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Abstract

Truly autonomous mobile robots require the ability to map their environment using

‘Simultaneous Localization and Mapping’ SLAM in order to explore it without getting

lost. Multi-robot SLAM becomes necessary once an environment becomes too large.

This thesis focuses on the determination of when a robot should merge its maps

with another robot’s upon rendezvous. This decision should be based on the current

status of the mapping filters and current status of the environment.

First, necessary software tools were required to be developed to support the re-

search being done in this thesis. This includes the development of a simulated mobile

robot dataset generator and modification of existing SLAM software.

Using Reinforcement Learning, the robot is trained to determine when to merge

its maps and by which method to estimate the necessary transformation matrix. This

allows the robot to incur less error than if it had simply merged upon first observing

another robot.

In simulated experiments, we demonstrated that our approach allows multiple

robots to map large environments that are difficult to map using a single robot.
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Chapter 1

Introduction

Autonomous vehicles have a great many applications ranging from underground min-

ing to planetary exploration. To accomplish complete autonomy in vehicles, many

problems must be solved. These problems are often categorized into guidance, naviga-

tion, and control. Guidance involves intelligent decision making of where the vehicle

should go and which path or trajectory should be taken to reach the goal. Navigation

is the ability of the robot to perceive or localize where it currently is in the environ-

ment in order to ensure it is on the proper course. Finally, control is the method by

which the robot determines the signals to send to the vehicle actuators.

Guidance and navigation systems require there to be a spatial model of the en-

vironment in order to allow true autonomous robots to independently explore and

traverse the environment. Despite years of research in this field, there remains many

issues left to be resolved such as mapping unstructured, dynamic, or large-scale envi-

ronments. The mobile robot mapping problem requires a circular reference solution

where the localization of the robot must be known to build an accurate map and an

accurate map is required to best estimate the localization of the robot. This is best

known as Simultaneous Localization and Mapping (SLAM). Initial solutions focussed

on the use of Extended Kalman Filters (EKFs) [2], but since this time many different

1



CHAPTER 1. INTRODUCTION 2

solutions have been developed. These solutions range from sparse extended informa-

tion filters to particle filters. However, only particle filter based SLAM algorithms

will be used in this thesis.

Many of these techniques focus on a specific representation of the environment.

In a sparse outdoor environment, a feature-based model using landmark coordinates

is most beneficial. Conversely, in a highly structured indoor environment it is best

to use a dense representation such as an occupancy grid map. In practice, robots

should be capable of mapping any type of environment that could potentially contain

both indoor and outdoor components. Thus, solutions capable of handling these

more complex situations need to be developed. Wurm, Stachniss, and Grisetti [1]

have applied reinforcement learning to determine which map representation should

be used to determine the localization of the robot depending on the current sensor

observations. The major contribution of this thesis is to extend this novel approach

to multi-robot mapping applications.

Computational efficiency and map accuracy begin to suffer once an environment

becomes too large. A logical solution is to use multiple robots in what is known as

Multi-Robot SLAM. Burgard et al. first developed a technique of merging maps under

the constraint that the initial relative poses between robots were known [3]. In the

Zhou and Roumeliotis scenario, two robots meet each other without prior knowledge

of their respective starting poses [4].

1.1 Problem Statement

The task of this thesis is not to develop a more improved map-merging algorithm but

to develop a decision algorithm capable of deciding when to merge and which map

representation to use in attempting to reduce the incurred error from map merging.
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In order to reach the best policy, sufficient data is required and can be produced

through computer simulation. The computer simulates an environment composed of

a building made of walls and an outdoor environment composed of trees. The walls

are represented as line segments and the outdoor environment is represented by trees

which are modeled as circles. Datasets produced from this simulated environment

are then processed by both the training algorithm and the validation testing.

To successfully map this indoor and outdoor environment, the work in dual rep-

resentation SLAM by Wurm et al. [1] will need to be reproduced and validated. The

training algorithm determines when and how to best merge the maps of the individ-

ual robots. The algorithm being produced is a decentralized decision making process,

which means the decision to merge one robot’s map with another is performed by

the current robot. A centralized decision making process would involve some type of

higher ‘authority’ commanding when the robots should merge their maps. To avoid

confusion, for the rest of this thesis the algorithm is described from the viewpoint of

one of the robots.

1.2 Thesis Contributions

The main contribution of this thesis is to determine the best policy for map merging

using reinforcement learning that reduces the amount of error incurred through map

merging. Reinforcement Learning is a form of machine learning where actions are

taken in an environment in order to maximize the given reward. To accomplish this

goal other smaller contributions had to be performed first. These other contributions

are the development of a simulation engine, adaptation of existing SLAM software,

and the reproduction and validation of the work of Wurm et al. [1].

Availabe dataset simulation engines did not meet the accuracy and flexibility
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requirements of this thesis. Therefore, a suitable simulation engine was developed in

MATLAB that was capable of accepting a list of building lines and feature circles

along with a desired trajectory path for a simulated robot and produce realistic

mobile robot datasets. The ease of programming and debugging abilities available in

MATLAB allowed this simulation engine to be developed and used quickly.

However, MATLAB’s computational speeds became insufficient when it came to

processing these simulated datasets. Thus, a C++ open-source library known as MRPT

(Mobile Robot Programming Toolkit) was extended and used as necessary. The

extensions included adding a basic type of two dimensional feature map, adding map

merging functions, and parallelizing some functions to take advantage of multi-core

CPUs.

Another minor yet necessary contribution of this thesis was the validation of the

work done in [1] where reinforcement learning was used to determine which map

representation should be used in selecting the appropriate proposal distribution to

sample new particles.

1.3 Organization of Thesis

In the next chapter, background topics necessary to produce maps from the datasets

is described. Particle filters are explored and shown how they can be adapted to

be used to solve the SLAM problem. This is followed by a literature review of the

advanced methods using these adapted particle filters named Rao-Blackwellized Par-

ticle Filters (RBPF). Next, the basics of reinforcement learning is discussed, followed

by a description of how it can be used in robot mapping. Finally, a brief literature

review is presented showing the work that has been done in map merging.
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Chapter 3 covers the development of the simulation engine used to produce real-

istic mobile robot datasets. This includes a description of the simulated sensors and

control methods used to accomplish realistic mobile robot motion. Additionally, the

work done in expanding and adapting the MRPT library is detailed.

In chapter 4, the proposed approach is presented. We show how reinforcement

learning can improve map merging efficiency and accuracy. The methods used to

determine the transformation matrices for map merging and how to improve them

are outlined. The model used in the reinforcement learning training is also detailed.

How datasets are created to ensure that each state in the reinforcement learning

model are visited sufficiently is demonstrated.

The work done in establishing a proper training environment is described in chap-

ter 5. Validation of the results of the training is also demonstrated.

Finally, chapter 6 discusses the conclusions regarding the content of this thesis

and outlines possible directions of future work.



Chapter 2

Background and Literature Review

2.1 Particle Filters

A particle filter is a ‘brute force’ numerical implementation that is capable of solving

the Bayesian estimator problem nonparametrically. This method only became feasible

due to advances in cheap and powerful computers. Although this implies that parti-

cle filter algorithms are computationally inefficient, variations can be designed that

mitigate this defiency. The fundamental steps of a particle filter algorithm are shown

in Algorithm 2.1 and illustrated in Figure 2.1. In Figure 2.1, particles are shown

as black dots. In the weight calculation step shown in Figure 2.1, higher weighted

particles are shown larger and lower weighted particles are shown smaller.

Particles are samples of the posterior distribution and are denoted as

St := x
(1)
t , x

(2)
t , . . . , x

(N)
t (2.1)

where x
(N)
t is a particle representing the hypothesis of the true world state at time t

and N is the number of particles. For best results, the number of particles should be

6



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7

Algorithm 2.1 Basic Particle Filter [5]

Require:
St−1, previous time step particle sample set
ut, most recent control
zt, most recent measurement

Ensure:
St, new sample set

St = S̄t = {} // Start with Empty Set
for i = 1→ N do

x
(i)
t ∼ p(xt|x(i)t−1, ut) // Sample New Particle

w
(i)
t = p(zt|x(i)t ) // Calculate Weight of Particle

S̄t = S̄t ∪ {〈x(i)t , w
(i)
t 〉} // Update Sample Set

end for

for i = 1→ N do // Resample

draw j with probability ∝ w
(j)
t

St = St ∪ 〈x(j)t 〉
end for

Propagate/Sample
Particles

Using xt−1 and ut+ Noise

St−1

Determine
Weights
Using ztS̄t

Resample
∝ wt

S̄t and wt

St

Set St−1 = St and repeat

Figure 2.1: Illustration of the main steps of a particle filter.
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large, e.g. N > 1000, or it can be based on a function of t or vary upon the belief of

the current state. There is an obvious trade off between the number of particles and

the accuracy of the filter. In the case of mobile robots, the number of particles should

be based on the variance of the measurable actuator signals or odometry estimates.

If the variance is small then a smaller number of particles should be required to

accurately represent the posterior. Consequently, if the variance is large then a larger

number of particles should be chosen, as is illustrated in Figure 2.2 and Figure 2.3.

The bottom right plots of the subfigures in Figure 2.2 and Figure 2.3 show a

probability density function (PDF), p(x), and individual particles. The top right

plots show the nonlinear function y = g(x) that the PDF and particles are propagated

through. Finally, the top left plots show the propagated PDF, p(y), and propagated

particles.

The particle sample set St0 should be initialized according to the particular belief

of the initial state xt0 . For example, trying to localize a robot within a map without

any knowledge of initial starting position. In this case, it would be appropriate to

randomly select a particle set that attempts to cover as many possible poses within

the map area as possible. Conversely, if the determination of the state is relative to

the starting position of the robot, it would be best to simply initialize all particles to

the origin.

To propagate or sample new particles, there needs to be a vehicle model, xt =

f(xt−1, ut, nt), and an assumption of the probability density function of the control

error. Although it is a common assumption for the error in observed signals to be

Gaussian, this noise model can be of any shape.

The calculation of the weights, wt, or relative likelihood, of each particle is ac-

complished using some type of measurement, zt, and its probability density function
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p(y)

y

x

y
=

g
(x
)

x

p
(x
)

(a) Small Variance

p(y)

y

x

y
=

g
(x
)

x

p
(x
)

(b) Large Variance

Figure 2.2: Example of propagation of PDF and N = 10 particles
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p(y)

y

x

y
=

g
(x
)

x

p
(x
)

(a) Small Variance

p(y)

y

x

y
=

g
(x
)

x

p
(x
)

(b) Large Variance

Figure 2.3: Example of propagation of PDF and N = 100 particles
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(PDF). Typically and for this thesis, the measurement noise is deemed to be Gaussian,

N (0, R). For which, the weights are calculated as follows

w
(i)
t = η exp

(
−1

2
(zt − h(x

(i)
t ))R−1(zt − h(x

(i)
t ))

)
(2.2)

where η is the normalizing coefficient, h(x
(i)
t ) is the expected measurement based on

the current particle state estimate. All weights should be normalized as follows

w
(i)
t =

w
(i)
t

N∑
j=1

w
(j)
t

(2.3)

Finally the correction step of the particle filter is the resampling step, which

can also be accomplished in several different ways. One of the simplest methods is

described in Algorithm 2.2.

Algorithm 2.2 Simplest Resampling Method [5]

for i = 1→ N do
Draw random number ρ from uniform distribution [0, 1]

Accumulate sum of weights until
∑i−j

m=1w
(m)
t < ρ but

∑j
m=1w

(m)
t ≥ ρ, save j

St = St ∪ 〈x(j)t 〉
end for

One of the strengths of particle filters is that they can be extended to provide a

solution to a specific problem, as will be shown in the next section.

2.2 Rao-Blackwellized Particle Filter Mapping

The Rao-Blackwellized Particle Filter (RBPF) is currently one of the most popular

mapping techniques where particles are used to represent the posterior probability,

which is the conditional probability assigned once relevant evidence has been taken
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into account, over some variables and some parametric PDF to represent all other

variables [6]. Montemerlo et al. used this technique in the development of a simple yet

effective feature-based mapping method known as FastSLAM [7]. In FastSLAM, each

particle contains a possible trajectory of the robot and a map of the environment.

It can be mathematically shown [5] that for each particle, individual map error is

conditionally independent and thus the mapping problem can be delegated to many

separate problems. In terms of the full SLAM posterior estimate, this factorization

can be written mathematically as:

p (y1:t|z1:t, u1:t) = p (x1:t|z1:t, u1:t)
N∏
n=1

p (mn|x1:t, z1:t) (2.4)

where y1:t is the combined state vector

x1:t
m

, x1:t is the pose of the robot, m is the

map, z1:t are the environment measurements, and u1:t are the robot controls.

2.2.1 Different Map Types

Different types of maps m must be chosen depending on the environment being ex-

plored. In this thesis, occupancy grid maps mg and feature maps mf will be used.

Occupancy grid maps are composed of an array of cells containing the likelihood

of a cell being occupied and are best suited for structured environments such as

buildings. The likelihoods of individual cells are actually stored as log odds which have

the advantage over probability representation of avoiding instabilities for probabilities

near zero or one. A log odd for each cell indexed j can be computed by

λjt = log
p(cj,t|zg,1:t, x1:t)

1− p(cj,t|zg,1:t, x1:t)
(2.5)
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where λjt is the log odd, cj,t is an individual occupancy grid cell, zg,1:t is all the laser

range finder (LRF) measurements, and x1:t is the complete trajectory of the robot.

