
Exposing Resources as Web services:

a Performance Oriented Approach

by

Ravishankar Kanagasundaram, B. Eng.

A thesis submitted to the Faculty of Graduate and Postdoctoral

Affairs in partial fulfillment of the requirements for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada K1S 5B6

© Copyright 2012, Ravishankar Kanagasundaram

ii

The undersigned recommend to
the Faculty of Graduate and Postdoctoral Affairs

the acceptance of the thesis

Exposing Resources as Web services: a Performance Oriented Approach

submitted by

Ravishankar Kanagasundaram, B. Eng.

in partial fulfillment of the requirements for the degree of

Master of Applied Science in

Electrical and Computer Engineering

__

Shikharesh Majumdar

Thesis Supervisor, Department of Systems and Computer Engineering

__

Howard Schwartz

Chair, Department of Systems and Computer Engineering

Carleton University

September 2012

iii

Abstract

Exposing resources as Web services provides inter-operability and enables

various clients that are implemented by using diverse technologies to access different

resources, such as computing and database resources. Sharing resources through Web

services presents the client with access to a shared resource regardless of the client’s

programming language or (operating system). This research focuses on exposing

computing and database resources as Web services so that various clients can access each

resource through a uniform interface. Two different Web service technologies: the

RESTful Web service and the SOAP-based Web service are used for exposing computing

and database resources as Web services. Based on prototyping and measurement, a

performance analysis of the two technologies, the RESTful Web Service and the SOAP-

based Web service used for exposing resources as Web services is reported. A novel

Hybrid Web service that combines the advantages of both RESTful and SOAP-based

Web services is proposed and analyzed.

iv

Acknowledgements

First of all, I would like to express my sincere thanks to my thesis supervisor,

Professor Shikharesh Majumdar, for all his guidance, and continuous support,

encouragement and help throughout the completion of this thesis.

I would like to thank Cistel Technology and the Ontario Centers of Excellence for

providing the financial support for this research.

I would also like to thank Orlando and Norman for their help on getting me

started with Web service tools. Thanks are due to SriPrasanna, Manomohan, Denis,

Michael and Junior for proofreading my thesis document.

Finally, I want to thank my wife Tharsica, my parents, my sister and her family,

relatives and friends for their support and encouragement throughout my Master’s study.

v

Table of Contents

Abstract ... iii	

Acknowledgements .. iv	

Table of Contents .. v	

List of Tables .. viii	

List of Figures ... ix	

List of Symbols and Acronyms ... xiv	

Chapter 1 :	
 Introduction ... 1	

1.1	
 Exposing a Computing Resource as a Web Service .. 2	

1.2	
 Exposing a Database Resources as a Web Service .. 3	

1.3	
 Motivations for the Thesis .. 5	

1.4	
 Goals of the Thesis ... 6	

1.5	
 Contributions of the Thesis .. 7	

1.6	
 Outline of the Thesis .. 8	

Chapter 2 :	
 Background and Related Work ... 9	

2.1	
 Web Services .. 9	

2.1.1	
 Web Service Components ... 9	

2.1.2	
 Web Service Architecture ... 9	

2.1.3	
 Web Services and Web 2.0 ... 10	

2.1.4	
 The Web 2.0 Characteristics ... 11	

2.1.5	
 The Web 2.0 Technologies: Services and Tools ... 12	

2.2	
 SOAP-based Web Services .. 13	

2.2.1	
 SOAP-based Web Service Components ... 14	

2.2.2	
 SOAP-based Web Service Architecture ... 14	

2.3	
 RESTful Web Services ... 16	

2.3.1	
 RESTful Web Service Components .. 16	

2.3.2	
 RESTful Web service Architecture .. 17	

2.4	
 Related Research .. 18	

2.4.1	
 Exposing Resources as Web Services ... 18	

2.4.2	
 SOAP-based Web Service Vs RESTful Web Service 20	

vi

2.4.3	
 SOAP-based Web Service Performance Issues and Solutions 23	

2.4.4	
 Mobile Environment ... 24	

Chapter 3 :	
 Exposing Resources as a Web Service ... 26	

3.1	
 Exposing a Computing Resource as a Web Service .. 26	

3.1.1	
 Computing Resource Exposed as a Web service Type 27	

3.1.2	
 CWSR ... 28	

3.1.3	
 Invoking CWSR .. 30	

3.1.4	
 CWSS .. 32	

3.1.5	
 CWSS and CWSS-Client components.. 33	

3.2	
 Exposing a Database Resource as a Web Service .. 35	

3.2.1	
 Database Resource Exposed as a Web Service Types 36	

3.2.2	
 Database Resource Exposed as a Web Service (DBWS) 36	

3.2.3	
 DBWSR .. 37	

3.2.4	
 Sequence Diagram for Invoking the Insert Database Operation on DBWSR
 ... 39	

3.2.5	
 DBWSS ... 41	

3.2.6	
 Sequence Diagram for Invoking the Insert Database Operation on DBWSS .
 ... 43	

Chapter 4 :	
 Hybrid Web Service .. 45	

4.1	
 Computing Resource Exposed as a Hybrid Web Service (CHWS) 46	

4.1.1	
 CHWS Selection Implementation ... 47	

4.1.2	
 Consuming the Computing Resource as a Hybrid Web Service 48	

4.2	
 Database Resource Exposed as a Hybrid Web Service (DBHWS) 50	

4.2.1	
 DBHWS - Type I Implementation .. 51	

4.2.2	
 DBHWS - Type I Sequence Diagram ... 53	

4.2.3	
 DBHWS - Type II ... 54	

4.2.4	
 DBHWS - Type II Implementation ... 55	

4.2.5	
 DBHWS - Type II Sequence Diagram .. 58	

Chapter 5 :	
 Performance Analysis ... 60	

5.1	
 Experimental Setup .. 60	

5.1.1	
 Performance Metrics ... 61	

vii

5.1.2	
 Systems Specifications .. 62	

5.1.3	
 Parameters Used in the Experiments .. 62	

5.2	
 Performance Evaluation for Exposing a Computing Resource as a Web Service .
 .. 64	

5.2.1	
 Performance of Different Web Service Request ... 64	

5.2.2	
 Effect of Web Service Request Size ... 66	

5.2.3	
 Performance Evaluation for Executing Programs on the Computing
Resource .. 68	

5.2.4	
 Effect of Request Arrival Rates .. 69	

5.3	
 Performance Evaluation for Exposing a Database Resource as a Web Service 74	

5.3.1	
 Performance of Web Service Requests ... 75	

5.3.2	
 Effect of Web Service Request Size ... 78	

5.3.3	
 Effect of the Arrival Rates of Request .. 81	

5.4	
 Performance Evaluation of a Resource Exposed as a Hybrid Web Service 84	

5.4.1	
 Performance of Computing Resource Exposed as a Hybrid Web Service . 84	

5.4.2	
 Performance for Executing Programs on Computing Resource Exposed as a
Hybrid Web Service .. 86	

5.4.3	
 Performance of Database Resource Exposed as a Hybrid Web Service 89	

5.4.4	
 Effect of Request Arrival Rate .. 93	

5.5	
 Discussions of Experimental Results ... 97	

Chapter 6 :	
 Conclusions .. 100	

6.1	
 Summary and Conclusions ... 100	

6.2	
 Future Work ... 104	

References .. 106	

viii

List of Tables

Table 5.1: Summary of the parameters used in the experiments 63	

Table 5.2: RESTful Web service performance improvement over SOAP-based Web

service ... 99	

ix

List of Figures

Figure 1.1: Exposing computing resource as a Web service .. 3	

Figure 1.2: Exposing database resource as a Web service .. 4	

Figure 2.1: Architecture for Web service (based on [9]) .. 10	

Figure 2.2: Architecture for SOAP-based Web service (based on [8]) 15	

Figure 2.3: Architecture for RESTful Web service .. 18	

Figure 3.1: Computer resources exposed as Web services ... 27	

Figure 3.2 : Class diagram for CWS ... 28	

Figure 3.3: JAX-RS annotations used in CWSR .. 29	

Figure 3.4: CWSRC invoking CWSR .. 30	

Figure 3.5: Sequence diagram showing the invocation of CWSR 31	

Figure 3.6: JAX-WS annotations used in CWSS .. 32	

Figure 3.7: CWSSC invoking the CWSS ... 33	

Figure 3.8: JAX-RS annotations for the insert database operation on DBWSR 37	

Figure 3.9: Database resource exposed as DBWSR ... 38	

Figure 3.10: Sequence diagram for invoking the insert database operation on DBWSR . 40	

Figure 3.11: JAX-WS annotations for the insert database operation on DBWSS 41	

Figure 3.12: Database resource exposed as DBWSS .. 42	

Figure 3.13: Sequence diagram for invoking the insert database operation on DBWSS . 44	

Figure 4.1: Exposing Computing resource as a Hybrid Web service 46	

Figure 4.2: Class diagram for CHWS ... 47	

Figure 4.3 : Computer resource exposed as a Hybrid Web service 49	

Figure 4.4: Exposing database resource as a Hybrid Web service - Type I 50	

x

Figure 4.5: Class diagram for DBHWS - Type I .. 51	

Figure 4.6: Database resource exposed as a Hybrid Web service - Type I 52	

Figure 4.7: Sequence diagram for the insert database operation on DBHWS - Type I 54	

Figure 4.8: Exposing Database resource as a Hybrid Web service – Type II 55	

Figure 4.9: Class diagram for DBHWS -Type II .. 56	

Figure 4.10: Database resource exposed as Hybrid Web service - Type II 57	

Figure 4.11: Sequence diagram for the insert database operation on DBHWS - Type II . 58	

