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Abstract

In this thesis, we study the asymptotic behavior of iterative node-based verification-
based (NB-VB) recovery algorithms over random sparse matrices in the context of
compressed sensing. Such algorithms are particularly interesting due to their low
complexity (linear in the signal dimension n). Let α, here referred to as density
factor, be the probability that a signal element is non-zero. It is known that there
exists a success threshold on the density factor, before which the recovery algorithms
are successful, and beyond which they fail with probability one.

We propose a mathematical framework that predicts the average fraction of unver-
ified signal elements at each iteration ` in the asymptotic regime, where the average
is taken over the ensembles of input signals and sensing matrices as a function of `
as n → ∞. The asymptotic analysis is similar in nature to the well-known density
evolution technique commonly used to analyze iterative decoding algorithms. To per-
form the analysis, a message-passing interpretation of NB-VB algorithms is provided.
This interpretation lacks the extrinsic nature of standard message-passing algorithms
to which density evolution is usually applied. This requires a number of non-trivial
modifications in the analysis. We first discuss the analysis of recovery algorithms
of interest over random regular sensing graphs. Later we generalize the analysis to
include random irregular sensing graphs as well. We also discuss concentration re-
sults that ensure the performance of the recovery algorithms applied to any choice of
the input signal over any realization of the sensing matrix follows the deterministic
results of the analysis closely.

We also demonstrate that the proposed asymptotic analysis matches the perfor-
mance of recovery algorithms for large but finite values of n. Compared to the sole
existing technique for the analysis of NB-VB algorithms, which is based on numeri-
cally solving a large system of coupled differential equations, the proposed analysis
is simpler to implement and more accurate. Moreover, we use the proposed analysis
in an optimization loop in order to design irregular sensing matrices (graphs) that
outperform previously reported results. The maximum density factor that designed
irregular graphs can handle exceeds that of the regular graphs substantially.
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Chapter 1

Introduction

1.1 Motivation

Many signals in real life applications, if defined in the proper domain, will have
a small support set with respect to their dimension [2, 3]. For example, when an
ordinary image is represented in the wavelet domain, most of the information lies in
the low frequency components, while high frequency components can be neglected
with a small perceptual loss [3]. This simple observation is the key factor in many
compression algorithms based on transform coding. In these schemes, a signal is
represented in the domain in which it has many negligible coefficients. The few large
transform coefficients are coded along with their location in the transform. This
whole process of calculating all transform coefficients and then throwing away a large
quantity of them is very wasteful.

In certain applications we can not afford to acquire a vast number of measurements
and throw most of them away. The reason could be that the number of sensors present
is limited, or sampling (sensing) the signal is time consuming, costly or slow. Imaging
based on neutron scattering and Magnetic Resonance Imaging (MRI) are considered
examples of costly and slow sensing processes, respectively [3]. In these cases, a logical
question to ask then would be: is it possible to sense the original signal in an already
compressed fashion? As we will see in the sequel, compressed sensing (CS) answers
this question in affirmative.

1.2 Basic Notations and Definitions

Compressed sensing was introduced with the idea to represent a signal v ∈ Rn with
k non-zero elements with measurements c ∈ Rm, where k < m � n, and yet to
be able to recover back the original signal v [4, 5]. In the measuring process, also
referred to as encoding, signal elements are mapped to measurements through a linear
transformation represented by the matrix multiplication c = Gv, where the matrix
G ∈ Rm×n is referred to as the sensing matrix. This linear mapping can also be
characterized by a bipartite graph [2], referred to as the sensing graph.

1



CHAPTER 1. INTRODUCTION 2

In the recovery process, also referred to as decoding, based on the knowledge of the
measurements and the sensing matrix, we estimate the original signal. The decoding
process is successful if v is estimated correctly. Three performance measures namely,
density ratio γ , k/n, compression ratio rc , m/n, and oversampling ratio ro , m/k
are used in order to measure and compare the performance of the recovery algorithms
in the context of compressed sensing.

For successful decoding clearly we need ro ≥ 1. It is desirable to have this parame-
ter as small as possible. Indeed, in [6] the authors proved that for sparse signals and in
noiseless scenarios ro = 1 is achievable in the asymptotic case (n→∞). This means
that the highest density ratio that an algorithm can possibly handle is γ∗ = rc. Au-
thors in [7] have shown that if the sensing matrix consists of i.i.d. Gaussian elements,
then a decoder based on the `0 norm can recover the original signal with m = k + 1
measurements; i.e., ro ≈ 1. To find the solution based on the `0 recovery, however,
one has to perform an exhaustive search, which is computationally too complex [8].

1.3 Previous Works

The sensing matrix in compressed sensing can be either dense or sparse. A sensing
matrix is considered dense if it has few, or none, zero entries. Sparse matrices,
on the other hand, have few non-zero entries in each row and column. One major
difference between these two types of matrices is the encoding complexity associated
with each class. For sparse matrices, the number of operations needed to calculate
the measurements is considerably lower than the one needed for dense matrices.

Decoding algorithms can be classified based on the class of sensing matrix they
use. The decoding algorithms in each class have certain properties in common. (For
a comprehensive study on the topic, we refer the interested readers to [9].) Decoding
algorithms associated with dense matrices have, generally, high complexity (between
O(n2) and O(n3)) compared to the lower complexity of algorithms utilizing sparse
matrices (between O(n) and O(n2)). To have a better feeling about the complexity
and running time of these two classes of algorithms, we have included in Fig. 4.5
of Section 4.8 the comparison between two standard recovery algorithms for dense
matrices (`1 minimization and weighted `1 minimization) and one algorithm (SBB)
for sparse matrices. As can be seen, the decoding algorithm for sparse matrices is
faster by about two orders of magnitude. Decoding algorithms for dense matrices
are mostly based on linear or convex programming [4, 5, 10, 11]. The reason is that
random dense matrices satisfy restricted isometry property (RIP) with overwhelming
probability [12, 13]. The RIP was introduced by Candès and Tao in [14] as the main
restriction on the sensing matrix so that the recovery based on linear programming
will be able to successfully recover the signal. Sparse matrices, on the other hand,
do not satisfy RIP unless m = Ω(k2) [15].1 In fact, many of the decoders based on

1Authors in [9] extended the definition of RIP and showed that sparse matrices satisfy a gener-
alized RIP constraint. The generalized RIP suffices for the linear programming decoders to succeed
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sparse sensing matrices are iterative [1, 2, 16–27]. Although more computationally
complex, decoding algorithms for dense matrices tend to recover signals with larger
number of non-zero elements (higher density ratio) compared to decoders for sparse
matrices. Nevertheless, the high complexity of decoding algorithms on dense matrices
hinders their application to high-dimensional signal recovery (signals with large n).
In such cases, using sparse sensing graphs is clearly beneficial. Moreover, in certain
compressed sensing applications such as computer networks [25,28,29], channel coding
[14], spectrum sensing [30], and identification of linear operators [31], the nature of
the problem results in a formulation with a sparse sensing graph.

Focusing on recovery algorithms based on sparse matrices (or sparse graphs), we
can further divide them into two major groups. In one group, we have algorithms that
use group testing and similar techniques from estimation theory [16–19]. These are
referred to as combinatorial algorithms. In the other group, recovery algorithms work
with the bipartite graph associated with the sensing matrix by passing messages
over the edges of the graph [1, 2, 20–27, 32, 33]. These are referred to as message-
passing algorithms. Combinatorial algorithms, generally, assume that the decoder
knows the parameter k [16–19]. These algorithms, have two main steps. In the first
step, the algorithm outputs an estimate which has more non-zero values than the
original signal. In the next step, knowing the parameter k, the estimate is pruned
so that it has the same number of non-zero elements as the original signal (i.e., k
non-zero elements). Combinatorial algorithms are, in general, more computationally
complex than message-passing algorithms. For example, the algorithm introduced
in [16] has complexity O(k2polylog(n)), which translates to O(n2polylog(n)) in the
regime where k scales linearly with n. Message-passing algorithms, on the other hand,
have computational complexity O(n).

For the reasons discussed above, we are interested in low-complexity recovery
algorithms that exploit the sparsity of the sensing matrix. In particular, we are in-
terested in message-passing recovery algorithms. In [32, 33], the authors proposed
and analyzed a belief propagation (BP) algorithm to recover the non-zero elements
of the signal for the scenario where the location of such elements is known in the
asymptotic regime. It was shown in [34] that if each signal element contributes to
infinitely many measurements (subject to certain criteria), then the BP algorithm is
asymptotically optimal in the case of sparse noisy measurements. In [25], the authors
proposed a simple message-passing algorithm to reconstruct non-negative signals.
This algorithm assumes lower and upper bounds for the values of the signal elements.
It then shrinks the difference between the two bounds through iterations. An anal-
ysis for the same algorithm that yields uniform guarantee on signal reconstruction
was then provided in [21]. Another approach in message-passing algorithms is to
assume a prior distribution for the values of the signal elements and try to maxi-
mize the a-posteriori distribution of the values of the elements based on the observed

in recovering sparse signals. However, the resulting bound on the reconstruction error is weaker
compared to the case where the sensing matrix satisfies the original RIP condition.
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measurements. In [27], the authors assumed Gaussian mixture priors. The main
problem associated with this approach is that the length of the messages passed over
the edges of the graph grows exponentially fast with the number of iterations. In
another work [26], the authors assumed Jeffreys’ priors [35] and aimed at recovering
the non-zero elements of the original signal using message-passing algorithms. Then,
they applied well-known least-square algorithms, such as LSQR [36], to estimate the
value of the non-zero signal elements. Moreover, in [26], it was assumed that the
parameter k is known. In a more recent work, authors in [37] applied the approxi-
mate message-passing (AMP) algorithm proposed in [38] for dense sensing matrices
to band-diagonal (sparse) matrices. In their approach, the authors assume that the
recovery algorithm has access to the distribution of non-zero elements of the signal.
Algorithms discussed so far are either restrictive, in the sense that they assume some
knowledge about the set of non-zero elements of the signal at the decoder, or have
a high computational complexity that makes them impractical in applications with
large n.

In the sequel, we are interested in a sub-class of message-passing algorithms called
Verification-Based (VB) algorithms. An instance of VB algorithms was first intro-
duced for compressed sensing in [20]. Later, [22, 23] observed that this algorithm is
essentially identical to the earlier idea of verification decoding from [39]. This observa-
tion allowed a rigorous analysis of the VB reconstruction for compressed sensing. The
class of VB algorithms has certain properties that make it perhaps one of the most
interesting classes of recovery algorithms in compressed sensing. The VB algorithms
recover signal elements in iterations. When an element is verified, its value is kept
unchanged in future iterations. The algorithms in this class have decoding complex-
ity O(n), which makes them suitable for applications involving recovery of signals
with large n. Moreover, these algorithms operate on sparse sensing graphs, which
translates to less computations in the encoding process. Another main advantage of
VB algorithms is that they are not sensitive to the distribution of non-zero elements
of the sensing matrix as well as the distribution of non-zero elements of the signal,
if certain conditions are satisfied. We will elaborate on this topic further in Section
2.4. These properties make the VB algorithms a suitable choice for low-complexity
recovery of sparse signals. The VB algorithms are, however, sensitive to the presence
of noise in the measured data. One can always argue that: i) the noise-free analysis of
recovery algorithms could serve as an upper bound for the performance of the noisy
versions, and ii) noiseless compressed sensing has applications in computer networks
as shown in [25, 29]. Nevertheless, we will comment on using standard thresholding
techniques to deal with noisy measurements in Section 4.7. This technique is very
effective in the high signal to noise ratio (SNR) regime (such as the scenario in [28]).
An in-depth analysis of the approach, however, is beyond the scope of this thesis.

Another interesting feature of VB algorithms is that their performance can be
analyzed in the asymptotic case (n → ∞). Assume a probabilistic input model, in
which a signal element is non-zero (and takes a value from a certain distribution) with
probability α and is zero with probability 1−α. In the sequel, we refer to parameter
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α as the density factor. Furthermore, let α(`) denote the probability that a signal
element is non-zero and unverified before iteration ` over the ensemble of all sensing
graphs and inputs of interest. So, α(0) = α. If lim`→∞ α

(`) = 0, then the algorithm is
called successful for the initial density factor α.2 On the other hand, if there exists
ε > 0, such that lim`→∞ α

(`) > ε, then the algorithm is said to fail for the initial
density factor α.

Authors in [1,22,24,39–42] have shown that for each VB recovery algorithm in the
asymptotic regime as n→∞ and `→∞, a limiting value exists for α, before which
the recovery algorithm is successful and beyond which it is not. We refer to this limit
as the success threshold. The success threshold serves as an asymptotic measure of
performance for VB algorithms. It can also be used to estimate the performance of
these algorithms for finite but large values of n. To this end, researchers have analyzed
VB algorithms in the asymptotic regime (n → ∞, ` → ∞) in order to find the
success threshold associated with each VB algorithm. There are two categories of VB
algorithms: node-based (NB) and message-based (MB) [1]. The two categories yield
different success thresholds and are analyzed using different techniques. Algorithms
considered in [22,39] are of MB type, while the authors in [1] considered the NB type
recovery algorithms. In general, NB algorithms have higher success thresholds and
are harder to analyze. We elaborate on the differences between the two categories
and their corresponding analytical tools in Section 2.3. The focus of this work is on
the analysis of NB algorithms.

The analysis of NB-VB algorithms discussed in [1] results in a system of coupled
differential equations. Due to the lack of closed form solution for the resulting differ-
ential equations, the authors used numerical methods to approximate the asymptotic
results. Since the analysis is only valid for n → ∞, one has to choose very large
n for the numerical approximation. This translates to long running time and high
computational complexity. The other challenge is that numerical errors can affect the
accuracy of the results, making it hard to evaluate how close the success threshold
reported by this analysis (even for large values of n) is to the real success thresh-
old. In comparison, the analysis proposed in this thesis lends itself to closed form
update equations consisting of only simple operations (addition/subtraction and mul-
tiplication/division). As a result, the analysis is faster and, more importantly, more
accurate.

1.4 Our Contributions

One of the main goals of this work is to develop a simple and accurate framework
for the asymptotic analysis (as n → ∞, ` → ∞) of NB-VB algorithms over sparse
random sensing graphs and extend it to include recovery algorithms of similar nature
such as that of [2]. In our analysis, we assume that the measurements are noiseless.

2It is easy to prove that the probability of a zero-valued signal element being unverified at iteration

` is upper bounded by dc
α(`)

1−α(`) . Hence, when α(`) tends to zero, this probability also tends to zero.
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We demonstrate that the recovery algorithms can be described by a first order time-
varying Markov chain. We thus track the distribution of the states of this Markov
chain as well as the transition probabilities between different states through iterations
in the analysis. We refer to the analysis as density evolution, a terminology used
for the analysis of iterative message-passing algorithms of low-density parity-check
(LDPC) codes [43]. We however note that the analysis presented here fundamentally
differs from the conventional density evolution where the message passing is extrinsic
[43]. The computational complexity of the proposed analysis increases linearly with
the number of iterations. The calculation of transition probabilities includes simple
mathematical operations, more specifically addition and multiplication, as opposed
to solving complex systems of coupled differential equations, as is the case in [1].
To be more precise, in [1], the variables involved in the equations are the expected
values of certain random variables, such as the normalized number of edges of certain
type. These random variables determine the status of the decoder. In our analysis,
we calculate the probabilities of events involving similar or related random variables,
and/or their densities.

As part of our asymptotic analysis, we also discuss concentration results which
certify that the performance of a recovery algorithm for a random choice of the input
signal and the sensing matrix is very close to what is predicted by the density evolution
results at the limit of n→∞.

Using the proposed analysis, we can determine the distribution of the decoder
states at any desired iteration. By tracking the distribution of the decoder states
with iterations, we then find the success threshold of different NB-VB algorithms.
The analysis is presented first for random regular sensing graphs and then generalized
to include random irregular graphs as well. Moreover, using the proposed density
evolution analysis, we perform a comprehensive study and comparison of performance
of different VB recovery algorithms over a variety of sparse graphs. We also use the
analysis for irregular graphs as the core in an optimization setup to study and find
optimal sensing graphs under certain constraints such as fixed compression ratio and
fixed maximum degrees in the sensing graph. Our simulations show that the behavior
of VB algorithms, when applied to signals with large lengths (in the order of 105),
are in good agreement with the asymptotic analytical results. They also demonstrate
that the success threshold associated with irregular graphs can be substantially higher
than the one for regular graphs.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we introduce the class
of bipartite graphs and input signals of interest in this thesis. We also provide a
detailed description of VB algorithms along with the verification rules for each VB
algorithm in this chapter. Also in this chapter, we discuss the important notion of false
verification and its probability for VB algorithms. A message-passing interpretation
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of the recovery algorithms is presented in Chapter 3. The analysis framework will
be introduced in Chapters 4 and 5 for regular and irregular graphs, respectively. We
propose a simple modification of VB algorithms to deal with noisy measurements
in Chapter 4. Simulation results for regular and irregular graphs will be presented
in Sections 4.8 and 5.4, respectively. In Chapter 6, we will discuss the design of
irregular graphs that are optimal under certain constraints. We conclude in Chapter
7 with some guidelines for further research. Appendices A and B are devoted to
the derivation of the transition probabilities for the regular and irregular graphs,
respectively.



Chapter 2

Bipartite Graphs and Recovery
Algorithms

2.1 Introduction

As discussed in the previous chapter, the focus of this work is on sparse sensing graphs
and probabilistic input signals. In this chapter, we describe regular and irregular
bipartite graphs, their random construction and the model used for the input signal.
We then introduce the role of bipartite graphs in compressed sensing. Afterwards, we
elaborate on verification-based algorithms, their history and their usage as recovery
algorithms in the context of compressed sensing. We will discuss the verification rules
employed by VB algorithms as well as false verification concept in VB algorithms.

2.2 Bipartite Graphs and Input Signal

A bipartite graph (or bigraph) G(V ∪C,E) is defined as a graph whose set of vertices
V ∪C is divided into two disjoint sets V and C, so that every edge in the set of edges
E connects a vertex in V to one in C. Consider a bigraph G(V ∪C,E) with |V | = n
and |C| = m. Corresponding to each such graph, a biadjacency matrix A(G) of size
m×n is formed as follows: the entry aij is 1 if there exists an edge eij ∈ E connecting
the vertex ci ∈ C to the vertex vj ∈ V ; and is 0, otherwise.

In general, a bigraph can be irregular and weighted. In a bigraph, a node in V
(C) has degree i if it is neighbor (connected) to i nodes in C (V ). Let λi ∈ R+ and
ρi ∈ R+ denote the fraction of nodes in V and C with degree i, respectively. The
polynomials λ(x) =

∑
i λix

i and ρ(x) =
∑

i ρix
i are referred to as degree distributions

corresponding to nodes in V and C, respectively. Clearly, λ(1) = ρ(1) = 1. For
mathematical convenience, we define d̄v :=

∑
i iλi and d̄c :=

∑
j jρj and we refer to

them as the average variable degree and the average check degree, respectively. For
given λ(x), ρ(x) and n, let Gn(λ(x), ρ(x)) (Gn(λ, ρ) for short) denote the ensemble of
all irregular bigraphs with degree distributions λ(x) and ρ(x) and |V | = n, |C| = m =
nd̄v/d̄c.

8
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Biregular graphs (or regular bigraphs) are considered special cases of irregular
bigraphs as follows. Let dv and dc be two positive integers. Consider a bigraph
G(V ∪ C,E) so that each vertex in V (C) is incident to dv (dc) vertices in C (V ).
Clearly, ndv = mdc. We refer to this bigraph as an (n, dv, dc)-biregular graph. The
biadjacenecy matrix A(G) associated to an (n, dv, dc)-biregular graph has dc non-zero
entries in each row and dv non-zero entries in each column. For given parameters dv, dc
and n (m = ndv/dc), let Gn(dv, dc) denote the ensemble of all (n, dv, dc)-biregular
graphs.

Moreover, a regular or irregular bipartite weighted graph (or weighted bigraph)
G ′(V ∪C,E,W (E)) is a generalization of the bigraph G(V ∪C,E) in the sense that a
weight wij := W (eij) ∈ R\{0} is associated with each edge eij ∈ E. The biadjacency
matrix A(G ′) corresponding to the weighted bigraph G ′ is acquired from the biadja-
cency matrix A(G) of the underlying bigraph G by replacing non-zero aij values in
A(G) with wij.

Let us assume an arbitrary, but fixed, labeling scheme for vertex sets V and C
over the ensemble of graphs of interest. Further, let W be a matrix of size m× n of
weights w drawn i.i.d. according to a distribution f(w), andWm×n

f be the ensemble of
all such matrices. Now for any bigraph G(V ∪C,E) (∈ Gn(dv, dc) for biregular graphs
and ∈ Gn(λ, ρ) for irregular bigraphs) and any weight matrix W ∈ Wm×n

f , we form
the corresponding weighted bigraph G ′(V ∪ C,E,W (E)) as follows. To every edge
eij ∈ E, 1 ≤ i ≤ m, 1 ≤ j ≤ n, connecting ith vertex from C and jth vertex from V ,
we assign the weight W (eij) = wij; i.e., the weight in row i and column j of the weight
matrixW . Thus, we construct the ensemble of all (n, λ, ρ)-weighted irregular bigraph,
denoted by Gnf (λ, ρ), by freely combining elements in Gn(λ, ρ) and Wm×n

f . Similarly,
we construct the ensemble of all (n, dv, dc)-weighted biregular graphs, denoted by
Gnf (dv, dc), by freely combining elements in Gn(dv, dc) and Wm×n

f .
Thus far, we have described the ensemble of graphs that are of interest in this

work. In what follows, we describe the ensemble of inputs of interest. Let α ∈ [0, 1]
be a fixed real number and v be a vector of length n with elements vi drawn i.i.d.
according to a probability distribution function defined as follows: the element is zero
with probability 1 − α, or follows a distribution g with probability α (i.e., Pvi(v) =
αg(v) + (1−α)δ(v), where δ is the Dirac delta function). We denote the ensemble of
all such vectors by Vng (α).1

In compressed sensing, each measurement is a linear combination of the signal
elements. With a slight abuse of notation, we use ci and vj for both the label and the
value of the ith measurement and the jth signal element, respectively. We denote by
c and v, the column vectors of the measurements ci’s (1 ≤ i ≤ m), and the signal
elements vj’s (1 ≤ j ≤ n), respectively. The underlying system of linear combinations
can then be represented by the matrix multiplication c = Gv. In the sequel, the

1It is worth noting that the expected fraction of non-zero elements in such a vector is α. Using
the Chernoff bound, it can be shown that the actual fraction of non-zero elements in a randomly
chosen vector from this ensemble is tightly concentrated around its expected value (α) with high
probability.
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sensing matrix G is the biadjacency matrix of a weighted bigraph G(V ∪C,E,W (E))
drawn uniformly at random from the ensemble of interest (biregular or irregular).
Henceforth, we refer to the graph G as the sensing graph. Moreover, the signal vector
v is drawn uniformly at random from the ensemble Vng (α). The sets of signal elements
and measurements are respectively mapped to the vertex sets V and C (|V | = n,
|C| = m). The coefficient of the jth signal element (vj ∈ V ) in the linear combination
associated with the ith measurement ci ∈ C, the entry gij in G, is the entry wij of the
biadjacency matrix A(G) of G. Figure 2.1 pictorially represents the relation between
signal elements, measurements and the sensing graph.

Figure 2.1: A regular bipartite graph with variable nodes on the left, check nodes
on the right, variable node degree dv and check node degree dc. Check nodes are
represented by the summation symbol indicating that the value of a check node is a
linear combination of the values of variable nodes connected to it.

In the context of coding, a linear code can be represented by a bigraph, where the
two sets of nodes represent the code symbols, and the linear parity-check constraints
that the symbols have to satisfy [44]. Following the terminology frequently used in
the context of coding, we refer to the sets V and C as the variable nodes and check
nodes, respectively. We will interchangeably use the terms variable nodes and signal
elements as well as check nodes and measurements.

2.3 Verification Based Algorithms and Verification

Rules

Luby and Mitzenmacher [39] proposed and analyzed two iterative algorithms over
bigraphs for packet-based error correction in the context of channel coding. In these
algorithms, a variable node can be in one of the two states: “verified” or “unverified”.
Under certain circumstances, a variable node is verified and a value is assigned to it.
This node then contributes to the verification of other variable nodes. The decoding
process continues until either the entire set of unverified variable nodes is verified, or
the process makes no further progress while there are still some unverified variables.
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Due to the verification nature of the process, the two algorithms in [39] are called
verification-based (VB) algorithms. If the assigned value to a variable node at a
certain iteration is different from its true value, a false verification has occurred. In
Section 2.4, we discuss sufficient conditions for VB algorithms so that the probability
of false verification is zero.

In what follows, we describe four recovery algorithms that can be classified as
VB algorithms. The first algorithm, here referred to as “Genie”, is a benchmark VB
algorithm in which the support set of the signal is known at the decoder. We use the
Genie algorithm and its analysis to motivate and explain the analytical framework.
The success threshold associated with this algorithm serves as an upper bound for
the performance of other VB algorithms.2

In other recovery algorithms, the decoder has no information about the support
set. The next two decoders considered here, are the two main VB decoding algorithms
in the context of compressed sensing. The first algorithm is referred to as LM, to
stand for Luby and Mitzenmacher [39]. The same algorithm is called LM1 in [22].
The second main VB algorithm is the algorithm introduced in [20], which is the same
as the second algorithm discussed in [22]; LM2. We refer to this algorithm as SBB,
for Sarvotham, Baron and Baraniuk. The algorithm in [2], here referred to as XH,
for Xu and Hassibi, also falls into the category of VB algorithms, and can also be
analyzed using the proposed framework. This algorithm serves as the fourth and last
VB algorithm considered in this thesis.

In the VB algorithms, the check node values are initialized with the measurements.
When a variable node is verified at an iteration, its verified value is subtracted from
the value of its neighboring check nodes. The variable node, then, is removed from
the sensing bigraph along with all its adjacent edges. Hence, all the neighboring
check nodes of the verified variable node face a reduction in their degree. In the next
iteration, some variable nodes may be verified based on the degree and/or the value
of their neighboring check nodes. The rules based on which the variable nodes are
verified at each iteration are called verification rules and are as follows:

• Zero Check Node (ZCN): If a check node has a zero value, all its neighboring
variable nodes are verified with a zero value.

• Degree One Check Node (D1CN): If a check node has degree 1 in a graph, its
unique neighboring variable node is verified with the value of the check node.

• Equal Check Nodes (ECN): Suppose we have N check nodes with the same
non-zero value, then 1) all variable nodes neighboring a subset of these N check
nodes (not all of them) are verified with the value zero; 2) if there exists a
unique variable node neighboring all N check nodes, then it is verified with the
common value of the check nodes.

2The Genie algorithm is essentially the same as the peeling algorithm over the erasure channel
proposed in [45]. In particular, the two algorithms have the same threshold.
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Verification rules ZCN and ECN are responsible for verifying variable nodes not
in the support set. Since, the Genie algorithm has the complete knowledge of the
support set, it has no need to apply these two rules. Hence, D1CN is the only rule
used by the Genie. Other VB algorithms, each uses a combination of verification rules
in order to verify and resolve unverified variable nodes. Assuming zero probability for
false verification, the order in which the rules are applied does not affect the overall
performance of the algorithm; it will only change the order in which variable nodes
are verified. Verification rules adopted by different algorithms are summarized in
Table 2.1.

Table 2.1: Verification rules adopted in each VB algorithm

ZCN D1CN ECN

Genie Not Needed ! Not Needed

LM ! ! %

SBB ! ! !

XH ! % !

Based on Table 2.1, SBB applies the union of all rules to verify variable nodes.
Therefore, this algorithm is expected to have the highest success threshold amongst
the practical VB algorithms discussed here. This is verified in Section 4.8.

The ECN rule as stated above can not be easily captured in the analysis. As indi-
cated in [40], the ECN rule can be modified to Modified Equal Check Nodes (MECN)
as follows without affecting the asymptotic behavior of the recovery algorithms:

Modified Equal Check Nodes (MECN): Suppose we have N check nodes with the
same non-zero value. Then if there exists a unique variable node neighbor to all such
check nodes, it is verified with the common value of the check nodes. In this case, all
other variable nodes connected to those check nodes are verified as zero.

2.4 False Verification

Let K denote the set of non-zero variable nodes in the signal; the support set. Also,
let V(c) denote the set of variable nodes neighbor to a check node c. Now, consider
the following facts:

(1) Let C be an arbitrary subset of check nodes. If all the check nodes in C are
neighbor to the same subset of nodes in K, then all these check nodes have the
same value.

(2) Any check node with no neighbor in K has a zero value.
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Verification rules ZCN and ECN in VB algorithms are designed based on the
following assumptions:

(1′) Let C ′ be any arbitrary subset of check nodes with the same value. Then all
these check nodes are neighbor to the same subset of K.

(2′) None of the variable nodes neighbor to a zero valued check node belongs to the
set K.

It is worth noting that the assumptions (1′) and (2′) are the converses of the
facts (1) and (2), respectively. To any choice of distributions f and g for non-zero
weights of the sensing graph and non-zero signal elements, respectively, corresponds a
certain probability that the converses fail to hold. Those distributions which make the
converses hold true with probability 1 (almost surely), are of interest in this thesis. In
the following theorem, we give an example of distributions that make the statements
(1′) and (2′) hold true almost surely.

