when the players’ decisions are the same. Therefore, a coalition is enforced

in a game by ensuring that by working together, players generate more utility than

working by themselves.

2.5 Holonomic and Nonholonomic Constraints

In robotics, a holonomic system is a system in which the robot faces only holonomic

constraints. Holonomic constraints are restrictions on the movement of the robot

such that path integrals in the system depend solely on the initial and final states

of the system, completely independent of the trajectory of transition between those

states [21]. It only describes the movement of the robot’s chassis and does not account

for external forces such as gravity or intertia [1]. A simple example of a holonomic

system would be a ball attached to a chord of fixed length and rotating around a

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

point. If the angular velocity of the ball rotating around the point is given, all that is

needed to determine the angular position of the ball or the state of the system at any

time is the initial angular position of the ball. In most real world examples of wheeled

robots, however, nonholonomic systems are encountered. A nonholonomic system is

usually a mechanical system where the constraints imposed on the motion of the

system are not integrable; i.e. the constraints cannot be written as time derivatives

of some function of the generalized coordinates [21]. In a nonholonomic system, the

state of the system depends on prior states or on the trajectory of states in its state

space. Thus, the transition of states matter in computing a final state, and so the

system cannot be represented by a conservative potential function. An example of

a nonholonomic system is a four-wheeled car as shown in Fig. 2.1 where only the

front wheels can be turned. When turning a car towards a specific direction, the front

wheels do not maintain a constant angle with the heading of the car for the whole

duration of the turn. We denote the angle between the wheels and the heading of the

car as u as shown in Fig. 2.1. To determine the exact heading and position of the car

at the end of the turn, it is necessary to know the intermediate values of u and the

intermediate values of the heading and the position of the car throughout the turn.

In fact, the parameter u depends on the intermediate heading and positions values

of the car. Thus, the history of its states are required to determine its final state

making it a nonholonomic system. Figure 2.2 and Figure 2.3 are examples from [1]

that show a holonomic and nonholonomic path respectively of a bicycle-like robot.

As stated earlier, [5] and [15] solved the Consensus problem and the Dynamic

Sensor Coverage problem as Weakly Acyclic games. However, they were solved for

holonomic environments and thus, the algorithms could not be implemented as con-

trollers on actual robots that may, for example, use a differential drive system. The

main contribution of [1] was devising a mechanism known as the Simple Forward

Turn Controller to solve the Consensus problem in a nonholonomic environment.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 17

Figure 2.1: Angle between the heading and the wheels of a car [1]

Figure 2.2: Holonomic 45 degree turn

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 18

Figure 2.3: Nonholonomic 45 degree turn [1]

This mechanism will be discussed in detail in Section 3.1 when the Weakly Acyclic

Game is introduced, and more thoroughly in Section 3.3.1. We build on the Simple

Forward Turn Controller in our solution for exploring a space because the algorithms

we develop in this thesis become more intuitive and foreseeable to implement on real

systems.

2.6 Algorithm Runtime

The performance of algorithms are usually compared on the basis of their running time

or the time it takes to execute. It is a measure of the efficiency or the computational

complexity of the algorithm. The runtime of an algorithm is often described by a

function of some parameter that determines the size of the input to the algorithm.

Different functions with the same growth rate or asymptotic properties are classified

together in what is known as Landau notation [22]. Landau notation captures or

describes the bounds on the asymptotic growth rate of a function. The most common

of these Landau notation is the big O notation, which provides an upper bound on the

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19

growth rate of a function [22]. This is also referred to as the “order” of the function.

There are several related notations associated with the big O notation, including o,

Ω, ω, and Θ, which describe other kinds of bounds on asymptotic growth rates. We

only concern ourselves with the big O and Θ notation in this thesis.

A function f(x) is said to be on the order of another function g(x) if and only if

there exists a positive constant M such that for sufficiently large values of x, f(x) is

at most M multiplied by g(x) in absolute value. This is mathematically written as

f(x) ∈ O(g(x)) as x→∞, (2.2)

and carries the following mathematical meaning.

|f(x)| ≤M |g(x)|, ∀x > x0, where x0 ∈ R

This can also be stated as [22]

∃M > 0, ∃x0 ∈ R : |f(x)| ≤M ∗ |g(x)|, ∀x > x0.

The Θ notation is similar to the big O notation, except that it has a lower bound

on the growth rate of a function in addition to an upper bound so that

f(x) ∈ Θ(g(x)) as x→∞, (2.3)

if and only if

|k1 ∗ g(x)| ≤ |f(x)| ≤ |k2 ∗ g(x)|, ∀x > x0, where x0, k1, k2 ∈ R.

Thus, f is bounded both above and below g asymptotically. The Θ notation is more

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 20

formally stated as [22]

∃k1 > 0, ∃k2 > 0, ∃x0 ∈ R : k1 ∗ |g(x)| ≤ |f(x)| ≤ k2 ∗ |g(x)|, ∀x > x0.

2.7 Summary

In this chapter, we briefly reviewed some of the various methods that exist in the

literature for enforcing cooperative behaviour in mobile robotics. We also presented

some introductory material on major areas of knowledge and concepts, which will

form the backbone of this thesis. The formal definition of game theory was pre-

sented, and it was mentioned how game theory has been used in the past in the

form of Weakly Acyclic games to solve the Dynamic Sensor Coverage and Consensus

problems. The Potential game and Nash equilibrium were formally defined as well,

and it was discussed how every Potential game has at least one Nash equilibrium that

maximizes the potential function. Furthermore, as Potential games uphold the notion

of utility alignment, it would seem that they would serve as a good model to solve

cooperative control problems. This connection will be confirmed through the results

in this thesis. The stag hunt game and the prisoner’s dilemma game were presented

as examples of cooperative and noncooperative games, and their Nash equilibriums

were identified. Holonomic and nonholonomic systems were then introduced, and the

mechanism known as a Simple Forward Turn Controller for solving the Consensus

problem in a nonholonomic environment was mentioned. In the following chapter,

the Simple Forward Turn Controller will be modified and integrated into our solution

for exploring a space with multiple robots. Finally, the use of Landau notation to

express the running time of an algorithm was discussed.

Chapter 3

Weakly Acyclic and Potential Games

3.1 Weakly Acyclic Game

Weakly Acyclic games are a class of games that unlike what is often encountered in

cooperative robotics, provides robust group behaviours for robots while only placing

gentle restrictions on the robots’ selection of actions [1]. “Informally, a Weakly

Acyclic game is one where natural distributed dynamics, such as better-response

dynamics, cannot enter inescapable oscillations” [23]. This definition implies that

players can start with any action and so long as there exists a pure nash equilibrium,

the players will reach it by changing their actions throughout the course of the game,

which will result in a corresponding increase in their utility. The following definitions

have to be established to formalize a Weakly Acyclic game.

Definition 3.1 (Better-response actions) An action a′i ∈ Ai is a better-response

of player i to an action profile (ai, a−i) if Ui(a
′
i, a−i) > Ui(ai, a−i) [23],

where as noted before, a−i refers to the joint actions of all the players except i and

Ui refers to the utility or objective function of player i.

21

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 22

Definition 3.2 (Better response path) A better response path in a game G is a

sequence of action profiles a1, ..., ak in that for every j ∈ [1, ..., k − 1] two conditions

are met:

1. aj and aj + 1 only differ in the action of a single player i.

2. player i at time step j+1 is a better response action, i.e. Ui(a
j+1
i , aj−i) > Ui(a

j
i , a

j
−i).

[1, 23]

The second part of Definition 3.2 implies that the utility received by the player

changing its action at a given time must be greater than the utility it would receive

if it did not change its action.

Definition 3.3 (Weakly Acyclic Games) A game G is Weakly Acyclic if for any

action profile a ∈ A, there exists a better response path starting at action a, and

ending at some pure Nash equilibrium of G [1, 23],

where as noted in Section 2.1, A represents the set of all joint action vectors for all

the players in the game.

A limiting factor in a Weakly Acyclic game lies in the first part of Definition 3.2,

which requires that only one player changes its action at every time step. Thus if

a strict Weakly Acyclic game is used as a solution to solve a cooperative robotics

problem it would require that a centralized entity determine which player will change

its action at every time step. This is, however, very undesirable because it would make

it a centralized system. Another option is to let the players change their actions at a

random specified rate, ε, which is known as the exploration rate [5]. It was found in [5]

that using the exploration rate option, it is never guaranteed that a Nash equilibrium

will be found, but if ε is small and if the time step t is significantly large, the Nash

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 23

equilibrium will be found with a high probability. This theory was incorporated in [1]

knowing that there is a slight probability that for a small number of tests, a Nash

equilibrium consensus point would not be reached.

As mentioned in Section 2.5, the Simple Forward Turn Controller was devised as

an improvement over [5] and [15] in solving the Consensus problem in a nonholonomic

environment. The lateral motion experienced by a robot when it turns is accounted

for in the Simple Forward Turn Controller by having the robot change its pose or

orientation in one time step, and then having it move forward with the new pose in

the following time step for one time step. Thus, when a robot turns it does so over

two time steps over a sequence of two different actions (a “turn action” and a “move

forward” action). We call this a two-step action sequence. This restriction in having

to perform a turn over two times steps is how the nonholonomic behaviour of a robot

is modeled. The idea of having a two-step action sequence is that it would impact the

utility the robot would receive over the course of the turn sequence in comparison to

the utility it would get if a whole turn (which includes a robot’s lateral movement and

its movement forward) was executed in one time step. This will be seen in Section 3.2

and Section 3.3.1. Section 3.3.1 discusses the use of restricted action sets to model a

nonholonomic system, and it will be seen how the Simple Forward Turn Controller

allows these restrictions to be realized.

The following subsections discuss the workings of the Simple Forward Turn con-

troller as seen in [1], which includes initialization and the action-selection policy based

on the expected utilities. However, we first need to establish an action set for each

of the robots in a similar manner as [1]. We will arbitrarily assign each robot in

our game an action set, Ai, that has without loss of generality four actions. This is

sufficient for any robot to get to any point in a 2-D environment.

Ai = {a1
i , a

2
i , a

3
i , a

4
i }, (3.1)

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 24

where a1
i is the action “move forward”, a2

i “turn 90◦”, a3
i “turn 180◦”, a4

i “turn −90◦”.

3.1.1 Initialization

At the first time step, t = 0, each player will randomly select a pose. In the next

time step each of the robots will execute a1
i (“move forward”). The combination of

the “move forward” command and the pose of a robot constitutes what is known as

its baseline action abi [1].

3.1.2 Action Selection

At each time step, each robot is given a choice to play its baseline action by moving

forward with a probability of (1−ε) or to explore by performing a turn sequence with

a probability ε.

3.1.3 Baseline Action and Turn Sequence

When player i plays the baseline action and does not explore, it moves in the direction

that the baseline action specifies. We denote a two-step action sequence of a player

i as (axi , a
1
i) ∈ αi, where axi ∈ Ai in (3.1), and the sequence of actions is axi followed

by a1
i , the “move forward” command. There are four two-step actions sequences that

are possible for the action set specified in (3.1). They are

αi = {(a1
i , a

1
i), (a

2
i , a

1
i), (a

3
i , a

1
i), (a

4
i , a

1
i)} (3.2)

Notice here that axi = a1
i represents the baseline action. Fig. 3.1 shows a robot

i’s predicted positions in a grid game for playing each two-step action sequence in αi.

The arrow in the figure indicates the direction the robot is facing. Points 2 and 1

are the positions i expects to be at at the end of time t and at the end of time t+ 1

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 25

respectively if it is to play its baseline action sequence (i.e. (a1
i , a

1
i)). Points 3, 4, and

5 are the positions i expects to be at at the end of time t + 1 if it were to perform

turn sequences (a2
i , a

1
i), (a3

i , a
1
i), and (a4

i , a
1
i) respectively. As discussed earlier, the

robot’s position does not change at the end of time t when it plays any of the turn

sequences; only its heading changes. This is the defining characteristic of the Simple

Forward Turn Controller to account for nonholonomic behaviour.

Figure 3.1: A robot’s predicted future positions for each two-step action sequence

When player i explores, it randomly selects a two-step action sequence from the

four possible action sequences and predicts its utility if it were to execute the action

sequence. If the predicted utility of turning in a direction over a two-step action

sequence is greater than the utility of playing the baseline action, the player will turn

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 26

in that direction. This is in accordance with the second part of Definition 3.2 in a

Weakly Acyclic Game. It will then set the baseline action with the heading the player

possesses after it has completed the turn sequence. This process will repeat itself until

consensus is reached, which is synonymous with reaching the Nash equilibrium in the

Consensus problem.

In [1], the utility that the controller receives is based on the Euclidean distance

between the robots. In this thesis, however, as our focus is on having a group of

robots explore a space, the utility will be based on the new grid points that have

been discovered by the robots. This will be detailed in Section 3.2. Furthermore, we

modify one aspect of the original Simple Forward Turn Controller above as it was

presented in [1]. Instead of having a player i randomly select and predict the utility

for one two-step action sequence from the four possible action sequences, we modify

it so that the player predicts the utility for every two-step action sequence. The

significance of making this modification with respect to the problem we are solving

in this thesis will be apparent in Section 3.3.1.

3.1.4 Convergence of Weakly Acyclic Games

It was shown in [1] that even if a group of players used the Simple Forward Turn

controller in a Weakly Acyclic game, there would be a high probability of reaching

the Nash equilibrium. For the Consensus problem in particular, it was found through

repeated simulations that using the Simple Forward Turn Controller with an explo-

ration rate of 1/64 allowed the Nash equilibrium to be reached the most amount of

times. However, it could take a long time to reach the Nash equilibrium as it was

demonstrated in Section 3.3.4 of [1]. This is primarily because in a Weakly Acyclic

game there is no systematic way for designing a player’s objective function based on

a global utility function [15]. In other words a player’s objective function is not made

explicit with respect to the greater cooperative goal. That is where a subclass of the

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 27

Weakly Acyclic game known as the Potential Game is particularly useful. A Potential

Game speeds up the time it takes to reach an equilibrium at the expense of enforcing

strict rules as to which action can be selected. In a Potential Game, every player’s

local objective function is “aligned” with the global objective function [1] so that the

players’ utility can be easily derived from the global utility function. In retrospect,

due to a lack of rigid rules a player’s utility function is “somewhat” aligned to the

game’s global utility function in a Weakly Acyclic game [1].

The following section will again introduce the Potential Game, but we extend

its definition and introduce some new notation for the purpose of representing our

game as outlined in the Contributions section of this dissertation. Furthermore, the

objective function of each player and the global utility function will be defined for

our game, which serves as yet another contribution of this thesis.