To recover the probabilites from the log odd, the following equation can be used

p(cj,t|zg,1:t, x1:t) = 1− 1

1 + exp (λjt)
(2.6)

When evidence is found that a cell is either free or occupied, then a predetermined

constant, corresponding to the type of evidence found, is added to the current log

odd value of that cell to update it accordingly.

Feature maps are composed of a vector of mean coordinate locations, µ
(i)
#,t, and

covariances, Σ
(i)
#,t, representing each individual feature and are best used in a sparse

outdoor environment containing multiple trees and poles. The locations and covari-

ances are updated using a simple EKF for each feature.

Figure 2.4(a) shows an example of an occupancy grid map that has been converted

to a grayscale image. Typically, each grayscale image pixel is 8-bits, which means

it can store values ranging from 0 → 255. To convert an occupancy grid map to

an image, the log odds must first be converted to probabilities ranging from 0 → 1

which can then be mapped to the available range of pixel values. Visually, it makes

more sense to use the pixel value of 0, or black, to represent an occupied cell which

has a corresponding probability of 1. Conversely, a pixel value of 255, or white, will

represent a free cell well. Cells that have received insufficient or no evidence will be

represented by some shade of gray.

Figure 2.4(b) shows a simple feature map. The estimated position of a feature

is shown by a dot and the corresponding covariance of uncertainty is shown as an

ellipse.
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(a) Occupancy Grid

Y

X

(b) Feature Map

Figure 2.4: Examples of map types used in this thesis.

2.2.2 FastSLAM

As previously mentioned, FastSLAM uses a particle filter to solve the SLAM problem.

This is accomplished by having each individual map feature location estimated by an

EKF. The resulting algorithm can be implemented in logarithmic time in terms of

the number of features; allowing this algorithm to solve the full SLAM problem in

real-time, also known as the online SLAM problem [5].

One of the key advantages of FastSLAM is its extensibility. Although originally

designed for feature based environments, Hahnel et al. adapted FastSLAM for grid-

based maps that could be produced with only the raw laser range finder data [8].

FastSLAM requires a great number of particles due to the fact that the accuracy

of the control observation is typically low relative to the accuracy of the measurement

sensors. In other words, the proposal distribution used in sampling for new particles

is based only on the previous pose xt−1 and the control signal ut. FastSLAM 2.0 [9]

improves this proposal distribution by additionally incorporating zt in the proposal

distribution. This modification leads to a more efficient algorithm requiring fewer

particles to achieve the same results, but also leads to a more complex implementation
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[9]. Grisetti et al. used this idea of improved proposal distribution in grid-based

FastSLAM [10]. The basic steps of a generic FastSLAM algorithm are shown in

Algorithm 2.3. The key difference between Algorithm 2.3 and Figure 2.1 is the use

of a resampling condition which is discussed later in the text.

Algorithm 2.3 Generalized Basic steps of FastSLAM [5]

Require:
St−1 = {〈x(1:n)t−1 , w

(1:n)
t−1 ,m

(1:n)
t−1 〉}, previous time step sample set

zt, most recent sensor observation
ut−1, most recent odometry measurement

Ensure:
St, new sample set

St = {} // Start with Empty Set

for all s
(i)
t−1 ∈ St−1 do

〈x(i)t−1, w
(i)
t−1,m

(i)
t−1〉 = s

(i)
t−1 // Retrieval

x
(i)
t ∼ p(xt|x(i)t−1, ut−1,m

(i)
t−1, zt) // Sample new Particle

w
(i)
t = updateWeight(w

(i)
t−1,m

(i)
t−1, z

(i)
t )

m
(i)
t = integrateSensorObs(m

(i)
t−1, x

(i)
t , z

(i)
t )

St = St ∪ {〈x(i)t , w
(i)
t ,m

(i)
t 〉} // Update Sample Set

end for

if Resampling Condition Met then
St = resample(St, {w(i)})

end if

Improving Sample Proposal Distribution

The improved versions of FastSLAM depend on reducing the covariance of the sample

proposal distribution for new particles, x
(i)
t ∼ p(xt|x(i)t−1, ut−1, zt). Algorithm 2.4 from

[9] and Algorithm 2.5 from [10] respectively show how the measurements zf,t and zg,t

are included to produce a smaller sampling distribution for each mapping algorithm.
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Algorithm 2.4 Improved Feature Mapping Pose Sampling [9]

Require:
x
(i)
t−1, pose from previous time step
ut−1, most recent odometry measurement

m
(i)
f,t−1 =

〈
〈µ(i)

1,t−1,Σ
(i)
1,t−1〉, · · · , 〈µ

(i)
F,t−1,Σ

(i)
F,t−1〉

〉
, feature map from previous time

step with F number of features
zf,t, most recent feature measurement
Q, measurement noise covariance matrix
g, vehicle model
h, measurement model

Ensure:
x
(i)
t , sampled proposed pose

x̂t = g(x
(i)
t−1, ut−1) // predict pose based on vehicle model

µxt = x̂t
Σxt = Px,t // pose covariance

for all features j that are both in m
(i)
t−1 and zf,t do

z̄j = h(µ
(i)
j,t−1, x̂t) // measurement prediction

Hxt,j = ∇xth(µ
(i)
j,t−1, x̂t) // Jacobian wrt pose

Hm,j = ∇mj
h(µ

(i)
j,t−1, x̂t) // Jacobian wrt feature

Qj = Q+Hm,jΣ
(i)
j,t−1H

T
m,j // measurement information

Σxt =
[
HT
x,jQ

−1
j Hx,j + Σ−1xt

]−1
// adjust Cov of proposal

µxt = µxt+ΣxtH
T
x,jQ

−1
j (z

(j)
f,t−z̄j) // adjust mean of proposal

end for
x
(i)
t ∼ N (µxt ,Σxt) // sample pose
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Algorithm 2.5 Improved Grid Mapping Pose Sampling [10]

Require:
x
(i)
t−1, pose from previous time step
ut−1, most recent odometry measurement

m
(i)
g,t−1, grid map from previous time step

zg,t, most recent LRF measurement
Ensure:
x
(i)
t , sampled proposed pose

x̂
(i)
t = argmaxx p(x|m

(i)
g,t−1, zg,t, g(x

(i)
t−1, ut−1) // scan-matching

if x̂
(i)
t = failure then

x
(i)
t ∼ p(xt|x(i)t−1, ut−1) // sample based on odometry measurement only

else
// sample around an interval from the scan matcher pose
for k = 1, · · · , K do

xk ∼ {xj| |xj − x̂(i)| < ∆} // sample based on uniform distribution
end for

// compute Gaussian proposal
µxt = (0, 0, 0)T

ηxt = 0
for all xj ∈ {x1, · · · , xK} do

µxt = µxt + xj · p(zg,t|m(i)
g,t−1, xj) · p(xt|x

(i)
t−1, ut−1)

ηxt = ηxt + p(zg,t|m(i)
g,t−1, xj) · p(xt|x

(i)
t−1, ut−1)

end for
µxt = µxt/ηxt
Σxt = 0
for all xj ∈ {x1, · · · , xK} do

Σxt = Σxt(xj − µx,t)(xj − µx,t)T · p(zg,t|m
(i)
g,t−1, xj) · p(xt|x

(i)
t−1, ut−1)

end for
Σxt = Σxt/ηxt

x
(i)
t ∼ N (µxt ,Σxt) // sample pose

end if
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Figure 2.5: Derivation of feature measurement model

In Algorithm 2.4, the measurement prediction z̄j = h(µ
(i)
j,t−1, x̂t) depends on the

measurement model. For this thesis, the measurement model h for feature observa-

tions is defined as:

h(µ, xt) =

r
φ

 =


√

(µx − x)2 + (µy − y)2

atan2 (µy − y, µx − x)− θ

 (2.7)

where (x, y, θ)T = xt is the robot pose. The derivation of this model is shown in

Figure 2.5, where a feature in the environment is represented by a circle.

The Jacobian of (2.7) with respect to feature position is

Hm = ∇mh(µ, xt) =


dr
dµx

dr
dµy

dφ
dµx

dφ
dµy



=


µx−x√

(µx−x)2+(µy−y)2
µy−y√

(µx−x)2+(µy−y)2

−(µy−y)
(µx−x)2+(µy−y)2

µx−x
(µx−x)2+(µy−y)2

 (2.8)
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and the Jacobian of (2.7) with respect to pose is

Hxt = ∇xth(µ, xt) =


dr
dx

dr
dy

dr
dθ

dφ
dx

dφ
dy

dφ
dθ



=


−(µx−x)√

(µx−x)2+(µy−y)2
−(µy−y)√

(µx−x)2+(µy−y)2
0

µy−y
(µx−x)2+(µy−y)2

−(µx−x)
(µx−x)2+(µy−y)2 −1

 (2.9)

Weight Calculation for Particles

The function ‘updateWeight’ can vary depending on the implementation, but gen-

erally the weight of the particle is calculated by finding the likelihood of the most

recent measurement at the sampled pose in the current status of the map [5]. In

feature maps, this likelihood can be calculated using an equation similar to (2.2) for

each feature currently observed and then averaged as follows

w
(i)
t =

Fmut∑
j=1

exp
(
−1

2
(z

(j)
f,t − ẑ

(i,j)
f,t )Q−1t (z

(j)
f,t − ẑ

(i,j)
f,t )

)
Fmut

(2.10)

where Fmut is the number of features that are both in the current measurement and the

current map mf,t; z
(j)
f,t is the measurement of a current feature; ẑ

(i,j)
f,t = h(µ

(i)
j,t−1, x

(i)
t ) is

the measurement prediction; and Qt = HΣ
(i)
j,t−1H

T +Q is the predicted measurement

covariance with H = h′(µ
(i)
j,t−1, x

(i)
t ) being the Jacobian of the measurement model and

Q is the measurement sensor noise covariance. Also, µ
(i)
j,t−1 and Σ

(i)
j,t−1 are the mean

and covariance of a feature location respectively and their methods of calculation is

shown in Algorithm 2.7.

The measurement model h is given in (2.7) and the corresponding Jacobian H is
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given by (2.8).

Weights in grid-based maps are calculated using the ‘beam endpoint model’ [5].

This method is an algorithm that generally works well, but does not actually com-

pute a conditional probability relative to the actual physical model of the sensors.

Algorithm 2.6 outlines how this likelihood is calculated and Figure 2.6 illustrates how

this algorithm is derived.

Algorithm 2.6 Likelihood Field Range Finder Model [5]

Require:
zg,t, most recent LRF data measurement
xt = (x, y, θ)T , proposed pose
mg,t, current status of occupancy grid map
ζhit, mixing weight for probability of ray hitting an obstacle
ζrand, mixing weight for probability of ray having an incorrect value
zg,max, the constant maximum value of LRF
σhit, variance in the accuracy of LRF

Ensure:
τ , likelihood value

τ = 1
for j = 1→ G do // G is the total number of rays

if zjg,t 6= zg,max then

xzjg,t
= x+ xj,sens cos θ − yj,sens sin θ + zjg,t cos (θ + θj,sens)

yzjg,t
= y + yj,sens cos θ − xj,sens sin θ + zjg,t sin (θ + θj,sens)

d = min
x′,y′

(√
(xzjg,t

− x′)2 + (yzjg,t
− y′)2

∣∣∣∣〈x′, y′〉 occupied in mg,t

)
τ = τ ·

(
ζhit · exp

(
− d2

2σ2
hit

)
+ ζrandom

zg,max

)
end if

end for

The most computationally expensive part of Algorithm 2.6 is the calculation of d

which requires a search of the surrounding area of the endpoint of the ray, (xzjg,t
, yzjg,t

),

for the closest occupied cell. In order to avoid this pitfall, the likelihood field can

actually be pre-computed and cached in a table lookup. Figure 2.7 shows an example
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Figure 2.6: Illustration on how the Likelihood Field Range Finder Model is derived

of this cached look-up table turned into a grayscale image along with the occupancy

grid map it was based on. Each cell in a likelihood field stores the probability of an

beam endpoint being within that cell.

(a) Occupancy Grid (b) Pre-processed Likelihood Field

Figure 2.7: Example of a likelihood field lookup table.
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Map Integration of Sensor Observations

The ‘integrateSensorObs’ function from Algorithm 2.3 also varies in implementation

depending on the map being used. Algorithm 2.7 and Algorithm 2.8 show how the

feature and LRF measurements are integrated into feature map and occupancy grid

maps respectively. In Algorithm 2.7, h−1(z
(i,j)
f,t , x

(i)
t ) is based on (2.7) and defined as

h−1(µ, xt) =

µx
µy

 =

x+ r cos (φ+ θ)

y + r sin (φ+ θ)

 (2.11)

where (x, y, θ)T is the current robot pose.

Resampling Condition

Finally, the last aspect of the generalized FastSLAM algorithm Algorithm 2.3 that

needs to be explored is the ‘Resampling Condition’. One of the chief disadvantages of

particle filters is that it is possible that it may suffer from particle depletion where it

is impossible for the filter to provide correct state estimation because particles close

to the true state estimate have been previously discarded. This issue could be solved

by introducing random state estimates in particles, but this can be quite difficult and

impossible in a mapping scenario. Therefore, it is better to instead try to prevent

particle depletion in the first place.