Figure 5.1: Performance for Windows commands for CWSR and CWSS 64	

Figure 5.2: Performance for Windows commands for CWSR and CWSS 65	

Figure 5.3: Performance of CWSR and CWSS for reading file set1 67	

Figure 5.4: Performance of CWSR and CWSS for reading file set2 67	

Figure 5.5: Performance for executing a program on CWSR and CWSS for fixed service

times .. 68	

Figure 5.6: Performance for executing a program on CWSR and CWSS with

exponentially distributed service time .. 69	

Figure 5.7: Performance of CWSR and CWSS for Windows command "dir" with

different request arrival ratets ... 70	

Figure 5.8: Performance of CWSR and CWSS for Windows command "java - version"

with different request arrival rates .. 71	

Figure 5.9: Performance for executing a program on CWSR and CWSS with different

request arrival rates (fixed service time of 25 ms) .. 72	

Figure 5.10: Performance for executing a program on CWSR and CWSS with different

request arrival rates (fixed service time of 50 ms) .. 73	

xi

Figure 5.11: Performance for executing a program on CWSR and CWSS with different

request arrival rates (fixed service time of 100 ms) .. 73	

Figure 5.12: Performance for executing a program on CWSR and CWSS with different

request arrival rates (exponentially distributed service time with a mean of 25 ms) 74	

Figure 5.13: Performance of DBWSR and DBWSS for the read database operation 76	

Figure 5.14: Performance of DBWSR and DBWSS for the insert database operation 76	

Figure 5.15: Performance of DBWSR and DBWSS for the delete database operation ... 77	

Figure 5.16: Performance of DBWSR and DBWSS for the update database operation .. 77	

Figure 5.17: Effect of Web service request size on DBWSR and DBWSS - read student

records database operation .. 79	

Figure 5.18: Effect of Web service request size on DBWSR and DBWSS - insert student

records database operation .. 79	

Figure 5.19: Effect of Web service request size on DBWSR and DBWSS - delete student

records database operation .. 80	

Figure 5.20: Effect of Web service request size on DBWSR and DBWSS - update student

records database operation .. 80	

Figure 5.21: Performance of DBWSR and DBWSS for the update database operation

with different request arrival rates .. 82	

Figure 5.22: Performance of DBWSR and DBWSS for the read database operation with

different request arrival rates .. 82	

Figure 5.23: Performance of DBWSR and DBWSS for the insert database operation with

different request arrival rates .. 83	

xii

Figure 5.24: Performance of DBWSR and DBWSS for the delete database operation with

different request arrival rates .. 83	

Figure 5.25: Performance for executing the Windows command “dir” on CHWS 85	

Figure 5.26: Performance for executing the Windows command “java -version” on

CHWS ... 86	

Figure 5.27: Performance for fixed service times (25ms, 50ms and 100ms service time) 87	

Figure 5.28: Performance for an exponentially distributed service time (mean 25 ms) ... 88	

Figure 5.29: Performance for exponentially distributed service times (mean 25 ms) with

different request arrival rates .. 88	

Figure 5.30: Performance for the read database operation performed on DBHWS - Type I

... 90	

Figure 5.31: Performance for the insert database operation performed on DBHWS - Type

I ... 91	

Figure 5.32: Performance for the update database operation performed on DBHWS -

Type I .. 91	

Figure 5.33: Performance for the delete database operation performed on DBHWS - Type

I ... 92	

Figure 5.34: Performance of DBHWS - Type II for different database operations 92	

Figure 5.35: Performance of DBHWS - Type I for the read database operation with

different request arrival rates .. 94	

Figure 5.36: Performance of DBHWS - Type I for the insert database operation with

different request arrival rates .. 95	

xiii

Figure 5.37: Performance of DBHWS - Type I for the update database operation with

different request arrival rates .. 95	

Figure 5.38: Performance of DBHWS - Type I for the delete database operation with

different request arrival rates .. 96	

Figure 5.39: Performance of DBHWS - Type II for different database operations with

different request arrival rates .. 96	

xiv

List of Symbols and Acronyms

λ Arrival rate

p Probability of invoking the RESTful Web Service

API Application Programming Interface

CHWS Computing Resource exposed as a Hybrid Web Service

CHWSC Computing Resource exposed as a Hybrid Web Service Client

CPU Central Processing Unit

CWS Computing resource exposed as a Web Service

CWSR Computing resource exposed as a Web Service RESTful

CWSRC Computing resource exposed as a Web Service RESTful Client

CWSS Computing resource exposed as a Web Service SOAP-based

CWSSC Computing resource exposed as a Web Service SOAP-based Client

DBHWS Database resource exposed as a Hybrid Web Service

DBHWSC Database resource exposed as a Hybrid Web Service Client

DBHWSR Database resource exposed as a Hybrid Web Service RESTful

DBHWSS Database resource exposed as a Hybrid Web Service SOAP-based

DBMS Database Management Systems

DBWS Database resource exposed as a Web Service

DBWSR Database resource exposed as a Web Service RESTful

DBWSRC Database resource exposed as a Web Service RESTful Client

DBWSS Database resource exposed as a Web Service SOAP-based

DBWSSC Database resource exposed as a Web Service SOAP-based Client

FIFO First In First Out

xv

GHz Gigahertz

HPC High Performance Computing

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JAX-RS Java API for RESTful Web Services

JAX-WS Java API for SOAP-based Web Service

JDBC Java DataBase Connectivity

JSP Java Server Page

NEWT National Energy Research Scientific Computing Web Service Toolkit

OS Operating System

RAM Random Access Memory

REST Representational State Transfer

RIDDL RESTful Interface Definition and Declaration Language

RPC Remote Procedure Call

RSS Really Simple Syndication

SOAP Simple Object Access Protocol

SPECTS Symposium on Performance Evaluation of Computer and

Telecommunication Systems

SQL Structured Query Language

StudentDB Student Database

UDDI Universal Description, Discovery, and Integration

URI Uniform Resource Identifier

xvi

WADL Web Application Description Language

WS Web Service

WSART Web Service Average Response Time

WSDL Web Service Description Language

WSES Web Service Evaluation System

WSRT Web Service Response Time

WWW World Wide Web

XML Extensible Markup Language

1

Chapter 1 : Introduction

A Web service is a software system that enables interactions between a client and

the server application that may communicate over the Internet [37]. The Web service

system supports interoperable communication over a Web. Web services are built based

on Web service standards by using which Web service providers and Web service clients

agree on a common Web service interface. Web services are language and platform

independent: clients developed by using various languages and running on top of

different platforms can communicate with the same Web service.

According to [9] Web services have the following benefits. Web services are said

to provide loose coupling. A Web service application may include different services and

that are each service is independent of each other. Modifying one of the services will not

affect the other services. Each Web service is built based on Web service standard and

therefore Web services are easy to integrate into a system.

Resources can be exposed as Web services. The advantages of exposing

resources as Web services provide inter-operability and enable various clients to access

the shared resources. A shared resource allows the right to use by multiple and various

types of clients. Client A’s characteristic may differ from client B’s characteristics. It is

therefore important to have user friendly uniform interfaces for each shared resource.

One of the ways of providing inter-operability for sharing resources is through Web

services. The Web service presents the client with a single pre-defined interface for

accessing a shared resource regardless of the client’s programming language or

2

(operating system). Resources can be of various types including computing and database

resources.

There are other challenges in exposing a resource as a Web service including: the

requirement of a large bandwidth for communicating between a remote client and the

shared resource [14]; the requirement of programming techniques to handle multiple

concurrent requests for the same resources. The bandwidth problem can be alleviated by

providing a high speed network infrastructure for remote clients. The concurrent requests

to resource problem are overcome by using appropriate distributed system technologies

including cloud and grid technologies that provide resource reservation and resources

allocation. This thesis focuses on exposing computing and database resources as Web

services.

1.1 Exposing a Computing Resource as a Web Service

 Figure 1.1 shows an example of exposing a computing resource as a Web service.

External client uses a Web browser (e.g. FireFox, Internet Explorer or Google Chrome)

to invoke the computing resource exposed as a Web service. The computing system

could be running different operating systems such as Windows and Linux. An external

client, for example, can execute any Windows “cmd” from the computing resource Web

service. For listing the content of the directory, the external client types “dir” then

submits the button. The Web service executes the external client’s request and sends the

results back to the external client through the Web browser. Various other operating

system commands can be executed on the computing resource in a similar manner by

invoking the Web service. Chapter 3 has a detailed description of the design of the

system exposing a computing resource as a Web service.

3

 There are many advantages of exposing a computing resource as Web service

such as:

• An external client can be remote or local to the Web service

• The external client can invoke the Web service from any platform

• The external client does not need to have all the applications and software on the

external client’s platform; instead the client invokes the Web service and uses or

runs the program available on the computing resource exposed as a Web service.

External client

Web service

Web service
client

Figure 1.1: Exposing computing resource as a Web service

1.2 Exposing a Database Resources as a Web Service

Figure 1.2 shows an example of exposing a database resource as a Web service.

As described in Section 1.1 the external client uses a Web browser to invoke the

4

database resource exposed as a Web service. In this example, a student database

resource is exposed as a Web service and the external client can insert a student

record or read, update or delete the student record. When the external client wants to

add a new student record, the external client types the student information into the

Web browser and then submits the request by clicking the “submit” button. Once the

external client submits the request on the database resource Web service, the Web

service executes the external client’s request and sends the results back to the external

client through the Web browser. Note that external clients can be running on a local

or a remote system and use diverse platform. A detailed description of the design of a

system exposing a database resource as Web service is presented in Chapter 3.

Figure 1.2: Exposing database resource as a Web service

External client
Web service

Web service
client

5

1.3 Motivations for the Thesis

Carleton University and Cistel Technology are developing a resource management

middleware for unifying resources for a distributed environment for bridge infrastructure

management. This research project is supported by the Ontario Centers of Excellence.

The system needs to make several types of resources (e.g., computer and database) and

data analysis tools available to a user on demand. Since diverse users (clients) can be

using different programming languages and platforms providing inter-operability is

crucial in the context of such distributed systems that unify diverse resources for a user

community. One way of providing inter-operability is by exposing resources and tools as

Web services. This thesis investigates performance aware approaches for exposing

resources as Web services.

