
Design and Implementation of Shortest Path Bridging

For Network Simulator 3

by

Yoonsoon chang

A thesis submitted to the Faculty of Graduate and Postdoctoral

Affairs in partial fulfillment of the requirements for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Carleton University

Ottawa, Ontario

© 2013, Yoonsoon Chang

 ii

Abstract

Ethernet has evolved to support various network topologies while maintaining its

backward compatibility and simplicity. Virtualization of the provider’s Ethernet

network enables support for fine-grained services for different users. Spanning Tree

Protocol (STP) meets these properties but, still could benefit from improvements on

utilization and convergence time. Shortest Path Bridging (SPB, IEEE 802.1aq) has

been developed to overcome these shortcomings of STP. In this thesis report I present

the design of an SPB simulator for NS-3 (open source network simulator) and results

of simulations conducted using this simulator. The modified version of Floyd-

Warshall algorithm is used to compute routes. Multicast and unicast communications

are simulated in SPBM (SPB Mac-in-Mac) mode to show the simulator’s capability.

The results prove that the communication maintains the crucial property of SPB;

congruency between multicast and unicast, and symmetry between forward and

backward paths. The traffic route selected among candidate paths with the same cost

is in accordance with the SPB standard.

 iii

Acknowledgements

For people who always support me.

Yoonsoon Chang

March 2013

 iv

Table of Contents

Abstract ... ii

Acknowledgements ... iii

Table of Contents .. iv

List of Tables ... vi

List of Algorithms ... vi

List of Figures ... vii

List of Acronyms ... ix

Chapter 1: Introduction .. 1

1.1 Thesis motivation ... 2

1.2 Contributions of the thesis .. 2

1.3 Thesis Outline ... 2

Chapter 2: Literature Review .. 4

2.1 Problems of legacy Ethernet protocols ... 4

2.2 Resolving the problems of legacy Ethernet .. 6

2.3 Virtualization and Fine-grained Services of Ethernet .. 7

2.4 Network Simulator NS-2 and NS-3 .. 8

2.5 Network topology of NS-3 ... 10

Chapter 3: Architecture of the Simulation ... 12

3.1 Architecture of SPB node ... 12

3.2 Actions of a SPB node .. 14

Chapter 4: Shortest Path Bridging Control Plane ... 16

4.1 IS-IS for Control Plane protocol ... 16

4.2 Extension of IS-IS for SPB ... 17

 v

4.3 Control Plane Software Architecture .. 21

4.4 Implementation of IS-IS extension for SPB ... 23

4.5 Link State Database (LSDB) for SPB .. 29

4.6 Routing Algorithm Based on LSDB ... 30

4.7 Algorithms for Computing Routes and Populating Forwarding Database 31

Chapter 5: Shortest Path Bridging Data Plane .. 35

5.1 SPBM Unicast Data Path .. 37

5.2 SPBM Multicast Data Path ... 37

5.3 SPBM Protocol Handler ... 39

Chapter 6: Simulation Setup and Results ... 41

6.1 Simulator Helper class .. 41

6.2 Simulation outputs .. 42

6.3 Setting Up Simulation .. 44

6.4 Simulation Results .. 47

Chapter 7 Conclusion .. 51

Bibliography ... 54

 vi

List of Tables

TABLE 1. NS-3 Models .. 11

TABLE 2. ECT-Algorithm Masking Value (Hex) .. 35

List of Algorithms

Algorithm 1. Modified Floyd-Warshall All-pairs Shortest Path 32

Algorithm 2. Populating SPB Nodes ... 34

file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485622
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485623
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485624
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485625

 vii

List of Figures

Figure 1. STP Problems ... 6

Figure 2. En/Decapsulation at UNI port .. 8

Figure 3. Nodes with Internet Stack and CSMA Channel in NS-3 11

Figure 4. Nodes with SPB Stack and SPB Channel .. 12

Figure 5. SPB instance sub-TLV [17].. 19

Figure 6. Proposed Control Plane Architecture of IS-IS extensions for SPB 21

Figure 7. SpbInterface Class Diagram ... 23

Figure 8. SpbHelloExtension Class Diagram .. 24

Figure 9. Acquiring Neighbor’s Bridge ID .. 26

Figure 10. SpbInstanceSub and VIDTuple Class Diagram ... 27

Figure 11. SpbLinkMetrics Class Diagram ... 28

Figure 12. SpbmServiceIdentifier Class Diagram ... 28

Figure 13. SpbLinkStateDataBase Class Diagram .. 29

Figure 14. SPB Routing Architecture .. 30

Figure 15. Shortest Path Tree Rooted at Node 0 when ECT-Algorithm 0 is used. 36

Figure 16. Multicast B-DA Bit Format .. 38

Figure 17. Receive and Send ... 40

Figure 18. SpbHelper Class Diagram .. 41

Figure 19. Experimental Topology .. 44

Figure 20. Topology in Script .. 45

Figure 21. Grouping in Script .. 46

Figure 22. Initial and Final Matrix When ECT is 1 ... 48

file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485673
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485674
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485675
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485676
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485677
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485678
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485679
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485680
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485681
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485682
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485683
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485684
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485685
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485686
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485687
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485688
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485689
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485690
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485691
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485692
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485693
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485694

 viii

Figure 23. FDBs when ECT is 1 .. 49

Figure 24. Multicast When ECT 1 ... 50

Figure 25. Multicast When ECT 2 ... 50

file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485695
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485696
file://antares.sce.carleton.ca/ychang/Thesis/Thesis_Master.docx%23_Toc351485697

 ix

List of Acronyms

Acronyms Definition

B-DA Backbone Destination Address

BEB Backbone Edge Bridge

B-SA Backbone Source Address

B-VID Backbone VLAN ID

ECT-Algorithm Equal Cost Tie-breaking Algorithm

IIH IS-IS Hello protocol

I-SID I-component Service Instance Identifier

IS-IS Intermediate System to Intermediate System

LAN Local Area Network

LSDB Link State Database

NIC Network Interface Card

OAM Operations, Administration, and Maintenance

PDU Protocol Data Unit

SPB Shortest Path Bridging

SPBM SPB Mac-in-Mac

SPBV SPB Q-in-Q

STP Spanning Tree Protocol

TLV Type Length Value

UNI User Network Interface

 1

Chapter 1: Introduction

Since Ethernet was released to the market of local area network (LANs), it has been

successfully and widely deployed. The main strengths of Ethernet are simplicity and

backward compatibility. The Plug-and-play feature of Ethernet simplifies network

configuration. This feature is desirable especially in cases where user locations are

dynamically decided. Backward compatibility makes Ethernet switches more

attractive compared to other competing LAN technologies [1].

In cloud data centers it is desirable to minimize network configuration while

supporting large numbers of switches. Virtual machine instances in a data center

should be located dynamically in terms of time and space. A cloud data center consists

of large numbers of switches and servers. Cost efficiency of switches plays major role

in constructing a cloud data center. As seen above, Ethernet fulfills these requirements

sufficiently [2].

Since networks have to evolved to demand more functionality, Ethernet has

evolved to support virtualization. First, Virtual LAN(VLAN) emerged to support

Ethernet virtualization. Its frame contains VLAN tags [3]. Second, Ethernet supports

service identification for individual users. The traffic for each user is assigned the

unique number in the provider network. This identifier called I-SID [4] enables a

provider to offer a fine-grained service to individual users. Finally, Ethernet has

evolved to support more sophisticated routing algorithms. Ethernet at its conception

only supported broadcast communication through shared medium. Spanning Tree

Protocol (STP) [5] introduced a new control scheme to support redundant paths in

Ethernet domain. However, STP still does not fully utilize all links in a network

 2

because of loop formation. Shortest Path Bridging (SPB) [6] addresses the

shortcomings of STP through a sophisticated control scheme and routing algorithm.

1.1 Thesis motivation

Though Shortest Path Bridging (SPB) is emerging, there is currently no open source

SPB network simulator. The absence of an open source SPB simulator is a major

obstacle for many research institutions. First, Ethernet bridges running SPB protocol

are still not affordable. Second, constructing real life experimental network for

research prototyping requires major efforts relative to simulation. Thus, this thesis

proposes a SPB simulator on the open source, discrete event network simulator NS-3.