One way of achieving this is by not resampling at every time step. The most

popular resampling condition was developed by Doucet et al. in [11]. Doucet’s method

calculates what is known as the ‘effective sample size’ of Neff of the particle filter
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Algorithm 2.7 Integration of feature measurements in feature maps [5]

Require:

m
(i)
f,t−1 =

〈
〈µ(i)

1,t−1,Σ
(i)
1,t−1〉, · · · , 〈µ

(i)
F,t−1,Σ

(i)
F,t−1〉

〉
, feature map from previous time

step with F number of features
xit = (x, y, θ)T , current proposed pose
zf,t, most recent feature measurement
Q, measurement noise covariance matrix
h, measurement model

Ensure:
m

(i)
f,t, updated map

m
(i)
f,t = {} // Empty Map

for all observed features j in zf,t do
if feature j’s first observation then

µ
(i)
j,t = h−1(z

(i,j)
f,t , x

(i)
t ) // mean initialization

H = h′(x
(i)
t , µ

(i)
j,t) // compute Jacobian

Σ
(i)
j,t = H−1Q(H−1)T // covariance initialization

else
ẑ
(i,j)
f,t = h(µ

(i)
j,t−1, x

(i)
t ) // measurement prediction

H = h′(x
(i)
t , µ

(i)
j,t−1) // compute Jacobian

Qt = HΣ
(i)
j,t−1H

T +Q // measurement covariance

K = Σ
(i)
j,t−1H

TQ−1t // Kalman gain

µ
(i)
j,t = µ

(i)
j,t−1+K(z

(j)
f,t−ẑ

(i,j)
f,t ) // update mean

Σ
(i)
j,t = (I −KH)Σ

(i)
j,t−1 // update covariance

end if
m

(i)
f,t = m

(i)
f,t ∪ 〈µ

(i)
j,t ,Σ

(i)
j,t〉

end for
for features j in m

(i)
f,t−1 unobserved in zf,t do

µ
(i)
j,t = µ

(i)
j,t−1

Σ
(i)
j,t = Σ

(i)
j,t−1

m
(i)
f,t = m

(i)
f,t ∪ 〈µ

(i)
j,t ,Σ

(i)
j,t〉

end for
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Algorithm 2.8 Integration of LRF data in occupancy grid maps [5]

Require:
m

(i)
g,t−1 = 〈c(i)1,t−1, c

(i)
2,t−1, · · · , c

(i)
G,t−1〉, occupancy grid map from previous time step

with G number of cells
xit = (x, y, θ)T , current proposed pose
zg,t, most recent LRF measurement

Ensure:
m

(i)
g,t, updated map

m
(i)
g,t = m

(i)
g,t−1 // Copy existing map

for all c
(i)
j,t−1 in m

(i)
g,t−1 do

if c
(i)
j,t−1 in perceptual field of zg,t then

(xj, yj) = center of c
(i)
j,t−1

r =
√

(xj − x)2 + (yj − y)2

φ = atan2 (yj − y, xj − x)− θ
k = argminτ |φ− θτ,sens|
if r > min (zmax, z

k
g,t + α/2) or |φ− θk,sens| > β/2 then

λ = λ0
else if zkg,t < zmax and |r − zkg,t| < α/2 then

λ = λocc
else // r ≤ zkg,t

λ = λfree
end if
c
(i)
j,t = c

(i)
j,t−1 + λ− λ0

end if
end for
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and is computed by the equation

Neff =
1

N∑
i=1

(w(i))2
(2.12)

From (2.12), it is clear that the lower the variance in the weights yields a higher

Neff value, and vice versa. A higher Neff value means that the filter is equally

confident in all the current particles and thus, resampling could result in the loss of

particles closest to the true state. Conversely, a lower Neff value signifies that a few

particles have a much higher weight than the rest, thus the particle filter is confident

in just a few particles. This leads to an opportune time for the filter to resample

and get rid of lower weighted particles and keep the higher weighted and more likely

particles. The threshold most commonly used by this method is to resample whenever

Neff < N/2 [1].

2.3 Reinforcement Learning

Reinforcement learning attempts to find a mapping from states S to actions A which

maximimizes a numerical reward signal r [12]. The learning algorithm is not in-

structed as to which actions to take, but rather must determine which actions yield

the most reward by trying them. Eventually, once enough interaction with the envi-

ronment has been performed, the algorithm will converge towards a desired mapping,

better known as a policy.

A great deal of research has been done in this field and produced a number of

learning approaches. Different approaches work more favorably depending on the

amount of prior knowledge of the environment. In the work done by Wurm et al. [1]

and this thesis, the model of the environment is not known and thus Monte Carlo
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methods or Temporal-Difference (TD) methods are possible options.

TD learning is a combination of Monte Carlo ideas, where learning is achieved

directly from raw experience without a model of the environment’s dynamics, and

dynamic programming ideas, where estimates are updated based in part on other

learned estimates. Wurm et al. opted for the use of the popular SARSA algorithm [12]

which does not require a model of the environment. It learns an action-value func-

tion Q(s, a) which contains a value for every state-action pair. The basic algorithm

described in [12] is shown in Algorithm 2.9. α is known as the learning rate and γ is

known as the discounting rate.

The selection of which action to perform is typically done through an ε-greedy

policy. A greedy policy chooses the action a which has the highest value Q(s, a) in

state s. Whereas an ε-greedy policy will explore a non maximum random action with

likelihood ε.

Algorithm 2.9 SARSA Algorithm [12]

Initialize Q(s, a) arbitrarily
for all episodes do

Initialize s
Choose a from s using policy derived from Q
repeat

Take action a, observe r, s′

Choose a′ from s′ using policy derived from Q
Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s← s′; a← a′;

until s is terminal
end for

2.3.1 Learning in Mapping

Wurm et al. developed a method capable of using reinforcement learning to take

advantage of each map representation by having each particle contain a feature map



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 27

and grid map [1]. The basic principle of their work was to determine which method

of pose sampling/propagation should be used at each time step. By selecting an

appropriate model that considers the current state estimate, sensor observations, and

odometry readings, the reinforcement learning algorithm can converge to a decision of

which proposal distribution method should be used depending on the current model

state. If grid-based is chosen then Algorithm 2.5 is used, and if feature-based is chosen

then Algorithm 2.4 is used.

The model used by Wurm had an action set of A = {ag, af}, where ag defined the

use of the grid-based proposal and af defined the use of the feature-based proposal.

The state set, S, was defined so that it represented all the necessary information

from sensor observation and particle filter effective sample size values to best make

a decision. Their state consisted of an average scan matching likelihood l̄, a boolean

variable given by N f
eff < N g

eff , and a boolean variable indicating if a feature was

detected in the current time step, resulting in

S := {l̄} × {1Nf
eff<N

g
eff
} × {1feature detected} (2.13)

The value of l̄ was discretized into seven different intervals (0.0−0.15, 0.16−0.3, 0.31−

0.45, 0.46 − 0.6, 0.61 − 0.75, 0.76 − 0.9, 0.91 − 1.0). Thus, the total number of states

were 7× 2× 2 = 28.

The average scan matching likelihood l̄ variable is calculated using

l̄ =
1

N

N∑
i=1

(max
xt

p(zg,t|x(i)t ,m
(i)
g,t)) (2.14)

where xt is the pose that maximizes the probability value p(zg,t|x(i)t ,m
(i)
g,t). To evaluate

this value, the aforementioned ‘beam endpoint model’ and Algorithm 2.6 are used.
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Wurm et al. performed the training using simulated data in order to have access

to the true robot pose x∗t at every time step t. Having access to the true pose also

allows for the reward function to be the weighted average deviation from the true

pose. In an effort to not punish a current action for a previous decision, only the

deviation accumulated since the previous step t− 1 is used:

r(st) =
N∑
i=1

w
(i)
t−1||x

(i)
t−1 − x∗t−1|| −

N∑
i=1

w
(i)
t ||x

(i)
t − x∗t || (2.15)

where w
(i)
t−1 and w

(i)
t vary depending on the action chosen since each particle contains

two different sets of weights. At time t, w
(i)
g,t is used if ag was chosen and w

(i)
f,t is used

if af was taken. Once this learning is complete, the derived policy can be used in

conjunction with Wurm’s overall mapping algorithm as listed in Algorithm 2.10. This

algorithm is used in this thesis as the method used to map the indoor and outdoor

environments. It was required to both implement, train, and validate this algorithm

before being able to use it.

2.4 Map Merging

This component of mapping is critical to multi-robot SLAM and has been receiving

more attention in the literature. The easiest way to map increasingly larger envi-

ronments efficiently is to involve multiple mapping robots. A centralized approach

to mapping might only merge the map once the entire environment has been ex-

plored [13]. Conversely, a decentralized approach would merge maps once individual

robots meet each other in the environment [14]. Regardless of the approach, the

act of merging requires the calculation of an appropriate transformation matrix from

one robot global reference frame to the other robot’s global frame of reference. This
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Algorithm 2.10 Wurm’s Combined Mapping Approarch [1]

Require:
St−1, the sample set from the previous time step
zg,t, the most recent LRF measurement
zf,t, the most recent feature measurement
ut−1, the most recent odometry measurement

Ensure:
St, the new sample set

maptype = decide(St−1, zg,t, zf,t, ut−1)

St = {}
for all s

(i)
t−1 ∈ St−1 do

〈x(i)t−1, w
(i)
g,t−1, w

(i)
f,t−1,m

(i)
g,t−1,m

(i)
f,t−1〉 = s

(i)
t−1

if (maptype=grid) then // Compute proposal

x
(i)
t ∼ p(xt|x(i)t−1, ut−1, zg,t)

else
x
(i)
t ∼ p(xt|x(i)t−1, ut−1)

end if

w
(i)
g,t =updateGridWeights(w

(i)
g,t−1,m

(i)
g,t−1, zg,t)

w
(i)
f,t =updateFeatureWeights(w

(i)
f,t−1,m

(i)
f,t−1, zf,t)

m
(i)
g,t =integrateScan(m

(i)
g,t−1, x

(i)
t , zg,t)

m
(i)
f,t =integrateFeatures(m

(i)
f,t−1, x

(i)
t , zf,t)

St = St∪{〈x(i)t , w
(i)
g,t, w

(i)
f,t,m

(i)
g,t,m

(i)
f,t〉} // update sample set

end for
for i = 1→ N do

if (maptype=grid) then

w
(i)
t = w

(i)
g,t

else
w

(i)
t = w

(i)
f,t

end if
end for

Neff =
1

N∑
i=1

(w
(i)
t )

if Neff < N/2 then

St =resample(St, {w(i)
t })

end if
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transformation matrix will take the form of:

T =



cos θ − sin θ tx

sin θ cos θ ty

0 0 1


=


Tθ

tx

ty

0 0 1


(2.16)

where θ is the rotation parameter between the reference frames and tx, ty are the

translation parameters.

Since this thesis focuses on a decentralized map merging algorithm that is from

the perspective of one robot, the current robot will be the one who is merging the

other robot’s maps into its own.

Ozkucur and Akin devised a method of merging feature maps [14] which includes

first calculating the mean of the feature parameters across all particles for the other

robot. The mean is then transformed and merged with all the current robot’s particles

using the following equations:

pm = pc + Σc[Σc + T Tθ ΣoTθ]
−1(pT − pc) (2.17)

Σm = Σc − Σc[Σc + T Tθ ΣoTθ]
−1Σc (2.18)

where pT is the transformed coordinates extracted from the calcuation [xT , yT , 1]T =

T [xo, yo, 1]T ; pm, pc, and po are the merged, current robot’s estimate of, and other

robot’s estimate of feature position respectively; and Σm, Σc, and Σo are the merged

covariance, current robot’s covariance, and other robot’s covariance for the feature

position. Figure 2.8 shows an example of how another robot’s feature map is trans-

formed and then merged with the current robot’s map to produce a final feature map.
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Notice how the ellipses representing covariance actually shrink after the merge. Log-

ically, this makes sense since the covariance normally shrinks after each observation

and the merging of covariance matrices is similar to adding several observations at

once.

An occupancy grid map is an array of cells similar to how an image is an array

of pixels. Therefore, they can also be transformed and then merged by using (2.16).

Once an incoming cell position has been transformed and its destination cell deter-

mined, the values simply need to be added since each cells value is a log likelihood.

Figure 2.9 shows an example of how another robot’s occupancy grid map is trans-

formed and then merged with the current robot’s map to produce a final occupancy

grid map.
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Chapter 3

Software Resources Development

There exists multiple software packages such as ‘Player/Stage’ [15], ‘Microsoft

Robotics Studio’ [16], and ‘CARMEN’ [17] that are capable of generating simulated

datasets. However, these packages only take images as input to represent maps of an

environment. This means that the accuracy of the simulated sensors are limited to

the real world size represented by each image pixel. Also, the environment would be

quite ‘square’ due to the inherent shape of a pixel image. Therefore, a custom simula-

tion engine would need to be created to achieve more realistic mobile robot datasets.

Instead of developing custom software to process these datasets, an existing soft-

ware package, known as the Mobile Robotics Programming Toolkit (MRPT) [18],

was found that included the necessary mapping algorithms and only required some

extensions.

3.1 Mobile Robot Data Simulation Engine

To reduce complexity, the simulation engine would assume that an environment was

only two dimensional and thus only having three degrees of freedom. This assumption

is proper due to the fact that all maps used in this thesis are also two dimensional.

34
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Figure 3.1: Simple Indoor and Outdoor Environment

The entire engine was developed in MATLAB.

3.1.1 Creation of Environments

To remain simple, an indoor and outdoor environment was designed. A structured

indoor environment is represented by lines and an outdoor environment is represented

by circles. Circles were chosen to represent features due to the fact that many outdoor

feature based mapping methods will use trees and posts with circular cross-sections

as features. A sample environment drawn in AutoCAD is shown in Figure 3.1.