Resources can be exposed as Web services using different Web services technologies

such as RESTful Web service or SOAP-based Web service. The performance of a Web

service is important in the contents of exposing resources as Web services. The RESTful

Web service is a lightweight Web service and is expected to have a better performance in

comparison of a SOAP-based Web service, which uses the extra XML markup required

by SOAP messages.

Web services are often invoked by clients over the Internet. During the

communication between the client and the Web service, messages get exchanged over the

Internet. The messages can be categorised into two groups: sensitive information

messages and non sensitive information messages. For example, updating the student

information or bank transaction gives rise to sensitive information messages; whereas

listing attractive places in Ottawa typically give rise to non-sensitive information

6

messages. The message containing the sensitive information needs to be transmitted

using a secure channel. This sensitive message requires CPU intensive tasks for

encrypting and decrypting message. A SOAP-based Web service supports a number of

standards on security, reliable messaging and atomic transactions that are currently not

available with RESTful Web service. Thus, a SOAP-based Web service often becomes

necessary in the context of such message carrying sensitive information.

This research focuses on analyzing the performance impact of these two Web

services technologies and is motivated by the following questions:

• What is the difference in performance achieved by SOAP-based Web service

and RESTful Web service technologies for various operations performed on

resources exposed as Web services?

• What are the system and workload parameters for which a RESTful Web

service technology provides a significant performance benefit over SOAP-

based Web service?

• How can we combine the advantages of both the RESTful (lightweight) and

SOAP (support for additional standards) based technologies in an

environment where carrying (both sensitive information and non-sensitive

information) messages are used?

1.4 Goals of the Thesis

One of the goals of this thesis is to evaluate the performance for resources exposed as

Web services. The RESTful Web service is expected to have performance advantages

over and SOAP-based Web service, while SOAP-based Web service provides support for

7

Web service standards such as security, reliable messaging and atomic transactions that

are currently not available with RESTful Web service. Prototype systems based on both

the technologies are built and are used with various workloads. A rigorous performance

analysis of both the RESTful Web service and the SOAP-based Web service is made.

The impact of various workload parameters on the relative performance of both types

of Web services is presented in the thesis. Another important goal of this thesis is to

devise a technique for combining the RESTful Web service and the SOAP-based Web

service technologies and effectively utilize the advantages from both types of Web

services.

1.5 Contributions of the Thesis

The main contributions of the thesis include:

• Techniques for exposing and invoking of computing resources and database

resources as Web services are described.

o Results of a thorough performance analysis of the two Web service

technologies through prototyping and measurement are reported.

• Various insights into systems behaviour and performance for various

combinations of systems and workload parameters are presented.

• A novel technique called Hybrid Web service that combines the RESTful Web

service and the SOAP-based Web service technologies is proposed and a

description of a prototype implementation is presented.

• The performance advantage of Hybrid Web service is demonstrated through

measurements made on the prototype.

8

A paper based on the research results is published in the proceedings of the

International Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS) 2012 [10].

1.6 Outline of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 gives background

information on Web services and discusses related work. Chapter 3 explains techniques

for exposing and invoking of computing resources and database resources as Web

services in more detail. Chapter 4 describes the design and implementation a novel

Hybrid Web service technique. Chapter 5 presents and discusses the results of the

performance evaluation for the Web service technologies investigated in the thesis.

Finally, Chapter 6 concludes the thesis and provides possible directions for future

research.

9

Chapter 2 : Background and Related Work

2.1 Web Services

Web service is a software system which provides service over the Internet, regardless

of operating systems or programming languages [20]. Web service gains more attention

for as a distributed approach of services or application integration over the Web [43]. A

Web service is capable of performing various ranges of functions such as providing

services to a simple request or providing services to complicated business processes.

According to [8] Web services are noted to have the following characteristics:

1. Web services are self contained.

2. Web services can be published, discovered and invoked over the Internet.

2.1.1 Web Service Components

According to [8] a Web service comprises the following components:

1. Web service registry which acts as a broker for Web services.

2. Web service provider that publishes services on the Web service registry.

3. Web service user or client who discovers the Web services in the registry and

invokes the Web services provided by the Web service provider.

The next section describes the relationship among these components.

2.1.2 Web Service Architecture

Figure 2.1 shows the architecture for a Web service based system. A Web service

provider needs to create a Web service and then publishes the Web service information

on the Web service registry. Web service client uses the Web service registry to find out

10

the Web service information. Finally, the Web service client invokes the Web service

available at the Web service provider [9].

Web service
provider

Web service
registry Web service client

Publish
(Register Web service information)

Locate Web service

Bind
(Invoking Web service)

Figure 2.1: Architecture for Web service (based on [9])

2.1.3 Web Services and Web 2.0

Exposing resources as Web services are relevant to Web 2.0 technologies. The Web

2.0 characteristics such as interactive operations, rich user experience and lightweight

user interface are well suited for exposing resources as Web services.

Web 2.0 is the next generation of World Wide Web (WWW) and Web 2.0 term was

introduced by Tim O’Reilly during the Media conference in 2004 [20]. Since then the

WWW has gone through many innovating changes including [20]:

11

• changes in application design such as Web layout and components look and feel

• changes in development tools and technologies, such as using Java scripts, Flash

technologies, Really Simple Syndication (RSS) and Mashups

• changes in interaction between service providers and service consumer, such as

introduction of social networks (Facebook) and support for Web based

collaborative authoring (Wiki and Google document).

The following sub sections describe Web 2.0 characteristics, technologies.

2.1.4 The Web 2.0 Characteristics

Web 2.0 is not just a new version of the previous Web 1.0. According to [20] Web

2.0 has seven core principles:

1. The organizations are shifted to a new way of making revenue based on the

service provided to the customer instead of selling the products in traditional

applications. For example, Amazon Web service is charging its client based on

client usage [3].

2. Control over unique, hard-to-recreate data sources that get richer as more people

use them. Peer to Peer movement and decentralization is one example is using

BitTorrent where clients also become a server. Therefore, the services get better

and better as more people use them.

3. Trusting users as co-developers: This method of development is used in many

open source products. The users contribute through feedback and comments to

the products; this adds value to the products. Thus, the company makes better

products through peer collaboration.

12

4. Harnessing collective intelligence: The Web site provides collaborative services.

For example, Amazon Web service which sells products online also includes

customers’ contributions for product review, comments, online profiles and

blogging.

5. The term “long tail” is explained as “the collective power of various small sites

that makes up the bulk of the Web’s content” in [43]. Originations make revenue

based on online advertisement. For example Google AdSence which enables

advertisement placement on virtually any Web page based on the user search

categories.

6. Software above the level of a single device: Web application software needs to

work regardless of client devices and client platforms. Thus, Web applications

are able to deliver the same quality of performance on different devices and

platforms.

7. Lightweight user interfaces, development models, and business models: The Web

2.0 application’s interfaces are lightweight (do not have heavy graphics). The

developments models of Web 2.0 is continued to evolve with new features that

include simultaneous develop, test and release. Furthermore, the feedback from

the user is considered in the development model [20].

2.1.5 The Web 2.0 Technologies: Services and Tools

 Web 2.0 consists of several new Web technologies. The following sub sections

describe them.

13

2.1.5.1 RSS, Wikis and Mashups

RSS is a Web feed format used for syndicating the content of Web sites. RSS

consists of summarized information and the information of the metadata. RSS informs

the clients or subscribers about the updates of Web sites or blogs they show interest in.

 According to [42] Wiki is a simple Web based application which allows users to

create or update content using any Web browser. A Wiki is capable of collaborative

authoring for groups of people working on a centralized document. Google document

also has the similar characteristics as a Wiki. The advantages of using a Wiki are:

1. Asynchronous contribution by a group of people (regardless of their geographical

locations).

2. Higher communication efficiency and productivity (Emails need not be

exchanged and all updates are visible to all in the group) [18].

Mashups in the context of Web are Web sites, which include information and services

from various sources on the Web. One of the examples would be Google map that is

used by other Web sites. Developing applications by using a mashup is simpler and

quicker than developing a Web application form scratch.

2.2 SOAP-based Web Services

A SOAP-based Web service is a traditional Web service that uses Web service

Description Language (WSDL). The WSDL is used to describe network services in an

XML format and how to access them [9]. The SOAP standard comprises two

components:

14

1. The SOAP envelope is the root element of a SOAP message and the SOAP

envelope defines a framework for expressing what is in the message and who

should receive the message [38].

2. The SOAP protocol binding - SOAP messages use different of underlying

protocols and the SOAP protocol binding framework defines general rules for

protocol binding specifications. For example, it declares the features provides by

a binding and describes the handlings of potential failures within the binding [38].

2.2.1 SOAP-based Web Service Components

SOAP-based Web service is made with following components:

1. SOAP-based Web Service provider

2. Client who invokes SOAP-based Web service

3. Universal Description, Discovery and Integration (UDDI) based registry

4. WSDL

5. SOAP Messages and XML

The following section describes the relationship among these components.

2.2.2 SOAP-based Web Service Architecture

Figure 2.2 shows the various important operations performed on for a SOAP-based

Web service.

1. SOAP-based Web service registers its Web service information on UDDI-

based registry.

15

2. SOAP-based Web Service’s client searches the UDDI registry to locate the

Web service.

3. SOAP-based Web Service’s client generates a SOAP request according to the

WSDL document. The WSDL provides information on how to use a Web

service, descriptions of Web service methods and the binding information

[38]. The SOAP-based Web service provider generates the WSDL document.

Netbeans Web application project automatically generates WSDL document

for SOAP-based Web service [22].

4. SOAP-based Web Service’s client sends a SOAP request to SOAP-based Web

service.

5. SOAP-based Web service executes SOAP-based Web Service’s client request.

6. SOAP-based Web service generates a SOAP response accordingly. The

SOAP header contains the destination as SOAP-based Web service’s client

and the SOAP body contains the executed results from previous step.

7. SOAP-based Web service sends SOAP response to SOAP-based Web

service’s client.