3.2 Potential Game

A potential game is a game “in which all payoff differences to all players can be

described by first differences of a single real-valued function” [24], or in other words,

a global utility function. This additional rule of having each player’s utility function

aligned with the global utility function is what sets a Potential game apart from a

Weakly Acyclic game. An individual player’s contribution to a global utility can be

determined using the Wonderful Life Utility (WLU) [1]. The WLU is a family of

utility structures wherein the utility of a player forms a marginal contribution made

by the player to the global utility [25]. Mathematically, this is represented for every

player i as

WLUi = φ(z)− φ(z−i), (3.3)

where z represents the collection of all players, z−i represents the collection of all

players except player i, and φ() is the function that represents the global utility of

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 28

the players in its argument [1]. As it will be shown shortly, once a global utility

function has been defined, it is easy to assign local objective functions for each of the

players using the WLU so that the resulting game is a Potential game. In fact, it

is known that the WLU leads to a Potential game with the global utility being the

potential function [25]. It also makes a player’s utility more learnable by removing

unnecessary dependencies on other players’ assignment decisions, while still keeping

the player utilities aligned with the global utility [25]. This can be seen in [25], which

uses the WLU to solve an autonomous vehicle-target assignment problem where a

group of vehicles are expected to optimally assign themselves to a set of targets.

In [25], the vehicles are assumed to be rational self-interested decision makers that

want to optimize their utility. The utility function of each vehicle was set using the

WLU so that the objectives of the vehicles are localized to each vehicle yet aligned

with a global utility function. This allowed each vehicle to make their own individual

decisions without any regard for the decisions of other vehicles. This aspect of the

WLU that allows an agent to make decisions without considering other’s decisions is

highly beneficial over other methods such as reinforcement learning techniques and

frontier based dynamic programming methods, which require each agent to know the

actions taken by other agents.

Before we set up our potential game, we need to create a grid where the game will

be played. The grid represents the space which the robots will explore. If we divide

the space equally so that there is Z horizontal divisions and Z vertical divisions, we

will have a Z × Z grid. A grid point is the intersection of a horizontal line and a

vertical line. They serve as reference points in calculating utilities as it will be seen

shortly. Furthermore, as before the group of players or robots in the potential game

is represented by N = {1, 2, 3, ..., n} where n is the number of players. In this setting,

each player i ∈ N is assigned a two-step action sequence set αi and a local objective

function Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)

: α→ Z where α =
∏

i∈N αi is the set of joint two-step

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 29

action sequences. Before we define the function Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)
, however, we

first define an intermediary objective function for a player for a single time step as

opposed to two time steps in a two-step action sequence to make the definition easier

to follow. In a similar manner as [1] we assign a player i’s objective function for a

single time step at a time t for a given action axi ∈ Ai. Note that t is an instance of

time in the discrete time domain.

U
axi
i (posi(t)) =

∑
pt∈gridpts

f [posi(t+ 1), pt], (3.4)

where

f [posi(t+ 1), pt] =

1, if pt ∈ discP tsi(t)

1, if cond.1 or cond.2 is true

0, otherwise

cond.1 evaluates to true if

||pt− loci(t)|| ≤ sensRange and pt /∈ discP ts−i(t),

cond.2 evaluates to true if

||pt− loci(t+ 1)|| ≤ sensRange and pt /∈ discP ts−i(t),

and gridpts is the set of 2-D cartesian coordinates of all the grid points. For

example, if we have a square grid of 3 × 3 points we would have 32 = 9 grid

points, and if the grid’s bottom-left corner is situated at the origin (0, 0), we have

gridpts = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), ...}. The term loci(t) is the 2-D

cartesian coordinates of player i and loci(t) ∈ gridpts. In Fig. 3.2 for example,

loci(t) = (4, 1) for Player 1. The term posei(t) represents the pose of player i at time

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 30

t and is composed of the unit vectors x̂ = {1, 0} and ŷ = {0, 1} of a 2-D cartesian

space. Since a robot can be facing one of four directions in our game according to the

action set defined in (3.1), we effectively have posei(t) ∈ {x̂, ŷ,−x̂,−ŷ}. In Fig. 3.2

for example, posei(t) = (1, 0) for Player 1. The term posi(t) is a vector that consists

of loci(t) and posei(t) so that posi(t) = (loci(t), posei(t)). For example, in Fig. 3.2,

posi(t) = (4, 1, 1, 0) for Player 1. The term posi(t + 1) is the predicted location and

pose of player i at the next time step (t+1) after taking an action axi at time t so that

posi(t + 1) = (loci(t + 1), posei(t + 1)). The term discP tsi(t) is the set of Cartesian

coordinates of the grid points that have been discovered by i up until time t so that

discP tsi(t) ⊂ gridpts. The term discP ts−i(t) is the set of Cartesian coordinates of

the grid points that have been discovered by all players except i up until time t so

that discP ts−i(t) ⊂ gridpts. Finally, the term sensRange represents the range of

the sensor, which we assume has 360◦ of coverage in our game, and has units that

represent the number of grid points that can be detected vertically or horizontally

from the location of the sensor assuming the grid is a square. Note that posi(t+ 1) is

present in the argument of function f() because loci(t+ 1), which is a component of

posi(t + 1), is used in evaluating cond.2. The conditions cond.1 and cond.2 exist to

ensure that points in gridpts that have the prospective of increasing player i’s utility

have not already been discovered by other players and that it falls within the sensor

scan of player i at time step t or t+ 1 respectively.

At the beginning of a time step posi(t) is updated. Then discP tsi(t) and

discP ts−i(t) are updated to include new grid points that have been discovered so

that

discP tsi(t) =
{
pt ∈ gridpts | f [posi(t), pt] = 1

}
, (3.5)

discP ts−i(t) =
{
pt ∈ gridpts |

(∑
j∈Ni

f [posj(t), pt]
)
> 1
}
, (3.6)

where Ni = {x | x is a player in the game and x 6= i} or Ni = N \ {i}.

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 31

Figure 3.2: 6× 6 grid game with two robots

Note that f() in (3.5) and (3.6) is a function of time t rather than time t + 1

as it was defined in (3.4). This signifies that new grid points are added to the set

discP tsi(t) and discP ts−i(t) only if they have actually been discovered rather than

just predicted in the previous time step when (3.4) was evaluated. There is a greater

than or equal to symbol present in (3.6) because there can be times when two or

more robots have overlapping sensor coverage, which can lead to a grid point being

discovered by more than one robot. More will be said about this in Section 3.3.2.

Finally, the predicted utility for each two-step action sequence (axi , a
1
i) is calculated.

This is done as opposed to just predicting the utility of one action because if we

assume a player has a 360◦ view or sensor coverage, the turn action alone at time t

will not change its utility at time t+ 1. This is because the robot will remain in the

exact same position at the end of the time step t as seen in Fig. 3.1. It has to move

forward at time t + 1 if its predicted utility is to increase. This can be seen in the

definition of the objective function of a player in (3.4), where only the discovery of

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 32

new grid points at a time t + 1 causes the objective function U
axi
i (posi(t)) to change

from U
axi
i (posi(t− 1)). Hence, we now define the objective function for a player i for

a two-step action sequence based on its objective function for a single time step.

Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)

= U
a1i
i (posi(t+ 1))

=
∑

pt∈gridpts

f [posi(t+ 2), pt],
(3.7)

where as previously mentioned Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)

: α → Z and α =
∏

i∈N αi.

Based on the definition of f [posi(t + 1), pt] in (3.4), we evaluate f [posi(t + 2), pt] to

be the following.

f [posi(t+ 2), pt] =

1, if pt ∈ discP tsi(t+ 1)

1, if cond.1 or cond.2 is true

0, otherwise

cond.1 evaluates to true if

||pt− loci(t+ 1)|| ≤ sensRange and pt /∈ discP ts−i(t+ 1),

cond.2 evaluates to true if

||pt− loci(t+ 2)|| ≤ sensRange and pt /∈ discP ts−i(t+ 1),

The left-hand side of (3.7) represents the predicted utility of a two-step action se-

quence (axi , a
1
i) ∈ αi for a player i at time t amidst the sequence of actions taken by the

other players during the two-step action sequence, denoted here by (a′−i, a
′′
−i). In the

right-hand side of the equation, posi(t+ 1) represents the position and pose of player

i after it has executed the first action axi in the two-step action sequence (axi , a
1
i).

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 33

Therefore, the right-hand side of the equation represents player i’s predicted utility

at the end of the second time step t+ 1 after it has executed the second action of the

two-step action sequence, which by the definition of a player’s objective function in

(3.4) is inclusive of the utility it would have had in the previous time step t. Thus,

effectively, Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)

is the utility player i predicts to have by the end of

the time step t + 1 at time t by following the two-step action sequence (axi , a
1
i). We

note two important points here. The first is that player i’s predicted utility of play-

ing the action sequence (axi , a
1
i) is independent of the sequence of actions (a′−i, a

′′
−i)

played by other players because player i’s objective function as it is defined in (3.4) is

independent of the actions taken by the other players at time t. The position and the

pose of the other players are not predicted nor utilized in any way. Secondly, instead

of using discP ts−i(t + 1) for evaluating the right-hand side of (3.7) as it would be

expected based on (3.4), discP ts−i(t) is used. This is because the prediction is done

over two time steps and at time t player i cannot know discP ts−i(t + 1). This can

only be determined in the next time step after every player has taken an action and

has communicated the set of grid points it has discovered to the rest of the players.

Thus, it uses the latest knowledge it has, which is discP ts−i(t). Another way of

stating this is that we assume discP ts−i(t + 1) = discP ts−i(t). Once the utilities of

every two-step action sequence have been predicted, an action is taken based on an

action-policy that will be presented in Section 3.3.1.

We define the potential function of the game as

φ(t) :=
∑
i∈N

U
axi
i (posi(t)), (3.8)

Given the potential function in (3.8), we can see as in [15] that with the assignment

of the objective function in (3.4) each player does not have to observe the decision

of all players to evaluate its payoff for a particular action choice. This is because if

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 34

we observe the definition of the potential function and its relation to the objective

function of each player in (3.4), we see that it satisfies the WLU; and as stated in the

beginning of this section, the WLU removes unnecessary dependencies of a player’s

decisions on other players’ assignment decisions. We define a corresponding potential

function φ(γ) : α→ Z for (3.8) that is a function of the two-step action sequences of

all n players rather than time t.

φ(γ) :=
∑
i∈N

Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)
, (3.9)

where γ ∈ α. By using the WLU formulation in (3.3), (3.9) can be written as

φ(γ) = Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)

+
∑
j∈Ni

Uj
(
(axj , a

1
j), (a

′
−j, a

′′
−j)
)
. (3.10)

We now formally define a Potential Game as it is defined in [9], but we extend the

definition so that it is for a two-step action sequence rather than a single action.

Definition 3.4 (Potential Games) Player action sets {αi}ni=1, together with player

objective functions {Ui : α→ Z}ni=1, constitute a Potential Game if, for some potential

function φ : α→ Z,

Ui
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)
− Ui

(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)

= φ
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)
− φ
(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
) (3.11)

for every player i ∈ N , for every (a′i, a
1
i) ∈ αi, and for every (a′′i , a

1
i) ∈ αi

Notice in (3.11) that the second argument of the objective function of player i and

the potential function is (a1
−i, a

1
−i) implying that all players must “move forward”

for two time steps or equivalently play their baseline actions while i is playing its

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 35

two-step action sequence. This is as per the test for a potential game as seen in [9],

which requires that all players other than player i continue to play their previous

action. Since player i is the one changing its action from its baseline action, none of

the other players are allowed to change their actions from their respective baseline

actions, and thus, must continue to play it. This is also consistent with the first part

of Definition 3.2 of a Weakly Acyclic game (Section 3.1), which a potential game is

a subclass of.

Claim 3.1 Player objective functions (3.7) constitute a potential game with potential

function (3.9).

Proof. A similar approach as [15] will be used to prove the claim. We assume a

player i is contemplating at time t whether to turn in one direction by performing

the action sequence (a′i, a
1
i) or to turn in another direction by performing (a′′i , a

1
i) so

that a′i 6= a′′i . The change in the objective function of player i by switching from the

action sequence (a′′i , a
1
i) to the action sequence (a′i, a

1
i), provided that all other players

collectively play (a1
−i, a

1
−i), is

4Ui = Ui
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)
− Ui

(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)

The first difference equation for the potential function of the game for the two different

action sequences of player i is

4φ = φ
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)
− φ
(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 36

Substituting (3.10) into the above difference equation, we get

4 φ = Ui
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)

+
∑
j∈Ni

Uj
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)

−
[
Ui
(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)

+
∑
j∈Ni

Uj
(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)]

(3.12)

As previously mentioned, a player’s predicted utility for a two-step action is inde-

pendent of the sequence of actions played by the others. Due to this and the fact

that every player j has to play its baseline action for two time steps while player i

completes its turn sequence, we have

Uj
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)

= Uj
(
(a1
j , a

1
j), (a

x
−j, a

y
−j)
)

= Uj
(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)

(3.13)

Now, we substitute (3.13) into (3.12) to get

4Ui = 4φ

Considering that the greater objective of this thesis is to get a group of robots to

explore a space as quickly as possible, a solution that organizes these robots to achieve

this can be thought of as projecting cooperative behaviour. After all, as mentioned

earlier, the goal of exploration is to gain as much new information as possible of the

environment within bounded time. Therefore, if a robot follows the tracks of another

robot as part of a solution, which is to say that it moves through already explored

space, the solution would not be portraying cooperative behaviour. This is because

in the time that the robot spend moving through explored spaces, it could have been

moving in a different path and exploring previously uncovered spaces, and possibly,

reduce the overall time needed for exploration. Thus, a solution that engages robots

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 37

to take different paths or that minimizes overlaps can be thought of as instilling

cooperative behaviour. Now, in this regard if we consider the objective function of

a player, it is evident that no robot has anything to gain from following the path

of another robot since it does not increase its utility in any way. Robots seek to

follow different paths from one another, and thus, our objective function encourages

cooperative behaviour in terms of achieving the greater objective.

3.3 Potential Game Setup

Based on (3.7), the goal of each robot is to maximize its utility by discovering new grid

points. To do this each robot i has four action sequences at its disposal from the set

αi defined in Section 3.1. However, each robot has restrictions on the action it can use

from one time step to the next if the team of robots is to reach a Nash equilibrium

or if it is to project cooperative behaviour in the sense discussed in the previous

section. Also, as mentioned in Section 3.1, modelling a nonholonomic system imposes

further restrictions on the actions of a robot. Specifically, we analyze Potential games

with state-dependent action sets where the set of actions available for a given player

depends on the player’s previous action. State-dependent action sets of this form are

referred to as (range) restricted action sets [15]. As it will be seen in the following

subsection, all these restrictions on the actions are abided by the potential game if

it adheres to a modified version of the learning algorithm known as Spatial Adaptive

Play (SAP) [15,26–28] under the framework of the Simple Forward Turn Controller.