NS-3 is the successor of the previously popular open source simulator NS-2.

1.2 Contributions of the thesis

In order to develop the SPB simulator running on NS-3, research on SPB protocol and

NS-3 has been conducted. First, I analyzed the open source software module for

IPv4/OSPF network so as to design the software architecture for the SPB simulator.

Second, the IEEE and IETF SPB standard documents were reviewed. Third, the SPB

simulator was built on NS-3. Finally, I conducted experiments to validate the

simulator. Details of each step are described throughout this report.

1.3 Thesis Outline

The rest of this report is organized as follows. Chapter 2 reviews the literature

referenced by this report. This chapter explains history of Ethernet and LAN

 3

technology evolution. It describes why Shortest Path Bridging (SPB) has emerged.

The open source simulator NS-3 is also examined. Chapter 3 presents the software

architecture of SPB simulator. Chapter 4 describes the control plane of SPB and

implementation details about the control plane of the simulator. Chapter 5 explains the

data plane of SPB and implementation details. Chapter 6 demonstrates and examines

the method of conducting a SPB simulation using the developed simulator. This

chapter presents the analysis of the results of simulations. Chapter 7 draws

conclusions, and examines possible area for future work with the simulator.

 4

Chapter 2: Literature Review

Shortest Path Bridging (SPB) has been developed to overcome the limitations of

legacy Ethernet protocols while allowing the application of advanced networking

concepts on the Ethernet. As Ethernet expands its application from LAN to provider

networks, SPB also is designed to operate in large scale networks such as providers’

networks, back-haul networks, and metro Ethernet. This chapter reviews literature

related to SPB. First, this chapter explains the back ground of why SPB developed.

The problems and limitations of legacy Ethernet protocols are reviewed. Legacy

Ethernet protocols are the major Ethernet protocols currently deployed in real world

networks. This chapter does not explain about problems of older Ethernet protocol

developed in 90’s. Second, this chapter examines the advanced network techniques

adopted by SPB. Finally, NS-3, an open source network simulator, is introduced.

2.1 Problems of legacy Ethernet protocols

Shortest Path Bridging (SPB) addresses the problems of legacy Ethernet network.

There are problems in both control plane and data plane. In control plane, minimizing

convergence time after topology changes is a major challenge. In data plane,

inefficiency of link utilization is the main problem.

Switches in an Ethernet network share the same physical medium. The routing

system of an Ethernet network was still based on the flood-and-learning mechanism.

Massive amounts of frames flooding in the network may cause broadcast storms,

effectively melting down the network. To prevent broadcast storms while permitting

such a flood-and-learning mechanism, the Spanning Tree Protocol (STP) was

 5

designed [5]. Redundant paths in an STP network are disabled to suppress loop

formation. A spanning tree topology is activated in the network and the topology

appears as replica of the shared medium. The STP locates each end point on a

spanning tree hence is a single point of failure. This simple connectivity is not on the

optimal path between two end points. To guarantee the loop free status at all times,

any topology change shuts down all connectivity on the spanning tree until the new

tree has converged [7]. Though this shutdown period is no longer than a few seconds,

it is still not acceptable.

The main problem of STP’s data plane is inefficient use of links in a network.

First, to avoid loop formation in STP region, some of the links in a network must be

disconnected. Another problem is that traffic within an STP region does not follow the

optimal path frequently. Since an STP region is a replica of shared medium, it does

not provide a sophisticate routing mechanism. Figure 1 demonstrates the problems of

STP data plane. First, the link between switch B and D is disabled to prevent loop

formation. If the link is enabled, there is the loop A => B => D => A. Second, traffic

between switch C and E, does not follow the optimal path C B D E.

Shortest Path Bridging (SPB) resolves the main problems of STP’s data plane.

In an SPB region, all links can be used and none need be blocked for loop prevention

[1]. All switches in a SPB region share a global topology view. Based on the global

topology view, each switch configures itself to carry traffic on the optimal path.

 6

2.2 Resolving the problems of legacy Ethernet

As seen above, Spanning Tree Protocol (STP) does not construct optimal topologies

and its convergence time is unacceptable. Shortest Path Bridging (SPB) emerges to

overcome these shortcomings of STP [8]. SPB, as its name suggests, offers optimal

paths between each end point. The switches in the same SPB region share the same

topology information. In contrast to STP, SPB does not require topology information

exchanges through the flood-and-learn mechanism.

Switches in the Shortest Path Bridging (SPB) domain build Link State

Databases (LSDB) in which global topology information is stored. A LSDB is

periodically updated through Intermediate Systems to Intermediate Systems (IS-IS)

protocol [9]. A topology change also triggers LSDB updating. Since a SPB enabled

switch responds to the event of topology changes without a flood-and-learn process,

its convergence time is faster than Spanning Tree Protocol (STP).

All switches in a SPB region share the same topological information at a

LSDB in each one. Unlike STP, all links in a SPB network can be utilized. Thus, it is

possible to compute the optimal path in the given topology [7] [10].

Figure 1. STP Problems

 7

2.3 Virtualization and Fine-grained Services of Ethernet

Virtualization of an Ethernet network is dividing the network as multiple logical

domains without regard to physical topology of the network. This approach has

numerous benefits. First, it reduces a size of a broadcast domain. Second, it enhances

the security of the network by blocking unknown traffic. Third, it makes it possible to

direct traffics through pre-assigned routes. Virtualized Ethernet LANs are called

Virtual LANs (VLANs) [3]. VLAN inherits all these benefits from the virtualization.

In cloud network, where virtual machine instances are relocated dynamically,

minimizing the overhead from managing virtual machines locations is necessary.

VLAN can add, remove and relocate virtual machines using software configuration.

Therefore, VLAN techniques can be used to minimize overhead. Shortest Path

Bridging (SPB) adopts the VLAN concept so it has the same ability as VLAN. Each

frame in SPB networks has the slot for VLAN identifier. This slot is called Backbone

VLAN ID (B-VID).

SPB identifies a service instance. A service instance is a group of Backbone

Edge Bridges (BEBs) that support a given customer’s VLANs [11]. Every service

instance is assigned I-component Service Instance Identifier (I-SID). I-SID came from

Provider Backbone Bridge (PBB) [4], IEEE 802.1ah, frame header as well as B-VID.

Physical or logical User Network Interface (UNI) ports are assigned I-SID. UNI ports

are at BEBs and they are facing customer’s networks. BEBs are located at the border

between a SPB network and a customer network as shown in Figure 2. For example, a

customer frame with a VLAN identifier reaches to a UNI port at a BEB. The frame

passes through the UNI port and arrives at I-component which encapsulates the frame

 8

with an I-SID matched with the customer VLAN identifier as well as Backbone

Source Address (B-SA) and Backbone Destination Address (B-DA). This

encapsulated frame travels across a SPB network and reaches another BEB with the

B-DA. Finally, it is decapsulated at a I-component linked to a UNI port.

.

2.4 Network Simulator NS-2 and NS-3

NS-3 [12] is a discrete-event network simulator. It is an open source project and

successor of the previously most popular open source network simulator NS-2 [13].

NS-3 consists of core modules and additional libraries of simulation models. Core

modules are event scheduler, tracing system, attribute system, core network models

Figure 2. En/Decapsulation at UNI port

 9

(such as node, device, channel and application). Additional libraries come from NS-3

community. These libraries are used to support new protocols or hardware models.

With NS-3, researchers can develop experimental protocols and simulate them

on arbitrary simulation topologies. Simulation results can be collected as text files.

NS-3 supports a file format used in many networking tools like TcpDump and

Wireshark
1
. Since its source code is open, researchers can develop a tracing system

generating specific file format used to draw diagram, graph and animations. Its design

concept and goals are referenced in [14] [15].

NS-2 consists of two different programming language domains. A script,

which is in charge of building simulation topology and configuring simulation

parameter in NS-2 is written in TCL/OTCL languages [16]. The core of NS-2,

conducting simulation and generating results, is written in C++. These script and core

domains communicate with each other by binding their class and variables. Therefore,

depth of NS-2 call stack is usually very deep. The depth of call stacks and two

different language domains make debugging difficult. When NS-2 was released,

building an executable file took a long time. Simulation scripts change frequently so

NS-2 separated script domain from the core. Therefore, a change in a script does not

require building whole binary file.

