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Abstract

We investigate the effect of factor graph transformations on the complexity of the

sum-product algorithm. Our work clearly shows that it is possible to lower the

number of operations required by the sum-product algorithm in its original form.

For some graphs, it is even possible to convert the graph to the cycle-free form

and simultaneously reduce the number of operations.

We applied the transformations to the applications of factor graphs in Joint

DNA Base Calling, decoding of the Hamming (7,4) code and Link Loss Monitor-

ing in Wireless Sensor Networks. In these applications, for considered models,

we successfully lowered the number of operations by 25%, 65% and 48%, re-

spectively. On an example of the Hamming(7,4) code we demonstrated that the

transformations may also improve the bit error rate performance of a decoder.
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Chapter 1

Introduction

1.1 Background and Outline

Factor graphs and the sum-product algorithm [3–5], as a general framework to

represent and analyze systems, have attracted a lot of interest from the research

community. The factor graph framework has been applied to many problems such

as decoding of error correcting codes, probabilistic inference, pattern recognition,

data fusion, constrained optimization, and many others. The key to the success

of the factor graph-based approach is that it enables the development of computa-

tionally efficient algorithms for a wide variety of applications. Often, the compu-

tational cost of the solutions derived based on factor graphs is much lower and/or

other performance metrics are much better compared to the other approaches used

to solve the same problem. For example, it has been shown that Maximum-

Likelihood (ML) decoding of Low-Density Parity-Check codes (LDPC) is NP-
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complete [6]. The method based on factor graphs and the sum-product algorithm

allows close to ML decoding of the codes with complexity only O(N) where N is

the block length of the code. In addition to producing excellent results, the factor

graph-based approach is well structured and easily understandable.

Abstractly speaking, a factor graph is a graphical representation of the struc-

ture of a problem to be solved. A factor graph comprises a set of nodes and a set

of edges that connect the nodes. We refer to a particular configuration of nodes

and edges as the topology of a graph. There are two types of nodes in a factor

graph: function and variable nodes. In a factor graph, edges can connect nodes of

different types only, i.e., a function node can be connected to any variable node

but not to other function nodes. The sum-product algorithm operates on a factor

graph by passing messages on the edges of the graph and finds a solution to the

problem represented by the graph. Depending on the structure of a factor graph,

the sum-product algorithm can yield an exact or approximate solution. It has been

shown that if the underlying graph is cycle-free, then the solution found by the

sum-product algorithm is exact [3, 4]. Conversely, if a graph has cycles, the sum-

product algorithm yields an approximate solution. Most of the graphs encountered

in real-life problems have cycles and for some of these graphs the sum-product al-

gorithm may not converge or may converge to a wrong solution [7, 8]. It appears

that the presence of a large number of short cycles can be especially harmful for

the convergence and accuracy [9]. A lot of work has been done with respect to the

investigation of the convergence properties of the algorithm [7, 8, 10–14] as well

as to improving them, see, e.g., [15–17].
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The authors in [3] introduce a set of transformations of a factor graph. These

transformations include joining nodes of a graph, removing edges or nodes, etc. It

has been shown that a graph with cycles can always be converted to the cycle-free

form using the transformations. The authors in [3] observe that the transformation

may significantly increase the complexity of the sum-product computations on the

transformed nodes.

The issue of complexity is ever-important for the implementation of algo-

rithms. The primary focus of the existing work on the complexity of the sum-

product algorithm [18–21] and the references therein is the simplification and ap-

proximation of the operations of the algorithm on the nodes of a graph in the

case where the variables represented by the nodes are binary. To the best of our

knowledge, there is no reference in the literature that comprehensively explores

the effect of factor graph transformations on the complexity of the sum-product

algorithm in its general form when underlying variables are not binary. The ob-

jective of this thesis is to fill this gap. We show that the transformations may

considerably decrease the complexity of the sum-product algorithm for certain

graph topologies.

We define complexity as the number of arithmetic operations required to com-

pute the messages on the edges of a factor graph. Following common practice, we

refer to the computation of messages on some or all edges connected to a node as

“update of the node”. We notice that while a factor graph transformation increases

the complexity of the update of transformed nodes, the number of operations re-

quired to update the nodes adjacent to the transformed nodes may decrease. It
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appears that an increase in the required number of operations on the transformed

part of the graph can be compensated by a decrease in the number of operations

required to update the rest of the graph. In other words, the complexity can be

“shifted” in order to find the graph that requires the sum-product algorithm with

the least complexity.

The gain promised by the presented method depends on the structure of a fac-

tor graph. One case stands out in particular: the transformations can be beneficial

if the graph is dense and has many short cycles. The same case is problematic in

terms of the convergence of the sum-product algorithm. In some cases, applying

our method achieves a two-fold gain: short cycles from a graph are removed, or

the graph is converted to a cycle-free form, with a simultaneous reduction in the

number of arithmetic operations required by the sum-product algorithm.

Examples of the method of lowering the complexity using graph transforma-

tions presented in this thesis include the following factor graph applications: i)

Joint DNA Base Calling [1], ii) decoding of the Hamming(7,4) code and iii) Link

Loss Monitoring in Wireless Sensor Networks [22]. In application i) we are able

to convert the graph to the cycle free form and reduce complexity by 25% at the

same time. In the case of the Hamming (7,4) code we are able to convert the graph

to the cycle-free form and reduce the number of operations by 51%. The complex-

ity of finding the ML estimates of the transmitted bits on the transformed graph

is less compared to the complexity of a single iteration of the sum-product on the

original graph with cycles. The transformation not only decreased complexity but

also improved the bit error rate of the decoder. In the application iii) we were

4



able to lower the operation count by 48%. In this thesis, we also propose a greedy

depth-N search algorithm that optimizes the complexity of the sum-product algo-

rithm by transforming a factor graph.

1.2 Objectives

The objectives of this thesis are the following:

1. To review the complexity of the sum-product algorithm in its generalized

form.

2. To examine the complexity of the algorithm under a set of factor graph

transformations such as clustering of variable and function nodes, and stretch-

ing transformations.

3. To explore the prospect of reducing the complexity of the generalized sum

product algorithm under transformations of factor graphs.

4. To consider practical applications where the transformation of a factor graph

lowers the complexity of the sum-product algorithm and to evaluate the

effect of the transformations in these applications.

5. To develop a practical algorithm that reduces the complexity of the sum-

product algorithm by transforming a factor graph.

1.3 Organization of the Thesis

The remainder of this thesis is organized in the following way. In Chapter 2, we

review the framework of factor graphs and the sum product algorithm. In Section

5



2.1, we introduce the sum-product algorithm in its general form for discrete vari-

ables and briefly review aspects of the implementation of the algorithm, message

scheduling, and convergence properties. In Section 2.2, the concept of commu-

tative semirings and its application to the generalized sum-product algorithm is

introduced. In Section 2.3, we consider the case where the variables represented

by a factor graph are continuous random variables and in particular Gaussian. In

Section 2.4, we review factor graph transformations as they are introduced in [3].

In Section 2.5, we review the existing literature related to the complexity of the

sum-product algorithm.

In Chapter 3, we explore the complexity of the sum-product algorithm. In

Sections 3.1 we introduce our definition of complexity. In Section 3.2 on several

simple examples we show that the complexity of the sum-product algorithm can

be lowered by transforming a factor graph. In Sections 3.3 we present the method

of efficient message computations and derive expressions for the number of oper-

ations required to update a variable and function nodes. In Section 3.4 we show

example of optimization of number of operations on a part of a graph.

In Chapter 4, we apply our method of lowering the complexity to the fol-

lowing applications: i) Joint DNA Base-Calling [1] (Section 4.1) , ii) decoding

of the Hamming(7,4) code (Section 4.2), and iii) Wireless Link Loss Monitoring

[22] (Section 4.3). In Chapter 5, we present a recursive greedy algorithm which

performs a depth N search on a graph and finds a sub-optimal solution to the

complexity optimization problem.

We conclude in Chapter 6 with list of contributions summary and future work.
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Chapter 2

Review of the framework of Factor

Graphs and the Sum-Product

Algorithm

2.1 Factor Graphs and the Sum-Product Algorithm

In this chapter, we discuss the framework of factor graphs and the sum-product

algorithm and their generalizations. Factor graphs and the sum-product algorithm

were discussed in detail in [3, 4]. Many efficient algorithms developed in a variety

of areas of mathematics, engineering and computer sciences may be described as

cases of the sum-product algorithm. It appears that a large variety of efficient and

7



sometimes quite complex algorithms utilize the simple distributive law:

A ·C+B ·C = (A+B) ·C

We note that the left-hand-side (LHS) of the equation requires three operations

while the right-hand-side (RHS) requires only two. Factor graphs and the sum-

product algorithm is a general framework that efficiently solves a class of compu-

tational problems known as “marginalize product of functions” (MPF) problems

[2, 3] by effectively utilizing the distributive law on a commutative semiring. In

this framework, we have a function of many variables called “global function”

denoted by F that can be factorized as a product of a number of functions called

“local functions” denoted by f . We say that a function is parameterized by a set

of variables if the function depends on the variables in the set. Alternatively, we

say that the variables form the domain of a function. We use the lower case letters

such as xi to denote a single variable and the upper case letters such as X to denote

a set of variables. From this point onwards, we denote subsets of variable indices

associated with local functions by S j, where j is the index of a local function,

i.e., if a local function is f3(x1,x5,x6), then S3 = {1,5,6}, and we write f3(XS3).

If a global function F is parameterized by the set X = {x1, . . . ,xn}, and can be

represented as the product of k functions fi, i ∈ {1, . . . ,k}, we may write:

F(X) =
k

∏
i=1

fi(XSi) (2.1)

In many applications, we wish to find marginals of a global function, i.e., the

8



sum of F(X) over all but a single variable x ∈ X . The problem appears to be triv-

ial but may have a prohibitive computational cost if solved in the direct way. For

example, if a set S has 1000 binary variables (which is modest for some applica-

tions) then to find marginals over a variable one needs to perform 2 ∗ (2999− 1)

summations which is prohibitive.1 By applying the sum-product algorithm we

may be able to reduce this number dramatically.

We start by introducing a few definitions from the graph theory [24] that will

be helpful throughout this thesis:

Definition 1 A graph G = (V,E) is described by a set of vertices V = {v1, . . . ,vk}

and set of edges E = {e1, . . . ,el}. An edge connects a pair of vertices vi and v j

and can be denoted by evi,v j . In this thesis we consider undirected graphs so that

the beginning and end vertices of an edge can be interchanged.

Definition 2 A path is a sequence of edges evi,v j → ev j,vn → evn,vm, . . . such that

for all edges in the path except for the last edge the end of an edge is also the

beginning of the next edge. The length of a path is the number of edges in the

sequence. A path is called a simple path if every edge appears in the sequence

once.

Definition 3 A cycle is a path of length 3 or more that begins and ends at the

same vertex. An edge which is not part of a cycle but joins two vertices which are

part of the cycle is called a chord.

1A similar example is given in [23].
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Definition 4 The degree of a vertex vi which we denote by d(vi) is the number

of edges connected to the vertex. Alternatively, we may say that the degree is the

number of neighbors of the vertex that can be reached by the path of length one

N1(v). A node of degree one is called a leaf.

Definition 5 A graph is called r-partite if the set of nodes V admits partition into

r classes such that every edge has its ends in different classes, in other words

vertices in the same partition class are not adjacent. A “2-partite” graph is called

bipartite [24].

A factor graph is a graphical representation of the factorization of a global

function. The graph has one set of nodes corresponding to the local functions

and another set of nodes representing variables. In the factor graph framework

these nodes are called function and variable nodes, respectively. For the moment,

we assume that there is a unique variable node representing each variable and a

unique function node corresponding to each local function 2. There is an edge

connecting a variable node to a function node if and only if the variable node is

part of the domain of the corresponding local function. An example of a global

function which is factorized as a product of local functions and the factor graph

representing this factorization is presented in Figure 2.1.

The degree of a variable node xi, d(xi) is the number of local functions that

have the variable xi as a parameter. The degree of a function node f j, d( f j) is

equal to the number of variables involved in the local function j. The sum-product

2This will not be the case after we apply factor graph transformations
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Figure 2.1: The factor graph representing the factorization F(x1,x2,x3,x4)=
f1(x1,x2) f2(x2,x3) f3(x2,x3,x4)

algorithm operates on a factor graph by passing messages between nodes of a

factor graph. We may say that a variable xi is associated with an edge e of a factor

graph if the edge is connected to the variable node corresponding to the variable

xi. Messages sent to and from the node xi have the variable xi as a parameter.

Assuming that the variable xi is discrete and has a finite alphabet with qi values,

then messages sent to and from the variable node xi will have qi values.

The sum-product update rules [3] are defined for the function and variable

nodes. According to the rules, messages sent by a node (or outgoing messages)

are computed from messages received by the node (or incoming messages) and

the values of the local functions. The message(s) sent by a node on one step of the

algorithm is received by the node’s neighbor(s) on the next step of the algorithm.3

We often refer to the process of computing outgoing messages from a node as “the

update of a node”.

In the following discussion, we will use µxi→ f j to denote a message sent from

a variable node xi to the function node f j and µ f j→xi to denote a message from a

3Here we use “step” in a broad sense as a single part of a sequence of computations.
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function node f j to a variable node xi. We use a backslash “\” to denote exclusion

from a set, as in {x1,x5,x6}\x5 = {x1,x6}. According to the update rule [3], the

message sent from a variable node xi to a function node f j is computed as:

µxi→ f j(xi) = ∏
fk∈N(xi)\ f j

µ fk→xi(xi) (2.2)

where N(xi) is the set of neighbors of the variable node xi and µ fk→xi(xi) is the

message sent by a function node fk and received by the variable node xi on the

previous step of the algorithm. In other words, an outgoing message sent by a

variable node is the product of the incoming messages on edges other than the

edge to which the message will be sent. A message sent by a function node f j to

a variable node xi is computed as [3]:

µ f j→xi(xi) = ∑
XS j\xi

f j(XS j) ∏
xk∈N( f j)\xi

µxk→ f j(xk) (2.3)

where N( f j) is the set of neighbors of the function node f j and µxk→ f j(xk) is the

message sent by a variable node xk and received by the function node f j on the

previous step of the algorithm. In other words, a message sent by a function node

is the product of the incoming messages on all edges except for the edge where the

outgoing message will be sent multiplied by the local function and marginalized

over the variable associated with the edge where the message will be sent. In the

case where the variables are continuous, the summation in (2.3) is replaced by

integration. We will consider this case in Section 2.3.

In order to send the message on an edge, a node of degree d(v)> 1 has to re-
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ceive incoming messages on the rest of the edges. Nodes of degree one can send

an outgoing message without receiving an incoming message. The values of the

outgoing message of a function node4 of degree one are the values of the local

function. The values of the message from a variable node of degree one is equal

to unity. Messages on a graph represent local information or in the case of proba-

bilistic inference, “local beliefs”.5 As nodes exchange messages the information

is spread in the graph. In order to compute exact marginals over a variable, the

node that represents the variable has to receive the information from all parts of

the graph.

Definition 6 A graph is a connected tree if and only if there is a unique path

between any two variables in the graph. By definition, if a graph is a tree then it

has no cycles.

Definition 7 The distance between nodes x and y dist(x,y) is the shortest path

between the nodes. The diameter of a graph diam (G) is the longest distance

between any two vertices in G.

The order in which the sum-product algorithm computes the messages sent

by the nodes of a graph is called a schedule. Various schedules are possible; a

schedule may depend on the presence of cycles in a graph and the type of prob-

lem being solved. We differentiate between single-vertex and multiple-vertices

problems [2]. In a single-vertex problem we need to compute the marginals of a

4Nodes of degree one are commonly called leaf nodes.
5The other name of the sum-product algorithm is “belief propagation” or BP.

13



global function over a single variable. In a multiple-vertices problem we need to

find marginals over more than one variable. For example, if our global function

is F(x1,x2,x3), then to compute m1(x1) = ∑x2,x3 F(x1,x2,x3) would be a single-

vertex problem while to compute the marginals m1(x1), m2(x2), and m3(x3) would

be an all-vertices problem.

For a single-vertex problem on a cycle-free graph, the algorithm may start at

the leaf nodes and at each step, update the nodes that receive at least d(v)− 1

incoming messages. In the case of the single-vertex problem, we need to compute

the outgoing messages for a node only on the edge that belongs to the unique

path from the node to the node that contains the variable of interest. The exact

marginals at the node xi can be computed after max
v∈G

dist(xi,v) rounds6 of updates.

For the multiple-vertices problem on a cycle-free graph, we may also start

at the leaf nodes and on each step, compute outgoing messages of the nodes that

receive at least d(v)−1 incoming messages. This time however, we need to update

outgoing messages on all edges. We will be able to compute exact marginals at

the variable nodes after diam(G) rounds of updates.

For a graph with cycles, the schedule applied above results in a deadlock be-

cause the nodes involved in the cycle(s) will never receive d(v)−1 messages and

will never be able to compute outgoing messages. In order to resolve this, we

may use the flooding schedule [3]: at the beginning of the algorithm all messages

are initialized to some values (often unity) and on each step of the algorithm all

6We define a round as part of a sequence of computations in which all nodes of either type
(variable or function) that received at least d(v)−1 messages compute outgoing messages.

14



nodes compute outgoing messages.7 The algorithm may terminate after selected

convergence criteria have been reached. For example, convergence can be con-

cluded once the difference between the values of messages on the edges on two

consecutive iterations is below a certain threshold. Convergence can also be con-

cluded based on other criteria, for example, in the case of decoding a linear code,

convergence may be declared after all parity checks are satisfied. The algorithm

may also terminate after a certain fixed number of iterations.

After the algorithm has finished the message updates (or converged), the value

of the marginals of global function over variable xi can be computed at the variable

node associated with variable xi as:

m(xi) = ∏
fk∈N(i)

µ fk→xi(xi) (2.4)

i.e., the marginal is the product of all incoming messages. The marginal represents

the global function marginalized over all variables but xi:

m(xi) = ∑
X\xi

F(X) (2.5)

The values of the marginals over a set of variables associated with a local function

node can be computed as:

m(XS j) = f j(XS j) ∏
xi∈N( j)

µxi→ f j(xi) (2.6)

7To be exact, a node needs to compute outgoing message only if any of the values of the
incoming messages are changed.
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In other words, the marginal is the product of all incoming messages and the local

function. The marginal represents the global function summed over all of the

variables except the variables in the set XS j :

m(XS j) = ∑
X\XS j

F(X) (2.7)

In some cases, we may need to compute joint marginals over a set of variables that

does not belong to a single local function. For example, consider a case where we

have a global function which is a probability mass function P(x1,x2,x3, . . .) and

we need to compute the marginal distribution p(x1,x2). If there is a local function

which depends on both variables x1 and x2 then we can compute the marginal

using the expression (2.6). If no local function includes both x1 and x2 then we

may proceed in the following way [25, p. 37]:

1. Compute the marginal p2(x2) in the standard way;

2. Consider p2(x2) as given evidence, fix the values of the messages coming

from the node x2 and compute conditional p(x1|x2) by re-running the sum-

product algorithm on the graph again.

3. Compute p(x1,x2) = p(x1|x2)p2(x2).

Alternatively, using factor graph transformations described in the Section 2.4, we

may create a node that includes both variables x1 and x2 and compute p(x1,x2)

using the regular approach.
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If a factor graph is cycle-free the marginals computed by the sum-product

algorithm are exact. In the case where a graph has cycles, it has been shown that:

• The marginals are approximate and the algorithm is not guaranteed to con-

verge. Good results and convergence however, have been observed for many

practical applications, as seen in [7].

• The values of the marginals are computed up to a scale factor [26]. 8

A lot of work has been devoted to the investigation of the convergence properties

of the sum-product algorithm on a graph with cycles [7, 8, 10, 13, 14]. The ac-

curacy of the approximation of the marginals by the sum-product depends on the

structure of the graph and the strength of influence along the cycles.9 The algo-

rithm is less likely to converge on the graphs with many short cycles and strong

influence/coupling between the states of variables involved in the cycles. There is

a connection between the convergence rate and accuracy, i.e., if the sum-product

algorithm is converging slowly then the accuracy of marginals is likely to be poor

[8]. It has been shown that the algorithm converges to the points which correspond
8For example, in the case when a global function is a pmf P(x1, . . . ,xn) and the variables

X = {x1, . . . ,xn} are binary then for a cycle-free graph the marginal at a node xi is mi(xi = 0) =
∑X\xi P(x1, . . . ,xi = 0, . . . ,xn) and mi(xi = 1) = ∑X\xi P(x1, . . . ,xi = 1, . . . ,xn). In the case of graph
with cycles even when the algorithm converges to the correct marginals, the result at the node xi
is mi(xi = 0) = C ∑X\xi P(x1, . . . ,xi = 0, . . . ,xn) and mi(xi = 1) = C ∑X\xi P(x1, . . . ,xi = 1, . . . ,xn)
where C is an arbitrary constant.

9Let assume the SP algorithm converged on a graph with a cycle which include n nodes
v1,v2, . . . ,vn. We may change the values of the message sent by the node v1 to the node v2 by
some amount and sequentially update the nodes v2, . . . ,vn. Lastly, we re-compute the message
vn → v1 as well as the value of the marginal at the node v1. If the value of the marginal did not
change by much we may say that the influence along the cycle is “weak” and that the SP algorithm
on the graph with such a cycle is more likely to behave as if the graph is cycle-free, i.e., converge
to the correct marginal. Note that this is our “intuition” since we did not specify the value of ”some
amount of change”.
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to the stationary points of Bethe approximation of free energy [12] and that the

convergence depends on the uniqueness of the stationary points. There are ways

to induce convergence, for example by introducing scaling factors on edges of a

graph [16, 27, 28].

A schedule has influence on convergence, accuracy, and complexity of the

sum-product algorithm [29–32]. For example, it has been shown that the sum-

product algorithm under the serial schedule where nodes are updated in sequence

tends to converge more quickly.

In order to minimize the operation counts it is desirable to perform as few mes-

sage updates as possible. From this point of view, a cycle-free graph has a definite

advantage since each message has to be updated only once. For a graph with cy-

cles, the more iterations required for convergence, the higher the complexity of

the algorithm, if all other parameters are the same. We note that elimination of

short cycles, which our method often uses to reduce “complexity per iterations”,

is also likely to have positive results on the convergence of the algorithm. This

however, is case specific and is yet to be proven.

2.2 Generalization of the Sum-Product Algorithm
on an arbitrary commutative semiring

The versatility and wide variety of applications of the sum-product algorithm can

be partially explained by the fact that the algorithm can be generalized on an

arbitrary commutative semiring[2, 3, 33].

Definition 8 A commutative semiring is a set with defined operations ⊕ and ⊗
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such that:

• The operation ⊕ (which is equivalent to the summation in the sets of R, C,

Z ) is associative and commutative and additive element “0” exists such

that a⊕0 = a.