Theorem 1. Let ci and cj be two distinct check nodes and Vi and Vj be their
corresponding set of neighboring variable nodes in K; i.e., Vi = V(ci) ∩ K and
Vj = V(cj) ∩ K. Suppose that at least one of the distributions f or g described
before is continuous. Then the statements (1′) and (2′), described above, are correct
with probability one for ci and cj.

The continuity of f or g is a sufficient condition to have the probability of false
verification equal to zero. A similar statement can be found in [20, 22, 23, 40, 41]. In
the rest of the thesis, we assume that the statements (1′) and (2′) are correct with
probability one and consequently, the probability of false verification for a variable
node in any iteration of the VB algorithms is zero. Using the union bound, one can
see that the probability of false verification in any iteration and also in the whole
recovery algorithm is zero.



Chapter 3

VB Recovery Algorithms as
Message-Passing Algorithms

3.1 Introduction

The verification process in VB algorithms can be seen as a message-passing procedure.
In general, a variable node sends its current state (either verified or unverified) to its
neighboring check nodes along with its value (if verified). A check node processes the
received messages and subsequently sends some messages to its neighboring variable
nodes. Each unverified variable node decides on its next state, either verified or
unverified, based on the received messages from check nodes. The process of passing
messages between variable nodes and check nodes continues until all variable nodes
are verified, or no variable node changes its state.

In message-passing algorithms, a node can take two approaches in order to produce
a message based on the set of received messages. In the first approach, the outgoing
message is a function of all received messages. In this case, all messages leaving a node
at a certain iteration are the same. In the second approach, the message passed from
node a to node b in the bigraph, is a function of all the received messages by node a
except the received message from node b. Therefore, the outgoing messages of a node
at a certain iteration may be different, depending on the received messages. In the
context of VB algorithms, the first approach is known as node-based (NB), while the
second approach is called message-based (MB) [1,22].1 So, for a NB-VB algorithm, the
state of a variable node is reported identically by all its outgoing messages, while in
an MB-VB algorithm, different states may be reported by different outgoing messages
of a variable node.

As noted in [1], the authors in [39] defined the two VB algorithms using the NB
representation but analyzed them using the MB representation. In [1], the authors
proved that for one of the VB algorithms, the NB and MB versions perform the
same, but for the other VB algorithm, the NB version outperforms the MB one. In

1In the context of iterative decoding algorithms, NB and MB approaches are known as non-
extrinsic and extrinsic message-passing, respectively [46].

14
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compressed sensing, this implies that NB versions, in general, have higher success
thresholds; i.e., can successfully recover signals with larger density factors [23].

A well-known method to analyze iterative message-passing algorithms in coding
theory is density evolution [43]. In density evolution, the distribution of messages
is tracked with the iteration number. The evolution of the message distributions
with iterations will then reveal important properties of the decoding algorithm such
as decoding threshold and convergence speed [43]. The derivation of the message
distribution however, requires the independence among the incoming messages to
a node. The analysis is thus only applicable to extrinsic message-passing algorithms
(MB decoders). To analyze NB algorithms, Zhang and Pfister [1] derived a system of
coupled differential equations. For (dv, dc) regular bigraphs, the number of differential
equations are O(dv + d2

c) and O(d3
v + d2

c) for the LM1-NB and LM2-NB algorithms,
respectively. It is difficult, if not impossible, to find a closed form solution for the
system of differential equations even for small values of dv and dc.

2 Numerical methods
were thus used in [1] to solve the system of differential equations and consequently
evaluate the performance of NB algorithms. This process however is susceptible to
numerical errors. In addition, it is hard to know how the obtained threshold for
a given finite value of n compares with the exact threshold, which applies in the
asymptotic regime of n→∞. In practice, the numerical results are highly dependent
on the selected, large but still finite, value of n.

In our work, we analyze NB-VB algorithms in the regime where n → ∞. Our
analysis has an iterative fashion, as will be clear in Chapters 4 and 5, with low-
complexity update rules, which are far less complex than the one used in [1]. More-
over, our proposed analysis is applicable to parallel versions of the algorithms and
leads to O(dv + d3

c) calculations per iteration.

3.2 Definitions and Setup

Each NB-VB algorithm works in iterations through exchanging messages between
the check nodes and the variable nodes along the edges in the graph. Any message
sent from a variable node to its neighboring check nodes belongs to an alphabet set
M : {0, 1} × R. The first coordinate of such a message is a status flag, sometimes
referred to as “recovery flag”, taking binary values. The flag indicates the verification
status of the variable node. If this flag is 0, then the variable node is not verified. If,
on the other hand, the flag is 1, then the variable node has been verified. In this case,
the second coordinate, which is a real number, is interpreted as the verified value of
the variable node.

Similarly, any message sent from a check node to all its neighboring variable
nodes belongs to an alphabet set O : Z+ ×R. The first coordinate of such a message
indicates the number of unverified variable nodes neighbor to the check node. The
first coordinate is in fact the degree of the check node in the subgraph induced by

2The number of differential equations for LM1-NB over a (3, 6) bigraph is 30.
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the unverified variable nodes. The second coordinate indicates the current value of
the check node, i.e., the result of the linear combination of the unverified neighboring
variable nodes.

The edges, in NB-MP algorithms, do not simply forward messages from check
nodes to variable nodes and vice versa. Instead, based on the traveling direction of
the message, edges multiply or divide the second coordinate of the message by their
associated weight. More specifically, if the message is sent from a variable node to a
check node, its second coordinate is multiplied by the weight. The second coordinate
of the message is divided by the weight, if the message is sent from a check node to
a variable node. So, although messages generated by a node (either variable node
or check node) are sent identically over all adjacent edges, the fact that the edges
may have different weights will result in different messages being received at the
destination nodes. All such messages are independent if the weights associated with
the corresponding edges are independent.

Any iteration ` ≥ 1 in NB-VB algorithms, consists of two rounds, denoted by
R1 and R2, each with two half-rounds, denoted by HR1 and HR2. In the R1-HR1
and R2-HR1, every check node processes all its received messages from the previous
round together with its associated measurement and sends out a message from the
alphabet O to all its neighboring variable nodes. In the R1-HR2 and R2-HR2, each
(unverified) variable node decides on its next state by processing all its received
messages. Whatever the decision, the variable node sends back a message, from the
alphabet M, to all its neighboring check nodes. So, a round starts with check nodes
processing the received messages from neighboring variable nodes, proceeds with the
transmission of messages from check nodes to variable nodes, continues by variable
nodes processing the received messages from neighboring check nodes, and ends with
the transmission of messages from variable nodes to check nodes. The two rounds in
each iteration follow the same general structure. They only differ in the processing
carried out in the variable nodes.

In Figures 3.1 and 3.2, we have shown the snap shots of message passing between
a variable node of degree 3 and a check node of degree 4. The snap shots represent
the two half-rounds (HR1 and HR2) of a generic round of recovery.

Let Φ
(1,`)
v : Odv → M and Φ

(2,`)
v : Odv → M, ` ∈ N, represent the mappings

used at any unverified variable node of degree dv to map the incoming messages to
the outgoing message in the first and the second round of iteration `, respectively.
Obviously, due to the verification-based nature of the algorithms, when a variable
node becomes verified at an iteration, its outgoing message remains unchanged, ir-
respective of its incoming messages. In contrast to the variable nodes, the mapping
function used in check nodes is identical for both the first and the second round of
each iteration. Every check node has an associated received measurement; a random
variable taking values in R. So, we use the notation Φ

(`)
c : R ×Mdc → O, ` ∈ N, to

denote the mapping function used in all check nodes of degree dc at iteration `. For
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(a) Variable Node to Check
Node

(b) Check Node Processing (c) Check Node to Variable
Node

Figure 3.1: Message-Passing in HR1 of a typical round

(a) Check Node to Variable
Node

(b) Variable Node Processing(c) Variable Node to Check
Node

Figure 3.2: Message-Passing in HR2 of a typical round

the sake of completeness, let Φ
(0)
v = Φ

(2,0)
v : Odv →M and Φ

(0)
c : R→ O represent the

mappings used, respectively in all variable nodes of degree dv and all check nodes at
iteration 0. This iteration consists of only one round. For the VB algorithms under
consideration, the mapping functions in the variable nodes and check nodes are not a
function of the iteration number. Therefore, we omit the superscript (`) henceforth.

In what follows, we describe VB algorithms of Section 2.3 as message-passing
algorithms with the general structure explained above.3

3It is worth mentioning that the message-passing description of SBB and XH algorithms (in

particular, Φ
(1)
v ), presented in Sections 3.3.3 and 3.3.4, are only valid for the cases in which the

non-zero weights of the sensing graph are drawn from an uncountable or countably infinite alphabet
set. If the elements of the sensing matrix are drawn from a finite alphabet set, such as binary 0
and 1, the outgoing messages from a check node should also include the list of all unverified variable
nodes neighbor to the check node. The mapping function in the variable nodes should also change in
order to use the extra information in the incoming messages. Please also see Footnote 5 in Section
3.3.3.



CHAPTER 3. VB RECOVERYALGORITHMS ASMESSAGE-PASSING ALGORITHMS18

3.3 Message-Passing Description of Recovery Al-

gorithms

To describe the four VB recovery algorithms using the message-passing approach, we
need to define the mappings Φ

(1)
v , Φ

(2)
v and Φc. Mapping Φ

(1)
v embeds the verification

rules D1CN and ECN, while the mapping Φ
(2)
v embeds the ZCN rule. To make the

description of mappings Φv and Φc simpler, we introduce some notations to represent
the incoming messages to variable and check nodes from the alphabet sets O andM,
respectively. A message o ∈ O, incoming to a variable node, is an ordered pair of
elements (d, ξ), where d ∈ Z+

, ξ ∈ R. A message m ∈M, incoming to a check node,
is an ordered pair of elements (s, ω), where s ∈ {0, 1}, ω ∈ R. Moreover, we assume
that there is an arbitrary numbering for edges adjacent to a node (either variable
node or check node). So, we use the notations oi, 1 ≤ i ≤ dv, and mj, 1 ≤ j ≤ dc,
to denote the incoming messages to a variable node of degree dv and a check node of
degree dc, respectively. Henceforth, to simplify the notation, we describe the mapping
rules assuming a variable node of degree dv and a check node of degree dc.

At iteration zero, all variable nodes are unverified and there is no received message
at the check nodes. At this stage, all check nodes send their corresponding measure-
ments along with their degree to their neighboring variable nodes. For the following
iterations ` ≥ 1, the mapping function at any check node ci (of degree dc) is as follows:

Φc(ci,m1, · · · ,mdc) = (dc −
dc∑
i=1

si, ci −
dc∑
i=1

siωi),

where, ci in the above equation is the measurement associated with the check node ci,
and mi = (si, ωi) is the message received along the ith edge. The mapping functions

Φ
(1)
v , Φ

(2)
v are algorithm dependent and are discussed for each VB algorithm separately

next.
The decoder stops at an iteration `, ` ≥ 1, if the algorithm makes no further

progress, i.e., the set of verified variable nodes are the same for the two consecutive
iterations ` − 1 and `. Equivalently, the algorithm stops if the messages sent from
variable nodes to check nodes, and also from check nodes to variable nodes, are the
same for two consecutive iterations ` and `− 1. At this point, if the decoder is able
to verify all the variable nodes, then the decoding is called successful. Otherwise, the
decoder will declare a failure.

3.3.1 Genie

In this algorithm, each iteration consists of only one round, in which one verification
rule (D1CN) is applied to all variable nodes. For variable nodes not in the support
set, the outgoing message in all iterations is fixed and equals m = (1, 0).

For any variable node (of degree dv) in the support set, the mapping
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Φv(o1, · · · ,odv) is defined based on the following rules.

• Rule 1: If among all received messages (from the neighboring check nodes),
there exists only one message, say oi, i ∈ [dc], such that oi = (1, ξi), ξi ∈ R,
then Φv(o1, · · · ,odv) = (1, ξi). In this case, the variable node is verified with
the value ξi.

• Rule 2: If multiple messages exist in the form (1, ξ) (any ξ ∈ R), then choose
one at random, say oi = (1, ξi), ξi ∈ R, and set Φv(o1, · · · ,odv) = (1, ξi). In
this case, the variable node is verified with the value ξi.

• Rule 3: If none of the above happens, then Φv(o1, · · · ,odv) = (0, 0). In this
case, the variable node is still unverified.

For any unverified variable node, the mappings Φ
(1)
v and Φ

(2)
v are defined according

to the following sets of rules, for LM, SBB and XH, respectively.

3.3.2 LM

• Φ
(1)
v (o1, · · · ,odv): Apply Rules 1 - 3 of Genie.

• Φ
(2)
v (o1, · · · ,odv):

– Rule 4: If there exists at least one message oi such that oi = (di, 0) (for

any di ∈ Z+
), then Φ

(2)
v (o1, · · · ,odv) = (1, 0). In this case, the variable

node is verified with the value equal to 0.

– Rule 5: If no incoming message exists in the form (di, 0) (for any di ∈ Z+
),

then Φ
(2)
v (o1, · · · ,odv) = (0, 0). In this case, the variable node is still

unverified.

3.3.3 SBB

• Φ
(1)
v (o1, · · · ,odv):4

– Apply Rule 1 of Genie.

– If there exist N messages (2 ≤ N ≤ dv) oi1 = (di1 , ξi1), oi2 = (di2 , ξi2), · · · ,
oiN = (diN , ξiN ), such that ξi1 = ξi2 = · · · = ξiN , then Φ

(1)
v (o1, · · · ,odv) =

4The original recovery algorithm introduced in [20] has a computational complexity of O(m·logm)
(which translates to O(n · log n) for biregular graphs of fixed degrees). It is easy to prove that the
message-passing description provided here does not change the recovery capability of the algorithm
but results in the reduction of decoding complexity from O(n · log n) to O(n).
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(1, ξi1). In this case, the variable node is verified with the common value
ξi1 .

5

– If a variable node is verified to different values according to verification
rules above, then choose one at random and generate the outgoing message
accordingly.

– Apply Rule 3 of Genie.

• Φ
(2)
v (o1, · · · ,odv): Apply Rules 4 and 5 of LM.

3.3.4 XH

• Φ
(1)
v (o1, · · · ,odv):

– If there exist M messages (ddv/2e ≤ M ≤ dv) oi1 = (di1 , ξi1), oi2 =
(di2 , ξi2), · · · , oiM = (diM , ξiM ), such that ξi1 = ξi2 = · · · = ξiM , then

Φ
(1)
v (o1, · · · ,odv) = (1, ξi1). In this case, the variable node is verified with

the common value ξi1 .

– If a variable node is verified to different values according to the verification
rule above, i.e., if two groups of messages both at least of size dv/2 satisfy
the above condition, then choose one at random and generate the outgoing
message accordingly.

– Apply Rule 3 of Genie.

• Φ
(2)
v (o1, · · · ,odv): Apply Rules 4 and 5 of LM.

3.4 A Short Note on False Verification

In the above description of recovery algorithms, there may be cases where a variable
node can be verified to different values by different rules. Using the same assumption
made in Section 2.4, it is easy to see that the probability of this event is equal to
zero. In such cases, we have thus assumed that the variable node is verified by one
of the rules selected randomly. Clearly, the probability of false verification as a result
of such selections is zero.

5We note that the message received by the variable node equals the message sent from the check
node divided by the weight of the connecting edge. Therefore, receiving N messages with the same
value would imply that, almost surely, the unverified variable node under consideration is the unique
non-zero variable node neighbor to the N check nodes. Other unverified variable nodes neighbor to
these N check nodes do not belong to the support set and should be verified with a value equal to
zero. This, however, happens in the next round.



Chapter 4

Analysis of NB-VB Algorithms over
Regular Graphs

4.1 Background

In this chapter, we first show that (i) the performance of a realization of the sensing
graph, with a certain selection of the edge weights for the recovery of a realization of
the input signal concentrates around the average performance of the ensemble (where
the average is taken over all the elements in the ensemble Gnf (dv, dc)×Vng (α), for given
probability distribution functions f, g, and given constant parameters dv, dc and α),
as n tends to infinity, and (ii) the average performance of the ensemble, as n goes to
infinity, converges to the performance of the cycle-free case defined as follows.

Let N 2`
v be the neighborhood of node v of depth 2`, i.e., the subgraph consisting

of the variable node v and all those nodes that are connected to v with any path
of length less than or equal to 2`. We say that we are working under the cycle-free
assumption when for a fixed `, and for every v, N 2`

v is tree-like.1

Following the concentration results, we first present the asymptotic analysis of the
Genie algorithm.2 The analysis provides us with the average ensemble performance
for the asymptotic case of n → ∞. We then generalize the concepts used in the
analysis of Genie and analyze XH, LM and SBB algorithms.

1These concentration results were established as a joint work with Anoosheh Heidarzadeh, another
Ph.D. student, and are presented here for the sake of completeness. The author has contributed in
the derivation of the upper bound presented in Equation (4.1).

2An analysis of the Genie algorithm (peeling decoder) over the erasure channel is given in [45].
Unlike the approach adopted in this work, the analysis of [45] is based on modeling the progress of
iterative decoding with a set of differential equations.

21
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4.2 Concentration Results and Convergence to

Cycle-Free Case

Consider a weighted graph selected at random from Gnf (dv, dc). Also consider an input
signal vector v chosen randomly from Vng (α). Suppose that a VB algorithm is applied
to the measurement vector c = Gv to recover v iteratively, whereG is the biadjacency
matrix of the chosen weighted graph. For this scenario, let β(`) (:= β(`)(G,w,v)) be
the fraction of unverified non-zero variable nodes at the beginning of iteration `, i.e.,
the fraction of variable to check node messages passed along the edges of the chosen
weighted graph with unverified status (sent by non-zero variable nodes); further, let
E[β(`)] denote the expected value of β(`), where the expectation is taken over the
ensembles Gnf (dv, dc) and Vng (α). Now, consider the corresponding cycle-free case,

and let α(`) be the expected number of messages with unverified status passed along
an edge emanating from a non-zero variable node with a tree-like neighborhood of
depth at least 2` at the `th iteration. Here, again, the expectation is taken over the
ensembles of input signals and weighted graphs.

In the subsequent subsection, we will show how α(`) can be calculated. It should
be clear that α(`), being defined as the “average” over the ensemble of weighted graphs
and input vectors, is the same as the “probability” that a message from a non-zero
variable node with a tree-like neighborhood of depth at least 2`, at the `th iteration,
carries an unverified status. In this section, we use the interpretation of α(`) as an
average. The interpretation of α(`) as a probability will be used in the analysis section.
In the following, we will show that over all realizations, with high probability, β(`)

does not deviate much from E[β(`)], and E[β(`)], itself, is not far from α(`), as n tends
to infinity.

Theorem 2. Over the probability space of all weighted graphs Gnf (dv, dc), and all signal

inputs Vng (α), for a fixed `, letting β(`) and α(`) be defined as above, for each of the
NB-VB algorithms discussed in this paper, there exist positive constants µ(dv, dc, `)
and γ(dv, dc, `), such that (i) for any ε > 0,

Pr
[∣∣β(`) − E[β(`)]

∣∣ > ε/2
]
≤ 2e−ε

2n/µ, (4.1)

and (ii) for any ε > 0, and n > 2γ/ε,∣∣E[β(`)]− α(`)
∣∣ < ε/2. (4.2)

Note that combining (4.1) and (4.2), the following holds: for any ε > 0, and
n > 2γ/ε,

Pr
[∣∣β(`) − α(`)

∣∣ > ε
]
≤ 2e−ε

2n/µ.

Our method of proof for Theorem 2 is similar to that of [43], though due to the
differences in the nature of the problems (channel coding vs. compressed sensing)
and the difference in the update equations at the graph nodes, some arguments are
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revised and some new components are added to the proof. We refer the reader to [47]
for the details of the proof.

4.3 Analysis of the Genie

In the Genie algorithm, the support set is known. Therefore, the set of all variable
nodes can be partitioned into two sets: verified R and unverified K. At iteration
zero, variable nodes in the support set are unverified, and the zero-valued variable
nodes belong to the verified set. In future iterations, during the verification process,
variable nodes are moved from set K to set R. We use notations K(`) and R(`) to
denote the set of unverified and verified variable nodes at (the beginning of) iteration
`, respectively. We also use the superscript ` to indicate the iteration number for all
the other sets in this section in the same way. Our goal in the analysis is to track the
evolution of the subgraph induced by the variable nodes in K(`). This is the subgraph
that is actively involved in the message-passing process. In the following, when we
refer to the degree of a check node, we implicitly mean the degree of the check node
in this subgraph. To make this explicit, we may use the term K-degree. Similarly,
the term R-degree may be used. Clearly, the sum of the K-degree and the R-degree
of each check node is dc.

Each iteration of the Genie algorithm consists of only one round (two half-rounds,
HR1 and HR2). At a generic iteration `, in the HR1, check nodes process the received
messages from variable nodes sent at iteration `−1 and generate outgoing messages to
be delivered to variable nodes. We partition the check nodes based on their K-degree.
The set of check nodes with K-degree i after the (processing in the) HR1 of iteration

`, is represented by N (`,1)
i . A check node with K-degree j before HR1 may have a

degree i ≤ j after HR1. In HR2, the variable nodes process the incoming messages and
generate outgoing messages accordingly. Variable nodes, are also partitioned based
on the number of neighboring check nodes of K-degree 1. The unverified variable
nodes with i neighboring check nodes of K-degree 1 after the (processing in the) HR2

of iteration ` are represented by K(`,2)
i . Note that the grouping of check nodes remains

unchanged during the HR2 of the same iteration. In a similar way, the grouping of
variable nodes remains unchanged during the HR1 of the next iteration.

In the HR1 of iteration zero, every check node sends its corresponding measure-
ment value along with its degree, dc. In HR2, variable nodes in R(0) return a verified
message with a value equal to 0, while variable nodes in K(0) return a message with the
status bit equal to zero. At iteration 0, the set K(0,2)

0 includes all unverified variable
nodes K(0).

In the HR1 of iteration 1, an outgoing message of a check node has the following
two properties: 1) the second coordinate of the message is still equal to the measure-
ment value for the check node since no variable node from the support set was verified
at iteration 0, and 2) the first coordinate of the message, which is the K-degree of
the check node, is less than or equal to dc since the variable nodes not in the support
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set (R(1) = R(0)) have been revealed at iteration 0, thus reducing the number of

unverified variable nodes connected to the check nodes. We use the notation N (`)
i↓j to

refer to the subset of check nodes N (`−1,1)
i that are moved to N (`,1)

j . The arrow points
downward in the notation to emphasize that j ≤ i. Note that for iteration 1, i = dc.

In the HR2 of iteration 1, after receiving the messages from check nodes, variable
nodes in K(0,2)

0 are partitioned into the sets K(1,2)
j , 0 ≤ j ≤ dv. We denote by K(`)

i↑j

the set of variable nodes in K(`−1,2)
i joining the set K(`,2)

j . In this case, j ≥ i, hence
the use of the arrow pointing up. Based on the verification rule for the Genie, at any
iteration ` if an unverified variable node is neighbor to at least one check node in the
set N (`,1)

1 , it will be verified. So, variable nodes in the set
⋃dv
j=1K

(1,2)
j are verified at

the end of iteration 1. Therefore, the new sets R(2) and K(2) to be used at iteration
2 are calculated as follows.

R(2) =
dv⋃
j=1

K(1,2)
j ∪R(1), K(2) = K(1,2)

0 .

The message passing and verification processes continue in next iterations in the same
fashion discussed above. In summary, in a generic iteration `, we have the following
relationships:

N (`−1,1)
i =

i⋃
j=0

N (`)
i↓j , 1 ≤ i ≤, dc, N (`)

1↓1 = ∅, N (`,1)
j =

dc⋃
i=j

N (`)
i↓j , 0 ≤ j ≤, dc,

R(`+1) =
dv⋃
j=1

K(`,2)
j ∪R(`), K(`+1) = K(`,2)

0 =
dv⋃
j=0

K(`−1)
0↑j , K(`,2)

j = K(`)
0↑j, 0 ≤ j ≤ dv.

By tracking the set K(`) with iterations, we can decide on the success or failure of the
algorithm. If the size of the set K(`) shrinks to zero as `→∞, then the algorithm is
successful. On the other hand, if there exists an ε > 0 such that |K(`)| ≥ ε, ∀` ≥ 1,
then the algorithm fails. The success or failure of the algorithm depends on the
parameters of the graph (dv and dc) as well as the initial size of the support set |K(0)|.

Based on the concentration results, to analyze the Genie in the asymptotic case,
we track the probability α(`) that a variable node belongs to the set K(`). Hence,
we focus on a tree-like graph with random weights and a random input signal. Let
p(`,1)
Ni

, 0 ≤ i ≤ dc, denote the probability that a check node belongs to the set N (`,1)
i .

Furthermore, let p
(`,2)
Kj

, 0 ≤ j ≤ dv, denote the probability that an unverified (non-

zero) variable node belongs to the set K(`,2)
j . In Table 4.1, we have summarized the

terminologies used in the analysis of Genie, and in Table 4.2, we have presented the
step-by-step procedure to update the probabilities p

(`,1)
Ni

, p
(`,2)
Kj

, and α(`), for ` ≥ 1, in

terms of probabilities α(`−1), p
(`−1,1)
Ni

, and p
(`−1,2)
Kj

. The derivation details can be found
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Table 4.1: Probabilities Involved in the Analysis of Genie in Table 4.2. Each Entry
of the Table is the Probability of the Corresponding Event.

Probability Definition

α(`) variable nodes is unverified at the beginning of iteration `.

p(`)
Nj↓i

check node has K-degree j before and K-degree i, i ≤ j, after

HR1 of iteration `.

p(`,1)
Ni

check node has K-degree i after the HR1 of iteration `.

p(`,2)
Ki

unverified variable node has i neighboring check nodes

of K-degree 1 after HR2 of iteration `.

p(`+1) edge connected to a variable node in K(`) is also connected to

a check node in N (`,1)
1 .

A(`) edge connecting a check node in the set N (`−1,1)
j , j ≥ 2, and

an unverified variable node, carries a verified message

to the check node in HR1 of iteration `.

in Part A.2 of the appendix.

4.4 Framework for the Analysis of XH

The analysis of the Genie and XH algorithms are very similar and differ in a few
update rules. The XH algorithm consists of two rounds. However, since the D1CN
verification rule is not present, it suffices to track the evolution of the support set
in the analysis. From this perspective, the analysis of the Genie and XH algorithms
are the same. The only difference lies in the set of variable nodes verified in each
iteration. The set of verified variable nodes at iteration ` for the Genie algorithm
follows

R(`+1) =
dv⋃
j=1

K(`,2)
j ∪R(`).

For the XH algorithm, this set is:

R(`+1) =
dv⋃

j=ddv/2e

K(`,2)
j ∪R(`).
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Table 4.2: Density Evolution Analysis of Genie

Inputs: dv, dc, α
(0)

Initialization

p(1,1)
Ni

=
(
dc
i

) (
α(0)
)i (

1− α(0)
)dc−i

, 0 ≤ i ≤ dc

α(1) = α(0)

p(2) =
(
1− α(1)

)dc−1

p(1,2)
K0

=
(
1− p(2)

)dv
Recursive Formulas for ` ≥ 2

1) A(`) = 1−
(
1− p(`)

)dv−1

2) p(`)
N1↓0

= 1, p
(`)
N1↓1

= 0, p
(`)
N0↓0

= 1

p(`)
Nj↓i

=
(
j
j−i

) (
A(`)

)j−i (
1− A(`)

)i
, 2 ≤ j ≤ dc, 0 ≤ i ≤ j

3) p(`,1)
Ni

=
∑dc

j=i
p(`−1,1)
Nj

p(`)
Nj↓i

, 0 ≤ i ≤ dc

4) α(`) = α(`−1)p(`−1,2)
K0

5) p(`+1) =
p(`,1)
N1

α(`)dc
6) p(`,2)

Kj
=
(
dv
j

) (
p(`+1)

)j (
1− p(`+1)

)dv−j
, 0 ≤ j ≤ dv

Details of the analysis can be found in Section A.3. The summary of the update
equations are listed in Table 4.3.

4.5 General Framework for the Analysis of LM

and SBB

In LM and SBB, at the beginning of any iteration `, the set of all variable nodes is
partitioned into three sets: K(`), R(`), and ∆(`). The set K(`) consists of all unverified
non-zero variable nodes, while the set ∆(`) consists of all unverified zero-valued vari-
able nodes. The set R(`) includes all the verified variable nodes. Clearly, the decoder
can not make the distinction between variable nodes in the sets K(`) and ∆(`). The
distinction between the two sets, however, is needed for the analysis.

Furthermore, at any iteration `, we partition the set of all check nodes into subsets
N (`)
i,j . The index i indicates the number of neighboring variable nodes in the set K(`)

while the index j indicates the number of neighboring variable nodes in the set ∆(`).
This is shown in Fig. 4.1. The two indices are referred to as K- and ∆-degrees of the
check nodes, respectively. Note that: i) the degree of each check node in the subgraph
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Table 4.3: Density Evolution Analysis of XH

Inputs: dv, dc, α
(0)

Initialization

p(1,1)
Ni

=
(
dc
i

) (
α(0)
)i (

1− α(0)
)dc−i

, 0 ≤ i ≤ dc

α(1) = α(0)

p(2) =
(
1− α(1)

)dc−1

p(1,2)
K0

=
(
1− p(2)

)dv
Recursive Formulas for ` ≥ 2

1) A(`) = 1−
ddv/2e−1∑
i=0

p(`−1,2)
Ki

1− p(`)

2) p(`)
N1↓0

=
dv∑

i=ddv/2e

ip
(`−1,2)
Ki

dv∑
i=0

ip
(`−1,2)
Ki

, p
(`)
N1↓1

= 1− p(`)
N1↓0

, p
(`)
N0↓0

= 1

p(`)
Nj↓i

=
(
j
j−i

) (
A(`)

)j−i (
1− A(`)

)i
, 2 ≤ j ≤ dc, 0 ≤ i ≤ j

3) p(`,1)
Ni

=
∑dc

j=i
p(`−1,1)
Nj

p(`)
Nj↓i

, 0 ≤ i ≤ dc

4) α(`) = α(`−1)

1−
dv∑

i=ddv/2e

p(`,2)
Ki

 .