 NS-3 also supports python and C++ binding but it can run script written in

C++. In contrast to when NS-2 was released, current computing hardware is much

1
 TcpDump and WireShark : packet analyzers. It allows the user to intercept and display TCP/IP and

other packets being transmitted or received over a network to which the computer is attached.

http://en.wikipedia.org/wiki/Tcpdump .

http://en.wikipedia.org/wiki/Tcpdump

 10

faster than the past. So NS-3 does not need to follow NS-2 architecture any more. In

NS-3, a script is main function of executable file and core parts are linkable libraries

to the executable file. NS-3 supports both static and dynamic linking.

2.5 Network topology of NS-3

In the real world, a computer network consists of hosts and links. NS-3 offers

software simulation models of hosts and links. The model of a host in NS-3 is called

node and its corresponding C++ class is “Node”. A link is represented as the

“Channel” class in NS-3 simulation.

Since a host in the real world consists of several components, and likewise a

node in NS-3 has several components. A host, which can be a server or a router, has

software parts and hardware parts. A network interface card (NIC) is an interface

between a host and a link. A frame or packet comes in or goes out of NIC is managed

by software protocol handlers. These protocol handlers also manage data from upper

layers and user applications.

In NS-3, a node is abstraction of a host in the real world, a just like a real

world node, a NS-3 node also has the models of NIC, protocol handlers and

application code. The NIC model of NS-3 is “NetDevice” class. NS-3 offers IPv4 and

IPv6 protocol stacks. These stacks interact with TCP/UDP socket layers. A user

application model of NS-3 is “Application” class.

Figure 4 demonstrates how NS-3 models are combined. The nodes in figure 4

have OnOffApplication and Sink classes as an application model. Their protocol

stacks consist of UDP/IP and ARP classes with respect to transport and network layers

 11

models. CsmaNetDevice and CsmaChannel classes are selected as their link and

physical layer models respectively.

Figure 3. Nodes with Internet Stack and CSMA Channel in NS-3

TABLE 1. NS-3 Models

 12

Chapter 3: Architecture of the Simulation

3.1 Architecture of SPB node

Figure 5 presents our architecture of SPB nodes. An SPB node models the bridge

capable of running the SPB protocol. Channel is the model of a link. SpbRouting and

SpbLinkStateDataBase are singleton objects shared by all SPB nodes. In the real

world, an SPB switch may have its own SPB link state database. A link state database

in a SPB node is synchronized with other databases installed in other nodes unless

there is a miss-synchronization. Therefore, in most cases link state databases in the

same SPB domain are identical. Current simulation design does not consider mis-

synchronization because the objective of our design is to offer a base SPB model for

future extension. In contrast to a normal Internet node, SPB node’s protocol handler

communicates with SpbNetDevice directly since that SPB is a layer 2 protocol. The

following is the description of each module.

Figure 4. Nodes with SPB Stack and SPB Channel

 13

 SpbLinkStateDataBase: This is the hash table where all references to each

SpbInterface are saved. Its key is a nodal B-MAC address which identifies a

node. Therefore, a query with a nodal B-MAC returns the SpbInterface on the

node. This is a singleton object which has only one instance in the simulator.

It is a global database shared by every node in the simulator.

In a real world situation, a SPB enabled switch has its own Link State

Database (LSDB) and the LSDB is synchronized with other LSDBs installed

in other switches.

 SpbInterface: This is the interface to the control plane module for a node. It

offers APIs for accessing Intermediate System to Intermediate System (IS-IS)

sub-TLVs for SPB. Through this module, we can set or get sub-TLV’s values

and manage the sub-TLVs. For example, we can assign an I-SID on a node in

order to register the node in the specific group represented by the I-SID.

In a real world situation each SPB switch (represented by a node in

simulation) constructs IS-IS sub-TLVs and exchanges the digests
2
 of them

with neighboring switches. After exchanging the digests, a node in a SPB

network can build LSDB.

 SpbApp: The model of a packet source and sink. It generates a packet and

forwards it to SpbProtocolHandler to send a packet to other nodes. It also

consumes the packets whose destination is matched by the node on which it

is installed.

2
 IS-IS exchanges a summary of information like node identifiers and link costs

 14

 SpbProtocolHandler: This module extracts the SPB headers of received

frames from SpbNetDevice. It queries the forwarding (filtering) database

(FDB) of the node to select the proper output ports.

 SpbNetDevice: The software/hardware model of the network driver of SPB

and the input/output interface of a frame to/from outside of the node. This is

the same as output port of a bridge. It is inherited from NS-3 base class Net-

Device. It encapsulates the packet received from layer above the current

layer. When it receives a frame from the SpbChannel, it forwards the frame

to SpbProtocolHandler.

 SpbChannel: The model of a SPB link. It has two references of

SpbNetDevice as endpoints of the link. The weight of the link is user

configured.

 SpbForwardingDB: The model of a forwarding database of the SPB enabled

by the bridge. When SpbProtocol-Handeller and SpbRouting objects query

SpbForwardingDB, SpbForwardingdDB returns the reference of the table

entry or the output port referencing the SpbNetDevice object.

 SpbRouting: This module is in charge of computing the path and populating

the forwarding databases on nodes according to the result of the computation.

3.2 Actions of a SPB node

The following is the brief description of how a node handles the received frame:

1. When a node receives a frame from outside, the frame arrives at

SpbNetDevice. A frame is a pointer value referencing the NS3::Packet object.

 15

2. SpbNetDevice calls the callback function registered at the node.

3. The node looks for the correct handler for the packet type.

4. If it is a SPB packet, the node calls SpbProtocolHandler.

5. SpbProtocolHandler extracts SPB header from the received packet.

6. SpbProtocolHandler queries SpbForwardingDB to know the output port

number. Every SpbNetDevice has corresponding output port number. If the

output port number is ’0’, SpbProtocolHandler moves the packet to SpbApp.

Otherwise, move the packet to corresponding SpbNetDevice

When a node send a frame:

1. SpbApp generates a packet and forwards it to SpbProtocolHandler with I-SID

and traffic type. There are two traffic types, unicast and multicast.

2. SpbProtocolHandler queries SpbForwardingDB and SpbInterface. First,

SpbProtocolHandler queries SpbInterface to get BVID corresponding to I-SID

received from SpbApp. Second, it queries SpbForwardingDB with BVID and

Nodal MAC address of the node.

3. SpbProtocolHandler checks the outport referencing one of the SpbNetDevice

installed in the node. SpbProtocolHandler adds SPB header to the packet and

moves it to SpbNetDevice.

4. SpbNetDevice corresponding to the output port sends the frame to connected

SpbChannel.

 16

Chapter 4: Shortest Path Bridging Control Plane

In general, the term control plane
3
 refers to a part of the network architecture that

collects the information of a network topology, and performs the routing calculations

required to direct traffic. The information collected from the control plane is used to

build a Forwarding Database (FDB). Since Shortest Path Bridging (SPB) has evolved

from the latest Ethernet technology the SPB control plane not only deals with the

traditional LAN topology information, but also the service and virtual LAN

identifiers. The important thing to consider is that an SPB switch encapsulates a

customer frame into its frame when it receives the customer frame, and thus the SPB

control plane is isolated from a customer network.

4.1 IS-IS for Control Plane protocol

The Intermediate System to Intermediate System (IS-IS) link state protocol is the base

protocol used to control Shortest Path Bridging (SPB) network [6]. The basic

mechanism of link state protocol is that every node, either routers or switches, have

the same view of the network topology. The Hello protocol of IS-IS is used to learn

about adjacent nodes and maintain adjacencies between neighboring nodes. A

flooding protocol (link state update) is used to exchange information such as link

metrics, path identifiers and group memberships. This information about nodes, links,

paths and memberships is globally unique in a single Shortest Path Bridging (SPB)

3
 In routing, the control plane is the part of the router architecture that is concerned with drawing the

network map and building routing table. http://en.wikipedia.org/wiki/Routing_control_plane

 17

network domain. A network topology discovered by IS-IS is represented as a graph

consisting of nodes and connecting links.