• The operation ⊗ (which is the equivalent of multiplication in the sets of R,

C, Z) is associative and commutative and there is a multiplicative unity “1”

such that a⊗1 = a.

• the distributive law holds, i.e., (a⊗b)⊕ (a⊗ c) = a⊗ (b⊕ c)

A few examples of the semirings include:

• The set of R with ordinary additions and multiplications forms a semiring.

The well-known form of the distributive law for this semiring is expressed

as:

A ·C+B ·C = (A+B) ·C

• The min-sum semiring is formed by the set of R with the operations ⊕ and

⊗ represented by MIN and ”+” respectively. The distributive law in this

case is:

MIN(A+C,B+C) =C+MIN(A,B)

• The boolean semiring is formed by the set of {T RUE,FALSE} with the op-

erations ⊕ and ⊗ represented by the boolean operations ”OR” and ”AND”.

The distributive law in this case is:

(A AND B) OR (A AND C) = A AND (B OR C)
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A table of several semirings is given in [2, Table. 1].

The sum-product algorithm is based on the distributive law [2, 3, 33] and can

be applied to any problem where we have a global function over elements of

semiring which can be represented as a generalized product of smaller functions

and where we need to find the generalized marginals over subsets of variables.

By “generalized product” and “generalized marginals” we are refereing to the

expressions where ordinary multiplications and summations are replaced by the

operations ⊕ and ⊗ respectively. When the sum-product algorithm is applied

to a problem defined over a commutative semiring, it operates “as usual” with

exception that the operations addition and multiplication in the update rules for the

variable and function nodes (2.2) and 2.3) are replaced by the semiring operations

⊕ and ⊗. The values of the messages and local functions in this case are the

elements of the semiring.

2.3 The Sum-Product Algorithm in the case of
continuous variables

In the discussion above, the variables of the global function were discrete with the

values taken from finite alphabets. Now we briefly consider the case where some

or all of the variables are continuous. In this case, the messages on the edges of

a factor graph are functions of the continuous variables. The messages sent by a

function node f j to a variable node xi node is expressed as:

µ f j→xi(xi) =
∫

XS j\xi

f j(XS j) ∏
xk∈N( f j)\xi

µ f j←xk(xk)dXS j\xi (2.8)

20



where the integral is evaluated over all the variables in XS j but xi. The expression

is similar to the update rule of a function node for the case of discrete variables

(2.3) with the exception that the summation is replaced by the integration. The

messages sent from a variable node to a function node can be found using the

expression identical to the discrete case (2.2). However, this time the outgoing

messages are products of functions of a continuous variable.

A major application of factor graphs is the task of probabilistic inference. In

the probabilistic framework, the local functions represent probability distributions

and the messages on the edges are marginal distributions. The computation of the

integral in the update of a function node (2.8) depends on the type of local func-

tion. In the important case where the distributions are Gaussian, the probability

distribution can be completely described by its mean and variance. Therefore,

messages sent on the edges of a factor graph can have just two values: mean

and variance of the distribution. The probability density function of the Gaussian

distribution is expressed as [34]:

f (x) =
exp
{
− (x−µx)

2

2σ2
x

}
√

2πσ2
x

(2.9)

In the case of a probabilistic framework, we are interested in the values of the

distributions up to a scale factor [26]. The message sent by a variable node xi is

a product of the incoming messages which are distributions (2.9) over common

variable xi. The product of two distributions over xi with variances σ2
1 , σ2

2 and
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means µ1, µ2 is [35, p. 11]:

f1(xi) f2(xi) ∝ exp
{
−
(
(xi−µ1)

2

2σ2
1

+
(xi−µ2)

2

2σ2
2

)}
= exp

{
−(x−µP)

2

2σ2
P

}

where, the mean and µP and variance σ2
P of the product-distribution are:

σ
2
P =

σ2
1 σ2

2
σ2

1 +σ2
2

(2.10)

µP = σ
2
P

(
µ1

σ2
1
+

µ2

σ2
2

)
(2.11)

Applying (2.10) and (2.11) in a chain we can evaluate the product of any number

of Gaussian distributions. We can simplify the equations for the case of a product

of several distributions if, instead of the variances, we use precisions P = 1
σ2 . The

precision of the product distribution (2.10) is PP = P1 +P2. The precision Pxi→ f j

of the message sent by a variable node xi to a function node f j is expressed as

[35]:

Pxi→ f j = ∑
fk∈N(xi)\ f j

Pxi← fk (2.12)

where Pxi← fk is the precision sent by a function node fk to the node xi. The mean

mxi→ f j sent by a variable node xi to a function node f j is [35]:

mxi→ f j = P−1
xi→ f j

 ∑
fk∈N(xi)\ f j

Pxi← fkmxi← fk

 (2.13)
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where mxi← fk is the mean sent by a function node fk to the node xi.

Now we are going to consider the update of a function node. The expression

(2.8) has the product of distributions over different variables, i.e., the variables that

are connected to the function node. In our case, the distributions are Gaussian. A

two-dimensional jointly Gaussian distribution is expressed as [34]:

f (x,y) =
exp
{

−1
2(1−ρ2

xy)

(
(x−µx)

2

σ2
x
− 2ρxy(x−µx)(y−µy)

σxσy
+

(y−µy)
2

σ2
y

)}
2πσxσy

√
1−ρ2

xy

(2.14)

where ρxy is the correlation coefficient between x and y. Assuming that the mes-

sages from nodes xi and x j are Gaussian distributions fxi(xi) and fx j(x j) with

means µxi and µx j and variances σ2
xi

, σ2
x j

, then the product of the distributions is:

f1(xi) f2(x j) ∝ exp

{
−

(
(xi−µxi)

2

2σ2
xi

+
(x j−µx j)

2

2σ2
x j

)}
(2.15)

By comparing (2.15) with (2.14) one can see that up to a scale factor the product is

a two dimensional Gaussian distribution with correlation coefficient 0. Therefore,

the product of the messages in (2.8) is a Gaussian distribution. The multidimen-

sional Gaussian distribution fx(x) over variables x = x1, . . . ,xn is expressed as

[34]:

fx(x) =
exp
{
−1

2(x−m)TV−1(x−m)
}

(2π)n/2|V |1/2 (2.16)

where m is the mean vector of fx(x) and V is the covariance matrix of fx(x).
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Assuming that the product under the integral (2.8) can be represented as mul-

tidimensional Gaussian distribution fx(x)(2.16) then the integral can be evaluated

using Gaussian Max/Int theorem [26, Appendix 1, Theorem 4]. Suppose we wish

to compute the message to the node xi, i.e., integrate the distribution over all vari-

ables but the variable xi, then:

fxi(xi) =
∫ +∞

−∞

fx(x)d(x\xi) ∝ max
x\xi

{
exp
(
−1

2
(x−m)TV−1(x−m)

)}
= exp

{
−1

2
min
x\xi

(
(x−m)TV−1(x−m)

)}
(2.17)

Following [26], let W =V−1 be the inverse of the covariance matrix V and wii be

the diagonal element in the row i of W . Also by Wx\xi we denote the matrix W

without the column and row i (so Wx\xi is n− 1× n− 1 matrix), by Wxi the row i

of W without the element wii (so Wxi is a vector of n− 1 values), and by mxi the

element i of mean-vector m. Then the minimum under the exponent in (2.17) is

[26, Appendix 1, Theorem 5]:

min
x\xi

(
(x−m)TW (x−m)

)
= (xi−mxi)

2(wii−WxiW
−1
x\xi

Wxi) (2.18)

and the value that minimizes (2.18) is:

argmin
x\xi

(
(x−m)TW (x−m)

)
= mx\xi−W−1

x\xi
Wxi(xi−mxi) (2.19)
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where mx\xi is the vector of means of the variables x without the element mxi . By

comparing (2.18) to (2.9) one can see that the mean of the outgoing message is

mxi and that the precision Pxi = wii−WxiW
−1
x\xi

Wxi .

Once the sum-product algorithm has converged, one can find the mean and

precision of the marginal distribution over variable xi as:

Pxi = ∑
fk∈N(xi)

Pxi← fk (2.20)

mxi = P−1
xi

(
∑

fk∈N(xi)

Pxi← fkmxi← fk

)
(2.21)

The task of probabilistic inference consists of determining distributions or

other parameters of some “hidden” phenomena from the parameters that can be

observed directly. It is obvious that, in order to infer something the latter must pro-

vide information about the former. Examples of such tasks include determining a

transmitted sequence from the received sequence in a communication system or

inferring a diagnosis based on observations of symptoms in a patient by a software

for medical diagnostics. Given a set of observations A, set of unknowns B, and

the distribution P(A|B), the value of B which maximizes the likelihood of observ-

ing the configuration A is B̂ML = argmax
B

P(A|B) and is known as the Maximum

Likelihood (ML) estimate of B. Using the Bayes rule P(B|A) = P(A|B)P(B)/P(A)

the most likely value of B given A is known as Maximum a Posteriori Probability

(MAP) estimate of B and can be expressed as B̂MAP = argmax
B

P(A|B)P(B). If a

25



priori distribution of B is uniform then the ML estimation corresponds to the MAP

estimation. In the case where the distribution P(A|B) is Gaussian then the most

likely values of B given A are the values of the mean-vector m of the distribution

P(A|B) so that B̂ML/MAP = m. In this regard the sum-product algorithm on a fac-

tor graph where distributions of all variables are Gaussian and the updates of the

function nodes preserve Gaussianity has an important property: if the algorithm

converges then the means of the marginal distributions are guaranteed to be cor-

rect, even in the case where the graph has cycles [8, 26]. This implies that the

MAP estimate of the Gaussian variable on a factor graph is correct.

In the case where densities are non-Gaussian and the integral in (2.8) has no

closed form, we can use one of the methods below [26]:

• use quantization to convert continuous variables to discrete variables

• approximate the variables as Gaussian or as a mixture of Gaussian densities

• represent message µ(x) as a single point x̂, which may be viewed as a tem-

porary or final estimate of x. 10

• use some other methods which are listed in [26] and [36]
10This means that in all equations such as joint probability distributions we replace the variable

x with its estimate x̂. The messages toward the node x does not need to be computed since we
assumed that x is “known”. Equivalently we may fix the mean of messages to mx = x̂ and precision
Px = ∞ or some large value.

26



2.4 Factor Graph Transformations

Factor graph transformations have been introduced in [3]. However, the concept

has been known earlier, as seen in node clustering in [37]. The transformations

were mainly considered the means that allows converting a graph with cycles to

the cycle-free form. We reiterate that a factor graph is essentially a representation

of the way how a global function factorizes as a product of local functions. It is

always possible to modify this factorization and in turn, modify the factor graph.

Below, we will review the modifications of the factorization that correspond to

the clustering of function and variable nodes, stretching variables, and adding

and removing nodes and edges in a graph. In all of these transformations, the

factorization of the global function is changed but the values and the domain of

the function remain unchanged.

In the discussion below we focus on the case where the variables are drawn

from discrete finite alphabets and the local functions are represented in the form

of tables. Let fi and f j be two local functions with the domains XSi and XS j . It is al-

ways possible to replace the product of fi and f j by fk
(
XSi ∪XS j

)
= fi (XSi) f j

(
XS j

)
.

From the factor graph perspective, this is equivalent to removing the nodes fi and

f j from the graph and replacing them with a single node corresponding to fk.

Effectively, nodes fi and f j have been clustered. The domain of the node fk is

the union of the domains of the original nodes, and the degree of the node fk is

deg( fk) ≥ max(deg( fi),deg( f j)). The increase of the degree and cardinality of

the domain indicates a possible significant increase of complexity of the process-
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ing of node fk compared to the original nodes. By repeating this procedure we

can join any number of function nodes.

Similar to the function nodes, any number of the variable nodes can be clus-

tered. This can be viewed as a substitution of the original variables, for example

xi and x j, by the third variable xk with the domain |xk| = |xi|× |x j|. To keep the

global function unchanged we need to modify the tables of the local functions in

such a way that the values of the functions remain unchanged for the values of xk

that correspond to the values of xi and x j. From the factor graph perspective, this

transformation corresponds to removing the nodes represented by xi and x j from

the graph and replacing them with the single node xk. Note that the degree and the

cardinality of the domain of the node xk have increased as compared to the degrees

and cardinalities of the original nodes. This may result in a higher computational

cost of the update of the node. We can repeat the procedure and cluster any num-

ber of the variable nodes. Since xi, x j, and xk are just labels, we may (and usually

do) retain the reference to the original labels, i.e., for joined nodes we usually use

joint labels such as xi x j. We emphasize however, the fact that the composite node,

resulted from joining simple nodes, has the domain |xi|× |x j| and that there is an

apparent correspondence between the values of the variable xi x j and the values of

the original variables xi and x j. An example of clustering transformation can be

found in [3, Figure 20(b)].

Now, since we have arrived to the point where multiple variables can be as-

signed to a single variable node we need to update our notation. By Svn
i we denote

the set of indices of variables associated with a variable node i and by XSvn
i

we
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denote the set of variables with indices Svn
i . We will also use the notation S f n

i to

differentiate between sets corresponding to function nodes.

In a factor graph, the set of neighbors N1(xi) of a variable node xi represents

the area of the graph where the information about the dependency of the variable

xi is presented in its explicit form. In other parts of the graph, the dependency on

the variable is marginalized out. It has been suggested in [3] that it is possible

to extend the area where the dependency on a variable is presented in an un-

marginalized form. This transformation corresponds to “stretching” of the domain

of a variable.

Let the nodes corresponding to variables xi and x j be connected by a path of

length 2. As in the clustering of variable nodes, we can expand the domain of the

variable x j by including all possible permutations of the variables xi and x j, i.e.,

we replace the node x j with the node labeled as xi x j and the size of the domain

|xi|× |x j|. We update the local functions which have x j as a parameter in such a

way that the tables for the values xi x j corresponding to the values of x j , remain

unchanged. We effectively stretched variable xi to the variable x j. An example

of the stretching transformation is presented in Figure 2.2. The factor graph in

Figure 2.22a corresponds to the factorization:

F(x1,x2,x3) = f1 (x1) f2 (x1,x2) f3 (x2,x3) (2.22)

Now we “stretch” the variable x1 to the node x2. The transformation is shown in
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Figure 2.2: Example of the stretching transformation:
a) The FG corresponding to the factorization F(x1,x2,x3) =
f1 (x1) f2 (x1,x2) f3 (x2,x3).
b) The FG with the variable x1 “stretched” to the variable x2.
c) The table of the function f3 on original FG.
d) The table of the function f ′3 after the transformation.

Figure 2.2b and corresponds to the global function:

F ′(x1,x2,x3) = f1 (x1) f2 (x1,x2) f ′3 (x1,x2,x3) (2.23)

The table of f2 is unaffected by the transformation, while the table of the values

of f3 now includes all permutations of the variables of x1, x2, and x3. Figure 2.2c

and 2.2d represent the tables of the values of the local functions f3 before and
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after the transformation, respectively. We note that the values of f ′3 are equal to

the values of f3 for the same assignment of the variables x1, x2. We also note that

now, the variable x1 is not marginalized out during the update of node f2; instead,

it will be summed out during the computation of the messages from f3 to x3 so

that the marginals at the node x3 remain unchanged. In general, a variable can be

stretched to an arbitrary connected part of a graph.

It is possible to remove the nodes and edges from a graph. An edge can be

removed if removing the edge does not change the domains of the function nodes.

A variable node can be removed if all the edges connected to the node can be

removed. When removing edges, we must ensure that the running intersection

property is preserved.

Definition 9 We say that a graph satisfies the running intersection property if for

any nodes A and B with the domains XA and XB and any variable xi ∈ XA∪XB, a

path in the graph exists such that the variable xi is part of the domains of every

node in the path. This is equivalent to the nodes with the variable xi in their

domains forming a connected sub-graph.

The running intersection property ensures consistency of information about

the dependency on a variable in different parts of a graph.

For example, consider the factor graph in Figure 2.3a. We can stretch the

variable x1 to the variables x2 and x3. The edge x1− f1 can then be removed

since the variable x1 is present in the domain of the node x1x3 connected to the

node f1. The edge x1− f2 can be removed as well since the variable x1 is present
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Figure 2.3: Example of removing edges and nodes: a) A FG with a cycle of
length 6. b) The factor graph where the variable x1 has been stretched
to the variables x2 and x3. The edges x1− f1, x1− f2 and node x1 can
be removed from the graph.

in the domain of the node x1x2 connected to the node f2. The node x1 itself

can then be removed since it has no connected edges. Removing the edges and

the node in this case preserved the running intersection property since the sub-

graph formed by the nodes with the variable x1 ( f1, x1x2, f4, x1x3, and f2) in

their domains is a connected subgraph. This transformation removed the cycle

x1→ f2→ x2→ f4→ x3→ f1 from the graph.

It is possible to introduce new function nodes to a graph. We can do this

by multiplying the product representing the factorization of a global function by

a local function with the values equal to unity. The local function may include
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Figure 2.4: Example of introducing new nodes: a) FG corresponding to
the factorization F(x1,x2,x3,x4) = f1(x1,x2) f2(x2,x3) f3(x2,x3,x4). b)
The node f4(x1,x4) = 1,∀x1,x4 has been introduced in the factor
graph, this does not change the values of the global function

any of the variables from the domain of the global function. This transformation

can be handy in the case where we need to find marginals over a set of variables

which is not part of the domain of the existing local function or variable nodes.

For example, consider the global function:

F(x1,x2,x3,x4) = f1(x1,x2) f2(x2,x3) f3(x2,x3,x4)
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and assume that we need to find the marginal m(x1,x4) = ∑x2,x3 F(x1,x2,x3,x4).

The factor graph corresponding to this factorization is depicted in Figure 2.4a.

There is no straightforward way to find m(x1,x4) in the original graph. However,

we may introduce the auxiliary local function f4(x1,x4) = 1,∀x1,x4, then the new

factorization of the global function becomes (in Figure 2.4b):

F ′(x1,x2,x3,x4) = f1(x1,x2) f2(x2,x3) f3(x2,x3,x4) f4(x1,x4)

and assuming that the sum-product algorithm converged on the modified graph,

m(x1,x4) can be found in the node f4(x1,x4) using the expression (2.6). Note that

the values of the global function in this transformation remain unchanged.

2.5 Literature on the effect of Factor Graph
transformations on the complexity of the
Sum-Product algorithm

The emphasis of our work is on the effects of factor graph transformations on the

complexity of the sum-product algorithm. There is little existing literature which

addresses this topic. The primary focus of the existing literature on the complexity

of the sum-product algorithm has been the development of various efficient imple-

mentations of the updates of variable and function nodes for the specific case of

decoding error corrections codes [18–21, 38, 39]. These references however, do

not explore the effects of transformations on the complexity of the sum-product

algorithm.
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The main reference for our work is the renowned paper of Kschischang et al.

[3]. In this publication, the authors observed that the cardinality of the domain of

a composite variable node created by the clustering of variable nodes is the multi-

plication of the cardinalities of the domains of the original nodes. This, according

to the authors “can imply a substantial cost increase in computational complexity

of the sum-product algorithm”. The local domain of a composite function node

created by clustering function nodes fi and f j with the domains XSi and XS j is

XSi ∪XS j which “can imply a substantial cost increase in computational complex-

ity of the sum-product algorithm; however, clustering functions do not increase

the complexity of the variables.”

The authors of [3] also noted that “it is always possible to transform a factor

graph with cycles into a cycle-free factor graph, but at the expense of increasing

the complexity of the local functions and/or the domains of the variables.”

In the next chapter, we will present examples of factor graphs where the trans-

formations lower the complexity of the sum-product algorithm and investigate in

detail the issue of the effect of transformations on the complexity of the sum-

product algorithm. We also show that eliminating cycles from a graph sometimes

leads to the lowering of the complexity of the sum-product algorithm.
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Chapter 3

A method of lowering the complexity

of the sum-product algorithm using

graph transformations

3.1 Definitions

In this chapter we discuss the complexity of the sum-product algorithm in relation

to the factor graph transformations described in Section 2.4. We will focus on the

discrete case with the sum-product update rules defined by (2.2) and (2.3). We

define complexity C as the number of ordinary or semiring additions and multipli-

cations required to find the marginals of a global function using the sum-product

algorithm. We consider the all-vertices problem, i.e., the marginals have to be

computed at each variable node, and assume that the flooding schedule is used so
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that during iterations the outgoing messages are updated on all edges connected

to a node. The dependency of the complexity on the convergence speed or on the

number of iterations required for convergence of the algorithm is not considered.

In other words, we are mostly concerned with the “complexity per iteration.” Let

A denote the number of additions, and M denote the number of multiplications.

For a factor graph with the set of variable nodes V N and the set of function nodes

FN, we define the complexity of the sum-product algorithm as:

CG = ∑
∀i∈V N

Mvn
i + ∑

∀ j∈FN

(
A f n

j +M f n
j +Cl f

j

)
(3.1)

where Mvn
i is the number of multiplications required for the update of a variable

node i, A f n
j and M f n

j are the number of additions and multiplications required for

the update of a function node j, and Cl f
j is the complexity of the evaluation of

a local function j. From this point onwards, we assume that the local functions

are presented in the form of tables so Cl f
j = 0 . The expression (3.1) represents

the number of additions and multiplications necessary to compute messages on

each edge in a graph. In the case where the flooding schedule is used, this number

CG is equivalent to the number of operations required by a single iteration of the

sum-product algorithm.1

The parameters that define the complexity of the update of a node are the

node’s degree and the cardinalities of the variables involved in the node’s domain.

1In (3.1) we actually did not include the operation of computing the marginals at the variable
nodes vni upon completion of iterations. This however, as we are going to show below, requires
much fewer operations compared to the updates of the nodes.
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By qi we denote the number of values taken by the variable xi. By Qvn
i and Q f n

j

we denote the cardinalities of domains of the variable node i and function node j,

respectively. On a factor graph in the “original” form there is a one-to-one corre-

spondence between the variables and variable nodes so that Qvn
i = qi. However,

this may not be the case after we apply factor graph transformations and there can

be more than a single variable associated with a variable node. In this case, the

cardinality of the domain of a variable node is:

Qvn
i = ∏

∀k∈Svn
i

qk (3.2)

where, following the notation introduced in Section 2.4, by Svn
i we denote the set

of indices of the variables associated with a variable node i. For a function node j

the cardinality of the domain is:

Q f n
j = ∏

∀k∈S f n
j

qk (3.3)

where by S f n
j we denote the set of indices of the variables associated with a func-

tion i.

In this Chapter we consider the most general form of the sum-product algo-

rithm where the messages on the edges connected to a variable node i have Qvn
i

values. In other words we do not take into account the simplifications which may

arise in some particular applications. Some of such simplifications are considered

in Chapter 4.
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There are other important metrics of efficiency of an algorithm such as mem-

ory requirements, ability to implement the computations in parallel, and others.