5) p(`+1) =
p(`,1)
N1

α(`)dc
6) p(`,2)

Kj
=
(
dv
j

) (
p(`+1)

)j (
1− p(`+1)

)dv−j
, 0 ≤ j ≤ dv

induced by unverified variable nodes, at iteration ` (reflected in the outgoing message
of the check node), is i + j, and ii) the second coordinate of messages received by a

variable node in the support set from check nodes in the sets N (`)
1,j , 0 ≤ j ≤ dc − 1, is

the same.
In algorithms LM and SBB, each iteration consists of two rounds, each with two

half-rounds. The configuration of the sets at the end of each half-round (HR1 or
HR2), each round (R1 or R2), and each iteration (`), is specified using the following 4
superscripts: (`, R1, 1), (`, R1, 2), (`, R2, 1), and (`, R2, 2), where the term “HR” (for
half round) is dropped for a simpler notation. In the first half-rounds (any round and
any iteration), messages are passed from check nodes to variable nodes, while in the
second half-rounds, messages are passed from variable nodes to check nodes. Also,
based on the definition of mapping functions Φ

(1,`)
v and Φ

(2,`)
v , verified variable nodes

in the first and the second rounds belong to the sets K(`) and ∆(`), respectively. We
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Figure 4.1: Each check node in the set Ni,j has i connections to the variable nodes in
set K and j connections to the variable nodes in set ∆.

have summarized in Table 4.4 the sets that are affected in each half-round (HR) of
each round (R) at any iteration.

Table 4.4: Sets that are affected in each half-round of each round at any iteration of
LM and SBB

R1 R2

HR1 HR2 HR1 HR2

Nk,i → Nk,j Ki → Kj Ni,k → Nj,k ∆i → ∆j

The set K(`,R1,2)
i in the LM algorithm represents the set of unverified variable nodes

in the support set with i neighboring check nodes in the set N (`,R1,1)
1,0 . The definition

of set K(`,R1,2)
i for the SBB algorithm is different. Let N (`)

i :=
⋃dc−i
j=0 N

(`,R1,1)
i,j . With

this notation, the set K(`,R1,2)
i in the SBB algorithm is defined as the set of unverified

variable nodes in the support set with i neighboring check nodes in the set N (`)
1 .

These sets are shown in Fig. 4.2 for the two algorithms.
In Theorems 3 and 4 below, we characterize the verification of unverified non-zero

variable nodes in the set K(`) in each iteration ` for the two algorithms LM and SBB,
respectively. The proofs are rather straightforward and follow from the verification
rules for LM and SBB, respectively.

Theorem 3. In the first round of any iteration ` in the LM algorithm, a non-zero
variable node v ∈ K(`) is verified if and only if it belongs to the set

⋃dv
i=1K

(`,R1,2)
i .
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(a) LM (b) SBB

Figure 4.2: The Difference in the Definition of Ki in LM vs. SBB.

Theorem 4. In the first round of any iteration ` in the SBB algorithm, a non-zero
variable node v ∈ K(`) is verified if and only if it belongs to the set

⋃dv
i=2K

(`,R1,2)
i ∪

K̂(`,R1,2)
1 , where the set K̂(`,R1,2)

1 consists of all variable nodes in the set K(`,R1,2)
1 con-

nected to the set N (`,R1,1)
1,0 .

In LM and SBB algorithms, unverified variable nodes with zero values are verified
in R2. Note that a check node is zero-valued if it belongs to the set N (`,R2,1)

0,j , 0 ≤ j ≤
dc. Therefore, for the verification of zero-valued variable nodes in the second round
of iteration `, we partition the set of variable nodes in ∆(`) into subsets ∆

(`)
i , 0 ≤ i ≤

dv, with the following definition: a variable node in the set ∆
(`)
i has i neighboring

check nodes in the set
{⋃dc

j=1N
(`,R2,1)
0,j \⋃dc

j=1N
(`,R1,1)
0,j

}
, i.e., the set of check nodes

which became zero-valued after HR1 of R2. In Theorem 5 below, we characterize the
verification of unverified zero-valued variable nodes in the set ∆(`) at R2-HR2 in each
iteration ` of LM and SBB algorithms.

Theorem 5. In the second half-round of the second round of any iteration ` in the
LM and SBB algorithms a zero-valued variable node v ∈ ∆(`) is verified if and only if
it belongs to the set

⋃dv
i=1 ∆

(`)
i .

We denote by N (`,R1)
i,k↓j the set of check nodes that are moved from N (`−1,R2,1)

i,k to

N (`,R1,1)
i,j in R1-HR1 of iteration `. Similarly, the set of check nodes that are moved

fromN (`,R1,1)
i,k toN (`,R2,1)

j,k in R2-HR1 of iteration ` is denoted byN (`,R2)
i↓j,k . Since variable

nodes in K and ∆ are verified through iterations, we always have j ≤ i and hence the
use of notation i ↓ j. Moreover, in SBB, we denote the set of variable nodes that are
moved from K(`−1,R1,2)

i to K(`,R1,2)
j in R1-HR2 of iteration ` by K(`,R1)

i↑j .
The sets that fully describe the state of the decoder at the beginning of iteration

` are: K(`), R(`), ∆(`), N (`−1,R2,1)
i,j , K(`−1,R1,2)

i , and ∆
(`−1,R2,2)
i . For the analysis, we

track the probability that a node (variable node or check node) belongs to a certain
set at each half-round, round, or iteration. We use the notation α(`) to denote the
probability that a variable node belongs to the set K(`). For the rest of the sets,
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we use the standard notation of probabilities that was applied in the analysis of the
Genie algorithm. For instance, we denote the probability that a check node belongs
to the set N (`,R1,1)

i,j by p
(`,R1,1)
Ni,j

.
In the analysis, the goal is to find the recursive equations that relate the proba-

bilities of different sets for consecutive iterations. As we shall see, the analysis of the
decoding process for LM and SBB results in a system of coupled recursive update
equations. Moreover, we show that the update equations at iteration ` are functions
of probabilities at iteration `−1. Hence, the complexity of the analysis scales linearly
with the number of iterations. In the following subsection, we present the update
equations for LM and SBB algorithms. The derivation of formulas are discussed in
detail in Parts A.4 and A.5 of the appendix for the two algorithms, respectively.

4.6 Update Equations for LM and SBB Algo-

rithms

We have summarized the sets involved in the analysis of LM and SBB algorithms in
Table 4.5. The step-by-step analysis of the algorithms are presented in Tables 4.7,
4.8, 4.9, 4.10 and 4.11, where the update equations are identified by the round and
the half-round they correspond to. The update equations in these tables involve the
probabilities of the sets described in Table 4.5, as well as some other probabilities,
defined in Table 4.6.

4.7 Noisy Measurements

We adopt the following model for the case where the measurements are noisy [48]:

c = Gv + n.

In this new model, v andG are the original signal and the sensing matrix, respectively.
The new term, n, represents the noise vector added to the noiseless measurementsGv,
resulting in the noisy measurement vector c. Elements of the noise vector are assumed
to be i.i.d. Gaussian random variables with mean 0 and variance σ2. The addition
of noise to the measurements results in the following two probabilities to be zero:
1) the probability of having a zero measurement, and 2) the probability of having
two equal measurements. This will disable the ZCN and ECN rules in recovering
the signal elements. Without the ZCN and ECN rules, zero-valued variable nodes
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Table 4.5: Sets Involved in the Analysis of LM and SBB Algorithms (` ≥ 2)

Sets Involved in Both Analyses

K(`) unverified non-zero VNs at the beginning of iteration `.

∆(`) unverified zero-valued VNs at the beginning of iteration `.

K(`,R1,2)
i VNs in the support set with i neighboring CNs in the set X after R1-HR1.

For LM, X = N (`,R1,1)
1,0 and for SBB, X = N (`)

1 :=
⋃dc−1
j=0 N

(`,R1,1)
1,j .

∆
(`,R2,2)
i VNs with i neighboring CNs in the set

{⋃dc
j=1N

(`,R2,1)
0,j \⋃dc

j=1N
(`,R1,1)
0,j

}
i.e., the set of CNs which became zero-valued after R2-HR1.

N (`,R1,1)
i,j CNs with K-degree i and ∆-degree j after R1-HR1.

N (`,R2,1)
i,j CNs with K-degree i and ∆-degree j after R2-HR1.

N (`,R1)
i,k↓j CNs that are moved from N (`−1,R2,1)

i,k to N (`,R1,1)
i,j in R1-HR1.

N (`,R2)
i↓j,k CNs that are moved from N (`,R1,1)

i,k to N (`,R2,1)
j,k in R2-HR1.

Sets Involved in the Analysis of SBB Only

K(`,R1)
i↑j variable nodes moved from K(`−1,R1,2)

i , i = 0, 1, into K(`,R1,2)
j , i ≤ j ≤ dv.

K(`,R1,2,+)
1 VNs in K(`,R1)

0↑1 not verified at iteration `, R1-HR2.

K(`,R1,2,C)
1 VNs in K(`,R1)

1↑1 not verified at iteration `, R1-HR2.

N (`,R1,1,+)
1,j CNs moved from N (`−1,R2,1,+)

1,k , as part of N (`,R1)
1,k↓j at iteration `, R1-HR1.

N (`,R1,1,C)
1,j CNs moved from N (`−1,R2,1,C)

1,k , as part of N (`,R1)
1,k↓j at iteration `, R1-HR1.

N (`,R2,1,+)
1,j CNs moved into the set N (`,R2,1)

1,j from all the other sets N (`,R1,1)
i,j

at iteration `, R2-HR1.

N (`,R2,1,C)
1,i union of sets N (`,R2,C,F )

1,i and N (`,R2,+,F )
1,i , 1 ≤ i ≤ dc − 1.

N (`,R2,+,F )
1,i CNs of ∆-degree i with a neighboring VN in K(`,R1)

0↑1 .

N (`,R2,+,O)
1,i CNs of ∆-degree i with a neighboring VN in K(`,R1)

0↑j .

N (`,R2,C,F )
1,i CNs of ∆-degree i, 0 ≤ i ≤ dc − 1, with a neighboring VN in K(`,R1)

1↑1 .

N (`,R2,C,O)
1,i CNs of ∆-degree i, 0 ≤ i ≤ dc − 1, with a neighboring VN in K(`,R1)

1↑j .

are not verified, and consequently, no check node will have a reduced degree in the
subgraph induced by unverified variable nodes. Therefore, the D1CN rule will also
be ineffective.

In the context of message-passing algorithms, there are generally two approaches
to deal with noisy measurements. In the first approach, the original formulation
of the problem is changed so that the noise is taken into consideration [26, 27, 32–
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Table 4.6: Probabilities that Appear in the Update Equations of LM and SBB Algo-
rithms for ` ≥ 2 (in Addition to the Probabilities of the Sets Described in Table 4.5).
Each Entry of the Table is the Probability of the Corresponding Event.

Prob. Involved in Both Analyses

A(`) message from a VN in ∆(`) to a CN indicates an unverified status

in R1-HR1 of iteration `.

B(`) LM: edge adjacent to a VN in K(`) is connected to a CN of degree 1

i.e., a CN in N `,R1,1
1,0 , after R1-HR1 of iteration `.

SBB: edge emanating from a VN in K(`) and not connected to a CN

in
⋃dc−1
k=0 N

(`,R1,1,C)
1,k , is adjacent to a CN in

⋃dc−1
k=0 N

(`,R1,1,+)
1,k .

C(`) message from a VN in K(`) to a CN (at iteration `, R2-HR1) indicates

an unverified status.

D(`) message from a CN to a VN in ∆(`) (at iteration `, R2-HR2) indicates

a zero-valued check node.

Prob. Involved in the Analysis of SBB Only

f (`,R1,+) VN in K(`,R1)
0↑1 is verified at iteration `, R1-HR2.

f (`,R1,C) VN in K(`,R1)
1↑1 is verified at iteration `, R1-HR2.

N (`,R1) VN in K(`) remains unverified at iteration `.

p(`,R1) edge is adjacent to a CN in the set N (`)
1 given it is adjacent to a VN in K(`).

34, 49]. In the other approach, the algorithms are changed in order to cope with
the presence of noise in the measurements [2]. The first approach generally results in
lower reconstruction noise. In particular, it is shown in [34] that the belief propagation
algorithm is asymptotically optimal in the case of sparse noisy measurements. The
downside to the algorithms that are based on the first approach, however, is that
they are generally more complex, may require unbounded message size and would be
susceptible to approximation errors. The authors in [2] instead equipped their VB
algorithm with some thresholding techniques and proved that if the original signal is
sparse enough, they are able to recover the location and the sign of the non-zero signal
elements successfully. In what follows, we propose a similar thresholding technique
to deal with the noisy measurements.

Thresholding is a common technique in detection theory to deal with noisy mea-
surements [50]. We apply this technique to VB algorithms by defining two thresholds
ε1 and ε2. We use ε1 to convert small noisy measurements to zero; i.e., any mea-
surement c, such that |c| < ε1, is set to zero. We use ε2 as the acceptable tolerance
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Table 4.7: Density Evolution Analysis of LM - Initialization

Inputs: dv, dc, α
(0)

A(1) = (1− α(0))
(

1−
(
1− α(0)

)dc−1
)dv−1

p(0,R2,1)
Ni,dc−i

=
(
dc
i

) (
α(0)
)i (

1− α(0)
)dc−i

, 0 ≤ i ≤ dc

p(1,R1)
Ni,dc−i↓j

=
(
dc−i
j

) (
A(1)

)j (
1− A(1)

)dc−i−j
, 1 ≤ i ≤ dv, 0 ≤ j ≤ dc − i

p(1,R1,1)
Ni,j

= p(0,R2,1)
Ni,dc−i

p(1,R1)
Ni,dc−i↓j

, 1 ≤ i ≤ dv, 0 ≤ j ≤ dc − i
α(1) = α(0)

Apply the update equations of R1-HR2 for ` = 1

Apply the update equations of R2-HR1 for ` = 1

p(1)
∆ = (1− α(0))

(
1−

(
1− α(0)

)dc−1
)dv

Apply the update equations of R2-HR2 for ` = 1

for the equality of two noisy measurements; i.e., we consider two measurements c1

and c2 equal if |c1 − c2| < ε2. In this case, we assign c1 and c2 a new common value
equal to (c1 + c2)/2. While the scope of this work is not to optimize thresholds ε1
and ε2, our goal is to demonstrate the potential of thresholding in desensitizing the
VB algorithms to the measurement noise. We explain this through an example and
by comparing the performance of the SBB algorithm equipped with thresholding and
two methods based on `1 minimization in the case where the measurements are noisy.

Consider a signal of dimension n = 1000. We let the size of the support set, k, to
increase from 10 to 150 in steps of 10. For each such support size k, we pick k out
of the n elements randomly, and assign to each element an even integer uniformly
distributed in the range [−1000, 1000], independent of the value of the other non-
zero elements. In the case of the SBB algorithm, the signal is measured through a
(3, 6) unweighted bigraph. In the case of `1-based algorithms, we use sensing matrices
consisting of orthonormal columns with Standard Gaussian elements [48]. In all cases,
the number of measurements, m, is fixed at 500. Each measurement is independently
contaminated with a Gaussian noise of mean 0 and variance equal to σ2 = 0.25.

For the SBB, we set both thresholds ε1 and ε2 equal to 1.99. Since the value
of non-zero signal elements are drawn from a finite alphabet and since the graph is
unweighted, false alarm may occur with non-zero probability in the recovery process.
In our simulations, we consider a recovery algorithm “successful” if it can fully recover
the support set.

The first `1-based recovery algorithm is the `1 regularization method introduced
in [48]. For the second algorithm, we empower the `1 regularization algorithm with the
knowledge of the size of the support set. The algorithm thus keeps the k components
that are the largest in magnitude and converts the rest to zero. To simulate the two
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Table 4.8: Density Evolution Analysis of LM - Recursive Formulas for ` ≥ 2

R1

HR1

1) A(`) =
p(`)

∆

1−D(`−1)

2) p(`,R1)
Ni,k↓j

=
(
k
j

) (
A(`)

)j (
1− A(`)

)k−j
, 1 ≤ i ≤ dc, 0 ≤ k ≤ dc − i, 0 ≤ j ≤ k

3) p(`,R1,1)
Ni,j

=
dc−i∑
k=j

p(`−1,R2,1)
Ni,k

p(`,R1)
Ni,k↓j

, 1 ≤ i ≤ dc, 0 ≤ j ≤ dc − i

HR2

1) B(`) =
p(`,R1,1)
N1,0

α(`)dc
2) p(`,R1,2)

Ki
=
(
dv
i

) (
B(`)

)i (
1−B(`)

)dv−i
, 0 ≤ i ≤ dv

3) α(`+1) = α(`)

(
1−

dv∑
i=1

p(`,R1,2)
Ki

)

R2

HR1

1) C(`) =
p(`,R1,2)
K0

1−B(`)

2) p(`,R2)
N1↓0,0

= 1, p(`,R2)
N1↓1,0

= 0, p(`,R2)
Ni↓j,k

=
(
i
j

) (
C(`)

)j (
1− C(`)

)i−j
,

2 ≤ i ≤ dc, 0 ≤ j ≤ i, 0 ≤ k ≤ dc − i

3) p(`,R2,1)
Nj,k

=
dc∑
i=j

p(`,R1,1)
Ni,k

p(`,R2)
Ni↓j,k

, 0 ≤ j ≤ dc, 0 ≤ k ≤ dc − i

HR2

1) D(`) =
dc−1∑
j=1

j
p(`,R2,1)
N0,j

dc∑
i=0

dc−1∑
j=1

jp
(`,R2,1)
Ni,j

2) p(`,R2,2)
∆i

=
(
dv
i

) (
D(`)

)i (
1−D(`)

)dv−i
, 0 ≤ i ≤ dv

3) p(`+1)
∆ = p(`)

∆
p(`,R2,2)

∆0

`1-based decoders, we use the L1MAGIC package available in [51].
As the measure of performance, we consider the mean square error (MSE) between

the original and the recovered signal. For each value of k, we perform simulations until
we obtain 100 “successful” recovery instances. The results for the three algorithms
are reported in Fig. 4.3, where for each algorithm, MSE averaged over all simulated
cases for a given value of k is shown.

As can be seen, the SBB recovery algorithm significantly (by about two orders of
magnitude) outperforms both `1-based algorithms.
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Table 4.9: Density Evolution Analysis of SBB - Initialization

Inputs: dv, dc, α
(0)

A(1) = (1− α(0))
(

1−
(
1− α(0)

)dc−1
)dv−1

p(0,R2,1)
Ni,dc−i

=
(
dc
i

) (
α(0)
)i (

1− α(0)
)dc−i

, 0 ≤ i ≤ dc

p(1,R1)
Ni,dc−i↓j

=
(
dc−i
j

) (
A(1)

)j (
1− A(1)

)dc−i−j
, 1 ≤ i ≤ dv, 0 ≤ j ≤ dc − i

p(1,R1,1)
Ni,j

= p(0,R2,1)
Ni,dc−i

p(1,R1)
Ni,dc−i↓j

, 1 ≤ i ≤ dv, 0 ≤ j ≤ dc − i
α(1) = α(0)

f (1,R1) =
p(1,R1,1)
N1,0

dc−1∑
j=0

p(1,R1,1)
N1,j

, B(1) =
dc−1∑
j=0

p(1,R1,1)
N1,j

α(1)dc

N (1,R1) =
(
1−B(1)

)dv
+ dv

(
1− f (1,R1)

)
B(1)

(
1−B(1)

)dv−1

p(1,R1,2)
K0

=
1

N (1,R1)

(
1−B(1)

)dv
, p(1,R1,2)

K1
=

dv
N (1,R1)

(
1− f (1,R1)

)
B(1)

(
1−B(1)

)dv−1

p(1,R1,2)
Ki

= 0, 2 ≤ i ≤ dv, α(2) = α(1)N (1,R1)
(
p(1,R1,2)
K0

+ p(1,R1,2)
K1

)
C(1) =

(
1−B(1)

)dv−1
+ (dv − 1)B(1)

(
1−B(1)

)dv−2 (
1− f (1,R1)

)
p(1,R2)
N0↓0,j

= 1, 0 ≤ j ≤ dc, p(1,R2)
N1↓0,0

= 1, p(1,R2)
N1↓1,0

= 0

p(1,R2)
N1↓0,j

= 1−
(
1−B(1)

)dv−1
, p(1,R2)

N1↓1,j
=
(
1−B(1)

)dv−1
, 0 ≤ j ≤ dc − 1

p(1,R2)
Ni↓k,j

=
(
i
k

) (
C(1)

)k (
1− C(1)

)i−k
, 2 ≤ i ≤ dc, 0 ≤ k ≤ i, 0 ≤ j ≤ dc − i

p(1,R2,1,+)
N1,j

=
dc∑
i=2

p(1,R1,1)
Ni,j

p(1,R2)
Ni↓1,j

, p(1,R2,1,C)
N1,j

= p(1,R1,1)
N1,j

p(1,R2)
N1↓1,j

p(1,R2,1)
Nk,j

=
dc∑
i=k

p(1,R1,1)
Ni,j

p(1,R2)
Ni↓k,j

, 2 ≤ k ≤ dc, 0 ≤ j ≤ dc − i

D(1) =
dc−1∑
j=1

j
p(1,R2,1)
N0,j

dc∑
i=0

dc−1∑
j=1

jp
(1,R2,1)
Ni,j

p(2)
∆ = (1− α(0))

(
1−

(
1− α(0)

)dc−1
)dv (

1−D(1)
)dv

4.8 Simulation Results

In this section, we present simulation results obtained by running the recovery al-
gorithms over random biregular graphs to recover sparse signals of finite length n
from noiseless measurements. We also present analytical results obtained through
the mathematical analysis described in this chapter for the asymptotic regime when
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Table 4.10: Density Evolution Analysis of SBB - Recursive Formulas for Round 1,
` ≥ 2

HR1 1) A(`) =
p(`)

∆

1−D(`−1)

2) p(`,R1)
Ni,k↓j

=
(
k
j

) (
A(`)

)j (
1− A(`)

)k−j
, 1 ≤ i ≤ dc, 0 ≤ k ≤ dc − i, 0 ≤ j ≤ k

3) p(`,R1,1,+)
N1,j

=
dc−1∑
k=j

p(`−1,R2,1,+)
N1,k

p(`,R1)
N1,k↓j

p(`,R1,1,C)
N1,j

=
dc−1∑
k=j

p(`−1,R2,1,C)
N1,k

p(`,R1)
N1,k↓j

, 0 ≤ j ≤ dc − 1

p(`,R1,1)
Ni,j

=
dc−i∑
k=j

p(`−1,R2,1)
Ni,k

p(`,R1)
Ni,k↓j

, 2 ≤ i ≤ dc, 0 ≤ j ≤ dc − i

HR2 1) f (`,R1,+/C) =
p(`,R1,1,+/C)
N1,0

dc−1∑
j=0

p(`,R1,1,+/C)
N1,j

, B(`) =

dc−1∑
j=0

p(`,R1,1,+)
N1,j

dc−1∑
j=0

p(`,R1,1,+)
N1,j

+
dc∑
i=2

dc−i∑
j=0

ip
(`,R1,1)
Ni,j

p(`,R1)
Kj↑i

=
(
dv−j
i−j

) (
B(`)

)i−j (
1−B(`)

)dv−i
N (`,R1) = p(`−1,R1,2)

K0

(
p(`,R1)
K0↑0

+ p(`,R1)
K0↑1

(
1− f (`,R1,+)

))
+p

(`−1,R1,2)
K1

p(`,R1)
K1↑1

(
1− f (`,R1,C)

)
2) α(`+1) = α(`)N (`,R1)

p(`,R1,2)
K0

=
p(`−1,R1,2)
K0

p(`,R1)
K0↑0

N (`,R1)

p(`,R1,2,+)
K1

=
1− f (`,R1,+)

N (`,R1)
p(`−1,R1,2)
K0

p(`,R1)
K0↑1

p(`,R1,2,C)
K1

=
1− f (`,R1,C)

N (`,R1)
p(`−1,R1,2)
K1

p(`,R1)
K1↑1

p(`,R1,2)
K1

= p(`,R1,2,+)
K1

+ p(`,R1,2,C)
K1

, p(`,R1,2)
Kj

= 0, 2 ≤ j ≤ dv

n → ∞. This includes the success threshold of different VB algorithms over differ-
ent biregular graphs. The comparison of asymptotic and finite-length results shows
that there is a good agreement between the two for moderately large block lengths
(n ≥ 105).

In all simulations, a signal element belongs to the support set with probability
α(0), unless otherwise specified. Also, each non-zero signal element (variable) is drawn
according to a standard Gaussian distribution. The biregular graphs are constructed
randomly with no parallel edges and all the edge weights are equal to one. In each set
of simulations, the sensing graph is fixed and each simulation point is generated by
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Table 4.11: Density Evolution Analysis of SBB - Recursive Formulas for Round 2,
` ≥ 2

HR1 1) p(`,R1) =
dc−1∑
j=0

p(`,R1,1,+)
N1,j

+ p(`,R1,1,C)
N1,j

α(`)dc

C(`) =
p(`−1,R1,2)
K0

p(`,R1)
K0↑0

1− p(`,R1)
+

p(`−1,R1,2)
K0

p(`,R1)
K0↑1

(
dv − 1

dv

)
1− p(`,R1)

(
1− f (`,R1,+)

)
+

p(`−1,R1,2)
K1

p(`,R1)
K1↑1

(
dv − 1

dv

)
1− p(`,R1)

(
1− f (`,R1,C)

)
p(`,R2)
Ni↓k,j

=
(
i
k

) (
C(`)

)k (
1− C(`)

)i−k
, 2 ≤ i ≤ dc, 0 ≤ k ≤ i, 0 ≤ j ≤ dc − i

p(`,R2,+,F )
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averaging over 1000 random instances of the input signal, unless specified otherwise.
We repeated each simulation with different randomly generated graphs (with the same
variable and check node degrees), and observed that the results were almost identical
for every graph. Each simulation is run until the algorithm makes no further progress.
In this case, if the signal is recovered perfectly, the recovery is called successful,
otherwise a failure is declared.
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Figure 4.3: Comparison between SBB, `1 minimization, and modified `1 minimization
in terms of MS reconstruction error in the presence of Gaussian measurement noise
with zero mean and variance σ2 = 0.25 (n = 1000,m = 500).

For the analytical results, based on the fact that α(`) is a non-increasing function
of iteration number `, we consider the following stopping criteria:

1. α(`) ≤ 10−7,

2. α(`) > 10−7 and |α(`) − α(`−1)| < 10−8.

If the analysis is stopped based on the first stopping criterion, the algorithm is con-
sidered successful. If, on the other hand, it is stopped based on the second criterion,
the algorithm is considered unsuccessful and a failure is declared. To calculate the
success threshold, a binary search is performed until the separation between the start
and the end of the search region is less than 10−5.

4.8.1 Comparison of SBB and `1-based algorithms at finite
length

To motivate the use of recovery algorithms over sparse graphs, as the first set of
simulation results, we present the comparison between the SBB algorithm and two
benchmark `1-based algorithms, `1 minimization [5] and iterative weighted `1 mini-
mization [52]. The setup is as follows. For SBB, we choose a random (3, 6) biregular
sensing graph with 1000 variable nodes and 500 check nodes. The sensing matrix
used for the two `1-based algorithms consists of 500 rows and 1000 columns. The
elements are initially i.i.d. standard Gaussian random variables. Then the rows are
made orthonormal.

The cost functions used in `1 and weighted `1 minimization algorithms are ‖v‖1 :=∑
i |vi| and ‖Wv‖1 :=

∑
iwi|vi|, respectively, where v is the original signal of interest

with elements vi, and W is a diagonal matrix with positive diagonal elements wi
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representing the weights. Weighted `1 minimization is an iterative algorithm in which
the weights at iteration t (w

(t)
i ) are updated according to w

(t)
i = 1/(|v(t−1)

i |+ε), where

v
(t−1)
i is the estimate of the signal element vi at iteration t − 1. The weighted `1 is

not very sensitive to the parameter ε as noted in [52]. We found ε = 0.1 is a good
choice based on our simulations. Regarding the maximum number of iterations for
the weighted `1 minimization algorithm, it is shown in [52] that as this parameter
increases, better results are achieved, with the cost of longer running time. The
improvement gained by increasing the number of iterations beyond 6 however, is
negligible [52]. Therefore, in our simulations, we choose a conservative maximum
number of iterations equal to 10. As `1 and weighted `1 minimization algorithms
output an estimate which is very close to the original signal, but not exactly the
same, we declare a success for these two algorithms if the difference between every
original signal element and its corresponding estimate is less than 10−2. Lastly, we
use the L1MAGIC package in [51] as the optimization engine for simulating `1 and
weighted `1 minimization algorithms.