IS-IS is also an interior gateway protocol which is used within a single

administrative network. IS-IS provides the distributed database for each SPB node in

the same network. The information about nodes, links, path and memberships are

exchanged between nodes in the same SPB network, and this data is used to populate

the database at each node. Based on the database, each node in the network computes

the forwarding path to other nodes independently. Based on the forwarding decision,

each SPB nodes produces forwarding tables (FDB) by using its database.

IS-IS can work in OSI network layer to discover a network topology. Another

link state and interior gate protocol Open Shortest Path First (OSPF) carries

information over IP protocol. On the other hand, IS-IS does not depend on certain

network address format (such as IP addresses). Since SPB is a layer 2 routing protocol

for an interior network, thus IS-IS fulfils the requirements of SPB [17].

4.2 Extension of IS-IS for SPB

Shortest Path Bridging (SPB), IEEE 802.1aq, extends the normal Intermediate System

to Intermediate System (IS-IS) Protocol Data Unit (PDU) to carry SPB network

information. This information includes node identifiers, link metrics, and adjacencies

represented by SPB network terms. SPB can run in parallel with other network layer

protocols. Therefore, SPB requires Network Layer Protocol Identifier (NLPID) and

the NLPID value 0xC1 assigned to SPB. A node advertising NLPID value 0xC1 in IS-

IS Hello (IIH) protocol can be a member of a SPB network.

 18

IS-IS extension for SPB is augmented with a small number of Type Length

Value (TLV) and sub-TLVs. SPB supports two different modes of operation. In

SPBM (SPB MAC) mode, a group of service is identified by I-SIDs (Ethernet

Services Instance Identifier). In SPBV (SPB VID) mode, a group of services is

identified by MAC addresses. Our scope in this thesis is limited to SPBM mode.

Control Protocol of SPB and extensions to IS-IS consists of four major parts.

The First part is Hello (IIH) protocol extensions. IS-IS Hello (IIH) Protocol is used to

detect neighbor nodes that are capable of running SPB protocol. IIH is also used to

exchange and digest information. The digest information holds two bridge identifiers

(bridge priority || bridge sysID) and link metrics of neighboring nodes sharing the

same link. The associations between Virtual LAN IDs (VID) and equal cost tie-

breaking algorithms are also included in a digest. The digest information is used to

validate the commonality of Link State Databases (LSDB) in the same SPB domain.

Since IIH is a digest of topology information, other IS-IS extensions for SPB carry the

full information. Thus the SPB simulator uses IIH only for detecting neighboring

nodes.

 19

The Second part is SPB Instance (SPB-Inst) sub-TLV which carries nodal

information with the following characteristics:

 SPSourceID: 20-bit value of nodal nick name. It forms multicast destination

address (DA).

 Bridge Priority: This 16-bit value combined with 4 bytes System ID forms

the Bridge Identifier.

 Number of Trees: It is set to the number of VLAN-ID tuples.

 VLAN-ID tuples: It consists of 4 bytes ECT-Algorithm, 12-bit Base VID, 12-

bit SPVID and U, M, A flag bits. When an SPB bridge advertised an ECT-

Algorithm with Base VID in the same tuple, the ECT-Algorithm is applied on

Figure 5. SPB instance sub-TLV [17]

 20

the given Base VID. Base VID is used for SPBM mode and SPVID is used for

SPBV mode.

The third part is the adjacency information extensions. Its corresponding sub-TLV

is SPB link Metric sub-TLV. This sub-TLV consists of:

 SPB-Link Metric: 24-bit unsigned number. Administrative weight of a link.

Smaller number indicates lower weight. When two neighbor nodes advertise

different SPB-Link Metric value on the same link, the maximum value is

considered as the right value of the given link.

 Port Identifier: 16-bit. The standard IEEE port identifier

The fourth part is service information extensions and it is carried in SPBM Service

Identifier and Unicast Address (SPBM- SI) sub-TLV. It consists of:

 B-MAC address: A unicast address of the node. Each SPB node has the

unique nodal Backbone MAC address. This may address a port. When

multiple B-MACs are used, this TLV must be repeated per B-MAC. The SPB

simulator so far supports only one nodal B-MAC.

 Base VID: This Base VID also appeared as VLAN-ID tuples in SPB-Inst sub-

TLV. Thus, B-MAC address, Base VID, and ECT-Algorithm are all

associated.

 I-SIDs: 24-bit group identifier. This I-SID set is assigned the Base VID in the

same SPBM-SI sub-TLV. If two different nodes advertise the same I-SID,

intermediate nodes between the two nodes will configure themselves to carry

traffic generated from the two different nodes. The intermediate nodes will

create Filtering Database (FDB) for unicast and multicast addresses.

 21

4.3 Control Plane Software Architecture

Figure 6 shows the class diagram of sub-TLVs and link state database (LSDB).

SpbInterface inherits “ns3::Object.” An “ns3::Object” instance can be aggregated to a

Node instance. SpbLinkStateDataBase is a hash table with keys corresponding to

node MAC addresses and values containing SpbInterface pointers referencing the

node with the MAC address. Since a node’s MAC address is a unique value

identifying a node, we can use it as the key value of SpbLinkStateDataBase. Here is

the brief description of each class:

 SpbHelloExtension: Corresponding to Intermediate System to Intermediate

System (IS-IS) Hello protocol extensions (IIH). IIH consists of three different

sub-TLVs. However, in our simulations, we simplify IIH since we assume that

Figure 6. Proposed Control Plane Architecture of IS-IS extensions for SPB

 22

link state database is always synchronized correctly. This class is used for

detecting adjacent nodes.

 SpbInstanceSub: corresponds to SPB Instance sub-TLV. It can include

multiple VIDTuple classes.

 SpbLinkMetrics: corresponds to SPB Link Metric sub-TLV. It can include

multiple SpbLinkMetricSub.

 SpbmServiceIdentifier: corresponds to SPBM Service Identifier and Unicast

Address sub-TLV

 VIDTuple: It consists of flag bits and a set of ECT-Algorithm, Base VID and

SPVID. SPVID is used only for SPBV (SPB Q-in-Q) mode. A SPB node may

be assigned multiple B-VIDs so the SpbInstanceSub class can include multiple

VIDTuple classes.

 SpbLinkMetricSub: Since a SPB node is attached at least one link, the

SpbLinkMetrics class needs multiple SpbLinkMetricSub in order to represent

each link.

 23

4.4 Implementation of IS-IS extension for SPB

Figure 7 presents the member variables of SpbInterface class. SpbInterface class is the

interface between IS-IS sub-TLVs for SPB and outside classes. Outside classes set

and get a variables of IS-IS sub-TLVs.

SpbInterface offers API’s to manage sub-TLVs. SpbInterface plays a crucial role

in configuring experimental topologies in simulation. It creates ECT-Algorithm:BVID

and BVID:I-SID pairs. Routing decisions are based on these pairs. SpbInterface also

offers major APIs below.

 AddSpbSet (uint8:ect, uint16:BVID, uint32:ISID) : Takes input ‘ect’ as

index of ECT-Algorithm. Sets up SPBM Service Identifier sub-TLV and SPB

Instance sub-TLV. Adds (ECT:BVID) pair and (BVID:ISID) pair into control

plane

 BuildAdjacencey (void) : Accesses neighboring node by channel. Collects

neighboring node’s bridge identifier through neighboring node’s SpbInterface.

 GetECT (int16:BVID) : Gets ECT-Algorithm index assigned on the input

BVID

Figure 7. SpbInterface Class Diagram

 24

 GetVID (int32:ISID) : Returns BVID value of which input ISID makes pair.

 GetECT (int32:ISID) : Gets ECT-Algorithm index assigned on the input

ISID.

 GetPortIdTo (uint64:BridgeID) : Returns output port number to neighboring

node with input BridgeID. BridgeID is concatenation of the bridge priority and

the bridge system id.

Figure 8 is the class diagram of SpbHelloExtension. For convenience, each node

with SPB stack is assigned the system identifier, the numericalized form of MAC 48

address. For example, if an SPB node has MAC address of hexadecimal numbers

00:00:00:00:00:01, its system identifier is 1.

 Bridge priority is 1 byte unsigned integer value. A network administrator can

assign the bridge priority to each SPB node. This helps the network administrator

directs traffics.