In this thesis we focus primarily on the number of operations as a measure of

the complexity. We briefly discuss the memory requirements of the sum-product

algorithm in Sections 3.3.3 and throughout Chapter 4 .

3.2 Examples of factor graphs where the
transformations lower the complexity of the
sum-product algorithm

In this section we present several examples of the factor graphs where the trans-

formations introduced in Section 2.4 lower the number of operations required by

the sum-product algorithm. These examples serve as motivation for our work. To

the best of our knowledge, the observation that factor graph transformations may

lower the complexity of the sum-product algorithm has not appeared in published

literature before.

Intuitively, the complexity of the sum-product algorithm expressed as the num-

ber of arithmetic operations necessary to update every node in a graph under the

flooding schedule depends on the number of nodes in a graph, degrees and the

size of the domains of the nodes. We will review the complexity of the update

of variable and function nodes in detail in Section 3.3. Meanwhile, we assume

that the complexity is a strictly increasing function of the degree and cardinality

of the domain of a node. In [3] Kschischang et al. observed that the factor graph

transformations increase the cardinality of the domains of transformed nodes. We
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Figure 3.1: Example of simple nodes of degree 2 and 3: a) VN degree 2. b)
FN degree 2. c) VN degree 3. d) FN degree 3. e) FN degree 2 with
3 variables f) FN degree 2 with 3 variables and a local function which
depends on two variables

note that the transformations (such as clustering) may also decrease the number

of nodes in a graph and the degrees of the nodes. In other words, there are two

opposite effects: one is the increase of the complexity due to the increase of cardi-

nalities and in some cases degrees of the nodes, and the other effect is the lowering

of the complexity due to the decrease of the number of the nodes in a graph and

in some cases degrees of the nodes. Whether a particular transformation increases

or decreases the total number of operations depends on the topology of the graph

and the cardinalities of the domains.

We begin our examples by determining the number of operations necessary to

update simple nodes of degree 2 and 3 in Figure 3.1. For the sake of simplicity
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we assume that all variables are binary. In a general case of binary variables

the messages sent on edges of a factor graph have two values. Following the

notation introduced earlier, by µxi→ f j and µ f j→xi we denote the messages sent by

a variable node xi to a function node f j and by a function node f j to a variable

node xi, respectively. In order to compute the outgoing messages of the variable

and function nodes we use the expressions (2.2) and (2.3), respectively. In all

cases we assume that the flooding schedule is used so that the messages have to

be updated on all edges. The number of operations necessary to update the nodes

in Figure 3.1 is the following:

• A variable node of degree 2 in Figure 3.1a. The messages from the variable

node x1 to the function nodes f1 and f2 (outgoing messages) are:

µx1→ f1(x1) = µ f2→x1(x1)

µx1→ f2(x1) = µ f1→x1(x1)

In other words, the outgoing messages are simply the values of incoming

messages and therefore, a variable node of degree 2 does not require any

operations.

• A function node of degree 2 which is presented in Figure 3.1b. The message

from the function node f1 to the variable nodes x1 for the values of x1 = 0
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and x1 = 1 is:

µ f1→x1(x1 = 0) = f1(x1 = 0,x2 = 0) ·µx2→ f1(x2 = 0)

+ f1(x1 = 0,x2 = 1) ·µx2→ f1(x2 = 1)

µ f1→x1(x1 = 1) = f1(x1 = 1,x2 = 0) ·µx2→ f1(x2 = 0)

+ f1(x1 = 1,x2 = 1) ·µx2→ f1(x2 = 1)

The computation of the message µ f1→x1(x1) requires 4 multiplications and

2 additions. Likewise, the computation of the message µ f1→x2(x2) requires

4 multiplications and 2 additions. The total number of arithmetic operations

necessary to update the function node therefore is 8 multiplications and 4

additions.

• A variable node of degree 3 in Figure 3.1c. The message from the variable

node x1 to the function node f1 (outgoing messages) is computed as:

µx1→ f1(x1 = 0) = µ f2→x1(x1 = 0) ·µ f3→x1(x1 = 0)

µx1→ f1(x1 = 1) = µ f2→x1(x1 = 1) ·µ f3→x1(x1 = 1)

Hence, 2 multiplications are required to update the messages on each of the

edges and in the case of binary variables, 6 multiplications are necessary to

update the node. For the non-binary case when the cardinality of the domain

of a variable x1 is q (x1 takes q values), the messages sent to and from the

node will have q values and the total number of multiplications necessary

42



to update the node is 3q.

• A function node of degree 3 in Figure 3.1d. The message from the function

node f1 to the variable nodes x1 for the values of x1 = 0 and x1 = 1 is:

µ f1→x1(x1 = 0) = f1(x1 = 0,x2 = 0,x3 = 0) ·µx2→ f1(x2 = 0) ·µx3→ f1(x3 = 0)

+ f1(x1 = 0,x2 = 1,x3 = 0) ·µx2→ f1(x2 = 1) ·µx3→ f1(x3 = 0)

+ f1(x1 = 0,x2 = 0,x3 = 1) ·µx2→ f1(x2 = 0) ·µx3→ f1(x3 = 1)

+ f1(x1 = 0,x2 = 1,x3 = 1) ·µx2→ f1(x2 = 1) ·µx3→ f1(x3 = 1)

µ f1→x1(x1 = 1) = f1(x1 = 1,x2 = 0,x3 = 0) ·µx2→ f1(x2 = 0) ·µx3→ f1(x3 = 0)

+ f1(x1 = 1,x2 = 1,x3 = 0) ·µx2→ f1(x2 = 1) ·µx3→ f1(x3 = 0)

+ f1(x1 = 1,x2 = 0,x3 = 1) ·µx2→ f1(x2 = 0) ·µx3→ f1(x3 = 1)

+ f1(x1 = 1,x2 = 1,x3 = 1) ·µx2→ f1(x2 = 1) ·µx3→ f1(x3 = 1)

The products of the incoming messages µx2→ f1(x2) ·µx3→ f1(x3) are the same

for both µ f1→x1(x1 = 0) and µ f1→x1(x1 = 1). The products can be computed

once, saved and used for computing both µ f1→x1(x1 = 0) and µ f1→x1(x1 =

1). Therefore, the computation of the message on an edge can be done

with 12 multiplications and 6 additions. In total, 36 multiplications and 18

additions are necessary to update the node.

• A function node of degree 2 with 3 binary variables in Figure 3.1e. Such a
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node may be formed by clustering of variable nodes connected to a function

node of degree 3. In this case, the messages sent from f1 to x2x3 and from

x2x3 to f1 have 4 values. The message from the node f1 to the node x1 can

be computed using 8 multiplications and 6 additions:

µ f1→x1(x1 = 0) = f1(x1 = 0,x2 = 0,x3 = 0) ·µx2x3→ f1(x2 = 0,x3 = 0)

+ f1(x1 = 0,x2 = 1,x3 = 0) ·µx2x3→ f1(x2 = 1,x3 = 0)

+ f1(x1 = 0,x2 = 0,x3 = 1) ·µx2x3→ f1(x2 = 0,x3 = 1)

+ f1(x1 = 0,x2 = 1,x3 = 1) ·µx2x3→ f1(x2 = 1,x3 = 1)

µ f1→x1(x1 = 1) = f1(x1 = 1,x2 = 0,x3 = 0) ·µx2x3→ f1(x2 = 0,x3 = 0)

+ f1(x1 = 1,x2 = 1,x3 = 0) ·µx2x3→ f1(x2 = 1,x3 = 0)

+ f1(x1 = 1,x2 = 0,x3 = 1) ·µx2x3→ f1(x2 = 0,x3 = 1)

+ f1(x1 = 1,x2 = 1,x3 = 1) ·µx2x3→ f1(x2 = 1,x3 = 1)

The update of the message from f1 to x2x3 requires 8 multiplications and 4

additions:

µ f1→x2x3(x2 = 0,x3 = 0) = f1(x1 = 0,x2 = 0,x3 = 0) ·µx1→ f1(x1 = 0)

+ f1(x1 = 1,x2 = 0,x3 = 0) ·µx1→ f1(x1 = 1)

µ f1→x2x3(x2 = 1,x3 = 0) = f1(x1 = 0,x2 = 1,x3 = 0) ·µx1→ f1(x1 = 0)

+ f1(x1 = 1,x2 = 1,x3 = 0) ·µx1→ f1(x1 = 1)
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µ f1→x2x3(x2 = 0,x3 = 1) = f1(x1 = 0,x2 = 0,x3 = 1) ·µx1→ f1(x1 = 0)

+ f1(x1 = 1,x2 = 0,x3 = 1) ·µx1→ f1(x1 = 1)

µ f1→x2x3(x2 = 1,x3 = 1) = f1(x1 = 0,x2 = 1,x3 = 1) ·µx1→ f1(x1 = 0)

+ f1(x1 = 1,x2 = 1,x3 = 1) ·µx1→ f1(x1 = 1)

In total, number 16 multiplications and 10 additions are required to update

the node.

• A function node of degree 2 with 3 binary variables in Figure 3.1f. In this

case, the function node f1 is connected to the node x2x3 but the local func-

tion f1(x1,x2) does not depend on x3. As we will see in the examples below,

this configuration appears after the stretching transformation or after clus-

tering of variable nodes.2 The fact that the local function does not depend

on one of the variables allows us to save some of the operations compared

2Formally, to stay within the formalism of the factor graphs in the transformations we expand
the domain of the local function and replace f1(x1,x2) with f ′1(x1,x2,x3), however it is clear that
f ′1(x1,x2,x3) = f1(x1,x2),∀x3 .
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to the case in Figure 3.1e. The message from the node f1 to the node x1 is:

µ f1→x1(x1 = 0) = f ′1(x1 = 0,x2 = 0,x3 = 0) ·µx2x3→ f1(x2 = 0,x3 = 0)

+ f ′1(x1 = 0,x2 = 1,x3 = 0) ·µx2x3→ f1(x2 = 1,x3 = 0)

+ f ′1(x1 = 0,x2 = 0,x3 = 1) ·µx2x3→ f1(x2 = 0,x3 = 1)

+ f ′1(x1 = 0,x2 = 1,x3 = 1) ·µx2x3→ f1(x2 = 1,x3 = 1)

= f1(x1 = 0,x2 = 0)
(
µx2x3→ f1(x2 = 0,x3 = 0)+µx2x3→ f1(x2 = 0,x3 = 1)

)
+ f1(x1 = 0,x2 = 1)

(
µx2x3→ f1(x2 = 1,x3 = 0)+µx2x3→ f1(x2 = 1,x3 = 1)

)
Similarly,

µ f1→x1(x1 = 1) =

= f1(x1 = 1,x2 = 0)
(
µx2x3→ f1(x2 = 0,x3 = 0)+µx2x3→ f1(x2 = 0,x3 = 1)

)
+ f1(x1 = 1,x2 = 1)

(
µx2x3→ f1(x2 = 1,x3 = 0)+µx2x3→ f1(x2 = 1,x3 = 1)

)
Therefore, the message can be computed with 4 multiplications and 4 addi-

tions. In the case of the message from f1 to x2x3 only the values µ f1→x2x3(x2 =

0,x3 = 0) and µ f1→x2x3(x2 = 1,x3 = 0) have to be computed since

µ f1→x2x3(x2 = 0,x3 = 1) = µ f1→x2x3(x2 = 0,x3 = 0) and µ f1→x2x3(x2 = 1,x3 =
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1) = µ f1→x2x3(x2 = 1,x3 = 0). The message is:

µ f1→x2x3(x2 = 0,x3 = 0) = f ′1(x1 = 0,x2 = 0,x3 = 0) ·µx1→ f1(x1 = 0)

+ f ′1(x1 = 1,x2 = 0,x3 = 0) ·µx1→ f1(x1 = 1)

µ f1→x2x3(x2 = 1,x3 = 0) = f ′1(x1 = 0,x2 = 1,x3 = 0) ·µx1→ f1(x1 = 0)

+ f ′1(x1 = 1,x2 = 1,x3 = 0) ·µx1→ f1(x1 = 1)

µ f1→x2x3(x2 = 0,x3 = 1) = f ′1(x1 = 0,x2 = 0,x3 = 1) ·µx1→ f1(x1 = 0)

+ f ′1(x1 = 1,x2 = 0,x3 = 1) ·µx1→ f1(x1 = 1) = µ f1→x2x3(x2 = 0,x3 = 0)

µ f1→x2x3(x2 = 1,x3 = 1) = f ′1(x1 = 0,x2 = 1,x3 = 1) ·µx1→ f1(x1 = 0)

+ f ′1(x1 = 1,x2 = 1,x3 = 1) ·µx1→ f1(x1 = 1) = µ f1→x2x3(x2 = 1,x3 = 0)

The update of such a node in total requires 8 multiplications and 6 addi-

tions. It is just 2 more additions compared to the update of a function node

of degree 2 with 2 binary variables. These 2 extra additions “spend” on

marginalizing out the variable x3 from the message µx2x3→ f1 .

An important observation from the example 3.1e is that in the case where a local

function does not depend on one (or some) of the variables, the variable can be

marginalized out prior to participation in any local computations. 3 We will use

this observation throughout this thesis.

The summary of the number of operations necessary to update the nodes of

degree 2 and 3 in the case binary variables is presented in Table 3.1

3An additional condition for a variable to be marginalized out is that the variable appears on a
single edge only.
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Number of operations
Node Multiplications Additions Total Comments
VN degree 2 0 0 0
FN degree 2 8 4 12
VN degree 3 6 0 6 3q for a node with

cardinality q
FN degree 3 36 18 54
FN degree 2 with
3 variables

10 16 26

FN degree 2 with
3 variables

8 6 14 The local function
does not depend on
one of the variables

Table 3.1: The summary of the number of operations required to update the
variable (VN) and function (FN) nodes of degree 2 and 3.

Figure 3.2: An example of a factor graph where clustering of variable nodes
lowers the complexity of the sum product algorithm. The number of
operations for each node is shown as XM+YA , where X is the number
of additions and Y is the number of multiplications.
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Now we will present three examples of transformations and show that they

lead to lowering of the complexity of the sum-product algorithm.

Example #1: The complexity of the update of the simple graph in Figure 3.2

can be lowered by clustering the variable nodes x2 and x3. The number of oper-

ations necessary to update each of the nodes is shown in Figure 3.2a in the form

XM+YA where X and Y are the number of multiplications and additions, respec-

tively. Assuming that all variables are binary and taking into account the number

of operations in Table 3.1, one can see that 52 multiplications and 26 additions are

required to update the sub-graph { f1,x2,x3, f2, f3} in Figure 3.2a. By clustering

the nodes x2 and x3 as shown in Figure 3.2b we can lower the operation count to

44 multiplications and 22 additions, i.e., save 12 operations. Note that the nodes,

except for the nodes { f1,x2,x3, f2, f3}, are not affected by the transformation.

On the original graph the nodes x1 and x2 do not need any operations, while

on the transformed graph the composite node x1x2 requires 12 multiplications.

Therefore, as it has been indicated in [3], the clustering increased the number of

operations necessary to update the nodes x1 and x2. However, the degrees of the

node f1 decreased from 3 to 2 and this lead to the lowering of the total number

of operations necessary to update this part of the graph. As we shall see later, the

higher the degree and cardinality of the domain of the node f1, the higher the gain

(number of saved operations) achieved by such a transformation.

Example #2: Consider the factor graph in Figure 3.3a. Here we are interested

in the complexity of the update of the sub-graph {x1, f2, f3,x2}. The sub-graph

is a cycle of length 4. Applying the number of operations from the Table 3.1
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Figure 3.3: An example of a factor graph where the clustering of function
nodes lowers the complexity of the sum product algorithm.

one can see that the update of the sub-graph requires 56 multiplications and 22

additions. In this graph clustering the nodes f2 and f3 as shown in Figure 3.3b

lowers the operations count. Computing the 8-valued table f2(x1,x2,x3) · f3(x,x3)

can be done with 8 multiplications. In the cases where the computation of the

table f2 · f3 can be done “off-line”4 the total number of operations necessary to

update the sub-graph {x1, f2 f3,x2} in 3.3b is 38 and 18 additions. In other words,

by clustering the nodes we can save 12 multiplications and 4 additions.5 The

4By “offline” we mean that it is not done at the time of execution of the sum-product algorithm.
5Even in the case where we need to compute f2 · f3 at the time of execution we save 4 multi-

plications and 4 additions.
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Figure 3.4: An example of a factor graph where stretching transformation
lowers the complexity of the sum product algorithm.

decrease in the operation count comes from the lowering of the degrees of the

nodes x1 and x2 and from the fact that the node f3 has been eliminated from the

graph. Also note that the cycle was removed from the graph and the number of

operations was decreased at the same time.

Example #3: The factor graph in Figure 3.4 is an example of a graph where

the stretching transformation and removing edges lowers the required number of

operations. The graph has a cycle of length 6 and we are interested in the com-

plexity of the update of the sub-graph { f1, . . . f5,x1 . . . ,x3}. Again, taking into

account the number of operations in Table 3.1, one may determine that the update

of the sub-graph in Figure 3.4a requires 100 multiplications and 48 additions. The
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cycle can be eliminated from the graph using the stretching transformation.6 At

first, we “stretch” the variable x1 along the path f1→ x2→ f3→ x3. The trans-

formation makes the edges x1− f1 and x1− f2 redundant since the nodes f1 and

f2 are connected to the nodes x1x2 and x1x3 which now have the variable x1 in

their domains. Finally, the node x1 can be removed since after removing the edges

the node has degree 0. It can be seen from the number of operations in Figure

3.4b that such transformations not only eliminated the cycle from the graph but

also lowered the number of operations necessary to update the sub-graph to 80

multiplications and 40 additions.

The examples above show that the number of operations can be lowered by

transforming a factor graph. In order to consider the cases of nodes of degrees

higher than 3, we need to determine the complexity of the update of the nodes of

arbitrary degrees.

3.3 The complexity of nodes updates

3.3.1 The complexity of the update of a variable node

We remind the reader that the outgoing message of a variable node vni
7 is ex-

pressed as:

µvni→ f n j(XSvn
i
) = ∏

f nk∈N(vni)\ f n j

µ f nk→vni(XSvn
i
) (3.4)

6This transformation was described in Section 2.4.
7Here we denote a variable node by vni and function node by f n j.

52



In order to evaluate the message, we need to compute d(vni)
8 products of d(vni)−

1 incoming messages - the products of all but a single incoming message. The

messages have to be computed for each of Qvn
i values of the domain of the node

vni. Computing the products can be done in several ways. The direct approach,

where the messages are computed independently, requires d(vni)(d(vni)−2)Qvn
i

multiplications.9 We can also compute the product of all the messages, then divide

the product by a single message for each edge. This would require (d(vni)−1)Qvn
i

multiplications and d(vni)Qvn
i divisions. Divisions however, do not need to be part

of the semiring and may not be allowed. Another consideration is that, the division

is computationally expensive [40] compared to additions and multiplications. For

a node of a large degree we may disregard the influence of a single message and

approximate it with the product of all the messages. This approach requires only

(d(vni)−1)Qvn
i multiplications but may introduce a large error in the case of small

degree nodes or in the case where the values of one or more messages are much

lower or higher compared to the values of the rest of the messages.

Below, we consider a simple and efficient way of computing the product orig-

inally proposed by Aji et al. [2]. Assuming that a variable node vni has n edges

and received n incoming messages µ1,µ2, . . . ,µn. At first we compute n−1 partial

products A1,A2, . . . ,An−1 and n−1 partial products Bn,Bn−1, . . . ,B2. The term Ai

8d(vni) is degree of the node vni.
9Note that n−1 multiplications are required in order to compute the product of n values.
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is the product of incoming messages µ1 · · ·µi:

A1 = µ1

A2 = A1 ·µ2

A3 = A2 ·µ3

...

An−1 = An−2 ·µn−1 (3.5)

The term Bi is the product of the messages µi · · · · ·µn

Bn = µn,

Bn−1 = Bn ·µn−1

Bn−2 = Bn−1 ·µn−2

...

B2 = B3 ·µ2 (3.6)

The computation of the partial products A and B requires 2(n−2) multiplications.

Now the outgoing message on edge i can be simply computed as µOut
i = Ai−1 ·Bi+1.

Taking into account that µOut
1 = B1 and µOut

n = An−1 the total number of multi-

plications necessary to compute all n products of n− 1 incoming messages is

3(n−2). The message has to be computed for each of Qvn
i values of the domain

of the node vni. Therefore, the total number of multiplications necessary to update
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the node in this way is:

Mvn
i = 3 ·Qvn

i · (d(vni)−2) (3.7)

Upon convergence of the algorithm utilizing the terms An−1, we can compute

the final result which is the marginal of the global function over variable Xvn
Si

expression (2.4) with additional Qvn
i multiplications:

m(XSvn
i
) = An−1(XSvn

i
) ·µn(XSvn

i
)

Now we compare the effectiveness of this approach compared to the “straight-

forward approach” where the messages on each of the edges are computed in-

dependently. For example, in the case of a node of degree 10, the message on

each edge is the product of 9 values and requires 8 multiplications. In total, the

“straightforward approach” requires 80 multiplications for each of Qvn
i values.

Using the approach described above the number of multiplications is only 24.

The method described above, can also be applied in the case of the sum-

product algorithm generalized on an arbitrary commutative semiring (see Section

2.2). For example, in the “min-sum” semiring the number of operations in expres-

sion (3.7) represents the number of additions.
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3.3.2 The complexity of the update of a function node

We remind the reader that the outgoing message of a function node f ni is ex-

pressed as:

µ f n j→vni(XSvn
i
) = ∑

X f n
S j
\XSvn

i

Fj(XS f n
j
) ∏

vnk∈N( f n j)\vni

µvnk→ f n j(XSvn
k
) (3.8)

where Fj(XS j) in general can be a product of several local functions. We can

evaluate the expression (3.8) in the way similar to the computation of a variable

node, i.e., at first compute the partial products of the incoming messages Ai = µ1 ·

µ2 · · ·µi and B j = µn · µn−1 · · ·µ j and then compute the outgoing message for an

edge k as Ak−1 ·Bk+1. Compared to the computation of the messages in a variable

node the messages in the product in RHS of expression (3.8) are parameterized by

different sets of variables XSvn
i

and this can be explored to efficiently compute the

partial products A and B.