To have a fair comparison, the same signal vectors are used for all the algorithms.
We also choose the size of the support set deterministically, and let the size range from
10 to 300. For each support size, 100 instances of the signal vector are generated. Each
signal vector is then measured according to the corresponding sensing mechanism for
each class of algorithms. The success or failure of the recovery algorithms over the
resulting measurements are then averaged over the 100 instances, and plotted in
Figure 4.4. In Figure 4.5 the average running time, in seconds, is plotted for the
three algorithms. The algorithms were implemented in MATLAB and were run on a
computer with an AMD Phenom 9650 Quad-Core 2.3 GHz processor, 3 GB RAM and
a Windows 7 operating system. As can be seen, the SBB algorithm recovers signals
with more non-zero elements at a speed which is about 2 orders of magnitude faster
compared to that of the `1 algorithms.

To demonstrate that the recovery performance of NB-VB algorithms is insensitive
to the distribution of non-zero signal elements and that of non-zero elements of the
sensing matrix, as long as at least one distribution is continuous, we perform the same
experiments, this time by selecting the non-zero signal elements independently from
the binary set {−1, 1} and by choosing the non-zero elements of the sensing matrix
independently from a standard Gaussian distribution. The results for SBB in this
case are also presented in Fig. 4.4. As can be seen, they are close to the results where
the non-zero input signals are Gaussian and the sensing matrix elements are binary.

4.8.2 Asymptotic and finite-length results for NB-VB algo-
rithms

For the next experiment, we apply Genie, XH, SBB and LM algorithms to four
randomly constructed (5, 6) regular graphs with n = {3, 15, 100, 1000} × 103. The
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Figure 4.4: Comparison between success ratios of `1, weighted `1 and SBB
(continuous-input/binary-sensing coefficients and binary-input/continuous-sensing
coefficients) for n = 1000,m = 500.
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Figure 4.5: Comparison between the average running times of `1, weighted `1 and
SBB for n = 1000,m = 500.

success ratio of the algorithms versus the initial density factor α = α(0) are shown
in Figure 4.6. From the figure, we can see that, for all algorithms, by increasing n,
the transition part of the curves becomes sharper such that the curves for n = 106

practically look like a step function. In the figure, we have also shown the success
threshold of the algorithms for (5, 6) graphs, obtained based on the proposed analysis,
by arrows. As can be seen, the thresholds match very well with the waterfall region
of the simulation curves.

In Table 4.12, we have listed the analytical success thresholds of the iterative
recovery algorithms for graphs with different dv and dc values. The result for XH
algorithm on (3, 4) graphs, and more generally for graphs with dv = 3, is missing as the
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Figure 4.6: Success ratio of Genie, XH, LM and SBB algorithms vs. α = α(0) for
(5, 6) graphs with n = {3, 15, 100 and 1000} × 103. Analytical thresholds are shown
by arrows.

algorithm performs poorly on such graphs.3 For every graph, the Genie algorithm has
the best performance. This is followed by SBB, LM and XH algorithms, respectively.
Careful inspection of the results in Table 4.12 indicates that the oversampling ratio
ro = dv

αdc
improves consistently by decreasing both dv and dc values. In fact, among

the results presented in Table 4.12, the application of the Genie and SBB to (3, 4)
graphs results in the lowest oversampling ratio of ≈ 1.16 and ≈ 1.67, respectively.

Table 4.12: Success Thresholds for different graphs and algorithms

(dv, dc) (3, 4) (5, 6) (5, 7) (5, 8) (7, 8)

Genie 0.6474 0.5509 0.4786 0.4224 0.4708

SBB 0.4488 0.3892 0.3266 0.2806 0.3335

LM 0.3440 0.2871 0.2305 0.1907 0.2385

XH - 0.1846 0.1552 0.1339 0.1435

In Table 4.13, we have listed the analytical success thresholds of the iterative VB
recovery algorithms for graphs with compression ratio dv/dc = 0.5 and different dv
and dc values. In general, as we decrease dv, algorithms perform better in terms

3The reason is that for dv = 3, a variable node is verified with the common value of ddv/2e = 2
check nodes. However, if two non-zero variable nodes share the same two check nodes (a cycle of
length 4 exists in the graph), then a false verification may occur.
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of recovery capability.4 This also implies that for a fixed compression ratio, the
oversampling ratio improves by decreasing dv and dc.

Table 4.13: Success Thresholds for different graphs and algorithms for fixed compres-
sion ratio rc = 0.5

(dv, dc) (3, 6) (4, 8) (5, 10) (6, 12) (7, 14)

Genie 0.4294 0.3834 0.3415 0.3074 0.2797

SBB 0.2574 0.2394 0.2179 0.1992 0.1835

LM 0.1702 0.1555 0.1391 0.1253 0.1140

XH - 0.1875 0.1050 0.1170 0.0791

We have also presented the success thresholds of NB-VB algorithms versus the
compression ratio for different dv values in Fig. 4.7. The same trends as discussed
above can also be seen in this figure in addition to the expected result that the success
threshold in general increases with the increase in the compression ratio. The relative
rate of this increase for each algorithm in relation with the other algorithms follows
the same trend as the relative performances, i.e., Genie has the highest rate followed
by SBB, LM and XH, respectively. In Tables 4.14 and 4.15, we have listed the number
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Figure 4.7: Success threshold vs. compression ratio for LM, XH, SBB, and Genie
algorithms.

4These results are consistent with the results observed for the Belief Propagation (BP) decoding
of binary LDPC codes based on biregular graphs.
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of iterations required for different recovery algorithms to recover signals with density
factor equal to the success thresholds reported in Tables 4.12 and 4.13 minus 0.0001,
respectively. These results, which are obtained by the asymptotic analysis are in close
agreement with finite-length simulation results at block lengths of about 105. These
results indicate that with a few exceptions, the better performance comes at the
expense of a larger number of iterations. In particular, among the practical recovery
algorithms, SBB requires the largest number of iterations for convergence.

Table 4.14: Number of iterations required for different recovery algorithms over dif-
ferent graphs to recover a signal with density ratio equal to the success threshold
minus 0.0001

(dv, dc) (3, 4) (5, 6) (5, 7) (5, 8) (7, 8)

Genie 106 66 66 62 55

SBB 655 178 165 200 344

LM 258 139 103 126 108

XH - 63 58 54 41

Table 4.15: Number of iterations required for different recovery algorithms over dif-
ferent graphs with fixed compression ratio rc = 0.5, to recover a signal with density
ratio equal to the success threshold minus 0.0001

(dv, dc) (3, 6) (4, 8) (5, 10) (6, 12) (7, 14)

Genie 93 69 57 50 46

SBB 247 167 172 163 127

LM 142 94 136 97 55

XH - 64 48 38 32

To further investigate the degree of agreement between our theoretical asymptotic
analysis and finite-length simulation results, we have presented in Fig. 4.8 the evo-
lution of α(`) with iterations ` for Genie, LM, SBB, and XH over a (5, 6) graph. For
each algorithm, two values of α(0) are selected: one above and one below the success
threshold presented in Table 4.12. The theoretical results are shown by solid lines
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while simulations for n = 105 are presented with dotted lines. As one can see, the
two sets of results are in close agreement particularly for the cases where α(0) is above
the threshold and for smaller values of `.
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Figure 4.8: Evolution of α(`) vs. iteration number ` for the four recovery algorithms
over a (5, 6) graph (finite-length simulations are for n = 105).

To demonstrate that the simulation results converge to the asymptotic analytical
results as n grows, in Fig. 4.9, we have added the simulation curves for n = 104 and
106 to the SBB curves in Fig. 4.8. As can be seen, the larger the value of n, the closer
the simulation results to the analytical ones. In particular, the curves for n = 106

practically coincide with the analytical results.
Next, for different values of α(0), we estimate the average fraction of unverified

non-zero variable nodes α(`) using the analysis, and denote the value of α(`) at the
time that the analysis stops (because one of the stopping criteria is met) as α(stop).
These values are plotted vs. the corresponding values of α(0) in Fig. 4.10 for the
four VB recovery algorithms over the (5, 6) sensing graphs. In the same figure, we
have also given the corresponding simulation results for two randomly selected (5, 6)
sensing graphs with n = 105 and 106. The simulation results for both lengths closely
match the analytical results, with those of n = 106 being practically identical to
the analytical results. We have indicated the success threshold of the algorithms by
arrows. From the figure, it can also be seen that as α(0) increases and tends to one,
the curves tend to the asymptote α(stop) = α(0).

The results presented in Tables 4.12 and 4.13 are for sensing graphs with compres-
sion ratio at least 0.5. We have also investigated the application of NB-VB algorithms
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different recovery algorithms over random (5,6) regular bipartite graphs. The arrows
represent the theoretical success thresholds. The straight line represents the function
f(x) = x.

to graphs with lower compression ratios. For example, simulation results on the suc-
cess ratio of SBB over random graphs with n = 105 and (dv, dc) equal to (3, 30),
(4, 40) and (3, 45) are presented in Fig. 4.11. These graphs have compression ratios
equal to 1/10, 1/10 and 1/15, respectively, and their success thresholds for SBB are
0.0338, 0.0380 and 0.0209, respectively. These thresholds are shown in Fig. 4.11 by
vertical dashed lines, and they each match the waterfall region of the corresponding
finite-length simulation curve. As expected, the lower compression ratio corresponds
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to smaller density factors for the signals that can be recovered using these graphs. In
Fig. 4.7, this corresponds to the tails of the curves close to the origin.

4.8.3 Comparison of SBB and `1 recovery in the asymptotic
regime of n→∞

Strong and weak thresholds [53] are important measures of the performance of the `1

recovery. In particular, the weak threshold is the largest undersampling ratio k/m for
which the `1 recovery and `0 recovery are equivalent with overwhelming probability
in the uniform selection of the sensing matrix for most input signals as n → ∞.
As another way of comparing the NB-VB recovery algorithms and `1 recovery, we
compare the success threshold of the former divided by the compression ratio m/n,
with the weak threshold of the latter. Consider two scenarios with compression ratios
m/n equal to 0.5 and 0.75. The weak threshold of `1 recovery for these cases is 0.3848
and 0.5327, respectively [53]. The corresponding values for SBB over (3, 6) and (3, 4)
graphs are 0.5148 and 0.5984, respectively. In both cases, the values for SBB are
larger, and indicate the superiority of SBB.
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Figure 4.11: Success ratio of SBB vs. α = α(0) for graphs with n = 105 and (dv, dc)
equal to (3, 30), (4, 40) and (3, 45). Theoretical success thresholds are shown by
vertical dashed lines.

4.8.4 Comparison with the asymptotic results of [1]

As the last experiment, we compare the running time and the accuracy of the proposed
asymptotic analysis against those of the differential equation approach presented in
[1]. For comparison, a biregular (3, 6) graph and the SBB algorithm are chosen. The
binary search for the success threshold starts with the interval [0.2, 0.3] and ends
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when the separation between the start and the end of the search region in less than
10−5. The analysis is implemented in MATLAB and executed on the same computer
described before. Using the proposed analysis, we obtain the success threshold of
0.2574 in 23.1 seconds. Table 4.16 summarizes the results of running the analysis
of [1] on the same machine for different values of n. The reported thresholds increase
with the increase in n. For n = 105, the running time is roughly 100 times that of
our proposed method. Moreover, and more importantly, the obtained threshold of
0.2591 is only in agreement with the threshold of 0.2574, obtained by the proposed
method, up to two decimal points. In fact, experiments similar to those reported in
Fig. 4.8 reveal that the accuracy of the threshold obtained by the method of [1] is
lower than our results. In particular, our simulations show that the SBB algorithm
over (3, 6) graphs with n = 105 fails for α(0) = 0.259, which would imply that the
threshold 0.2591 is only accurate up to two decimal points.

Table 4.16: Success threshold and running time of the analysis of [1] for SBB over a
random (3, 6) regular graph.

n 100 1, 000 10, 000 20, 000 50, 000 100, 000

Success Threshold 0.2465 0.2577 0.2589 0.2590 0.2590 0.2591

Running Time (seconds) 1.1 9.9 103.9 220.6 647.4 2044.1



Chapter 5

Analysis of NB-VB Algorithms over
Irregular Graphs

5.1 Introduction

The main focus of this chapter is on the analysis of NB-VB recovery algorithms for
compressed sensing with irregular sensing graphs. Our results are derived in the
asymptotic regime (n→∞). In this regime, the input model is as in Chapter 4, i.e.,
a signal element is zero with probability 1 − α or takes a value from a continuous
distribution with probability α.

In this chapter, we extend the analysis presented in Chapter 4 to irregular graphs.
Our simulations show that for a given compression ratio m/n, irregular graphs can
provide up to 40% larger success thresholds compared to regular graphs. Just like
the analysis in Chapter 4, the proposed analysis is developed for noiseless measure-
ments and its computational complexity increases only linearly with the number of
iterations. Moreover, the analysis is simple to perform, requiring only additions and
multiplications.

The SBB algorithm performs the best among all known VB algorithms in the
context of compressed sensing [1, 40, 41]. Hence, the analysis of SBB over irregular
graphs is the focus in this chapter. The proposed analytical framework is, however,
general and applicable to the analysis of other NB-VB algorithms over irregular graphs
as well.

5.2 Asymptotic Analysis Framework

Let the probability distributions f and g, the degree distributions λ and ρ, and the
density factor α be fixed. It can be shown that the fraction of unverified non-zero
variable nodes at each iteration ` of the SBB algorithm (α(`)) over a realization of
the sensing graph G ∈ Gnf (λ, ρ) and a realization of the input signal V ∈ Vng (α)

concentrates around the average of α(`) taken over all the elements in the ensemble

48
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Gnf (λ, ρ) × Vng (α), as n tends to infinity.1 The deterministic analysis presented here
is to track the evolution of this average as n goes to infinity. In the language of
coding, the analysis is similar to the density evolution analysis of iterative decoding
algorithms for irregular LDPC code ensembles, with the main difference being that
the NB-VB algorithms do not conform to the principle of extrinsic message passing
which significantly simplifies the density evolution analysis in the context of coding.

The analysis of the SBB algorithm over irregular bigraphs tracks the fraction of
zero and non-zero unverified variable nodes through iterations. This mathematical
framework for the analysis is similar to the one presented in Chapter 4 (and previously
used in [40, 41]), however with two extra variables dv and dc which represent the
degree of a variable and a check node, respectively. These variables take different
values for irregular graphs while for a regular graph they each have a fixed value.
This makes the derivations more tedious. Henceforth, we denote by dv,max and dc,max

the highest variable and check degree in the distributions λ(x) and ρ(x), respectively.
Nevertheless, the same notations will be used throughout this chapter. For instance,
at the beginning of each iteration `, the analysis partitions the set of all variable nodes
into three (disjoint) sets: unverified non-zero variable nodes (K(`)), unverified zero-
valued variable nodes (∆(`)), and all variable nodes recovered up to iteration ` (R(`)).
Should the fraction of variable nodes in the set K(`) tend to zero as iterations proceed,
the fraction of variable nodes in the set ∆(`) will also tend to zero and consequently
the analysis declares a successful recovery [40].

Each iteration in the SBB algorithm is divided into two rounds (R), each consisting
of two half-rounds (HR). In the first and second rounds, verified variable nodes belong
to the sets K(`) and ∆(`), respectively. The configuration of the sets at the end of
each processing is specified using the superscript (`, Rx, y), where `, x ∈ {1, 2} and
y ∈ {1, 2} denote the iteration, the round and the half-round numbers, respectively.

We partition the set of all check nodes with the same degree (say dc) into sets

N (`)
i,j (dc), 0 ≤ i ≤ dc, 0 ≤ j ≤ dc− i, where i and j indicate the number of neighboring

variable nodes in the sets K(`) and ∆(`), respectively.
Let K(`)(dv) and ∆(`)(dv) denote the set of all non-zero and zero-valued unverified

variable nodes with the same degree dv, respectively. Then, the set K(`)(dv) is further

divided into subsets K(`)
i (dv), 0 ≤ i ≤ dv, where i denotes the number of neighboring

check nodes in the set N (`)
1 :=

⋃
dc

⋃dc−1
j=0 N

(`,R1,1)
1,j (dc). Also, we divide the set ∆(`)(dv)

into subsets ∆
(`)
i (dv), 0 ≤ i ≤ dv, with the following definition: a variable node

in ∆
(`)
i (dv) has i neighboring check nodes which became zero-valued after HR1 of

R2; check nodes in the set
{⋃

dc

⋃dc
j=1N

(`,R2,1)
0,j (dc)\

⋃
dc

⋃dc
j=1N

(`,R1,1)
0,j (dc)

}
. Table 5.1

summarizes the sets affected in each half-round of each round at any iteration. The
formulation in the table assumes a variable node of degree dv and a check node of
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Table 5.1: Sets that change in each half-round of each round at any iteration, assuming
a variable node of degree dv and a check node of degree dc. The degrees dv and dc
can be any valid degree according to the distributions λ(x) and ρ(x).

R1 R2

HR1 HR2 HR1 HR2

Nk,i(dc)→ Nk,j(dc) Ki(dv)→ Kj(dv) Ni,k(dc)→ Nj,k(dc) ∆i(dv)→ ∆j(dv)

degree dc. This table is indeed the generalization of Table 4.4.
Theorems 6 and 7 below, characterize the verification of unverified non-zero (K(`))

and zero-valued (∆(`)) variable nodes at HR2-R1 and HR2-R2 in each iteration ` of
the SBB algorithm, respectively. The theorems are generalized version of Theorems
4 and 5. The proofs of the theorems are rather straightforward and follow from the
verification rules and therefore omitted.

Theorem 6. In the first round of any iteration `, a non-zero variable node of degree
d is verified if and only if it belongs to the set

⋃d
i=2K

(`,R1,2)
i (d) ∪ K̂(`,R1,2)

1 (d), where

the set K̂(`,R1,2)
1 (d) consists of all variable nodes in the set K(`,R1,2)

1 (d) connected to the

set
⋃
dc
N (`,R1,1)

1,0 (dc).

Theorem 7. In the second round of any iteration `, a zero-valued variable node of
degree d is verified if and only if it belongs to the set

⋃d
i=1 ∆

(`)
i (d).

The sets K(`), R(`), ∆(`), N (`−1,R2,2)
i,j (dc), K(`−1,R1,2)

i (dv), and ∆
(`−1,R2,2)
i (dv), (1 ≤

dc ≤ dc,max and 1 ≤ dv ≤ dv,max) fully describe the state of the algorithm at the
beginning of iteration `. The probability that a variable node belongs to the set K(`)

is α(`). Following the notation introduced in Chapter 4, for any other set Z, we use
the notation p

(`,Rx,y)
Z to denote the probability that a node belongs to the set Z(`,Rx,y).

The asymptotic analysis tracks the probability that a node (variable node or check
node) belongs to a certain set at each half-round, round, or iteration. The recovery is
successful if and only if the probability α(`) tends to zero, as ` tends to infinity. As we
shall see, the analysis is based on the derivation of recursive equations that relate the
probabilities described above for two consecutive iterations. The complexity of the
analysis thus scales linearly with the number of iterations. In the following section,
we present such recursions for the SBB algorithm. The derivation of formulas are
discussed in detail in Appendix B.

1These concentration results have been proved in detail for regular graphs in [47]. Similar results
apply to the irregular sensing graphs with minor changes, and are therefore not presented here.
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5.3 Update Rules for the SBB Algorithm

The step-by-step analysis of the algorithm are presented in Tables 5.2, 5.3, and 5.4 at
the end of this section, where the update equations are identified by the round and
the half-round they correspond to. The update equations in these tables involve the
probabilities of the sets described in Table 4.5, as well as some other probabilities,
defined in Table 4.6, generalized so that they include the variable and check degrees
as well.

It is worth comparing the update equations of Tables 5.2, 5.3, and 5.4, for ir-
regular graphs, with their counterparts in Tables 4.9, 4.10, and 4.11, for regular
graphs. Generally speaking, the update equations for irregular graphs can be seen as
a generalized version of their regular counterparts in two ways: some are generalized
by including the node (variable or check) degree, and some are generalized through
weighted combination of their regular counterparts, where weights are functions of
the degree distributions λ(x) and ρ(x).

5.4 Simulation Results

To verify the asymptotic results obtained based on the analysis of this chapter, we
perform some finite-length simulations for large values of n. The input signal in all
simulations follows the probabilistic model described in Section 2.2. Also, each non-
zero signal element is drawn from a standard Gaussian distribution (zero-mean with
variance one). The graphs are constructed randomly with no parallel edges and all
edge weights are chosen to be 1. Each simulation point is generated by averaging
over 100 random instances of the input signal.

The graphs used in our finite-length simulations include variable nodes of degree
2. The presence of such variable nodes, in finite length simulations, might introduce
graphical structures that prohibit some variable nodes from being verified [1, 45].
Based on our extensive simulations, the number of such unverified variable nodes
does not scale with the increase of n. So for simulation purposes, we construct the
graphs randomly and report the average (over 100 simulation instances) fraction of
unverified variable nodes, instead of the success/failure ratio.

For the analytical results, based on the fact that α(`) is a non-increasing function
of iteration number `, we consider the following stopping criteria:

1. Success: α(`) ≤ 10−7.

2. Failure: α(`) > 10−7 and |α(`) − α(`−1)| < 10−8.

To calculate the success threshold, a binary search of initial density factors is
performed within a certain range including the threshold. The search continues until
the search region is smaller than 10−5.
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Simulation results in this section are divided into two parts. In the first part, we
discuss the accuracy of our analysis compared to that of [1]. In the second part, we
present simulation results confirming the accuracy of our asymptotic analysis over
graphs with different compression ratio.

5.4.1 Part1: Comparison with [1]

Authors in [1] have reported the following degree distribution as an optimized degree
distribution for the case where all the check nodes have the same degree (also called
right-regular graph), the highest variable degree is 12, the average variable degree is
3.5 and the compression ratio is 0.5:

λ(x) = 0.5201x2+0.182x3+0.09055x4+0.10575x6+0.1007x9+0.0009x12, ρ(x) = x7.

In [1], the threshold for this case is reported as 0.303. Based on our analysis, we
obtain the threshold of 0.3025 for this ensemble. We have simulated the evolution of
α(`) for the SBB algorithm vs. iteration number over the reported graph (n = 105)
for initial density factors 0.3024, 0.3026, and 0.3029. As can be seen in Fig. 5.1, α(`)

tends to zero only for the first initial density factor and is bounded away from zero
for the other two values. This means that the threshold of 0.303 is indeed larger than
the success threshold of this ensemble.
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α(0) = 0.3024
α(0) = 0.3026
α(0) = 0.3029

Figure 5.1: Evolution of α(`) for the SBB algorithm, obtained by finite-length simu-
lation, vs. iteration number `. The evolution is reported for different initial density
factors.
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5.4.2 Part 2: Accuracy of the Proposed Analysis

To investigate the degree of agreement between our asymptotic analysis and finite-
length simulations, we have presented in Fig. 5.2 the evolution of α(`) (for the
theoretical results) and the average unverified non-zero variable nodes normalized
by n (for the finite-length results) with iterations ` for the SBB algorithm. The
sensing graph in this case is randomly constructed with the degree distribution
λ(x) = 0.52x2 + 0.2426x3 + 0.0417x4 + 0.1957x8 and ρ(x) = x7. This degree dis-
tribution is optimized for a compression ratio of 0.5. The details of the optimization
are further descrribed in Section 6.4.1. The success threshold associated with this
degree distribution is 0.3066. For the simulation, two values of α(0) are selected: one
above the success threshold (0.307 > 0.3066) and one below it (0.306 < 0.3066).
The theoretical results and simulations for n = 105 are shown by dashed lines and
solid lines, respectively. As one can see, the sets of results are in close agreement
particularly for the cases where α(0) is above the threshold and for smaller values of
`.
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Simulation Below Threshold
Simulation Above Threshold
Analysis Below Threshold
Analysis Above Threshold

Figure 5.2: Evolution of α(`), obtained by the theoretical analysis, vs. iteration
number ` (dashed line) and that of the normalized average unverified non-zero variable
nodes vs. ` for n = 105 (solid line).

For the last simulation, we select the following two degree distribution pairs:

λ1(x) = 0.62x2 + 0.2457x3 + 0.0619x6 + 0.0724x9, ρ1(x) = x4

λ2(x) = 0.52x2 + 0.1673x3 + 0.1054x4 + 0.2073x5, ρ2(x) = x9
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For each degree distribution, we construct three random graphs with n = 104,
n = 5× 104, and n = 105 variable nodes. The degree distributions yield compression
ratios of 3/4 and 1/3, and have success thresholds of 0.5390 and 0.1619 under the SBB
algorithm, respectively. We run the SBB algorithm over these graphs for different
initial density factors. Figure 5.3, plots the average number of unverified variable
nodes normalized by n vs. the initial density factor. In this simulation, we impose no
limitation on the number of iterations and the unverified variable nodes are counted
when the algorithm makes no further progress. Clearly, if the recovery algorithm
has successfully recovered all variable nodes at this point, the number of unverified
variable nodes is zero. In each case, the success threshold is demonstrated by a vertical
line on the figure. The diagonal line represents the function y(x) = x, which serves
as the asymptote for the cases where the initial density factor tends to 1. As can be
seen, the finite-length results are in good agreement with the theoretical thresholds.
Also, as the dimension n increases, the curves become sharper around the success
threshold.
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Figure 5.3: Verifying the success threshold of SBB for irregular graphs through finite-
length simulations.
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Table 5.2: Initialization of Parameters for the Analysis of SBB on Irregular Graphs
with Inputs: λ(x), ρ(x), α(0)

D(0) =
1

d̄c

dc,max∑
i=1

iρi
(
1− α(0)

)i−1
, A(1) =

1

d̄v

dv,max∑
d=1

dλd(1−D(0))d−1.

p(0,R2,1)
Ni,dc−i

(dc) =
(
dc
i

) (
α(0)
)i (

1− α(0)
)dc−i

, i = 0, · · · , dc.
p(1,R1)
Ni,dc−i↓j

(dc) =
(
dc−i
j

) (
A(1)

)j (
1− A(1)

)dc−i−j
, i = 1, · · · , dc, j = 0, · · · , dc − i.

p(1,R1,1)
Ni,j

(dc) = p(0,R2,1)
Ni,dc−i

(dc)p
(1,R1)
Ni,dc−i↓j

(dc), i = 1, · · · , dv, j = 0, · · · , dc − i.
p(1)

∆ (d) = (1− α(0))
(
1−D(0)

)d
, d = 1, · · · , dv,max, α(1) = α(0).

B(1) =

dc,max∑
d=1

ρd

d−1∑
j=0

p(1,R1,1)
N1,j

(d)

α(1)d̄c
, f (1,R1) =

dc,max∑
d=1

ρdp
(1,R1,1)
N1,0

(d)

dc,max∑
d=1

d−1∑
j=0

ρdp
(1,R1,1)
N1,j

(d)

.

N (1,R1)(d) =
(
1−B(1)

)d
+ dB(1)

(
1− f (1,R1)

) (
1−B(1)

)d−1
, α

(2)
d = α(1)N (1,R1)(d).

p(1,R1,2)
K0

(d) =

(
1−B(1)

)d
N (1,R1)(d)

, p
(1,R1,2)
K1

(d) =
dB(1)

(
1− f (1,R1)

) (
1−B(1)

)d−1

N (1,R1)(d)
,

p(1,R1,2)
Ki

(d) = 0, 2 ≤ i ≤ d.

C(1) = 1−

dv,max∑
i=1

iλiα
(1)
i
p(1,R1,2)
K0

(i)

dv,max∑
i=1

i∑
j=1

(i− j)λiα(1)
i
p(1,R1,2)
Kj

(i)

−

dv,max∑
i=1

(i− 1)λiα
(1)
i
p(1,R1,2)
K1

(i)

dv,max∑
i=1

i∑
j=1

(i− j)λiα(1)
i
p(1,R1,2)
Kj

(i)

(
1− f (1,R1)

)
.

p(1,R2)
Ni↓k,j

(dc) =
(
i
k

) (
C(1)

)i−k (
1− C(1)

)k
, 2 ≤ i ≤ dc, 0 ≤ k ≤ i, 0 ≤ j ≤ dc − i.

p(1,R2)
N1↓1,j

(dc) =

dv,max∑
i=1

λiα
(1)
i
p(1,R1,2)
K1

(i)

dv,max∑
i=1

λiα
(1)
i

i∑
j=1

jp
(1,R1,2)
Kj

(i)

, p
(1,R2)
N1↓0,j

(dc) = 1− p(1,R2)
N1↓1,j

(dc), 1 ≤ j ≤ dc − i.

p(1,R2)
N1↓0,0

(dc) = 1, p(1,R2)
N1↓1,0

(dc) = 0, p(1,R2)
N0↓0,j

(dc) = 1, j = 1, · · · , dc − i.

p(1,R2,1,+)
N1,j

(dc) =
dc∑
i=2

p(1,R1,1)
Ni,j

(dc)p
(1,R2)
Ni↓1,j

(dc), p
(1,R2,1,C)
N1,j

(dc) = p(1,R2,1)
N1,j

(dc)− p(1,R2,1,+)
N1,j

(dc).

p(1,R2,1)
Nk,j

(dc) =
dc∑
i=k

p(1,R1,1)
Ni,j

(dc)p
(1,R2)
Ni↓k,j

(dc), k = 0, · · · , dc, j = 0, · · · , dc − i.