Figure 8. SpbHelloExtension Class Diagram

 25

This class sets the bridge identifier of a node. Bridge identifier, 64 bits unsigned

integer type, is a concatenation of a bridge priority and a bridge system identifier

(Bridge priority:16 << 48 | system identifier: 48). For instance, if an SPB node with

0xff bridge priority and 00:00:00:00:00:01 MAC address, the node has

0xff000000000001 as a bridge identifier.

 GetAdjacency (spbIf:Ptr<SpbInterface>) : collects the BridgeIDs of

neighboring nodes. This is called by BuildAdjacency member function of

SpbInterface.

 GetPointerOfVector(void) : returns the pointer of vector object which stores

BridgeIDs of neighboring nodes

A class Node stores all the references of NetDevice class. SpbNetDevice is the

child class thus a SpbNetDevice object can be also stored in a Node object. Each

NetDevice object is assigned unique index number to identify it among all the

NetDevice attached to the node. Class NetDevice also has the reference to the Node

which stores the NetDevice reference. Therefore, Node and NetDevice objects can

reference each other.

Class NetDevice has the reference to the Channel object to which it attached.

SpbChannel is a child class of Channel. Therefore, each SpbNetDevice object has the

reference to the SpbChannel object. A SpbChannel object has two references to the

SpbNetDevices at each end.

The cross referencing model explained above makes it possible to have access to a

neighboring node object. As Node object aggregates a SpbInterface object, acquiring

any SPB link state information saved in SpbInterface object is possible.

 26

Figure 9 demonstrate the flow chart for SpbHelloExtension::GetAdjacency

member function.

Figure 10, Figure 11 and Figure 12 demonstrate class diagrams designed for

sub-TLVs of IS-IS extension for SPBM. Through SpbInstanceSub, SpbLinkMetrics

and SpbmServiceIdentifier classes, we can set and get the sub-TLV values.

Figure 9. Acquiring Neighbor’s Bridge ID

 27

Figure 10. SpbInstanceSub and VIDTuple Class Diagram

 28

Figure 12. SpbmServiceIdentifier Class Diagram

Figure 11. SpbLinkMetrics Class Diagram

 29

4.5 Link State Database (LSDB) for SPB

The SpbLinkStateDataBase class provides all link state information of every SPB

nodes in a simulation. Figure 13 presents the class diagram of SpbLinkStateDataBase.

Pairs of a nodal MAC address and a reference of SpbInterface object are stored in

m_spbLSDB structure. Each member function is described below.

 BuildDataBase(void) : iterates all SPB nodes in a simulation and collects the

nodal MAC addresses and references to SpbInterface objects. Collected

(MAC:*SpbInterface) pairs are stored into m_spbLSDB structure.

 Find (Mac48Address nodalBMac) : returns the reference to the SpbInterface

object aggregated on the node with the nodalBMac.

 Find (uint64_t bridgeId): As described in the preceding chapter, the bridge

identifier is the numerical form of the nodal MAC address. This member

function accepts 64 bits bridgeId as a input and converts it to the MAC

address. Finally, it calls the Find(Mac48Address nodalBMac) function above

with the converted MAC address.

 PrintLSDB(void) : prints out rows of (MAC address : BridgeIdentifier) pairs.

The BridgeIdentifier is returned from SpbInterface::GetBridgeIdentifier()

calls. Thus printed rows may be used to verify the integrity of the database.

Figure 13. SpbLinkStateDataBase Class Diagram

 30

4.6 Routing Algorithm Based on LSDB

Figure 14 demonstrates the routing architecture of the SPB simulator. Below is the

brief description of each class.

 SpbRoute: computes the path and populates filtering database of all nodes.

 SpbForwardingDB: corresponds to a filtering database of a SPB bridge. It

has the hash table of which key value is a concatenation of MAC address and

BVID. Once a frame arrives at a node, SpbProtocolHandler extracts

destination MAC address and BaseVID from the frame. Next,

SpbProtocolHandler combines them to make the key. After that,

Figure 14. SPB Routing Architecture

 31

SpbProtocolHandler queries SpbForwardingDB with the key and get the

reference of SpbForwardingTableEntry.

 SpbForwardingTableEntry: corresponds to each entry of a filtering database.

An entry of a filtering database consists of input port, destination MAC

address, Base VID, and output ports.

 SpbProtocolHandler: queries the SpbForwardingDB to get the output port

when a frame is received from SpbApp or SpbNetDevice.

4.7 Algorithms for Computing Routes and Populating Forwarding Database

In a meshed Ethernet network such as a data center, there may exist multiple equal

cost paths. Managing equal cost paths is the key to maximizing network capacity. In

our case, we modified Floyd-Warshall all-pairs shortest paths algorithm [18] to

manage equal cost paths. Time complexity of Floyd-Warshall algorithm is ,

where is the number of nodes. In a meshed network, where m and are number of

edges and nodes respectively, the number of edges is larger than the number of nodes.

A single-source shortest path algorithm considers the number of edges (e.g. Bellman-

Ford and Dijkstra’s algorithms). Therefore, the complexity of a single-source

algorithm does not scale in a meshed network. For example, if we run Bellman-Ford

algorithm to compute routes among all nodes, its complexity equals to

 . All-pairs shortest path algorithm offers better performance in a meshed

network.

 To compute paths, we use two n by n matrices. The matrix distance[n][n]

contains the distances between nodes in the simulation. For example, if distance[i][j]

 32

is 10, the weight of the path from i to j is equal to 10. Another matrix

predecessor[n][n] contains the predecessor to node j on a shortest path from i to j. In

other words, predecessor is the intermediate node. A predecessor matrix value is a 64-

bit Bridge Identifier which is the concatenation of the bridge priority and the bridge

system id. A bridge system id is numerical form of a MAC address of a node. The

algorithm is provided below:

1: Initialize distance[n][n]

2: Initialize predecessor[n][n]

3: for k = 0 to n do

4: for i = 0 to n do

5: for j = 0 to n do

6: if distance[i][j] > distance[i][k]+distance[k][j] then

7: distance[i][j] = distance[i][k] + distance[k][j]

8: else if distance[i][j]=distance[i][k]+distance[k][j] then

9: Path1 = BuildPath from i to j

10: Path2 = BuildPath from i to j passing through k

11: if Path2 has higher priority then

12: predecessor[i][j] = predecessor[k][j]

13: end if

14: else

15: Do nothing

16: end if

17: end for

18: end for

19: end for

Algorithm 1. Modified Floyd-Warshall All-pairs Shortest Path

 33

Lines number 9 and 10 both create path from i to j. A Path is a list of 64-bit

Bridge Identifiers. The difference between lines 9 and 10 is that line 10 creates the

path passing through k. Line number 10 joins two paths, one is from i to k and

another one is from k to j. If path i to k is on a shortest path and path k to j is, then

path, i to j, is also on a shortest path. Computing a shortest path has optimal

substructure. Thus, we guarantee that path i to j passing through k also on a shortest

path [19]. Line 11 compares two paths using ECT-Algorithm. There are 16 different

ECT-Algorithm. The least significant 1 byte of an ECT-Algorithm is used to XOR on

each path

Shortest Path Bridging (SPB) has the tie-breaking mechanism to prioritize the

equal cost path. Each node advertises the costs of the attached links. These costs are

presented in SPB Link Metric sub-TLV. The sum of the link costs on the path is equal

to the cost of the path. If equal cost paths exist between two end points, the path with

smaller hop counts has the priority. If there are more than two paths with the same

link cost and hop counts, the default tie-breaking mechanism picks up the path

traversing the intermediate node with the lower Bridge Identifier [17]. Mesh network

such as a data center may have multiple paths with the same link cost and the hope

counts. This SPB tie-breaking mechanism guarantees diversity.

Line 11 compares two equal cost paths. A path with lower hop counts has the

higher priority. Since a path is a list of bridge identifiers, the number of elements in

the list is equal to the hop counts including the source and the destination. Thus, the

smaller size of the list, the path, has the higher priority. If two paths have the same

hop counts then, ECT-Algorithm value is XORed with the paths. The path with the

 34

smaller result has the higher priority. For example, let’s assume that path1 has

sequence of bridge identifiers 0,1,4 and 5, path2 has sequence of 0, 2, 4 and 5. If path1

and path2 are XORed with 0xFF, path2 produces smaller number. In that case, path2

has higher priority hence it would be selected.