Furthermore, in Section 4.1 we see that having our Potential game adhere to the

SAP allows for strong coordination or cooperation among players to have the space

explored quickly.

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 38

3.3.1 Spatial Adaptive Play (SAP) and Restricted Actions

In SAP, at each time t > 0, one player i ∈ N is randomly chosen and allowed to update

its action. All other players must repeat their actions so that a−i(t) = a−i(t− 1) [15].

At time t, the updating player i selects an action from Ai based on its strategy

pi(t) ∈ 4(Ai), which is a probability distribution over its action space, so that the

aith component paii (t) of its strategy is given as

paii (t) =
exp{βUi(ai, a−i(t− 1))}∑

āi∈Ai

exp{βUi(āi, a−i(t− 1))}
(3.14)

for some exploration parameter β ≥ 0. Note that β is different from the exploration

rate ε discussed earlier. Constant β determines the likelihood that player i will select

a suboptimal action. If β = 0, player i will select any action ai ∈ Ai with equal

probability [15]. As β →∞, player i will select an action from its best response set

{
ai ∈ Ai : Ui(ai, a−i(t− 1)) = max

a′i∈Ai

Ui(a
′
i, a−i(t− 1))

}
(3.15)

with arbitrarily high probability.

In [27], it was shown that in a repeated Potential game that adheres to the SAP,

the stationary distribution µ ∈ 4(A) of the joint action profiles is given as

µ(a) =
exp{βφ(a)}∑̄

a∈A
exp{βφ(ā)}

(3.16)

The stationary distribution µ can be interpreted as follows: For sufficiently large

times t > 0, µ(a) is equal to the probability that a(t) = a [15]. As β approaches

∞, all the weight of the stationary distribution is on the joint actions that maximize

the potential function [15]. In a Potential game, joint actions that maximize the

Potential function induce cooperation among robots. Thus, a Nash equilibrium can be

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 39

asymptotically reached with a sufficiently large β when the Potential game adheres to

SAP. For this reason we have our Potential game with potential function (3.8) adhere

to the SAP algorithm, and assume a value of∞ for β so that actions are always chosen

from the best response set. This forms the action-policy or the strategy pi(t) ∈ 4(Ai)

of a player i in our Potential game. In other words, each of the players’ action-policy

in our Potential game is defined by setting β in the corresponding SAP algorithm to

infinity. This will be seen in Section 3.3.2.

We can now provide an explanation to the modification we made to the original

Simple Forward Turn Controller in Section 3.1.3. In our solution, for a player to

choose an action sequence from the best response set, it has to know the utilities for

every two-step action sequence. If it were to randomly select an action sequence from

the action sequence set, there is no guarantee that it would be from the best response

set. This justifies the modification made to the Simple Forward Turn Controller in

this thesis.

We note that in the SAP algorithm, the restriction of allowing only one player to

update its action while having the rest of the players repeat their actions has a striking

resemblance to the first part of Definition 3.2 of a Weakly Acyclic game (Section 3.1).

This makes sense because a Potential game is a subclass of the Weakly Acyclic game

with additional restrictions. Thus, one would expect the same restrictions of a Weakly

Acyclic game to apply to a Potential game. However, as noted in Section 3.1, it is

not practical to have a centralized entity to determine which robot will change its

action at every time step. Thus, the part of the SAP algorithm that requires a player

to be randomly selected to allow it to update its action cannot be held here. Instead

as discussed in Section 3.1, we allow each robot to change their actions at a small

specified rate, ε, knowing that there is a small probability that the Nash equilibrium

will not be reached, which is equivalent to knowing that cooperation between robots

will marginally decrease. This forms the basis of the modification to the original SAP

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 40

algorithm. In the Simple Forward Turn Controller, allowing a robot to change its

action with a rate of ε corresponds to the robot deviating from playing its baseline

action to perform a turn sequence over a two-step action sequence (see Section 3.1.2).

Any robot that does not perform a turn sequence plays its baseline action with a

probability of 1− ε.

Analyzing the Simple Forward Turn Controller further, we note that there are

more restrictions on actions that can be played, which stem from accounting for

inflexibilities in the range of motion experienced in a nonholonomic environment.

Consider for example that a robot wants to change its baseline action and then play

its new baseline action all within one time step. Recall from Section 3.1.1 that a

baseline action is the combination of the “move forward” command (a1
i) and the

pose of the robot at a particular time. Under the framework of the Simple Forward

Turn Controller, the robot cannot do so because it needs a full time step to change

its heading. It cannot simultaneously change its heading and move forward in a

single time step. It needs to do so over the course of a two-step action sequence.

Thus, the ability of a robot to execute a “move forward” command in a particular

direction at a particular time t is dependent on its baseline action in the previous

time step t−1. If the direction the robot wants to move in coincides with its baseline

action from the previous time step, the robot can “move forward” in that direction

at time t. Otherwise, it has to perform the appropriate turn action from the action

set (Ai \ a1
i) at time t, and then “move forward” in the specific direction it wants

to move in, in the subsequent time step. Once the robot has performed the turn

sequence, it can set the direction it is facing towards as the new baseline action.

Thus, if a robot is changing its baseline action, it has a limited set of actions to

choose from at time t. This subset of actions of the action space Ai are referred to

as a restricted action set (i.e. (Ai \ a1
i) ⊂ Ai) [15]. As these restrictions are a fairly

accurate representation of the dynamics of a nonholonomic system, we use the Simple

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 41

Forward Turn Controller in our algorithms to make them realizable on real robotic

platforms. Furthermore, since the movements of a robot in a Simple Forward Turn

controller resemble the movements of a robot in our Potential game as it was defined

in Section 3.2; namely in that they are both defined by a two-step action sequence,

the framework of the Simple Forward Turn Controller is ideal for our Potential game.

The following subsection will introduce an algorithm for exploration that is premised

on the modified SAP algorithm discussed in this subsection and the Simple Forward

Turn Controller.

3.3.2 An Algorithm for Exploration

Using the Simple Forward Turn Controller, if a robot is allowed to update its action

at time t based on the exploration rate ε, it will predict the utility it would receive

by performing each of the four two-step actions as discussed in Section 3.1.3. This is

done for the baseline action as well where axi = a1
i in (axi , a

1
i). The action selection

function, asfi, then compares the utility for each two-step action sequence and selects

the action sequence that would give it the most amount of utility.

asfi = argmax
(axi ,a

1
i)∈αi

Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)

(3.17)

Equation (3.17) essentially represents the best response set in the SAP algorithm,

and thus, choosing an action from this set is in accordance with what was discussed

in Section 3.3.1 about setting the value of β to infinity. Any ties for the predicted

utility are broken arbitrarily unless the two-step action sequence involving the baseline

action (i.e. (a1
i , a

1
i)) happens to have the same utility as the maximum utility in which

case the baseline action is performed. This is in accordance with the second part of

Definition 3.2 in Section 3.1. This means that there is a very low probability that at

a time t a robot i will change its action because firstly ε is small, and secondly, even

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 42

if the robot has the option to change its action with a probability of 1− ε, the action

that it is changing to must provide it with higher utility than the baseline action. If at

time t a robot is not allowed to change its action based on ε, it has to play its baseline

action. Algorithm 1 summarizes the algorithm for exploration. Note that Ui is short

for Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)

in Algorithm 1, and the action Play (axi , a
1
i) based on asfi

takes into account the tie-breaking rule just discussed.

Algorithm 1 Potential Game Exploration Algorithm

Initialize # of time steps, sensRange, and ε

for t← 1,# of time steps do
for all player i ∈ N do

Update posi(t), discP tsi(t), and discP ts−i(t) //eq. (3.5) and eq. (3.6)

if player should explore based on ε then
Compute Ui , ∀(axi , a1

i) ∈ αi //eq. (3.7)
Play (axi , a

1
i) based on asfi //eq. (3.17)

else
Play (a1

i , a
1
i)

end if

end for
end for

At a time t a robot i only knows where it is and all the grid points it has discovered.

It then queries all the other robots for their position (locj(t), j∈ Ni) and all the grid

points they have discovered to calculate discP ts−i(t). Recall that discP ts−i(t) is the

set of Cartesian coordinates of the grid points that have been discovered by all players

except i up until time t. As mentioned in Section 3.2 it is not necessary that at time

t all the grid points discovered by a robot i were exclusively discovered by it. This is

because there can be times when two or more robots have overlapping sensor coverage,

which can lead to a grid point being discovered by more than one robot. However, due

to the fact that a robot mostly moves straight (since ε� 1), in a large environment

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 43

they quickly spread apart if they all begin in relatively the same location with different

orientations so that overlapping sensor coverages quickly diminish. Furthermore,

recall from Section 3.2 that our Potential game leads to cooperative behaviour in the

sense that robots seek to follow different paths from one another when exploring. This

is because based on the objective function defined in (3.7), no robot has anything to

gain from following another robot’s path or running into another robot’s path. In

comparison, if robots were completely uncoordinated and could perform any action

whenever they wanted (i.e. ε = 1), they would have much more frequent run-ins or

overlaps with other robots over uncovering the same grid points so that there would

be a higher probability that robots would explore the same areas. This would make

the exploration process inefficient. This is how coordination is achieved in Algorithm

1 over an uncoordinated algorithm. Section 4.2 will present results that show how a

variant of Algorithm 1 outperforms an uncoordinated algorithm in the exploration of

a finite space.

3.4 Unbounded Game Simulation

In this section, we look at simulating Algorithm 1. Before we do so, however, we note

a very important limitation of the algorithm. This will be exemplified through the

scenario shown in Fig. 3.2, which shows the poses and positions of two robots in a

6 × 6 grid at time t. The boundaries of the grid indicated by bold lines represent

walls or obstacles. If at time t both robots were to play an action according to the

exploration policy ε, it is highly likely that both would play their baseline actions

(i.e. “move forward” with their current poses). In fact, there is a probability of

(1− ε) that either robot will play its baseline action. This would cause them to run

into the walls or obstacles. If there were no obstacles present and if the space to be

explored was unbounded this would not be an issue, and so we could just use the

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 44

algorithm discussed in the previous section in its entirety. However, since our interest

lies in exploring a finite space that has well-defined boundaries and obstacles within

it, in practice we cannot have the robots running into the obstacles. Thus we need

to modify the algorithm. This modification and its effects on the game are discussed

in Section 4.1.

To simulate the game for the unbounded scenario, we create a very large square

grid in MATLAB and place the robots at locations so that the distance between a

robot and the other robots are negligible in comparison to the dimensions of the grid.

The exact positions and poses of the robots can be arbitrarily selected so long as

the collection of robots are situated somewhere near the centre of the grid to prevent

them from hitting the outter walls. Figure 3.3 illustrates an arbitrary set of positions

and poses for 5 robots that we use in our simulation. Each of the robots have a 360◦

sensor coverage (i.e. sensRange) with a radius of 5 grid points and ε is 0.3. The

simulation is averaged over 500 games, with each game consisting of 35 times steps.

The game was averaged over 500 games because it resulted in a smooth profile for

the graph. Averaging over more than 500 games would perhaps result in a smoother

profile, but it would take longer to obtain the results. Each game was chosen to

have 35 time steps because it is past the time that Nash equilibrium is reached as

it will be seen shortly, and 35 time steps is sufficient for the values of the graph to

settle. Figure 3.4 is an example from the 500 games of the final orientation of each

of the robots. Notice that robots 1 and 3 have changed their orientations in Fig.

3.4 in comparison to Fig. 3.3. This is because at some time between the events

in Fig. 3.3 and Fig. 3.4, robots 1 and 3 would have been allowed to update their

actions to receive more utility. They would have made a turn as a result of running

into other robots’ explored spaces. The robots keep executing the “move forward”

command (a1
i) with their respective orientations (i.e. their baseline actions) for every

time step that follows the time the snapshot in Fig. 3.4 was taken. This is because

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 45

the environment is unbounded, which means that as time goes to infinity, the infinite

space cannot be fully explored. Thus, after a certain time once the robots have had

a chance to spread out, robots will only play (a1
i , a

1
i) with their final orientations (i.e.

baseline action sequence) because they would receive the most amount of utility in

doing so for every time step till infinity compared to if they had to make additional

turns. This is a direct result of the definition of the objective function for a robot

in (3.7), where in the presence of unexplored space ahead of the robot, the highest

rewarding action sequence is the baseline action sequence. The final orientations of

the robots is a Nash equilibrium because no robot can unilaterally change its action

sequence from its baseline action sequence to gain more utility than their baseline

action sequence would provide. In other words, a Nash equilibrium occurs when the

robots stop changing actions. To determine the Nash equilibrium in our simulation

we keep a running total of the number of turn-actions performed by each robot for

every time step and then add them up. As the Nash equilibrium is approached, there

is very minimal change in this running total. For the particular example in Fig. 3.4,

12 times steps were taken to reach the Nash equilibrium. Fig. 3.5 shows the result of

the simulation averaged over the 500 games. The weight of the stationary distribution

µ in this Nash equilibrium is fully on the joint action vector (a1
1, a

1
2, a

1
3, a

1
4, a

1
5). That

is each player plays their respective baseline action for each time step once the Nash

equilibrium has been reached. This is as expected because as discussed in Section

3.3.1, setting β to infinity puts all the weight of µ on the joint actions that maximize

the potential function. In our game, the joint actions that maximize the potential

function once the Nash equilibrium has been reached is each player’s baseline action.

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 46

Figure 3.3: Unbounded simulation with 5 robots

Figure 3.4: Final orientation of robots after reaching Nash equilibrium

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 47

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time step

T
o
ta
l
n
o
.
o
f
tu
rn
s
o
f
a
ll
ro
b
o
ts

Figure 3.5: Nash equilibrium in unbounded grid game

3.5 Summary

In this section, we presented the Weakly Acyclic game and definitions associated to

it such as better-response actions and better-response path. It was discussed how

the Simple Forward Turn Controller was devised to solve the Consensus problem as

a Weakly Acyclic game in [1]. However, the Weakly Acyclic game was deemed to

be inadequate to solve the Consensus problem because it did not assert the notion

of utility alignment between a player’s objective function and the global objective

function. Instead the Potential game, a subclass of the Weakly Acyclic game, was

found to be better suited in solving the Consensus problem under the framework of the

Simple Forward Turn Controller. In our solution for exploring a space, we proposed a

Potential game similar in structure to that in [1], but defined a new potential function

and objective function to reflect our goal. Furthermore, the definition of a Potential

game itself was extended in this chapter for a two-step action sequence, which serves

CHAPTER 3. WEAKLY ACYCLIC AND POTENTIAL GAMES 48

as a contribution of this thesis. This Potential game was hypothesized to promote

cooperative behaviour in the sense that robots would try to move in different paths

when exploring a space, which in turn would reduce exploration time compared to

an uncoordinated algorithm. This hypothesis will be confirmed in Section 4.2. Also,

it was seen how unlike frontier-detection algorithms, each player does not have to

observe the decision of all players in evaluating its payoff for a particular action

choice. Another modification we proposed in this chapter was to the Simple Forward

Controller; namely, when a player is allowed to update its action, it chooses an action

from the best response set (3.15) rather than randomly selecting an action and playing

it if it provides more utility than the current action (baseline action). It was seen

that having a player select actions from its best response set could be realized by

setting β to infinity in the corresponding SAP game. It was then discussed how the

provision of restricted action sets in the Simple Forward Turn Controller is useful for

modelling a nonholonomic environment. Finally, an algorithm was proposed for the

exploration of an unbounded or infinite space, which when applied to a group of five

robots resulted in a Nash equilibrium.