Although the method used to produce environments is independent of the sim-

ulation engine, for this thesis AutoCAD was chosen to produce environments. For

environment input, the ‘building’ lines need to be represented by the two endpoints

and the ‘features’ need to be represented by the centre of the circle and by the radius.
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3.1.2 Simulated Sensors

In order to properly produce realistic datasets, it is necessary to accurately simulate

typical real world sensors. Another requirement for these simulated sensors is that

they should be as customizable as possible.

Encoders

A wheel encoder can be installed on a vehicle in order to measure the wheel rotations,

which can in turn be used to measure displacement, dk+nd,k, and speed, uk+nv,k, for

a wheel. Noise in each measurement is represented by nd,k and nv,k for displacement

dk and speed uk respectively. To easily simulate this sensor, the true wheel speed of

the simulated robot can have reasonably chosen Gaussian white noise added to it to

produce a realistic wheel encoder reading.

To determine the variance of the white noise, parameters to represent the ‘sim-

ulated’ wheel encoder must be chosen. The encoder being simulated is assumed to

have a bit count of N = 8 and the vehicle has wheel with a radius of r = 0.1 m.

Given the previous parameters, the resolution of the sensor is:

2πr

2N
=

0.2π

256
m. (3.1)

Thus, the quantization error of displacement is

± 1

2
× 0.2π

256
= ±0.1π

256
m (3.2)

on each measurement. Even though the noise in an encoder is better represented by

a uniform distribution, it is being assumed that the quantization error is normally
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distributed such that nd,k ∼ N (0, σ2
d) with

3σd =
0.1π

256
m. (3.3)

An estimate of a vehicle’s speed can be achieved using a first-order backwards-

difference approximation:

uk ≈
1

T
(dk − dk−1) (3.4)

where T is the duration of one time step. The time step used in this simulation was

T = 0.1 sec. Assuming that the error is uncorrelated between measurements and pass

those measurements through the first-order differentiator, then the result is

speed = uk + nv,k (3.5)

where nv,k ∼ N (0, σv = 2
T 2σ

2
d). Therefore, in order to ‘simulate’ a wheel encoder,

white noise with standard deviation

σv =

√
2

T 2

(
0.1π

3 · 256

)2

≈ 0.005785 (3.6)

must be added to the true wheel speeds.

Laser Range Finder

A Laser Range Finder (LRF) is an active sensor that projects laser rays outwards

into the environment, these rays bounce off objects in the environment then return to

the sensor producing a two dimensional cross section of the surronding environment.

To simulate this sensor, first each ray must be projected until it hits an object, line

or cicle, in the environment. If there are no objects for the ray to hit or the object

is outside of the range of the LRF, then the maximum range distance of the LRF is
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returned. Otherwise, the distance travelled by the ray to the object is returned as

the measurement.

To be realistic, noise must be added to this true measurement. Accurate noise

models for LRFs take into account multiple components. First, in a dynamic envi-

ronment there is a probability that a ray might hit a moving object as opposed to the

static object it would have otherwise. Second, there is a probability that the ray will

be reflected away from the sensor causing a maximum length reading. Third, there is

a probability of a uniformly distributed random reading due to unknown sensor error.

Finally, there is some Gaussian error in a properly propagated ray reading [5]. How-

ever, for the purposes of this thesis, the noise model was simplified to only have error

in a properly propagated ray reading. This simplication comes from the assumption

that the environment is static, the environment properly reflects the rays, and that

the simulated sensor does not produce random errors that a real sensor would. In

practice, these assumptions should not be made but in this case they should not affect

the results presented in this thesis.

Therefore, each ray, i, returns a distance, zig + nLRF, where nLRF ∼ N (0, σ2
LRF).

The value of the parameters for the simulate LRF are approximately based on the

low cost Hokuyo URG-04LX-UG01 and listed in Table 3.1.

Figure 3.2 shows an example of a LRF measurement without noise and the same

reading with exagerated noise, i.e. being shown not to scale.

Feature Detector

Feature maps require that features need to be extracted from available sensor data.

A feature detector measurement can have both the distance, i.e. range, to a feature

and its relative position, i.e. bearing, or it can simply have one or the other. The
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Parameter Value

σLRF 0.015 m

Field of View 240◦

Angular Resolution 0.3516◦

Minimum Length 0.1 m

Maximum Length 5.0 m

Number of Rays 683

Distance Resolution 0.001 m

Table 3.1: Simulated Laser Range Finder Parameters

feature detector being simulated outputs both the range and bearing.

One common method to retrieve feature measurements is to label objects in the

environment with some type of ID tag. A camera on the vehicle is used to identify

and locate the ID. Another method is to use a long range LRF that covers a large

area, from this data clusters of beam end points that are surrounded by free space

can be extracted as a feature. For the purposes of this thesis, it is being assumed

that a feature extractor already exists that is capable of providing range and bearing

measurements for each feature in the environment. It is also assumed that each

feature in the environment can be identified by the feature extractor.

Similar to the encoders, to simulate realistic sensor readings, the true measure-

ments are used and then Gaussian white noise is added. Table 3.2 lists the value

of the parameters used in the simulated feature detector and Figure 3.3 shows an

example of actual range and bearing measurements next to a corrupted version. This

simulated sensor has the ability to accurately identify each individual feature.
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(a) LRF Scan Truth (b) LRF Scan with Exagerated Error

Figure 3.2: Sample LRF scan measurement

(a) Feature Reading Truth (b) Feature Reading with Exagerated Error

Figure 3.3: Sample feature detector measurement
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Parameter Value

σrange 0.25 m

σbearing 0.5◦

Field of View 240◦

Maximum Length 15.0 m

Distance Resolution 0.001 m

Table 3.2: Simulated Feature Detector Parameters

Other Robot Sensors

Finally, there needs to be a sensor capable of detecting another robot in the neigh-

bouring area. In multi-robot research, typically robots will have some type of id to

allow other robots to recognize them. Since another robot in the environment is sim-

ply a moving ‘feature’, the sensor that measures the other robot relative position can

be simulated similarly to the feature detector. Also, it is being assumed that each

robot can be easily identified once observed.

The reading from this sensor provides the range and bearing to the other robot.

Again, the simulated sensor uses the actual measurements and then add Gaussian

white noise. Table 3.3 details the parameters of the simulated sensor and Figure 3.4

demonstates the measurement reading, without and with error, when two robots

mutually identify the other. This simulated sensor also has the ability to accurately

identify other robots.

3.1.3 Trajectory Tracking

To produce realistic datasets, the simulated mobile robot must traverse the environ-

ment in realistic movements. In this thesis we simulate a mobile robot that has a
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Parameter Value

σrange 0.25 m

σbearing 0.5◦

Field of View 240◦

Maximum Length 15.0 m

Distance Resolution 0.001 m

Table 3.3: Simulated Other Robot Parameters

(a) Other Robot Reading Truth (b) Other Robot Reading with Exagerated
Error

Figure 3.4: Sample other robot measurement

differential drive wheel base as illustrated in Figure 3.5. Using a body-centered axis

model and assuming that the wheels do not slip laterally, the vehicle model can be

derived as:

q̇ =



ẋ

ẏ

θ̇


=



1
2

cos θ 1
2

cos θ

1
2

sin θ 1
2

sin θ

1

l
−1

l



υR
υL

 (3.7)

where q = (x, y, θ)T ∈ R2 × S1 represents the pose, θ is the direction of the robot, l

is the distance between wheels, (υR, υL)T ∈ R are the input linear wheel speeds. All
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Y

X

l

θ

(x, y)

Figure 3.5: Diagram showing the state variables of a differential drive vehicle

derivations of equations for this section are shown in Appendix A.

It is easier to design a controller for a simpler, unicycle, vehicle model and convert

those input signals for the differential drive model. The unicycle model is:

q̇ =



ẋ

ẏ

θ̇


=



cos θ 0

sin θ 0

0 1



υ
ω

 (3.8)

where ω ∈ R is the steering speed or rotational rate and υ ∈ R is the linear vehicle

speed.

The conversion matrix necessary to convert the inputs of the unicycle model to
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the differential drive model is:

υR
υL

 =

1
l

2

1 − l
2


υ
ω

 (3.9)

One method of successfully tracking a trajectory represented by zd = (xd, yd)
T is

to use exact linearization by dynamic extension [19]. As opposed to using only state

feedback from z = (x, y)T , this method uses additional dynamic states. In trying to

find new states, time derivatives of z are taken. As shown in Appendix A, additional

states are eventually found once an invertible matrix is reached. These new states

are: υ̇
ω

 =

 cos θ sin θ

−sin θ

υ

cos θ

υ


η1
η2

 (3.10)

where η := z̈ = (ẍ, ÿ)T and is only valid when υ 6= 0. The variable η will be used as

the control input acceleration into the linearized system.

This dynamic extension allows for linearization through the selection of new coor-

dinates (ζ1, ζ2, ζ3, ζ4)
T := (x, y, ẋ, ẏ)T and produces the following feedback linearized

system 

ζ̇1

ζ̇2

ζ̇3

ζ̇4


=



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

A



ζ1

ζ2

ζ3

ζ4


+



0 0

0 0

1 0

0 1


︸ ︷︷ ︸

B

η1
η2

 (3.11)

Given that (3.11) is the linear system ζ̇ = Aζ+Bη, full state feedback can be used
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
ẋ

ẏ

θ̇

 =


1
2

cos θ 1
2

cos θ

1
2

sin θ 1
2

sin θ
1

l
−1

l


υR
υL



υR
υL

 =

1
l

2

1 − l
2


υ
ω

υ̇
ω

 =

 cos θ sin θ

−sin θ

υ

cos θ

υ

η1
η2

K


xd

yd

ẋd

ẏd



x

y

ẋ

ẏ



∫υ̇ υ

ω

η

−

Figure 3.6: Controller Architecture for Trajectory Tracking

along with pole placement to produce a control signal capable of limt→0 (ζd − ζ) = 0

when η = K(ζd − ζ). A pole placement technique was used to placed the closed loop

poles at (−1,−2,−2.5,−1.5) which yields the following control gains:

K =

3.75 0 4 0

0 2 0 3

 (3.12)

Figure 3.6 shows the whole trajectory tracking controller architecture.

To implement this controller architecture (3.7) and (3.11) must be discretized.

Since (3.7) is a non-linear system, it must be assumed that the state and input

remain constant between samples in order for it to become:

qk = qk−1 + T ·



1
2

cos θ 1
2

cos θ

1
2

sin θ 1
2

sin θ

1

l
−1

l



υR
υL

 (3.13)



CHAPTER 3. SOFTWARE RESOURCES DEVELOPMENT 46

Desired Trajectory
Robot Trajectory

Figure 3.7: Trajectory Tracking Result

Conversely, (3.11) is linear and can be discretized using

ζk = e(A−BK)T ζk−1 (3.14)

Desired trajectories are nothing more than a series of waypoints, that are then

broken down into smaller waypoints that the robot can realistically reach during each

timestep. Figure 3.7 shows the successful result of a trajectory being tracked by the

described controller architecture.

3.2 MRPT modifications

After a few trials at implementing algorithms described in chapter 2 in MATLAB, it

was determined that MATLAB would not meet the computational speed requirements
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for this thesis. The Mobile Robot Programming Toolkit is a open source C++ software

package with several SLAM algorithms already implemented by SLAM researchers.

The MRPT toolkit met the computational speed requirements but lacked certain

necessary features.

3.2.1 2D Feature Map Type

MRPT contained different map implementations but lacked a simple two dimensional

feature map. As previously described in section 2.2.1, a feature map is composed of a

vector of feature mean location coordinates and respective covariances. Thus in order

to implement a feature map, two classes must be created.

The C2DFeature class represents individual features and its abbreviated header

file is shown in section B.1.

The collection of features is handled by the C2DFeatureMap class and its abbre-

viated header file is listed in section B.2.

All MRPT map types can integrate sensor measurements through types having

the CObservation base class. There was no need to implement a custom CObservation

class, as the MRPT library already had a suitable observation type, CObservation-

BearingRange, that met the feature map compatibility requirements. There was also

no need to implement an occupancy grid map class because MRPT already contained

an extensive implementation named COccupancyGridMap2D.

3.2.2 Map Merging

The MRPT software package was not designed for multi-robot usage and thus did not

contain any implementations of map merging algorithms. Therefore, both algorithms

described in section 2.4 would need to be implemented. The implemented code for
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merging two feature maps is shown in section B.3.

The contributors to MRPT provided the software package with an extensive ma-

trix arithmetic library that facilitated the implementation of merging two feature

maps. As shown in section B.3, if a feature is not found in the destination map, the

transformed mean and covariance are simply added to the vector of features.

The implemented code used to accomplish a merging of two occupancy grids is

listed in section B.4.

The first step of the implementation is to resize the current robot’s map to be able

to incorporate the other robot’s map size and orientation. Resizing the map involves

modifying the dimensions of the occupancy grid itself. This is to ensure that the

destination cell of a transformed cell from the other robot’s map does not fall outside

the boundaries of the map of the current robot.

Once this is done, the other robot’s map’s pixels can be iterated through, trans-

formed, and merged appropriately.

3.2.3 Other Robot Observation Type

As previously mentioned MRPT was not designed for a multi-robot implementation,

thus a new observation class needed to be created. Since there are many similarities

between feature observations and other robot observations, it was appropriate to base

this new class on the CObservationBearingRange. The abbreviated header file for the

newly developed CObservationOtherRobot class is shown in section B.5.