UDDI

SOAP’s client
SOAP-based Web

service

Locate Web service Register Web service information

SOAP Biding
Use Web service

Figure 2.2: Architecture for SOAP-based Web service (based on [8])

16

2.3 RESTful Web Services

REST stands for Representational State Transfer [23]. With RESTful Web services, a

resource is identified by a Uniform Resource Identifier (URI). The resources are

manipulated by using four HTTP methods: GET, PUT, POST and DELETE. Thus, the

main advantages of the RESTful Web service technology include:

1. Addressability - The resource is accessed by using its URI and there is no need to

have a separate resource discovery and location mechanism such as a UDDI based

registry in a conventional SOAP-based Web service system.

2. Statelessness - Each client request is independent and unrelated to the previous

request and contains all the required information for the servers to process the

request.

 3. Simple and uniform interface - Only four HTTP methods GET, PUT, DELETE

and POST are required for manipulating the resources.

4. Multi-support for access - The contents of a resource can be accessed in several

formats such as plain text, XML, and HTML [20].

RESTful Web services are used in popular Web sites such as Google, Yahoo, and

Amazon [14].

2.3.1 RESTful Web Service Components

A RESTful Web service includes the following components:

1. RESTful Web service provider

2. RESTful Web service client

17

3. Resource

4. URI

5. Uniform interface

6. HTTP

The next section describes the relationship among these RESTful Web service

components.

2.3.2 RESTful Web service Architecture

The architecture for a RESTful Web service system is shown in Figure 2.3.

According to [7] a RESTful resource has two types of states one for the Web services and

one for the client:

1. The state on the Web service called resource state that holds information

about the resource such as how recourses are organized, and how to access the

resources.

2. The state on the client side called application state that holds the information

about the URI that the client uses to invoke the Web service.

A RESTful Web service client invokes the RESTful Web service by using the

HTTP communication protocol and uses any of the methods: GET, PUT, POST and

DELETE to manipulate the resource in the RESTful Web service.

18

RESTful Web
service
client

HTTP

RESTful Web
service

URI

Resource

Figure 2.3: Architecture for RESTful Web service

2.4 Related Research

The RESTful approach for exposing a resource as a Web service is lightweight

and is easier to develop and consume. On the other hand, a SOAP-based approach leads

to more overheads and the learning curve for the SOAP-based Web service is steep. Both

RESTful and SOAP-based Web services are active research areas. A representative set of

related work is presented.

2.4.1 Exposing Resources as Web Services

In [14] authors describe techniques of exposing resources as Web services. A

computing resource is exposed as a Web service using two different Web service

technologies: RESTful Web service and SOAP-based Web service. Authors presents the

performance comparison of computing resources as Web service one based on RESTful

Web service and other one based on SOAP-based Web service. The performance results

demonstrate that computing resource exposed with RESTful Web service has better

performance over the computing resource exposed with SOAP-based Web service

19

technology. This thesis also investigated exposing computing and database resources as

Web services using various types of Web services. A thorough performance analysis of

the two Web service technologies (SOAP-based Web service and RESTful Web service)

through prototyping and measurement are reported in this thesis.

Scientific computing continues to move toward the Web and making the High

Performance Computing (HPC) available through the Web is useful for scientist.

Authors introduce a new Web Toolkit called the National Energy Research Scientific

Computing Web service Toolkit (NEWT) to access the HPC resources through a Web

browser environment [5]. By using NEWT the scientists and programmers develop Web

applications for HPC. The RESTful Web service technology is used to build NEWT.

Authors provide examples for client side applications that access HPC’s resources

directly through the Web browser.

Inter-operability is required in the context of distributed computing environments

and one way of achieving inter-operability is using a Web service. The Internet has

grown into a complex system which serves millions of people. The Internet is constantly

changed with evolving new requirements of network security, reliable, end to end

connection and mobility [35]. The performance of the Web services depends on the

performance of the network, and it is an important issue for the Web service client and

provider. There are more existing researches on service performance at the network level

but not at the users’ experience level. Authors proposed a new Web Service Evaluation

System (WSES) which measures the end to end Web Service performance [35].

20

2.4.2 SOAP-based Web Service Vs RESTful Web Service

In [16] authors compare the traditional SOAP-based Web services with RESTful

Web services for distributed data, pointing out the limitations of traditional (SOAP-

based) Web services. Traditional Web services are characterized by a higher complexity,

and a lower performance [16]. Each of these is briefly discussed.

1. Complexity - It is time consuming to serialize/deserialize native programming

language based data into/from SOAP messages, and only a programmer can

understand the complexities of the WS-* protocol.

2. Interoperability - Each service is to be defined with a specific service interface in

a WSDL. If there are changes in the Web service side then the client has to follow

the changes.

3. Performance - SOAP-based Web services are known to be heavy weight and

significantly increase the communication network usage (both during resource

discovery and message interchange) as well as the processing overheads. However,

in a RESTful Web service, resources are identified through universal standard URIs

and can be invoked directly.

A detailed comparison of RESTful Web service with “Big” (WS-*) Web services

that are SOAP-based is provided by the authors in [33]. Although RESTful Web services

are observed to be suitable for basic ad hoc integration scenarios the WS-* Web service

are more flexible and can address advanced quality of service and security aspects which

are commonly occurring requirements in the field of enterprise computing. RESTful

Web services are typically can be more scalable and is often the preferred choice for

Internet scale applications whereas SOAP-based Web services are often used for

21

deploying company’s legacy systems which initially have not been built to be Web

friendly and need to be integrated with other services and systems [12].

The advantages of migration from SOAP-based Web services to RESTful Web

services for improving performance are discussed in [36]. SOAP messages contain a

large chunk of XML data that can cause serious network latency [36]. Simplicity and

scalability are the advantages of RESTful Web service over SOAP-based Web service.

The authors in [17] provide a comparison between the RESTful Web service and

SOAP-based Web service. A detailed decision criterion which help the Web service

providers and Web service consumer select which Web service technology to use are

presented. In comparison with this thesis the authors in [17] only present business cases

and list reasons for selecting either RESTful Web service or SOAP-based Web service.

They did not address performance aware techniques for exposing computing and

database resources as SOAP-based Web service or RESTful Web service that this thesis

focuses on.

According to [7] the architectures of current SOAP-based Web services originated

from Remote Procedure Call’s (RPC) architectural style. An RPC-style architecture is

not suited for Web scale applications because of the complexity and performance

limitations of RPC. On the other hand, RESTful Web service fully utilizes Web features.

Moreover, a RESTful Web service has the advantage of simplicity. Therefore, the

RESTful Web service architecture is providing a new alternative to RPC architecture in

Web services. In [7] authors analysed and compared the both RPC architecture and

RESTful Web service architecture in detail in terms of scalability, coupling and security.

Based on authors studied, the architecture of RESTful Web service out performs the

22

RPC’s architecture in scalability, coupling and performance. In this research, the

performances of two Web services technologies RESTful Web service and SOAP-based

Web service are compared.

Web Service Description Language (WSDL) is very powerful and received much

attention by the scientific community for its characteristics such as providing a platform

of the composition of Web services [15]. RESTful Web service technology has become

more persuasive among Web services technologies, but there is no good interface

description language for a RESTful Web service. In [15] authors propose a flexible and

extensible service description language for RESTful Web service called RIDDL

(RESTful Interface Definition and Declaration Language). The Web Application

Description Language (WADL) uses an XML format, which provides a machine process

description [39]. The RESTful Web service uses WADL and WADL has the following

disadvantages:

• End point service identifies a specific location for accessing a service using a

specific protocol and data format [40]. End point service is part of the description

and cannot be used when moving the service from one location to another.

• Can not add new functionality to an existing service. If a new functionality is

added then an existing application does not function.

RIDDL overcomes these problems by adding new operations or changing operations on

an existing Web service [15].

According to [11] RESTful Web service uses HTTP methods provide a better

performance than the SOAP-based Web service for network service. The SOAP-based

23

Web service is observed to be a better solution for enterprise application integration

cases.

2.4.3 SOAP-based Web Service Performance Issues and Solutions

In [21] authors describe the design and implementation of new approaches to

SOAP message exchange optimizations. The optimizations are achieved by separating

data contents from syntax and exploiting stored message exchanges. This novel

optimization approach improves the efficiency of message exchanging by avoiding text

conversions and conventional serializing and parsing activities.

In [6] authors investigate the use of SOAP/XML Web and grid service for

scientific computing. The performance gain of SOAP/XML Web service can be

achieved by: 1. Using (SOAP and WSDL) optimized XML data representation. 2.

Reducing message passing latency with message chunking and compression.

SOAP-based Web service may be considered a poor choice for high performance

Web services due to XML parsing [13]. The performance bottleneck of Web services are

XML parsing and Java reflection at runtime. In [13] authors propose a new approach to

improve Web service performance: the server maintains a SOAP processor for each Web

service. The SOAP processor has a SOAP parser and deserializer that can only recognize

the SOAP messages specific to a given Web service. One of the advantages of the SOAP

processor is the performance gain where the SOAP processor helps the SOAP engine to

accelerate message processing. The proposed SOAP processor used in the SOAP engine

produced approximately a three times performance gain [13].

24

2.4.4 Mobile Environment

A comparison between RESTful frameworks and SOAP-based frameworks for mobile

hosts is presented in [2]. Authors find that RESTful Web services are more attractive for

mobile environments because of the following reasons:

1. RESTful Web services do not require performance demanding parsers.

2. RESTful Web services support caching which can lead to savings in the limited

network bandwidth available in a mobile environment.

3. Mobile devices have limited resources and RESTful Web services do not consume

large amounts of CPU and memory resources.