It is convenient to explain the proposed method of the message computation

with an example. Consider the function node of degree 5 in Figure 3.5a. For the

sake of simplicity we assume that the variables are binary. We can then com-

pute the term A using the computational tree in Figure 3.5b. The term A1(x1) =

µ1(x1)
10 has 2 values corresponding to the incoming messages µ1(x1 = 0) and

µ(x1 = 1). The term A2(x1,x2) has 4 values corresponding to all of the permuta-

10Hereforth, we add the domain of variables to the notation of the product A and B
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Figure 3.5: The explanations of the update of a function node of degree 5.

tions of the variables x1 and x2 and can be computed with 4 multiplications:

A2(x1 = 0,x2 = 0) = A1(x1 = 0)µ2(x2 = 0)

A2(x1 = 0,x2 = 1) = A1(x1 = 0)µ2(x2 = 1)

A2(x1 = 1,x2 = 0) = A1(x1 = 1)µ2(x2 = 0)

A2(x1 = 1,x2 = 1) = A1(x1 = 1)µ2(x2 = 1)
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Similarly, A3(x1,x2,x3) and A4(x1,x2,x3,x4) takes 8 and 16 values and requires 8

and 16 multiplications. The computation of the terms A is schematically presented

in Figure 3.5c.

We incorporate the multiplication by the local function f1 in the term B. So let

B6 = f1(x1,x2,x3,x4,x5). The outgoing message to the variable x5 is µOut
5 (x5) =

∑{x1,x2,x3,x4}A4(x1,x2,x3,x4) · B6 = f1(x1,x2,x3,x4,x5). The product under the

summation has 32 values and requires 32 multiplications. The message µOut
5 (x5)

has two values each of which is the summation of 16 values. Therefore, the

marginalization requires 2(16−1)= 30 additions. Now we notice that the variable

x5 is not needed for the computation of the messages to the nodes x4, . . . ,x1 and

it can be marginalized out from the terms B5 . . .B2. Taking this observation into

account the term B5 can then be computed as B5(x1,x2,x3,x4) = ∑x5
µ5(x5)B6 =

f1(x1,x2,x3,x4,x5). The term B5 which takes 16 values, requires 36 multiplica-

tions and 16 additions. As we proceed and compute B4, B3 and B2 using the same

logic we marginalize out the variables x4, x3 and x2. The process of computation

of the terms B is schematically presented in Figure 3.5d.

The outgoing messages are computed as follows:

µ
Out
1 (x1) = B2(x1)

µ
Out
2 (x2) = ∑

x1

A1(x1)B3(x1,x2)

µ
Out
3 (x3) = ∑

x1,x2

A2(x1,x2)B4(x1,x2,x3)
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Term A1(x1) A2(x1,x2) A3(x1,x2,x3) A4(x1,x2,x3,x4) NA Total
Size 2 4 8 16 NA NA

Multipl. 0 4 8 16 NA 28
Term B2(x1) B3(x1,x2) B4(x1,x2,x3) B5(x1,x2,x3,x4) B6 = f1 Total
Size 2 4 8 16 32 NA

Multipl. 4 8 16 32 0 60
Additions 2 4 8 16 0 30

Term µOut
1 (x1) µOut

2 (x2) muOut
3 (x3) µOut

4 (x4) µ5(x5) Total
Size 2 2 2 2 2 NA

Multipl. 0 4 8 16 32 60
Additions 0 2 6 14 30 52

Totals Multiplications: 148 Additions:80 Total operations:228

Table 3.2: The number of operations required to compute A, B and µOut

µ
Out
4 (x4) = ∑

x1,x2,x3

A3(x1,x2,x3)B5(x1,x2,x3,x4)

µ
Out
5 (x5) = ∑

x1,x2,x3,x4

A4(x1,x2,x3,x4)B6(x1,x2,x3,x4,x5)

The tables of the number of operations necessary to compute the terms A, B and

the outgoing message are presented in Figure 3.5.

The reader may wonder whether the method of updating a function node, as

described above, is efficient. We may evaluate the computational advantage of the

method with an example of the update of a function node of degree 10. Assuming

that the domains of all 10 variable nodes include a single binary variable (so that

the cardinality of the domain of the local function is 1024) then updating the node

in the “straightforward way” requires:

1. Computing 1024 products of 9 values (all but 1 incoming messages) for

each of 10 edges. This can be done with 24576 multiplications.
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2. Marginalizing the 1024 products in order to compute two values of the out-

going message for each of 10 edges. This would require 10220 additions.

In Section 3.4 we will determine that the to update a node of degree 10 using

the approach described above requires 5108 multiplications and 3048 additions.

Hence, compared to the straightforward approach the method described above

provides 75% reduction in the operations counts.

In a general, the domains of variables may have different cardinalities. In

this case in order to achieve the lowest operation count it is preferable to add

the variables with higher cardinalities to the computations as late as possible and

marginalize them out as early as possible. This can be easily done by arranging

the messages in order of increasing cardinalities of the domains. For example, if

the incoming messages µ1(x1), µ2(x2) and µ3(x3) and the variables x1, x2 and x3

have cardinalities 4,8 and 2, respectively then in order to achieve a lower count of

operations we need to compute the partial terms as:

A1(x3) = µ3(x3)

A2(x1,x3) = A1(x3)µ1(x1)

B3(x1,x3) = ∑
x2

f (x1,x2x3)µ2(x2)

B2(x3) = ∑
x1

B3(x1,x3)µ1(x1)

We also reiterate the observation of Section 3.2: if a variable appears on a single

edge connected to a function node and the local function does not depend on the

variable, then the variable can be marginalized out from the domain of the message
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prior to performing any computations at the function node. So if the message is

µ1(x1,x2) the local function fi does not depend on the variable x2, then x2 can be

marginalized out from µ1(x1,x2) and in the following computations the message

can be treated as if it depends on the variable x1 only.

Now we are going to derive the expression for the number of operations neces-

sary to update a function node. Assuming we have the number of non-overlapping

domains with cardinalities q1,q2, . . . ,qn, then the computation of the partial prod-

ucts A1,A2, . . . ,An−1 would require q1q2 + q1q2q3 + · · ·+ q1 · · ·qn−1 multiplica-

tions which can be expressed as:

MA =
n−1

∑
i=2

i

∏
j=1

q j (3.9)

Similarly, computation of the terms B requires:

MB =
n

∑
i=2

i

∏
j=1

q j (3.10)

The terms B also requires:

AB =
n

∑
i=2

(qi−1)
i−1

∏
j=1

q j (3.11)

additions. The logic behind the formula above is that in order to evaluate the

term Bi for i ∈ {2, . . . ,n} we need to compute q1 · · ·qi−1 sums of qi number which

require (q1 · · ·qi−1)(qi− 1) additions. Computing the outgoing messages (multi-
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plications of the terms Ai−1Bi+1) requires:

Mµ =
n

∑
i=2

i

∏
j=1

q j (3.12)

multiplications. Finally, the marginalization of extra variables from the term

Ai−1Bi+1 requires computing of qi sums of q1 ·q2 · · ·qi−1 numbers which requires:

Aµ

n−1

∑
i=2

qi

(
i−1

∏
j=1

q j−1

)
(3.13)

additions. The total number of multiplications necessary to update a node there-

fore, can be expressed as:

M f n = 3 ·
n

∑
i=2

i

∏
j=1

q j−
n

∏
j=1

q j (3.14)

where the last term is due to the fact that in the expression (3.9) the summation is

up to n− 1 while in (3.10) and (3.12) the summation is up to n. The number of

additions nessesary to update a function node is:

A f n =
n

∑
i=2

(qi−1)
i−1

∏
j=1

q j +
n−1

∑
i=2

qi

(
i−1

∏
j=1

q j−1

)
(3.15)

The methods that we have used to evaluate the operation counts holds when

the sum-product algorithm is generalized on an arbitrary semiring (see Section

2.2). In this case the number of multiplications in (3.14) reflects the number of

semiring multiplications and the number of additions in (3.15) corresponds to the
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number of semiring additions. For example, in the case of “min-sum” semiring

the number in (3.15) is the number of operations “min” and the number in (3.14)

is the number of additions.

3.3.3 Memory Requirements

Now we are going to discuss the memory requirements of the sum-product algo-

rithm. The algorithm requires storing the messages on the edges and the values

of local functions. We define U as memory unit that represents the number of bits

necessary to store a value of a message on an edge or a value of a local function.

The exact value of U depends on the accuracy and performance requirements of a

particular implementation and could be in the range of 2-32 bits. Some temporary

variables are also necessary for processing at the nodes, e.g., for computing the

terms A and B as discussed above. These temporary variables could be shared be-

tween the nodes and therefore, take an insignificant amount of memory compared

to the amount of memory required to store the messages. The amount of memory

S required by the sum-product algorithm which operates on a factor graph with

the set of variable nodes V N and the set of function nodes FN, can be expressed

as:

S = ∑
i∈V N

d(vni) ·Qvn
i ·U︸ ︷︷ ︸

memory to store the messages

+ ∑
j∈FN

Q f n
j ·U︸ ︷︷ ︸

memory to store the values of local functions

(3.16)

63



3.4 An example of complexity optimization

Up to this point we have defined the number of operations (additions and mul-

tiplications) necessary to update a node of an arbitrary degree. For a variable

node the number of multiplications is expressed by (3.7) and for a function node

the number of multiplications and additions is expressed by (3.14) and (3.15), re-

spectively. Now we can consider a general factor graph with aim of finding the

realization which leads to the lowest complexity of the sum-product algorithm.

Consider an example of a node of degree 10 presented in Figure 3.6a. In this

example all variable nodes adjacent to f1 have degree 2. In other words, each of

the variable nodes x1,x2, . . .x10 is connected to f1 and one of the other 10 function

nodes f2, f3, . . . f11 (note that only the nodes f2 and f3 are shown in Figure 3.6a).

We may consider various configurations of clustering the variable nodes. For

example, in the pairwise clustering of the nodes the node x1 is clustered with the

node x2, the node x3 with the node x4 and so on. After this transformation the

function node f1 will have degree 5 while 5 clustered variable nodes will have

degree 3 as shown in Figure 3.6b. We will also consider other ways of clustering

the nodes, such as 3 clusters with 3, 3 and 4 variable nodes as well as 2 clusters

of 5 variable nodes. Number of possible configurations of clustering is large but

intuitively we wish that clustered nodes will have the same or similar degrees.

We update the nodes as described in Section 3.3.2. Tables 3.3 and 3.4 represent

the number of operations necessary to compute the partial products A and B as

well as the outgoing messages in the case of the original graph in Figure 3.6a and
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Figure 3.6: a) A function node of degree 10 with 10 adjacent variable nodes
of degree 2. b) Pairwise clustering of the variable nodes.

in the case of the graph with clustered nodes in Figure 3.6b. All variables are

assumed to be binary. As one can see from the number of operations presented

in the tables, the pairwise clustering of the nodes lowered the total number of

operations required to update the node f1 from 8156 to 5420.

After the transformation in Figure 3.6b we need to take into account the com-

plexity of the update of the variable nodes and the complexity introduced to the

function nodes, except for the node f1. Each of the variable nodes x1x2, x3x4 and

so on now has degree 3 and cardinality of the domain 4. Therefore, from (3.7), 12

multiplications are necessary to update a single node and 60 multiplications are

necessary to update all 5 clustered nodes. After the clustering, the message sent

to the nodes f2, f3, . . . , f11 has 2 variables in their domain. The local functions

however, do not depend on one of the variables in the domains of the messages.

This case has been discussed in Section 3.2. In such a case, the variables which

are not the part of the local function can be marginalized out prior to perform-
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Table 3.3: The number of operations required to update a node of degree 10
in Figure 3.6a

Note: All messages have cardinality of 2.

Terms A
Term A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Total
Size A 2 4 8 16 32 64 128 256 512 NA NA

Multiplications 0 4 8 16 32 64 128 256 512 NA 1020

Terms B
Term B B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 = f1 Total
Size B 2 4 8 16 32 64 128 256 512 1024 NA

Multiplications. 4 8 16 32 64 128 256 512 1024 NA 2044
Additions 2 4 8 16 32 64 128 256 512 NA 1022

Outgoing messages
Messages µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 Total

Multiplications. 0 4 8 16 32 64 128 256 512 1024 2044
Additions 0 2 6 14 30 62 126 254 510 1022 2026

Total multiplications: 5108 Total additions: 3048 Total operations: 8156

ing operations at the function nodes. Taking this into account each of the nodes

f2, f3, . . . , f11 has to perform 2 extra additions which results in 20 additional ad-

ditions for all 10 function nodes. In total, the number of operations necessary to

update this part of the graph has been lowered from 8156 to 5500.

Using a similar approach, we computed the number of operations for other

clustering configurations. The total number of operations for various cases of

clustering the nodes is presented in Table 3.5. Note that among the explored
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Table 3.4: The number of operations required to update a node of degree 5
with the variable nodes clustered “in pairs” in Figure 3.6b

Note: All messages have cardinality of 4

Terms A
Term A A1 A2 A3 A4 A5 Total
Size A 4 16 64 256 NA NA
Multiplications 4 16 64 256 NA 336

Terms B
Term B B2 B3 B4 B5 B6 =

f1

Total

Size B 4 16 64 256 1024 NA
Multiplications 16 64 256 1024 NA 1360
Additions 12 48 192 768 NA 1020

Outgoing messages
Messages µ1 µ2 µ3 µ4 µ5 Total
Multiplications 0 16 64 256 1024 1360
Additions 0 12 60 252 1020 1344

Total multiplications: 3056 Total additions: 2364 Total operations: 5420

combinations, clustering the nodes in the combination 3+3+4 (2 nodes with 3

variables and 1 node with 4 variables) results in the lowest operation count. By

clustering the nodes in this way we are able to lower the operation count from

8156 to 4652 or by 43%.

Now assume that the variable nodes adjacent to the node f1 have degree 10.

In other words, each of the variable nodes is connected to 10 nodes and there are
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90 function nodes besides the nodes f1. The number of operations for this case is

presented in Table 3.6. This time the minimum number of operations is reached

in the configuration with the nodes clustered in pairs. The lowest count is 6620

which is a 23% reduction. Note that we can lower the operation count even in the

case where the adjacent variable nodes have higher degrees.

These examples of local optimization looks interesting but the reader perhaps

wonders how to find the global optimal solution, i.e., the graph which guarantees

to provide the minimal complexity of the sum-product algorithm. In this thesis,

we do not offer a solution to this non-trivial problem. In fact, we suspect that this

problem is NP-complete. The greedy algorithm that attempts the optimization for

a graph as a whole is presented in Chapter 5.

3.5 Summary

In this chapter we showed that the number of operations required by the sum-

product algorithm can be lowered by transforming a factor graph. While the

transformations increase the number of operations of transformed nodes, they may

lower the complexity of the nodes which are adjacent to the transformed nodes.

In the next chapter we will discuss several practical applications of the method of

lowering the complexity.
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Chapter 4

Examples of practical applications

In Chapter 3 we demonstrated that the complexity of the sum-product algorithm

can be lowered by transforming a factor graph. The objective of this chapter is

to show that the transformations can be used to lower the complexity of the sum-

product algorithm in practical applications. As examples, we consider applica-

tions of the sum-product algorithm in Joint DNA Base-Calling [1], Wireless Link

Loss Monitoring in Sensor Networks [22] and decoding of the Hamming (7,4)

code [41]. Since our main focus is on the lowering of the complexity, our reviews

of the original publications are brief and in no way comprehensive; we refer inter-

ested readers to the original publications for a more comprehensive treatment of

the subjects.
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4.1 Joint Base-Calling of Two DNA Sequences

In this section we apply factor graph transformations to lower the complexity

of the sum product algorithm in the model of joint DNA Base-Calling [1]. We

give only a brief introduction to the background and the method from the original

paper. We have chosen this publication as our example because of its practical

significance and because of the structure of the factor graph presented in the paper.

The factor graph has many short cycles which suggest the possibility of lowering

the operation counts using transformations of the graph.

DNA is the carrier of genetic information in all known biological life forms

except for viruses. A DNA molecule consists of two long polymers, each formed

from units called nucleotides. Each nucleotide is made up, in part, of one of four

bases: Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). Genetic infor-

mation in DNA is “encoded” in a sequence of these bases in a DNA molecule.

The length of a genome sequence is millions of nucleotides. Two DNA molecules

form a paired “double-helix” structure, i.e., bases from one molecule form a con-

nection with the bases from another molecule. The chemistry of DNA allows

only Adenine-Thymine and Cytosine-Guanine base pairs. The double structure

of DNA allows replications of DNA during cell divisions. During replication, the

double-helix splits into two single DNA molecules each of which is then com-

plemented to the “full” double molecule with complementary bases. Determining

the sequence of the bases from a given DNA sample is a matter of paramount

importance for many disciplines of biological science, medicine and others.
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The most common method for DNA sequencing dates back to the work of F.

Sanger [42]. The technique utilized in [1] is referred to as “whole-genome shotgun

sequencing using dye-termination based electrophoresis.” The process starts with

a random division of DNA sample into fragments, with a subsequent independent

reading of each fragment. The division is required since the maximum length of

the sequence that can be reliably read using the method does not exceed thousands

of bases. The process of division and sequencing of a single DNA sample is

repeated several times, i.e., several passes are made and in each pass the molecule

is randomly divided into fragments. At the final stage, the DNA is “reassembled”

from the sequenced fragments based on the overlap between the fragments from

different “passes”. It requires more than 30 minutes to sequence a fragment of

600-800 bases long and 8-12 passes in order for the final reassembly of DNA to

occur. Considering the fact that DNA consists of millions of bases, this process is

time consuming and expensive.

The sequencing of each fragment is performed as follows. The fragment

is replicated and during the replication process, multiple shorter fragments are

formed according to the sequence of bases in the original fragment. The growth

of each replicated fragment is terminated after a special molecule that contains

fluorescent dye, called dye terminator, attaches to the end of the fragment. There

are four types of dye terminators and each type is fluorescent with its own color

of light. Each type can be attached to only one of four bases (A, C, G or T). The

process is random and as a result, there are many fragments of different lengths in

the solution. Each fragment is a shorter copy original fragment. Fragment of the
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same length are terminated by the same type of dye depending on the type of the

base at the “tail” of the original fragment.

During separation, stage fragments travel in a medium under the influence

of an electric field. Since the charge of the DNA depends on the length of the

fragment, the length determines the speed of the fragment in a medium. Fragments

of the same length arrive to the detector at approximately the same time. At the

detector, florescent dyes are excited with a laser and then the color of the dyes is

read. As a result, a sequence of pulses of four colors of light is generated at the

detector, with each sequence of pulses corresponding to a base at the end of the

sequence of a certain length. The light of each color is sampled with a speed of

approximately 12 samples per pulse period (in the case of the equipment used by

the authors).

During the data processing stage, the captured data is de-noised and other

distortions such as slowly varying period and light intensity are corrected. After

the data processing, the bases are detected. The maximum length of the sequence

that can be successfully detected comes from the fact that with longer sequences,

the resolution of the method decreases and the light pulses overlap more and more

until they become undistinguishable. An example of a DNA trace at the beginning

and end of the sequence is presented in Figure 4.1a.

The novelty of the approach of the paper [1] is that the authors proposed se-

quencing two DNA fragments in a single run. The approach could potentially

increase the efficiency by not only doubling the speed but also, by reducing at

the same time, the cost of DNA sequencing. The method works by mixing two
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Figure 4.1: Example of a DNA trace [1] in the case of a single (a) and joint
sequencing of two samples (b). Lines of different types present light
of four colors corresponding to four DNA bases

DNA samples with different concentrations in the replication stage. As a result,

during the detection phase, an overlap of the two sequences of pulses is created,

with each sequence corresponding to its own DNA sample. The sequences can be

separated based on the difference in amplitude and the time of arrival (TOA) of

the pulses. The amplitude of the pulses from each of the sequences depends on the

concentrations of DNA material from the two samples. According to the authors,

the practically achievable difference between the amplitudes is approximately 2.

Noise floor and saturation prevent any further possible increase of the difference

in amplitude. Figure 4.1b represents an example of a DNA trace in the case of

Joint DNA Base Calling. The sequence with larger amplitude is refereed as major
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and the other sequence is refereed as minor.

A received sampled sequence can be described with the time series:

y[t] =
N1

∑
i=1

α1i pi (t− τ1i)x1i +
N2

∑
j=1

α2 j p j
(
t− τ2 j

)
x2 j + e(t) (4.1)

where we adopted the notation of [1] with a vector of variables denoted by under-

lining. The variables in the equation are defined as follows.

• y[t] is the discrete time sample of the vector of intensity of four light colors

for 1 < t < K with K corresponding to the total number of samples.1 The

authors in [1] use equipment that samples the signal at approximately 12

samples per pulse period. The length of the sequence therefore is K = 12 ·

(max(N1,N2)+1).

• N1 and N2 are the lengths of two DNA fragments being identified.

• α1i and α2 j is amplitude of pulse i and j from sequences 1 and 2, respec-

tively.

• pi and p j are shapes of pulses i and j of sequences 1 and 2, respectively.

• τ1i and τ2 j are the times of arrival of pulses i and j of sequences 1 and 2,

respectively.

1There are 4 colors of light which can be viewed as ”orthogonal dimensions” of the signal. In
this regard, a pulse in a sequence can appear in a single dimension only. At a certain time t in a
certain color there can be 4 cases: 1) no pulse in either sequence 2) a pulse of the major sequence
3) a pulse of the minor sequence 4) pulses in both sequences. At each sampling point t the vector
y[t] is the vector of 4 values corresponding to the intensities of light of 4 colors that are equivalent
to 4 bases.
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• x1i and x2 j are the vectors of the four symbols {1000, 0100, 0010, 0001}

corresponding to the DNA bases.

• e(t) - is the vector of additive noise for each color.

The objective of the sequencing is to estimate the sequence of the symbols x1i

and x2 j. The statistics of the parameters are:

• α1i and α2 j are [1] “independent and identically distributed (i.i.d.) with

Gamma distribution, where the right tail is larger”. The definition of Gamma

distribution can be found, for example, in [34]. The average amplitude of

the prevalent sequence is approximately 750 units and its spread is approx-

imately 200, while the average amplitude of the minor sequence is half the

amplitude of the major sequence. There is significant overlap between the

areas of the pdfs of the sequences. Therefore, the pulses cannot be identified

from their amplitudes only. For example, a pulse with amplitude 500 units

may belong to either of the sequences.

• Pulse shapes pi and p j are estimated from the data. The width of a pulse is

increasing with the number of the pulse in the sequence, as can be seen in

Figure 4.1a by comparing the trace on the left, which represents the begin-

ning of a sequence, to the trace on the right, which corresponds to the end

of the sequence.

• Pulses “times of arrival” τ1i and τ2 j can be described by the first order
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Markov chain:

f (τl,i+1|τl,i) = f∆τ(τl,i+1− τl,i) l ∈ {1,2} (4.2)

where the mean of f∆τ corresponds to slowly varying peak spacing (approx-

imately known) and variance of approximately 0.8 samples. The authors do

not specify the distribution of f∆τ .

In general, there is no alignment between the pulses from sequence 1 and

sequence 2. The pulses within a sequence however, are spaced approximately 12

samples apart. The authors in [1] note that the most difficult case in terms of

separation is when the pulses from two sequences overlap and the amplitudes of

the sequences are close.