For this thesis, all environments are assumed to be two-dimensional, thus the

inclusion of a ‘pitch’ angle is to maintain consistency with the CObservationBear-

ingRange class.
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3.2.4 DataSet to Rawlog Converter

The dataset produced by the developed simulation engine is saved in MATLAB arrays

and cell arrays and are not compatible with the MRPT library, which requires datasets

in the form of its Rawlog type. Thus a program was developed that could convert

multiple comma separated values (CSV) files into a Rawlog file. Each corresponding

line in the CSV files would represent the sensor values at a particular time step.

The first step was to develop code in MATLAB that could output the arrays

storing the sensor values into CSV files. The array of LRF readings was outputted

verbatim with each line having the distance values for each ray. The output for feature

and other robot measurements needed to be slightly different. The first number in

a line would represent the number of features or robots that were observed. If any

were observed, then the following pair values would represent the range and bearing.

The MRPT Rawlog format stores robot actions as either odometry with accompa-

nying linear and angular velocities or encoder ticks. It was deemed easier to convert

the wheel encoder speeds into odometric readings compatible with MRPT’s Rawlog

format. Assuming that the origin is the pose of a robot at t0, the values of the simu-

lated wheel encoders can be used as input into the discrete time vehicle model (3.13)

to get the corresponding pose. The linear and angular velocities can be calculated

from the inverse of (3.15) and is shown here:

υ
ω

 =


1

2

1

2

1

l
−1

l


υR
υL

 (3.15)

Another CSV file is produced containing the parameters for each sensor. Corre-

sponding CSV files for all sensors containing the truth must also be produced. CSV

files are then parsed and the data is inserted into instances of the appropriate class
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and then inserted into the appropriate container class for MRPT’s Rawlog format.

Table 3.4 shows which classes must be used for each sensor reading.

Sensor MRPT Class

Wheel Encoders CActionRobotMovement2D

Laser Range Finder CObservation2DRangeScan

Feature Extractor CObservationBearingRange

Other Robot CObservationOtherRobot

Table 3.4: Sensor to MRPT class mapping

3.2.5 Particle Filter Modifications

Some small modifications were made to the MRPT implementation of RBPF map-

ping. With the ubiquity of multi-core CPUs, it would be beneficial for any computa-

tionally intensive algorithm to take advantage of this. In particle filters, each particle

is manipulated independent of any other particle. Typically this is done in some

type of ‘for loop’. Most modern C++ compilers have access to an API named Open

Multi-Processing (OpenMP) that provides facilities to easily parallelize for loops. The

following code block shows a simple example.

#pragma omp parallel for
for (int i=0; i < nParticleCount; i++)
{

CParticle* pPart = arrParticles[i];

/* perform necessary code on individual particles */

#pragma omp critical
/* perform any necessary code that it performed

on an object used by all loops */
}
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Once the work of Wurm et al. [1] was successfully replicated, it was necessary to

adjust the implementation of RBPF in MRPT to properly follow Algorithm 2.10. Ad-

ditionally, the determination of the current reinforcement learning state also needed

to be implemented and the appropriate action for each state permutation was also

stored.



Chapter 4

Proposed Approach

With the necessary foundation work outlined, the main contribution of this thesis can

now be described. To have reinforcement learning reach a proper decision algorithm,

the model must be appropriately selected and the reward determination properly de-

signed. But first, any merging of maps requires the determination of a transformation

matrix from other robot’s global reference frame to the current robot’s global refer-

ence, as mentioned in section 2.4. Given the available sensors, there are a couple of

different ways of determining this matrix. As mentioned in section 3.1.2, all simulated

sensors are responsible for the input of noise.

4.1 Calculation of Transformation Matrix

Each robot contains multiple particles each containing different maps, thus there are

potentially Nc × No possible combinations of merged maps. The memory require-

ments necessary to store all of these maps is not feasible and some other method

of keeping the number of resultant merged maps at a reasonable number must be

devised. Ozkucur and Akin in [14] only dealt with the merging of feature based maps

which allowed them to average the other robot’s estimated poses and maps. This

52
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method of averaging does not yield favorable results in occupancy grid maps due to

their inherent image-like nature. Therefore, for the approach taken in this thesis the

maps and pose estimates of the particle with the greatest weight will be ‘sent’ to the

current robot for merging.

It is being assumed that a robot can only merge maps with another robot when

they are in a rendezvous scenario where both mutually observe the other. To calculate

the desired transformation matrix T , three different component transformation must

be used. The first component, Tc, is the transformation matrix to convert points in

the current robot’s local frame of reference to its global frame of reference from its

pose at t0. This matrix is built using the pose of the current robot x
(i)
c = (xc, yc, θc)

T

and there are Nc different poses, thus this means that there will be Nc different T

matrices, i.e. one for each particle. The second component, Tr, is the transformation

matrix to convert points in the other robot’s local frame of reference to the current

robot’s local frame of reference. This matrix is built using the readings from Other

Robot sensor. The final component, To, is the transformation matrix to convert points

in the other’s robot’s frame of reference to its global frame of reference from its pose

at t0. This matrix is built using the pose ‘sent’ from the other robot x†o = (xo, yo, θo)
T .

The following equation shows the calculation of T necessary to transform the map

‘sent’ from the other robot and merge into each of its particle’s map:
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T (i) = TcTrT
−1
o =

c θ
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c − s θ

(i)
c t

(i)
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c c θ
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(i)
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0 0 1
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s θr c θr tyr
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s θo c θo tyo
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

−1

(4.1)

where txc = xc, tyc = yc, txo = xo, tyo = yo, and s and c are shortform for sin and cos

respectively. The relative transformation matrix terms txr , tyr , and θr can be calcu-

lated using the range and bearing components from the mutual robot observations

using the following equations:

txr = r cos θc→o

tyr = r sin θc→o

θr = π − θo→c + θc→o.

(4.2)

where θc→o and θo→c are illustrated in Figure 4.1.

Figure 4.1 shows how these equations were derived analytically and Figure 4.2

shows how all the component transformation matrices combine to form the desired

transformation matrix.

The transformation matrix estimate T (i) is a first estimate and can be possibly

improved in various ways in order to reduce the overlap inconsistencies that could

occur upon merging. However, only one option for each map type will be used for this

thesis. Since the robots are relatively close together when they meet, this means that

the observations of the other robot at the time of merging can be used and fitted into
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θc→o

θo→c

r

π − θo→c + θc→o

Figure 4.1: Diagram illustrating how the relative equations are determined.

Yg,c

Xg,c

Yl,c

Xl,c

θc

tyc

txc

Yg,o

Xg,o

Yl,o

Xl,o

θo

tyo

txo

ty
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Figure 4.2: Diagram illustrating how transformation parameters and matrices have
been determined.
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each map the current robot’s particles. This will obtain a better estimate of TcTr,

which represents the transformation from the other robot’s local frame of reference

to the current robot’s global frame of reference.

4.1.1 Improving Transformation Matrix Estimate

For feature maps, the TcTr estimate can be achieved using a least squares estimate

(LSE) based matching algorithm to match the other robot’s recently perceived fea-

tures to the current robot’s individual particle map of features. This algorithm is

based on the work of [20] and straightforward because it has already been assumed

that the feature extractor is able to identify each feature. This simplication would

be difficult to achieve in experiments due to the complexity of the data association

problem [5]. Typically features are not easily identifiable and thus trying to associate

the same feature in both the other robot most recent observation and the current

robot’s map would be compuationally difficult. Since this is outside the scope of this

thesis, the data association problem has been assumed to be solved.

The following equation shows the error that needs to be minimized between the

mutually seen features in the current robot’s map and the other robot’s recently

observed features:

E =
M∑
j=1

[(xjc − x̂j)2 + (yjc − ŷj)2] (4.3)

where xjc and yjc are the coordinates of a feature in the current robot’s map, x̂j and

ŷj are the estimated transformed coordinates from the other robot’s observation, and

M is the number of mutually observed features. Figure 4.3 shows the error values

trying to be minimized from features that are mutually in the other robot’s most

recent observation and the current robot’s map.
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Yg,c

Xg,c

Yg,o

Xg,o

Yl,o

Xl,o

TcTr

To

T
(i)
LSE

E1

E2

E3

Figure 4.3: Diagram illustrating how the LSE can be used to improve the transfor-
mation matrix.

The estimated transformed coordinates are calculated as follows

x̂
j

ŷj
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j
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yjo

+

∆x

∆y

 (4.4)

where xjo and yjo are the coordinates of a feature in the observation of the other robot,

and ∆x, ∆y, and ∆θ are the transformation parameters. Minimizing the function in



CHAPTER 4. PROPOSED APPROACH 58

Equation (4.3), yields the equation for the parameters

∂E

∂∆θ
= 0⇒

∆θ′ = tan−1
(
SxcSyo +MSycxo −MSxcyo − SxoSyc
MSxcxo +MSycyo − Sxcxo − Sycyo

)
∂E

∂∆x
= 0⇒

∆x′ =
Sxc − cos(∆θ′)Sxo + sin(∆θ′)Syo

M
∂E

∂∆y
= 0⇒

∆y′ =
Syc − sin(∆θ′)Sxo − cos(∆θ′)Syo

M

(4.5)

where the S terms stand for the following sums

Sxc =
M∑
j=1

[xjc], Sxo =
M∑
j=1

[xjo],

Syc =
M∑
j=1

[yjc ], Syo =
M∑
j=1

[yjo],

Sxcxo =
M∑
j=1

[xjcx
j
o], Sxcyo =

M∑
j=1

[xjcy
j
o],

Sycxo =
M∑
j=1

[yjcx
j
o], Sycyo =

M∑
j=1

[yjcy
j
o]

(4.6)

This LSE algorithm is performed for each of the current robot’s particles and leads

to the following equation for the transformation matrix:

T (i) =



c ∆θ′ − s ∆θ′ ∆x′

s ∆θ′ c ∆θ′ ∆y′
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c θo − s θo txo

s θo c θo tyo
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−1

(4.7)
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Figure 4.4: Diagram illustrating how the ICP can be used to improve the transfor-
mation matrix.

A similar algorithm for occupancy grid map named iterative closest point (ICP)

scan matching [20] can be used to find a better approximation that attempts to fit

the recent LRF observation from the other robot into each of the maps of the cur-

rent robot’s particles. This is shown graphically in Figure 4.4. Initially, ICP was

designed to use a gradient descent method to revise the transformation, translation

and rotation, parameters to minimize the distance, or error local minimum, between

the points of raw LRF scans. In MRPT, it has been implemented to use KD-trees

to accelerate the search and capable of matching a scan measurement to an occu-

pancy grid map. KD-trees is short for k-dimensional trees and is a data structure for

organizing points in a k-dimensional space [21]. This algorithm will yield a relative

pose (xICP , yICP , θICP ) that can then be inputted into the following equation for the
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transformation matrix:

T (i) =
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(4.8)

In some circumstances, it is possible for neither of these algorithms to reach an

improved transformation. When this does occur, the initial estimate transformation

matrix shown in (4.1) is used.

The merging process is summarized at the end of Algorithm 4.1 and depicted in

Figure 4.5. Figure 4.5 shows how the current robot’s maps are ‘extracted’ from the

particles and then used in conjunction with the other robot’s observation to get TcTr.

This result can then be combined with T−1o to transform the other robot’s map. The

transformed map can then be merged with the current robot’s maps and subsequently

‘inserted’ back into the current robot’s particles.

4.2 Model Selection

Reinforcement learning is the method being used to determine when to best merge

maps and which method to use to improve the transformation matrix. However,

to successfully accomplish this, an appropriate model must first be selected that is

simple enough and yet has access to enough data to converge to the proper decision

matrix. This data will be based on the current status of the robot particle filters

and the current overlap in robot sensor readings. The reward signal being properly

chosen is also critical.
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Particles

Best Pose Estimate
and Map Estimate

Pre-Merge
Particles Maps TcTr
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Post-Merge
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LRF and Feature
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T−1o and Map

Using ICP or LSE
along with Maps,

get TcTr

Current Robot

Other Robot

Figure 4.5: Diagram demonstrating the process of how the maps produced from
FastSLAM by each individual robot are merged from one robot’s perspective.

4.2.1 Neff Criterion

Each particle i of a robot’s particle filter also has an attributed weight w(i) which

indicates the likeliness of the particle’s pose and current maps. These weights cannot

be directly compared time step to time step due to the fact that they are always

normalized. However, there is an achievable measure of evaluation by calculating the

weight distribution over the particle filter. This value can be a heuristic in the choice

of whether or not a merge is recommended.

The weight distribution can be measured by the variance of the weights. For

example, when the filter does not have a high confidence in its particles’ estimates

the variance of a set of weights will be low, and vice versa. It is apparent that in most

cases, for a merge to incur the least amount of error, the robots should be confident

in their current set of particles. Especially since in section 4.1 the other robot chooses
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its pose and maps candidates based on the particle with the greatest weight.

The effective sample size value, Neff , from (2.12) provides a good basis for a

decision criterion and is repeated here:

Neff =
1

N∑
i=1

(w(i))2

. (4.9)

As stated previously upon inspection, one can deduce that the higher the variance

in the weights will yield a lower Neff value, and vice versa. As previously mentioned,

many particle filters use this value for their resampling condition in order to remove

lower weighted particles when certain particles have a much higher relative weight or

when Neff < N/2. Therefore, it seems reasonable to have a heuristic that says to

merge when both robots’ particle filters are resampling concurrently or when N c
eff <

N/2 and N o
eff < N/2.