Since the introduction of smart phone, the telecommunication and Information

Technologies are working together to provide convenient accessible services to the

consumer [1]. Compared to the desktop computers, the mobile devices are limited in

terms of processing power and storage capacity. These two factors could affect the

performance of the mobile applications [1]. Authors compare the performance of the

Mobile Web services for an HTTP payload. Two Web services technologies: RESTful

Web service and SOAP-based Web service are used for evaluating the Mobile Web

service performance. Authors conclude that RESTful Web service outperforms SOAP-

based Web service for the following reasons: first, RESTful Web service has architecture

advantage such as the mapping of REST URI to HTTP methods. Second, a RESTful

Web service produces less HTTP payload than SOAP-based Web service’s HTTP

payload.

25

A number of papers existing in the literatures were discussed in this chapter. The

main differences between the research presented in this thesis and the existing research

are:

1. This research presents a performance aware approach for exposing computing and

database resources using both SOAP-based and RESTful Web services

technologies.

2. A thorough performance comparison between the two Web services technologies

for various resource types using various combinations of systems and workload

parameters is performed.

3. This research proposes a technique for combining the advantages of both the

RESTful Web service and SOAP-based Web service technologies. To the best of

our knowledge this is the first work on such a hybrid Web service technique.	
 	

26

Chapter 3 : Exposing Resources as a Web Service

3.1 Exposing a Computing Resource as a Web Service

Exposing a computing resource as a Web service enables diverse clients implemented

using different programming languages and running on top different operating systems to

invoke the Web service and use the resource. Both local and remote clients can be

handled. A client submits a request containing the name of the program to execute and

associated arguments on the Web service. Once the execution is completed, the client

receives the results from the Web service. All the applications invoked by the client are

hosted on the computer being exposed as a Web service. There are several advantages of

exposing the computing resource as a Web service:

1. Regardless of the client’s platform a client can use the computing resource.

2. The client does not need to have all the applications and software on the client’s

platform; instead, the client invokes the Web service and uses or executes the

program available on the remote computing resource exposed as a Web service.

Figure 3.1 shows the interaction among the components of a computer resource

exposed as a Web services. The client is presented with a Web browser, and then the

client chooses the selection of the Operating System (OS) to use. Based on the selection,

the client is redirected to the corresponding operating type Web browser to either

Windows OS or Linux OS. Then, the client enters the command in the Web browser and

submits the request. The client requests are executed on the selected computing resource

exposed as a Web service and the executed results returned to the client.

27

Figure 3.1: Computer resources exposed as Web services

3.1.1 Computing Resource Exposed as a Web service Type

The computing resource is exposed as two types of Web services. Computing

resource exposed as a Web service RESTful (CWSR) is the version based on the

RESTful Web service technology and computing resource exposed as a Web service

SOAP-based (CWSS) is the version based on the SOAP-based Web service technology.

Both CWSR and CWSS are developed in Java using the NetBeans IDE [22]. The

NetBeans package includes the Glass Fish server; therefore CWSR and CWSS are

deployed on the Glass Fish Server [24].

Figure 3.2 shows the class diagram for computing resource exposed as a Web service.

Computing resource exposed as a Web Service (CWS) uses a helper class called Reader

28

and two Java Application Interface classes called Runtime [25] and Process [26].

With Runtime class, an external command can be executed on a Windows operating

system or a Linux operating system. The external command is executed by using the

exec method from Runtime class.

The exec method executes the external command in a new process and returns a

Process object. This “executecmd” is capable of handling all Windows and Linux

commands.

Then CWS class uses the methods getOutput () and getError () from Reader class to

retrieve the output results or an error message from the process object generated when the

exec method executes the external command.

Figure 3.2 : Class diagram for CWS

3.1.2 CWSR

CWSR is developed with using JAX-RS and it is a Java API for RESTful Web service

[27]. RESTful Web service uses WADL, which is a description language, used for

29

developing HTTP-based Web applications [39]. The RESTful Web service is based on

the notion of a resource that can be accessed with HTTP methods PUT, GET, UPDATE

and DELETE. CWSRResource is used by CWSR.

3.1.2.1 JAX-RS Annotations

The annotations bind the HTTP operations to methods in CWSR’s Java class [34].

Figure 3.3 shows the JAX-RS annotations that are used in CWSR for developing the

RESTful Web service.

The following list describes each of the JAX-RS annotations: (item numbers

correspond to the numbers marked in Figure 3.3)

1. @Path - Identifies the URI path to the resource class or method which will serve

the request [For example @Path(“REST_CR_WS”)].

2. @GET - Gets a resource that will process the HTTP GET request

3. @Produce - Used to specify the MIME media type of representation used for

formatting the results produced by CWSR [27].

Figure 3.3: JAX-RS annotations used in CWSR

30

@Path (“REST_CR_WS”) identifies the URI for CWSR. The “executeCommand”

method performs the HTTP GET method on CWSR. @Path

(“{command}/{argument}”) provides the parameters to be used in the

“executeCommand” method in the CWSR. @Produces(“text/plain”) returns the

“executedCommand” result in text format.

3.1.3 Invoking CWSR

CWSR can be invoked in several ways. For example, it can be invoked with the

Web browser by entering the CWSR’s method path with parameters or it can be invoked

by a program. Figure 3.4 shows the CWSR-Client invoking the CWSR with a Web

browser.

CWSRC enters “http://localhost:8080/REST_CR_WS/resources/REST_CR_WS/dir”

into the Web browser address bar and then the result shows the content of the directory.

Figure 3.4: CWSRC invoking CWSR

31

Figure 3.5 presents a sequence diagram showing how CWSR is invoked from

CWSRC. CWSRC invokes the CWSR with a Web browser and then the CWSRC

request is forwarded onto CWSR; where CWSR executes the “executecmd” method in a

new process and creates two objects to handle reading the output and the error message

from the process.

The wait() method of class “process” is invoked to block the current thread of

execution until the execution of the requested command from “executedcmd” method is

completed. Finally, the output of the “executecmd” method is retrieved from the output

object and sent to CWSRC. If an error occurs during the execution of “executecmd”

method, an error message is retrieved from the error object and sent to CWSRC.

Figure 3.5: Sequence diagram showing the invocation of CWSR

32

3.1.4 CWSS

CWSS uses JAX-WS annotation, which is a Java API for SOAP-based Web

services [28]. The SOAP-based Web service uses WSDL as discussed in detail in

Section 2.2.

CWSS was developed by Lim [14] and Melendez. This component is reused in

this work. All the remaining system components CWSR, DBWSS, DBWSS, CHWS and

DBHWS were developed as part of this thesis.

3.1.4.1 JAX-WS Annotations

By using annotations from JAX-WS; a computing resource is exposed as a SOAP-

based Web service. JAX-WS makes it easy for developing SOAP-based Web service

using Java technology. Figure 3.6 shows the JAX-WS annotations used in CWSS.

@WebService() ---(1)
public class SOAP_CR {
..........
@WebMethod(operationName = "executeCommand") ---------------------(2)
public String executeCommand(@WebParam(name="command")String --(3)
command,@WebParam(name="argument")String argument) {
........
}
..........
}

Figure 3.6: JAX-WS annotations used in CWSS

Annotations that are used in the CWSS are briefly described below

(corresponding numbers marked in the Figure 3.6):

1. @WebService - Java class exposed as a Web service

33

2. @WebMethod - The method used for Web service operation [For example similar to the

method “executecmd” in CWSR].

3. @WebParam - Used for mapping the Web service’s input parameters to a Java method

parameter [28].

3.1.5 CWSS and CWSS-Client components

Figure 3.7 shows the communication diagram for CWSS-Client (CWSSC) that

invokes the CWSS. The communication diagram comprises five entities: Web browser,

JavaServer Page(JSP), SOAP request, SOAP response and CWSS.

Figure 3.7: CWSSC invoking the CWSS

34

Following subsection describes the entities in the communication diagram.

3.1.5.1 Web Browser

CWSSC interacts with CWSS or gets the CWSS service through the Web browser.

3.1.5.2 JavaServer Page (JSP)

Using JSP technology, a Web developer or Web designer is able to develop and

maintain dynamic Web pages [29] and JSP Web applications are platform

independent. Once CWSSC submits the request, the JSP then extracts the

information submitted by CWSSC (see Figure 3.7). In order to invoke CWSS, a

reference to CWSS is needed in JSP. This reference to CWSS is created in the JSP

component. All the public Web methods from CWSS are accessible through the JSP

component; “executecmd” is an example of such a Web method to execute an

operating system command. The “executecmd” is invoked with parameters that are

submitted by CWSSC.

3.1.5.3 SOAP Messaging

SOAP messages are used during the communication between JSP and CWSS

components. JSP component generates the SOAP request that contains CWSSC’s

Web service request. After executing the command, CWSS creates the SOAP

response with the results of command execution for CWSSC.

3.1.5.4 CWSS

CWSS is the computing resource exposed as a SOAP-based Web service. The

executecmd method in CWSS extracts the parameters from the SOAP request sent

from JSP and executes the CWSSC’s request. When CWSS completes CWSSC’s

35

request, CWSS sends back the result or (an error message) to JSP through the SOAP

response message.

The following sequence of interactions occurs among the entities in Figure 3.7:

1. CWSSC enters the Windows operating system command and clicks on the

submit button, and the CWSSC request is forward to the JSP.

2. JSP extracts the CWSSC request and call CWSS.

3. JSP sends the SOAP request to CWSS.

4. CWSS receives incoming SOAP request.

5. CWSS performs the CWSSC request.

6. CWSS sends the SOAP response containing the results of executing the

command (or an error message in case the command execution is not

successful).

7. JSP receives the incoming SOAP response from CWSS.

8. JSP extracts the results/error from the SOAP response.

9. Finally, the result/error is displayed on the Web browser.

3.2 Exposing a Database Resource as a Web Service

By exposing a database resource as a Web service, the remote or local client can query,

retrieve and update data stored in the database. We have created a student database to be

exposed as a Web service. This is a simple relational database which has the following

attributes: student id, last name, first name, year of study and program. The focus of this

thesis is on the performance of the techniques used for exposing a resource as a Web

service. The technique for exposing the database as a Web service described in this

36

research can be extended to other databases as well. The following database queries are

supported by the student database:

• Insert a student record

• Read a student record

• Update a student record

• Delete a student record

3.2.1 Database Resource Exposed as a Web Service Types

In this research both the RESTful Web service and SOAP-based Web service

technologies are used for exposing the database resource as a Web service. Database

resource exposed as a Web service RESTful (DBWSR) is the version based on the

RESTful Web service technology and Database resource exposed as a Web service

SOAP-based (DBWSS) is the version based on the SOAP-based Web service technology.