D(1) =

dc,max∑
d=1

ρd

d−1∑
j=1

jp
(1,R2,1)
N0,j

(d)

dc,max∑
d=1

ρd

d∑
i=0

d−i∑
j=1

jp
(1,R2,1)
Ni,j

(d)

, p(2)
∆ (d) = p(1)

∆ (d)
(
1−D(1)

)d
.
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Table 5.3: Recursive Formulas for the Analysis of SBB over Irregular Graphs for
` ≥ 2, First Round

HR1 1) A(`) =
1

d̄v

dv,max∑
d=1

dλd(1−D(`−1))d−1.

2) p(`,R1)
Ni,j↓k

(dc) =
(
j
k

) (
A(`)

)k (
1− A(`)

)j−k
, 1 ≤ i ≤ dc, 0 ≤ j ≤ dc − i, 0 ≤ k ≤ j.

3) p(`,R1,1,+)
N1,k

(dc) =
dc−1∑
j=k

p(`−1,R2,1,+)
N1,j

(dc)p
(`,R1)
N1,j↓k

(dc), 1 ≤ dc ≤ dc,max, 0 ≤ k ≤ dc − 1.

p(`,R1,1,C)
N1,k

(dc) =
dc−1∑
j=k

p(`−1,R2,1,C)
N1,j

(dc)p
(`,R1)
N1,j↓k

(dc), 1 ≤ dc ≤ dc,max, 0 ≤ k ≤ dc − 1.

p(`,R1,1)
Ni,k

(dc) =
dc−i∑
j=k

p(`−1,R2,1)
Ni,j

(dc)p
(`,R1)
Ni,j↓k

(dc), 1 ≤ dc ≤ dc,max, 2 ≤ i ≤ dc, 0 ≤ k ≤ dc − i.

HR2 1) B(`) =

dc,max∑
d=1

d−1∑
k=0

ρdp
(`,R1,1,+)
N1,k

(d)

dc,max∑
d=1

d−1∑
k=0

ρdp
(`,R1,1,+)
N1,k

(d) +

dc,max∑
d=1

d∑
i=2

d−i∑
j=0

iρdp
(`,R1,1)
Ni,j

(d)

.

2) p(`,R1)
Ki↑j

(dv) =
(
dv−i
j−i

) (
B(`)

)j−i (
1−B(`)

)dv−j
, i = 0, 1, i ≤ j ≤ dv.

3) p(`,R1)
Kj

(dv) =
1∑
i=0

p(`−1,R1,2)
Ki

(dv)p
(`,R1)
Ki↑j

(dv), 0 ≤ j ≤ d.

4) f (`,R1,+) =

dc,max∑
d=1

ρdp
(`,R1,1,+)
N1,0

(d)

dc,max∑
d=1

ρd

d−1∑
k=0

p(`,R1,1,+)
N1,k

(d)

, f (`,R1,C) =

dc,max∑
d=1

ρdp
(`,R1,1,C)
N1,0

(d)

dc,max∑
d=1

ρd

d−1∑
k=0

p(`,R1,1,C)
N1,k

(d)

.

N (`,R1)(d) = p(`−1,R1,2)
K0

(d)p
(`,R1)
K0↑0

(d) + p(`−1,R1,2)
K0

(d)p
(`,R1)
K0↑1

(d)
(
1− f (`,R1,+)

)
+p

(`−1,R1,2)
K1

(d)p
(`,R1)
K1↑1

(d)
(
1− f (`,R1,C)

)
.

5) p(`,R1,2)
K0

(d) =
1

N (`,R1)(d)
p(`−1,R1,2)
K0

(d)p
(`,R1)
K0↑0

(d).

p(`,R1,2,+)
K1

(d) =
1

N (`,R1)(d)
p(`−1,R1,2)
K0

(d)p
(`,R1)
K0↑1

(d)
(
1− f (`,R1,+)

)
.

p(`,R1,2,C)
K1

(d) =
1

N (`,R1)(d)
p(`−1,R1,2)
K1

(d)p
(`,R1)
K1↑1

(d)
(
1− f (`,R1,C)

)
.

p(`,R1,2)
Kj

(d) = 0, j = 2, · · · , d.
6) α

(`+1)
d = α

(`)
d N

(`,R1)(d).
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Table 5.4: Recursive Formulas for the Analysis of SBB over Irregular Graphs for
` ≥ 2, Second Round

HR1 1) C(`) = 1−
dv,max∑
i=1

(i− 1)λiα
(`)
i
p(`−1,R1,2)
K0

(i)p
(`,R1)
K0↑1

(i)

dv,max∑
i=1

i∑
j=1

(i− j)λiα(`)
i
p(`,R1)
Kj

(i)

(
1− f (`,R1,+)

)

−

dv,max∑
i=1

(i− 1)λiα
(`)
i
p(`−1,R1,2)
K1

(i)p
(`,R1)
K1↑1

(i)

dv,max∑
i=1

i∑
j=1

(i− j)λiα(`)
i
p(`,R1)
Kj

(i)

(
1− f (`,R1,C)

)
−

dv,max∑
i=1

iλiα
(`)
i
p(`,R1)
K0

(i)

dv,max∑
i=1

i∑
j=1

(i− j)λiα(`)
i
p(`,R1)
Kj

(i)

.

2) p(`,R2)
Ni↓k,j

(dc) =
(
i
k

) (
C(`)

)i−k (
1− C(`)

)k
, 1 ≤ dc ≤ dc,max, 2 ≤ i ≤ dc,

0 ≤ k ≤ i, 0 ≤ j ≤ dc − i.

p(`,R2,+,F )
N1,i

(dc) =

p(`,R1,1,+)
N1,i

(dc)

dv,max∑
d=1

λdα
(`)
d
p(`−1,R1,2)
K0

(d)p
(`,R1)
K0↑1

(d)

dv,max∑
d=1

d∑
i=1

λdα
(`)
d

(
ip

(`−1,R1,2)
K0

(d)p
(`,R1)
K0↑i

(d) + (i− 1)p
(`−1,R1,2)
K1

(d)p
(`,R1)
K1↑i

(d)
) .

p(`,R2,+,O)
N1,i

= p(`,R1,1,+)
N1,i

− p(`,R2,+,F )
N1,i

.

p(`,R2,C,F )
N1,i

(dc) = p(`,R1,1,C)
N1,i

(dc)

dv,max∑
d=1

λdα
(`)
d
p(`−1,R1,2)
K1

(d)p
(`,R1)
K1↑1

(d)

dv,max∑
d=1

d∑
i=1

λdα
(`)
d
p(`−1,R1,2)
K1

(d)p
(`,R1)
K1↑i

(d)

.

p(`,R2,C,O)
N1,i

(dc) = p(`,R1,1,C)
N1,i

(dc)− p(`,R2,C,F )
N1,i

(dc).

3) p(`,R2,1)
Nk,j

(dc) =
dc∑
i=k

p(`,R1,1)
Ni,j

(dc)p
(`,R2)
Ni↓k,j

(dc), 2 ≤ k ≤ dc, 0 ≤ j ≤ dc − i.

p(`,R2,1,+)
N1,j

(dc) =
dc∑
i=2

p(`,R1,1)
Ni,j

(dc)p
(`,R2)
Ni↓1,j

(dc), 0 ≤ j ≤ dc − 1.

p(`,R2,1,C)
N1,j

(dc) = p(`,R2,C,F )
N1,j

(dc) + p(`,R2,+,F )
N1,j

(dc), 1 ≤ j ≤ dc − 1.

p(`,R2,1)
N0,j

(dc) = p(`,R1,1)
N0,j

(dc) + p(`,R2,C,O)
N1,j

(dc) + p(`,R2,+,O)
N1,j

(dc)

+
dc∑
i=2

p(`,R1,1)
Ni,j

(dc)p
(`,R2)
Ni↓0,j

(dc), 0 ≤ j ≤ dc − 1.

HR2 1) D(`) =

dc,max∑
d=1

ρd

d−1∑
j=1

jp
(`,R2,1)
N0,j

(d)

dc,max∑
d=1

ρd

d∑
i=0

d−i∑
j=1

jp
(`,R2,1)
Ni,j

(d)

.

2) p(`,R2,2)
∆i

(d) =
(
d
i

) (
D(`)

)i (
1−D(`)

)d−i
, 0 ≤ i ≤ d.

3) p(`+1)
∆ (d) = p(`)

∆ (d)p
(`,R2,2)
∆0

(d).



Chapter 6

Design of Irregular Graphs

6.1 Introduction

The main focus of this chapter is on the design of irregular graphs for the SBB
algorithm. Since the analysis presented in the previous chapter is simple to perform,
requiring only additions and multiplications, it is possible to use it at the core of
an optimization loop to design degree distributions for irregular sensing graphs that
perform well with NB-VB algorithms. The performance measure considered here is
the success threshold. Our simulations show that for a given compression ratio m/n,
irregular graphs can provide up to %40 larger success thresholds compared to regular
graphs. In this comparison, since the number of edges in both graphs is the same,
the recovery complexity remains almost the same.

6.2 Optimization

In the following, we fix the compression ratio m/n and the largest variable and check
degrees dv,max and dc,max. Our goal is then to find degree distributions λ(x) and
ρ(x) such that the success threshold of the recovery algorithm under consideration is
maximized. As discussed earlier, the SBB algorithm has the highest success threshold
amongst NB-VB algorithms (under similar conditions). Hence, in this chapter, we
focus on optimizing degree distributions for the SBB algorithm.

To find the optimal degree distributions, we search the entire space of degree dis-
tributions constrained by the conditions on the compression ratio and the maximum
variable and check degrees. In order to reduce the complexity of such a search, we
restrict the number of non-zero variable and check degrees as well. In the context of
coding, it is known that the loss in terms of threshold due to such restrictions is rather
small and would be justifiable by the reduction in the search complexity [54–56].

The results presented in this chapter are divided into three parts. In the first
part, we present degree distributions optimized for the SBB algorithm. The obtained
degree distributions outperform the one presented in [1] with a smaller number of
non-zero degrees, and a smaller maximum variable degree. In the second part, we
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present optimal degree distributions for graphs with compression ratios 1/3 and 3/4.
We also discuss the performance improvement due to the use of irregular graphs.
In the last part, we find optimal degree distributions for graphs with relatively low
compression ratios of 1/10, 3/32 and 3/40.

6.3 Running Time and Computational Complex-

ity

In this chapter, we design irregular graphs and use the success threshold as the mea-
sure of performance. It would be of interest to evaluate the designed irregular graphs
on measures such as recovery complexity and running time as well. A suitable mea-
sure for the running time in the finite-length regime is the number of iterations needed
for the recovery algorithm to verify all variable nodes. In the asymptotic regime, the
number of iterations needed for the recovery algorithm so that the probability of un-
verified variable nodes is less than a threshold serves as the running time measure. As
we shall see, the running time is a function of the initial density factor. In general, for
density factors less than the success threshold, the higher the initial density factor,
the higher the running time.

As for the computational complexity (also referred to as recovery complexity),
each iteration of a NB-VB algorithm, has a computational complexity proportional
to the number of edges in the subgraph induced by the unverified variable nodes,
which itself is upper bounded by |E|, where |E| denotes the number of edges in the
initial sensing graph. One should however note that using |E| as an upper-bound for
the computational complexity at each iteration, is a loose bound especially for higher
iterations where |E|(`) � |E|.

Using a similar justification, it can be shown that the computational complexity in
each iteration of a NB-VB algorithm is proportional to the average variable and check
degree in the asymptotic regime. In this case, however, the complexity is normalized
to the signal dimension n to yield a finite value.

6.4 Simulation Results and Discussions

6.4.1 Comparison with [1]

Authors in [1] reported the following degree distribution as an optimized degree dis-
tribution for the case where the highest variable degree is 12, the average variable
degree is 3.5, and the graph is right-regular with compression ratio 0.5:

λ(x) = 0.5201x2+0.182x3+0.09055x4+0.10575x6+0.1007x9+0.0009x12, ρ(x) = x7.

In Section 5.4.1, we demonstrated that the threshold 0.303 reported in [1] for
this degree distribution is not accurate and the correct threshold is indeed 0.3025.
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Table 6.1: Two Optimized Degree Distributions with Success Thresholds Higher than
0.3025. The Degree Distributions Yield a Compression Ratio of 0.5.

λ(x) ρ(x) Success Threshold

0.5200x2 + 0.2426x3 + 0.0417x4 + 0.1957x8 x7 0.3066

0.5200x2 + 0.2426x3 + 0.0542x4 + 0.1832x8 0.1x6 + 0.9x7 0.3056

Apart from the accuracy, we have been able to find different degree distributions
that could achieve a higher success threshold. These degree distributions are found
through exhaustive search and two of them are presented in Table 6.1. We would like
to emphasize that the exhaustive search was possible thanks to the fast running time
of our analysis compared to the one used in [1].

The first degree distribution represents a right-regular graph, with the same check
degree and compression ratio as those of [1]. In this case, we were able to achieve
a higher success threshold with a smaller maximum variable degree (8 compared
to 12) and less number of non-zero variable degrees (4 compared to 6). To find
this degree distribution we ran an exhaustive search over the whole space of degree
distributions with only four variable degrees with the maximum variable degree of 12
and considering an increment of 10−2 for λ2. In this setup, there are four variable
degree coefficients to be selected. Of this four, two are dependent variables due to
the fact that the sum of the coefficients must add up to 1 and that the average
variable degree should be satisfied. Fixing the value of λ2, only one degree of freedom
remains. The remaining value is chosen using the ”fminbnd“ optimization function
in MATLAB.

For the next degree distribution, we allowed four non-zero variable degrees between
2 and 12 and two non-zero check degrees between 3 and 7. Due to the freedom on the
average check degree in this case, we searched the space of all possible check degrees
so that the average check degree is from 6 to 6.9 with increments of 0.1. We first
note that the optimal check degree has the highest possible average of 6.9. Also, we
note that the two non-zero check degrees are the highest two degrees possible, i.e.,
6 and 7. This demonstrates that fixing the compression ratio, the success threshold
improves as the average check degree (and consequently the average variable degree)
is increased.

According to Table 4.13, a (3, 6) regular graph yields the highest success threshold
(0.2574) over regular graphs with compression ratio 0.5. Degree distributions shown
in Table 6.1 all have the same compression ratio and outperform the regular graph by
at least 18.5%. It is worth mentioning that by increasing the average variable degree
(and hence the average check degree) higher success thresholds are achievable at the
cost of higher recovery complexity.

At this point, it is worth to examine the recovery complexity and running time
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Table 6.2: Number of iterations `∗ for the SBB algorithm over different graphs and
different initial density factors α(0). The first column represents the initial density
factor, while each row represents the number of iterations for various graphs of inter-
est.

Type of Graph

Regular Right-Regular Bi-Irregular

Initial Density Factor

0.2316 13 33 33

0.2445 18 40 39

0.2750 − 69 69

0.2903 − 110 111

0.2759 − 71 70

0.2912 − 114 116

of the designed irregular graphs and compare them against the (3, 6) regular graph.
Note that degree distributions shown in Table 6.1 have the same compression ratio as
the (3, 6) regular graph but have higher average variable degrees. Hence, their higher
success threshold comes at the cost of higher recovery complexity.

To compare the running time of the designed irregular graphs and the (3, 6) regular
graph, we focus on the asymptotic regime only. The reason being, as shown in Sections
4.8.2 and 5.4.2, for a fixed initial density factor, the evolution of α(`) vs. iteration
number ` for the finite length simulations can be predicted relatively accurately using
the asymptotic analysis. For this discussion the number of iterations of interest is
`∗ : α(`∗) < 10−8. Table 6.2 summarizes the number of iterations `∗ for various initial
density factors when running the SBB algorithm over graphs mentioned before. The
initial density factors are selected as the %90 and %95 of the success thresholds
associated with regular and bi-irregular sensing graphs, respectively.

First we note that the number of iterations needed for regular graph is considerably
lower compared to other graphs. This means that when considering the use of regular
vs. irregular graphs, one has to consider the trade-off between performance (measured
by success threshold), recovery complexity (measured by the average variable and
check degrees) and running time (measured by the required number of iterations). The
regular graph in this example has a smaller success threshold but is computationally
less complex and requires smaller number of iterations.

Second, we note that for the same initial density factor, the number of iterations
needed for the bi-irregular graph is almost the same as those needed for the right-
regular graph, which is expected as the two degree distributions are rather close.
Third, we note that the number of iterations increases as the initial density factor
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Table 6.3: Optimized Degree Distributions for Compression Ratios (rc) 1/3 and 3/4

rc (λ(x), ρ(x)) Success Threshold ∆ (%)

1/3 (0.5200x2 + 0.1673x3 + 0.1054x4 + 0.2073x5, x9) 0.1619 7.5

3/4 (0.6200x2 + 0.2457x3 + 0.0619x6 + 0.0724x9, x4) 0.5390 20.0

approaches the success threshold. This is because increasing the initial density factor,
the fraction of non-zero variable nodes increases, which directly translates to more
iterations needed to recover them. Also, as the initial density factor gets closer to the
success threshold, a slight increase in this parameter causes a significant increase in
the number of iterations.

6.4.2 Optimal Degree Distributions for Graphs with Com-
pression Ratios 1/3 and 3/4

In this section, we present the optimal degree distributions for compression ratios 1/3
and 3/4. According to Table 4.12, a regular (3, 4) graph yields a success threshold
of 0.4488. Using the analysis presented in Chapter 4, it is easy to verify the success
threshold of a regular (3, 9) graph to be 0.1506 for the SBB algorithm. It is also easy
to verify that these graphs yield the highest success thresholds for compression ratios
3/4 and 1/3, respectively.

To find optimal degree distributions for these compression ratios, we searched
over the space of all right-regular graphs with four non-zero variable degrees and the
maximum variable degree of 10. The check degrees for these graphs were selected the
same as the regular graphs yielding the highest success thresholds in each case. The
result of optimization is reported in Table 6.3. In this table the last column shows the
percentage of improvement over the success threshold of the corresponding regular
graphs.

6.4.3 Optimal Degree Distributions for Graphs with Rela-
tively Low Compression Ratios

As the last set of results, we present the optimal degree distributions yielding the
highest success thresholds for graphs with low compression ratios. The results are
summarized in Table 6.5. The last column of the table reports the percentage of
improvement over the success threshold of regular graphs with similar compression
ratio and average degrees.

All optimizations are run as an exhaustive search over the set of all right-regular
graphs with three variable degrees, all less than 12. The average variable degrees for
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Table 6.4: Optimized Degree Distributions for Low Compression Ratios (rc)

rc (λ(x), ρ(x)) Success Threshold ∆ (%)

1/10 (0.3527x2 + 0.1963x3 + 0.4510x6, x40) 0.0446 17.3

3/32 (0.0001x2 + 0.8123x3 + 0.1876x7, x40) 0.0367 17.2

3/32 (0.0001x2 + 0.9998x3 + 0.0001x4, x32) 0.0314 0.3

3/40 (0.0001x2 + 0.9998x3 + 0.0001x4, x40) 0.0241 0.4

the rows of Table 6.5 are 4, 3.75, 3 and 3, while the check degrees are 40, 40, 32, and 40,
respectively. The regular graphs used for comparison are (4, 40), (3, 32) and (3, 40),
with success thresholds 0.0380, 0.0313 and 0.0240, respectively. For compression ratio
3/32, we have included two different degree distributions, with check degrees 32 and
40. We first note that the last two degree distributions reported in the table perform
essentially the same as their corresponding regular graphs. Also focusing on the
results for compression ratio 3/32, we note that the higher the average variable node,
the higher the success threshold.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we studied the asymptotic behavior of iterative node-based verification-
based (NB-VB) recovery algorithms over random sparse graphs in the context of
compressed sensing. Such algorithms are particularly interesting due to their low
complexity (linear in the signal dimension n).

We proposed a mathematical framework that predicts the average fraction of
unverified signal elements at each iteration ` in the asymptotic regime, where the
average is taken over the ensembles of input signals and sensing graphs as a function of
` as n→∞. To perform the analysis, a non-extrinsic message-passing interpretation
of NB-VB algorithms was provided. The analysis of recovery algorithms of interest
were discussed over random regular and irregular sensing graphs.

We showed that the proposed analysis is simpler to implement and more accurate
compared to the existing technique for the analysis of NB-VB algorithms, which is
based on numerically solving a large system of coupled differential equations. We
further used the proposed analysis in an optimization loop and designed irregular
sensing graphs that outperformed previously reported results. We also showed that,
in many cases, the success threshold associated with the designed irregular graphs
exceeds that of the regular graphs substantially.

Moreover, we discussed concentration results that ensure the performance of the
recovery algorithms applied to any choice of the input signal over any realization
of the sensing matrix follows the deterministic results of the analysis closely. We
also demonstrated that the proposed asymptotic analysis matches the performance
of recovery algorithms for large but finite values of n.

7.2 Future Work

To optimize the degree distributions, two general approaches are possible. First is to
search the entire space of feasible solutions. Second is to start with an initial guess for
the degree distributions, find the success threshold, change the distributions according
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to a strategy (e.g., differential evolution [57]) and compare the success threshold of the
new pair with the previous results, and accordingly modify the solution. The method
of differential evolution has been successfully applied in the context of coding to
optimize degree distributions for recovery algorithms over different channels [58,59]. It
would be interesting to examine the application of differential evolution to the design
of irregular sensing graphs in the context of compressed sensing. As part of such study,
one would need to prove that certain parameters in the recovery algorithm remain
almost unchanged when the input parameters to the recovery algorithm changed
slightly.

When using irregular sensing graphs, we observed that for a fixed compression
ratio, increasing the average variable degree increases the success threshold as well.
However, this is achieved at the expense of higher recovery complexity. Two interest-
ing research paths emerge here: first to find the highest success threshold that can be
achieved for a fixed compression ratio using irregular graphs as sensing graphs and
NB-VB algorithms as the recovery algorithm when the average variable degree (and
consequently the average check degree) is allowed to go to infinity. In this context, the
issue of the design of the sequences of irregular graphs that can achieve the ultimate
performance is also interesting. Second to look at the trade-off between the running
time, recovery complexity and the success threshold in the context of irregular graph
design. In this case, new measures need to be devised that capture this trade-off and
allow the design of optimal degree distributions.

The verification rules in the NB-VB algorithms are devised for the noiseless mea-
surements. Using thresholding techniques presented in this work, NB-VB algorithms
can be applied to noisy measurements if the power of noise in the measurements is
much less than the signal power (very high SNR regime). In order to make NB-VB
algorithms more robust against the noise in the measurements one way is to design
verification rules that can explicitly cope with the noisy measurements. Even in the
case of high SNR, one interesting research path would be to find the optimal value
for the thresholds ε1 and ε2 introduced in Section 4.7 as functions of density factor,
SNR, and possibly other design parameters, such as the compression ratio.

It would also be interesting to formulate some practical application scenarios so
that they can be solved by the application of NB-VB recovery algorithms.
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Appendix A

Analysis of NB-VB Algorithms for
Regular Graphs

A.1 Assumptions

In our analysis, we often use two assumptions: “uniformity assumption” and “inde-
pendence assumption”. Both assumptions are natural consequences of the random-
ness of the graph and the input as well as the asymptotic nature of the analysis.
The uniformity assumption states that all the possible choices within the constraints
imposed by the event under consideration are equally likely. As an example, consider
the Genie algorithm and the case, where an edge is connected to a variable node with
i connections to check nodes with K-degree 1, and thus dv − i connections to the
check nodes with other values of K-degree. Now, suppose that we are interested in
calculating the probability that the other end of such an edge is connected to a check
node of K-degree 1. The uniformity assumption implies that this probability is equal
to i/dv.

The independence assumption, on the other hand, states that all the edges of a
certain type, carry independent messages. In our analysis such messages are often
identically distributed as well. As an example, consider a check node with K-degree
j and suppose that the probability that this node receives a verified message along
each of the j edges is p. Then the independence assumption implies that the number
of verified messages that this node receives has a binomial distribution. One should
note that the independence assumption here is different from the similar assumption
made for the density evolution analysis of MB algorithms. The latter requires the
extrinsic nature of message passing and implies that all the messages, each originating
from non-overlapping leaves on a tree-like neighborhood of an edge are independent.
The former however does not require the message passing to be extrinsic and is a
consequence of the random permutation of edges between the variable nodes and the
check nodes.

71
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A.2 Genie

For the analysis, we assume to have the probabilities α(`), p
(`−1,1)
Ni

, and p(`−1,2)
Kj

, and
are interested in deriving the same probabilities for iteration `.

A.2.1 Update equations for `-HR1, ` ≥ 2 (Calculation of

p
(`,1)
Ni

)

When a variable node is verified in HR2 of an iteration, the dv edges adjacent to the
variable node carry the recovery message to the neighboring check nodes. These check
nodes thus face a reduction in their K-degree. We denote by p(`)

Nj↓i
the probability

that the K-degree of a check node is reduced from j to i ≤ j after HR1 of iteration
`. This happens if out of j edges emanating from the check node and incident to the
set of unverified variable nodes K(`), j − i of them now carry a message from their
variable nodes indicating that they have been verified.

On the other side of the graph, when a variable node in K(`−1,2)
i (1 ≤ i ≤ dv) is

verified, by definition, out of dv check nodes receiving the recovery message, i have
K-degree 1 and dv − i have K-degrees larger than 1. For each verified variable node,
the set of i check nodes of degree 1 are distributed uniformly with respect to the set
of all check nodes of degree 1. Based on the operation of the Genie algorithm, it is
easy to see that

p(`)
N1↓1

= 0 and p(`)
N1↓0

= 1 .

Furthermore, one may assume that the remaining dv − i edges carrying a verified
message are uniformly connected to the check nodes with K-degrees larger than 1.
Based on this assumption, we derive p

(`)
Nj↓i

for j > 1. Once these probabilities are

found, the new distribution of check node degrees p
(`,1)
Ni

can be derived using the total
probability law:

p(`,1)
Ni

=
dc∑
j=i

p(`−1,1)
Nj

p(`)
Nj↓i

, 0 ≤ i ≤ dc.

To find the probability p(`)
Nj↓i

, 2 ≤ j ≤ dc, we need the conditional probability that

an edge connecting a check node in the set N (`−1,1)
j , 2 ≤ j ≤ dc, and an unverified

variable node, carries a verified message to the check node in the first half-round of
iteration `. We denote this conditional probability by p

(`)
d>1. Assuming this probability

is known, for 2 ≤ j ≤ dc and 0 ≤ i ≤ j we have:

p(`)
Nj↓i

=

(
j

j − i

)(
p

(`)
d>1

)j−i (
1− p(`)

d>1

)i
.

The probability p(`)
d>1 can be computed as follows. In the following, se is the status

bit of the message sent from v to c over the edge e = (v, c), and p(`) is defined as the



APPENDIX A. ANALYSIS OF NB-VB ALGORITHMS FOR REGULARGRAPHS73

probability of an edge e being adjacent to a check node c ∈ N (`−1,1)
1 conditioned on

the fact that it is adjacent to a variable node v ∈ K(`−1).

p(`)
d>1 = Pr[se = 1|c ∈

dc⋃
j=2

N (`−1,1)
j , v ∈ K(`−1)]

=
dv∑
i=1

Pr[v ∈ K(`−1,2)
i |c ∈

dc⋃
j=2

N (`−1,1)
j , v ∈ K(`−1)]

=
dv∑
i=1

Pr[c ∈ ⋃dc
j=2N

(`−1,1)
j |v ∈ K(`−1,2)

i ∪ K(`−1)]

Pr[c ∈ ⋃dc
j=2N

(`−1,1)
j |v ∈ K(`−1)]

× Pr[v ∈ K(`−1,2)
i |v ∈ K(`−1)]

=
dv∑
i=1

(
1− Pr[c ∈ N (`−1,1)

1 |v ∈ K(`−1,2)
i ]

)
p(`−1,2)
Ki(

1− Pr[c ∈ N (`−1,1)
1 |v ∈ K(`−1)]

) =

dv∑
i=1

p(`−1,2)
Ki

−
dv∑
i=1

i

dv
p(`−1,2)
Ki

1− p(`)

=
1− p(`−1,2)

K0
− p(`)

1− p(`)
= 1−

p(`−1,2)
K0

1− p(`)
. (A.1)

where, p(`) can be calculated as:

p(`) := Pr[c ∈ N (`−1,1)
1 |v ∈ K(`−1)]

=
Pr[v ∈ K(`−1)|c ∈ N (`−1,1)

1 ] Pr[c ∈ N (`−1,1)
1 ]

Pr[v ∈ K(`−1)]

=

1

dc
× p(`−1,1)

N1

α(`−1)
=

p(`−1,1)
N1

α(`−1)dc
. (A.2)

A.2.2 Update equations for `-HR2, ` ≥ 2 (Calculation of

p
(`,2)
Kj

and α(`+1))

In the second half-round, variable nodes receive messages from their neighboring
check nodes. According to the verification rule in the Genie algorithm, the only
unverified variable nodes are those in the set K(`−1,2)

0 . Variable nodes in this set

have no connection to check nodes in the set N (`−1,1)
1 but dv connections to the sets

{N (`−1,1)
2 , · · · ,N (`−1,1)

dc
}. Suppose v ∈ K(`−1,2)

0 . In this case, if j out of dv adjacent

check nodes of v in {N (`−1,1)
2 , · · · ,N (`−1,1)

dc
} move to N (`,1)

1 , v will move from K(`−1,2)
0

to K(`,2)
j . This is shown in Figure A.1.