The factor graph corresponding to the model is depicted in Figure 4.2. The

variable nodes in the top and bottom rows correspond to the parameters of the

sequences 1 and 2, respectively. yi represents a set of samples associated with a

peak i. f (yi|∗) is the probabilities of observed samples yi given a configuration

of the variables α1i, α2i, τ1i, τ2 j, x1i and x2i as well as the variables α,τ and

x from the pulses i− 1 and i+ 1. Cross-edges between f (yi|∗) nodes and the

variables from the neighboring pulses (i− 1 and i + 1) reflect the interference

between the pulses. The MAP estimate of the base type x1i and x2 j in sequence 1

and 2 can be inferred from the graph using the sum-product algorithm. Assuming
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Figure 4.2: Factor graph corresponding to the model of Joint DNA Base-
Calling. Function nodes fα , fx, and fτ are a priori probability of the
variables α , x and τ , respectively. * - represent the set of variables
of the variable nodes connected to a function node. f (yi|∗) - is the
probability of sample yi given the configurations of the variables.

θ = {x1,α1,τ1,x2,α2,τ2}MAP estimate of the parameters is:

θ̂ = argmax
θ

f (θ |y) = argmax
θ

(log f (y|θ)+ log(θ)) (4.3)

where we are interested in finding the estimates of x1 and x2. A priori distributions
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of the parameters is:

log(θ) =
2

∑
l=1

Nl

∑
i=1
{log fα(αli)+ log fxl(xli)}+ log fτ(τ1,τ1) (4.4)

Assuming zero mean Gaussian additive noise with variance σ2 which can be esti-

mated, the log likelihood of observed data is:

log f (y|θ) = 1
2σ2 ∑

t

(
y(t)−

N1

∑
i=1

α1i p̂1i(t− τ1i)x1i−
N2

∑
j=1

α2 j p̂2 j(t− τ2 j)x2i

)2

+ c (4.5)

where c is a constant that does not affect maximization.

The sum-product algorithm can be implemented on the graph in the following

way2

• First of all, the distribution fα is continuous and in order to apply the sum-

product algorithm in the discrete form we need to approximate the distri-

bution with a discrete PMF. The number of values of the discrete PMF f̂α

determines the cardinalities of the domains of the variables α . 3

• Partition the sets of samples into possibly overlapping sets of points yi for

i = 1, . . .N, associated with pulses of sequences 1 and 2, where N is the

estimated number of pulses (perhaps MAX(N1,N2)). This assumes an ap-

proximate estimation of the locations (times of arrival) of pulses τ̂1i and τ̂2i.

2The authors of [1] noted that the implementation of the sum-product algorithm on the graph
in Figure 4.2 is prohibitively complex and did not describe the implementation of the algorithm.
Here we describe our understanding of implementation of the algorithm.

3The effect of such approximations and required value qα has to be studied but this is outside
the scope of this work.
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We assume that such an estimation can be done since the period of pulses in

the sequence is approximately known. The period is approximately 12 sam-

ples on the equipment that the authors of [1] use. So at least we can estimate

τ with 12 samples accuracy. The accuracy of the estimation determines the

cardinality of the variables τ . For example, if the time of arrival of a pulse i

is assumed to be ti±2 then cardinality of the domain of the variable τi is 5

(τi can be ti−2, ti−1, ti, ti +1, ti +2).

• The variables x1i and x1i have cardinality 4 corresponding to 4 colors of light

or to four bases in positions i of the sequences. The length of the vectors

is 4 but only the combinations {1000,0100,0010,0001} are allowed since

a pulse in a given sequence at time t can appear in a single color only.

• Compute the probabilities f (yi|∗) for each configuration of the variables

α1i, α2i, τ2i, τ3i, x1 and x2 for each pulse using (4.5).

• Initialize the message passing algorithms on the graph in Figure 4.2. The

messages from the variable nodes can be initialized to unity.

• Perform propagation on the graph using the update equations for the vari-

able and function nodes (2.2) and (2.3), respectively.

• After the algorithm converged, for each pulse i at the nodes x1i and x2i

compute the marginals using the expression (2.4). The marginals represent

the global function (4.3) (the function under argmax) marginalized over all

variables but x1i (at the node x1i) and x2i (at the node x1i). In other words,
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the marginals up to a scale factor are the marginal distributions of x1i and

x1i given the observations y.

• For each i select the index corresponding to the largest value of the marginals

x1i and x2i as the decoded colour/DNA base. Selected indices are the MAP

estimates of the bases x̂1i and x̂2i.

The authors note that belief propagation of the graph in Figure 4.2 is pro-

hibitively complex and proceed to develop a method where they at first, determine

the location of peaks using deconvolution and then assign detected peaks to one

of the sequences.

Here we will diverge from the original paper and apply the method of lowering

the complexity of the sum-product algorithm using graph transformations. At first

we determine the complexity of the algorithm in the original graph in Figure 4.2

then we transform the graph in order to lower the complexity.

We reiterate our assumptions that the distribution fα(α) is approximated with

a discrete distribution and that the locations of the peaks τ1 and τ2 can be es-

timated with a certain accuracy. These assumptions allow us to implement the

sum-product algorithm in the discrete form.

The variables x1i and x2i have cardinality qx = 4, i.e., the variables take 4 val-

ues corresponding to 4 bases in position i of major and minor sequences. By qα

and qτ we denote the cardinalities of the variables α and τ , respectively. The

nodes f (yi|∗) for i > 1 in the graph in Figure 4.2 have degree 18 which is quite

large. The cardinality of the domain of the nodes is Q f n = 46 · q6
τ · q6

α (the node
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includes 6 variables of each type: α , τ and x). The number of multiplications and

summations necessary for the update of the node can be evaluated using (3.14),

(3.15). As an example, let qτ = 4 and qα = 4 so that all domains have cardi-

nality 4. We update the function node using the method described in Section

3.3.2, i.e., at first evaluate the partial products of the messages Ai and B j for

i ∈ 1 . . .17 and j ∈ 2 . . .19 and then compute the outgoing message to an edge

k as ∑Ak−1Bk+1, where the summation is performed over all variables that are

not present on edge k. The number of operations necessary to compute the terms

A1,A2, . . . ,A17, B2,B3, . . . ,B19 and the outgoing messages is presented in Table

4.1. The reader can see that update of each node f (y1|∗) requires 2.06 ·1011 mul-

tiplications, 1.60 ·1011 additions and 3.67 ·1011 operations in total.

Regarding the other nodes in the graph, all nodes x, α and τ have degree 4

(for i > 1) and the number of multiplications necessary to update the nodes can

be computed using expression 3.7. Considering the cardinality of the domains

from our example above (qτ = 4 and qα = 4) the update of each of the nodes

requires 24 multiplications. The nodes fα and fx have degree 1 and do not require

any operations. The nodes fτ have the domain {τi,τi+1} with cardinality 16 (q2
τ )

and degree 2 which results in 32 multiplications and 24 additions. Hence, the

complexity of the update of the graph in Figure 4.2 is dominated by the complexity

of the update of the nodes f (xi|∗).

Now we apply the factor graph transformations in order to reduce the com-

plexity. It is apparent that it is desirable to reduce the degree of the function nodes

f (yi|∗) in Figure 4.2. This can be accomplished by joining the variables nodes.
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Figure 4.3: Transformed graph of Joint-DNA Base Calling.
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Figure 4.3a shows a graph where we at first, joined all variable nodes related to

the same pulse number: x1i, x2i, α1i, α2i, τ1i and τ2i). Then we joined the function

nodes that represent a priori probabilities. As a result the degrees of the nodes

f (yi|∗) for i > 1 is lowered to 3. We may proceed further and transform the graph

to the cycle-free form. To do this we stretch the variables α1i, τ1i, x1i, α2i, τ2i,

and x2i to the node with the variables from the previous pulse, i.e., pulse i− 1.

This transformation is presented in Figure 4.3b. The edges between the nodes

f (yi|∗) and the variable node “on the right” (the node that represent the variables

associated with the pulse i+1) can now be removed. This became possible since

the variable nodes that used to have the variables related to pulse i now also in-

clude the variables related to the pulse i+1. For the same reason one of the edges

connected to the function node with a priori probabilities can be removed. We re-

moved the edges indicated in Figure 4.3b with crosses and arrived to the cycle-free

representation in Figure 4.3c.4.

It is important to note that these transformations did not change the domains

of f (yi|∗) and the cardinality of the domains is still Q f n = 46 ·q6
τ ·q6

α . The degree

of the nodes has been reduced from 18 to 2. The cardinalities of the messages in

the graph are now Qµ = 44 ·q4
τ ·q4

α (the message includes the information about 4

variables of each type). The function nodes can be updated in the following way,

assuming the node f (yi|∗) received a message on the edge from the nodes “on

the left”, then the message is parameterized by the variables from the pulses i−1

4In the figure we also clustered the function nodes representing a priory probabilities of the
pulses 1 and 2
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and i. The values of the message is multiplied by the local function f (yi|∗). This

requires Q f n multiplications. The product is parameterized by the variables from

the pulses i−1, i and i+1. The message sent is computed by marginalizing out the

variables that correspond to the pulse i− 1 so that the message is parameterized

by the variables related to the pulses i and i+ 1. The marginalization requires

Qµ(Q f n/Qµ − 1) additions (the message has Qµ values and each value is sum

of Q f n/Qµ values of the products). The message sent from the node to the left

is computed in the same way. In total, the update of the node f (yi|∗) requires

2Q f n multiplications and 2Qµ(Q f n/Qµ − 1) additions. For example, applying

the cardinalities of the domains from the example above (qα = 4 and qτ = 4) we

determined that Q f n = 6.87 · 1010 , Qmu = 1.68 · 107 and the update of the node

requires 1.37 · 1010 multiplications and 1.37 · 1010 additions. Compared to the

original case the total number of operations necessary to update the node has been

lowered from 3.67 ·1011 to 2.74 ·1011 which constitutes a reduction of 25%.5.

The complexities of the update of the variable nodes have increased. The vari-

able nodes have degree 3 but the messages to the nodes with a priori probabilities

do not need to be computed. The message sent “to the right” (to the f (yi+1|∗))

is the message received from the node f (yi|∗) multiplied by the message with

a priori probabilities. Similarly, the message to the node f (yi|∗) is the message

from the node f (yi+1|∗)) multiplied by a priori probabilities. Hence, the update of

5This actually shows that the method of the update of a function node proposed in Section 3.3.2
is very effective. The update of a node of degree 18 requires just 33% more operations compared
to the update of a node of degree 2! If we used the “straightforward method” of the update of the
node then the increase in the number of operations would be more than 20 times.
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the node requires 2Qµ multiplications. For our example, with qα = 4 and qτ = 4

the number of multiplications is 3.36 · 107 which is still small compared to the

complexity of the function node.

In order to compute the marginals and MAP estimates of x1i and x2i we have to

multiply all incoming messages (from the nodes f (yi+1|∗), f (yi|∗) and the node

with a priori probabilities) and marginalize the product for all variables but x1i and

x2i . This requires 2Qµ multiplications and approximately Qµ additions which is

again much less compared to the number of operations necessary to update the

function nodes.

We will now discuss the memory requirements of the sum-product algorithm

applied to the original and transformed graphs. As has been noted in the Sec-

tion 3.3.3 the sum-product algorithm requires memory to store the tables of local

functions and the message. The number of units6 necessary to store the function

f (yi|∗) is Q f n. This value did not change since the domains of the local function

were not changed by the transformation. On the original graph the amount of

memory necessary to store the messages is negligible compared to the amount of

memory necessary to store the local functions. For example, there are 26 edges

originating from the nodes associated with the pulse i and considering the case

where qα = 4, qτ = 4 the amount of the memory required to store the messages is

104 units which is negligible compared to Q f n = 6.87 ·1010 . In the transformed

graph the variable nodes have the degree 3 so that 3Qµ = 5.03 ·107 units necessary

6We assume that 1 unit is the number of bits necessary to store a single value of message or
local function.
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to store the message which is still small compared to Q f n.

To conclude, by transforming the factor graph corresponding to the Joint DNA

Base Calling we succeeded in not only converting the graph to the cycle-free form

but also in lowering the number of operations required by the sum-product algo-

rithm. We showed that the number of operations necessary to find MAP estimates

of the DNA bases on the graph in the cycle-free form in Figure 4.3c is approx-

imately 25% less compared to the number of operations necessary for a single

iteration of the sum-product algorithm on the graph with cycles in Figure 4.2.

The cycle-free implementation has a clear advantage since each node needs to

be updated only once and the marginals (MAP estimates) inferred by the sum-

product algorithm are exact. As for the exact number of operations necessary to

perform the propagation, even on the cycle-free realization, the number of opera-

tions remains rather large for practical implementation.

4.2 Decoding of the (7,4) Hamming Code

Decoding of the linear error-correcting codes is an important application of the

sum-product algorithm. In this section, we apply the method of lowering the

complexity of the sum-product algorithm using factor graph transformations to

the framework of iterative decoding. As an example of a code we use the (7,4)

Hamming code, see for example [41].

Channel coding is an indispensable part of a digital communication system. A

linear code is defined either by a generator matrix G or by a parity check matrix H.

The codeword c is a vector of symbols such that Hc = 0. On the transmitter side a
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stream of bits is split into blocks, encoded, mapped into channel symbols and then

transmitted over a channel. By “channel” we refer to the transmission medium

which is subject to noise, distortion and other impediments. On the receiver side

the decoder has to estimate the transmitted codeword from noisy observations of

transmitted symbols.

Let xi be a binary data symbol xi = {0,1} which is mapped into the channel

symbols si = {−
√

Eb,+
√

Eb} and transmitted over a channel. By Eb we denote

the energy per bit and by yi we denote the output of the matched filter at the

receiver which corresponds to the transmission of xi. One of the most commonly

used models of a channel is Additive White Gaussian Noise (AWGN) channel. In

the AWGN channel model yi = xi + ni, where ni is a sample of zero-mean white

Gaussian noise with variance σ2. The probability that yi is received given that xi

is transmitted is expressed as:

p(yi|xi) =
exp
{
− (yi−si)

2

2σ2

}
√

2πσ
(4.6)

where si corresponds to the transmitted data symbol xi. The quantity Eb
2σ2 = Eb

N0
is

referred to as Signal to Noise Ratio (SNR) of a digital communication system and

N0 is the power spectral density of White Gaussian Noise.

Assuming that a binary stream (x1, . . . ,xn) of length n has been transmitted

over a AWGN memoryless channel then the likelihood the outputs (y1, . . . ,yn)
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can be expressed as:

p(y1, . . . ,yn|x1, . . . ,xn) =
n

∏
i=1

p(yi|xi) (4.7)

where p(yi|xi) is expressed as (4.6).

In the case where the channel coding is used, the sequence (x1, . . . ,xn) rep-

resents a codeword. Since a row of H multiplied by a codeword must yield 0,

the rows of the matrix define a set of constraints (parity checks) imposed on the

codeword symbols xi. For a code of length n we may express the constraint cor-

responding to a row j by a parity check function C j(X j), where X j is a set of the

transmitted symbols which participate in the parity check j. For given values of

the variables X j the function C j(X j) is equal to 1 if the parity check is satisfied

and 0 otherwise.

With the assumptions that the channel is memoryless the Maximum Likeli-

hood (ML) bit decoding of a symbol xi of a codeword can be expressed as:

x̂i = argmax
xi

∑
X\xi

(
n−k

∏
j=1

C j(X j)
n

∏
i=1

p(yi|xi)

)
(4.8)

where n is the length of a codeword, k is the number of encoded information bits,

X\xi is the set of all symbols (x1, . . . ,xn) except for the symbol xi. The expression

(4.8) is an instance of a MPF problem and can be solved using the sum-product

algorithm. The global function in this case is the product under the ∑ in (4.8).

The factor graph corresponding to the global function is also referred to as Tanner
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graph.

The variable nodes of the Tanner graph correspond to the symbols xi of a

codeword. The function nodes correspond to the parity check function C j(X j) as

well as conditional probabilities p(yi|xi). A symbol xi participates in the parity

check C j only if there is a non-zero element in the position i of a row j of the H

matrix. This property is reflected in the Tanner graph by the check node C j being

connected to the variable node xi only if there is a non-zero element in position i

of row j. In general, the symbols and elements of H can be non-binary, but for this

discussion we make the assumption that the symbols are binary, so each symbol

is 0 or 1.

The (7,4) Hamming code (see for example [41]) can be defined by the parity

check matrix:

H =


1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1

 (4.9)

The global function corresponding to the code is expressed as:

G(x1, . . . ,x7) =C1(x1,x4,x6,x7)C1(x2,x4,x5,x6)C1(x3,x5,x6,x7)×

p(y1|x1)p(y2|x2)p(y3|x3)p(y4|x4)p(y5|x5)p(y6|x6)p(y7|x7) (4.10)

The terms C1, C2 and C3 represent parity check corresponding to the rows 1,2,3 of
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the matrix (4.9). For example, C1(x1,x4,x6,x7) is defined as:

C1(x1,x4,x6,x7) =


1, if x1⊕ x4⊕ x6⊕ x7 = 0;

0, otherwise
(4.11)

where ⊕ is the operation of modulo-2 addition.

The factor graph corresponding to the code is depicted in Figure 4.4. The func-

tion nodes p1, . . . , p7 on the graph represent conditional probabilities p(y1|x1), . . . , p(y7|x7)

of transmitted bits given the noisy observations of received bits.

The decoding on a Tanner graph can be implemented in several ways. In one

possible implementations, messages on edges connected to a node xi represent

probabilities of value of the symbols xi. This implementation is commonly re-

ferred to as the implementation in the probability domain. In the binary case the

messages p(xi = 0)+ p(xi = 1) = 1 and only a single value such as p(x = 1) can

be sent on an edge. The message sent by a variable node xi to a function (parity

check) node C j is expressed as:

µxi→C j =
∏Ck∈N(xi)\C j

(
µCk→xi

)
∏Ck∈N(xi)\C j

(
µCk→xi

)
+∏Ck∈N(xi)\C j

(
1−µCk→xi

) (4.12)

where N(xi)\C j is the set of neighbors of a variable node xi except for the node

C j and µCk→xi is a message sent by a node Ck and received by the node xi. The

denominator of (4.14) ensures that the probabilities of p(x = 1) and p(x = 0) adds

up to unity.
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Figure 4.4: Factor graph of the (7,4) Hamming code.
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In the numerator and denominator of (4.14) we need to evaluate d(xi)
7 prod-

ucts of all but one incoming messages. This can be done using the method de-

scribed in Section 3.3.1 and requires 3(d(xi)− 2) multiplications. Evaluation of

(4.14) requires 6(d(xi)− 2) multiplications, d(xi) subtractions, 1 division and 1

addition.

The messages from a parity check node C j to a variable node xi is expressed

as:

µCk→xi = ∑
X j\xi

C j(X j) ∏
xk∈N(C j)\xi

p(xk) (4.13)

where p(xk) = µxk→C j for xk = 1 and p(xk) = 1−µxk→C j for xk = 0. For xi to be

equal to 1 the number of 1s in the vector of the variables in X j\xi has to be odd.

Hence, the equation (4.13) represents the sum of the probabilities of the vectors

of the variables X j\xi which has an odd number of 1s. For example, if C j includes

{x1,x2,x3,x4} and we wish to compute the message to x3 then the probability that

x3 = 1 is:

p(x3 = 1) = p(x1 = 1,x2 = 0,x4 = 0)+ p(x1 = 0,x2 = 1,x4 = 0)

+ p(x1 = 0,x2 = 0,x4 = 1)+ p(x1 = 1,x2 = 1,x4 = 1)

The algorithm may start by initializing all messages from the xi to nodes C j to

the values of conditional probabilities p(yi|xi = 1). Then the algorithm proceeds

7d(xi) denotes the degree of the node xi

95



by updating the check nodes and the variable nodes using the expressions (4.14)

and (4.13). The messages towards the nodes with the conditional probabilities

p(yi|xi) do not need to be updated. Assuming that the algorithm converged, the

marginal probability of xi is computed as:

mxi =
∏Ck∈N(xi)

(
µCk→xi

)
∏Ck∈N(xi)

(
µCk→xi

)
+∏Ck∈N(xi)

(
1−µCk→xi

) (4.14)

If the value mxi < 0.5 then the ML decision on the bit xi value is 0, otherwise

it is 1. The symbols decoded in this way may or may not form a valid codeword

since it is ML bit decoding. If the symbols do not form a codeword then the

decoding has failed.

In the other possible implementation of the sum-product algorithm, the mes-

sages represent Log-Likelihood-Ratios (LLR) of probabilities. The LLR of a sym-

bol xi is expressed as LLR(xi) = ln( p(yi|xi=0)
p(yi|xi=1)). The implementation in the LLR

domain, compared to the sum-product algorithm in its original form, is numeri-

cally more stable and requires fewer quantization bits (see for example [43] and

reference therein). The sum-product algorithm in the LLR domain can be imple-

mented in several ways including the use of the tangent hyperbolic function and

the Jacobian logarithm [20]. In the case of the LLR domain, the update rule for a
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check node C j is defined as:

µC j→xi =

(
∏

k∈N(i)\ j
sign(µxk→C j)

)

×2tanh−1

(
∏

k∈N(i)\ j
tanh

( |µxk→C j |
2

))
(4.15)

where the function sign(x) = 1 if x > 0 and −1 otherwise.

The update of a check node of degree dv as expressed by (4.15) requires dv

divisions by 2, dv evaluations of tanh and tanh−1 functions and 3(dv− 2) + dv

multiplications.8 There are serval ways to implement the tanh and tanh−1 func-

tions in hardware including piecewise linear and non-linear approximations and

lookup tables, see for example [44] and references therein. The expression (4.15)

can also be represented as 2D lookup table [20].

The update of a variable node xi in LLR domain is defined as:

µxi→C j = ∑
k∈N(i)\ j

µCk→xi (4.16)

The update of a variable node of degree dv requires 3(dv−2) additions.

Now we will consider the complexity of the sum-product algorithm in the case

of decoding of the Hamming (7,4) code. At first we consider the sum-product in

its original form, as described by the equations (4.14) and (4.14), then we discuss

the implementations of the algorithm in LLR domain.

Consider the graph in Figure 4.4. The messages to the nodes p1, . . . , p7 rep-

8Here we use the same approach as in Section 3.3.1.
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resent the conditional probabilities p(y1|x1), . . . , p(y7|x7) and do not need to be

computed. We assume that the messages represent the probabilities that the bits

are equal to 1.

The variable nodes x1, x2 and x4 have degree 2 and do not require operations.

The node x4, x5 and x7 have degree 3. We will determine the number of operations

necessary to update the nodes on the example of the node x4. The message sent

by the node x4 to the node C2 is computed as:

µx4→C1 =
µC1→x4 p(y4|x4 = 1)

µC1→x4 p(y4|x4 = 1)+(1−µC1→x4) p(y4|x4 = 0)

The message from x4 to the node C1 is computed in similar way. The update of the

node requires 4 multiplications, 2 subtractions, 2 additions and 2 divisions, which

is 10 operations in total. The update of the nodes x5 and x7 is performed in the

same way and requires the same number of operations.