Congruency between unicast and multicast, and symmetry between backward

and forward paths makes populating a filtering database simple. We used the

algorithm below to populate the node on a path. This algorithm takes a path, a SPB

service identifier, and I-SID, as input:

1: n = total number of nodes in path

2: for i = 0 to n − 1 do

3: for j = i + 1 to n do

4: ForwardPath = Build Path from node[i] to [j]

5: Install Unicast Entry for ForwardPath

6: Install Multicast Entry for ForwardPath

7: BackwardPath = Build Path from node[j] to [i]

8: Install Unicast Entry for BackwardPath

9: Install Multicast Entry for BackwardPath

10: end for

11: end for

Algorithm 2. Populating SPB Nodes

 35

Chapter 5: Shortest Path Bridging Data Plane

One of the important characteristics of SPB data plane is congruency. First, forward

and backward traffic must follow the same route. Second, unicast and multicast traffic

between the nodes must also follow the same route. Third, a route from a source node

to a destination node is deterministic. Symmetry between forward/backward paths and

congruency between multicast/unicast paths enable SPB runs with legacy Ethernet

Operation, Administration, and Maintenance (OAM) protocol.

 Supporting multiple equal cost paths for VLAN is another important

characteristic of SPB data plane. SPB supports up to 16 different equal cost paths. A

path between two nodes is represented as a sequence of 8 byte Bridge Identifiers. 2

bytes of Bridge Identifier is Bridge Priority advertized in SPB instance sub-TLV.

Thus, each path has a unique identifier and this identifier is XORed with 1 byte ECT-

Algorithm value. Error! Reference source not found.TABLE 2 shows the value.

By XORing on path identifier, SPB can order equal cost paths. Routing in the

SPB network is deterministic. A traffic source node selects the set of the intermediate

nodes through which the traffic must pass. An intermediate node cannot change the

route of the traffic. Since each ECT-Algorithm value represents only one end-to-end

path, SPB can utilize up to 16 different equal cost paths.

Index 0 , 1 2 3 4 5 6 7 8

Value 00 FF 88 77 44 33 CC BB

Index 9 10 11 12 13 14 15 16

Value 22 11 66 55 AA 99 DD EE

TABLE 2. ECT-Algorithm Masking Value (Hex)

 36

For example, Figure 15 demonstrates routes from node 0 to others. Every link in

the above network has the same weight. Route decision is based on node id when

there are multiple equal cost paths like from node 0 to node 5. A path crossing the

smaller node id has higher priority. In the above topology, all traffic coming out from

node 0 follows the paths:

 From node 0 to 1 : node 0 node 1

 From node 0 to 2 : node 0 node 2

 From node 0 to 3 : node 0 node 1 node 3

 From node 0 to 4 : node 0 node 1 node 4

 From node 0 to 5 : node 0 node 1 node 3 node5

The minimal weighted path always has the highest priority. If there were two

equal weight paths, the path with smaller hop counts would be selected. After that, if

paths with the same hop count still exist, Equal Cost Tie-breaking Algorithm (ECT-

Figure 15. Shortest Path Tree Rooted at Node 0 when ECT-Algorithm 0 is used.

 37

Algorithm) is used to select the path. For example, there are two possible shortest

paths from node 0 to node 4. One is the path, node 0 node 1 node 4, and another

one passing node 2, node 0 node 2 node 4. ECT-Algorithm 0 selects the former.

5.1 SPBM Unicast Data Path

SPBM unicast frames consist of a Backbone Source Address (B-SA), a Backbone

Destination Address (B-DA), a Backbone VLAN ID (B-VID), and an I-Component

Service Instance ID (I-SID). B-SA is backbone MAC address of an ingress SPB

bridge while B-DA is backbone MAC address of an egress SPB bridge. I-SIDs are

assigned at User Network Interface (UNI) ports and associated with B-VID. When a

customer frame reaches an ingress SPB bridge, the frame is encapsulated with B-SA,

B-DA, B-VID and I-SID. Therefore, routing decisions in SPB backbone networks are

completely independent from customer networks.

 An encapsulated frame reaches tandem nodes, which are not border bridges,

and its {B-DA, B-VID} field is inspected to direct the frame to right output ports. A

Forwarding Database (FDB) stores unicast entries mapping a B-DA and a B-VID. If

there is not a unicast entry matched with a pair of B-DA and B-VID, the frame is

discarded. Then SPB simulator stops the simulation to notify that an incorrect

configuration was discovered in a simulation script.

5.2 SPBM Multicast Data Path

SPBM supports two different types of multicast Head-end Replication and Tandem

Replication. Head-end Replication is a series of unicast traffic flows to different

 38

destinations. Our SPB simulator does not support Head-end Replication type of

multicast. Tandem replication
4
 uses the shortest path tree to replicate frames only

where the tree forks and there is at least one receiver on each branch [17]”.

 A customer frame with unknown unicast, broadcast and multicast address is

encapsulated at an ingress SPB bridge with B-SA, B-VID, I-SID and multicast B-DA.

Multicast B-DA identifies the shortest path tree rooted at the ingress SPB bridge. B-

DA address bit format is shown in Figure 16.

Multicast frames in SPBM network form the Backbone Destination

Address(B-DA) in such way that frames represent the source and the group of the

destinations. B-DA in a multicast frame consists of SPSourceID, I-SID, M and L bit

flags. SPSourceID represents the source of multicast traffic where the frame was

encapsulated. An I-SID represents the group of the destinations. If a node advertises

the I-SID, the node is the member of the group. M and L bits are always set to 1 for a

SPBM multicast [17].

This B-DA is installed into all of Forwarding Database (FDB) in the nodes

involved in multicast communication. In other words, the source, the destinations and

4
 Tandem replication occurs only at an intermediate node. An intermediate node on a multicast path

forks multicast traffic.

Figure 16. Multicast B-DA Bit Format

 39

the intermediate nodes install the B-DA in their FDB. These nodes form the spanning

tree of the multicast.

5.3 SPBM Protocol Handler

The main role of SPBM (SPB Mac-in-Mac) protocol handler is the routing decision

when a SPB node sends and receives a SPBM frame. If a SPB application attempts to

send traffic to other nodes, it must consult with SPBM protocol handler first. The

application passes a packet with I-SID and the type of traffic (which is either multicast

or unicast). Then, the SPBM protocol handler queries the Forwarding Database (FDB)

with the I-SID in order to retrieve the right output ports. In NS-3, output and input

ports are modeled as the NetDevice class. A Node class saves the index number

referencing each NetDevice objects in itself. Therefore, when FDB returns the list of

index numbers referencing NetDevice objects, the SPBM protocol handler accesses

the SbpNetDevice class objects inherited from the NetDevice class. Once the SPBM

protocol handler accesses the SpbNetDevice objects, it attaches SPB frame header on

the packet and passes it to the SpbNetDevice objects.

 Routing decisions for received SPB frames also depends on the SPBM

protocol handler. The first object of the received SPB frame is a SpbNetDevice object

which is the model of input port in real world networks. As Send function selects the

proper SpbNetDevice to send the packet out, Receive function is given the references

to proper SpbNetDevice objects. If the given output port index is equal to 0, this

means local delivery, SpbProtocolHandler passes the frame to the SpbApplication

object in order to free the memory held by the frame.

 40

 A Node class in NS-3 registers callback functions for the protocols it can

handle. In case of SPB protocol, the callback function is

SpbProtocolHandler::Receive. This callback function is registered at a node when

SPB protocol stack is installed in the node. Thus when SpbNetDevice receives a SPB

frame, Receive function of SpbProtocolHandler class is called. The receive function

also queries FDB like Send function. Figure 17 demonstrates how a SPB frame is

received and sent.

Figure 17. Receive and Send

 41

Chapter 6: Simulation Setup and Results

6.1 Simulator Helper class

A helper class is designed to simplify the simulation script for the SPB simulator.

Figure 18 shows public member functions of SPB helper class.