4.2.2 Mutual Observation Likelihood Criterion

LSE or ICP are used to improve upon the estimate of TcTr, a good heuristic would

be to use the value of the confidence of this improved estimate. This confidence value

could be calculated as the likelihood of the other robot’s sensor readings into the

current robot’s maps.

For both grid-based and feature-based methods, this mutual observation likelihood

is calculated as the probability of the other robot’s measurement reading, zo,t, given

the transformed pose based on the improved relative transformation matrix, TcTrx
†
o,t

in each of the current robot’s particles maps, m
(i)
c,t. This is summarized by

l
(
zo,t, TcTrx

†
o,t,mc,t

)
= p

(
zo,t|TcTrx†o,t,mc,t

)
. (4.10)
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where l represents a likelihood and p represents a probability.

The calculation of these probabilities uses the same techniques as discussed in

section 2.2.2 for the calculation of the particle weights. The likelihood of the other

robot’s feature observation given the transformed pose and feature map of the current

robot is:

p (zo,t|TcTrxo,t,mc,t) =

Fmut∑
j=1

exp
(
−1

2
(z

(j)
o,f,t − ẑ

(j)
f,t )Q

−1
t (z

(j)
o,f,t − ẑ

(j)
f,t )
)

Fmut

(4.11)

where Fmut is the number of features that are both in the other robot measure-

ment and the current map m
(i)
c,t; z

(j)
o,f,t is the other robot measurement of a feature;

ẑ
(j)
o,f,t = h(µc,j,t, TcTrx

†
o,t) is the measurement prediction; and Qt = HΣc,j,tH

T + Q is

the measurement covariance with H = h′(µ
(i)
j,t−1, x

(i)
t ) being the Jacobian of the mea-

surement model and Q is the measurement sensor noise covariance. In this case the

measurement prediction is calculated as:

h(µc,j,t, TcTrx
†
o,t) =


√

(µc,j,t,x − xTcTr)2 + (µc,j,t,y − yTcTr)2

atan2 (µc,j,t,y − yTcTr , µc,j,t,x − xTcTr)− θTcTr

 (4.12)

where (xTcTr , yTcTr , θTcTr)
T = TcTrx

†
o,t. The calculation of H is similar to (2.8) and will

not be repeated here.

Determining the confidence of the improved transformation from the grid-based

approach can be done using the ‘beam endpoint model’ [5] whose method is outlined

in Algorithm 2.6. As previously explained, the ray endpoints from the other robot’s

laser data would be transformed and place into a likelihood field of the current robot’s

occupancy grid map. The product of these ray likelihood will produce the requested

grid-based mutual observation likelihood.
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The previous equations neglected the fact that these calculations must be done

on all the particles. Therefore, all these values must be averaged in order to reach a

final value that can be used in the heuristic to decide which method should be used

to improve the transformation matrix and if a merge is recommended:

l̄ =
1

N

∑
i

l
(
zo,t, TcTrx

†
o,t,m

(i)
c,t

)
(4.13)

Independently, these heuristic values can be used to determine when to merge if

the value is above a certain threshold (l̄ ≥ c). This threshold value must be sufficiently

high as not to incur much error when merging maps. If there is a case where both

feature- and grid-based threshold values are above their respective constants, then

the greater of the two should be used even though they are not directly comparable.

This is an obvious pitfall of this particular heuristic, but it should be noted that this

is simply a heuristic and subsequent discussions will show how this particular pitfall

is avoided using Reinforcement Learning.

4.2.3 Reinforcement Learning for Model Selection

Using a similar method used in [12] described in section 2.3, the previous two heuristics

can be combined using Reinforcement Learning to take advantage of their strengths

while avoiding their pitfalls. The requirements include the proper definition of the

states S, the actions A, and the reward r : S → R. The straightforward actions

are A = adm, amg, amf , ami, where adm defines the action of not merging, amg defines

the action of merging using the grid-based method to improve the transformation

matrix, amf defines the action of merging using the feature-based method to improve

the tranformation matrix, and ami defines the action of merging using the initial

estimate of the transformation matrix to merge the maps.
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Determine Proper State Composition

As previously mentioned, the state set must be defined to represent enough of the

information from the sensors and particle filters, e.g. the environment, to make an

‘educated’ decision. The first reinforcement learning state variable is a boolean rep-

resenting the N c
eff criterion for the current robot, i.e. N c

eff < N/2. Similarly, the

second state variable is a boolean representing the N o
eff criterion for the other robot,

i.e. N o
eff < N/2. The next state variable is the confidence of the ICP recommended

transformation matrix, given by the grid-based mutual observation likelihood l̄g. Fi-

nally, the last state variable is the confidence of the LSE recommended transformation

matrix, given by the feature-based mutual observation likelihood l̄f . The values of l̄g

and l̄f are divided into three discrete intervals (0.0-0.3333, 0.3333-0.6666, 0.6666-1.0).

Therefore, the resulting state set is

S := l̄g × l̄f × 1Nc
eff<N/2

× 1No
eff<N/2

. (4.14)

From (4.14), the number of states is 3×3×2×2 = 36 states. The larger the state

set is, the lengthier the necessary training will be, thus it is necessary to keep the

number of states as low as possible while not affecting the accuracy of the training.

It should be noted that there exists other possible states in this model, which

include the state of: pre-rendezvous, post-rendezvous, and post-merge. However,

these can be eliminated since there is only one possible action, that is of not merging,

and can be set to have the reward signal of zero. Figure 4.6 depicts a state diagram

showing all of the states and the possible transitions between them.
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Figure 4.6: State Diagram demonstrating how the Reinforcement Learning states
transition between one another.
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Choosing Appropriate Reward Signal

Without the proper selection of a reward signal the training using the SARSA al-

gorithm will never converge to a decision matrix or worse will converge to an un-

desirable decision matrix. Since the training is being learned from simulated data,

the true robot pose x∗t is known at every time step t and should be included in any

attempted reward signal proposition. The reward signal that yielded the best conver-

gence results was based on the amount of improvement (or deviation which yields a

negative reward) in the normalized cumulative error for the entire simulated run and

is calculated by:

r(st) = Eµ
cum − Ecum (4.15)

where r(st) is the reward for the current state st, E
µ
cum is the average cumulative

error achieved by several runs where the robots immediately merge upon mutual

observance. The normalized cumulative error over an entire run is calculated by the

following equation:

Ecum =
t∑
i=1

||xi − x∗i || =
t∑
i=1

√
∆x2 + ∆y2 + ∆θ2 (4.16)

where xi with i = 1→ t is the entire pose trajectory from the particle with greatest

weight at the end of the simulated run, and (∆x, ∆y, ∆θ) are the individual pose

components. Although not all components have the same units, their values were

typically within an order of magnitude and thus could be normalized together without

one of the components providing too much bias.

The choice of focussing on trajectory error is based on the fact that a best possible

map of the environment can be achieved when the estimated robot trajectory has zero

error. Therefore, any reduction should be rewarded.



CHAPTER 4. PROPOSED APPROACH 68

Training

During training, the SARSA Reinforcement Learning algorithm, described in Algo-

rithm 2.9, will cause the Q values for each state-action to converge and produce a

decision matrix. This decision matrix will allow the current robot to only merge its

maps with the other robot’s at a state that should reduce the eventual trajectory

error.

The choice of training environment is critical to determine a proper decision ma-

trix. Similar to the work of Wurm et al. in [1], the environment consists of an indoor

section with a building-like structure containing rooms and hallways and an outdoor

section with features that model a set of trees or posts. In order to ensure each

training episode is not too long, only one merge is allowed per episode and multiple

different robot rendezvous episodes would be used to ensure that all reinforcement

learning states were visited. Figure 4.7 shows the four different scenarios that were

used in the training episodes with the gray lines representing the desired robot trajec-

tories. In one scenario the robots are always travelling within the simulated building;

in another both robots are always in the simulated area of trees; in another one robot

starts outside while the other robot starts inside and they meet in the entrance of

the building; and similarly one robot starts outside and the other inside and they

rendezvous near an outside corner of the building. Since this thesis is based on a

decentralized algorithm, each robot’s perspective could be used in a training episode.

In order to speed up the training episodes, the pre-rendezvous sections of the

training were processed and the particle filter status is stored. This way the training

could take place immediately from the time step where merging was possible. How-

ever, this caused certain elusive states to not be visited. Therefore, ten setups of

each scenario were stored to increase the chance of visiting each reinforcement learn-

ing state, bringing the total number of variants to 4 × 2 × 10 = 80. Thousands of
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episodes were performed using these available setups until the decision matrix finally

converged satisfactorily.

During training, an ε-greedy policy was used, where in a particular state s, the

policy would choose action a which had the highest value Q(s, a), but another random

action would be explored with probability ε. To allow suitable exploration of the

possible state-action pairs, a value of ε = 0.1 was used during training. The learning

rate α was set to 0.001 and the discounting factor γ was set to 0.9, which according

to [1] are standard values. They also lead to good results in this training.

In terms of particle filter parameters, the policy determined through validating [1]

was used to determine which proposal should be used in propagating particles and

the number of particles was set to N = 25. The rest of the parameters used by the

particle filter and map types are shown in Appendix C as the ‘ini’ config file used by

the MRPT dataset processing software.

The overall mapping and map-merging algorithm that is to be used once training

is complete is shown in Algorithm 4.1.
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Start of Trajectory

Robot Rendezvous Area

Figure 4.7: Training Environment with building and set of trees with dimensions
45 [m] ×45 [m]
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Algorithm 4.1 Mapping and Map-Merging approach

Require:
St−1, previous time step sample set of particles for current robot
zf,t, most recent feature observations for current robot
zg,t, most recent laser scan for current robot
ut−1, most recent odometry measurement for current robot
zof,t, most recent feature observations for other robot
zog,t, most recent laser scan for other robot
N o
eff , most recent weight variance from other robot

Ensure:
St, new sample set

maptype = decideProposal(St−1, zf , zg, ut−1)

St = {} // Start with Empty Set

for all s
(i)
t−1 ∈ St−1 do

〈x(i)t−1, w
(i)
g,t−1, w

(i)
f,t−1,m

(i)
g,t−1,m

(i)
f,t−1〉 = s

(i)
t−1

if maptype=grid then // Compute proposal

x
(i)
t ∼ p(xt|x(i)t−1, ut−1, zg,t)

else
x
(i)
t ∼ p(xt|x(i)t−1, ut−1, zf,t)

end if

w
(i)
g,t = updateWeight(w

(i)
g,t−1,m

(i)
g,t−1, z

(i)
g,t)

w
(i)
f,t = updateWeight(w

(i)
f,t−1,m

(i)
f,t−1, z

(i)
f,t)

m
(i)
g,t = integrateScan(m

(i)
g,t−1, x

(i)
t , z

(i)
g,t)

m
(i)
f,t = integrateFeatures(m

(i)
g,t−1, x

(i)
t , z

(i)
f,t)

// update sample set

St = St ∪ {〈x(i)t , w
(i)
g,t, w

(i)
f,t,m

(i)
g,t,m

(i)
f,t〉}

end for

for i = 1 to N do
if maptype=grid then

w(i) = w
(i)
g,t

else
w(i) = w

(i)
f,t

end if
end for

...
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Algorithm 4.1 Continued

Neff = 1∑N
i=1 (w

(i))2

if Neff < N/2 then
St = resample(St, {w(i)})

end if

mergetype = decideMerge(Neff , N
o
eff , z

o
f,t, z

o
g,t,mf,t,mg,t)

if mergetype = mergeGrid || mergeFeature then
〈mo

f,t,m
o
g,t, x

o
t 〉 = otherMostLikMapAndPose()

for i = 1 to N do
if mergetype=mergeGrid then

T (i) = getTransMatrixUsingICP(zog,t,m
(i)
g,t, x

o
t )

else
T (i) = getTransMatrixUsingLSE(zof,t,m

(i)
f,t, x

o
t )

end if
m

(i)
g,t = mergeGridMaps(m

(i)
g,t, T

(i)mo
g,t)

m
(i)
f,t = mergeFeatureMaps(m

(i)
f,t, T

(i)mo
f,t)

end for
end if
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Simulations

Section 4.2.3 outlines the final parameters used in our proposed approach, these pa-

rameters came about from many iterative trials. The computational requirement of

running a training trial were high, on the order of several continuous days of compu-

tation on a Quad Core i7 processor, and thus limited the number of trials attempted

for this thesis. The values varied during different experiments were modified action

sets, ε-greedy values, and reward signals.

The original action set did not include the action of merging with the initial

transformation matrix, ami. However it was deemed prudent to add this action in

order to properly evaluate the proposed improved transformation matrix estimates.

For our simulations, a value of ε = 0.1 provided the necessary exploration of

reinforcement learning states.

The choice of suitable reward signal required the most experimentation. The first

reward signal attempted compared the total normalized cumulative error (TNCE) for

a certain episode to the lowest TNCE achieved so far. This choice led all state-action

pairs to becomes negative and never allowing the Q values to converge to a suitable

decision matrix. The next reward signal attempted involved comparing the current

episode TNCE to the average TNCE of several runs where the robots never merged
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their maps. Although this seemed to lead to Q values converging to desirable values, it

was found that validation of these results did not prove successful. Finally, the reward

signal based on the current episode TNCE compared to the average TNCE of several

runs where the robots merged their maps immediately upon mutual observance. This

choice is in line with the premise of this thesis, i.e. decreasing the amount of error

incurred by merging, and yielded the best results.

5.1 Results

Once the Q values reached a suitable convergence, the training program was ended.