The node x6 has degree 4. The message from the node to the node C1 is

computed as:

µx6→C1 =
µC2→x6 µC3→x6 p(y6|x6 = 1)

µC2→x6 µC3→x6 p(y6|x6 = 1)+
(
1−µC2→x6

)(
1−µC3→x6

)
p(y6|x6 = 0)

The messages to the nodes C2 and C3 are computed in similar way. Some of the

terms in the expressions for the messages sent to the nodes C1, C2 and C3 are the

same:

1. The terms 1−µC1→x6 , 1−µC2→x6 and 1−µC3→x6
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2. The terms µC3→x6 p(y6|x6 = 1) and
(
1−µC3→x6

)
p(y6|x6 = 0)

These terms can be computed once. Taking this into account, the update of the

node x6 requires 10 multiplications, 3 additions, 3 subtractions, 3 divisions which

in total is 19 operations.

Now we will consider the complexity of the update of the function nodes C1,

C2 and C3. The message from the node C1 to the node x1 is computed as:

µC1→x1 = (1−µx4→C1)µx6→C1 µx7→C1 +µx4→C1

(
1−µx6→C1

)
µx7→C1

+µx4→C1 µx6→C1 (1−µx7→C1)+(1−µx4→C1)
(
1−µx6→C1

)
(1−µx7→C1)

The message is the sum of probabilities of configurations of the variables x4, x6

and x7 which correspond to x1 = 1. The messages sent towards the nodes x4, x6

and x7 are computed in a similar way. The terms 1− µ for four edges can be

computed once. The messages to x1 and x4 include the same terms which can

be computed once:
(
1−µx6→C1

)
µx7→C1 , µx6→C1 (1−µx7→C1), µx6→C1 µx7→C1 and(

1−µx6→C1

)(
1−µx6→C1

)
. Similarly, the terms (1−µx1→C1)µx4→C1 ,

µx1→C1 (1−µx4→C1), µx1→C1 µx4→C1 and (1−µx1→C1)(1−µx4→C1) are the same

for the messages to the nodes x6 and x7. Taking this into consideration, 24 multi-

plications, 12 additions and 4 subtractions or 40 operations in total are required to

update the node. The nodes C2 and C3 are updated in a similar fashion and require

the same number of operations.

We conclude that a single iteration of the sum-product algorithm in the graph

in Figure 4.4 requires in total 169 operations: 94 multiplications, 45 additions,
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Figure 4.5: One of the possible transformations of the factor graph corre-
sponding to the Hamming code.

21 subtractions, 9 divisions. The detailed operation counts are presented in the

Table 4.2. Considering that in average approximately 10 iterations are necessary

for convergence of the sum-product algorithm, the average number of operations

necessary to decode a codeword on the graph in Figure 4.4 is 1690.

Now consider the factor graph presented in Figure 4.5. The graph is formed

from the graph in Figure 4.4 by clustering the following nodes:

1. C2 and C3

2. x4, x6, and x7

3. x2,x3, and x5

4. p4, p6, and p7

5. p2, p3 and p5

On the transformed graph the messages sent to and from the nodes x4 x6 x7 and

x2 x3 x5 are the joint probabilities of three included variables. Only 7 values of

the probabilities are independent since the values have to sum to unity. Hence we

could have messages with 7 values. It is more efficient however, to have an 8-

valued message, since otherwise, every time we update the nodes, we would have
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to compute 8th value by adding 7 values and subtracting the result from unity

which takes extra 8 operations. Hence, we consider the case where the messages

sent to and from the nodes x4 x6 x7 and x2 x3 x5 have 8 values. Note that the update

of the variable nodes of degree 2 which are x1 and x2 x3 x5 requires no operations.

The parity check node C1 defines allowed configurations of variables, for ex-

ample, if x1 = 1 then four configurations of the variables x4 x6 x7 are valid: 100,

010, 001, 111. Similarly, if x4 = 0, x6 = 0, x7 = 0, then clearly x1 = 0.

The message sent from the node C1 to the variable node x1 may still have a

single value. The value is the sum of probabilities of the configurations of the

variables x4 x6 x7 that correspond to the x1 = 1:

µC1→x1(x1 = 1) = µx4x6x7→C1(x4 = 1,x6 = 0,x7 = 0)

+ µx4x6x7→C1(x4 = 0,x6 = 1,x7 = 0)

+ µx4x6x7→C1(x4 = 0,x6 = 0,x7 = 1)

+ µx4x6x7→C1(x4 = 1,x6 = 1,x7 = 1)

The message from the node C1 to the node x4 x6 x7 represents the probability

of the value of the variable x1 which corresponds to the configuration of variables

x4 x6 x7. For example, the configuration x4 = 0,x6 = 0,x7 = 0 corresponds to the

x1 = 0 and the configuration x4 = 1,x6 = 0,x7 = 0 corresponds to the x = 1. So
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we have:

µC1→x4x6x7(x4 = 0,x6 = 0,x7 = 0) = 1−µx1→C1(x1 = 1)=p(y1|x1 = 0)

µC1→x4x6x7(x4 = 1,x6 = 0,x7 = 0) = µx1→C1(x1 = 1) =p(y1|x1 = 1)

...

µC1→x4x6x7(x4 = 1,x6 = 1,x7 = 1) = µx1→C1(x1 = 1) =p(y1|x1 = 1)

Therefore, the update of the node C1 requires 3 additions and 1 subtraction.

It is clear that the message sent to and from the node x4 x6 x7 depends on the

variables x4, x6, and x7. In order to make the notation more concise, from this point

onward, we will not repeat the names of the variables in the message notation,

e.g., instead of µC1→x4x6x7(x4 = 1,x6 = 1,x7 = 1) we will write µC1→x4x6x7(111).

In order to update the node x4 x6 x7 we need to compute two 8-valued messages

µx4x6x7→C1 and µx4x6x7→C2C3. The messages are computed in a way sim-

ilar to the binary case with exception that now we have 8 values. The message

µx4x6x7→C2C3 is expressed as:

µx4x6x7→C2C3(000) =
µC1→x4x6x7(000)p(y4,y6,y7|x4 = 0,x6 = 0,x7 = 0)
∑x4,x6,x7 µC1→x4x6x7(x4,x6,x7)p(y4,y6,y7|x4,x6,x7)

µx4x6x7→C2C3(100) =
µC1→x4x6x7(100)p(y4,y6,y7|x4 = 1,x6 = 0,x7 = 0)
∑x4,x6,x7 µC1→x4x6x7(x4,x6,x7)p(y4,y6,y7|x4,x6,x7)

...

µx4x6x7→C2C3(111) =
µC1→x4x6x7(111)p(y4,y6,y7|x4 = 1,x6 = 1,x7 = 1)
∑x4,x6,x7 µC1→x4x6x7(x4,x6,x7)p(y4,y6,y7|x4,x6,x7)

(4.17)
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Considering our assumption that the channel is memoryless, the 8-valued condi-

tional probability function p(y4,y6,y7|x4,x6,x7) is evaluated as the product of the

probabilities p(y4|x4)p(y6|x6)p(y7|x7).9 Using the approach described in Section

3.3.2 the product can be evaluated with 12 multiplications.

The denominator of (4.17), which ensures that the sum of the probabilities is

equal to 1, is same for all configurations of the variables. The denominator is

the sum of 8 terms µC1→x4x6x7 p(y4,y6,y7|x4,x6,x7) and requires 8 multiplications

and 7 additions. Moreover, the products of the messages with the conditional

probabilities µC1→x4x6x7 p(y4,y6,y7|x4,x6,x7) are the same in the numerator and

denominator and can be evaluated a single time. In total, the evaluation of 8

values of the message µx4x6x7→C2C3 requires 8 multiplications, 7 additions, and 8

divisions. The message µx4x6x7→C1 can be computed in a similar way. The message

to the node p4 p6 p7 does not need to be computed. Therefore, the update of the

node x4x6x7 requires a total of 46 operations: 16 multiplications, 14 additions and

16 divisions.

The message µC2C3→x2 x3 x5 is the sum of the probabilities of the configurations

of the variables x4, x6, x7 which, for a given configuration of variables x2, x3,

x5, satisfy both parity checks C2(x2,x4,x5,x6) and C3(x3,x5,x6,x7). For example,

in the case where x2 = 0, x3 = 0, x5 = 0 the configurations x4 = 0,x6 = 0,x7 =

0 and x4 = 1,x6 = 1,x7 = 1 satisfy both parity checks so µC2C3→x2x3x5(000) =

µx4x6x7→C2C3(000)+ µx4x6x7→C2C3(111). Similarly, for the other values of x2, x3,

9We assume that the probabilities p(y1|x1), . . . , p(y7|x7) have to be evaluated for both cases,
on original and on transformed graphs. Hence, we do not consider the complexity associated with
computation of the probabilities.
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x5 we obtain:

µC2C3→x2x3x5(100) = µx4x6x7→C2C3(100)+µx4x6x7→C2C3(011)

µC2C3→x2x3x5(010) = µx4x6x7→C2C3(110)+µx4x6x7→C2C3(001)

µC2C3→x2x3x5(110) = µx4x6x7→C2C3(010)+µx4x6x7→C2C3(101)

µC2C3→x2x3x5(001) = µx4x6x7→C2C3(010)+µx4x6x7→C2C3(101) = µC2C3→x2x3x5(110)

µC2C3→x2x3x5(101) = µx4x6x7→C2C3(110)+µx4x6x7→C2C3(001) = µC2C3→x2x3x5(010)

µC2C3→x2x3x5(011) = µx4x6x7→C2C3(100)+µx4x6x7→C2C3(011) = µC2C3→x2x3x5(100)

µC2C3→x2x3x5(111) = µx4x6x7→C2C3(000)+µx4x6x7→C2C3(111) = µC2C3→x2x3x5(000)

As the reader can see the latter four messages are equal to the former four mes-

sages. The message from µC2C3→x4x6x7 is computed in a similar way and the update

of the node C2C3 requires only 8 additions.

The summary of the number of operation necessary to update the nodes of the

graph in Figure 4.5 is presented in the Table 4.2. In total, the update of the nodes

requires 16 multiplications, 25 additions, 1 subtraction and 16 divisions, which

constitutes a total of 58 operations. As it has been shown above, the update of the

nodes on the graph prior to the transformations requires 169 operations. There-

fore, by transforming the graph we decreased the number of operations necessary

for a single iteration from 169 to 58 which constitutes a reduction of 65.5%.

On the transformed in Figure 4.5 additional operations are required in order

to find the joint probabilities p(y2,y3,y5|x2,x3,x5) and p(y4,y6,y7|x4,x6,x7) as
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well as in order to obtain the marginal probabilities of the bits x2,x3, . . . ,x7. As

discussed above, the computation of each of the joint probabilities requires 12

multiplications.

The marginal probabilities of the bits x2,x3, . . . ,x7 are computed as follows.

The product of the messages µC2C3→x4x6x7 , µC1→x4x6x7 and conditional proba-

bility p(y4,y6,y7|x4,x6,x7) is proportional to the joint a posteriori probability

p(x4,x6,x7). Evaluation of the product requires 16 multiplications. The values of

the variables x4, x6, and x7 that correspond to the maximal joint pmf p(x4,x6,x7)

correspond to joint ML decoding of the bits x4, x6, and x7. In order to find the ML

values of a single bit we have to marginalize out the rest of the variables from the

joint pmf. For example, the probability of x4 is computed by marginalizing out

the variables x6, and x7:

p(x4 = 0) = p(x4 = 0,x6 = 0,x7 = 0)+ p(x4 = 0,x6 = 1,x7 = 0)

+p(x4 = 0,x6 = 0,x7 = 1)+ p(x4 = 0,x6 = 1,x7 = 1)

p(x4 = 1) = p(x4 = 1,x6 = 0,x7 = 0)+ p(x4 = 1,x6 = 1,x7 = 0)

+p(x4 = 1,x6 = 0,x7 = 1)+ p(x4 = 1,x6 = 1,x7 = 1)

If p(x4 = 0) > p(x4 = 1) then the decoded value of x4 is 0, otherwise 1. There-

fore, we conclude that obtaining ML values for all three bits at the node x4 x6 x7,

requires 16 multiplications and 18 additions. Using similar approach, with 8 mul-

tiplications and 18 additions we can find the ML values of the bits x2, x3 and x5,

at the node x2 x3 x5.
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In total, decoding the Hamming (7,4) code on the graph in Figure 4.5 requires

142 operations. This number includes the 24 operations necessary to find joint

conditional probabilities p(y2,y3,y5|x2,x3,x5) and p(y4,y6,y7|x4,x6,x7), 58 oper-

ations required to update the nodes in the graph and 60 operations necessary to

find the marginal of single bits. As it has been noted above, in average 1690

operations is required to decode a codeword on the original graph. Hence, by

transforming the graph we were able to achieve more than 10 fold reduction in the

count of operations necessary to decode the code.

We also wish to include a remark of one of the reviewers of this thesis. For

such a short code as Hamming(7,4) code the direct ML decoding may have even

less complexity than decoding using the sum-product algorithm on the trans-

formed graph. However, for longer codes direct approach to ML decoding will

be unpractical while decoding using sum-product algorithm may have reasonable

complexity which can be reduced using graph transformations.

We performed Monte-Carlo simulations of Bit Error Rate (BER) and Word

Error Rate (WER) performance of the sum-product (SP) and Maximum Likeli-

hood (ML) decoders of the Hamming (7,4) code for binary AWGN channel. The

results of the simulations in the linear domain are presented in Figure 4.7. The

sum-product decoding on the factor graph with cycles and on the cycle-free graph

was implemented as described above. The data for BER and WER curves in the

case of decoding on the factor graph with cycles are provided by Sina Tolouei

[45].

The decoder in the case of the ML word decoding functions as follows:
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Figure 4.6: Bit Error Rate (BER) and Word Error Rate (WER) of the Ham-
ming (7,4) code in the case of the original graph with cycles and in the
case of the transformed graph.

1. Compute conditional probabilities p(yi|xi) of each of the 7 bits xi using the

expression (4.6).

2. Compute the probability of each of the 16 codewords using the expression

(4.7).

3. Select the codeword with the maximal probability for the decoded code-

word.

4. Compare the selected codeword with the transmitted codeword and count a
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word error if the codewords are not the same.

The decoder in the case of ML bit decoding operates as follows:

1. Compute the conditional probabilities p(yi|xi) using the expression (4.6).

2. Compute the probability of each of the 16 codewords using the expression

(4.7).

3. For each of the bits, compute the probability of a bit i equal to 0 as the sum

of the probabilities of the codewords that have 0 in position i. Likewise,

compute the probability of a bit i equal to 1 as the sum of the probabilities

of the codewords which have 1 in position i.

4. Selected the value of bit i with the higher probability as the decoded bit.

5. Compare the decoded bit values to the transmitted bit and count a bit error

if the bits are not the same.

The values of the messages and the probabilities were represented with high

precision (C++ type double). In the simulations, the energy per bit Eb was scaled

by 4/7 compared to the uncoded case so that the energy per block remains un-

changed. The Eb/No in the graph represent SNR in the case of transmission

without coding. 500 bit errors were counted for each SNR values.

The reader can see that the decoding on the cycle-free graph corresponds to

the ML decoding. In fact, the curves for the ML decoding and decoding on the

cycle free-factor graph overlap. This result is expected since it is known that
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the sum-product algorithm on a cycle-free graph is guaranteed to be exact. The

sum-product decoder on the graph with cycles has slightly worse performance

compared to the performance of the decoder on the cycle- free graph. This effect

is more apparent on the WER curves.

Now we are going to consider the implementations of the sum-product algo-

rithm on the transformed graphs in Figure 4.5 with messages represented in LLR

domain. On the transformed graph the messages to and from the nodes x3 x5 x7 and

x2 x4 x6 have 8 values and the problem is similar to the problem encountered in the

case of decoding non-binary codes. Below, we consider the approach proposed by

Wymeersch et al. [43]. This approach has been applied to the log-domain decod-

ing of LDPC codes defined over Galois fields. The approach utilizes the Jacobi

logarithm:

max∗ , ln(ex1 + ex2) (4.18)

The function max∗ can be expressed as:

max∗(x1,x2) = max(x1,x2)+ ln(1+ e−|x1−x2|) (4.19)

The operation max∗(x1,x2) can be computed using maximization corrected by

the ln(1+ e−|x1−x2|) term. The correction term can be represented “without any

performance loss” [43] 10 as a small look-up table. Therefore, the evaluation of

(4.19) requires one comparison, one addition and one table lookup. The logarithm

10This statement applies to LDPC codes over GF(q) and has not been verified for our case.
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of the sum of more than two exponential functions can be computed recursively,

i.e., max∗(x1,x2,x3) = max∗(max∗(x1,x2),x3).

We define a 7-valued log-likelihood vector L{2,4,6} as the fraction of the prob-

abilities of p(x4,x6,x7) for the values of the variables

x4,x6,x7 = {000,100,010,110,001,101,011} over the probability p(x4 = 1,x6 =

1,x7 = 1):

L{4,6,7}(000), ln
(

p(x4=0,x6=0,x7=0)
p(x4=1,x6=1,x7=1)

)
L{4,6,7}(100), ln

(
p(x4=1,x6=0,x7=0)
p(x4=1,x6=1,x7=1)

)
...

L{4,6,7}(011), ln
(

p(x4=0,x6=1,x7=1)
p(x4=1,x6=1,x7=1)

)
(4.20)

Similarly, we define a 7-valued log-likelihood vector L{2,3,5} as the fraction of

the probabilities of p(x2,x3,x5) over p(x2 = 1,x3 = 1,x5 = 1):

L{2,3,5}(000), ln
(

p(x2=0,x3=0,x5=0)
p(x2=1,x3=1,x5=1)

)
L{2,3,5}(100), ln

(
p(x2=1,x3=0,x5=0)
p(x2=1,x3=1,x5=1)

)
...

L{2,3,5}(011), ln
(

p(x2=0,x3=1,x5=1)
p(x2=1,x3=1,x5=1)

)
(4.21)

Now we will define the update rules for the variable and function nodes. The

message sent by the node p1 to the node x1 defined as

L1 , ln
(

p(y1|x1=0)
p(y1|x1=1)

)
. The node x1 again just passes the message “through” and

does not require any operations.
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Recall that C1 defines a valid value of x1 which corresponds to the combina-

tion of the variables x4, x6, and x7. For example, if x4 = 0,x6 = 0,x7 = 0, then

x1 can only be 0, or if x4 = 1,x6 = 0,x7 = 0, then x1 is 1 and so on. For the

LLR L{4,6,7}(000) = ln
(

p(x4=0,x6=0,x7=0)
p(x4=1,x6=1,x7=1)

)
the probability in the numerator cor-

responds to x1 = 0 and the probability in the denominator corresponds to x1 = 1.

Hence the message µC1→x4 x6 x7 in LLR domain is expressed as:

µC1→x4 x6 x7 = ln
(

p(x1 = 0)
p(x1 = 1)

)
= µx1→C1.

In the case of the L{4,6,7}(100) = ln
(

p(x4=1,x6=0,x7=0)
p(x4=1,x6=1,x7=1)

)
the probabilities in both

the numerator and denominator corresponds to x1 = 1 and L{4,6,7}(100)= ln
(

p(x1=1)
p(x1=1)

)
=

0. We may conclude that the values of the message sent by C1 towards x4 x6 x7 are

either µx1→C1 or 0 depending on whether the configuration of the variables in

the numerator of L{4,6,7} corresponds to x = 1 or x1 = 0. The vector of the values

of the message sent from C1 to x4 x6 x7 is expressed as:

µC1→x4 x6 x7 = {
000

µx1→C1,
001
0 ,

010
0 ,

011
µx1→C1,

100
0 ,

101
µx1→C1,

110
µx1→C1} (4.22)

where we have denoted the configuration of the variables x4 x6 x7 by the upper

index.

For the equations that follow we need to shorten our notations and from this

point onwards, instead of p(x4 = 0,x6 = 0,x7 = 0) we write p{4,6,7}(000), i.e.,

we moved the variables indices in the subscript and the values of the variables
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represented in the form of a vector in the brackets.

The message from C1 to the node x1 can be expressed as:

µC1→x1 = ln

(
p{4,6,7}(000)+ p{4,6,7}(011)+ p{4,6,7}(101)+ p{4,6,7}(110)
p{4,6,7}(001)+ p{4,6,7}(010)+ p{4,6,7}(100)+ p{4,6,6}(111)

)
(4.23)

= ln(eL{4,6,7}(000)+ eL{4,6,7}(011)+ eL{4,6,7}(101)+ eL{4,6,7}(110))

− ln(eL{4,6,7}(001)+ eL{4,6,7}(010)+ eL{4,6,7}(100)+ e0) (4.24)

where in the numerator of (4.23) we have the sum of the pmfs p(x4,x6,x7) cor-

responding to the configurations of the variables x4 x6 x7 such that C1 is satisfied

with x1 = 0. The denominator of (4.24) has the sum of probabilities of the config-

urations that satisfy the parity check with x1 = 1. We obtained (4.24) from (4.23)

by dividing both the numerator and the denominator in (4.23) by p{4,6,7}(111) and

using the fact that eL(x4=i,x6= j,x7=k) , p(x4=i,x6= j,x7=k)
p(x4=1,x6=1,x7=1) .

The evaluation of the equation (4.24) requires 6 computations of the terms in

the form ln(ex1 + ex2).11 Using the approach of Wymeersch et al. [43] this can be

done with 6 comparisons, 6 additions and 6 table lookups. Besides the evaluation

of the ln terms the expression (4.24) also requires one subtraction.

The message sent from the node x4 x6 x7 to the node C2C3 is sum of the mes-

sage µC1→x4 x6 x7 and the conditional probabilities in LLR domain. The message is

11Recall that the term ln(ex1 + ex2 + ex3) can be computed recursively, so that ln(ex1 + ex2 +
ex3) = ln(ex1 + ln(ex2 + ex3)).
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computed as follows:

µx4 x6 x7→C2 C3(000) = µC1→x4 x6 x7(000)+ ln
(

p(y4,y6,y7|x4=0,x6=0,y7=0)
p(y4,y6,y7|x4=1,x6=1,y7=1)

)
µx4 x6 x7→C2 C3(100) = µC1→x4 x6 x7(100)+ ln

(
p(y4,y6,y7|x4=1,x6=0,y7=0)
p(y4,y6,y7|x4=1,x6=1,y7=1)

)
...