We define the probability p(`)
K0↑j

as the probability of a variable node v ∈ K(`−1,2)
0
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Figure A.1: A variable node in K0 moves to Kj.

moving to K(`,2)
j . We thus have:

p(`,2)
Kj

= p(`)
K0↑j

= Pr[v ∈ K(`,2)
j |v ∈ K(`−1,2)

0 ]

=

(
dv
j

)(
p(`)
x

)j (
1− p(`)

x

)dv−j
, 0 ≤ j ≤ dv, (A.3)

where p(`)
x is defined as the probability that an edge adjacent to a variable node

v ∈ K(`−1,2)
0 carries a message indicating that the adjacent check node c has a degree

equal to 1, i.e., c ∈ N (`,1)
1 . The probability p

(`)
x is calculated as follows:

p(`)
x = Pr[c ∈ N (`,1)

1 |v ∈ K(`−1,2)
0 ]

=
Pr[c ∈ N (`,1)

1 ] Pr[v ∈ K(`−1,2)
0 |c ∈ N (`,1)

1 ]

Pr[v ∈ K(`−1,2)
0 ]

=

p(`,1)
N1
× 1

dc
α(`)

=
p(`,1)
N1

α(`)dc
= p(`+1), (A.4)

where p(`+1) is given in (A.2).
In the Genie algorithm, the probability of a variable node in the set K(`) being

verified is calculated as
∑dv

i=1
p(`,2)
Ki

. Therefore, the probability of a variable node v

remaining unverified, i.e., v ∈ K(`+1), is:

α(`+1) = α(`)

(
1−

dv∑
i=1

p(`,2)
Ki

)
= α(`)p(`,2)

K0
.

A.2.3 Initial probabilities for the Genie algorithm (` = 0 and
` = 1)

Assuming an initial density factor of α(0), 1−α(0) fraction of the edges from variable
nodes in the first iteration carry a recovery message to check nodes. Since at iteration
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zero no variable node in the support set is verified, we have α(1) = α(0). Moreover,
p(1)
d>1 = 1 − α(1) and p(0,1)

Ndc
= 1. The set of probabilities p

(1,1)
Ni

is thus given by the
following.

p(1,1)
Ni

= p(0,1)
Ndc

p(1)
Ndc↓i

= p(1)
Ndc↓i

=

(
dc

dc − i

)(
p

(1)
d>1

)dc−i (
1− p(1)

d>1

)i
=

(
dc
i

)(
α(1)
)i (

1− α(1)
)dc−i

, 0 ≤ i ≤ dc.

To find the probability p(1,2)
Ki

, we first find the probability p(1)
x from (A.4) and then

replace it in (A.3).

A.3 XH

As before, we assume to have the probabilities α(`), p
(`−1,1)
Ni

, and p(`−1,2)
Kj

, and are
interested in deriving the same probabilities for iteration `. Since in the analysis of
XH we only track the probability of unverified non-zero variable nodes, the analysis
will include only one round with two half-rounds just like the analysis for the Genie.

A.3.1 Update equations for `-HR1, ` ≥ 2 (Calculation of

p
(`,1)
Ni

)

When a variable node in K(`−1,2)
i (ddv/2e ≤ i ≤ dv) is verified, by definition, out of

dv check nodes receiving the recovery message, i have K-degree 1 and dv − i have
K-degrees larger than 1. For each verified variable node, the set of i check nodes of
degree 1 are distributed uniformly with respect to the set of all check nodes of degree
1. It is easy to see that

p(`)
N1↓1

=
dv∑

i=ddv/2e

ip
(`−1,2)
Ki

dv∑
i=0

ip
(`−1,2)
Ki

p(`)
N1↓0

= 1− p(`)
N1↓1

.

Furthermore, one may assume that the remaining dv − i edges carrying a verified
message are uniformly connected to the check nodes with K-degrees larger than 1.
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Following the same approach as the one presented for the Genie, we have:

p(`)
Nj↓i

=

(
j

j − i

)(
p

(`)
d>1

)j−i (
1− p(`)

d>1

)i
, 2 ≤ j ≤ dc, 0 ≤ i ≤ j.

p(`,1)
Ni

=
dc∑
j=i

p(`−1,1)
Nj

p(`)
Nj↓i

, 0 ≤ i ≤ dc,

where, p
(`)
d>1 denotes the conditional probability that an edge connecting a check node

in the set N (`−1,1)
j , 2 ≤ j ≤ dc, and an unverified variable node, carries a verified

message to the check node in the first half-round of iteration `.
Following the same path for the derivation of Equation A.1, we have:

p(`)
d>1 = 1−

ddv/2e−1∑
i=0

p(`−1,2)
Ki

1− p(`)
.

where, p(`) is calculated as in A.2.

A.3.2 Update equations for `-HR2, ` ≥ 2 (Calculation of

p
(`,2)
Kj

and α(`+1))

In the second half-round, variable nodes receive messages from their neighboring check
nodes. According to the verification rule in the XH algorithm, the unverified variable
nodes are those in the set

⋃ddv/2e−1
i=0 K(`−1,2)

i . A variable node v ∈ K(`−1,2)
j in this set

has j connections to check nodes in the set N (`−1,1)
1 and dv − j connections to the

sets {N (`−1,1)
2 , · · · ,N (`−1,1)

dc
}. We define the probability p(`)

Ki↑j
as the probability of a

variable node v ∈ K(`−1,2)
i moving to K(`,2)

j . We thus have:

p(`,2)
Kj

=

ddv/2e−1∑
i=0

p(`−1,2)
Ki

p(`)
Ki↑j

, 0 ≤ j ≤ dv

p(`)
Ki↑j

=

(
dv − i
j − i

)(
p(`)
x

)j−i (
1− p(`)

x

)dv−j
, (A.5)

where p(`)
x is the probability that an edge adjacent to an unverified variable node

carries a message indicating that the adjacent check node c has a degree equal to 1.
This probability is calculated according to A.4.

In the XH algorithm, the probability of a variable node in the set K(`) being
verified is calculated as

∑dv
i=ddv/2e

p(`,2)
Ki

. Therefore, the probability of a variable node
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v remaining unverified, i.e., v ∈ K(`+1), is:

α(`+1) = α(`)

1−
dv∑

i=ddv/2e

p(`,2)
Ki

 .

A.3.3 Initial probabilities for the XH algorithm (` = 0 and
` = 1)

The initialization of the parameters in the XH algorithm are the same as those in the
Genie algorithm, and hence not repeated here.

A.4 LM

A.4.1 Iteration zero, R1 (Verification of variable nodes based
on D1CN)

In R1-HR1, each check node sends its degree (equal to dc) and its received mea-
surement to all its neighboring variable nodes. In R1-HR2, variable nodes receive
such messages. Since the verification of (non-zero) variable nodes at this stage is
based solely on D1CN, no variable node is verified at this stage. Therefore, we have
K(0) = K(1), and hence,

α(1) = Pr[v ∈ K(1)] = α(0).

A.4.2 Iteration zero, R2 (Verification of variable nodes based
on ZCN)

Since no variable node was verified in R1-HR2, the messages sent from check nodes
to variable nodes in R2-HR1 are the same as those sent in R1-HR1. All check nodes
at this stage have degree dc in the subgraph induced by the unverified variable nodes.
Thus, the set of all check nodes can be partitioned into subsets N (0,R2,1)

i,dc−i , where i,
0 ≤ i ≤ dc, denotes the K-degree of the check node. The edges adjacent to a check
node are also partitioned into two sets: K-edges and ∆-edges. K-edges are connected
to variable nodes in the support set, while ∆-edges are connected to zero-valued
variable nodes. Therefore, a check node in the set N (0,R2,1)

i,dc−i (0 ≤ i ≤ dc) has i,
K-edges and dc − i, ∆-edges.

In R2-HR2, variable nodes process their incoming messages. At this stage, a
variable node is verified based on the ZCN rule, if it receives at least one message
with a value equal to zero.

Let N (0)
i , 0 ≤ i ≤ dc, denote the set of check nodes with K-degree equal to i. The

probability p(0)
Ni

defined as the probability that a check node belongs to the set N (0)
i
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is calculated as follows:

p(0)
Ni

:= Pr(c ∈ N (0)
i ) =

(
dc
i

)(
α(0)
)i (

1− α(0)
)dc−i

.

Hence, the probability that a check node c has a value equal to zero (c = 0) is:

Pr[c = 0] = p(0)
N0

=
(
1− α(0)

)dc
.

Let ∆
(0,R2,2)
j denote the set of zero-valued variable nodes that receive j zero-valued

messages. The probability p
(0,R2,2)
∆j

defined as the probability that a zero-valued vari-

able node belongs to the set ∆
(0,R2,2)
j is calculated as follows:

p(0,R2,2)
∆j

= Pr[v ∈ ∆
(0,R2,2)
j |v ∈ ∆(0)]

=

(
dv
j

)(
p(0)
δ

)j (
1− p(0)

δ

)dv−j
, 0 ≤ j ≤ dv, (A.6)

where p
(0)
δ is the probability that an edge adjacent to a zero-valued variable node is

also connected to a check node with value equal to zero. This happens if the other
dc − 1 variable nodes adjacent to the check node are all zero-valued. Therefore, p

(0)
δ

is calculated as follows:

p(0)
δ := Pr[ce ∈ N (1)

0 |ve ∈ ∆(1)] =
(
1− α(0)

)dc−1
. (A.7)

Let p
(1)
∆ := Pr[v ∈ ∆(1)] denote the probability that a variable node has a zero value

but is not verified in R2-HR2 of iteration zero. Based on (A.6) and (A.7), we have:

p(1)
∆ = Pr[v ∈ ∆(0)] Pr[v ∈ ∆

(0,R2,2)
0 |v ∈ ∆(0)]

= (1− α(0))
(

1−
(
1− α(0)

)dc−1
)dv

. (A.8)

A.4.3 Iteration one, R1-HR1 (Regrouping of check nodes in
sets Ni,j based on the index j)

Based on the recovery process at iteration zero, all verified variable nodes are in the
sets ∆j, 1 ≤ j ≤ dv. The processing of verified messages sent from these variable
nodes to check nodes at iteration 1, R1-HR1 results in some check nodes to move
from N (0,R2,1)

i,dc−i to N (1,R1,1)
i,j , 1 ≤ i ≤ dc, 0 ≤ j ≤ dc − i. The set of such check nodes

is denoted by N (1,R1)
i,dc−i↓j and we are interested in the probability that a check node

belongs to this set.
Let pER denote the probability of an edge in the set of ∆-edges carrying a verified

message. Such edges are not connected to the set ∆0. Let ve and ce denote the
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variable node and the check node connected by edge e. We thus have:

p(1,R1)
ER := 1− Pr[ve ∈ ∆

(0,R2,2)
0 |ve ∈ ∆(1), ce /∈ N (1)

0 ]

= 1− Pr[ve ∈ ∆0|ve ∈ ∆(1)] Pr[ce /∈ N (1)
0 |ve ∈ ∆0]

Pr[ce /∈ N (1)
0 |ve ∈ ∆(1)]

= 1−
p(0,R2,2)

∆0
× 1

1− p(0)
δ

= 1−
p(1)

∆

1− p(0)
δ

,

where p
(1)
∆ and p

(0)
δ are given in (A.8) and (A.7), respectively. Moreover, for 1 ≤ i ≤ dv

and 0 ≤ j ≤ dc − i,

p(1,R1)
Ni,dc−i↓j

=

(
dc − i
j

)(
1− p(1,R1)

ER

)j (
p(1,R1)
ER

)dc−i−j
.

Hence,
p(1,R1,1)
Ni,j

= p(0,R2,1)
Ni,dc−i

p(1,R1)
Ni,dc−i↓j

. (A.9)

A.4.4 Iteration one, R1-HR2 (Verification of variable nodes
based on D1CN)

In R1-HR2, received messages from check nodes are processed at variable nodes.
At this stage, a check node in the set N (1,R1,1)

1,0 transmits a message with its first
coordinate equal to 1, making it possible for variable nodes in the support set to be
verified according to D1CN rule. We partition the set of all variable nodes in K(1)

into subsets K(1,R1,2)
i , 0 ≤ i ≤ dv, where i denotes the number of received messages

with the first coordinate equal to 1 (refer to Fig. 4.2a for more information). We

denote the set of such variable nodes by K(1,R1)
0↑i . Let p(1,R1) denote the probability

that an edge adjacent to a variable node in the support set carries a message with
the first coordinate equal to 1. Using the same notations ve and ce defined above, we
have:

p(1,R1) := Pr[ce ∈ N (1,R1,1)
1,0 |ve ∈ K(1)]

=
Pr[ce ∈ N (1,R1,1)

1,0 ] Pr[ve ∈ K(1)|ce ∈ N (1,R1,1)
1,0 ]

Pr[ve ∈ K(1)]

=
p(1,R1,1)
N1,0

× 1/dc

α(1)
=
p(1,R1,1)
N1,0

α(1)dc
. (A.10)
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Hence, the probability p(1,R1)
K0↑i

, 0 ≤ i ≤ dv, that a variable node v ∈ K(1) belongs to

the set K(1,R1,2)
i is calculated as follows:

p(1,R1,2)
Ki

= p(1,R1)
K0↑i

:= Pr(v ∈ K(1,R1,2)
i |v ∈ K(1))

=

(
dv
i

)(
p(1,R1)

)i (
1− p(1,R1)

)dv−i
. (A.11)

Based on the D1CN rule in the LM algorithm, variable nodes in the set
⋃dv
i=1K

(1,R1,2)
i

are verified. Therefore, the probability that a variable node in the support set remains
unverified for iteration 2 is as follows:

α(2) = α(1)

(
1−

dv∑
i=1

p(1,R1,2)
Ki

)
.

A.4.5 Iteration one, R2-HR1 (Regrouping of check nodes in
sets Ni,j based on the index i)

Since some variable nodes in the support set have been verified in R1-HR2, a check
node in the set N (1,R1,1)

i,k might move into the set N (1,R2,1)
j,k in R2-HR1. This happens

if from i edges in the set of K-edges adjacent to the check node, i− j of them carry
a verified message. The set of such check nodes are denoted by N (1,R2)

i↓j,k and we are
interested in the probability that a check node belongs to this set.

Let p
(1,R2)
d denote the probability that a K-edge carries a verified message. We

have:

p(1,R2)
d := Pr[ve /∈ K(1,R1,2)

0 |ve ∈ K(1), ce /∈ N (1,R1,1)
1,0 ]

= 1− Pr[ve ∈ K0|ve ∈ K(1)] Pr[ce /∈ N1,0|ve ∈ K0]

Pr[ce /∈ N1,0|ve ∈ K(1)]

= 1−
p(1,R1,2)
K0

× 1

1− p(1,R1)
= 1−

p(1,R1,2)
K0

1− p(1,R1)
,

where p
(1,R1,2)
K0

and p(1,R1) are given by (A.11) and (A.10), respectively. Hence, the

probability p
(1,R2)
Ni↓j,k

, 2 ≤ i ≤ dc, 0 ≤ j ≤ i, 0 ≤ k ≤ dc− i, that a check node belongs to

the set N (1,R2)
i↓j,k is calculated as follows:

p(1,R2)
Ni↓j,k

=

(
i

j

)(
p(1,R2)
d

)i−j (
1− p(1,R2)

d

)j
.

Note that we have p
(1,R2)
N1↓0,0

= 1 and p(1,R2)
N1↓1,0

= 0. After the regrouping, the probability

p(1,R2,1)
Nj,k

, 0 ≤ j ≤ dc, 0 ≤ k ≤ dc − i, that a check node belongs to the set N (1,R2,1)
j,k is
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calculated by:

p(1,R2,1)
Nj,k

=
dc∑
i=j

p(1,R1,1)
Ni,k

p(1,R2)
Ni↓j,k

.

A.4.6 Iteration one, R2-HR2 (Verification of variable nodes
based on ZCN)

The measurement corresponding to check nodes in the set N (1,R2,1)
0,k , 1 ≤ k ≤ dc − 1,

changes to zero, as such check nodes are no longer connected to unverified variable
nodes in the support set. Hence, the messages transmitted by such check nodes have
their second coordinate equal to zero, which in turn verifies some variable nodes (in
the set ∆) at R2-HR2 of iteration 1.

To find the probability that a zero-valued variable node is verified at this stage,
we need the probability p(1,R2)

δ that an edge adjacent to a zero-valued variable node
carries a message with value zero. This probability is calculated as follows:

p(1,R2)
δ =

dc−1∑
j=1

Pr[ce ∈ N (1,R2,1)
0,j |ve ∈ ∆(1)]

=

dc−1∑
j=1

Pr[ce ∈ N (1,R2,1)
0,j ] Pr[ve ∈ ∆(1)|ce ∈ N (1,R2,1)

0,j ]

dc∑
i=0

dc−1∑
j=1

Pr[ce ∈ N (1,R2,1)
i,j ] Pr[ve ∈ ∆(1)|ce ∈ N (1,R2,1)

i,j ]

=

dc−1∑
j=1

p(1,R2,1)
N0,j

(
j

dc

)
dc∑
i=0

dc−1∑
j=1

p(1,R2,1)
Ni,j

(
j

dc

) =

dc−1∑
j=1

jp
(1,R2,1)
N0,j

dc∑
i=0

dc−1∑
j=1

jp
(1,R2,1)
Ni,j

. (A.12)

We then, for 0 ≤ i ≤ dv, have:

p(1,R2,2)
∆i

=

(
dv
i

)(
p(1,R2)
δ

)i (
1− p(1,R2)

δ

)dv−i
.

Lastly, the probability that a variable node is zero-valued and remains unverified for
iteration 2 is calculated by:

p(2)
∆ = p(1)

∆
p(1,R2,2)

∆0
.
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A.4.7 Iteration two and beyond

The analysis of the second iteration and beyond is similar to that of iteration one,
and hence omitted. The summary of the formulas can be found in Table 4.8.

A.5 SBB

In this section, we adopt the notation Ni, with any superscript, to denote the set⋃dc−i
j=0 Ni,j.

A.5.1 Iteration zero

The analysis for iteration zero is the same as that of the LM algorithm discussed in
Part A.4.1 of the appendix, and is thus not repeated here.

A.5.2 Iteration one, R1-HR1 (Regrouping of check nodes in
sets Ni,j based on the index j)

The analysis of R1-HR1 for SBB and LM are the same. (See Part A.4.3 of the
appendix.)

A.5.3 Iteration one, R1-HR2 (Verification of variable nodes
based on D1CN and ECN)

In R1-HR2, the variable nodes in the support set are verified based on D1CN and
ECN rules. Therefore, based on received messages from check nodes, we partition
the support set K(1) into subsets K(1,R1)

i , 0 ≤ i ≤ dv, where i denotes the number of

neighboring check nodes in the set N (1,R1,1)
1 (refer to Fig. 4.2b for more information).

We denote the set of such variable nodes by K(1,R1)
0↑i . This set shall serve as an

intermediate set that reflects the processing of messages from check nodes but does
not reflect the verification of support set elements.

Let p(1,R1) denote the conditional probability that an edge e is adjacent to a check
node in the set N (1,R1,1)

1 given that it is adjacent to a variable node in the support
set. We then have:

p(1,R1) := Pr[ce ∈ N (1,R1,1)
1 |ve ∈ K(1)]

=
Pr[ce ∈ N (1,R1,1)

1 ] Pr[ve ∈ K(1)|ce ∈ N (1,R1,1)
1 ]

Pr[ve ∈ K(1)]

=
dc−1∑
j=0

p(1,R1,1)
N1,j

× 1/dc

α(1)
=

dc−1∑
j=0

p(1,R1,1)
N1,j

α(1)dc
. (A.13)
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Hence,

p(1,R1)
Ki

= p(1,R1)
K0↑i

:= Pr(v ∈ K(1,R1)
i |v ∈ K(1)),

=

(
dv
i

)(
p(1,R1)

)i (
1− p(1,R1)

)dv−i
, 0 ≤ i ≤ dv. (A.14)

Based on the ECN rule, variable nodes in the set
⋃dv
i=2K

(1,R1)
i are verified. A fraction

f (1,R1) of variable nodes in the set K(1,R1)
1 that receive a message with the first co-

ordinate equal to 1 are also verified based on the D1CN rule. This fraction is equal
to:

f (1,R1) = Pr[ce ∈ N (1,R1,1)
1,0 |ve ∈ K(1,R1)

1 , ce ∈ N (0,R2,2)
1 ].

By omitting the superscripts for simplicity, and noting Pr[ce ∈ N1|ce ∈ N1,0, ve ∈
K1] = 1, we have:

f (1,R1) =
Pr[ce ∈ N1,0] Pr[ve ∈ K1|ce ∈ N1,0]

Pr[ce ∈ N1] Pr[ve ∈ K1|ce ∈ N1]

=

p(1,R1,1)
N1,0

× 1

dc

p(1,R1,1)
N1

× 1

dc

=
p(1,R1,1)
N1,0

p(1,R1,1)
N1

.

Therefore, the probability that a variable node in the support set remains unverified
for iteration 2 is calculated as follows:

α(2) = α(1)

(
1− f (1,R1)p(1,R1)

K1
−

dv∑
i=2

p(1,R1)
Ki

)
= α(1)

(
p(1,R1)
K0

+
(
1− f (1,R1)

)
p(1,R1)
K1

)
.

Correspondingly, the unverified non-zero variable nodes are partitioned based on the
following probabilities:

p(1,R1,2)
K0

=
1

N (1,R1)
p(1,R1)
K0

,

p(1,R1,2)
K1

=
1

N (1,R1)

(
1− f (1,R1)

)
p(1,R1)
K1

,

p(1,R1,2)
Ki

= 0, 2 ≤ i ≤ dv.

The normalization factor N (1,R1) is used to make the set of parameters p
(1,R1,2)
Ki

a valid
probability measure, and is calculated as follows:

N (1,R1) = p(1,R1)
K0

+
(
1− f (1,R1)

)
p(1,R1)
K1

=
α(2)

α(1)
.
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A.5.4 Iteration one, R2-HR1 (Regrouping of check nodes in
sets Ni,j based on the index i)

At this point, since some variable nodes in the support set have been verified at R1-
HR2, check nodes should be regrouped based on their K-degree. Since the variable
nodes in the set K(1,R1,2)

1 are left unverified, not all check nodes in the set N (1,R1,1)
1,j

(1 ≤ j ≤ dc − 1) are moved into the set N (1,R2,1)
0,j ; some will stay in the same set

N (1,R2,1)
1,j . Hence, in addition to analyzing the set of check nodes N (1,R2)

i↓k,j that are

moved from N (1,R1,1)
i,j to N (1,R2,1)

k,j , we also have to analyze the set of check nodes

N (1,R2)
1↓0,j that are moved from N (1,R1,1)

1,j to N (1,R2,1)
0,j .

We partition the edges adjacent to a check node into two sets: K-edges and
∆-edges. K-edges are connected to variable nodes in the set K(1), while ∆-edges are
connected to unverified zero-valued variable nodes. To analyze the regrouping of check
nodes in the sets N (1,R1,1)

1 and N (1,R1,1)
i , 2 ≤ i ≤ dc, we need the probabilities p

(1,R2)
d=1

and p
(1,R2)
d 6=1 defined as follows. The probability p

(1,R2)
d=1 is the conditional probability of

an edge carrying a verified message given that it is a K-edge adjacent to a check node
in the set N (1,R1,1)

1 . The probability p
(1,R2)
d 6=1 is defined similarly with respect to the set

of check nodes in
⋃dc
i=2N

(1,R1,1)
i .

Since the verified messages involved in the calculation of p
(1,R2)
d=1 originate from the

set
⋃dv
i=2K

(1,R1)
i , we have:

p(1,R2)
d=1 := Pr[ve ∈

dv⋃
i=2

K(1,R1)
i |ve ∈ K(1), ce ∈ N (1,R1,1)

1 ]

= 1− Pr[ve ∈ K(1,R1)
1 |ve ∈ K(1), ce ∈ N (1,R1,1)

1 ]

= 1− Pr[ve ∈ K1|ve ∈ K(1)] Pr[ce ∈ N (1,R1,1)
1 |ve ∈ K1]

Pr[ce ∈ N (1,R1,1)
1 |ve ∈ K(1)]

= 1−
p(1,R1)
K1

× 1/dv
p(1,R1)

= 1−
p(1,R1)
K1

dvp(1,R1)
,

where p
(1,R1)
K1

and p(1,R1) are given by (A.14) and (A.13), respectively. Similarly, p
(1,R2)
d 6=1

is derived as:

p(1,R2)
d6=1 = 1−

p(1,R1)
K0

+ p(1,R1)
K1

(
dv − 1

dv

)(
1− f (1,R1)

)
1− p(1,R1)

.

Hence, the set of probabilities p
(1,R2)
Ni↓k,j

, 2 ≤ i ≤ dc, 0 ≤ k ≤ i, 0 ≤ j ≤ dc − i, that a
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check node belongs to the set of check nodes N (1,R2)
i↓k,j are calculated as follows:

p(1,R2)
Ni↓k,j

=

(
i

k

)(
p(1,R2)
d6=1

)i−k (
1− p(1,R2)

d6=1

)k
,

p(1,R2)
N1↓0,j

= p(1,R2)
d=1 , p(1,R2)

N1↓1,j
= 1− p(1,R2)

d=1 , 1 ≤ j ≤ dc − 1,

p(1,R2)
N1↓0,0

= 1, p(1,R2)
N1↓1,0

= 0, p(1,R2)
N0↓0,j

= 1, 1 ≤ j ≤ dc.

Consequently, the probability p
(1,R2,1)
Nk,j

, 0 ≤ k ≤ dc, 0 ≤ j ≤ dc − i, that a check node

belongs to the set N (1,R2,1)
k,j is calculated as follows:

p(1,R2,1)
Nk,j

=
dc∑
i=k

p(1,R1,1)
Ni,j

p(1,R2)
Ni↓k,j

.

For the analysis in Part A.5.7, we need to partition the set of check nodes in N (1,R2,1)
1,j

into two sets: N (1,R2,1,+)
1,j and N (1,R2,1,C)

1,j . Check nodes in the set N (1,R2,1,+)
1,j were

moved into the set N (1,R2,1)
1,j from all the other sets N (1,R1,1)

i,j , 2 ≤ i ≤ dc. Check nodes

in the set N (1,R2,1,C)
1,j , however, are those that stayed in the set from N (1,R1,1)

1,j . Figure
A.2 shows the relationship between the sets.

Figure A.2: Relationship between the sets N (1,R1,1)
i,j , 1 ≤ i ≤ dc, 0 ≤ j ≤ dc− i, on the

left, and the sets N (1,R2,1,+)
1,j and N (1,R2,1,C)

1,j , on the right.

Let p
(1,R2,1,+)
N1,j

and p(1,R2,1,C)
N1,j

denote the probabilities that a check node belongs to

the sets N (1,R2,1,+)
1,j and N (1,R2,1,C)

1,j , respectively. We have:

p(1,R2,1,+)
N1,j

=
dc∑
i=2

p(1,R1,1)
Ni,j

p(1,R2)
Ni↓1,j

,

p(1,R2,1,C)
N1,j

= p(1,R1,1)
N1,j

p(1,R2)
N1↓1,j

= p(1,R2,1)
N1,j

− p(1,R2,1,+)
N1,j

.
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A.5.5 Iteration one, R2-HR2 (Verification of variable nodes
based on ZCN)

Let p
(1,R2)
δ denote the probability that an unverified zero-valued variable node is ver-

ified at this stage. This probability is derived similar to (A.12) and is given by:

p(1,R2)
δ :=

dc−1∑
j=1

Pr[ce ∈ N (1,R2,1)
0,j |ve ∈ ∆(1)] =

dc−1∑
j=1

j
p(1,R2,1)
N0,j

dc∑
i=0

dc−1∑
j=1

jp
(1,R2,1)
Ni,j

. (A.15)

Hence, the probability p
(1,R2,2)
∆i

, 0 ≤ i ≤ dv, defined as the probability that an unveri-

fied zero-valued variable node belongs to the set ∆
(1,R2,2)
i , is calculated as follows:

p(1,R2,2)
∆i

=

(
dv
i

)(
p(1,R2)
δ

)i (
1− p(1,R2)

δ

)dv−i
.

Lastly, the probability that a variable node is zero-valued and remains unverified for
iteration 2 is given by:

p(2)
∆ = p(1)

∆
p(1,R2,2)

∆0
.

A.5.6 Iteration two, R1-HR1 (Regrouping of check nodes in
Ni,j based on the index j)

Similar to the analysis of R1-HR1 at iteration 1, for 1 ≤ i ≤ dc, 0 ≤ j ≤ dc − i, 0 ≤
k ≤ j, we have:

p(2,R1)
Ni,j↓k

=

(
j

k

)(
1− p(2,R1)

ER

)k (
p(2,R1)
ER

)j−k
,

where,

p(2,R1)
ER = 1−

p(2)
∆

1− p(1,R2)
δ

.

Hence, for 0 ≤ k ≤ dc − 1,

p(2,R1,1)
Ni,k

=
dc−i∑
j=k

p(1,R2,1)
Ni,j

p(2,R1)
Ni,j↓k

, 2 ≤ i ≤ dc,

p(2,R1,1,+)
N1,k

=
dc−1∑
j=k

p(1,R2,1,+)
N1,j

p(2,R1)
N1,j↓k

, p(2,R1,1,C)
N1,k

=
dc−1∑
j=k

p(1,R2,1,C)
N1,j

p(2,R1)
N1,j↓k

.
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A.5.7 Iteration two, R1-HR2 (Verification of variable nodes
based on D1CN and ECN)

Edges emanating from the set N (2,R1,+)
1 :=

⋃dc−1
k=0 N

(2,R1,1,+)
1,k , are responsible for the

regrouping of variable nodes at iteration 2, R1-HR2. Let p
(2,R1)
k be the conditional

probability that an edge is adjacent to a check node in N (2,R1,+)
1 given that 1) it

emanates from an unverified non-zero variable node, and 2) it is not adjacent to a

check node in the set N (2,R1,C)
1 :=

⋃dc−1
k=0 N

(2,R1,1,C)
1,k . This is indeed the probability

that a variable node has an edge that increases its index. This probability is calculated
as follows (Pr[ce /∈ N (2,R1,C)

1 |ve ∈ K(2), ce ∈ N (2,R1,+)
1 ] = 1):

p(2,R1)
k = Pr[ce ∈ N (2,R1,+)

1 |ve ∈ K(2), ce /∈ N (2,R1,C)
1 ]

=
Pr[ce ∈ N (2,R1,+)

1 ] Pr[ve ∈ K(2)|ce ∈ N (2,R1,+)
1 ]

Pr[ve ∈ K(2), ce /∈ N (2,R1,C)
1 ]

.