The resulting trained policy is shown in Figure 5.1 as a decision tree created using

the ID3 algorithm [22]. Logically, the most popular option is to not merge and to

wait until a suitable state is reached where merging is the preferred option. The most

popular merging option was that of the feature-based method. The grid-based and

initial transformation matrix estimate method were only found to be recommended

in one state each. It can be noticed in Figure 5.1 that generally for a merge to be

recommended only one of the two robots have their particle filters with the Neff <

N/2. This is beneficial since it was also observed that the occurrence of both robots’

particle having such a value was not common.

The subsequent values were then tested on the same training data. Figure 5.2

and Figure 5.3 show some sample results produced by using the training policy with

the training data used to derive the policy. These results are calculated using the

average of several runs through the same data. It can be seen that once the merge

occurs, shown by the separation of the two curves, that our method performs better

than merging immediately. Any amount of improvement is considered successful due
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Figure 5.1: Decision Tree showing the policy determined through reinforcement
learning
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Figure 5.2: Comparison of cumulative error for one entire training data robot tra-
jectory
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Figure 5.3: Comparison of cumulative error for another entire training data robot
trajectory

to the desire to get as close as possible to zero error.

5.2 Validation

In order to properly validate the training results, a new environment was designed

and new robot datasets were generated. Figure 5.4 shows the different environment

along with some robot trajectories used for validation. This environment contains

many of the same characteristics as the training environment, such as a building with
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Figure 5.4: Environment used for validation with dimensions 45 [m] ×55 [m]
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Figure 5.5: Comparison of cumulative error for one entire validation data robot
trajectory

rooms and a large area covered with ‘trees’.

Figure 5.5 and Figure 5.6 show some successful sample results achieved through

validation. It can easily be seen that once the merge occurs, shown by the separation

of the two curves in the figures at t = 17.6 seconds, that on average our method

lowers the amount of incurred error.

Some sample final maps produced by the same validation scenario are shown in

Figure 5.7 and Figure 5.8.
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Figure 5.7: Sample maps produced during validation
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Figure 5.8: Sample maps produced during validation
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5.3 Single-Robot vs Multi-Robot SLAM

To show the benefits of Multi-Robot SLAM, a mapping area was selected that would

be mapped by a single robot and then by multiple robots. The environment used

during validation was also used for this purpose, this environment and the accom-

panying robot trajectories are shown in Figure 5.9. The single robot starts outside,

eventually makes its way into the building, then upon exiting the building explores

the outside. Conversely in the multi-robot run, ‘Robot 1’ starts inside and ‘Robot 2’

outside. The two robots meet just outside the building, and assuming that ‘north’ is

vertically upwards on the map shown in Figure 5.4 ‘Robot 1’ heads ‘southwards’ and

‘Robot 2’ ‘northwards’.

Figure 5.10 shows the average cumulative error acculumated during several map-

ping runs. The rate of increase in cumulative error tends to increase as time increases,

thus it makes sense that the final error value for the single robot is much greater than

the final error values for the two robots.

Figure 5.11 and Figure 5.12 show the best final maps produced by both scenarios

respectively. It can be seen in Figure 5.11(a) that the single robot had accumulated

too much error by the time it entered the building and caused the mapping of the

building to be filled with inconsistencies. An example of an inconsistency in an

occupancy grid map is when a wall or corner appears multiple times in the same

map. Conversely, in Figure 5.12(a) the mapping of the building appears to be more

consistent with what was expected. The exponential growth in the average normalized

cumulative error is typical in SLAM applications where there is no available sensor

that can give a global reference frame reading, i.e. a GPS type sensor. Which is why
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Figure 5.9: Trajectories used in comparing a single robot mapping compared to
multi-robot mapping

there is ongoing research in attempting to reduce this curve as much as possible.
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Figure 5.11: Sample maps produced during a single robot run
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Conclusions

Increasingly, larger environments are required to be mapped and it can be too danger-

ous or lengthy for humans to accomplish tasks using traditional surveying techniques.

Using Multi-Robot SLAM is a suitable solution, but there are still problems that need

to be solved. One of these problems is the error incurred when merging maps between

two robots.

The goal of the research described in this thesis is to develop a method to reduce

the amount of incurred error when merging maps. The difficulty was to determine

when to merge the individual robot maps. This goal was achieved and validated, as

shown in section 5.2, using simulated data. Using the proposed approach described in

chapter 4, reinforcement learning was used to determine which conditions the robot

should merge maps to reduce the amount of incurred error, as opposed to merging

immediately upon observing another robot. In order to further reduce this incurred

error, more accurate means of determining a transformation matrix were proposed.

These methods could then be used in conjunction with the method outlined in this

thesis to determine when best to merge.

In practice, the resulting policy from this thesis could not be directly applied

to every experimental setup. Instead, this proposed approach would need to be
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performed using the robot and sensor parameters that matched the available robot

setup. Once trained in the desired type of environment, the resulting policy could

then be validated using simulated data. The validated policy could then be used in

real world experiments.

Reinforcement Learning is shown to be capable of providing a solution to the sub-

problem of map merging in the overall SLAM problem. There may be other decision

type problems that could be solved using Reinforcement Learning or other machine

learning algorithms, such as the determining of particle filter mapping parameters or

determination of which sensors should receive more weight depending on the environ-

ment.

6.1 Summary of Contributions

In this thesis reinforcement learning was used to determine when a mobile robot

should merge maps with another in order to reduce the amount of error. This method

was developed and validated using simulated datasets and can be adapted with differ-

ent parameters for other Multi-Robot scenarios. In summary, this thesis has provided

advancements to this area of research through the following contributions:

1. Development of simulated dataset generator: existing simulated dataset gener-

ators had fixed parameters sensors, did not have facilities to specify a desired

robot trajectory, and environments needed to be specified in the form of pixel

images. Therefore, it was necessary to design and develop one for this the-

sis. In the developed simulator, environments can be simulated using lines to

represent indoor walls and circles to represent outdoor features. Sensors and

mobile robot parameters are completely customizable. Finally, desired trajec-

tories can be constructed as a series of waypoints which can then be tracked



CHAPTER 6. CONCLUSIONS 88

using a controller.

2. Extension of MRPT C++ library: the MRPT library contained some of the

necessary mapping algorithms, but it needed to be extended in some areas to

meet the needs of this research. The additional requirements necessary were:

a simple two dimensional feature map, map merging of both map types, and

observation of other robots. The processing of particle filters was increased

through the parallelization of “for loops” that performed the individual particle

calculations. MRPT was never designed to be used for Multi-Robot SLAM

or the dual representation SLAM from [1] and now has some capabilities to

perform this type of SLAM research.

3. Reproduction and validation of dual representation SLAM by Wurm et al. [1]:

in order to successfully map indoor and outdoor environments this work needed

to be reproduced and validated. Wurm’s training method was reproduced and

the resulting policy was used in the MRPT mapping algorithms implemented

for this thesis.

4. Using reinforcement learning in Multi-Robot SLAM: as previously stated, the

scope of this thesis was to show that reinforcement learning could be effectively

used in Multi-Robot SLAM. This was done by training a policy that could

determine in which state and which transformation matrix should be used in

order to reduce the amount of incurred error from merging maps from two

different robots.
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6.2 Future Work

Due to time constraints, certain trials or extensions of this work could not be achieved

or properly investigated. Some of these are listed here:

1. Real world experimentation: to further validate of the results shown in this the-

sis real world experimentation is required. Experimental mobile robots equipped

with the necessary sensors would have to be assembled. These robots would

also need synchronized data logging software. Finally, a relatively flat and large

enough indoor and outdoor area capable of being explored by mobile robots

would need to be designed.

2. More Reinforcement States: a higher number of reinforcement learning states

causes the necessary training time to increase. Therefore, for this thesis a

balance was reached so that every training trial was run for a couple of days.

For better and more accurate results, more states could be introduced with a

more powerful computer being used.

3. Multiple different training environments: again as a means of increasing the

quality of the trained policy, more varied environments could be introduced

into the reinforcement learning training. Also, multiple dataset runs for each

new environment could be generated. The end result would be a far more

diversified training environment.

4. Testing the method with more than two robots: a natural extension would be

to investigate how this algorithm performs in a scenario with even more mobile

robots. As previously stated, the resulting decision policy is decentralized which

means it should be easily extendable to a growing population of robots. There-

fore, using existing developed environments datasets with three robots could be
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generated and then processed using the trained policy from this thesis.

There still remains plenty of problems requiring solutions in mobile robotics and

its subsection of SLAM and thus further research is required. However, the benefits of

possible applications of these solutions are numerous. Fleets of robotically controlled

vehicles could explore or simply navigate through cities and share their local maps

using the algorithm derived in this thesis.
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The derivation of the kinematic model is based on the following diagram:

Y

X

l

θ

ICC

R

y

x

where R is the instantaneous curvature radius of the robot trajectory with relation

to the center of the axis.

Let υR and υL be the linear velocities of the right and left wheel respectively.

Analytically, these linear velocities can be determined as

υR =

(
R +

l

2

)
ω (A.1a)

υL =

(
R− l

2

)
ω (A.1b)

solving for ω yields

ω =
υR

R + l
2

(A.2a)

ω =
υL

R− l
2

(A.2b)
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and setting ω = ω leads to

υR

R + l
2

=
υL

R− l
2

⇒ υR

(
R− l

2

)
= υL

(
R +

l

2

)
(A.3)

R (υR − υL) =
l

2
(υR + υL) (A.4)

∴ R =
l

2

υR + υL
υR − υL

(A.5)

substituting (A.5) back into (A.2) yields

ω =
υR(

l

2

υR + υL
υR − υL

)
+
l

2

=
υR

l

2

(
υR + υL
υR − υL

+
υR − υL
υR − υL

) (A.6)

∴ ω =
1

l
υR −

1

l
υL (A.7)

Finally, subsituting (A.5) and (A.7) into υ = Rω yields

υ =
1

2
(υR + υL) (A.8)

The kinematic equations for the differential drive robot are

q̇ =



ẋ

ẏ

θ̇


=



υ cos θ

υ sin θ

ω


=



(
1
2

(υR + υL)
)

cos θ

(
1
2

(υR + υL)
)

sin θ

1

l
υR −

1

l
υL


(A.9)

∴ q̇ =



1
2

cos θ 1
2

cos θ

1
2

sin θ 1
2

sin θ

1

l
−1

l



υR
υL

 (A.10)
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The derivation of the conversion of unicycle input signals to differential drive

inputs (3.15) begins by setting up (A.8) and (A.7) into a matrix form

υ
ω

 =


1
l
−1

l

1
2

1
2


υR
υL

 (A.11)

Now taking the inverse of (A.11) will yield the desired transformation of inputs

υR
υL

 =


1

l
−1

l

1

2

1

2


−1 υ

ω

 =

1
l

2

1 − l
2


υ
ω

 (A.12)

It is now possible to design a controller assuming that the mobile robot is a

unicycle. In order to use exact feedback linearization, the current system dynamics

require the introduction of additional states. In any trajectory tracking problem, it

is desired that z − zd → 0 at t→∞. Where z = (x, y)T . Finding ż yields

ż =

ẋ
ẏ

 =

υ cos θ

υ sin θ

 =

cos θ 0

sin θ 0


υ
ω

 (A.13)

which is not invertible, thus another time derivative is taken

z̈ =

ẍ
ÿ

 = υ̇

cos θ

sin θ

+ υθ̇

− sin θ

cos θ

 =

cos θ −υ sin θ

sin θ υ cos θ


υ̇
ω

 (A.14)

where as long as υ 6= 0, (A.14) can be inverted. This will lead to the inclusion of

new ‘state’ that is actually one of the unicycle inputs. First, let η := z̈ and find the
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inverse equation of (A.14)

υ̇
ω
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 cos θ sin θ
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υ


η1
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 (A.15)

Finally this can be put into the unicycle model yielding

ẋ = υ cos θ (A.16a)

ẏ = υ sin θ (A.16b)

θ̇ = ω = −sin θ

υ
η1 +

cos θ

υ
η2 (A.16c)

υ̇ = η1 cos θ + η2 sin θ (A.16d)

Now by picking new coordinates (ζ1, ζ2, ζ3, ζ4)
T := (x, y, ẋ, ẏ)T , the following linear

system can be achieved:
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Now that the system has been linearized, a standard linear controller can be

designed.



Appendix B

MRPT Code Modifications

99



APPENDIX B. MRPT CODE MODIFICATIONS 100

B.1 C2DFeature Header File

#include <necessary_header_files.h>

namespace mrpt
{
namespace slam
{

class C2DFeatureMap;

class MAPS_IMPEXP C2DFeature : public CPointPDF
{
public:

typedef int64_t TFeatureID;

CPointPDFGaussian m_locationGauss;

TFeatureID m_ID;

C2DFeature();
virtual ˜C2DFeature();

/** Returns an estimate of the point, (the mean, or mathematical
expectation of the PDF).

*/
void getMean(CPoint3D &mean_point) const;

/** Returns an estimate of the point covariance matrix
(3x3 cov matrix) and the mean, both at once.

*/
void getCovarianceAndMean(CMatrixDouble33 &cov,CPoint3D &mean_point) const;

}; // End of class definition
} // End of namespace
} // End of namespace
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B.2 C2DFeatureMap Header File

#include <necessary_header_files.h>

namespace mrpt
{
namespace slam
{

class CObservationBearingRange;

class MAPS_IMPEXP C2DFeatureMap : public CMetricMap
{
public:

typedef std::deque<C2DFeature> TSequenceFeatures;

protected:
/** The individual beacons */
TSequenceFeatures m_features;

virtual bool internal_insertObservation(
const CObservation *obs, const CPose3D *robotPose = NULL
);

public:
C2DFeatureMap();

void push_back(const C2DFeature& m) {
m_features.push_back( m );

}

/** Computes the (logarithmic) likelihood that a given observation
was taken from a given pose in this map.