Chapter 4

Modified Potential Game Algorithms

4.1 Modified Algorithm for Bounded Spaces

To address the limitation identified in Section 3.4 of robots running into walls or

obstacles, we seek to modify Algorithm 1 so that robots can traverse environments

with obstacles. Since we do not want robots running into obstacles and walls, a

simple solution to this problem would be for a robot to change its heading when it

encounters an obstacle in front of it even if at that particular moment it is not allowed

to perform a turn sequence as dictated by its exploration policy ε. The direction the

robot would turn would be the direction that results in the highest utility. This

is shown in Algorithm 2. We can immediately perceive the repercussions of this

modification as the obstacles would cause robots to change actions more often than

ε. In this respect, the presence of obstacles can be considered to have the equivalent

effect of increasing ε from the value it was initialized to, which as discussed in Section

3.1 and Section 3.3 would decrease the probability that the Nash equilibrium will

be reached. However, reaching a Nash equilibrium as it is described in Section 3.4

is not our goal here. Our goal is to fully explore a finite space in as little time as

possible. We demonstrate that the Modified Potential Game Algorithm (Algorithm

2) reduces exploration time compared to a completely uncoordinated exploration

49

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 50

Algorithm 2 Modified Potential Game Algorithm

Initialize # of time steps, sensRange, and ε

for t← 1,# of time steps do
for all player i ∈ N do

Update posi(t), discP tsi(t), and discP ts−i(t) //eq. (3.5) and eq. (3.6)

if player should turn because of obstacle then
Compute Ui , ∀(axi , a1

i) 6= (a1
i , a

1
i) //eq. (3.7)

Play (axi , a
1
i) that maximizes Ui

else if player should explore based on ε then
Compute Ui , ∀(axi , a1

i) ∈ αi
Play (axi , a

1
i) based on asfi //eq. (3.17)

else
Play (a1

i , a
1
i)

end if

end for
end for

algorithm. Before we can perform a comparison though, we need to define one such

uncoordinated exploration algorithm. A simple example would be an algorithm in

which each robot always moves in the direction that provides it the most amount of

utility with any ties in the utility being arbitrarily broken. This is shown in Algorithm

3. In contrast, in Algorithm 2, robots can only move in the direction that provides

its the most amount of utility when ε allows them to do so. It can be shown through

simulations that using Algorithm 3, all the areas that need to be explored in a finite

space will be explored in finite time.

4.2 Simulation of Exploration Algorithm

To compare Algorithm 2 and Algorithm 3 we perform simulations in a programmable

multi-agent modeling environment known as NetLogo. NetLogo uses an agent-based

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 51

Algorithm 3 Uncoordinated Exploration Algorithm

Initialize # of time steps, sensRange, and ε

for t← 1,# of time steps do
for all player i ∈ N do

Update posi(t), discP tsi(t), and discP ts−i(t) //eq. (3.5) and eq. (3.6)

if player should turn because of obstacle then
Compute Ui , ∀(axi , a1

i) 6= (a1
i , a

1
i) //eq. (3.7)

Play (axi , a
1
i) that maximizes Ui

else
Compute Ui , ∀(axi , a1

i) ∈ αi
Play (axi , a

1
i) that maximizes Ui

end if

end for
end for

programming language. To compare the two algorithms we use the setup in Fig. 4.1

consisting of three robots and three obstacles indicated by the rectangular boxes. In

both algorithms sensRange is set to 2 grid points, and ε is set to 0.3 for Algorithm

2. Note that ε does not apply to Algorithm 3 as in Algorithm 3, each robot always

moves in the direction that provides it the most amount of utility. The simulation is

run for 2000 time steps or iterations and averaged over 20 games. Fig. 4.2 shows the

result of the simulation where the number of grid points that remain to be explored

at every time step is plotted for both algorithms. It can be seen that the Modified

Potential Game Algorithm requires less time to explore the entire space. In fact it

can be seen that the Uncoordinated Exploration Algorithm has not even uncovered

the entire space in 2000 time steps.

Further simulations were performed to see the affect of changing the parameters ε

and sensRange on exploration time. Fig. 4.3 compares Algorithm 2 and Algorithm

3 for ε = 0.3 and sensRange = 3 grid points. Fig. 4.6 and Fig. 4.7 compares the

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 52

Figure 4.1: Simulation setup for Algorithm 2 and Algorithm 3

algorithms for ε = 0.3 and ε = 0.1 respectively, while keeping sensRange constant

at 4 grid points. We observe that in comparing Fig. 4.2 and Fig. 4.3, Algorithm

2 does not provide as significant an improvement in terms of exploration time over

Algorithm 3 as sensRange is increased from 2 to 3 grid points. In fact, in Fig. 4.3

the rate of exploration is greater with Algorithm 3 than Algorithm 2 in the first 200

time steps. This can also be seen in Fig. 4.6 where sensRange is 4 grid points. Fig.

4.4 shows how significantly exploration time improves for Algorithm 3 as sensRange

increases. Exploration time is also reduced for Algorithm 2 as sensRange increases,

but the improvement is not as profound as Algorithm 3. This can be observed in

Fig. 4.5 for increasing values sensRange and a constant value of 0.3 for ε. Despite

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 53

Figure 4.2: Comparison of exploration time of Algorithm 2 and Algorithm 3 with
ε = 0.3 and sensRange = 2 grid points

these performance improvements of Algorithm 3 with increasing sensRange values,

it is evident through Fig. 4.2, Fig. 4.3, and Fig. 4.6 that the overall time needed for

exploration is still lower with Algorithm 2 than Algorithm 3. Moreover, in real-world

multi-robot platforms, it can be costly to equip individual robots with sensors such

as laser range finders (LRF) that have a longer range. This is especially true if there

is a large fleet of robots. Thus, the potential benefits of an uncoordinated algorithm

such as Algorithm 3 in increasing the rate of exploration cannot be realized in these

situations.

Comparing Fig. 4.6 and Fig. 4.7, we note that there is not much difference in

the exploration time of Algorithm 2. In fact, it was found that as long as ε remained

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 54

Figure 4.3: Comparison of exploration time of Algorithm 2 and Algorithm 3 with
ε = 0.3 and sensRange = 3 grid points

under a value of 0.3, the exploration time of Algorithm 2 did not change appreciably.

The Modified Potential Game Algorithm has an advantage over uncoordinated

algorithms in that it introduces a certain degree of coordination among the robots

even if they do not reach an equilibrium so that they do not all follow the same path

when they are exploring. Sensor overlaps are reduced in this way. Thus, the time it

would theoretically take to explore a space would be less than an algorithm that does

not utilize any form of coordination, which explains the differences in performance of

the algorithms in Fig. 4.2. However, the more obstacles there are in a given space,

the more the robots have to employ obstacle avoidance manoeuvres in the Modified

Potential Game Algorithm making the game deviate more from the original potential

game. Thus coordination would be lost in terms of having robots move in different

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 55

Figure 4.4: Comparison of exploration time of Algorithm 3 for a sensRange of 2,3,
and 4 grid points

Figure 4.5: Comparison of exploration time of Algorithm 2 for a sensRange of 2,3,
and 4 grid points, and ε = 0.3

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 56

Figure 4.6: Comparison of exploration time of Algorithm 2 and Algorithm 3 with
ε = 0.3 and sensRange = 4 grid points

Figure 4.7: Comparison of exploration time of Algorithm 2 and Algorithm 3 with
ε = 0.1 and sensRange = 4 grid points

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 57

paths and improvements in exploration time over an uncoordinated algorithm would

not be as profound. This will be demonstrated through a simulation in Section

4.4.1. Another important point to notice is that a coordinated behaviour would

provide significantly greater improvements the more robots we have in a given space.

Therefore, using many robots for a given space with a minimal number of obstacles, we

can expect to receive significant improvements in exploration time using the Modified

Potential Game Algorithm compared to uncoordinated algorithms.

4.3 Computational Complexity of Algorithm

In this section, we analyze Algorithm 2 to determine its computational complexity.

The material presented in Section 2.6 serve as a brief, but concise review of the

big O notation, which we use in this section to represent the runtime order of our

algorithm. Before we analyze Algorithm 2, however, we investigate the computational

complexity of frontier-based exploration algorithms. This gives us a base upon which

we can compare and comment on the performance of our algorithm.

As mentioned in Section 1.1, most approaches today use frontier-based exploration

for having a space explored using multiple robots. In frontier-based exploration,

robots explore by repeatedly computing and moving towards frontiers, which is the

boundary that separates known regions from unknown regions [11]. Computing the

cost of reaching frontiers or frontier detection as it is referred to, involves the use of a

deterministic variant of value iteration, a popular dynamic programming algorithm [9,

10]. In [29], it was shown that for deterministic Markov Decision problems (DMDP),

basic value iteration takes Θ(Z2) iterations, where Z denotes the number of states.

Thus, it cannot do better than an O(Z2) algorithm in terms of execution time if we

just consider the upper bound of its growth rate (See (2.2) and (2.3) in Section 2.6).

In frontier detection algorithms, the states correspond to the cells in the explored

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 58

area. Considering that frontier detection algorithms processes all the states every

time it performs frontier detection, it can be a time consuming process which slows

down exploration [11]. In fact, even on powerful computers, state-of-the-art frontier

detection algorithms can take a number of seconds to run for every execution of the

algorithm, and if a large region is explored, the robot actually has to wait in its spot

until the frontier detection algorithm terminates [11]. To make matters worse, there

are frontier-based algorithms such as the algorithm presented in [30] that suggest

calling frontier detection every time-step of the coordination algorithm.

There are two important points we note about Algorithm 2 before we analyze

its runtime. The first point is that Algorithm 2 is a distributed algorithm. Hence,

when we make a statement about its computational complexity, we are referring to

an instance of its execution on one of the robots. Secondly, as a robot does not have

to make a decision when it is forced to play its baseline action, it does not have to

compute anything. In fact, it only seldom needs to calculate values. One occasion

that it needs to compute values is when it is allowed to update its action as dictated

by ε. The other occasion when it needs to compute values is when it needs to avoid

an obstacle, and it needs to decide which direction to turn towards. As ε� 1 and if

we assume an environment with a large open space with few obstacles and few outer

walls in comparison to the area of the overall space, robots would be moving straight

most of the time with respect to the total time needed for exploration. They would

not need to make many decisions resulting in a drastic reduction in the number of

computations needed. More will be said about this in Section 4.4.1. Considering

the aforementioned points, it is only of interest to us to analyze the computational

complexity of Algorithm 2 for a robot i that is allowed to update its action at time

t, and we proceed bearing this in mind.

As discussed earlier, the argmax operator in the function asfi (Equation (3.17))

selects the two-step action sequence from the two-step action sequence set αi that

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 59

would give i the most amount of utility or that maximizes objective function (3.7).

Based on the actions we defined in the action set Ai and the resulting two-step

action sequence set αi that was derived from it, player i has to compute the utility it

expects to receive from performing each of the four two-step action sequences to make

a decision. It namely has to compute the utility it would receive by playing (a1
i , a

1
i),

(a2
i , a

1
i), (a3

i , a
1
i), and (a4

i , a
1
i). Figure 4.8 shows player i contemplating each of the

two-step action sequences at time t in a Z × Z grid. The robot is the black box and

the arrow on top of it represents the direction it is facing. The two solid dots ahead

of the robot represents its predicted positions if it were to play its baseline action for

the following two time steps (i.e. (a1
i , a

1
i)). The solid dots to the left, bottom, and

right of the robot represents its predicted positions at the end of the second time step

after playing (a2
i , a

1
i), (a3

i , a
1
i), and (a4

i , a
1
i) respectively. Recall from Section 3.2 and

Section 3.3.1 that under the framework of the Simple Forward Turn Controller, when

a robot performs a two-step action sequence that involves a turn, the robot remains

in the same position for the first time step. Thus, over the course of a two-step action

sequence the position would only change once, and this is why there is only one dot

present to the left, bottom, and right of the robot in Fig. 4.8. The circles represent

the 360◦ coverage of the sensor from the future positions, and the range of the sensor,

sensRange, has been set to 2 grid points. In the objective function (3.7) for a player,

the function f [posi(t + 2), pt] is evaluated for every point pt ∈ gridpts. This leads

to Z2 iterations of f [posi(t + 2), pt] as the grid is Z × Z in dimension. Evaluating

f [posi(t + 2), pt] for a particular point pt is not intensive computationally because

the majority of the function involves verifying whether or not pt belongs to the set

discP tsi(t) or discP ts−i(t). This is as simple as maintaining a lookup table in memory

in the form of an array and having a simple array indexing operation. Since retrieving

a value from memory is very fast, cross-checking pt with already discovered points is

an inexpensive operation. In the clauses cond.1 and cond.2 in (3.7), the operations

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 60

to determine whether pt /∈ discP ts−i(t) must be executed first because if it does not

hold true, the magnitude function to determine if ||pt− loci(t+ 1)|| ≤ sensRange is

true or if ||pt− loci(t+2)|| ≤ sensRange is true, does not need to be evaluated. Even

if the magnitude function is required to be evaluated, the computation needed for it

does not have any affect on the runtime order for iterating through all the points.

Since there are four two-step actions sequences to be considered, 4Z2 iterations are

needed, which is of order Z2. Thus, the runtime order would be O(Z2).

Figure 4.8: Player i considering each two-step action sequence

If the function f [posi(t + 2), pt] did not have to be evaluated for every point in

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 61

the grid, the complexity of computing the objective function (3.7) for a player i for

an action sequence (axi , a
1
i) could be reduced. Since the points that have already

been discovered by player i, namely discP tsi(t), are present in the lookup table, the

function f [posi(t + 2), pt] does not have to be evaluated for them to determine their

contribution to the overall utility of player i. Instead, a very simple operation can

be used to query the number of elements in discP tsi(t), which would indicate the

utility of player i prior to time t. The problem then becomes to iterate through only

a subset of points in the grid that have the potential of increasing player i’s utility

in the following two-step action sequence. It would be necessary to at least scan

through the points that would be in range of the sensor in the future positions. Since

the sensor has a circular coverage, a solution would be to enclose the points that would

be covered by the sensor’s range using a square, and scan through all the points that

would fall under the square. This is illustrated in Fig. 4.8. Squares 3, 4, and 5 enclose

the points that need to be scanned to determine the utility of turning right, left, and

back respectively. Squares 1 and 2 enclose the points that need to be scanned to

determine the utility of playing the current baseline action. There are two squares

because there are two future positions associated with playing the baseline action.