The two probabilities in the numerator are equal to p
(2,R1,+)
N1

and 1/dc, respectively.
The denominator can be further processed as:

Pr[ve ∈ K(2), ce /∈ N (2,R1,C)
1 ] = Pr[ce ∈ N (2,R1,+)

1 ] Pr[ve ∈ K(2)|ce ∈ N (2,R1,+)
1 ]

+
dc∑
i=2

Pr[N (2,R1,1)
i ] Pr[ve ∈ K(2)|N (2,R1,1)

i ].

We thus have:

p(2,R1)
k =

p(2,R1,+)
N1

p(2,R1,+)
N1

+
dc∑
i=2

ip
(2,R1,1)
Ni

,

where,

p(2,R1,+)
N1

=
dc−1∑
k=0

p(2,R1,1,+)
N1,k

.

Hence, the probability p
(2,R1)
Ki↑j

, i ∈ {0, 1}, that a variable node from K(1,R1,2)
i is moved

into K(2,R1,2)
j , i ≤ j ≤ dv, is calculated as follows:

p(2,R1)
Ki↑j

=

(
dv − i
j − i

)(
p(2,R1)
k

)j−i (
1− p(2,R1)

k

)dv−j
. (A.16)
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Finally, the probability p
(2,R1)
Kj

is calculated by:

p(2,R1)
Kj

=
1∑
i=0

p(1,R1,2)
Ki

p(2,R1)
Ki↑j

, 0 ≤ j ≤ dv.

The probability p(2,R1,2)
Kj

that a variable node in the support set belongs to the set

K(2,R1,2)
j , is calculated based on the set of verified variable nodes at this stage. Variable

nodes in the set K(2,R1)
j , 2 ≤ j ≤ dv, are all verified. Variable nodes in the set K(2,R1)

0

are all left unverified, and a fraction of the variable nodes in the set K(2,R1)
1 are verified.

The set K(2,R1)
1 consists of two sets of variable nodes: K(2,R1)

0↑1 and K(2,R1)
1↑1 . A variable

node in K(2,R1)
0↑1 has a neighbor in N (2,R1,+)

1 , while a variable node in K(2,R1)
1↑1 has a

neighbor in N (2,R1,C)
1 . Variable nodes in the two sets K(2,R1)

0↑1 and K(2,R1)
1↑1 are verified

if and only if they are neighbor to check nodes in the sets N (2,R1,1,+)
1,0 and N (2,R1,1,C)

1,0 ,

respectively. Let f (2,R1,+) and f (2,R1,C) be the probabilities that a variable node in
K(2,R1)

0↑1 and K(2,R1)
1↑1 is verified at iteration 2, R1-HR2, respectively. We have:

f (2,R1,+) =
p(2,R1,1,+)
N1,0

p(2,R1,+)
N1

, f (2,R1,C) =
p(2,R1,1,C)
N1,0

p(2,R1,C)
N1

.

Finally, for the set of probabilities p
(2,R1,2)
Kj

, we have:

p(2,R1,2)
K0

=
1

N (2,R1)
p(2,R1)
K0

=
1

N (2,R1)
p(1,R1,2)
K0

p(2,R1)
K0↑0

,

p(2,R1,2,+)
K1

=
1

N (2,R1)
p(1,R1,2)
K0

p(2,R1)
K0↑1

(
1− f (2,R1,+)

)
,

p(2,R1,2,C)
K1

=
1

N (2,R1)
p(1,R1,2)
K1

p(2,R1)
K1↑1

(
1− f (2,R1,C)

)
,

p(2,R1,2)
Kj

= 0, j = 2, · · · , dv.

The normalization factor N (2,R1) is calculated by:

N (2,R1) = p(1,R1,2)
K0

p(2,R1)
K0↑1

(
1− f (2,R1,+)

)
+ p(1,R1,2)

K1
p(2,R1)
K1↑1

(
1− f (2,R1,C)

)
+ p(1,R1,2)

K0
p(2,R1)
K0↑0

.

The probability α(3) that a variable node in K(2) remains unverified after iteration 2
is calculated as follows:

α(3) = α(2)N (2,R1).
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A.5.8 Iteration two, R2-HR1 (Regrouping of check nodes in
sets Ni,j based on the index i)

In what follows, we find the probability p
(2,R2)
d6=1 defined in Part A.5.4. In the derivation,

we use the notation se = 1 (or se = 0) to denote a verified (or unverified) message
passing over edge e from a variable node to a check node. (For simplicity, some
superscripts are omitted. They appear when there is a risk of ambiguity.)

p(2,R2)
d6=1 = Pr[se = 1|ve ∈ K(2), ce ∈

dc⋃
j=2

N (2,R1,1)
j ]

= 1− Pr[ve ∈ K(2,R1)
0 , se = 0|ve ∈ K(2), ce ∈

dc⋃
j=2

Nj]

− Pr[ve ∈ K(2,R1)
1 , se = 0|ve ∈ K(2), ce ∈

dc⋃
j=2

Nj]

= 1− Pr[ve ∈ K0|ve ∈ K, ce ∈
dc⋃
j=2

Nj]

− Pr[ve ∈ K0↑1|ve ∈ K, ce ∈
dc⋃
j=2

Nj] Pr[se = 0|ve ∈ K0↑1, ve ∈ K, ce ∈
dc⋃
j=2

Nj]

− Pr[ve ∈ K1↑1|ve ∈ K, ce ∈
dc⋃
j=2

Nj] Pr[se = 0|ve ∈ K1↑1, ve ∈ K, ce ∈
dc⋃
j=2

Nj]

= 1−
Pr[ve ∈ K0|ve ∈ K] Pr[ce ∈

⋃dc
j=2Nj|ve ∈ K0, ve ∈ K]

Pr[ce ∈
⋃dc
j=2Nj|ve ∈ K]

−
Pr[ve ∈ K0↑1|ve ∈ K] Pr[ce ∈

⋃dc
j=2Nj|ve ∈ K0↑1, ve ∈ K]

Pr[ce ∈
⋃dc
j=2Nj|ve ∈ K]

(
1− f (2,R1,+)

)
−

Pr[ve ∈ K1↑1|ve ∈ K] Pr[ce ∈
⋃dc
j=2Nj|ve ∈ K1↑1, ve ∈ K]

Pr[ce ∈
⋃dc
j=2Nj|ve ∈ K]

(
1− f (2,R1,C)

)
= 1−

p(1,R1,2)
K0

p(2,R1)
K0↑0

1− p(2,R1)

−

(
dv − 1

dv

)
1− p(2,R1)

(
p(1,R1,2)
K0

p(2,R1)
K0↑1

(
1− f (2,R1,+)

)
+ p(1,R1,2)

K1
p(2,R1)
K1↑1

(
1− f (2,R1,C)

))
,

where,

p(2,R1) =
p(2,R1,+)
N1

+ p(2,R1,C)
N1

α(2)dc
.
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Hence, the probability p
(2,R2)
Ni↓k,j

, 2 ≤ i ≤ dc, 0 ≤ k ≤ i, 0 ≤ j ≤ dc − i, is calculated as
follows:

p(2,R2)
Ni↓k,j

=

(
i

k

)(
p(2,R2)
d6=1

)i−k (
1− p(2,R2)

d6=1

)k
.

The evolution of sets N (2,R1,+)
1 and N (2,R1,C)

1 is a bit more involved. Let a check node

c ∈ N (2,R1,+)
1 . Suppose, c is neighbor to a variable node v ∈ K(2,R1)

0↑1 . Variable node

v is verified if and only if c belongs to the subset N (2,R1,1,+)
1,0 . Hence, c moves to the

set of zero-valued check nodes if it belongs to the set N (2,R1,1,+)
1,0 . Now, suppose c is

neighbor to a variable node v′ ∈ ⋃dv
i=2K

(2,R1)
0↑i , or v′ ∈ ⋃dv

i=2K
(2,R1)
1↑i . Since the variable

node v′ is verified with probability 1, check node c becomes a zero-valued check node
with probability 1 as well. A similar argument holds true for the set of check nodes
in N (2,R1,C)

1 and variable nodes in K(2,R1)
1↑1 . Therefore, we need to further divide check

nodes in the sets N (2,R1,+)
1 and N (2,R1,C)

1 based on whether or not they are neighbor

to variable nodes in the sets K(2,R1)
0↑1 and K(2,R1)

1↑1 , respectively.

We partition the set N (2,R1,+)
1 into subsets N (2,R2,+,O)

1 and N (2,R2,+,F )
1 . The set

N (2,R2,+,F )
1 consists of check nodes with a neighboring variable node in K(`,R1)

0↑1 . The

rest of the check nodes in N (2,R1,+)
1 are all collected in the set N (2,R2,+,O)

1 .

Similarly, the set N (2,R1,C)
1 is partitioned into subsets N (2,R2,C,O)

1 and N (2,R2,C,F )
1 ,

where N (2,R2,C,F )
1 consists of check nodes with a neighboring variable node in K(`,R1)

1↑1 .

The rest of the check nodes in N (2,R1,C)
1 are collected in the set N (2,R2,C,O)

1 . Figure
A.3 depicts the relationship between the sets.

Figure A.3: Graphical description of sets N (`,R2,+,F )
1,i , N (`,R2,+,O)

1,i , N (`,R2,C,F )
1,i ,

N (`,R2,C,O)
1,i , and Ki↑j.
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Let p
(2,R2,+,O)
N1,i

and p(2,R2,+,F )
N1,i

, for 0 ≤ i ≤ dc − 1, denote the probabilities that

a check node belongs to sets N (2,R2,+,O)
1,i and N (2,R2,+,F )

1,i , respectively. Probabilities

p(2,R2,C,O)
N1,i

and p(2,R2,C,F )
N1,i

are defined similarly. The calculation of the probability

p(2,R2,+,F )
N1,i

, 0 ≤ i ≤ dc − 1, follows:

p(2,R2,+,F )
N1,i

:= Pr[c ∈ N (2,R2,+,F )
1,i ] = Pr[c ∈ N (2,R1,1,+)

1,i ] Pr[c ∈ N (2,R2,+,F )
1,i |c ∈ N (2,R1,1,+)

1,i ]

= Pr[c ∈ N (2,R1,1,+)
1,i ] Pr[ve ∈ K(2,R2)

0↑1 |ce ∈ N (2,R1,1,+)
1,i , ve ∈ K(2)]

= Pr[c ∈ N (2,R1,1,+)
1,i ]

Pr[ve ∈ K(2,R2)
0↑1 |ve ∈ K(2)] Pr[ce ∈ N (2,R1,1,+)

1,i |ve ∈ K(2,R2)
0↑1 , ve ∈ K(2)]

Pr[ce ∈ N (2,R1,1,+)
1,i |ve ∈ K(2)]

= Pr[c ∈ N (2,R1,1,+)
1,i ]

Pr[ve ∈ K(2,R2)
0↑1 |ve ∈ K(2)] Pr[ce ∈ N (2,R1,1,+)

1,i |ve ∈ K(2,R2)
0↑1 , ve ∈ K(2)]

A+B

=
p(2,R1,1,+)
N1,i

p(1,R1,2)
K0

p(2,R1)
K0↑1

dvp
(1,R1,2)
K0

p(2,R1)
k + (dv − 1) p

(1,R1,2)
K1

p(2,R1)
k

. (A.17)

where (using (A.16)),

A =
dv∑
j=1

Pr[ve ∈ K(2,R2)
0↑j , ce ∈ N (2,R1,1,+)

1,i |ve ∈ K(2)] =
dv∑
j=1

jp
(1,R1,2)
K0

p(2,R1)
K0↑j

= dvp
(1,R1,2)
K0

p(2,R1)
k ,

B =
dv∑
j=2

Pr[ve ∈ K(2,R2)
1↑j , ce ∈ N (2,R1,1,+)

1,i |ve ∈ K(2)] =
dv∑
j=2

(j − 1)p
(1,R1,2)
K1

p(2,R1)
K1↑j

= (dv − 1) p
(1,R1,2)
K1

p(2,R1)
k .

Also,
p(2,R2,+,O)
N1,i

= p(2,R1,1,+)
N1,i

− p(2,R2,+,F )
N1,i

.

Following a similar approach, we have:

p(2,R2,C,F )
N1,i

= p(2,R1,1,C)
N1,i

p(2,R1)
K1↑1

, p(2,R2,C,O)
N1,i

= p(2,R1,1,C)
N1,i

− p(2,R2,C,F )
N1,i

.

All check nodes in the sets N (2,R2,+,O)
1 , N (2,R2,C,O)

1 , N (2,R2,+,F )
1,0 , and N (2,R2,C,F )

1,0 are

moved into the set N (2,R2,1)
0 after R2-HR1. On the other hand, check nodes in the

sets N (2,R2,+,F )
1,i , and N (2,R2,C,F )

1,i , 1 ≤ i ≤ dc − 1, are moved into the sets N (2,R2,1,C)
1,i .

Consequently, we have (2 ≤ k ≤ dc):

p(2,R2,1)
Nk,j

=
dc∑
i=k

p(2,R1,1)
Ni,j

p(2,R2)
Ni↓k,j

, 0 ≤ j ≤ dc − i,
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p(2,R2,1,+)
N1,j

=
dc∑
i=2

p(2,R1,1)
Ni,j

p(2,R2)
Ni↓2,j

, 1 ≤ j ≤ dc − 1,

p(2,R2,1,C)
N1,j

= p(2,R2,C,F )
N1,j

+ p(2,R2,+,F )
N1,j

, 1 ≤ j ≤ dc − 1,

p(2,R2,1)
N0,j

= p(2,R1,1)
N0,j

+ p(2,R2,C,O)
N1,j

+ p(2,R2,+,O)
N1,j

+
dc∑
i=2

p(2,R1,1)
Ni,j

p(2,R2)
Ni↓0,j

, 0 ≤ j ≤ dc − 1.

A.5.9 Iteration two, R2-HR2 (Verification of variable nodes
based on ZCN)

At this stage, the probability p
(2,R2,2)
∆i

, 0 ≤ i ≤ dv, is calculated as follows:

p(2,R2,2)
∆i

=

(
dv
i

)(
p(2,R2)
δ

)i (
1− p(2,R2)

δ

)dv−i
,

where p
(2,R2)
δ is given by (A.15) with the appropriate change of probabilities to reflect

the values corresponding to iteration 2. Lastly, the probability that a variable node
is zero-valued and remains unverified for iteration 3 is given by:

p(3)
∆ = p(2)

∆
p(2,R2,2)

∆0
.

A.5.10 Iterations three and beyond

The analysis of an iteration `, ` ≥ 3, is similar to that of iteration 2. The summary
of update equations for SBB is given in Tables 4.10 and 4.11.



Appendix B

Analysis of SBB over Irregular Graphs

B.1 Iteration Zero

In this section we assume that for a variable degree dv we have 1 ≤ dv ≤ dv,max and
for a check degree dc we have 1 ≤ dc ≤ dc,max. The constraints on typical dv and dc
values will be omitted for ease of presentation henceforth. They appear when there
is a chance of ambiguity. Throughout the analysis we use the following notations.

• Let ve and ce denote the edge sockets at variable and check side connected by
edge e, respectively.

• Let d̄v :=

dv,max∑
i=1

iλi be the average variable degree. Similarly, let d̄c :=

dc,max∑
i=1

iρi

be the average check degree.

• Let Evi and Eci denote the set of edges emanating from variable nodes and check
nodes of degree i, respectively.

• Let Vi and Ci denote the set of variable nodes and check nodes of degree i,
respectively.

Let η(x) denote the variable edge degree distribution; ηi denotes the fraction of
edges emanating from variable nodes of degree i. In the analysis sometimes we need
to find the elements ηi in terms of λi. Using combinatorial arguments, it can easily
be shown that:

ηi := Pr[e ∈ Evi ] =
iλi

dv,max∑
i=1

iλi

=
iλi
d̄v

and similarly Pr[e ∈ Eci ] =
iρi
d̄c
. (B.1)

Iteration zero consists of only one round and hence, two half-rounds. In the first
half-round, check nodes pass their measurement values along with their degrees to
their neighboring variable nodes. In the second half-round, variable nodes process
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the incoming messages. A variable node is verified if it receives at least one message
with a value equal to zero. In this case, the variable node is verified with a value
equal to zero according to the ZCN rule. The set of all variable nodes verified in this
half-round make the set R(1). Since no variable node in the support set is verified,
we have: α(1) = α(0).

Let N (0,R2,1)
i,dc−i (dc) denote the set of check nodes of degree dc with i neighboring

variable nodes in the support set, and therefore dc−i neighboring zero-valued variable
nodes. The probability p(0)

Ni,dc−i
(dc) defined as the probability that a check node of

degree dc belongs to the set N (0)
i,dc−i(dc) is calculated as follows:

p(0)
Ni,dc−i

(dc) =

(
dc
i

)(
α(0)
)i (

1− α(0)
)dc−i

, 0 ≤ i ≤ dc.

Let ∆
(0,R2,2)
j (dv) denote the set of zero-valued variable nodes of degree dv so that

each variable node in this set receives j messages with value equal to zero from its
neighboring check nodes. The probability p

(0,R2,2)
∆j

(dv) defined as the probability that

a zero-valued variable node of degree dv belongs to the set ∆
(0,R2,2)
j (dv) is calculated

as follows:

p(0,R2,2)
∆j

(dv) = Pr[v ∈ ∆
(0,R2,2)
j (dv)|v ∈ ∆(0), v ∈ Vndv ]

=

(
dv
j

)(
p(0,R2)
δ

)j (
1− p(0,R2)

δ

)dv−j
, 0 ≤ j ≤ dv,

where p
(0,R2)
δ is the probability that an edge adjacent to a zero-valued variable node

carries a message with value equal to zero. This probability is independent of the
degree of the variable nodes and is calculated as follows:

p(0,R2)
δ = Pr[ce ∈

⋃
i

N0,i(i)|ve ∈ ∆]

=
∑
i

Pr[ce ∈ N0,i(i)|ve ∈ ∆] =
∑
i

Pr[ce ∈ N0,i(i), e ∈ Eci |ve ∈ ∆]

=
∑
i

Pr[e ∈ Eci ] Pr[ce ∈ N0,i(i)|e ∈ Eci ] Pr[ve ∈ ∆|ce ∈ N0,i(i), e ∈ Eci ]
Pr[ve ∈ ∆]

=
∑
i

iρi
d̄c
× p(0)

N0,i
(i)× 1

1− α(0)
=

1

d̄c

dc,max∑
i=1

iρi
(
1− α(0)

)i−1
. (B.2)

Let p
(1)
∆ (d) denote the probability that a variable node of degree d has a zero value

and is not verified according to ZCN at iteration 0; does not receive any message with
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value equal to zero in the second half-round of iteration zero. We have:

p(1)
∆ (d) = Pr[v ∈ ∆(1)|v ∈ Vnd ] = Pr[v ∈ ∆(0), v ∈ ∆

(0,R2,2)
0 (d)|v ∈ Vnd ]

= Pr[v ∈ ∆(0)|v ∈ Vnd ] Pr[v ∈ ∆
(0,R2,2)
0 (d)|v ∈ ∆(0), v ∈ Vnd ]

= (1− α(0))
(

1− p(0,R2)
δ

)d
, 1 ≤ d ≤ dv,max.

Since no element of the support set is verified at iteration zero, we have K(0) = K(1),
and hence,

α(1) = Pr[v ∈ K(1)] = α(0).

The edges adjacent to a check node are partitioned into two sets: K-edges and ∆-
edges. K-edges are connected to variable nodes in the support set, while ∆-edges
are connected to zero-valued variable nodes. Therefore, a check node in the set
N (1,R1,1)
i,j (dc) (0 ≤ i ≤ dc, 0 ≤ j ≤ dc − i) has i, K-edges and j, ∆-edges. The

regrouping of check nodes is discussed in the next section.

B.2 Iteration One, R1-HR1 (Regrouping check

nodes in sets Ni,j(dc) based on the index j)

In this section, we adopt the notation Ni(dc), 0 ≤ i ≤ dc, with any superscript, to
denote the set

⋃dc−i
j=0 Ni,j(dc). The verified messages sent from zero-valued variable

nodes to check nodes at the end of iteration zero, are processed at check nodes at
iteration 1, R1-HR1. We partition the set of edges adjacent to a variable node in
the set ∆j(d), 0 ≤ j ≤ d, into N=0-edges and N6=0-edges. N=0-edges are connected
to zero-valued check nodes (check nodes in the set

⋃
iN0(i)), while N6=0-edges are

connected to non-zero check nodes.
Let N (1,R1)

i,dc−i↓j(dc) denote the set of check nodes of degree dc that are regrouped

from N (0,R2,1)
i,dc−i (dc) to N (1,R1,1)

i,j (dc), 1 ≤ i ≤ dc and 0 ≤ j ≤ dc − i. To analyze the
regrouping, we need to find the probability pER of an edge in the set of ∆-edges to carry
a non-verified message. Such edges are connected to the set ∆0(d), 1 ≤ d ≤ dv,max.
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We have:

p(1,R1)
ER =

dv,max∑
d=1

Pr[ve ∈ ∆
(0,R2,2)
0 (d), e ∈ Ved |ve ∈ ∆(0), ce /∈

⋃
i

N (1)
0 (i)]

=

dv,max∑
d=1

Pr[e ∈ Ved , ve ∈ ∆(0), ve ∈ ∆
(0,R2,2)
0 (d), ce /∈

⋃
iN

(1)
0 (i)]

Pr[ve ∈ ∆(0), ce /∈
⋃
iN

(1)
0 (i)]

=

dv,max∑
d=1

Pr[e ∈ Ved ] Pr[ve ∈ ∆(0)|e ∈ Ved ] Pr[ve ∈ ∆
(0,R2,2)
0 (d)|ve ∈ ∆(0), e ∈ Ved ]

dv,max∑
d=1

d∑
i=0

Pr[e ∈ Ved , ve ∈ ∆(0), ve ∈ ∆
(0,R2,2)
i (d), ce /∈

⋃
i

N (1)
0 (i)]

× Pr[ce /∈
⋃
i

N (1)
0 (i)|ve ∈ ∆

(0,R2,2)
0 (d), ve ∈ ∆(0), e ∈ Ved ]

=

dv,max∑
d=1

dλd
d̄v

(1− α(0))p
(0,R2,2)
∆0

(d)× 1

dv,max∑
d=1

d∑
i=0

dλd
d̄v

(1− α(0))p
(0,R2,2)
∆i

(d)
d− i
d

=

dv,max∑
d=1

dλdp
(0,R2,2)
∆0

(d)
dv,max∑
d=1

d∑
i=0

(d− i)λdp(0,R2,2)
∆i

(d)

=

dv,max∑
d=1

dλdp
(0,R2,2)
∆0

(d)

d̄v(1− p(0,R2)
δ )

=
1

d̄v

dv,max∑
d=1

dλd(1− p(0,R2)
δ )d−1.

where p
(0,R2)
δ is given in (B.2). We thus have the following regrouping of check nodes

based on the second index:

p(1,R1)
Ni,dc−i↓j

(dc) =

(
dc − i
j

)(
p(1,R1)
ER

)j (
1− p(1,R1)

ER

)dc−i−j
, 1 ≤ i ≤ dc, 0 ≤ j ≤ dc − i.

Hence, the probability p
(1,R1,1)
Ni,j

(dc) is calculated as:

p(1,R1,1)
Ni,j

(dc) = p(0,R2,1)
Ni,dc−i

(dc)p
(1,R1)
Ni,dc−i↓j

(dc), 1 ≤ i ≤ dv, 0 ≤ j ≤ dc − i. (B.3)

B.3 Iteration One, R1-HR2 (Verification of vari-

able nodes based on ECN and D1CN)

In R1-HR2, for each variable degree d, 1 ≤ d ≤ dv,max, we divide the set of all

unverified variable nodes in the support set K(1)(d) into subsets K(1,R1)
i (d), 0 ≤ i ≤ d,

according to the received messages from check nodes. The index i denotes the number
of neighboring check nodes in the set

⋃
dc
N (1,R1,1)

1 (dc).
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Let p(1,R1) denote the conditional probability that an edge is adjacent to a check
node in the set

⋃
dc
N (1,R1,1)

1 (dc) given that it is adjacent to a variable node in the
support set. This probability is independent of the degree of the variable node. We
have:

p(1,R1) =

dc,max∑
d=1

Pr[e ∈ Ced, ce ∈ N (1,R1,1)
1 (d)|ve ∈ K(1)]

=

dc,max∑
d=1

Pr[e ∈ Ced] Pr[ce ∈ N (1,R1,1)
1 (d)|e ∈ Ced] Pr[ve ∈ K(1)|ce ∈ N (1,R1,1)

1 (d), e ∈ Ced]
Pr[ve ∈ K(1)]

=

dc,max∑
d=1

dρd
d̄c

(
d−1∑
j=0

p(1,R1,1)
N1,j(d)

)
× 1/d

α(1)
=

dc,max∑
d=1

ρd

d−1∑
j=0

p(1,R1,1)
N1,j

(d)

α(1)d̄c
. (B.4)

Hence, the probability p(1,R1)
Ki

(d),1 ≤ d ≤ dv,max, 0 ≤ i ≤ d, that a variable node

v ∈ K(1)(d) of degree d belongs to the set K(1,R1)
i (d) is calculated as follows:

p(1,R1)
Ki

(d) = Pr[v ∈ K(1,R1)
i (d)|v ∈ K(1)(d)] =

(
d

i

)(
p(1,R1)

)i (
1− p(1,R1)

)d−i
.

The verification of variable nodes of degree d, 1 ≤ d ≤ dv,max, in the support set is as
follows:

1. variable nodes in the set
⋃d
i=2K

(1,R1)
i (d) are verified based on the ECN rule.

2. variable nodes in the set K(1,R1)
1 (d) are resolved based on D1CN only if they are

neighbor to a check node in the set
⋃
dc
N (1,R1,1)

1,0 (dc).

3. variable nodes in the set K(1,R1)
0 (d) are not resolved in this iteration.

It is worth mentioning that some variable nodes in the set
⋃d
i=2K

(1,R1)
i (d) can also

be verified according to D1CN. However, since the probability of false verification is
zero and since all such variable nodes are verified, the source of verification is not
important in the analysis.

Let f (1,R1) denote the fraction of variable nodes in the set
⋃dv,max

dv=1 K
(1,R1)
1 (dv) that

are verified according to the D1CN rule. This fraction is independent of the degree
of the variable nodes and is calculated using the Bayes’ rule as follows:

f (1,R1) = Pr[

dc,max⋃
d=1

ce ∈ N (1,R1,1)
1,0 (d)|ve ∈

dv,max⋃
dv=1

K(1,R1)
1 (dv), ce ∈

dc,max⋃
dc=1

dc−1⋃
j=0

N (1,R1,1)
1,j (dc)].

Since the formulation is independent of the variable degree, for the sake of presentation
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we remove the union notation on dv and all the superscripts. Hence, we obtain:

f (1,R1) =

dc,max∑
d=1

Pr[ce ∈ N1,0(d), e ∈ Ced] Pr[ve ∈ K1(dv)|ce ∈ N1,0(d)]

dc,max∑
d=1

d−1∑
j=0

Pr[ce ∈ N1,j(d), e ∈ Ced] Pr[ve ∈ K1(dv)|ce ∈ N1,j(d)]

× Pr[ce ∈
⋃
j

N1,j(d)|ce ∈ N1,0(d), ve ∈
dv,max⋃
dv=1

K1(dv)]

=

dc,max∑
d=1

dρd
d̄c
p(1,R1,1)
N1,0

(d)× 1

d
× 1

dc,max∑
d=1

d−1∑
j=0

dρd
d̄c
p(1,R1,1)
N1,j

(d)× 1

d

=

dc,max∑
d=1

ρdp
(1,R1,1)
N1,0

(d)

dc,max∑
d=1

d−1∑
j=0

ρdp
(1,R1,1)
N1,j

(d)

. (B.5)

Therefore, the probability α
(2)
d that a variable node of degree d, 1 ≤ d ≤ dv,max, in the

support set remains unverified at iteration 1 is as follows:

α
(2)
d := Pr[v ∈ K(2)(d)] = Pr[v ∈ K(2)|v ∈ Dd]

= α(1)

(
1− f (1,R1)p(1,R1)

K1
(d)−

d∑
i=2

p(1,R1)
Ki

(d)

)
= α(1)

(
p(1,R1)
K0

(d) +
(
1− f (1,R1)

)
p(1,R1)
K1

(d)
)
.