Both the DBWSR and DBWSS are developed in Java using the NetBeans IDE and are

deployed on the Glass Fish Server.

3.2.2 Database Resource Exposed as a Web Service (DBWS)

The student database is created using the MySQL Server [19]. The following MySQL

queries: insert, get, update and delete are used with DBWS. The student database is

accessed through Java DataBase Connectivity (JDBC) [30]. JDBC is the JavaSoft

specification of a standard API which allows Java programs to access database

management systems (DBMS). The JDBC API contains a set of interfaces and classes

written in the Java which allow the programmer to develop applications that connect to

databases, send queries written in the structured query language (SQL), and process the

37

results [31].

3.2.3 DBWSR

 Figure 3.8 shows the JAX-RX annotations used in DBWSR for inserting a student

record into the student database.

@Path("REST_DB_WS")

public class REST_DB_WS {
..........
 @PUT
 @Path("/putstudent/{studentnumber}/{fname}/{lname}/{program}/{classyear}")
 @Consumes(MediaType.TEXT_PLAIN)
 public Response putStudent(@PathParam("studentnumber") int number, @PathParam("fname")
 String fname, @PathParam("lname") String lname, @PathParam("program") String program,
 @PathParam("classyear") int cyear) {

....................

Figure 3.8: JAX-RS annotations for the insert database operation on DBWSR

 As in the case of exposing computing resource as RESTful Web service, (see

Section 3.1.2.1) the JAX-RS annotations were used in the DBWSR for developing the

RESTful Web service.

 @Path (“REST_DB_WS”) identifies the URI for DBWSR. The “putStudent”

method performs the HTTP PUT method on DBWSR. @Path (“/putstudent..”) identifies

the URI for the putStudent method in DBWSR. @Path (“../{student...}/{...}.....”) are the

parameters are used in “putStudent” method. @Consumes(MediaType.TEXT_PLAIN)

expects student information in text format for performing the insert database operation on

DBWSR.

DBWSR has similar JAX-RS annotations for other database operations.

38

 Figure 3.9 shows database resource exposed as a RESTful Web service and the

interactions among its components.

Figure 3.9: Database resource exposed as DBWSR

 DBWSR can be invoked through a Web browser or from a program. DBWSR-

Client (DBWSRC) uses Web browser to perform one of the operation on the student

database. Based on the operations performed, one of the following JSPs invokes

DBWSR: getStudent JSP, putStudent JSP, updateStudent JSP, and deleteStudent JSP. If

the getStudent JSP is invoked for example, the getStudent JSP extracts information

submitted by DBWSRC and invokes the getStudent method on DBWSR. In case of the

other operations invoked by DBWSRC, the corresponding method putStudent,

updateStudent or deleteStudent is invoked on DBWSR. The reference to DBWSR is

39

created in all JSP components. All the public Web methods from DBWSR are accessible

by all JSP components.

 DBWSR extracts information from the incoming request from JSPs. Then

DBWSR executes the corresponding database operations. The techniques to connect to

the student database, and how to execute the database operations were described in

Section 3.2.2. DBWSR sends the results of performing the requested operation or an

error message (in case of the requested operation was not successful) back to the

corresponding JSP. The corresponding JSP displays the results or the error message to

DBWSRC.

3.2.4 Sequence Diagram for Invoking the Insert Database Operation on DBWSR

Figure 3.10 shows the sequence diagram for invoking the insert database operation on

DBWSR. The following sequence of events takes place for the insert database operation

on DBWSR:

1. DBHWSC enters the student information and submit the request for adding

student record into student database.

2. Student information is forwarded to the DBWSR Servelet.

3. DBWSR Servlet invokes the putStudent service with the submitted student

information.

4. DBWSRResource executes the putStudent method using the following sequence

of operations:

40

a) DBWSRResource connects to studentDB.

b) DBWSRResource generates a SQL statement to put the student

information into studentDB.

c) DBWSRResource sends the generated SQL statement for execution on the

studentDB.

d) DBWSRResource receives confirmation message (or an error message in

case the operation was not successful) from studentDB.

5. DBWSR Servlet receives the response from DBWSRResource

6. DBWSR Servlet sends the results / error message to on the Web browser for

display.

Figure 3.10: Sequence diagram for invoking the insert database operation on
DBWSR

41

3.2.5 DBWSS

DBWSS uses JAX-WS that described in Section 3.1.4.1. The same connection

technique used for DBWSR (discussed in detail in Section 3.2.2) has been used to

connect the student database to DBWSS. Figure 3.11 shows the JAX-WS annotations

used in DBWSS for inserting student record into the student database.

@WebService(serviceName = "SOAP_DB_WS")
public class SOAP_DB_WS {

.............
@WebMethod(operationName = "insert")
putStudent(@WebParam(name = "fname") String fname, @WebParam(name = "lname") String
lname, @WebParam(name = "number") int number, @WebParam(name = "program") String
program, @WebParam(name = "cyear") int cyear)

....................
}

Figure 3.11: JAX-WS annotations for the insert database operation on DBWSS

As in the case of exposing computing resource as a SOAP-based Web service,

(see Section 3.1.4.1) the JAX-WS annotations were used in the DBWSS for developing

the SOAP-based Web service. The annotations @WebService, @WebMethod and

@WebParam map Java code to the WSDL files.

 Read, update, and delete database operations in DBWSS use annotations shown in

the Figure 3.11.

Figure 3.12 shows the database resource exposed as a SOAP-based Web service

the interactions among its components.

42

Figure 3.12: Database resource exposed as DBWSS

43

Web browser and StudentDB in Figure 3.12 are identical to those in Figure 3.9.

The SOAP request and SOAP response components are different from those described in

Figure 3.9. Though, the sub component that performs database queries within the

DBWSS is identical to that of DBWSR shown in Figure 3.9. The reference to DBWSS is

created in all JSP components; and all the public Web methods from DBWSS are

accessible by all the JSP components.

DBWSS-Client (DBWSSC) invokes one of the student database operations. The

corresponding JSP extracts the information submitted by DBWSSC. From the extracted

information the JSP generates the SOAP request and sends the SOAP request to DBWSS.

DBWSS extracts the information from the incoming SOAP request from JSPs. Then

DBWSS invokes the corresponding database operation. Section 3.2.2 describes

techniques used for connecting the student database and performing the database

operations on student database. After the request is completed, DBWSS generates the

SOAP message with the results of the operation (or an error message in case the

operation was not successful) and sends it back to the corresponding JSP. JSP displays

the results or the error message to DBWSSC through DBWSS.

3.2.6 Sequence Diagram for Invoking the Insert Database Operation on DBWSS

Figure 3.13 shows the sequence diagram for invoking the insert database operation on

DBWSS.

This sequence diagram is very similar to the sequence diagram for invoking the insert

database operation on DBWSR. The differences are indicated in bold (see Figure 3.13).

The main difference is that DBWSS uses a DBWSS servlet. The DBWSS servlet uses

the SOAP request and SOAP response to communicate with DBWSS. The DBWSS

44

servlet in turn invokes DBWSS that communicates with StudentDB.

Figure 3.13: Sequence diagram for invoking the insert database operation on
DBWSS

45

Chapter 4 : Hybrid Web Service

Both RESTful and SOAP-based Web services were discussed in the earlier sections.

Each Web service has distinct features which are suitable for different types of

applications. The SOAP-based Web services support a number of standards that are

critically important in the context of a variety of different distributed applications.

Although lightweight, the RESTful Web service does not provide support for any such

standard.

This research proposes a new Web service technique called Hybrid Web service that

combines the advantages of both the RESTful and SOAP-based Web services. The

advantages of the RESTful Web service that are incorporated into the Hybrid Web

service include:

1. its lightweight nature of using simple message exchange over HTTP [16].

2. its simple requirement of using only four set of HTTP operations on the

resources class.

The Hybrid Web service also includes the advantages of SOAP-based Web service

including its support for several standards: the WS-* that includes the standards for WS-

Security for security, WS-Reliable Messaging for error handling and WS-Atomic

Transactions for transaction atomicity.

Although security and atomicity of transactions may be critically important in the

context of some operations performed by a client, the other operations may not have such

46

security or transaction atomicity requirements. Thus, using the SOAP-based Web

services for all the operations can slow the system down significantly. The Hybrid Web

service exploits this diversity in client operations and tries to achieve high performance

as well as satisfy the other non-performance requirements (such as security) of the

application by selectively using the two types of Web services technology. The SOAP-

based Web service technology is used only when the operational demand for the support

of the other standards that are not available with RESTful whereas the lightweight

RESTful Web services technology is used in all the other cases.

4.1 Computing Resource Exposed as a Hybrid Web Service (CHWS)

 Figure 4.1 shows the components of exposing computing resource as a Hybrid

Web service.

CHWSC CHWS

CWSR

CWSS

Figure 4.1: Exposing Computing resource as a Hybrid Web service

47

The client using CHWS is called CHWS-Client (CHWSC). The CHWS consists of

two components: CWSR - RESTful Web service component and CWSS - SOAP-based

Web service component each of which is invoked selectively. The CHWS is

implemented in Java using the NetBeans IDE. The same implementation techniques used

for CWSR (see Section 3.1.2) and CWSS (see Section 3.1.4) are used for implementing

the respective RESTful and SOAP-based components in the Hybrid Web service.

4.1.1 CHWS Selection Implementation

 Figure 4.2 shows the class diagram for CHWS. CHWS is an interface class which

has an invoke method with the command parameter. CWSR and CWSS implement the

invoke method from interface CHWS. CHWSC then invokes the appropriate class’s

implementation of the invoke method.