The squares associated with the baseline action have a solid boundary, whereas the

squares associated with any of the turn actions have dotted boundary lines. Figure

4.9 shows a detailed view of how a square encloses a sensor’s radial coverage so that in

scanning all the grid points inside the square (denoted by the bold line), all the points

that would be in range of the sensor are also scanned. The solid dot indicates a future

position of the robot and the hollow dot indicates a point that needs to be scanned.

We say that a point pt is “bounded at a location loci(t)” if at time t, pt is inside the

square that encloses the circle created by the sensor centered at loci(t). Since the

radius of the sensor’s coverage is sensRange, a side of the square is 2 ∗ sensRange

in dimension. We note that one point that certainly does not need to be scanned or

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 62

that cannot contribute to increasing player i’s utility in the two-step actions sequence

is the point where the robot would be situated (i.e. the solid dot in Fig. 4.9). This

point would already have been accounted for in the previous time step, and is based

on the assumption that sensRange ≥ 1 grid point; that is, the range of the sensor

is large enough to at least detect adjacent points in the grid. Thus, the number of

points that would need to be iterated through or scanned in a square is

points to be scanned in square = (2|sensRange|+ 1)2 − 1

= 4|sensRange|2 + 4|sensRange|
(4.1)

This equates to 24 in our particular example with sensRange = 2 grid points. We

note that points to be scanned in square is a O(sensRange2) function of sensRange.

It cannot be of order sensRange because for sufficiently large values of sensRange,

points to be scanned in square would not be bounded by M ∗ |sensRange|, where

M is a constant factor (see Section 2.6).

We need to restate the objective function in (3.7) in a different way now because

presently the objective function iterates through all the points in the grid. Before we

do so, however, we need to define the following set.

squareSet = {pt ∈ gridpts | cond.3 is true}, (4.2)

where,

cond.3 =

true, if axi = a1

i in (axi , a
1
i) and pt is bounded at loci(t+ 1) or loci(t+ 2)

true, if axi 6= a1
i in (axi , a

1
i) and pt is bounded at loci(t+ 2)

false, otherwise

If the first statement in cond.3 evaluates to true, then player i must be playing its

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 63

Figure 4.9: Example of a square enclosing sensor’s radial coverage

current baseline action for the two-step action sequence. If the second statement in

cond.3 evaluates to true, then player i must be making a turn. Given this, we now

restate U
a1i
i (posi(t+ 1)) in terms of a function h[posi(t+ 2), pt].

U
a1i
i (posi(t+ 1)) = |discP tsi(t)|+

∑
pt∈squareSet

h[posi(t+ 2), pt], (4.3)

where,

h[posi(t+ 2), pt] =

1, if cond.4 or cond.5 is true

0, otherwise

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 64

cond.4 evaluates to true if

||pt− loci(t+ 1)|| ≤ sensRange and pt /∈ discP ts−i(t+ 1) and pt /∈ discP tsi(t),

cond.5 evaluates to true if

||pt− loci(t+ 2)|| ≤ sensRange and pt /∈ discP ts−i(t+ 1) and pt /∈ discP tsi(t),

and |discP tsi(t)| represents the cardinality of discP tsi(t). We note that the only

difference between cond.4 and cond.1, and cond.5 and cond.2, is the inclusion of the

clause pt /∈ discP tsi(t). It is present to ensure that h[posi(t + 2), pt] only equates to

1 for a point pt if pt is expected to be discovered by i in the following two-step action

sequence. This prevents double-counting previously discovered points. As before, it

is assumed that discP ts−i(t+ 1) = discP ts−i(t), and,

Ui
(
(axi , a

1
i), (a

′
−i, a

′′
−i)
)

= U
a1i
i (posi(t+ 1)).

Considering that (4.3) has to be computed for four two-step actions sequences,

a total of 20(|sensRange|2 + |sensRange|) iterations are needed. This is calculated

using (4.1) as follows.

total iterations = 5 ∗ points to be scanned in square

= 5[(2|sensRange|+ 1)2 − 1]

= 5(4|sensRange|2 + 4|sensRange|)

= 20(|sensRange|2 + |sensRange|)

The coefficient 5 above is present rather than 4 because as mentioned earlier there are

two future positions associated with playing the baseline action, and so, two squares

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 65

are required. From the definition of the big O notation (see Section 2.6), we have

total iterations ∈ O(20(|sensRange|2 + |sensRange|))

⇒ total iterations ∈ O(sensRange2)

The calculation above for the runtime order is for a robot i that is allowed to

update its action in the absence of any obstacles near it. It thus has the full set αi

available to it to select a two-step action sequence. If on the other hand the robot

faces an obstacle in front of it and has to manoeuvre around it, it cannot play its

baseline action. Hence, the action sequence (a1
i , a

1
i) would not be available for it

to select from αi. This gives us 12(|sensRange|2 + |sensRange|) iterations as the

calculation below shows, which is still O(sensRange2).

total iterations = 3 ∗ points to be scanned in square

= 3[(2|sensRange|+ 1)2 − 1]

= 3(4|sensRange|2 + 4|sensRange|)

= 12(|sensRange|2 + |sensRange|)

⇒ total iterations ∈ O(12(|sensRange|2 + |sensRange|))

⇒ total iterations ∈ O(sensRange2)

Since O(sensRange2) ≤ O(Z2) and assuming sensRange << Z, we can conclude

that Algorithm 2 is computationally more efficient than frontier-based exploration

algorithms.

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 66

4.4 Improved Exploration Algorithm

This section discusses an improvement to Algorithm 2 in terms of the time taken to

explore a space. The improvement stems from each robot predicting the location of

every other robot when deciding on a direction to turn. This allows a robot to change

its heading to avoid exploring the same areas as other robots, and as a result achieve

a greater degree of coordination. The basis of the prediction is that when a robot

i is allowed to perform a turn sequence based on its exploration rate ε, it can be

reasonably sure that every other robot will play their baseline action or move forward

for the two time steps required to complete i’s turn. In fact, the prediction becomes

more accurate the smaller ε is set to because robots will turn less often, and thus

when a robot is allowed to turn it can be reasonably sure that other robots will not

turn. A robot that is deciding to turn needs to know the heading and the location of

every other robot (i.e. pos−i(t)) in the time step it is deciding on turning on so that it

can predict the locations of all the robots in the two time steps it will take to perform

its turn (i.e. pos−i(t+ 1) and pos−i(t+ 2)). Taking into account the aforementioned,

we now redefine the objective function of a player i that is able to update its action

at time t as

Ui
(
(axi , a

1
i), (a

1
−i, a

1
−i)
)

= U
a1i
i (posi(t+ 1), pos−i(t+ 1))

=
∑

pt∈gridpts

f [posi(t+ 2), pos−i(t+ 2), pt]
(4.4)

where

f [posi(t+ 2), pos−i(t+ 2), pt] =

1, if pt ∈ discP tsi(t)

1, if cond.6 is true

1, if cond.7 is true

0, otherwise

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 67

cond.6 evaluates to true if

||pt− loci(t+ 1)|| ≤ sensRange and pt /∈ discP ts−i(t)

and ||pt− loc−i(t+ 1)|| � sensRange

and ||pt− loc−i(t+ 2)|| � sensRange

cond.7 evaluates to true if

||pt− loci(t+ 2)|| ≤ sensRange and pt /∈ discP ts−i(t)

and ||pt− loc−i(t+ 1)|| � sensRange

and ||pt− loc−i(t+ 2)|| � sensRange

Note in comparison to (3.7), equation (4.4) uses (a1
−i, a

1
−i) rather than (a′−i, a

′′
−i)

signifying that the objective function is calculated under the assumption that other

robots move forward in the following two time steps. The clause ||pt− loc−i(t+1)|| �

sensRange or ||pt− loc−i(t+ 2)|| � sensRange evaluate to true if pt is not in range

of any of the robots aside from robot i in the respective time step. Equation (4.4) is

the objective function for any player i that is able to change its action at time t. For

every other player that is not allowed to change its action at time t from its baseline

action (i.e. moving forward) as dictated by ε, its predicted utility for the two-step

action sequence that follows is calculated using (4.3).

It can be seen that in maximizing (4.4), a player i avoids heading in a direction

that it predicts other robots are going to move towards. Fig. 4.10 will be used to

illustrate this. In Fig. 4.10, two robots are simultaneously exploring a 20 × 20 grid

free of obstacles except for the outer walls. The heading and position of each robot

shown in the diagram is for a time t. Note that the grid points are represented

differently here. They are inside squares, which we refer to as a cell in the diagram.

In Fig. 4.10, Robot 1 has reached the edge of the grid and cannot play its baseline

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 68

action. It thus has to perform a turn sequence and move left, right, or down to the

respective cells marked in the diagram by the chequered squares. The green cells

represent grid points that have already been discovered by Robot 1 and Robot 2. It

is assumed that Robot 2 is not allowed to update its action at time t, and hence,

must play its baseline action for the following two time steps. The positions that

Robot 2 would assume in the following two time steps are marked by the chequered

squares in Fig. 4.10. The red squares indicate the new cells or the grid points that

would be discovered by Robot 2 in the following two time steps. As Robot 1 has to

perform a turn sequence, its objective function would be dictated by (4.4). Therefore,

Robot 1 would not expect to receive gains in utility from cells 4 and 6 if it turned

left because it would predict that Robot 2’s sensor scan would pick up those points

at time t + 2. The clause ||pt − loc−i(t + 2)|| � sensRange in (4.4) would not be

satisfied for cells 4 and 6, and thus, f [posi(t+ 2), pos−i(t+ 2), pt] = 0 for cells 4 and

6. Robot 1, however, would expect to receive gains in utility from cells 1, 2, 3, 5, and

7 amounting to a total utility gain of 5 in turning left. On the other hand, Robot 1

would expect to receive a gain of 7 in utility from turning right by discovering cells 8

to 14. Thus, turning right is clearly a superior decision to turning left for Robot 1 as

it provides more utility. We disregard Robot 1 moving down in this example because

in reality Robot 1 would have moved upwards to get to the position it is at in Fig.

4.10. Therefore, it would have already discovered points below it. Had Robot 1 used

objective function (3.7) to determine which direction to turn towards, it would have

chosen indiscriminately between turning left and turning right. Turning left in this

situation would mean that less of the space would be explored by the end of time step

t+2 compared to turning right. As objective function (4.4) ensures that Robot 1 only

turns right in this situation, one would expect that in making similar decisions in all

situations such as the one illustrated in Fig. 4.10, the exploration time needed with

(4.4) would be less than the exploration time needed with (3.7). Simulation results

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 69

will be presented shortly that confirm this hypothesis.

Figure 4.10: Example to illustrate decision process of a robot using objective func-
tion (4.4)

We need to introduce new rules for updating discP tsi(t) and discP ts−i(t) that

are consistent with the objective function (4.4). As with the previous objective

function (3.7), at the beginning of a time step posi(t) is updated, except if a robot i

is in the middle of a turn sequence in which case it needs to update pos−i(t) as well.

Then discP tsi(t) and discP ts−i(t) are updated. However, depending on whether a

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 70

robot has the option of performing a turn sequence or not at a time t as dictated by

ε, we differentiate how discP tsi(t) is updated. Based on cond.3 and cond.4 in (4.4),

a robot i that has the option of performing a turn sequence at a time t does not

expect to increase its utility by discovering new grid points in the following two time

steps if it predicts those grid points would be discovered by other robots in those

two times steps. Thus, to be consistent with the prediction, i must ensure those grid

points do not get included in discP tsi(t) when it updates the set after taking an

action. This is reflected in (4.5).

If a robot i has the option of performing a turn sequence at time t, discP tsi(t) is

updated as follows in the following two time steps.

discP tsi(t) = {pt ∈ gridpts | cond.8} ∪ discP tsi(t− 1) (4.5)

cond.8 evaluates to true if

||pt− loci(t)|| ≤ sensRange and pt /∈ discP ts−i(t− 1)

and ||pt− loc−i(t)|| � sensRange

If on the other hand a robot i can only play its baseline action, discP tsi(t) is updated

as follows in the following two time steps.

discP tsi(t) = {pt ∈ gridpts | cond.9} ∪ discP tsi(t− 1)

cond.9 evaluates to true if

||pt− loci(t)|| ≤ sensRange and pt /∈ discP ts−i(t− 1)

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 71

Finally, discP ts−i(t) is updated for all robots as follows.

discP ts−i(t) =
⋃
j∈Ni

{pt ∈ gridpts | pt ∈ discP tsj(t)}

Claim 4.1 Player objective function (4.4) constitute a potential game with potential

function (3.9).

Proof. The proof is very similar to the proof of Claim 3.1 presented in Section 3.2.

However, we present it here for clarity and completeness. Again, we assume a player

i is contemplating at time t whether to turn in one direction by performing the action

sequence (a′i, a
1
i) or to turn in another direction by performing (a′′i , a

1
i) so that a′i 6= a′′i .

The change in the objective function of player i by switching from the action sequence

(a′′i , a
1
i) to the action sequence (a′i, a

1
i), provided that all other players collectively play

(a1
−i, a

1
−i), is

4Ui = Ui
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)
− Ui

(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)

The first difference equation for the potential function of the game for the two different

action sequences of player i is

4φ = φ
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)
− φ
(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 72

Substituting (3.10) into the above difference equation, we get

4 φ = Ui
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)

+
∑
j∈Ni

Uj
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)

−
[
Ui
(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)

+
∑
j∈Ni

Uj
(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)]

(4.6)

A robot j ∈ Ni computes its objective function using (3.7). Since this value is not

influenced by robot i’s actions, it is irrespective of a′i and a′′i . Therefore, we have

Uj
(
(a′i, a

1
i), (a

1
−i, a

1
−i)
)

= Uj
(
(a1
j , a

1
j), (a

x
−j, a

y
−j)
)

= Uj
(
(a′′i , a

1
i), (a

1
−i, a

1
−i)
)

(4.7)

Now, we substitute (4.7) into (4.6) to get

4Ui = 4φ

As previously (Section 3.3.1), we have players update their actions with a prob-

ability of ε to allow for decentralized decision-making. However, this comes at the

expense of losing some coordination or cooperation in the sense that when a player i

decides to make a turn in a direction believing that no other player is going to come in

its way, it may be wrong and it may actually run into another player’s path. Turning

and running into another player’s path could be considered a bad decision on player

i’s part because it could perhaps have turned in another direction in that time and

not have any overlaps with other players. Thus, better spatial distribution of robots

could have been had, which could reduce the time needed for exploration. However, in

comparison with a completely uncoordinated algorithm such as Algorithm 3, overlaps

would be significantly lower resulting in faster exploration times.