*/
double computeObservationLikelihood(

const CObservation *obs, const CPose3D &takenFrom
);

C2DFeature * getFeatureByID( C2DFeature::TFeatureID id );

void mergeWithOtherMap(
C2DFeatureMap *other, CPose2D trans
);

}; // End of class def.
} // End of namespace
} // End of namespace



APPENDIX B. MRPT CODE MODIFICATIONS 102

B.3 C2DFeatureMap Map Merging Code

void C2DFeatureMap::mergeWithOtherMap(
C2DFeatureMap *other,
CPose2D trans
)

{
// Transformation values
double cosine = cos(trans[2]); double sine = sin(trans[2]);
double tx = trans[0]; double ty = trans[1];

CMatrixDouble22 matT;
matT(0,0) = cosine; matT(0,1) = -sine;
matT(1,0) = sine; matT(1,1) = cosine;
C2DFeature* featMatch; double xT, yT;

for( iterator feat=other->m_features.begin();
feat!=other->m_features.end(); feat++ )

{
// Transform mean
xT = feat->m_locationGauss.mean.x()*cosine -

feat->m_locationGauss.mean.y()*sine + tx;
yT = feat->m_locationGauss.mean.x()*sine +

feat->m_locationGauss.mean.y()*cosine + ty;

CMatrixDouble22 curCov,transCov;
curCov(0,0) = feat->m_locationGauss.cov(0,0);
curCov(0,1) = feat->m_locationGauss.cov(0,1);
curCov(1,0) = feat->m_locationGauss.cov(1,0);
curCov(1,1) = feat->m_locationGauss.cov(1,1);
matT.multiply_HtCH(curCov,transCov,true,false);
transCov.force_symmetry();

featMatch = getFeatureByID(feat->m_ID);

if( featMatch ) // if the feature already exists
{

CMatrixDouble22 curCov, tempMat;
CMatrixDouble21 mu_incr, diff;

curCov(0,0) = featMatch->m_locationGauss.cov(0,0);
curCov(0,1) = featMatch->m_locationGauss.cov(0,1);
curCov(1,0) = featMatch->m_locationGauss.cov(1,0);
curCov(1,1) = featMatch->m_locationGauss.cov(1,1);
diff(0,0) = xT-featMatch->m_locationGauss.mean.x();
diff(1,0) = yT-featMatch->m_locationGauss.mean.y();
mrpt::math::detail::invMatrix(curCov+transCov,tempMat);
tempMat = curCov*tempMat;

curCov -= tempMat*curCov;
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featMatch->m_locationGauss.cov(0,0) = curCov(0,0);
featMatch->m_locationGauss.cov(0,1) = curCov(0,1);
featMatch->m_locationGauss.cov(1,0) = curCov(1,0);
featMatch->m_locationGauss.cov(1,1) = curCov(1,1);

mu_incr = tempMat*diff;
featMatch->m_locationGauss.mean.x_incr( mu_incr(0,0) );
featMatch->m_locationGauss.mean.y_incr( mu_incr(1,0) );

}
else
{

C2DFeature newFeat;
newFeat.m_ID = feat->m_ID;

newFeat.m_locationGauss.mean = CPoint3D(xT, yT);

newFeat.m_locationGauss.cov(0,0) = transCov(0,0);
newFeat.m_locationGauss.cov(0,1) = transCov(0,1);
newFeat.m_locationGauss.cov(1,0) = transCov(1,0);
newFeat.m_locationGauss.cov(1,1) = transCov(1,1);

// and insert it:
m_features.push_back( newFeat );

}
}

}
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B.4 COccupancyGridMap2D Map Merging Code

void COccupancyGridMap2D::mergeWithOtherMap(
COccupancyGridMap2D *other,
CPose2D trans
)

{
// Transformation values
double cosine = cos(trans[2]); double sine = sin(trans[2]);
double tx = trans[0]; double ty = trans[1];

{ // First need to resize grid appropriately
double P1Tx = other->x_min*cosine-other->y_min*sine+tx;
double P1Ty = other->x_min*sine+other->y_min*cosine+ty;
double P2Tx = other->x_max*cosine-other->y_min*sine+tx;
double P2Ty = other->x_max*sine+other->y_min*cosine+ty;
double P3Tx = other->x_min*cosine-other->y_max*sine+tx;
double P3Ty = other->x_min*sine+other->y_max*cosine+ty;
double P4Tx = other->x_max*cosine-other->y_max*sine+tx;
double P4Ty = other->x_max*sine+other->y_max*cosine+ty;
double rXmin = min<double>(min(min(P1Tx,P2Tx),min(P3Tx,P4Tx)),this->x_min);
double rYmin = min<double>(min(min(P1Ty,P2Ty),min(P3Ty,P4Ty)),this->y_min);
double rXmax = max<double>(max(max(P1Tx,P2Tx),max(P3Tx,P4Tx)),this->x_max);
double rYmax = max<double>(max(max(P1Ty,P2Ty),max(P3Ty,P4Ty)),this->y_max);
this->resizeGrid(rXmin,rXmax,rYmin,rYmax);

}

int xT, yT, xi, yi;
double x, y;
int temp;
// Now simply need to go through each cell in the other grid, transform it
for( yi=0, y=other->y_min; yi<static_cast<int>(other->size_y);

yi++, y+=other->resolution )
{

for( xi=0, x=other->x_min; xi<static_cast<int>(other->size_x);
xi++,x+=other->resolution )

{
// check value to ensure it’s not zero
if( other->map[xi+yi*other->size_x] != 0.0 )
{

xT = static_cast<int>((x*cosine-y*sine+tx-x_min)/resolution-0.5f );
yT = static_cast<int>((x*sine+y*cosine+ty-y_min)/resolution-0.5f );

temp = map[xT+yT*size_x] + other->map[xi+yi*other->size_x];
map[xT+yT*size_x] =
max(min(OCCGRID_CELLTYPE_MAX,temp),OCCGRID_CELLTYPE_MIN);

}
}

}
}
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B.5 CObservationOtherRobot Header File

#include <necessary_header_files.h>

namespace mrpt
{
namespace slam
{

class OBS_IMPEXP CObservationOtherRobot : public CObservation
{
public:
CObservationOtherRobot( );

float minSensorDistance, maxSensorDistance; // Ranges, in meters
float fieldOfView_yaw; //The "field-of-view" of the sensor, in radians
float fieldOfView_pitch; //The "field-of-view" of the sensor, in radians

// The position of the sensor on the robot.
CPose3D sensorLocationOnRobot;

struct OBS_IMPEXP TMeasurement
{

float range; // The sensed landmark distance, in meters.
float yaw,pitch; // The sensed landmark direction, in radians
int32_t robotID; // The ID of the sensed robot

};

typedef std::vector<TMeasurement> TMeasurementList;
TMeasurementList sensedData;

float sensor_std_range,sensor_std_yaw,sensor_std_pitch;

void getSensorPose( CPose3D &out_sensorPose ) const
{ out_sensorPose = sensorLocationOnRobot; }
void setSensorPose( const CPose3D &newSensorPose )
{ sensorLocationOnRobot = newSensorPose; }

}; // End of class def.
} // End of namespace
} // End of namespace
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C.1 Config File

//=======================================================
// Section: [MappingApplication]
// Use: Here comes global parameters for the app.
//=======================================================

// The directory where the log files will be saved
// (left in blank if no log is required)
logOutput_dir=
LOG_FREQUENCY=1 // The frequency of log files generation:
GENERATE_LOG_JOINT_H=0
GENERATE_LOG_INFO=0
SAVE_MAP_IMAGES=1
SAVE_3D_SCENE=0
SAVE_POSE_LOG=0
SAVE_ENOSE_READINGS=0
CAMERA_3DSCENE_FOLLOWS_ROBOT=0
SHOW_PROGRESS_IN_WINDOW=0

// The distance threshold for inserting observations in the map (meters)
insertionLinDistance=0
// The distance threshold for inserting observations in the map (degrees)
insertionAngDistance_deg=0

// -----------------------------------------------------------------
// The Particle Filter algorithm:
// 0: pfStandardProposal
// 1: pfAuxiliaryPFStandard
// 2: pfOptimalProposal *** (ICP-based (Grisetti’s method),...)
// 3: pfAuxiliaryPFOptimal *** (Optimal SAMPLING)
// -----------------------------------------------------------------
PF_algorithm = 2
adaptiveSampleSize = 0 // 0: Fixed # of particles, 1: KLD adaptive

// -----------------------------------------------------------------
// The Particle Filter Resampling method:
// 0: prMultinomial
// 1: prResidual
// 2: prStratified
// 3: prSystematic
// -----------------------------------------------------------------
resamplingMethod=0

sampleSize=25 // Sample size (for fixed number)
BETA=0.50 // Resampling ESS threshold
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// ====================================================
// MULTIMETRIC MAP CONFIGURATION
// ====================================================
// Creation of maps:
occupancyGrid_count=1
gasGrid_count=0
landmarksMap_count=0
beaconMap_count=0
pointsMap_count=0
2dfeatureMap_count=1

// Selection of map for likelihood:
// (fuseAll=-1,occGrid=0, points=1,landmarks=2,gasGrid=3)
likelihoodMapSelection=-1

// ====================================================
// CHybridMetricMapPDF::TPredictionParams
// ====================================================
powFactor=1 // A "power factor" for updating weights
pfAuxFilterOptimal_MaximumSearchSamples=250 // For PF algorithm=3

// -----------------------------------------------------------------
// pfOptimalProposal_mapSelection
// Only for PF algorithm=2 (Exact "pfOptimalProposal")
// Select the map on which to calculate the optimal
// proposal distribution. Values:
// 0: Gridmap -> Uses Scan matching-based approximation
// 1: Landmarks -> Uses matching to approximate optimal
// 2: Beacons -> Used for exact optimal proposal in RO-SLAM
// -----------------------------------------------------------------
pfOptimalProposal_mapSelection=-1
bDualSlam=1
verbose=0

// ====================================================
// MULTIMETRIC MAP: BeaconMap #00
// ====================================================
// Creation Options for BeaconMap 00:
[MappingApplication_beaconMap_00_insertOpts]
disableSaveAs3DObject=0
instertOnlyOneObsv=0

// Likelihood Options for BeaconMap 00:
[MappingApplication_beaconMap_00_likelihoodOpts]
rangeStd=0.1
bearingStd=0.1
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// ====================================================
// MULTIMETRIC MAP: OccGrid #00
// ====================================================
// Creation Options for OccupancyGridMap 00:
[MappingApplication_occupancyGrid_00_creationOpts]
resolution=0.25
disableSaveAs3DObject=0

// Insertion Options for OccupancyGridMap 00:
[MappingApplication_occupancyGrid_00_insertOpts]
mapAltitude = 0
useMapAltitude = 0
maxOccupancyUpdateCertainty = 0.51
considerInvalidRangesAsFreeSpace = 1
minLaserScanNoiseStd = 0.001
wideningBeamsWithDistance = 1

// Likelihood Options for OccupancyGridMap 00:
[MappingApplication_occupancyGrid_00_likelihoodOpts]
// 0=MI, 1=Beam Model, 2=RSLC, 3=Cells Difs, 4=LF_Trun, 5=LF_II
likelihoodMethod=4

LF_decimation=5
LF_stdHit=0.20
LF_maxCorrsDistance=0.30
LF_zHit=0.999
LF_zRandom=0.001
LF_alternateAverageMethod=0

enableLikelihoodCache=1


	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Nomenclature
	 1 Introduction
	1.1 Problem Statement
	1.2 Thesis Contributions
	1.3 Organization of Thesis

	 2 Background and Literature Review
	2.1 Particle Filters
	2.2 Rao-Blackwellized Particle Filter Mapping
	2.2.1 Different Map Types
	2.2.2 FastSLAM

	2.3 Reinforcement Learning
	2.3.1 Learning in Mapping

	2.4 Map Merging

	 3 Software Resources Development
	3.1 Mobile Robot Data Simulation Engine
	3.1.1 Creation of Environments
	3.1.2 Simulated Sensors
	3.1.3 Trajectory Tracking

	3.2 MRPT modifications
	3.2.1 2D Feature Map Type
	3.2.2 Map Merging
	3.2.3 Other Robot Observation Type
	3.2.4 DataSet to Rawlog Converter
	3.2.5 Particle Filter Modifications


	 4 Proposed Approach
	4.1 Calculation of Transformation Matrix
	4.1.1 Improving Transformation Matrix Estimate

	4.2 Model Selection
	4.2.1 Neff Criterion
	4.2.2 Mutual Observation Likelihood Criterion
	4.2.3 Reinforcement Learning for Model Selection


	 5 Simulations
	5.1 Results
	5.2 Validation
	5.3 Single-Robot vs Multi-Robot SLAM

	 6 Conclusions
	6.1 Summary of Contributions
	6.2 Future Work

	List of References
	Appendix A Derivation of Differential Drive Robot Controller
	Appendix B MRPT Code Modifications
	B.1 C2DFeature Header File
	B.2 C2DFeatureMap Header File
	B.3 C2DFeatureMap Map Merging Code
	B.4 COccupancyGridMap2D Map Merging Code
	B.5 CObservationOtherRobot Header File

	Appendix C MRPT Particle Filter Parameters
	C.1 Config File