µx4 x6 x7→C2 C3(011) = µC1→x4 x6 x7(011)+ ln
(

p(y4,y6,y7|x4=1,x6=1,y7=1)
p(y4,y6,y7|x4=0,x6=1,y7=1)

)
(4.25)

The message in other direction (from x4 x6 x7 to the node C1) is computed in the

same way i.e., the message is sum of the message µC2 C3→x4 x6 x7 and the conditional

probabilities in LLR domain. Therefore, the update of the node x4 x6 x7 requires

14 additions.

The joint LLR probabilities are computed as:

ln
(

p(y4,y6,y7|x4 = 0,x6 = 0,y7 = 0)
p(y4,y6,y7|x4 = 1,x6 = 1,y7 = 1)

)
= ln

(
p(y4|x4 = 0)
p(y4|x4 = 1)

)
+ ln

(
p(y6|x6 = 0)
p(y6|x6 = 1)

)
+ ln

(
p(x7|x7 = 0)
p(y7|x7 = 1)

)
= L4 +L6 +L7 (4.26)

ln
(

p(y4,y6,y7|x4 = 1,x6 = 0,y7 = 0)
p(y4,y6,y7|x4 = 1,x6 = 1,y7 = 1)

)
= ln

(
p(y4|x4 = 1)
p(y4|x4 = 1)

)
+ ln

(
p(y6|x6 = 0)
p(y6|x6 = 0)

)
+ ln

(
p(x7|x7 = 0)
p(y7|x7 = 1)

)
= L6 +L7 (4.27)

...

ln
(

p(y4,y6,y7|x4 = 0,x6 = 1,y7 = 1)
p(y4,y6,y7|x4 = 1,x6 = 1,y7 = 1)

)
= ln

(
p(y4|x4 = 0)
p(y4|x4 = 1)

)
+ ln

(
p(y6|x6 = 1)
p(y6|x6 = 1)

)
+ ln

(
p(x7|x7 = 1)
p(y7|x7 = 1)

)
= L4 (4.28)

where L4, L6 L7 are the conditional probabilities of x4, x6 and x7 in LLR domain
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and we considered that the terms which have probability of x = 1 in the numer-

ator are 0, e.g. ln
(

p(y4|x4=1)
p(y4|x4=1)

)
= 0. The evaluation of the joint LLR requires 6

additions.

The parity checks C2 and C3 define the values of the variables x4, x6 and x7

which are valid for the given values of the variables x2, x3 and x5. For example,

if x2 = 0, x3 = 0 and x5 = 0 then two configurations x4 = 0, x6 = 0, x7 = 0 and

x4 = 1, x6 = 1, x7 = 1 satisfy the parity checks. Similarly, if x2 = 1, x3 = 0

and x5 = 0 then, in order to satisfy the parity checks, the values of x4, x6 and x7

have to be either 100 or 011. Hence, if we only consider the probabilities of x4,

x6 and x7 then the likelihood of the configuration x2 = 0, x3 = 0 and x5 = 0 is:

p{2,3,5}(000) = p{4,6,7}(000)+ p{4,6,7}(111).

The LLR value sent from the node C2C3 to the node x2 x3 x5 for the values of

the variables 100 is:12

µC1 C2→x2 x3 x5(100) = ln

(
p{2,3,5}(100)
p{2,3,5}(111)

)
= ln

(
p{4,6,7}(100)+ p{4,6,7}(011)
p{4,6,7}(000)+ p{4,6,7}(111)

)
=

ln
(

eµx4 x6 x7→C2 C3(100)+ eµx4 x6 x7→C2 C3(011)
)
− ln

(
eµx4 x6 x7→C2 C3(000)+ e0

)
(4.29)

The expression can be evaluated using the approach described above with 2 com-

parisons, 2 additions, 2 table lookups and one subtraction. The LLR messages for

12Please note that by definition the LLR corresponding to the values 111 is 0.
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the other values of x2, x3 and x5 can be evaluated in a similar way:

µC1 C2→x2 x3 x5(000) = ln

(
p{2,3,5}(000)
p{2,3,5}(111)

)
= ln

(
p{4,6,7}(000)+ p{4,6,7}(111)
p{4,6,7}(000)+ p{4,6,7}(111)

)
= 0

µC1 C2→x2 x3 x5(010) = ln

(
p{4,6,7}(110)+ p{4,6,7}(001)
p{4,6,7}(000)+ p{4,6,7}(111)

)
=

ln
(

eµx4 x6 x7→C2 C3(110)+ eµx4 x6 x7→C2 C3(001)
)
− ln

(
eµx4 x6 x7→C2 C3(000)+ e0

)
µC1 C2→x2 x3 x5(110) = ln

(
p{4,6,7}(101)+ p{4,6,7}(010)
p{4,6,7}(000)+ p{4,6,7}(111)

)
=

ln
(

eµx4 x6 x7→C2 C3(101)+ eµx4 x6 x7→C2 C3(010)
)
− ln

(
eµx4 x6 x7→C2 C3(000)+ e0

)
µC1 C2→x2 x3 x5(001) = ln

(
p{4,6,7}(101)+ p{4,6,7}(010)
p{4,6,7}(000)+ p{4,6,7}(111)

)
= µC1 C2→x2 x3 x5(110)

µC1 C2→x2 x3 x5(101) = ln

(
p{4,6,7}(110)+ p{4,6,7}(001)
p{4,6,7}(000)+ p{4,6,7}(111)

)
= µC1 C2→x2 x3 x5(010)

µC1 C2→x2 x3 x5(011) = ln

(
p{4,6,7}(100)+ p{4,6,7}(011)
p{4,6,7}(000)+ p{4,6,7}(111)

)
= µC1 C2→x2 x3 x5(100) (4.30)

Note that the message values for the vectors 001, 101 and 011 are equal to the

message values for the vectors 011, 010 and 100, respectively. Also the denomi-

nator is the same for all of the messages and can be evaluated once. The message

µC1 C2→x4 x6 x7 is computed in a similar way. The update of the node C2C3 requires

8 comparisons, 8 additions, 8 table lookups and 6 subtractions.

The summary of the number of operations necessary to update the nodes in

LLR domain on original and transformed graphs is presented in Table 4.3. In to-

tal, a single iteration of the sum-product algorithm on the transformed graph in

Figure 4.5 requires 63 operations: 28 additions, 7 subtractions, 14 table lookups
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and 14 comparisons. On the graph prior to the transformations only 26 opera-

tions are required for a single iteration of the sum-product algorithm. However,

direct comparison of the total number of operations may not give a fair compar-

ison of the complexity of the algorithms since different operations have different

latencies and memory requirements. For example, additions and subtractions may

require less resources (this depends on the hardware used) as compared to the ta-

ble lookups. The numbers of the table lookups are approximately the same for the

original and transformed graphs.

On the transformed graph, additional complexity is associated with computing

the marginals over single bits which are required for ML decision on the bits val-

ues. As usual, the probabilities at the variable nodes are the products (or in LLR

domain sum) of all incoming messages. For example, at the node x2 x3 x5 the prob-

ability is the sum of the message µC1 C2→x2 x3 x5 and the message µp2 p3 p5→x2 x3 x5 .

The former term is the LLR of the conditional probability p(y2,y3,y5|x2,x3,x5).

Evaluation of the sum requires 7 additions. In order to find the LLR value of a

single bit (which is necessary to decide whether the bit 0 or 1) we may marginalize

out the other variables. For example, for LLR of bit x2 we have:

Lx2 = ln

(
p{2,3,5}(000)+ p{2,3,5}(001)+ p{2,3,5}(010)+ p{2,3,5}(011)
p{2,3,5}(100)+ p{2,3,5}(101)+ p{2,3,5}(110)+ p{3,5,7}(111)

)
=

ln
(

eL{2,3,5}(000)+ eL{2,3,5}(001)+ eL{2,3,5}(010)+ eL{2,3,5}(011)
)

− ln
(

eL{2,4,6}(100)+ eL{2,4,6}(101)+ eL{2,4,6}(110)+ e0
)

Hence, 6 comparisons, 6 additions and 6 table lookups and 1 subtraction are re-
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Figure 4.7: Performance of ML and SP decoder implemented in LLR do-
main on the original factor graph with cycles in Figure 4.4 and on the
transformed cycle-free graph in Figure 4.5.

quired for taking the decision on values of each of the variables x2, . . . ,x7.

The results of Monte-Carlo simulations of Bit Error Rate (BER) and Word

Error Rate (WER) of the decoders of the Hamming code (7,4) implemented in

LLR domain is represented in Figure 4.7. The decoders in LLR domain on the

cycle-free graph was implemented in the method described above with exception

that we evaluated the tangent hyperbolic functions in expressions (4.15) as well

as exponential and logarithmic functions in the expressions (4.19-4.29) exactly,

using corresponding functions of C++. In other words, the approximations of the
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functions were not implemented. The simulation data for the decoder on the graph

with cycles is provided by Sina Tolouei [45]. Similar to the case of decoding in the

probability domain, the performance of the SP decoder on the cycle- free graph

corresponds to the performance of the ML decoder. The SP decoder on the graph

with cycles has slightly worse performance compared to the performance of the

decoder on the cycle-free graph.

Most practical codes are much longer than the Hamming (7,4) code and the H

matrices and factor graphs of the codes are therefore, much larger. It might not be

possible to convert the graphs to a cycle-free form while maintaining a reasonable

computational complexity. We may however suggest that if a factor graph of a

code has a sub-graph similar to the graph of the Hamming (7,4) code, then the

sub-graph can be transformed as described above and this may lower the overall

complexity of the belief propagation decoding algorithm.

4.3 A Factor Graph Approach to Link Loss
Monitoring in Wireless Sensor Networks

In this section we apply factor graph transformations and lower the complexity of

an application of factor graphs in monitoring losses in wireless sensor networks

[22]. Wireless sensor networks are comprised of a large number of sensors that

take measurements from the surrounding environment. A sensor is an autonomous

device which normally operates under strict power and computational complexity

constraints. In order to optimize power efficiency, sensors usually use relaying

to transmit information to the destination, which is usually a single data collect-
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Figure 4.8: An example of communications in a sensor network. The capital
letters denote sensors, the lower case letters denote links. The nodes
A and B use the nodes C, D and E as relays.

ing node in the network. Sensors are prone to failure and various impediments

of wireless media so that losses of information often occur. Knowledge of link

loss rates is essential for developing “good” routing protocols for wireless sensor

networks.

A factor graph approach to inferring and monitoring link loss rates has been

proposed by Mao et al. [22]. The method allows continuous monitoring of link

losses with minimal complexity. The authors utilized a model of a sensor net-

work with data aggregation and relaying. In this model a node receives informa-
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tion (packets) from other nodes, incorporates the information into a single packet

which is then sent further through the network. The network can be represented

by a reverse multicast tree. A node in the network has several branches and one

connection to the “trunk” which is the next sensor in the chosen routing path to the

data collection node or sink. The sink receives packets from all sensors-branches.

Loss of a packet is inferred if the packet does not arrive from a branch in an allo-

cated period of time. The task of network tomography [22] is to infer the link loss

rates from the statistic of received and lost packets. Figure 4.8 represents a model

of a sensor network under consideration. The nodes A and B use the nodes C, D

and E as relays. A packet sent by the node C is an aggregation of the packets from

nodes A, B and C. The authors of [22] used a rather abstract notion of a “packet”

and do not focus of the physical layer of the transmission. It is assumed that the

nodes have sufficient bandwidth to relay the information from its child nodes.

In the text below, we closely follow the notation of [22]. By e we denote an

edge or link (such as a,b,c, . . . in Figure 4.8) and by w we denote an path in the

network (such as A→ Sink or B→ Sink in Figure 4.8). The authors of [22] use

capital letters to denote sets. E denotes the set of all edges and W the set of all

paths from the sensors to the sink in a sensor network.

The state of a link e is represented by a Bernoulli random variable xe [34]

which takes value 1 (good state) and value 0 (bad state) with probability α and

1−α , respectively. The distribution of the state of a link e is denoted by B(xe,αe).

The state of a path w which is comprised from several links is denoted as xw. x(i)e

and x(i)w denote the states of a link and a path during the transmission of packet i,
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respectively. If any of the links in a path are in a “bad” state then the state of the

path is considered as “bad” which is expressed as:

x(i)w = ⊗
e∈w

x(i)e (4.31)

where ⊗, denotes binary AND operation. The sets X i
E and X i

W denote the states

of all edges and all paths in the network in the time of transmission of packet i.13

For example, in the network in Figure 4.8 X (i)
E = {x(i)a ,x(i)b ,x(i)c , . . .} and X (i)

W =

{x(i)A→Sink,x
(i)
B→Sink, . . .}.

Following [22] let C(x) be a Boolean proposition of some variable or vector x,

then an indicator function δ is defined as:

δ [C(x)] =


1, if C(x) holds

0,otherwise
(4.32)

The probability mass function of path states given link state at the time of

transmission of a packet is i is a deterministic function, which is just an extension

of (4.31) for the all paths w ∈W :

PW |E(X
(i)
W |X

(i)
E ) = ∏

w∈W
δ

[
x(i)w = ⊗

e∈w
x(i)e

]
(4.33)

The set αE denotes loss rates for all links in the network, e.g. αE = {αa,αb,αc, . . .}
13Perhaps in this context i can be viewed as a period where all sensors transmit a single packet

with number i plus the time sufficient for the packets to propagate trough network and reach the
sink.
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in Figure 4.8. Assuming that the losses are independent on the links, the joint PMF

of all links in the network BE(XE ,αE) is expressed as:

BE(XE ,αE) = ∏
e∈E

B(xe,αe) (4.34)

The sets of the link and path losses over transmissions of n packets 1,2, . . . ,n

is denoted by X (1,n)
E and X (1,n)

W , respectively.

Now, using introduced notation we reiterate our objective. Given the set of

observations of path states X (1,n)
W over transmission of the packets 1,2, . . . ,n we

aim to infer the link loss rates αE .

Assuming that αE stays constant during transmission of the packets 1,2, . . . ,n,

then the joint PMF of αE , X (1,n)
W , X (1,n)

E during transmissions 1,2, . . . ,n is ex-

pressed as [22, eq. 2]:

P
[
αE ,X

(1,n)
E ,X (1,n)

W

]
∝

n

∏
i=1

BE(X
(i)
E ,αE)PW |E(X

(i)
W |X

(i)
E ) (4.35)

and the objective is for every e ∈ E find α̂e which maximizes:

P
[
αe|X (1,n)

W

]
∝ ∑
∼αe

P
[
αE ,X

(1,n)
E ,X (1,n)

W

]
∝ ∑
∼αe

n

∏
i=1

BE(X
(i)
E ,αE)PW |E(X

(i)
W |X

(i)
E )

where X (1,n)
W and X (i)

W (observations of path states) are given. As one can see it is

an instance MPF problem which can be solved by the sum-product algorithm.The
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global function is:

G(αE ,XE) =
n

∏
i=1

BE(X
(i)
E ,αE)PW |E(X

(i)
W |X

(i)
E )

=
n

∏
i=1

BE(X
(i)
E ,αE) ∏

w∈W
δ

[
x(i)w = ⊕

e∈w
x(i)e

]
(4.36)

For the transmission of a single packet i in the network in Figure 4.8 the global

function is represented as:

G(i)(α
(i)
E ,X (i)

E ) = B(x(i)a ,α
(i)
a )B(x(i)a ,α

(i)
a ) · · ·B(x(i)f ,α

(i)
f )×

δA[x
(i)
{a,c,d,e} = x(i)a ⊗ x(i)c ⊗ x(i)d ⊗ x(i)e ]×

δB[x
(i)
{b,c,d,e} = x(i)b ⊗ x(i)c ⊗ x(i)d ⊗ x(i)e ]×

δF [x
(i)
{ f ,d,e} = x(i)f ⊗ x(i)d ⊗ x(i)e ] (4.37)

where we only considered the paths from the sensors A, B and F (wA = {a,c,d,e},

wB = {a,c,d,e} and wF = { f ,d,e}). The factor graph corresponding to the global

function 4.37 is presented in Figure 4.9.

The bottom row of the graph represents the observation of path states by the

sink node, i.e., xw = 1 if the sink received the packet from the path w or xw = 0

otherwise. The variable nodes in the middle row correspond to the link states.

The top row nodes are estimates of the parameters α (loss rates, or rather success

rates) of Bernoulli distributions for each link.

The sum-product operates on the factor graph such as shown in Figure 4.9.

Our goal is to acquire the marginals of α . The messages towards the vertices of
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Figure 4.9: An example of a factor graph for the sensor network in Figure
4.8. The graph represents a single round of transmission.

path states such as x{ f ,d,e} do not need to be updated. The nodes α are leaf-nodes

and therefore the messages towards the nodes need to be updated only once, upon

the completion of the iterations. Following the notation of the authors of [22],

from this point onward, by µw→e we denote a message from a node δw to the node

xe. Likewise, by µe→w we denote a message from the node xe to the node δw.

By N(w) and N(e) we denote the sets of the neighbors of the node δw and xe,

respectively. The message values on the edges connected to the link state node xe

are the probabilities of the link being in “good” and “bad” states. The messages

may have a single value since they represent probabilities and have to sum to unity.
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The value which is chosen as the message value in the algorithm is the probability

that the link is in ”good” state.

During the initialization stage of the algorithm messages from the nodes xe to

the nodes δw are set to 0.5 (which means that it is equally likely that the links are

in good and bad states). During the propagation stage also referred as the iterative

stage of the algorithm, the link nodes xe and the path nodes δw exchange messages.

A message from a path state node δw to a link state xe node is expressed as [22,

eq. (6)]:

µw→e =


1, if x(i)w = 1

1− ∏
e′∈N(w)\{e}

µe′→w

2− ∏
e′∈N(w)\{e}

µe′→w
, if x(i)w = 0

(4.38)

where N(w)\{e} denotes the set of neighbors of the node δw except for the node

e and node B. The message is the belief of a node δw that the node xe is in “good”

state. The first condition of (4.38) represents simple logic: if a path is in “good”

state then all links are in “good” state with probability 1.

The second condition is the probability that the transmission over link e is suc-

cessful given that the path is failed p( link e is good| path w is bad) which using

the Bayes rule is expressed as:

p( link e is good| path w is bad)=
p( link e is good| path w is bad)p(link e is good)

p(path w is good)
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The expression is equal to the second clause of (4.38) given that a priori

p(link e is good) = 0.5.

Note that if at least one of the messages from the edges, except for the edge e,

is 0 then the messages to the node xe is µw→e = 0.5, which means that this path

cannot contribute more information about the state of xe since it is known that

some other links are failed. If the path state xw = 1 (the path is “good”) then the

node does not require any operations.

The message from a variable node xe to a function node δw is expressed as

[22, eq. 7]:

µe→w =

∏
w′∈N(e)\{w}

µw′→e

∏
w′∈N(e)\{w}

µw′→e + ∏
w′∈N(e)\{w}

(1−µw′→e)
(4.39)

where N(e)\{w} denotes a set of node neighbors of the node xe except for the

node δw. The numerator of 4.39 is the belief of all nodes δ ∈ N(e)\{w} that the

link xe is in “good” state, and the denominator has sum of probabilities of the link

being in “good” and in “bad” states, that ensures that the probability sums to unity.

Upon the completion of the iterations the link nodes xe compute the probabili-

ties that they are in “good” states which are the estimates of αe for the transmission

of the current packet [22, eq. 8]:.
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Figure 4.10: Representation of the algorithm that estimates α over multiple
rounds of transmission. Each layer corresponds to the graph at a
single time instant in Figure 4.9.

µe→w =

∏
w′∈N(e)

µw′→e

∏
w′∈N(e)

µw′→e + ∏
w′∈N(e)

(1−µw′→e)
(4.40)

The schematic representation of the graph for the estimation of α̂E over the

time period where packets i, i+ 1 and i+ 2 are transmitted is presented in Fig-

ure 4.10. Three surfaces on the picture represent factor graphs for a single round

of transmissions (i, i+ 1 and i+ 2), i.e., each of the surfaces is a factor graph

such as the graph in Figure 4.9. On each of the surfaces the algorithm performs

the estimation of α̂
(i)
E (estimation αE during the transmission i) as it has been

described above. The layers are connected via the variable nodes α since it is

assumed that α stays constant over the period of transmission of multiple packets.

After the completion of estimation of α̂
(i)
E the algorithm combines the current es-

timate with estimates from the past. By combining, we refer to multiplications of

α̂
(i)
E · α̂

(i−1)
E · α̂(i−2)

E . . . or perhaps, to multiplication of the weighted estimates α̂
(i)
E
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which would allow the algorithm to add more value to the most current estimates

and eventually “forget” the past estimates. This approach has low complexity

since only the most recent observations need to be processed on the factor graph,

i.e., only the graph on the top surface in Figure 4.9 is updated.

Now we will evaluate the complexity of the algorithm in terms of the opera-

tion counts and lower the complexity of the algorithm using transformations of the

graph. First of all, we determine the complexity of the algorithm on the original

graph. The products in the equations above can be computed using the method

described in Section 3.3.1, so that the number of multiplications necessary for

their computation is 3(d(v)−2). To simplify the estimation of the count of oper-

ations, we assume that the link losses are the same i.e., α for all links. While this

assumption may not be realistic in practice, it may still provide an insight into the

complexity of the algorithm.

The update of the path states nodes δw is expressed as (4.38). By d(δw) we

denote the degree of the node δw. With the probability α(d(δw)−1), a path is in

“good” state14 and no operations are needed since the first condition in (4.38)

is involved and all messages are equal to 1. With the probability 1−α(d(δw)−1)

the path is in “bad” state so that second second condition in (4.38) is involved.15

Therefore, the evaluation of the second clause in the expression (4.38)) requires:

14We reiterate our assumption that link losses are independent. If the probability of success
of Bernoulli trial (which in our case, is a transmission over a single link in a path) is p then the
probability of success of n independent trials is pn (which is in our case the probability that all
links in a path are in “good” state). Then the probability that at least 1 of the trails (transmissions)
fails is 1− pn.

15Note that 1 is subtracted from d(δw) since there is one edge towards the path node xw and the
messages on the edge do not need to be updated or considered.
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• 3(d(δw)−3) multiplications to compute the products of the incoming mes-

sages

• 2(δw− 1) subtractions to evaluate the numerator and denominator of the

expression

• δw−1 divisions to evaluate the fraction

In total, when the second clause in (4.38) is involved, the update of the node δw

requires 5d(δw)−12 operations. A node of degree less than 3 does not need any

operations since is this case the state of a path determines the state of a link.

Now we will determine the number of operations necessary to update the link

state nodes xe as expressed by (4.39). The messages to the leaf nodes B need to be

computed only once, upon completion of the estimations. The messages from the

nodes B are a priori estimates of αe which assumed to be 0.5 and therefore, can

be canceled from the denominator in (4.39). The update of the link state nodes xe

requires:

• d(xe)−1 subtractions, in order to evaluate the terms 1−µw→e in the second

part of the denominator

• 6(d(xe)−3) multiplications in order to evaluate the products of the incom-

ing messages µw→e as well as the products of 1− µw→e in the second part

of the denominator

• d(xe)−1 additions in order to evaluate the denominator

• d(xe)−1 divisions in order to evaluate the fraction

131



The total number of operations, which we assume has to be done for every itera-

tion, in 9d(xe)−21. The node of degree 2 does not need any operations.