 NS-3 supports the factory design pattern. SpbHelper class uses the design

pattern to simplify creation of SPB objects. SpbHelper member functions install the

SPB devices and the SPB protocol stack on a node object and connect them to form a

SPB network. Each member function is described below.

 InstallSpbStack : Installs SPB protocol stack. SPB protocol stack consists

of 5 objects. These are SpbApp, SpbInterface, SpbForwardingDB,

SpbNetDevice and SpbProtocolHandler.

 BuildAdjacency : Calls SpbInterface::BuildAdjacency(). A node detects its

neighbors by this method.

 ConnectNodes : Sets up a link between two adjacent nodes.

Figure 18. SpbHelper Class Diagram

 42

 MakeGroup : Groups nodes to communicate each others. Parameter ISID

consists of three parts. The most significant bit is T bits. The second most

significant bit is R bits. The other bits are ISID. The objective of T, R bits is

described in the standard [6].

6.2 Simulation outputs

NS-3 includes a logging system to print out messages from a simulation. The logging

system supports multiple log levels. The highest level of logging may print out all

messages defined in a simulation. There are 7 different levels. The logging systems

can be turned on and off in respect to specific classes. So a user may print out

messages only for some classes. Typical usage looks like the following:

NS_LOG (LOG_DEBUG, “usage “ << m_variable << “”)

LOG_DEBUG is one of the levels. The below function example enables logging in

the SpbApp class with the highest level:

LogComponentEnable (“SpbApp”, LOG_LEVEL_ALL);

A simulation result can be animated, however, only point-to-point channel type can be

animated. NS-3 generates XML file output for animation. The XML file is loaded

using NetAnim
5
 program bundled with NS-3 packages.

Though the SPB simulator has its own channel model, it can produce XML

output for animation. Modifying one line of codes in NetAnim interface classes make

SPB animation possible. SpbChannel class calls point-to-point channel class’s trace

source defined in NetAnim interface. Therefore every time a frame is received or sent

5
 NetAnim is the application for animation in a NS-3 package [25].

 43

by SpbChannel, point-to-point channel’s animation trace source is called. Trace

source is a function triggered by some events. The point-to-point channel’s trace

source writes each event to the XML file for animation.

Example lines of XML file for animation are provided below.

The line below defines X and Y planes of a topology.

<topology minX = “-37.1” minY = “-37.1” maxX = “1015.9” maxY = “1015.9”>

The following line demonstrates a node with id 0 whose location in a canvas is (100,

500) and RGB color code (255, 0, 0)

<node id = “0” locX=”100” locY=”500” r=”255” g=”0” b=”0”/>

Packet’s arrival and departure is described below.

 fromId : departure node

 toId : arrival node

 fbTx, lbTx : the first and last bit transmitted time

 fbRx,lbRx : the first and last bit received time.

<packet fromId=”0” fbTx=”1” lbTx=”1.1”><rx toId=”2” fbRx=”2.05”

lbRx=”2.06”/>

 44

6.3 Setting Up Simulation

SPB simulator has been implemented on NS-3.15 running on Ubuntu Linux 12.04

system. Figure 19 is the experimental network topology. Each node has Id and MAC

address. Id is a reference number to identify each node in the simulation. In this

experiment, node 0, node 4 and node 5 are grouped with the same ISID 1. T bit and R

bit are set to 1 and 0 respectively. Every link in the simulation has the same weight 1.

Italic numbers near the links are port numbers.

Figure 19. Experimental Topology

 45

Figure 20 is the part of the simulation script building the experimental topology of

Figure 19.

1. Line 43 creates 6 nodes.

2. Line 47 installs the SPB protocol stack on all nodes

Figure 20. Topology in Script

 46

3. From line 50 to 70, all nodes aggregate constant position mobility model. This

mobility model fixes the position of a node. SetPosition function takes X and

Y coordination of each node.

4. From line 72 to 80, links between nodes are created.

Figure 21 shows the part of script for grouping nodes 0,4, and 5 with the same

ISID. Each node in simulation has nodal B-MAC address of which node id plus one.

Say, a node with id 0 has B-MAC address 00:00:00:00:00:01. Each node aggregated

SPB stack already.

Figure 21. Grouping in Script

 47

5. Line 117 calls SPB helper API BuildAdjacency(nodes). This call fills up the

control plane data of each node.

6. Line 120, 121 build Link State Database (LSDB).

7. Line 124, 125 build SpbRouting object and connect the object to the LSDB.

SpbRouting object computes the route with the LSDB.

8. Line 127 to 132 set up ECT-Algorithm index, I-SID and BVID.

9. Node id 0, 4 and 5are grouped together from line 134 to 137.

10. Line 139 assigns the ECT-Algorithm index, I-SID and BVID to the group of

node 0, 4 and 5.

11. Line 142 computes the route for the group.

12. Line 144 prints out Forwarding Database (FDB) in all nodes.

From line 146 to 153, SpbApplication in node id 0 sends multicast traffic to its group

member sharing the same I-SID from time 1 second to 2 second.

6.4 Simulation Results

Our experiment is designed to validate congruency of Shortest Path Bridging (SPB)

routing and capacity to select the highest priority path among the equal cost paths. A

simulation generates an XML output file. The XML output file is read through the

NetAnim program that produces a graphical result. Since NS-3 only supports

graphical result for point to point (P2P) type channel, we use the same interface for

P2P. Unicast and Multicast Paths between group members must be identical. From

Figure 19, nodes 0, 4 and 5 are in the same group. This group uses Equal Cost

Algorithm (ECT). Each Equal Cost Algorithm has a 1byte masking value. The

 48

masking value is XORed on a path identifier which is the System IDs. When ECT

index is 1, then the corresponding mask value is also 0, priorities between nodes

follow the order of node Id: 0 > 1 > 2 > 3> 4> 5. Because we set up the same bridge

priorities to all nodes and 4 byte System ID of a node is numerical form of MAC

address. Thus, the lower the system ID value, the higher the node priority. Under

these constraints, unicast path between nodes 0 to 4 follows nodes 0, 1, 4 in that order.

Another unicast path between 0 and 5 is 0, 1, 3, 5 in order. When multicast is

congruent with unicast path, traffic from node 0 must follow node 1 and propagate

through port number 3 and 4. Graphical result is shown in Figure 24.

Before running all-pairs source shortest algorithm, distance matrix and

predecessor matrix are shown in Figure 22 lefthand side. Each row indicates starting

node while each column indicates ending node. For example, distance from node 5 to

0 is X because the shortest path algorithm has not yet computed the distance from

Figure 22. Initial and Final Matrix When ECT is 1

 49

node 5 to 0. After running the algorithm the result is shown at righthand side of Figure

22. Distance from node 5 to 0 is 3 and the predecessor node from node 5 to 0 is node

4. After matrix computation FDBs on all nodes are installed.

Figure 23 shows filtering database (FDB) of all nodes in the simulation. The

capital U and M means unicast and multicast respectively. In and Out columns present

port numbers. ’in’ column shows input ports and ’out’ column shows output ports.

Port number 0 indicates the node itself. A Unicast entry of FDB does not consider

input ports. Node 0, 4 and 5 has three multicast entries. Each multicast entry holds

destination B-MAC address of which consists 20-bit SPSourceID and I-SID assigned

to them. SPSourceID comes from B-MAC address of node 0, 4 and 5.

Figure 23. FDBs when ECT is 1

 50

When ECT index is 2, its corresponding mask value is 0xFF [6]. The masking

value 0xFF toggles bits in System IDs therefore, priorities between nodes follow the

order Node Id: 5 > 4 > 3 > 2> 1> 0. Under these constraints, unicast path between

nodes 0 to 4 follows nodes 0, 2, 4 in order. Another unicast path between 0 and 5 is 0,

2, 4, 5 in order. When multicast is congruent with unicast path, traffic from node 0

must follow node 2 and 4. Result is shown at Figure 25.

Figure 24. Multicast When ECT 1

Figure 25. Multicast When ECT 2

 51

Chapter 7 Conclusion

The cloud data center network requires certain properties. The first property is

virtualization. The infrastructure of the cloud data center is shared with multiple

customers and each customer requires different levels of services. Without network

virtualization, it is hard to offer different classes of services. Individual customer

traffic has to be identified in the cloud data center for delivering customized services.