To asses the effect of using (4.4) on exploration time, we replace the objective

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 73

function used in Algorithm 2 (i.e. (3.7)) with (4.4), and use the new rules for updating

discP tsi(t) and discP ts−i(t) as discussed in this section. This is shown in Algorithm

4. The term pos−i(t) refers to the combined location and heading vector for each

player j ∈ Ni, and Ui improved is short for objective function (4.4).

Algorithm 4 Improved Exploration Algorithm

Initialize # of time steps, sensRange, and ε

for t← 1,# of time steps do
for all player i ∈ N do

if player in middle of turn sequence then
Update posi(t), pos−i(t), discP tsi(t), and discP ts−i(t)

else
Update posi(t), discP tsi(t), and discP ts−i(t)

end if

if player should turn because of obstacle then
Compute Ui improved , ∀(axi , a1

i) 6= (a1
i , a

1
i)

Play (axi , a
1
i) that maximizes Ui

else if player should explore based on ε then
Compute Ui improved , ∀(axi , a1

i) ∈ αi
Play (axi , a

1
i) based on asfi

else
Play (a1

i , a
1
i)

end if

end for
end for

We simulate Algorithm 4 for the same test environment in Fig. 4.1 with

sensRange set to 2 grid points, but use a value of 0.1 for ε rather than 0.3. Again,

the simulation is run for 2000 time steps and averaged over 20 games. Fig. 4.11

compares the performance of Algorithm 2 with Algorithm 4. It can be seen that Im-

proved Algorithm discovers more grid points from the 200th time step to the 700th

time step, but in terms of the total time it takes to explore the whole space there is no

difference between the two algorithms. However, it can be argued that if there is only

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 74

a limited time given to explore the space (400 time steps for example), Algorithm 4

would explore more of the space than Algorithm 2. On the contrary it is important

to note that with Algorithm 4, a robot that is performing a turn sequence requires

more information from the other robots compared to Algorithm 2. Specifically, it

needs pos−i(t), which includes both the heading and position of the other robots (i.e.

pose−i(t) and loc−i(t) respectively). Recall that in Algorithm 2, a robot only needs

to know the position of all the other robots (i.e. loc−i(t)). Thus, the improvement

in exploration time of the Improved Algorithm over Algorithm 2 comes at the ex-

pense of more information having to be shared among the robots. No analysis was

done in this thesis to examine bandwidth requirements for communications, and the

simulations performed does not account for any communication overhead or latency

between robots as this falls outside the scope of this thesis.

Fig. 4.12 captures the results of a simulation of Algorithm 2 and Algorithm 4 for

ε = 0.3 and sensRange = 2 grid points. Algorithm 4 performs worse than Algorithm

2 between the 200th and 800th time step. Increasing ε from 0.1 to 0.3 resulted in a

significant amount of coordination to be lost among robots with Algorithm 4. Thus,

many robots would have run into each others’ paths while updating their actions

through the course of the game resulting in significant sensor overlaps. Since Algo-

rithm 4 performed better than Algorithm 2 when ε = 0.1 and worse than Algorithm

2 when ε = 0.3, a natural comparison would be to see if Algorithm 4 with ε = 0.1

would perform better than Algorithm 2 with ε = 0.3. The result of this comparison is

illustrated in Fig. 4.13. It is clear that Algorithm 4 performs better than Algorithm 2

even though both algorithms take approximately the same time to explore the whole

space.

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 75

Figure 4.11: Comparison of exploration time of Algorithm 2 and Algorithm 4 with
ε = 0.1 and sensRange = 2 grid points

Figure 4.12: Comparison of exploration time of Algorithm 2 and Algorithm 4 with
ε = 0.3 and sensRange = 2 grid points

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 76

Figure 4.13: Comparison of exploration time of Algorithm 2 with ε = 0.3 and
Algorithm 4 with ε = 0.1, and sensRange = 2 grid points for both algorithms

4.4.1 Effect of Obstacles on Exploration Time

In this section, we investigate the effect that obstacles have on the exploration time

required to uncover a space. An obstacle is an object in the environment that causes

a robot to turn even if at that particular moment it is not allowed to do so based on ε.

Therefore, objects inside a space that is to be explored as well as walls that enclose the

space are considered obstacles. As discussed in Section 4.1, the presence of obstacles

can be effectively thought of as increasing ε from the value it was initialized to, which

as seen in Section 4.4 reduced coordination among robots. Fig. 4.14 represents a test

setup that is similar to Fig. 4.1, except it omits two of the obstacles in Fig. 4.1.

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 77

Thus, the density of the obstacles in terms of the area they occupy compared to the

area of the whole space has effectively been reduced in Fig. 4.14 in comparison to

Fig. 4.1. We then simulate Algorithm 4 in the setup in Fig. 4.14 with ε = 0.1 and

sensRange = 2 grid points, and compare it to how it performed in the setup in Fig.

4.1 with the same values for ε and sensRange. Fig. 4.15 shows the results of the

simulation. Despite ε being the same in both tests, Algorithm 4 performed slightly

better in the setup with one obstacle than the original setup with three obstacles. This

confirms the thinking that increasing the number of obstacles in a space effectively

increases the value of ε. In Fig. 4.15, the exploration time of Algorithm 3 is displayed

for reference. There is no change in the curve of Algorithm 3 from the setup consisting

of three obstacles to the setup consisting of only one obstacle.

We can consider the effect that outer walls, which bound an entire space, would

have on exploration time if we assume a square environment without any obstacles

embedded inside it; that is the only obstacles are the outer walls. If l represents the

length of a side of this environment, its area Area is proportional to l2 (i.e. Area ∝ l2),

whereas its perimeter Perim is proportional to l (i.e. Perim ∝ l). Therefore, if l

doubles for example, Area would quadruple and Perim would only double. Given

these relations of Area and Perim to l, it is foreseeable that as l gets large, the total

exploration time will be increasingly comprised of the time that robots spend mov-

ing forward rather than performing obstacle avoidance manoeuvres. This is because

the boundaries that impose restrictions on the actions that a robot can play would

be insignificant in comparison to the overall area. Moving forward reduces the time

needed for exploration in comparison to making frequent turns because more grid

points are discovered if a robot plays its baseline action. Thus, scenarios in which

the exploration process is mostly comprised of robots moving forward would more so

justify using Algorithm 4. Otherwise, using Algorithm 4 may not be as effective, and

other exploration algorithms such as frontier-detection algorithms that have more

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 78

Figure 4.14: Simulation setup for analyzing the effect of obstacles on exploration
time

Figure 4.15: Comparison of exploration time of Algorithm 4 in a setup with one
obstacle and in a setup with two obstacles

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 79

explicit coordination schemes may prove to be more beneficial. As discussed ear-

lier, frontier-detection algorithms employ frontiers to maintain coordination amongst

robots, which can greatly reduce sensor overlaps and result in efficient exploration

of the environment. Even if it has a greater computational complexity (i.e. O(Z2))

than the Potential game algorithms discussed in this paper, for small environments

where Z is small, the running time becomes negligible. Instead its greater efficiency

over the Potential game algorithms in having robots move in non-overlapping paths

may reduce overall exploration time.

From the analysis in this section, we can conclude that Algorithm 4 performs best

in large open areas with few obstructions.

4.5 Summary

In this section, we modified the exploration algorithm introduced in Section 3.3.2

so that bounded spaces embedded with obstacles can be explored. To assess the

performance of the modified exploration algorithm (Algorithm 2), an example of

an uncoordinated exploration algorithm (Algorithm 3) was presented. It was then

shown through simulation that Algorithm 2 reduced the time needed for exploration

compared to Algorithm 3. Moreover, it was found that Algorithm 2 fared even better

than Algorithm 3 when the range of the sensors that robots were equipped with was

decreased. Algorithm 2 has an advantage over Algorithm 3 in that it introduces a

certain degree of coordination among robots so that they do not all follow the same

path when they are exploring. Furthermore, Algorithm 2 was analyzed to have a

running time of O(sensRange2) compared to a running time of O(Z2) for frontier-

detection algorithms. This makes our Potential game computationally more efficient

than frontier detection algorithms. Finally, an improvement to Algorithm 2 was

suggested (Algorithm 4), which is based on having a robot predict the future location

CHAPTER 4. MODIFIED POTENTIAL GAME ALGORITHMS 80

of every other robot when it decides to turn. Although Algorithm 4 required the

same amount of time to explore a space as Algorithm 2, it was found to have a

slightly greater exploration rate than Algorithm 2 in the first few hundreds of time

steps. It was further shown through simulation that as the density of obstacles in a

space increased, coordination among the robots decreased resulting in a decrease in

exploration rate at the beginning of the exploration process. This was attributed to

the fact that increasing the obstacles in a space has the equivalent affect of increasing

ε, which in turn reduces the accuracy of a robot’s prediction of where other robots

would be situated in a two-step action sequence. Also, having more obstacles in

a space means that robots would make more turns and would need to make more

decisions, which increases computational complexity (see Section 4.3). Based on

these results, it was concluded that Algorithm 4 performs best in large open areas

with only a few obstructions.

Chapter 5

Conclusions

In today’s age, there are increasing number of applications that demand the use of

multi-robot systems in mapping unknown spaces. Although frontier-based dynamic

programming methods are currently the most common in achieving these objectives,

new methods are being sought to address its shortcomings. This thesis presents a

method for exploration with multiple robots using Potential games. It is based on

previous work in solving the Consensus problem using Potential games. Instead of

consensus being the collaborative goal, however, our main goal in this thesis is the

exploration of closed spaces. The exploration process in a multi-robot platform in-

volves allocating each robot a target to explore such that overlaps are minimized. As

part of this work, a meaningful Potential function was defined and a local objective

function for each player was derived that is coherent with the overall goal. Moreover,

the Potential game defined in this thesis is built atop the Simple Forward Turn Con-

troller, which was introduced in prior work to simulate the nonholonomic behaviour

of real-world robots.

81

CHAPTER 5. CONCLUSIONS 82

5.1 Summary of Contributions

This thesis presented a method of exploring a space with multiple robots using a

Potential game. The method was developed and validated through numerous simu-

lations with varying parameters. In summary, the thesis has provided advancements

to this area of research through the following contributions:

1. A method of collaboratively mapping an unknown environment with a team of

robots using Potential games was proposed. The definition of a Potential game

was extended so that it could be modelled under the framework of the Simple

Forward Turn Controller.

2. In Chapter 3.2, we defined the potential function for our Potential game, which

is a summation of the objective function that was assigned to each player in

the game. The objective function itself was based on the number of grid points

that would be discovered by a robot if it played an action sequence from its

action set. Moreover, update rules were created for the variables discP tsi(t)

and discP ts−i(t) for every time step. The combination of the potential function

and the objective function for each player was seen to satisfy the WLU family

of utility structures, and a proof was presented signifying that they made up a

Potential game.

3. The Simple Forward Turn Controller was modified so that when a player is

allowed to update its action, it chooses an action from the best response set

rather than randomly selecting an action as it was suggested originally.

4. In Chapter 4.2, it was demonstrated through NetLogo simulations how the al-

gorithm that is based on our Potential game (Algorithm 2) required less time

to explore a bounded space compared to an uncoordinated exploration algo-

rithm (Algorithm 3). Numerous simulation results were presented comparing

CHAPTER 5. CONCLUSIONS 83

both algorithms for different values of ε and sensRange. Also, Algorithm 2

was analyzed and found to have a lower runtime order than frontier detection

algorithms.

5. In Chapter 4.4, an improvement was suggested to our first algorithm (Algo-

rithm 2), which is based on having a robot predict the future location of every

other robot when it decides to turn. New update rules were also presented for

variables discP tsi(t) and discP ts−i(t) as part of this new algorithm (Algorithm

4). Algorithm 4 was found to have a slightly greater exploration rate than

Algorithm 2 at the beginning of the exploration process.

5.2 Future Work

The work presented in this thesis opens new research directions and future work to

be conducted in multi-robot exploration using Potential games. They are as follows.

1. Implement the algorithms presented in this thesis on real robotic platforms such

as a team of Husky robots. The algorithm needs to be tested on indoor and

outdoor environments with different types of obstacles.

2. Integrate frontier-detection algorithms with the Potential game algorithm in-

troduced in this thesis in such a way that the benefits of both algorithms can

be exploited.

3. Conduct thorough analysis of the bandwidth requirements in communications

between robots for the algorithms introduced in this thesis so that their ap-

plicability in severely bandwidth constrained mediums such as water can be

assessed. Further along the lines of bandwidth limited mediums, future work

will involve the development of a game where robots do not communicate with

CHAPTER 5. CONCLUSIONS 84

their neighbours every time step or only communicates with a subset of their

neighbours. This would reflect limitations in communication range of robots in

large multi-robot platforms where robots could be situated far from each other.

4. Improve or altogether come up with a new algorithm whose reward calculation

for each action in a robot’s action set can be run in parallel. This could offer

improvements in execution time and system responsiveness, especially when

robots have large action sets.

The applications involving multi-robot systems to solve real-world problems are

numerous. There is an increasing need today for decentralized robotic systems in

planetary exploration, reconnaissance, etc. that require simple yet cooperative agents

to accomplish an overall goal. Potential games offer a promising research direction in

this regard.

List of References

[1] J. Lindsay. Nonholonomic Consensus in Cooperative Robotics: A Game Theo-

retical Approach. Master’s thesis, Royal Military College of Canada, Kingston,

Ontario (2011).

[2] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. “Collaborative multi-

robot exploration.” In “Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA),” pages 476–481. San Francisco, California, USA (2000).

[3] P. Wadhams. “The use of autonomous underwater vehicles to map the variability

of under-ice topography.” Ocean Dynamics 62(3), 439–447 (2012).

[4] X. Lu. Multi-Agent Reinforcement Learning in Games. Ph.D. thesis, Carleton

University, Ottawa, Ontario (2012).

[5] J. R. Marden, H. P. Young, G. Arslan, and J. S. Shamma. “Payoff-based dy-

namics for multiplayer weakly acyclic games.” SIAM J. Control Optim. 48(1),

373–396. ISSN 0363-0129 (2009).

[6] P. Dinnissen. Using Reinforcement Learning in Multi-Robot SLAM. Master’s

thesis, Carleton University, Ottawa, Ontario (2011).

[7] J. Castellanos et al. “The spmap: A probabilistic framework for simultaneous

localization and map building.” IEEE Trans. Robot. Autom. 15(2), 125–137

(2001).

[8] G. Dissanayake et al. “A computationally efficient solution to the simultane-

ous localization and map building (slam) problem.” In “Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA),” pages 1009–1014 (2000).

[9] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ (1957).