Figure 4.2: Class diagram for CHWS

48

4.1.2 Consuming the Computing Resource as a Hybrid Web Service

CHWS can be invoked by a program or by a Web browser. Figure 4.3 shows how

CHWSC invokes the CHWS through a Web browser. The client explicitly requests for

the CWSR (RESTful) or the CWSS (SOAP-based) component. Following sequence of

events take place on the system where a computer resource is exposed as a Hybrid Web

service.

1. Using the CHWS Web browser, CHWSC selects either CWSR or CWSS.

2. CHWSC is redirected to the CWSR Web browser or CWSS browser based on

the choice made in step 1.

3. The remaining sequence of events for CHWSC on CHWSS is identical to the

sequence of events described in Section 3.1.5.

4. The following sequence of events occurs in the system when CHWSC selects

CWSR.

a) CHWSC enters the Windows command and clicks on the submit

button.

b) The CHWSC request is forwarded to the CWSR JSP.

c) CWSR JSP extracts the CHWSC request

d) CWSR JSP invokes CWSR.

e) CWSRResource performs the CHWSC request.

f) CWSRResource sends the executed results (or error message in case

the command execution is not successful) back to CWSR JSP.

g) The result/error displays on the Web browser.

49

Figure 4.3 : Computer resource exposed as a Hybrid Web service

50

4.2 Database Resource Exposed as a Hybrid Web Service (DBHWS)

A client can invoke the two versions of the Hybrid Web services. In the first

version called DBHWS - Type I, the client explicitly requests for the RESTful or the

SOAP-based component. In the second version, the client requests for the service that in

turn invokes the RESTful Web service or the SOAP-based Web service depending on the

operation performed by the client. For example, reading a student record operation can

use the RESTful Web service whereas updating a student record that leads to a change in

the database uses the SOAP-based Web service because of its support for atomic

transactions that is important in the context of the update operation. The second version

of DBHWS is called DBHWS - Type II. The types of operations requiring the SOAP-

based technology are stored in a configuration repository that is consulted when a request

arrives at the Hybrid Web service and an appropriate Web service (RESTful or SOAP-

based) is chosen by comparing the requested operation with those stored in the

configuration repository.

Figure 4.4 presents an example of DBHWS - Type I.

DBHWSC DBHWS

DBWSR

DBWSS

StudentDB

Figure 4.4: Exposing database resource as a Hybrid Web service - Type I

51

The DBHWS consists of two components: DBWSR - the RESTful Web service

component and DBWSS - the SOAP-based Web service component each of which is

invoked selectively. The same implementation techniques used for DBWSR (see Section

3.2.3) and DBWSS (see Section 3.2.5) were used for implementing the respective

RESTful and SOAP-based components in the Hybrid Web service.

4.2.1 DBHWS - Type I Implementation

 The technique used for the selection of DBHWS is similar to that used in the case

of CHWS selection implementation. Figure 4.5 shows the class diagram for DBHWS

where DBHWSC explicitly requests for the DBWSR or the DBWSS component.

DBHWS is an interface class that has an invoke method with two parameters: database

operation type (op_type) and, student information (student). DBWSR and DBWSS

implement the invoke method from interface DBHWS. DBHWSC invokes the

appropriate class’s implementation of the invoke method.

Figure 4.5: Class diagram for DBHWS - Type I

 Figure 4.6 shows the database resource exposed as Hybrid Web service and the

among its components interactions.

52

Figure 4.6: Database resource exposed as a Hybrid Web service - Type I

53

DBHWS can be invoked by a program or through a Web browser. For the Web

browser, DBHWSC is presented with a selection of Web services. DBHWSC selects a

Web service type and performs various database operations.

DBHWS - Type I has two major components: DBWSR and DBWSS. The

interaction within DBWSR and DBWSS are identical to the interactions within the

systems describesd in Section 3.2.3 and Section 3.2.5 respectively. Web browser is used

by DBHWSC for selecting the DBHWSR or DBHWSS. The StudnetDB is accessed by

both DBWSR and DBWSS. However only one of them has excusive access to the

StudentDB at a time.

4.2.2 DBHWS - Type I Sequence Diagram

Figure 4.7 shows a sequence diagram when DBHWSC selects DBHWSR for

performing the insert database operation on DBHWS -Type I.

The following events occur when DBHWSC select the DBHWSR from the Web

browser:

1. DBHWSC selects DBHWSR and DBHWSC is redirected to DBWSR Web

browser.

2. DBHWSC enters the required student information and submits the request.

3. DBHWSC Servlet extracts DBHWSC’s request.

4. DBHWSC Servlet invokes the DBWSRResource.

54

The remaining events 5 to 7 are identical to the events 4 to 6 described in Section 3.2.4

for Figure 3.10.

Figure 4.7: Sequence diagram for the insert database operation on DBHWS - Type I

4.2.3 DBHWS - Type II

In Figure 4.8, DBHWSC request one of the student database operations described

in Section 3.2. Based on DBHWSC requests either one of the DBWSR or DBWSS

55

component is invoked. The read database operation invokes DBWSR whereas insert,

update and delete database operations invoke DBWSS.

Figure 4.8: Exposing Database resource as a Hybrid Web service – Type II

 Once again, database resource exposed as a Hybrid Web service is implemented

in Java using the NetBeans IDE. The same implementation techniques used for DBWSR

(see Section 3.2.3) and DBWSS (see Section 3.2.5) were used for implementing the

respective RESTful and SOASP-based components in the Hybrid Web services. The

studentDB is accessed by both the RESTful and the SOAP-based Web services and either

of them has an exclusive access to the student database at a time.

4.2.4 DBHWS - Type II Implementation

 Figure 4.9 shows the class diagram for DBHWS - Type II. DBWSR or the

DBWSS component is invoked based on the database operation performed by DBHWSC.

The configuration repository defines the rules to be used for selecting DBWSR or

DBWSS based on the operation. As described in Section 4.2.1 DBHWS is an interface

56

class; and DBWSR and DBWSS implement the invoke method from interface DBHWS.

The invoke method is used for selecting the DBWSR or the DBWSS. DBHWSC uses the

DBHWS interface class. Based on the database operation requested by the client and the

information stored in the configuration repository DBWSR or DBWSS is invoked.

DBHWSC remains the same as described in Section 4.2.3.

Figure 4.9: Class diagram for DBHWS -Type II

Figure 4.10 shows DBHWS - Type II and the interactions among its components.

This system can also be invoked by a program or through a Web browser. In the case a

Web browser is used, DBHWSC is presented with a selection of database operations.

DBHWSC selects one of the operations and provides the required student information.

The request is then submitted to the DBHWS Web browser.

DBHWS JSP has references to DBWSR and DBWSS. DBHWS JSP invokes

DBWSR or DBWSS based on the database operation performed by DBHWSC.

57

Figure 4.10: Database resource exposed as Hybrid Web service - Type II

58

The interactions between DBHWS JSP and DBWSR as well as between DBHWS JSP

and DBWSS are similar to that describesd in Section 3.2.3 and Section 3.2.5 respectively.

4.2.5 DBHWS - Type II Sequence Diagram

Figure 4.11 shows a sequence diagram for DBHWSC performs the insert database

operation on DBHWS - Type II.

Figure 4.11: Sequence diagram for the insert database operation on DBHWS - Type
II

The differences between Figure 4.7 and Figure 4.11 are highlighted in the Figure 4.11.

1. DBHWSC performs the insert database operation on DBHWS - Type II.

2. DBHWSC enters the required student information and submits the request

(identical to event 2 Figure 4.7).

59

3. DBHWS Servlet extracts DBHWSC’s request (identical to event 3 Figure 4.7).

4. DBHWS JSP sends the SOAP request to DBWSS.

The remaining events 5 to 7 are identical to the events 4 to 6 described in Section 3.2.6

for Figure 3.13.

60

Chapter 5 : Performance Analysis

 This chapter presents and discusses the results of the performance analysis

conducted on prototypes of systems that expose resources as Web services. The

performance analysis is divided into three parts:

1. Analysis of systems exposing a computing resource as a Web service.

2. Analysis of systems exposing a database resource as a Web service.

3. Analysis of systems exposing the computer and the database resources as a

Hybrid Web service.

5.1 Experimental Setup

 The performance analysis of the systems exposing computing resource and

database resources as Web services and Hybrid Web services was accomplished by

conducting experiments on various interactions between client and Web services. The

NetBeans IDE is used to develop the clients and Web services; both clients and Web

services are running on the same machine. The system that was used for the experiments

is described in Section 5.1.2. A thorough validation was conducted to ensure that clients

and Web services are running on the different cores. For each Web service request, the

client establishes a new connection with the Web service. Following sequence of

operations take place with each Web service request by the client.

1. Establish a new connection with the Web service.

2. Invoke the Web service operation.

3. Receive result.

4. Record the performance metrics.

5. Close the connection with the Web service.

61

For systems subject to a Poisson stream of request arrivals, each experiment is run

long enough (1500 request arrivals) such that the system reaches a steady state. For all

the systems investigated, an experiment is repeated 60 times such that a confidence

interval of ±5% is achieved at a confidence level of 95%.

 Section 5.1.1 describes the performance metrics, Section 5.1.2 describes the

systems specifications and Section 5.1.3 describes the parameters used in the

experiments.

5.1.1 Performance Metrics

The following two performance metrics are used in this research:

1. Web service Response Time (WSRT)

2. Web service Average Response Time (WSART): WSART is the average WSRT

computed over all the runs of a given experiment.

The WSRT is calculated as follows: Before the client invokes the Web service, the

client takes a timestamp (request start time) by using nanoTime () method provided by

Java’s System class [32]. Then the client takes another timestamp (request finish time)

after the requested Web service results are received by the client. The WSRT is the time

differences between the requests the second and the first time stamps. That is, WSRT

includes all associated overheads on the client side and the Web service side: such as the

request set up time at the client side, overheads associated with invoking the service and

result set up (incurred prior to sending the result to client) at the Web service side.