The final regrouping of variable nodes of degree d, 1 ≤ d ≤ dv,max, into setsK(1,R1,2)
i (d),

0 ≤ i ≤ d, is performed by taking into account the set of verified variable nodes of
degree d. We have:

p(1,R1,2)
K0

(d) =
1

N (1,R1)(d)
p(1,R1)
K0

(d).

p(1,R1,2)
K1

(d) =
1

N (1,R1)(d)

(
1− f (1,R1)

)
p(1,R1)
K1

(d).

p(1,R1,2)
Ki

(d) = 0, 2 ≤ i ≤ d. (B.6)

The normalization factor N (1,R1)(d) is used to make the set of parameters p
(1,R1,2)
Ki

(d)
a valid probability measure, and is calculated as follows:

N (1,R1)(d) = p(1,R1)
K0

(d) +
(
1− f (1,R1)

)
p(1,R1)
K1

(d) =
α

(2)
d

α(1)
.
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B.4 Iteration One, R2-HR1 (Regrouping check

nodes in sets Ni,j(dc) based on the index i)

Let N (1,R2)
i↓k,j (d), 1 ≤ d ≤ dc,max, 1 ≤ i ≤ d, 0 ≤ j ≤ d − i, 0 ≤ k ≤ i, denote the set

of check nodes of degree d that are regrouped from N (1,R1,1)
i,j (d) to N (1,R2,1)

k,j (d). We

need to consider two separate cases: i = 1 and i ≥ 2, and find the probabilities p
(1,R2)
d=1

and p(1,R2)
d6=1 defined as follows. The probability p(1,R2)

d=1 is defined as the conditional
probability of an edge carrying a verified message (due to the ECN) given that it is

a K-edge adjacent to a check node in the set
⋃dc,max

dc=1 N
(1,R1,1)
1 (dc). The probability

p(1,R2)
d 6=1 is defined as the conditional probability of an edge carrying a verified message

(due to the ECN or D1CN) given that it is a K-edge adjacent to a check node in the

set
⋃dc,max

dc=1

⋃dc
i=2N

(1,R1,1)
i (dc). To find the probability p(1,R2)

d=1 , we shall consider only

the variable nodes in the set
⋃dv,max

dv=2

⋃dv
i=2K

(1,R1,2)
i (dv). This is because variable nodes

in the set
⋃dv,max

dv=2 K
(1,R1,2)
1 (dv) are verified based on D1CN. We proceed as follows:
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p(1,R2)
d=1 = Pr[ve ∈

dv,max⋃
dv=2

dv⋃
i=2

K(1,R1,2)
i (dv)|ve ∈ K(1), ce ∈

dc,max⋃
dc=1

N (1,R1,1)
1 (dc)]

= 1− Pr[ve ∈
dv,max⋃
dv=1

K(1,R1,2)
1 (dv)|ve ∈ K(1), ce ∈

dc,max⋃
dc=1

N (1,R1,1)
1 (dc)]

= 1−
dv,max∑
dv=1

Pr[ve ∈ K(1,R1,2)
1 (dv), e ∈ Vedv |ve ∈ K(1), ce ∈

dc,max⋃
dc=1

N (1,R1,1)
1 (dc)]

= 1−

dv,max∑
dv=1

Pr[e ∈ Vedv , ve ∈ K(1), ve ∈ K(1,R1,2)
1 (dv), ce ∈

dc,max⋃
dc=1

N (1,R1,1)
1 (dc)]

dv,max∑
dv=1

dv∑
i=0

Pr[e ∈ Vedv , ve ∈ K(1), ve ∈ K(1,R1,2)
i (dv), ce ∈

dc,max⋃
dc=1

N (1,R1,1)
1 (dc)]

= 1−

dv,max∑
dv=1

Pr[e ∈ Vedv ] Pr[ve ∈ K|e ∈ Vedv ] Pr[ve ∈ K1(dv)|ve ∈ K(dv)]

dv,max∑
dv=1

dv∑
j=0

Pr[e ∈ Vedv , ve ∈ K(1), ve ∈ K(1,R1,2)
j (dv), ce ∈

dc,max⋃
dc=1

N (1,R1,1)
1 (dc)]

× Pr[ce ∈
dc,max⋃
dc=1

N1(dc)|ve ∈ K1(dv)]

= 1−

dv,max∑
i=1

iλi
d̄v
α

(1)
i
p(1,R1,2)
K1

(i)
1

i

dv,max∑
i=1

i∑
j=1

iλi
d̄v
α

(1)
i
p(1,R1,2)
Kj

(i)
j

i

= 1−

dv,max∑
i=1

λiα
(1)
i
p(1,R1,2)
K1

(i)

dv,max∑
i=1

λiα
(1)
i

i∑
j=1

jp
(1,R1,2)
Kj

(i)

,

where the set of probabilities p
(1,R1,2)
Kj,i

are given by (B.6). Similarly, the probability

p(1,R2)
d6=1 is derived as:

p(1,R2)
d6=1 = 1−

dv,max∑
i=1

iλiα
(1)
i
p(1,R1,2)
K0

(i)

dv,max∑
i=1

i∑
j=1

(i− j)λiα(1)
i
p(1,R1,2)
Kj

(i)

−

dv,max∑
i=1

(i− 1)λiα
(1)
i
p(1,R1,2)
K1

(i)

dv,max∑
i=1

i∑
j=1

(i− j)λiα(1)
i
p(1,R1,2)
Kj

(i)

(
1− f (1,R1)

)
.

(B.7)
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Hence, the probabilities p
(1,R2)
Ni↓k,j

(dc) and p(1,R2)
N1↓0,j

(dc) that a check node belongs respec-

tively to the set of check nodes N (1,R2)
i↓k,j (dc) and N (1,R2)

1↓0,j (dc) are calculated as follows:

p(1,R2)
Ni↓k,j

(dc) =

(
i

k

)(
p(1,R2)
d6=1

)i−k (
1− p(1,R2)

d 6=1

)k
, 2 ≤ i ≤ dc, 0 ≤ k ≤ i, 0 ≤ j ≤ dc − i.

p(1,R2)
N1↓0,j

(dc) = p(1,R2)
d=1 , p(1,R2)

N1↓1,j
(dc) = 1− p(1,R2)

d=1 , 1 ≤ j ≤ dc − i.
p(1,R2)
N1↓0,0

(dc) = 1, p(1,R2)
N1↓1,0

(dc) = 0, p(1,R2)
N0↓0,j

(dc) = 1, 1 ≤ j ≤ dc − i.

After the regrouping, the probability p
(1,R2,1)
Nk,j

(dc) that a check node belongs to the set

N (1,R2,1)
k,j (dc) is calculated as follows:

p(1,R2,1)
Nk,j

(dc) =
dc∑
i=k

p(1,R1,1)
Ni,j

(dc)p
(1,R2)
Ni↓k,j

(dc), 0 ≤ k ≤ dc, 0 ≤ j ≤ dc − i.

We need to partition the set of check nodes in N (1,R2,1)
1,j (dc), 1 ≤ dc ≤ dc,max, into

two sets: N (1,R2,1,+)
1,j (dc) and N (1,R2,1,C)

1,j (dc). Check nodes in the set N (1,R2,1,+)
1,j (dc)

were moved into the set N (1,R2,1)
1,j (dc) from all the other sets N (1,R1,1)

i,j (dc), 2 ≤ i ≤ dc.

Check nodes in the set N (1,R2,1,C)
1,j (dc), however, are those that stayed in the set from

N (1,R1,1)
1,j (dc).

Let p
(1,R2,1,+)
N1,j

(dc) and p(1,R2,1,C)
N1,j

(dc) denote the probabilities that a check node

belongs to the sets N (1,R2,1,+)
1,j (dc) and N (1,R2,1,C)

1,j (dc), respectively. We have:

p(1,R2,1,+)
N1,j

(dc) =
dc∑
i=2

p(1,R1,1)
Ni,j

(dc)p
(1,R2)
Ni↓1,j

(dc),

p(1,R2,1,C)
N1,j

(dc) = p(1,R1,1)
N1,j

(dc)p
(1,R2)
N1↓1,j

(dc) = p(1,R2,1)
N1,j

(dc)− p(1,R2,1,+)
N1,j

(dc).

B.5 Iteration One, R2-HR2 (Verification of vari-

able nodes based on ZCN)

The measurement corresponding to check nodes in the set
⋃dc,max

d=1 N
(1,R2,1)
0,k (d), 1 ≤ k ≤

d − 1, changes to zero, as the check nodes are no longer connected to an unverified
variable node in the support set. Hence, the messages transmitted by such check
nodes have a value equal to zero, which in turn verifies some variable nodes (in the
set ∆) at R2-HR2 of iteration 1.

The probability p
(1,R2)
δ (defined in (B.2)) is calculated as follows. This parameter

is needed to find the probability that a zero-valued variable node is verified at this
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stage.

p(1,R2)
δ =

dc,max∑
d=1

d−1∑
j=1

Pr[e ∈ Ced, ce ∈ N (1,R2,1)
0,j (d)|ve ∈ ∆(1)]

=

dc,max∑
d=1

d−1∑
j=1

Pr[e ∈ Ced] Pr[ce ∈ N (1,R2,1)
0,j (d)|e ∈ Ced] Pr[ve ∈ ∆(1)|e ∈ Ced, ce ∈ N (1,R2,1)

0,j (d)]

dc,max∑
d=1

d∑
i=0

d−i∑
j=1

Pr[e ∈ Ced] Pr[ce ∈ N (1,R2,1)
i,j (d)|e ∈ Ced] Pr[ve ∈ ∆(1)|e ∈ Ced, ce ∈ N (1,R2,1)

i,j (d)]

=

dc,max∑
d=1

d−1∑
j=1

dρd
d̄c
p(1,R2,1)
N0,j

(d)

(
j

d

)
dc,max∑
d=1

d∑
i=0

d−i∑
j=1

dρd
d̄c
p(1,R2,1)
Ni,j

(d)

(
j

d

) =

dc,max∑
d=1

ρd

d−1∑
j=1

jp
(1,R2,1)
N0,j

(d)

dc,max∑
d=1

ρd

d∑
i=0

d−i∑
j=1

jp
(1,R2,1)
Ni,j

(d)

. (B.8)

Hence, the probabilities p
(1,R2,2)
∆i

(dv) and p(2)
∆ (dv) are calculated as follows:

p(1,R2,2)
∆i

(dv) =

(
dv
i

)(
p(1,R2)
δ

)i (
1− p(1,R2)

δ

)dv−i
, 1 ≤ dv ≤ dv,max, 0 ≤ i ≤ d,

p(2)
∆ (dv) = p(1)

∆ (dv)p
(1,R2,2)
∆0

(dv).

B.6 Iteration Two, R1-HR1 (Regrouping check

nodes in sets Ni,j(dc) based on the index j)

The regrouping of check nodes based on their second index is similar to the process
in R1-HR1 at iteration 1. We have:

p(2,R1)
ER =

dv,max∑
d=1

dλdp
(1,R2,2)
∆0

(d)

d̄v(1− p(1,R2)
δ )

=
1

d̄v

dv,max∑
d=1

dλd(1− p(1,R2)
δ )d−1.

For the regrouping of check nodes based on the second index we thus have:

p(2,R1)
Ni,j↓k

(dc) =

(
j

k

)(
p(2,R1)
ER

)k (
1− p(2,R1)

ER

)j−k
, 1 ≤ i ≤ dc, 0 ≤ j ≤ dc − i, 0 ≤ k ≤ j.

(B.9)
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Hence,

p(2,R1,1)
Ni,k

(dc) =
dc−i∑
j=k

p(1,R2,1)
Ni,j

(dc)p
(2,R1)
Ni,j↓k

(dc), 1 ≤ dc ≤ dc,max, 2 ≤ i ≤ dc, 0 ≤ k ≤ dc − i,

p(2,R1,1,+)
N1,k

(dc) =
dc−1∑
j=k

p(1,R2,1,+)
N1,j

(dc)p
(2,R1)
N1,j↓k

(dc), 1 ≤ dc ≤ dc,max, 0 ≤ k ≤ dc − 1, (B.10)

p(2,R1,1,C)
N1,k

(dc) =
dc−1∑
j=k

p(1,R2,1,C)
N1,j

(dc)p
(2,R1)
N1,j↓k

(dc), 1 ≤ dc ≤ dc,max, 0 ≤ k ≤ dc − 1. (B.11)

B.7 Iteration Two, R1-HR2 (Verification of vari-

able nodes based on ECN and D1CN)

Edges in the set
⋃dc,max

dc=1 N
(2,R1,1,+)
1 (dc) are responsible for the regrouping of variable

nodes at iteration 2, R1-HR2. We denote by p(2,R1)
k the conditional probability that

an edge is adjacent to a check node in
⋃dc,max

dc=1 N
(2,R1,1,+)
1 (dc) given that 1) it em-

anates from an unverified non-zero variable node, and 2) it is not adjacent to a check

node in the set
⋃dc,max

dc=1 N
(2,R1,1,C)
1 (dc); i.e. it is connected to a check node in the set⋃dc,max

dc=1

(⋃dc
i=2N

(2,R1,1)
i (dc) ∪N (2,R1,1,+)

1 (dc)
)

. This probability is calculated as follows:
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p(2,R1)
k =

dc,max∑
d=1

Pr[e ∈ Ced, ce ∈ N (2,R1,1,+)
1 (d)|ve ∈ K(2), ce /∈

dc,max⋃
dc=1

N (2,R1,C)
1 (dc)]

=

dc,max∑
d=1

Pr[e ∈ Ced] Pr[ce ∈ N (+)
1 (d)|e ∈ Ced] Pr[ve ∈ K(2)|ce ∈ N (+)

1 (d)]

Pr[ve ∈ K(2), ce ∈
{⋃dc

i=2N
(2,R1,1)
i (dc) ∪N (2,R1,1,+)

1 (dc)
}

]

× Pr[ce /∈
dc,max⋃
dc=1

N (C)
1 (dc)|ce ∈ N (+)

1 (d)]

=

dc,max∑
d=1

d−1∑
k=0

dρd
d̄c
p(2,R1,1,+)
N1,k

(d)× 1

d
× 1

dc,max∑
d=1

d−1∑
k=0

dρd
d̄c
p(2,R1,1,+)
N1,k

(d)× 1

d
+

dc,max∑
d=1

d∑
i=2

d−i∑
j=0

dρd
d̄c
p(2,R1,1)
Ni,j

(d)
i

d

=

dc,max∑
d=1

d−1∑
k=0

ρdp
(2,R1,1,+)
N1,k

(d)

dc,max∑
d=1

d−1∑
k=0

ρdp
(2,R1,1,+)
N1,k

(d) +

dc,max∑
d=1

d∑
i=2

d−i∑
j=0

iρdp
(2,R1,1)
Ni,j

(d)

.

Hence, the probability p
(2,R1)
Ki↑j

(dv), 1 ≤ dv ≤ dv,max, i ∈ {0, 1}, is calculated as follows:

p(2,R1)
Ki↑j

(dv) =

(
dv − i
j − i

)(
p(2,R1)
k

)j−i (
1− p(2,R1)

k

)dv−j
, i = 0, 1, i ≤ j ≤ dv.

Finally, the probability p(2,R1)
Kj

(dv) that a variable node of degree dv in the support

set belongs to the set K(2,R1)
j (dv) is calculated by:

p(2,R1)
Kj

(dv) =
1∑
i=0

p(1,R1,2)
Ki

(dv)p
(2,R1)
Ki↑j

(dv), 0 ≤ j ≤ d.

The probability p
(2,R1,2)
Kj

(dv) is calculated based on the set of verified variable nodes at

this stage. Variable nodes in the set
⋃dv,max

dv=1

⋃dv
j=2K

(2,R1)
j (dv) are all verified. Variable

nodes in the set
⋃dv,max

dv=1 K
(2,R1)
0 (dv) are left intact, and a fraction of the variable nodes

in the set
⋃dv,max

dv=1 K
(2,R1)
1 (dv) are verified. The procedure to find this fraction is as

follows.
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For any degree d, the set K(2,R1)
1 (d) consists of two sets of variable nodes: K(2,R1)

0↑1 (d)

and K(2,R1)
1↑1 (d). Variable nodes in the set K(2,R1)

0↑1 (d) are neighbor to check nodes in

the set N (2,R1,1,+)
1 , while variable nodes in the set K(2,R1)

1↑1 (d) are neighbor to check

nodes in the set N (2,R1,1,C)
1 . Variable nodes in K(2,R1)

0↑1 (d) and K(2,R1)
1↑1 (d) are verified

at iteration 2, R1-HR2, if they are neighbor to check nodes in the sets N (2,R1,1,+)
1,0

and N (2,R1,1,C)
1,0 , respectively. The parameters f (2,R1,+) and f (2,R1,C), defined as the

respective verification probability of variable nodes in K(2,R1)
0↑1 (d) and K(2,R1)

1↑1 (d) at
iteration 2, R1-HR2, are calculated similar to (B.5) (independent of the variable
node degree):

f (2,R1,+) =

dc,max∑
d=1

ρdp
(2,R1,1,+)
N1,0

(d)

dc,max∑
d=1

ρd

d−1∑
k=0

p(2,R1,1,+)
N1,k

(d)

, f (2,R1,C) =

dc,max∑
d=1

ρdp
(2,R1,1,C)
N1,0

(d)

dc,max∑
d=1

ρd

d−1∑
k=0

p(2,R1,1,C)
N1,k

(d)

.

Finally, for the set of probabilities p
(2,R1,2)
Kj

(d), 1 ≤ d ≤ dv,max, we have:

p(2,R1,2)
K0

(d) =
1

N (2,R1)(d)
p(2,R1)
K0

(d) =
1

N (2,R1)(d)
p(1,R1,2)
K0

(d)p
(2,R1)
K0↑0

(d),

p(2,R1,2,+)
K1

(d) =
1

N (2,R1)(d)
p(1,R1,2)
K0

(d)p
(2,R1)
K0↑1

(d)
(
1− f (2,R1,+)

)
,

p(2,R1,2,C)
K1

(d) =
1

N (2,R1)(d)
p(1,R1,2)
K1

(d)p
(2,R1)
K1↑1

(d)
(
1− f (2,R1,C)

)
,

p(2,R1,2)
Kj

(d) = 0, 2 ≤ j ≤ d.

The normalization factor N (2,R1)(d) is calculated by:

N (2,R1)(d) = p(1,R1,2)
K0

(d)p
(2,R1)
K0↑0

(d) + p(1,R1,2)
K0

(d)p
(2,R1)
K0↑1

(d)
(
1− f (2,R1,+)

)
+ p(1,R1,2)

K1
(d)p

(2,R1)
K1↑1

(d)
(
1− f (2,R1,C)

)
.

The probability that a variable node of degree d belongs to the support set and
remains unverified after iteration 2, α

(3)
d , is calculated as follows:

α
(3)
d = α

(2)
d N (2,R1)(d).
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B.8 Iteration Two, R2-HR1 (Regrouping check

nodes in sets Ni,j(dc) based on the index i)

The calculation of p
(1,R2)
d6=1 is very similar to that in (B.7) and hence the details are

removed for brevity.

p(2,R2)
d 6=1 = 1−

dv,max∑
i=1

iλiα
(2)
i
p(2,R1)
K0

(i)
dv,max∑
i=1

i∑
j=1

(i− j)λiα(2)
i
p(2,R1)
Kj

(i)

−
dv,max∑
i=1

(i− 1)λiα
(2)
i
p(1,R1,2)
K0

(i)p
(2,R1)
K0↑1

(i)

dv,max∑
i=1

i∑
j=1

(i− j)λiα(2)
i
p(2,R1)
Kj

(i)

(
1− f (2,R1,+)

)

−
dv,max∑
i=1

(i− 1)λiα
(2)
i
p(1,R1,2)
K1

(i)p
(2,R1)
K1↑1

(i)

dv,max∑
i=1

i∑
j=1

(i− j)λiα(2)
i
p(2,R1)
Kj

(i)

(
1− f (2,R1,C)

)
.

For 1 ≤ dc ≤ dc,max, 2 ≤ i ≤ dc, 0 ≤ k ≤ i, 0 ≤ j ≤ dc − i, we then have:

p(2,R2)
Ni↓k,j

(dc) =

(
i

k

)(
p(2,R2)
d 6=1

)i−k (
1− p(2,R2)

d6=1

)k
.

We explain the evolution of the setsN (2,R1,1,+)
1 (dc) andN (2,R1,1,C)

1 (dc), 1 ≤ dc ≤ dc,max,

in the following. A variable node in the set K(2,R1)
0↑i (d), 1 ≤ d ≤ dv,max, 1 ≤ i ≤ d,

has i neighboring check nodes in the set
⋃
dc
N (2,R1,1,+)

1 (dc). On the other hand, a

variable node in the set K(2,R1)
1↑i (d), 1 ≤ d ≤ dv,max, 1 ≤ i ≤ d, is neighbor to 1 check

node in the set
⋃
dc
N (2,R1,1,C)

1 (dc) and i− 1 check nodes in the set
⋃
dc
N (2,R1,1,+)

1 (dc).

Without loss of generality, let c ∈ N (2,R1,1,+)
1 (dc). Further, suppose c is neighbor to

a variable node v ∈ K(2,R1)
0↑1 (d). Variable node v is verified if and only if c belongs

to the subset N (2,R1,1,+)
1,0 (dc). Hence, c is regrouped as a zero-valued check node if

it belongs to the set N (2,R1,1,+)
1,0 (dc). Now, suppose c is neighbor to a variable node

v′ ∈ ⋃d
i=2K

(2,R1)
0↑i (d), or v′ ∈ ⋃d

i=2K
(2,R1)
1↑i (d). Since the variable node v′ is verified

with probability 1, check node c is regrouped into the set of zero-valued check nodes
with probability 1 as well. This argument is independent of the check degree dc and
similarly holds true for check nodes in N (2,R1,1,C)

1 (dc). Therefore, to regroup check

nodes in the sets N (2,R1,1,+)
1 (dc) and N (2,R1,1,C)

1 (dc), we need to divide them further
based on their neighbors; i.e., whether or not they are neighbor to variable nodes in
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the sets K(2,R1)
0↑1 (d) and K(2,R1)

1↑1 (d), respectively.

For any check degree d, we partition the set N (2,R1,1,+)
1 (d) into subsets

N (2,R2,+,O)
1 (d) and N (2,R2,+,F )

1 (d). We also partition the set N (2,R1,1,C)
1 (d) into subsets

N (2,R2,C,O)
1 (d) andN (2,R2,C,F )

1 (d). Check nodes in setsN (2,R2,+,F )
1 (d) andN (2,R2,C,F )

1 (d)

are neighbor to variable nodes in sets
⋃dv,max

i=1 K(2,R1)
0↑1 (i) and

⋃dv,max

i=1 K(2,R1)
1↑1 (i), respec-

tively. Any other check node in the set N (2,R1,1,+)
1 (d), not being part of the set

N (2,R2,+,F )
1 (d) is grouped into the set N (2,R2,+,O)

1 (d). Similarly, any other check node

in the set N (2,R1,1,C)
1 (d), not being part of the set N (2,R2,C,F )

1 (d) is grouped into the

set N (2,R2,C,O)
1 (d).

Let p
(2,R2,+,O)
N1

(dc) and p(2,R2,+,F )
N1

(dc), 1 ≤ dc ≤ dc,max, denote the probabilities

that a check node of degree dc belongs to sets N (2,R2,+,O)
1 (dc) and N (2,R2,+,F )

1 (dc),

respectively. Probabilities p
(2,R2,C,O)
N1

(dc) and p(2,R2,C,F )
N1

(dc) are defined similarly. The

calculation of the probability p
(2,R2,+,F )
N1,i

(dc), 0 ≤ i ≤ dc − 1, follows:

p(2,R2,+,F )
N1,i

(dc) := Pr[c ∈ N (2,R2,+,F )
1,i (dc)]

= Pr[c ∈ N (2,R1,1,+)
1,i (dc)] Pr[c ∈ N (2,R2,+,F )

1,i (dc)|c ∈ N (2,R1,1,+)
1,i (dc)].

The second probability on the right hand side, referred to as Pdc in the following
derivation for simplicity, is independent of the check degree dc and is calculated as
follows:

Pdc := Pr[c ∈ N (2,R2,+,F )
1,i (dc)|c ∈ N (2,R1,1,+)

1,i (dc)]

=

dv,max∑
d=1

Pr[e ∈ Ved , ve ∈ K(2,R2)
0↑1 (d)|ce ∈ N (2,R1,1,+)

1,i (dc), ve ∈ K(2)]

=

dv,max∑
d=1

Pr[e ∈ Ved ] Pr[ve ∈ K(2)|e ∈ Ved ] Pr[ve ∈ K(2,R2)
0↑1 (d)|ve ∈ K(2)

d ]

A+B

× Pr[ce ∈ N (2,+)
1,i (dc)|ve ∈ K(2,R2)

0↑1 (d)],

where,

A =

dv,max∑
d=1

d∑
i=1

Pr[e ∈ Ved , ve ∈ K(2), ve ∈ K(2,R2)
0↑i (d), ce ∈ N (2,R1,1,+)

1,i (dc)],

B =

dv,max∑
d=1

d∑
i=1

Pr[e ∈ Ved , ve ∈ K(2), ve ∈ K(2,R2)
1↑i (d), ce ∈ N (2,R1,1,+)

1,i (dc)].
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Hence,

p(2,R2,+,F )
N1,i

(dc) =

p(2,R1,1,+)
N1,i

(dc)

dv,max∑
d=1

dλd
d̄v

α
(2)
d
p(1,R1,2)
K0

(d)p
(2,R1)
K0↑1

(d)
1

d

dv,max∑
d=1

d∑
i=1

dλd
d̄v

α
(2)
d

{
p(1,R1,2)
K0

(d)p
(2,R1)
K0↑i

(d)
i

d
+ p(1,R1,2)

K1
(d)p

(2,R1)
K1↑i

(d)
i− 1

d

}

=

p(2,R1,1,+)
N1,i

(dc)

dv,max∑
d=1

λdα
(2)
d
p(1,R1,2)
K0

(d)p
(2,R1)
K0↑1

(d)

dv,max∑
d=1

d∑
i=1

λdα
(2)
d

{
ip

(1,R1,2)
K0

(d)p
(2,R1)
K0↑i

(d) + (i− 1)p
(1,R1,2)
K1

(d)p
(2,R1)
K1↑i

(d)
} ,

where the probability p
(2,R1,1,+)
N1,i

(dc) can be calculated using (B.10). We also have:

p(2,R2,+,O)
N1,i

= p(2,R1,1,+)
N1,i

− p(2,R2,+,F )
N1,i

.

Following a similar approach, we have:

p(2,R2,C,F )
N1,i

(dc) = p(2,R1,1,C)
N1,i

(dc)

dv,max∑
d=1

λdα
(2)
d
p(1,R1,2)
K1

(d)p
(2,R1)
K1↑1

(d)

dv,max∑
d=1

d∑
i=1

λdα
(2)
d
p(1,R1,2)
K1

(d)p
(2,R1)
K1↑i

(d)

,

p(2,R2,C,O)
N1,i

(dc) = p(2,R1,1,C)
N1,i

(dc)− p(2,R2,C,F )
N1,i

(dc).

At the end of iteration 2, R2-HR1, check nodes in sets N (2,R2,+,O)
1 (dc), N (2,R2,C,O)

1 (dc),

N (2,R2,+,F )
1,0 (dc), and N (2,R2,C,F )

1,0 (dc) are all grouped into the set N (2,R2,1)
0 (dc). On the

other hand, check nodes in sets N (2,R2,+,F )
1,i (dc), and N (2,R2,C,F )

1,i (dc), 1 ≤ i ≤ dc − 1,

are all grouped into N (2,R2,1,C)
1,i (dc). Ultimately, we have:
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p(2,R2,1)
Nk,j

(dc) =
dc∑
i=k

p(2,R1,1)
Ni,j

(dc)p
(2,R2)
Ni↓k,j

(dc), 2 ≤ k ≤ dc, 0 ≤ j ≤ dc − i,

p(2,R2,1,+)
N1,j

(dc) =
dc∑
i=2

p(2,R1,1)
Ni,j

(dc)p
(2,R2)
Ni↓1,j

(dc), 0 ≤ j ≤ dc − 1,

p(2,R2,1,C)
N1,j

(dc) = p(2,R2,C,F )
N1,j

(dc) + p(2,R2,+,F )
N1,j

(dc), 1 ≤ j ≤ dc − 1,

p(2,R2,1)
N0,j

(dc) = p(2,R1,1)
N0,j

(dc) + p(2,R2,C,O)
N1,j

(dc) + p(2,R2,+,O)
N1,j

(dc)

+
dc∑
i=2

p(2,R1,1)
Ni,j

(dc)p
(2,R2)
Ni↓0,j

(dc), 0 ≤ j ≤ dc − 1.

B.9 Iteration Two, R2-HR2 (Verification of vari-

able nodes based on ZCN)

The probability p
(2,R2,2)
∆i

(d), 1 ≤ d ≤ dv,max is calculated as follows:

p(2,R2,2)
∆i

(d) =

(
d

i

)(
p(2,R2)
δ

)i (
1− p(2,R2)

δ

)d−i
, 0 ≤ i ≤ d,

where p
(2,R2)
δ is given by (B.8) with the appropriate change of probabilities to reflect

the values corresponding to iteration 2. Lastly, the probability that a variable node
of degree d is zero-valued and remains unverified for iteration 3 is given by:

p(3)
∆ (d) = p(2)

∆ (d)p
(2,R2,2)
∆0

(d).

B.10 Iterations Three and Beyond

The analysis of an iteration `, ` ≥ 3, is similar to that of iteration 2. The update
rules for a generic iteration `, ` ≥ 2 are given in Tables 5.3 and 5.4.
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