85

86

[10] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press and

Wiley (1960).

[11] M. Keidar and G. A. Kaminka. “Robot exploration with fast frontier detection:

theory and experiments.” In “Proceedings of the 11th International Conference

on Autonomous Agents and Multiagent Systems-Volume 1,” pages 113–120. In-

ternational Foundation for Autonomous Agents and Multiagent Systems (2012).

[12] A. Farinelli, L. Locchi, D. Nardi, and V. A. Ziparo. “Assignment of dynamically

perceived tasks by token passing in multi-robot systems.” In “Proceedings of the

IEEE Special Issue on Multi-Robot Systems,” pages 1271–1288 (2006).

[13] S. Seuken and S. Zilberstein. “Formal models and algorithms for decentralized

decision making under uncertainty.” Autonomous Agents and Multi-Agent Sys-

tems 17(2), 190–250 (2008).

[14] E. Uchibe, M. Nakamura, and M. Asada. “Co-evolution for cooperative behavior

acquisition in a multiple mobile robot environment.” In “Proc. of the IEEE

International Conference on Intelligent Robots and Systems,” pages 4254–430.

Springer-Verlag (1999).

[15] J. Marden, G. Arslan, and J. Shamma. “Cooperative control and potential

games.” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transac-

tions on 39(6), 1393–1407. ISSN 1083-4419 (2009).

[16] J. V. Neumann and O. Morgenstern. Theory of Games and Economic Behavior.

Princeton University Press. ISBN 0691119937 (1944).

[17] P. Straffin. Game theory and strategy. Number v. 36 in ANNELI LAX

NEW MATHEMATICAL LIBRARY. Mathematical Assoc. of America. ISBN

9780883856376 (1993).

[18] D. H. Wolpert and K. Tumer. “An introduction to collective intelligence.” Tech-

nical report, Handbook of Agent technology. AAAI (1999).

[19] Gintis. Game Theory Evolving: A Problem-centered Introduction to Modeling

Strategic Interaction. Economics / Princeton University Press. Princeton Uni-

versity. ISBN 9780691009438 (2000).

[20] J. Rousseau and M. Cranston. A Discourse on Inequality. Penguin Books Lim-

ited. ISBN 9780141920009 (2003).

87

[21] I. Kolmanovsky and N. McClamroch. “Developments in nonholonomic control

problems.” Control Systems, IEEE 15(6), 20–36. ISSN 1066-033X (1995).

[22] S. Chang. Data Structures and Algorithms, pages 21–24. Series on software

engineering and knowledge engineering. World Scientific Publishing Company

Incorporated. ISBN 9789812383488 (2003).

[23] A. Fabrikant, A. D. Jaggard, and M. Schapira. “On the structure of weakly

acyclic games.” In “Proceedings of the Third international conference on Algo-

rithmic game theory,” SAGT’10, pages 126–137. Springer-Verlag, Berlin, Heidel-

berg. ISBN 3-642-16169-3, 978-3-642-16169-8 (2010).

[24] L. Blume. “Population games.” Game Theory and Information 9607001, Econ-

WPA (1996).

[25] J. Marden and J. S. Shamma. “Autonomous vehicletarget assignment: a game

theoretical formulation.” ASME Journal of Dynamic Systems, Measurement,

and Control pages 584–596 (2007).

[26] H. Young. Individual strategy and social structure: an evolutionary theory

of institutions. Princeton paperbacks. PRINCETON University Press. ISBN

9780691086873 (2001).

[27] L. E. Blume et al. “The statistical mechanics of strategic interaction.” Games

and economic behavior 5(3), 387–424 (1993).

[28] W. Arthur, S. Durlauf, D. Lane, and S. E. Program. The Economy As an

Evolving Complex System II: Proceedings. A Proceedings volume in the Santa Fe

Institute studies in the sciences of complexity. Addison-Wesley, Acfanced Book

Program. ISBN 9780201328233 (1997).

[29] O. Madani. “Polynomial value iteration algorithms for deterministic mdps.” In

“Proceedings of the Eighteenth conference on Uncertainty in artificial intelli-

gence,” pages 311–318. Morgan Kaufmann Publishers Inc. (2002).

[30] K. Wurm, C. Stachniss, and W. Burgard. “Coordinated multi-robot exploration

using a segmentation of the environment.” In “Intelligent Robots and Systems,

2008. IROS 2008. IEEE/RSJ International Conference on,” pages 1160–1165

(2008).

Appendix A

Code of Exploration Algorithms in

NetLogor

88

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 89

A.1 Uncoordinated Exploration Algorithm

1 globals [o b s t a c l e o b s t a c l e 1 ob s t a c l e 2 ob s t a c l e 3 exp l o r ed p t s

no games sensRange]

2 turtles−own [exp lo r e]

3 patches−own [exp lored v i s i b l e n o p t s]

4

5 to setup

6 clear−all

7 set no games 0

8 set sensRange 3 ; s e t sensRange

9 se tup− tu r t l e s

10 setup−patches

11

12 reset−ticks

13 end

14

15 to setup two

16 clear−turtles

17 clear−patches

18 plot−pen−up

19 ; c l e a r−p l o t

20 se tup− tu r t l e s

21 setup−patches

22

23 reset−ticks

24 end

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 90

25

26 ; ; ; ; CREATE OBSTACLES ; ; ; ;

27 to setup−patches

28 set o b s t a c l e 1 (patch−set patch 10 10 patch 11 10 patch 12

10 patch 10 11 patch 11 11 patch 12 11 patch 10 12 patch

11 12 patch 12 12 patch 10 13 patch 11 13 patch 12 13

patch 10 14 patch 11 14 patch 12 14)

29 set o b s t a c l e 2 (patch−set patch 30 10 patch 31 10 patch 32

10 patch 30 11 patch 31 11 patch 32 11 patch 30 12 patch

31 12 patch 32 12 patch 30 13 patch 31 13 patch 32 13

patch 30 14 patch 31 14 patch 32 14)

30 set o b s t a c l e 3 (patch−set patch 20 26 patch 21 26 patch 22

26 patch 20 27 patch 21 27 patch 22 27 patch 20 28 patch

21 28 patch 22 28 patch 20 29 patch 21 29 patch 22 29

patch 20 30 patch 21 30 patch 22 30)

31 set o b s t a c l e (patch−set o b s t a c l e 1 ob s t a c l e 2 ob s t a c l e 3)

32

33 update−explored

34 end

35

36 to s e tup− tu r t l e s

37 create−turtles 3 ; c r e a t e 3 r o b o t s

38 ask turtle 0 [

39 setxy 23 16

40 face patch−at −1 0

41 set color ye l low

42]

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 91

43 ask turtle 1 [

44 setxy 21 19

45 face patch−at 0 −1

46 set color blue

47]

48 ask turtle 2 [

49 setxy 19 16

50 face patch−at 1 0

51 set color Red

52]

53 ask patches [

54 set exp lored f a l s e

55]

56 set exp l o r e d p t s nobody

57 end

58

59 to go

60 i f t icks >= 2000 [; 2000 time s t e p s

61 i f e l s e no games >= 20 [; 20 games

62 stop

63] [

64 set no games no games + 1

65 setup two

66 plot−pen−down

67]

68]

69 move−turtles

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 92

70 update−explored

71 tick ; increment the t i c k counter and

update the p l o t

72 end

73

74 ; ; ; ; UPDATE EXPLORED AREAS ; ; ; ;

75 to update−explored

76 ask turtles [

77 ask patches in−radius sensRange [

78 set exp lored t rue

79 set exp l o r e d p t s (patch−set s e l f exp l o r e d p t s)

80]

81]

82 ask patches [

83 set pcolor ifelse−value (exp lored = true) [b lack] [green]

84]

85 ask (patch−set o b s t a c l e 1 ob s t a c l e 2 ob s t a c l e 3) [set pcolor

red]

86 end

87

88 to move−turtles

89 l et s e l e c t e d p a t c h nobody

90 l et maxUti l i ty 0

91

92 ask turtles [

93 l et f o l l o w i n g p a t c h 1 patch−ahead 1

94 l et f o l l o w i n g p a t c h 2 patch−ahead 2

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 93

95

96 ; ; ; ; e x p l o r e every time s t e p ; ; ; ;

97 i f e l s e (f o l l o w i n g p a t c h 1 = nobody or member?

f o l l o w i n g p a t c h 1 o b s t a c l e = true) [

98 set exp lo r e t rue

99] [

100 set exp lo r e t rue

101]

102 ; ; ; ; ; ; ; ; ; ; ; ; ; ;

103

104 i f e l s e (exp lo r e) [

105 l et o ld dx dx

106 l et o ld dy dy

107

108 ask neighbors4 [

109 i f e l s e (s e l f = nobody or member? s e l f o b s t a c l e = true

) [

110 set v i s i b l e n o p t s 0

111] [

112 i f e l s e s e l f = f o l l o w i n g p a t c h 1 [

113 set v i s i b l e n o p t s b a s e l i n e−u t i l i t y

f o l l o w i n g p a t c h 2

114] [

115 set v i s i b l e n o p t s t u r n−u t i l i t y

116]

117]

118]

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 94

119 set s e l e c t e d p a t c h max−one−of neighbors4 [

v i s i b l e n o p t s]

120 ask s e l e c t e d p a t c h [

121 set maxUti l i ty v i s i b l e n o p t s

122]

123

124 i f f o l l o w i n g p a t c h 1 != nobody [

125 i f e l s e member? f o l l o w i n g p a t c h 1 o b s t a c l e = f a l s e [

126 i f s e l e c t e d p a t c h != f o l l o w i n g p a t c h 1 [

127 ask f o l l o w i n g p a t c h 1 [

128 i f (maxUti l i ty = v i s i b l e n o p t s and maxUti l i ty

!= 0) [

129 set s e l e c t e d p a t c h s e l f

130]

131]

132]

133] [

134 i f s e l e c t e d p a t c h = f o l l o w i n g p a t c h 1 [

135 l et modi f i ed ne ighbor s4 nobody

136

137 ask neighbors4 [

138 i f s e l f != f o l l o w i n g p a t c h 1 [

139 set modi f i ed ne ighbor s4 (patch−set s e l f

modi f i ed ne ighbor s4)

140]

141]

142

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 95

143 set s e l e c t e d p a t c h max−one−of modi f i ed ne ighbor s4

[v i s i b l e n o p t s]

144]

145]

146]

147

148 i f e l s e s e l e c t e d p a t c h = f o l l o w i n g p a t c h 1 [

149 fd 1 ; move forward

150] [

151 face s e l e c t e d p a t c h

152]

153] [

154 fd 1 ; move forward

155]

156]

157 end

158

159 ; ; ; ; UPDATE ACTION BASED ON EPSILON ; ; ; ;

160 to−report exp lo re−eps i l on

161 report ifelse−value (random 10 < 3) [t rue] [f a l s e]

162 end

163

164 ; ; ; ; PREDICTED GAIN IN UTILITY FROM PLAYING BASELINE ACTION

; ; ; ;

165 to−report b a s e l i n e−u t i l i t y [f o l l o w i n g p a t c h 2]

166 l et tempUt i l i ty 0

167 l et two patches b lobs nobody

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 96

168

169 set two patches b lobs patches in−radius sensRange

170

171 i f f o l l o w i n g p a t c h 2 != nobody [

172 ask f o l l o w i n g p a t c h 2 [

173 set two patches b lobs (patch−set patches in−radius

sensRange two patches b lobs)

174]

175]

176

177 ask two patches b lobs [

178 update−plots

179 i f exp lored != true [

180 set tempUt i l i ty tempUt i l i ty + 1

181]

182]

183

184 report tempUt i l i ty

185 end

186

187 ; ; ; ; PREDICTED GAIN IN UTILITY FROM TURNING IN A SPECIFIC

DIRECTION ; ; ; ;

188 to−report t u r n−u t i l i t y

189 l et tempUt i l i ty 0

190

191 ask patches in−radius sensRange [

192 i f exp lored != true [

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 97

193 set tempUt i l i ty tempUt i l i ty + 1

194]

195]

196

197 report tempUt i l i ty

198 end

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 98

A.2 Algorithm 2

This is the first algorithm that was introduced for exploring bounded spaces.

1 globals [o b s t a c l e o b s t a c l e 1 ob s t a c l e 2 ob s t a c l e 3 exp l o r ed p t s

no games sensRange]

2 turtles−own [exp lo r e]

3 patches−own [exp lored v i s i b l e n o p t s]

4

5 to setup

6 clear−all

7 set no games 0

8 set sensRange 3 ; s e t sensRange

9 se tup− tu r t l e s

10 setup−patches

11

12 reset−ticks

13 end

14

15 to setup two

16 clear−turtles

17 clear−patches

18 plot−pen−up

19 ; c l e a r−p l o t

20 se tup− tu r t l e s

21 setup−patches

22

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 99

23 reset−ticks

24 end

25

26 ; ; ; ; CREATE OBSTACLES ; ; ; ;

27 to setup−patches

28 set o b s t a c l e 1 (patch−set patch 10 10 patch 11 10 patch 12

10 patch 10 11 patch 11 11 patch 12 11 patch 10 12 patch

11 12 patch 12 12 patch 10 13 patch 11 13 patch 12 13

patch 10 14 patch 11 14 patch 12 14)

29 set o b s t a c l e 2 (patch−set patch 30 10 patch 31 10 patch 32

10 patch 30 11 patch 31 11 patch 32 11 patch 30 12 patch

31 12 patch 32 12 patch 30 13 patch 31 13 patch 32 13

patch 30 14 patch 31 14 patch 32 14)

30 set o b s t a c l e 3 (patch−set patch 20 26 patch 21 26 patch 22

26 patch 20 27 patch 21 27 patch 22 27 patch 20 28 patch

21 28 patch 22 28 patch 20 29 patch 21 29 patch 22 29

patch 20 30 patch 21 30 patch 22 30)

31 set o b s t a c l e (patch−set o b s t a c l e 1 ob s t a c l e 2 ob s t a c l e 3)

32

33 update−explored

34 end

35

36 to s e tup− tu r t l e s

37 create−turtles 3 ; c r e a t e 3 r o b o t s

38 ask turtle 0 [

39 setxy 23 16

40 face patch−at −1 0

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 100

41 set color ye l low

42]

43 ask turtle 1 [

44 setxy 21 19

45 face patch−at 0 −1

46 set color blue

47]

48 ask turtle 2 [

49 setxy 19 16

50 face patch−at 1 0

51 set color Red

52]

53 ask patches [

54 set exp lored f a l s e

55]

56 set exp l o r e d p t s nobody

57 end

58

59 to go

60 i f t icks >= 2000 [; 2000 time s t e p s

61 i f e l s e no games >= 20 [; 20 games

62 stop

63] [

64 set no games no games + 1

65 setup two

66 plot−pen−down

67]