The second property is acceptable convergence time. The cloud data center network

has to quickly response to network events. A cloud data center runs almost all type of

application. Some of the application may need real time stream of data. In order to

meet real time constraints, the convergence time after network changes should be

minimized. The third property is higher utilization. Network traffic in a cloud data

center should take diverse paths to achieve higher utilization. Fourth property is a

minimum configuration. Traffic in a cloud data center changes dynamically. Human

intervention to the dynamicity may not be practical. Finally, cost of deploying

network should be economical.

Ethernet meets all the requirements described above. It was developed to

minimize a network configuration. Its plug-and-play feature can migrate hosts to

different locations without configuration. Virtual machine instance in cloud data

center may require frequent migrations. The plug-and-play mechanism would reduce

the efforts following virtual machine migrations.

Ethernet has evolved to support virtualization and IEEE has developed

standard for virtual LAN 802.1Q. Though Ethernet offered simple configuration and

virtualization, it was still not suitable for the cloud data center. First, its convergence

 52

time was unacceptable. Second, its link utilization was not higher enough. Spanning

Tree Protocol (STP) has been widely used for Ethernet networks but, it still has the

two problems. Shortest Path Bridging (SPB) has been developed to overcome those

two short comings.

Convergence time after network changes depends on how fast information

delivered to nodes participating in the same network. STP broadcasts information to

build up new topology when network changes occur. Broadcasting takes certain

amount of time which is not acceptable for real time applications. While STP uses

broadcasting, SPB uses the link state database holding information. Nodes in a

network retrieve information from link state databases immediately after network

change thus SPB offers acceptable convergence time for real time applications.

Suboptimal link utilization is another problem for applying STP to the cloud

data center. In contrast to STP, SPB utilizes links higher in a data center. First, SPB

does not require disconnecting one of the links in order to prevent loop formation.

Second, traffic in SPB network always takes the optimal path in terms of link cost.

While customer networks are isolated from provider networks, network

providers apply different services or policies on customer traffic. This situation occurs

at the cloud data center also. IEEE 802.1aq encapsulates customer traffic and it

assigns different service identifiers on the customer traffic. This gives network

providers the ability to enable different levels of a service agreement for each

customer.

SPB employs all the features that the cloud data center network requires.

 53

As SPB emerges as the one of the network protocol for the cloud data center network,

we need a simulator for SPB network. Since NS-3 has been widely adapted to

research community, we designed and implemented the SPB simulator on NS-3.

This thesis shows the design and implementation of the SPB simulator. We proposed

a modified Floyd-Warshall all-pairs shortest paths algorithm in order to compute

routes in a simulation. This algorithm is designed to utilize a meshed network

efficiently, which is particularly relevant to data center networks.

The SPB simulator we proposed here is still in the early stage. In order to

fully utilize the capability of the simulator, a graphical result must be supported.

Simulating User Network Interface (UNI) port and SPBV (SPB VID) mode would

extend the capability.

We strongly believe that the SPB simulator would help the research

community of SPB. Future research areas where the SPB simulator can be used are

described in [20].

 54

Bibliography

[1] N. B. David Allan, "IEEE 802.1aq in a Nutshell: Antecedents and Technology,

Exploiting Multiple Paths in SPB," in 802.1aq shortest Path Bridging: Design

and Evolution The Architect's Perspective, New York, IEEE Press, 2012, p. 29.

[2] N. B. David Allan, "The Data Center and General Enterprise Application," in

802.1aq Shortest Path Bridging Design and Evolution, IEEE Press, 2012, pp.

152-155.

[3] P. Draft Standard, 802.1 Q/D10, IEEE Standards for Local and Metropolitan

Area Networks: Virtual Bridged Local Area Networks, Copyright by the Institute

of Electrical and Electronics Engineers, Inc, 1997.

[4] IEEE Std 802.1ah, IEEE Standard for Local and metropolitan area networks --

Virtual Bridged Local Area Networks Amendment 7: Provider Backbone Bridges,

IEEE, 2008.

[5] IEEE Standard, 802.1D IEEE Standard for Local and Metropolitan Area

Networks. Media Access Control (MAC) Bridges, IEEE, 2004.

[6] P. Draft Standard, IEEE 802.1aq/D4.6 Media Access Control (MAC) Bridges and

Virtual Bridged Local Area Networks-Amendment XX: Shortest Path Bridging,

IEEE, 2012.

[7] N. B. David Allan, "802.1aq Shortest Path Bridging Design and Evolution,"

IEEE Press, 2012, p. 3.

[8] N. B. David Allan, "Why the SPB Control Plane Looks as it does," in 802.1aq

 55

shortest Path Bridging: Design and Evolution The Architect's Perspective, New

York, IEEE Press, 2012, pp. 110-115.

[9] ISO/IEC, Information technology-Telecommunications and information exchange

between systems - Intermediate System to Intermediate System intra-domain

routing information exchange protocol(ISO 8473), ISO/IEC, 2002.

[10] P. Ashwood-Smith, "Shortest Path Bridging IEEE 802.1aq Tutorial and Demo,"

in NANOG 50, 2010.

[11] N. B. David Allan, "Why SPB Looks as it does, History," in 802.1aq shortest

Path Bridging: Design and Evolution The Architect's Perspective, New York,

IEEE Press, 2012, pp. 52-60.

[12] "ns-3," 2013. [Online]. Available: http://www.nsnam.org.

[13] "Nsnam," 5 november 2011. [Online]. Available:

http://nsnam.isi.edu/nsnam/index.php/Main_Page.

[14] M. L. F. R. D. J. K. Thomas R. Henderson, "Network simulations with the ns-3

simulator," in SIGCOMM demonstration, 2008.

[15] R. S. S. G. F. Thomas R. Henderson, "NS-3 project goals," in Proceeding from

the 2006 workshop on ns-2: the IP network simulator, New York, NY: ACM,

2006.

[16] H. E. Issariyakul teerawat, Introduction to network simulator NS2, Springer,

2011.

[17] P.-S. D. N. B. P. U. D. Fedyk, IS-IS Extensions Supporting IEEE 802.1aq

Shortest Path Bridging, 2012.

 56

[18] C. E. L. R. L. R. C. S. Thomas H. Cormen, Introduction To Algorithms, Third

Edition, Cambridge: MIT press, 2009.

[19] C. E. L. R. L. R. C. S. Thomas H. Cormen, "25 All Pairs Shortest Paths," in

Introduction to algorithms, Third Edition, MIT Press, 2009, p. 686.

[20] N. B. David Allan, 802.1aq shortest Path Bridging: Design and Evolution The

Architect's Perspective, New York: IEEE, 2012.

[21] Z. A. Janos Farkas, "Performance Analysis of Shortest Path Bridging Control

Protocols," in IEEE GLOBECOM, 2009.

[22] J. F. S. M. David Allan, "Intelligent Load Balancing for Shortest Path Bridging,"

Communications Magazine, IEEE, vol. 50, pp. 163-167, july 2012.

[23] P. A.-S. N. B. D. F. David Allan, "Provider Link State Bridging,"

Communications Magazine, IEEE, vol. 46, pp. 110-117, september 2008.

[24] P. A.-S. N. B. J. F. D. F. M. O. M. S. P. U. David Allan, "Shortest Path Bridging:

Efficient Control of Larger Ethernet Networks," Communications Magazine,

IEEE, vol. 48, pp. 128-135, october 2010.

[25] "NetAnim-Nsnam," 5 February 2013. [Online]. Available:

www.nsnam.org/wiki/index.php/NetAnim. [Accessed 18 February 2013].

[26] N. B. David Allan, "Why the SPB control plane looks as it does, Convergence

Behaviors," in 802.1aq shortest Path Bridging: Design and Evolution The

Architect's Perspective, New York, IEEE Press, 2012, pp. 82-87.

[27] C. H. X. Z. K. Z. Y. C. A. V. V. Kai Chen, "Survey on Routing in Data Centers:,"

Network, IEEE, vol. 25, pp. 6-10, july-august 2011.

 57

[28] IEEE Std 802.1Q, IEEE Standard for Local and Metropolitan area networks-

Virtual Bridged Local Area Network, IEEE, 2005.