Due to the probabilistic nature of the update, we need to define average com-

plexity as the average number of operations per iteration that the sink node has to

perform over a period of time with a large number of transmitted packets. If with

probability P1 and P2 a node has to perform X and Y operations, respectively then

the average number of operations will be XP1 +Y P2. In our case, if the link w is

failed then the complexity consists of the complexity of the update the nodes δw

and xe. When the path is good we assume that only the nodes xe are updated.

Now, as an example, we are going to consider the factor graph in Figure 4.9.

The nodes δA, δB and δF in the graph have the degrees 5, 5 and 4, respectively.

Taking into account the operation count for the nodes δ defined above, the nodes

δA and δB each with probability 1−α4 need 8 operations and the node δF with

probability 1−α3 needs 3 operations.16 In total, the delta nodes require in average

19−16α4−3α3 operations. The link states nodes xa, xb and x f in Figure 4.9 have

degree 2 and do not require any operations. The remaining 3 link state nodes xc,

xd and xe) have degrees 3, 4 and 4, respectively. Taking into account the number

of operations for a link state node defined above, the variable nodes require 36

operations per iteration. In total, the average number of operations per an iteration

in the graph in Figure 4.9 is:

CO = 55−16α
4−3α

3 (4.41)
16We assume that the links A→ Sink, A→ Sink, and F→ Sink have failure probabilities 1−α4,

1−α4 and 1−α3, respectively.
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Figure 4.11: Factor graph of wireless sensor network with joined δ nodes.

As an example for the α = 0.95, the number of operations is 39.4.

In this application, for the nodes of the same degree, the complexity of the

update of the link nodes xe is higher compared to the complexity of the update of

δw nodes. Hence, we may attempt to reduce the degrees of variable nodes xe by

clustering the function nodes δw. Also we note that the function nodes δA and δB

have 3 variable nodes in common and that they differ by a single variable only.

By joining the nodes δA and δB we can reduce the degrees of the link nodes xc, xd

and xe as shown in Figure 4.11.

We observe that if the transmission A→ Sink is successful and B→ Sink is

failed then we know that only the link b has failed. Similarly, if A→ Sink is failed
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but B→ Sink is successful, then we know that only the link a has failed. These

observations can be incorporated in the logic of clustered node δA · δB and the

update rule for the node can be expressed as:

µw→e =



1, if (A) AND (B)

µw→xb = 0,µw→N(w)\xb
= 1, if (A) AND (NOT (B))

µw→xa = 0,µw→N(w)\xa = 1, if (NOT(A)) AND (B)

see the expressions (4.43) and (4.44) below, if (NOT (A)) AND (NOT (B))

(4.42)

where A and B denote Boolean variables indicating whether the packet from cor-

responding node was received by the sink. The clauses in the expression (4.42)

have the following meaning.

1. (A) AND (B): both paths from A→ Sink and from B→ Sink are in “good”

state and all links {a,b,c,d,e} are in good state with probability 1. There-

fore, 1 is sent to all link nodes xa, xb, xc, xd and xe.

2. (A) AND (NOT (B)): the packet from A is received but the packet from B is

lost. The link b is in “bad” state with probability 1 and the other links are in

“good” state with probability 1. Therefore, the message sent to xb is 0 and

the messages sent to the nodes xa, xc, xd and xe are 1.

3. (NOT(A)) AND (B): the packet from A is lost but the packet from B is re-

ceived. The state of the link a is “bad” with probability 1 and the other links

are in “good” state with probability 1. Therefore, the message sent to xa is
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0 and the messages sent to the nodes xb, xc, xd and xe are 1.

4. (NOT(A)) AND NOT(B): the packets from both A and B are lost. This indi-

cates that either both links a and b are failed or that one of the links {c,d,e}

is failed. The probability of this is:

P f
AB = (1−µc→ABµd→ABµe→AB)+(1−µa→AB)(1−µb→AB)

−(1−µc→ABµd→ABµe→AB)(1−µa→AB)(1−µb→AB)

where the first term is the probability of a failure of any of the links c, d,

and e, the second term is the probability of failure of both links a and b and

the last term is the joint probability that links a and b and any of the links

c, d, and e are failed at the same time. The probability that the transmission

over the link a is successful given, that the transmission over the path failed

(which is the message to the node xa), can be evaluated as:

µAB→a =

1−µc→ABµd→ABµe→AB

2(1−µc→ABµd→ABµe→AB)+1−µb→AB− (1−µc→ABµd→ABµe→AB)(1−µb→AB)

(4.43)

where we used Bayes rule and considered a priori P(link a failed) = 0.5.

The message to the node xb is computed in similar fashion with the excep-

tion that µb→AB in the equation (4.43) is replaced by µa→AB. The message
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to the node xc is evaluated as:

µAB→c =
P1

2P2
(4.44)

where the term P1 is the probability of failure of both paths A and B given

that link c is in good state:

P1 = (1−µd→ABµe→AB)+(1−µa→AB)(1−µb→AB)

−(1−µd→ABµe→AB)(1−µa→AB)(1−µb→AB)

and the P2 = the probability of path failure considering a priori probability

of failure of the link c is equal to 0.5:

P2 = (1−0.5µd→ABµe→AB)+(1−µa→AB)(1−µb→AB)

−(1−0.5µd→ABµe→AB)(1−µa→AB)(1−µb→AB)

The messages towards the nodes xd and xe are computed in a similar way

with exception that in the first case, µd→AB is replaced by µc→AB and in the

second case, µe→AB is replaced by µc→AB.

In order to update the joint node δAδB we need to:

• compute the terms 1−µ for incoming messages from the nodes {xa,xb,xc,xd,xe};

this requires 5 subtractions

• compute the products
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1. (1−µa→AB)(1−µb→AB)

2. 0.5(1−µa→AB)

3. 0.5(1−µb→AB)

which requires 3 multiplications

• compute the terms

1. µd→ABµe→AB

2. µc→ABµe→AB

3. µc→ABµd→AB

4. 0.5µd→ABµe→AB

5. 0.5µc→ABµe→AB

6. 0.5µc→ABµd→AB

7. µd→ABµd→ABµe→AB

which requires 7 multiplications

• compute the terms which are 1 minus the terms above; this requires 7 sub-

tractions.

• compute the messages to xa and xb which, using the terms computed above,

requires 4 multiplications, 2 additions, 2 subtractions and 2 divisions.

• compute the messages to xc, xd and xe which requires 9 multiplications, 6

additions, 6 subtraction and 3 divisions.
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The update of the node δAδB requires a total of 56 operations: 23 multiplications,

8 additions, 20 subtractions and 5 divisions.

The node δF is not affected by the transformation and still requires 3 opera-

tions with probability 1−α3. After the transformations only the link nodes xe and

xd require any operations since the other nodes have degrees less than 3. Taking

into account the number of operations defined above, the nodes xe and xd require

12 operations (both nodes have degree 3). Considering our assumption that all

links have the same probability of success α , the number of operations required

to update the graph in Figure 4.11 is expressed as:

CT = 12+56
(
1−α

3 +(1−α)2− (1−α
3)(1−α)2)+3(1−α

3) (4.45)

For the α = 0.95 the number of operations as defined by (4.45) is equal to 20.5.

Therefore, by clustering the nodes δA and δB under the assumptions that the α is

the same for all links and α = 0.95, we lowered the average number of operations

required for a single iteration of the sum-product algorithm from 39.4 to 20.5,

which constitutes a reduction of 48%.

For a larger network the clustering of δ nodes could be more beneficial if the

paths share more links. For example, in the case where two paths w1 and w2

consist of 10 links, w1 = {x1,x3,x4, . . .x11} and w2 = {x2,x3,x4, . . .x11}, i.e., the

paths share 9 links and differ by 1 link, by clustering the nodes δw1 and δw2 we

can lower the degrees of 9 nodes {x3,x4, . . .x11}.
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4.4 Summary

In this chapter, we discussed several practical applications of the method of low-

ering the complexity of the sum-product algorithm using graph transformations.

For the applications of the factor graphs in Joint DNA Base-Calling, decoding of

the Hamming (7,4) code and Link Loss Monitoring in Wireless Sensor Networks

we were able to lower the complexity of the sum-product algorithm by 25%, 50%

and 48%, respectively. We also showed that in the case of Joint DNA Base-Calling

and decoding of the Hamming (7,4) code, converting the graph to the cycle-free

form lowered the complexity of the sum-product algorithm. It is quite remarkable

that the number of operations required to find the marginals on a cycle-free graph

in these applications is less compared to the number of operations required for a

single iteration of the sum-product algorithm on the graph with cycles.

The examples in this chapter clearly show that, contrary to the widespread

belief, converting a graph to a cycle-free form does not always lead to a dramatic

increase in complexity of belief propagation. Since the algorithm is exact in a

cycle-free graph, it may be desirable to convert a graph to a cycle-free form even

at the expense of a moderate increase in complexity.
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Chapter 5

The depth N greedy search

algorithm

In Chapter 4 we applied the factor graph transformations and reduced the com-

plexity of the sum-product algorithm in several applications. The factor graphs

that we considered were small or had repeated structures which allowed us to de-

vise the transformations manually. In the majority of applications however, factor

graphs have thousands of nodes and often random or pseudo-random structures.

Therefore, we need an algorithm that can be applied to a general factor graph. The

objective of the algorithm is to find the topology of the graph that corresponds to

the least complex sum-product algorithm. This can be expressed as:

Tmin = argmin
T

∑
∀vn∈G

Cvn + ∑
∀ f n∈G

C f n (5.1)
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where Tmin is the transformation that results in the least complex sum-product al-

gorithm, T is the set of all possible transformations, Cvn and C f n are the number

of operations required to update a variable node vn and a function node f n, re-

spectively. There are a number of ways to approach this problem. Below, we will

attack the problem directly but not necessarily in an optimal way. We develop a

recursive greedy algorithm that, given a factor graph, attempts to find the solution

to the optimization problem.

The complexity in expression (5.1) is used as the goal function for the opti-

mization in this chapter. It has been noted by one of the reviewers of this thesis

that different operations may have different latencies and complexities of the im-

plementations in hardware. In order to take this into account, we may include in

the goal function (5.1) complexity coefficients for each of the involved operations.

The coefficients should correspond to the complexity of the implementations of

the corresponding operations. In addition, as it has been noted a number of times,

there are several benefits of having a graph in a cycle-free form. Therefore, if

the cycle-free form has been achieved, it has to be detected by the algorithm and

preference has to be given to graph in the cycle-free form.

A factor graph can be described by an adjacency matrix [46], which we denote

by S. The rows of the matrix correspond to the local functions and the columns

correspond to the variables. An element a ji is 1 if and only if variable i is part

of the domain of a function j, otherwise the element a ji = 0. An example of

an adjacency matrix with a corresponding factor graph is shown in Figure 5.1a.

Given the degrees and sizes of the domains of each node in a graph, it is possible
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Figure 5.1: Example of a factor graph and the adjacency matrix for the
graph(a). Effects of factor graph transformations on the adjacency
matrix of the graph: clustering of variable nodes (b), clustering of
function nodes(c).
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to compute the operation counts required by the sum-product algorithm using the

formulas defined in Section 3.3 equations (3.7), (3.14), and (3.15). The degree of

a variable node i is the number of 1s in the column i of adjacency matrix S while

the degree of a function node j is the number of 1s in the row j. An algorithm can

compute the operation count by applying the above-mentioned formulas for each

row and each column of S. The pseudo-code of the procedure is:

Input parameters: graph adjacency matrix S and vector of sizes of nodes do-

mains Vd

Output: The number of operations C required by a single iteration of the sum-

product algorithm on a given factor graph under the assumption that the flooding

schedule is applied. Now we will show that the transformations of a factor graph

Algorithm 1 The function that computes the number of operations required by
the sum-product algorithm

function INTEGER COMPUTESPCOMPLEXITY(S , Vd)
C=0
for each row of S (function node) do . for all FN

Compute A and M from (3.15, 3.14)
C=C+A+M

end for

for each column of S (variable node) do . for all VN
Compute M from (3.7)
C=C+M

end for
return C

end function

defined in Section 2.4 correspond to the operations with rows and columns of the

matrix S. The transformations result in multiple variables and functions being as-
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sociated with the nodes of a graph. This information has to be stored, perhaps in

the form of a vector of vectors (one vector for each variable node and one for each

function node).

• The clustering of variable nodes corresponds to replacing the columns cor-

responding to joined variables by a single column, which is formed from the

original column using binary OR operation. The domain of new variable

node (column) is the multiplication of the domains of variables included in

the joined node. An example of such a transformation is shown in Figure

5.1b.

• As a result of the clustering of the function nodes, the original rows are re-

placed with the row formed by performing the OR operation on the original

row. An example of such a transformation is shown in Figure 5.1c.

• To “stretch” a variable, the algorithm needs to add an element to the vector

representing the variables associated with a node. The size of the domain of

a variable node also needs to be multiplied by the size of the domain of the

stretched variable.

• Removing an edge from a graph is represented by setting an element of the

matrix to 0.

• Removing nodes corresponds to dropping a column from the matrix.

In order to conclude that an edge connecting a variable node i to a function node j

is redundant, the algorithm has to verify that removing the edge does not change
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the domain of the function node j which can be done by comparing the domains

of the nodes connected to the function node j. The algorithm must also verify that

after the transformation the graph still satisfies the running intersection property

(Section 2.4). This can be accomplished using a graph search algorithm, such as

a breadth-first or a depth-first algorithm (see for example [46]). A node can be

removed if all edges connected to the node can be removed; in other words, if the

node is represented by a 0-column.

As we have seen in Chapters 3 and 4, it may be desirable to stretch the nodes

along the cycle, and then to break the cycle by removing one of the edges. In

order to do this, we need to identify all the cycles that are shorter than a specified

length. This also can be done using the breadth-first search algorithm [46].

The goal of the algorithm is to systematically explore the graph in an attempt

to determine the transformations which lead to the minimal operation count. We

say that in a factor graph a variable node j is adjacent to the other variable node

i if the node j can be reached from the node i by a path of length 2. Similarly,

a function node k is adjacent to the function node j if the node k can be reached

from the node j by a path of length 2. The pseudo code of the depth 1 search

algorithm is the following:

Input parameters: graph adjacency matrix S, vector of domain sizes Vd, length

of the longest explored cycle L

Output: The lowest operation count achievable by a single transformation, the

transformation that achieves this count
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Algorithm 2 The algorithm determines depth 1 transformations which leads to
the minimal operation count

function INTEGER DEPTH1SEARCH(S, Vd, L)

Minimal complexity= ComputeSPComplexity(S , Vd)

for each column of S (variable node i) do . Clustering of variable nodes

for each variable node j adjacent to the node i do

Join i and j, compute new S’ and Vd’

complexity = ComputeSPComplexity(S’ , Vd’)

if complexity < Minimal complexity then

Minimal complexity= complexity

Save the transformation as the new candidate

end if

end for

end for

for each row of S (function node j) do . Clustering of function nodes

for each function node k adjacent to the node j do

Join k and j, compute new S’ and Vd’

complexity = ComputeSPComplexity(S’ , Vd’)

if complexity< Minimal complexity then

Minimal complexity= complexity

Save the transformation as the new candidate

end if

end for

end for
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Find all cycles of length L or less . Checking cycles

for each cycle of length L or less do

for each node in the cycle do

Stretch the variables along the cycle, break the cycle, compute new

S’ and Vd’

complexity =ComputeSPComplexity(S’ , Vd’)

if complexity < Minimal complexity then

Minimal complexity= complexity

Save the transformation as the new candidate

end if

end for

end for

return Minimal complexity and the transformation candidate

end function

The following is the pseudo-code of the program that optimizes the complex-

ity of the sum-product algorithm. The program essentially calls Depth1Search(S,

Vd, L) in Repeat Until cycle till Depth1Search cannot find a transformation that

reduces the operation count.

The depth 1 search algorithm may however get stuck since it is possible that a

transformation, which originally increases the complexity, leads to other trans-

formations that will reduce the complexity. To avoid this problem, we propose

another algorithm which at first explores all possible transformations up to depth
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Algorithm 3 OptimizeSumProduct - The algorithm optimizes complexity of the
sum-product algorithm using factor graph tranfomations

repeat
Current complexity = ComputeComplexity(S , Vd)
NewMinOperationsCount=Depth1Search(S, Vd, L)
if NewMinOperationsCount < Current operation count then

Transform the graph, compute new S, Vd
end if

until Current complexity > NewMinOperationsCount

N and then selects the next transformation which leads to the greatest overall de-

crease in complexity. The pseudo-code of such a search algorithm is given below.

The only difference with Depth1Search is that there are recursive calls within

each for block.

Input parameters: graph adjacency matrix S, vector of domain sizes Vd, length

of longest explored cycle L, depth of the search N.

Output: complexity C, The lowest operation count achievable by N transforma-

tions, the transformations that achieve this count
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Algorithm 4 The algorithm determines depth N transformations which lead to the
minimal operation count

function INTEGER DEPTHNSEARCH(S, Vd, L, N)

Minimal complexity= ComputeComplexity(S , Vd)

for each column of S (variable node i) do . Clustering variable nodes

for each variable node j adjacent to variable node i do

Join i and j, compute new S’ and Vd’

if N=0 then

Complexity = ComputeComplexity(S’ , Vd’)

else . Recursive call to self

Complexity = DepthNSearch(S’, Vd’, L, N-1)

end if

if complexity < Minimal complexity then

Minimal complexity=complexity

Save the transformations as the sequence of transformations-

candidates

end if

end for

end for

for each row of S (function node j) do . Clustering function nodes

for each function node k adjacent to function node j do

Join k and j, compute new S’ and Vd’
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if N=0 then

Complexity = ComputeComplexity(S’ , Vd’)

else . Recursive call to self

Complexity = DepthNSearch(S’, Vd’, L, N-1)

end if

if complexity < Minimal complexity then

Minimal complexity= complexity

Save the transformations as the sequence of transformations-

candidates

end if

end for

end for

Find all cycles of length L or less . Checking cycles

for each cycle of length L or less do

for each node in the cycle do

Stretch the variables along the cycle, break the cycle, compute new

S’ and Vd’

if N=0 then

Complexity = ComputeComplexity(S’ , Vd’)

else . Recursive call to self

Complexity = DepthNSearch(S’, Vd’, L, N-1)

end if
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if complexity < Minimal complexity then

Minimal complexity= complexity

Save the transformations as the sequence of transformations-

candidates

end if

end for

end for

return Minimal complexity and transformation candidate

end function

The algorithm that optimizes the complexity of the sum-product algorithm

using DepthNSearch function is the same as ComputeSPComplexity except that

Depth1Search function is replaced with DepthNSearch function.

There is no guarantee that the algorithms presented above will find the optimal

graph. The algorithm however, may work in many cases. It will find all of the

transformations that we applied manually in Chapter 4.

The complexity of the algorithm increases exponentially with increases in the

depth of the search. The optimization however, has to be performed only once

during the system design. It also appears that in many cases, the search of depth

2-4 may be enough for the algorithm to proceed without getting stuck. In fact, for

all of the examples presented throughout this thesis, the depth 1 search will find

the solutions.

The drawback of the algorithm is that during the different steps it explores the
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same sequence of transformations in successive steps of the search over and over

again. In order to improve the algorithm, one may attempt to reuse the information

about already explored paths.

The other way to approach the problem would be to recursively partition the

graph into smaller sub-graphs and to try to optimize each of the sub-graphs in-

dependently.1 Then the algorithm may explore a large number of possible graph

partitions with the hope that the optimal transformation on each step will be iden-

tifiable and will belong to a single sub-graph.

1For example, it may work by partitioning a graph to 2 sub-graphs, then each of the subgraphs
on 2 sub-graphs again and so on till arrive to a sub-graph where optimal transforation can be found
or known

152



Chapter 6

Conclusions

6.1 The summary of contributions

The main contributions of this thesis are the following:

1. A novel approach aimed at increasing the efficiency of the sum-product and

belief propagation algorithms using graph transformations has been intro-

duced.

2. It has been shown that, at least for some applications, the approach may

significantly lower the number of operations required by the sum-product

algorithm.

3. The applicability of the method of lowering complexity to different practical

applications of factor graphs has been demonstrated.

4. An algorithm that optimizes the complexity of the sum-product algorithm
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has been developed.

5. An efficient way of performing the sum-product nodes computations for a

function node have been proposed.

6. It has been demonstrated that converting a graph to a cycle-free form does

not always significantly increase the number of operations required by the

sum-product algorithm. In some cases converting a graph to the cycle-free

form may even decrease the complexity of the algorithm.

6.2 Conclusions and suggestions for future research

In this thesis we showed that the complexity of the sum-product algorithm in

its original form is not optimal under all circumstances. We introduced a novel

framework for lowering the complexity of the algorithm using graph transforma-

tions. We demonstrated that the approach can significantly lower the number of

operations required to find marginals using the sum-product algorithm. The pro-

posed approach is general and can be applied to a variety of applications of the

sum-product algorithm. As examples, we used transformations and successfully

lowered the complexity in applications of the sum-product algorithm in Joint DNA

Base-Calling, decoding of the Hamming(7,4) code and Wireless Link Monitoring

in Wireless Sensor Networks. On considered models transformation of the graphs

lowered the number of arithmetic operations required for a single iteration of the

sum-product algorithm by 25-65%. Remarkably, in the cases of the Joint DNA

Base-Calling and the decoding of the Hamming(7,4) code, the number of oper-

154



ations required to find the marginals on the cycle-free graph is less compared to

the number of operations required to perform a single iteration on the graphs with

cycles. In the case of the Hamming (7,4) code, the decoding on the transformed

cycle-free graph requires approximately 10 times fewer operations compared to

the decoding on the original graph with cycles.

Considering that the concept of graph transformations is general we expect

that the transformations can also be applied to lower the complexity in related

graphical models such as Bayesian Networks and Markov random fields.

In practical settings, given a factorization of a global function, one would be

interested in determining the minimal achievable number of operations required to

find the marginals. The other question is how to devise the algorithm that achieve

this number. Further research is needed to answer this questions.

The method of lowering the complexity removes short cycles from a graph

which would likely to improve the convergence and accuracy of the sum-product

algorithm as it has been seen on the example of the Hamming(7,4) code. This

effect is yet to be investigated in future research.

Ultimately, by utilizing the approach presented in this thesis the designers of

real-life applications may be able to reduce the computational time and lower the

power consumption of power constrained devices. In addition, it may be possible

to implement more comprehensive models that take into account a greater number

of factors and that correspond better to real world phenomena.
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