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 101

68]

69 move−turtles

70 update−explored

71 tick ; ; increment the t i c k counter and

update the p l o t

72 end

73

74 ; ; ; ; UPDATE EXPLORED AREAS ; ; ; ;

75 to update−explored

76 ask turtles [

77 ask patches in−radius sensRange [

78 set exp lored t rue

79 set exp l o r e d p t s (patch−set s e l f exp l o r e d p t s)

80]

81]

82 ask patches [

83 set pcolor ifelse−value (exp lored = true) [b lack] [green]

84]

85 ask (patch−set o b s t a c l e 1 ob s t a c l e 2 ob s t a c l e 3) [set pcolor

red]

86 end

87

88 to move−turtles

89 l et s e l e c t e d p a t c h nobody

90 l et maxUti l i ty 0

91

92 ask turtles [

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 102

93 l et f o l l o w i n g p a t c h 1 patch−ahead 1

94 l et f o l l o w i n g p a t c h 2 patch−ahead 2

95

96 i f e l s e (f o l l o w i n g p a t c h 1 = nobody or member?

f o l l o w i n g p a t c h 1 o b s t a c l e = true) [

97 set exp lo r e t rue

98] [

99 set exp lo r e exp lo re−eps i l on ; e x p l o r e accord ing to

e p s i l o n

100]

101

102 i f e l s e (exp lo r e) [

103 l et o ld dx dx

104 l et o ld dy dy

105

106 ask neighbors4 [

107 i f e l s e (s e l f = nobody or member? s e l f o b s t a c l e = true

) [

108 set v i s i b l e n o p t s 0

109] [

110 i f e l s e s e l f = f o l l o w i n g p a t c h 1 [

111 set v i s i b l e n o p t s b a s e l i n e−u t i l i t y

f o l l o w i n g p a t c h 2

112

113] [

114 set v i s i b l e n o p t s t u r n−u t i l i t y

115]

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 103

116]

117]

118 set s e l e c t e d p a t c h max−one−of neighbors4 [

v i s i b l e n o p t s]

119 ask s e l e c t e d p a t c h [

120 set maxUti l i ty v i s i b l e n o p t s

121]

122

123 i f f o l l o w i n g p a t c h 1 != nobody [

124 i f e l s e member? f o l l o w i n g p a t c h 1 o b s t a c l e = f a l s e [

125 i f s e l e c t e d p a t c h != f o l l o w i n g p a t c h 1 [

126 ask f o l l o w i n g p a t c h 1 [

127 i f (maxUti l i ty = v i s i b l e n o p t s and maxUti l i ty

!= 0) [

128 set s e l e c t e d p a t c h s e l f

129]

130]

131]

132] [

133 i f s e l e c t e d p a t c h = f o l l o w i n g p a t c h 1 [

134 l et modi f i ed ne ighbor s4 nobody

135

136 ask neighbors4 [

137 i f s e l f != f o l l o w i n g p a t c h 1 [

138 set modi f i ed ne ighbor s4 (patch−set s e l f

modi f i ed ne ighbor s4)

139]

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 104

140]

141

142 set s e l e c t e d p a t c h max−one−of modi f i ed ne ighbor s4

[v i s i b l e n o p t s]

143]

144]

145]

146

147 i f e l s e s e l e c t e d p a t c h = f o l l o w i n g p a t c h 1 [

148 fd 1 ; move forward

149] [

150 face s e l e c t e d p a t c h

151]

152] [

153 fd 1 ; move forward

154]

155]

156 end

157

158 ; ; ; ; UPDATE ACTION BASED ON EPSILON ; ; ; ;

159 to−report exp lo re−eps i l on

160 report ifelse−value (random 10 < 3) [t rue] [f a l s e]

161 end

162

163 ; ; ; ; PREDICTED GAIN IN UTILITY FROM PLAYING BASELINE ACTION

; ; ; ;

164 to−report b a s e l i n e−u t i l i t y [f o l l o w i n g p a t c h 2]

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 105

165

166 l et two patches b lobs nobody

167 l et tempUt i l i ty 0

168

169 set two patches b lobs patches in−radius sensRange

170

171 i f f o l l o w i n g p a t c h 2 != nobody [

172 ask f o l l o w i n g p a t c h 2 [

173 set two patches b lobs (patch−set patches in−radius

sensRange two patches b lobs)

174]

175]

176

177 ask two patches b lobs [

178 update−plots

179 i f exp lored != true [

180 set tempUt i l i ty tempUt i l i ty + 1

181]

182]

183

184 report tempUt i l i ty

185 end

186

187 ; ; ; ; PREDICTED GAIN IN UTILITY FROM TURNING IN A SPECIFIC

DIRECTION ; ; ; ;

188 to−report t u r n−u t i l i t y

189 l et tempUt i l i ty 0

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 106

190

191 ask patches in−radius sensRange [

192 i f exp lored != true [

193 set tempUt i l i ty tempUt i l i ty + 1

194]

195]

196

197 report tempUt i l i ty

198 end

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 107

A.3 Algorithm 4

This is the improved algorithm for exploring bounded spaces.

1 globals [o b s t a c l e o b s t a c l e 1 e x p l o r ed p t s no games sensRange]

2 turtles−own [exp lo r e]

3 patches−own [exp lored v i s i b l e n o p t s]

4

5 to setup

6 clear−all

7 set no games 0

8 set sensRange 2 ; s e t sensRange

9 se tup− tu r t l e s

10 setup−patches

11

12 reset−ticks

13 end

14

15 to setup two

16 clear−turtles

17 clear−patches

18 plot−pen−up

19 ; c l e a r−p l o t

20 se tup− tu r t l e s

21 setup−patches

22

23 reset−ticks

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 108

24 end

25

26 ; ; ; ; CREATE OBSTACLES ; ; ; ;

27 to setup−patches

28 set o b s t a c l e 1 (patch−set patch 10 10 patch 11 10 patch 12

10 patch 10 11 patch 11 11 patch 12 11 patch 10 12 patch

11 12 patch 12 12 patch 10 13 patch 11 13 patch 12 13

patch 10 14 patch 11 14 patch 12 14)

29 set o b s t a c l e (patch−set o b s t a c l e 1)

30

31 update−explored

32 end

33

34 to s e tup− tu r t l e s

35 create−turtles 3 ; c r e a t e 3 r o b o t s

36 ask turtle 0 [

37 setxy 23 16

38 face patch−at −1 0

39 set color ye l low

40]

41 ask turtle 1 [

42 setxy 21 19

43 face patch−at 0 −1

44 set color blue

45]

46 ask turtle 2 [

47 setxy 19 16

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 109

48 face patch−at 1 0

49 set color Red

50]

51 ask patches [

52 set exp lored f a l s e

53]

54 set exp l o r e d p t s nobody

55 end

56

57 to go

58 i f t icks >= 2000 [; 2000 time s t e p s

59 i f e l s e no games >= 20 [; 20 games

60 stop

61] [

62 set no games no games + 1

63 setup two

64 plot−pen−down

65]

66]

67 move−turtles

68 update−explored

69 tick ; ; increment the t i c k counter and

update the p l o t

70 end

71

72 ; ; ; ; UPDATE EXPLORED AREAS ; ; ; ;

73 to update−explored

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 110

74 ask turtles [

75 ask patches in−radius sensRange [

76 set exp lored t rue

77 set exp l o r e d p t s (patch−set s e l f exp l o r e d p t s)

78]

79]

80 ask patches [

81 set pcolor ifelse−value (exp lored = true) [b lack] [green]

82]

83 ask (patch−set o b s t a c l e 1) [set pcolor red]

84 end

85

86 to move−turtles

87 l et s e l e c t e d p a t c h nobody

88 l et maxUti l i ty 0

89

90 ask turtles [

91 l et f o l l o w i n g p a t c h 1 patch−ahead 1

92 l et f o l l o w i n g p a t c h 2 patch−ahead 2

93

94 i f e l s e (f o l l o w i n g p a t c h 1 = nobody or member?

f o l l o w i n g p a t c h 1 o b s t a c l e = true) [

95 set exp lo r e t rue

96] [

97 set exp lo r e exp lo re−eps i l on ; e x p l o r e accord ing

to e p s i l o n

98]

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 111

99

100 i f e l s e (exp lo r e) [

101 l et o ld dx dx

102 l et o ld dy dy

103 l et othe r s other turtles

104

105 ask neighbors4 [

106 i f e l s e (s e l f = nobody or member? s e l f o b s t a c l e = true

) [

107 set v i s i b l e n o p t s 0

108] [

109 i f e l s e s e l f = f o l l o w i n g p a t c h 1 [

110 set v i s i b l e n o p t s b a s e l i n e−u t i l i t y

f o l l o w i n g p a t c h 2 othe r s

111

112] [

113 set v i s i b l e n o p t s t u r n−u t i l i t y o the r s

114]

115]

116]

117 set s e l e c t e d p a t c h max−one−of neighbors4 [

v i s i b l e n o p t s]

118 ask s e l e c t e d p a t c h [

119 set maxUti l i ty v i s i b l e n o p t s

120]

121

122 i f f o l l o w i n g p a t c h 1 != nobody [

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 112

123 i f e l s e member? f o l l o w i n g p a t c h 1 o b s t a c l e = f a l s e [

124 i f s e l e c t e d p a t c h != f o l l o w i n g p a t c h 1 [

125 ask f o l l o w i n g p a t c h 1 [

126 i f (maxUti l i ty = v i s i b l e n o p t s and maxUti l i ty

!= 0) [

127 set s e l e c t e d p a t c h s e l f

128]

129]

130]

131] [

132 i f s e l e c t e d p a t c h = f o l l o w i n g p a t c h 1 [

133 l et modi f i ed ne ighbor s4 nobody

134

135 ask neighbors4 [

136 i f s e l f != f o l l o w i n g p a t c h 1 [

137 set modi f i ed ne ighbor s4 (patch−set s e l f

modi f i ed ne ighbor s4)

138]

139]

140

141 set s e l e c t e d p a t c h max−one−of modi f i ed ne ighbor s4

[v i s i b l e n o p t s]

142]

143]

144]

145

146 i f e l s e s e l e c t e d p a t c h = f o l l o w i n g p a t c h 1 [

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 113

147 fd 1 ; move forward

148] [

149 face s e l e c t e d p a t c h

150]

151] [

152 fd 1 ; move forward

153]

154]

155 end

156

157 ; ; ; ; UPDATE ACTION BASED ON EPSILON ; ; ; ;

158 to−report exp lo re−eps i l on

159 report ifelse−value (random 10 < 1) [t rue] [f a l s e]

160 end

161

162 ; ; ; ; PREDICTED GAIN IN UTILITY FROM PLAYING BASELINE ACTION

; ; ; ;

163 to−report b a s e l i n e−u t i l i t y [f o l l o w i n g p a t c h 2 othe r s]

164

165 l et two patches b lobs nobody

166 l et tempUt i l i ty 0

167

168 set two patches b lobs patches in−radius sensRange

169

170 i f f o l l o w i n g p a t c h 2 != nobody [

171 ask f o l l o w i n g p a t c h 2 [

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 114

172 set two patches b lobs (patch−set patches in−radius

sensRange two patches b lobs)

173]

174]

175 ask two patches b lobs [

176 l et candidate s e l f

177 update−plots

178 i f exp lored != true [

179 l et no gaze t rue

180 ask othe r s [

181 i f no gaze [

182 l et f o l l o w i n g patch−ahead 1

183 l et f o l l o w i n g 2 patch−ahead 2

184 i f f o l l o w i n g != nobody [

185 ask f o l l o w i n g [

186 i f e l s e d i s t ance candidate <= 2 [

187 set no gaze f a l s e

188] [

189 i f f o l l o w i n g 2 != nobody [

190 ask f o l l o w i n g 2 [

191 i f d i s t ance candidate <= 2 [

192 set no gaze f a l s e

193]

194]

195]

196]

197]

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 115

198]

199]

200]

201 i f no gaze [

202 set tempUt i l i ty tempUt i l i ty + 1

203]

204]

205]

206

207 report tempUt i l i ty

208 end

209

210 ; ; ; ; PREDICTED GAIN IN UTILITY FROM TURNING IN A SPECIFIC

DIRECTION ; ; ; ;

211 to−report t u r n−u t i l i t y [o the r s]

212 l et tempUt i l i ty 0

213

214 ask patches in−radius sensRange [

215 l et candidate s e l f

216 update−plots

217 i f exp lored != true [

218 l et no gaze t rue

219 ask othe r s [

220 i f no gaze [

221 l et f o l l o w i n g patch−ahead 1

222 l et f o l l o w i n g 2 patch−ahead 2

223 i f f o l l o w i n g != nobody [

APPENDIX A. CODE OF EXPLORATION ALGORITHMS IN NETLOGOr 116

224 ask f o l l o w i n g [

225 i f e l s e d i s t ance candidate <= 2 [

226 set no gaze f a l s e

227] [

228 i f f o l l o w i n g 2 != nobody [

229 ask f o l l o w i n g 2 [

230 i f d i s t ance candidate <= 2 [

231 set no gaze f a l s e

232]

233]

234]

235]

236]

237]

238]

239]

240 i f no gaze [

241 set tempUt i l i ty tempUt i l i ty + 1

242]

243]

244]

245

246 report tempUt i l i ty

247 end

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	List of Symbols
	 1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contributions and Publications
	1.4 Organization of Thesis

	 2 Background and Literature Review
	2.1 Game Theory
	2.2 Cooperative and Noncooperative Games
	2.3 Cooperative Control Problems and Potential Games
	2.3.1 Potential Games

	2.4 Example Games
	2.5 Holonomic and Nonholonomic Constraints
	2.6 Algorithm Runtime
	2.7 Summary

	 3 Weakly Acyclic and Potential Games
	3.1 Weakly Acyclic Game
	3.1.1 Initialization
	3.1.2 Action Selection
	3.1.3 Baseline Action and Turn Sequence
	3.1.4 Convergence of Weakly Acyclic Games

	3.2 Potential Game
	3.3 Potential Game Setup
	3.3.1 Spatial Adaptive Play (SAP) and Restricted Actions
	3.3.2 An Algorithm for Exploration

	3.4 Unbounded Game Simulation
	3.5 Summary

	 4 Modified Potential Game Algorithms
	4.1 Modified Algorithm for Bounded Spaces
	4.2 Simulation of Exploration Algorithm
	4.3 Computational Complexity of Algorithm
	4.4 Improved Exploration Algorithm
	4.4.1 Effect of Obstacles on Exploration Time

	4.5 Summary

	 5 Conclusions
	5.1 Summary of Contributions
	5.2 Future Work

	List of References
	Appendix A Code of Exploration Algorithms in NetLogo "472
	A.1 Uncoordinated Exploration Algorithm
	A.2 Algorithm 2
	A.3 Algorithm 4