WSART is computed by taking the mean of all the WSRT. The WSART is used for

analysing the performance of various Web services.

62

In this research, we used the clients CWSRC and CWSSC (described in Section 3.1.3

and Section 3.1.5 respectively); DBWSRC and DBWSSC (described in Section 3.2.4 and

Section 3.2.6 respectively); CHWSC and DBHWSC (described in Section 4.1 and

Section 4.2 respectively) to compare the WSARTs achieved with the RESTful Web

services with that of the SOAP-based Web services.

5.1.2 Systems Specifications

The client and the corresponding Web services were running on two different cores in

the same system. The system comprised of an Intel Core i7 CPU 860, 2.80 GHz (4 cores)

and 4GB of RAM running under the Windows 7 operating system. Similar relative

performance results for the two Web service technologies are expected from different

systems.

A number of key experiments were repeated on a two machine system using a

Linksys router (Model No. WRT54GS V7) connecting the two machines. The Web

service was run on the machine described in the previous paragraph where as the client

was run on a system comprising of an Intel Core 2 Duo CPU, 2.26 GHz and 2GB of

RAM running under the Mac OS X Snow Leopard operating system. The differences in

performance between the two machines and the single machine systems were observed to

be less than 2%.

5.1.3 Parameters Used in the Experiments

Table 5.1 shows the summary of the Workload parameters used in the

experiments. The first column has the names of the workload parameters. The

corresponding values and default values to parameters are shown in the second and the

63

third column respectively. A factor at a time approach is used in the performance

analysis. One of the workload parameter is varied while others were held at the default

values (see Table 5.1). Based on the experiment, λ was varied from a low value at which

negligible queuing occurs to a value that captures the impact of queuing at higher system

loads.

Table 5.1: Summary of the parameters used in the experiments

Workload Parameter
Name

Values Default
Value

CWSR requests dir, java-version, help, path, ver,
vol, read file, execute program

dir

CWSS requests dir, java-version, help, path, ver,
vol, read file, execute program

dir

DBWSR requests read, insert, update, delete read
DBWSS requests read, insert, update, delete read
CHWS request dir, java-version, help, path, ver,

vol, execute program
dir

DBHWS request read, insert, update, delete read
Size of Web request
(number of record in
DB)

1, 2, 3, 4, 5 1

Arrival rate, λ
(requests/s)

Dependent on the experiment N/A

Two types of resources (computing and database) were exposed as Web services

using the RESTful Web service, the SOAP-based Web service and the Hybrid Web

service. As shown in Table 5.1 CWSR, CWSS and CHWS correspond to exposing

Windows based computing resources as Web services with RESTful, SOAP-based

Hybrid Web services respectively. The listed Windows commands in Table 5.1 were

used in the performance evaluations. The Windows command “dir” was chosen as

default value because it was also used in a similar research in the literature (refer to [14]).

64

Similarly, DBWSR, DBWSS and DBHWS are exposing student database resources

as Web service. Read, insert, update and delete database queries were used in the

performance evaluations. The read database query is used as default value because it will

not modify the information in the database.

5.2 Performance Evaluation for Exposing a Computing Resource as a Web

Service

For CWSR and CWSS, the clients CWSRC (for RESTful Web service) and CWSSC

(for SOAP-based Web service) use the Windows commands: “dir”, “java –version

(version is one of the parameter that goes with the java command)”, “help”, “path”, “ver”

,“vol” during the different experiments that were used to compare the performance of

CWSR (RESTful Web service) with CWSS (SOAP-based Web service).

5.2.1 Performance of Different Web Service Request

Figure 5.1 and Figure 5.2 show WSART for different Windows command executions

with CWSR and CWSS.

Figure 5.1: Performance for Windows commands for CWSR and CWSS

0	

10	

20	

30	

40	

50	

60	

70	

80	

dir	
 java	
 help	

W
SA

RT
	
 (m

s)
	

Windows	
 Command	

REST	

SOAP	

65

Figure 5.2: Performance for Windows commands for CWSR and CWSS

 Figures clearly show that WSART achieved with each command for the RESTful

Web service is lower than that of for the SOAP-based Web service. The WSART for

RESTful Web service is 38% lower than that of SOAP-based Web service for Windows

command “dir” because the RESTful Web service does not use the SOAP messaging

layer. The result message produced by the SOAP Web service consists of results and the

extra XML markup required by SOAP. These additional overheads are responsible for

the inferior performance of the SOAP-based Web service. Although there is a substantial

difference in performance between the two types of Web services for dir, help, path, ver

and vol; both types of Web services results in comparable WSARTs for the java

command. This is because of the execution time for the operating system command is

much higher in comparison to the overhead incurred by any of the Web service

technology. As a result WSART is dominated by the execution time for the command

and the overheads from the Web service technology play only a minor role. Therefore, a

0	

5	

10	

15	

20	

25	

30	

path	
 ver	
 vol	

W
SA

RT
	
 (m

s)
	

Windows	
 Command	

REST	

SOAP	

66

comparable WSART can be achieved for both the technologies.

5.2.2 Effect of Web Service Request Size

This section presents and analyses the effect of Web service request size on the

computing resource exposed as a Web service. Different sizes of text files are used in

this experiment while clients CWSRC and CWSSC performed read operation on (CWSR

and CWSS) those text files. In this experiment that input files size is varied. The

experiments have been divided into two groups: clients perform read operation on file

set1 in one and clients perform read operation on file set2 on the other. Figure 5.3 shows

the WSART for reading file set1 (6 Kb - 60 Kb) and Figure 5.4 shows the WSART for

reading file set2 that includes larger files (up to 150 Kb).

As expected the RESTful Web service gives rise to a lower WSART than SOAP-

based Web service for reading the files in file set1 and file set2. (see Figure 5.3 and

Figure 5.4) The WSART for reading the smallest file with RESTful Web service is 32%

lower than that achieved with the SOAP based Web service (see Figure 5.3), while in the

case of reading the largest file (150 Kb) the WSART for the RESTful Web service is only

2% lower than that for the SOAP based Web service (see Figure 5.4).

As explained in the previous section, SOAP-based Web service has higher WSART

because of the result message produced by SOAP Web service consists of results and the

extra XML markup required by SOAP messages. These additional overheads are

responsible for the inferior performance of the SOAP-based Web service. However, the

effect of this additional XML markup data transfer becomes a less dominant factor for

reading larger files because a greater volume of data needs to be transferred through both

67

Web Services: RESTful and SOAP-based. As a result a smaller performance gain is

accomplished with the RESTful Web service. Thus, the performance of the SOAP-based

Web service is expected to be closer to that of the RESTful Web service for higher file

sizes.

Figure 5.3: Performance of CWSR and CWSS for reading file set1

Figure 5.4: Performance of CWSR and CWSS for reading file set2

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

6	
 12	
 18	
 24	
 30	
 36	
 42	
 48	
 54	
 60	

W
SA

RT
	
 (m

s)
	

File	
 Size	
 (Kb)	

REST	

SOAP	

0	

25	

50	

75	

100	

125	

150	

175	

200	

225	

250	

275	

300	

325	

350	

375	

400	

0	
 50	
 100	
 150	
 200	

W
SA

RT
	
 (m

s)
	

File	
 Size	
 (Kb)	

REST	

SOAP	

68

5.2.3 Performance Evaluation for Executing Programs on the Computing

Resource

The performance evaluation for executing a program on the computing resource

exposed as a Web service is presented in this section. The service time is simulated by

executing a for loop for a specific interval of time. Experiments are performed with both

fixed service times as well exponentially distributed service times. Three different mean

service times are used: 25 ms, 50 ms and 100 ms. Figure 5.5 corresponds to the case with

fixed service times and Figure 5.6 to the case where the service times are exponentially

distributed.

Figure 5.5: Performance for executing a program on CWSR and CWSS for fixed
service times

The RESTful Web service marginally outperformed the SOAP based Web service

in all the cases. When the service time was doubled (from 25 ms to 50 ms) the WSART

for both RESTful Web service and SOAP based Web services are increased by 11% (see

0	

50	

100	

150	

200	

250	

300	

350	

25	
 50	
 100	

W
SA

RT
	
 (m

s)
	

Service	
 Time	
 (ms)	

REST	

SOAP	

69

Figure 5.5). Figure 5.5 shows that the difference reduces to 5% when the service time is

increased from 50 ms to 100 ms. This indicates that the performance difference between

the two types of Web services is expected to be smaller for services with higher CPU

execution times. Similar performance results are observed for both fixed service times as

well exponentially distributed service times (see Figure 5.5 and Figure 5.6).

Figure 5.6: Performance for executing a program on CWSR and CWSS with
exponentially distributed service time

5.2.4 Effect of Request Arrival Rates

This section presents an analysis of the effect of request arrival rates on

performance. The systems were subjected to a Poisson stream of requests with an arrival

rate of λ in (requests/second). Poisson arrival processes have being used to simulate the

arrival processes of a real system [4]. If a Web service is not able to serve the request

because the Web service is busy with serving the previous request, the new request will

be added to a First In First Out (FIFO) queue. The arrival rate is varied from 0.001

0	

50	

100	

150	

200	

250	

300	

350	

25	
 50	
 100	

W
SA

RT
	
 (m

s)
	

Mean	
 Service	
 Time	
 (ms)	

REST	

SOAP	

70

requests/sec where negligible queuing of requests occurs to a value at which significant

queuing occurs on the system. Three sets of experiments are conducted to observe the

performance of CWSR and CWSS while varying the request arrival rates. In the first set,

CWSRC and CWSSC invoked Windows commands “dir” and “java – version” (on

CWSR and CWSS) for varying request arrival rates. In the second set of experiments are

performed with both fixed service times as well exponentially distributed service times

(refer to Section 5.2.3) on CWSR and CWSS for changing request arrival rates.

Figure 5.7 shows WSART for Windows command “dir” execution with varying

arrival request rates. Figure 5.8 shows WSART for Windows command “java - version”

for changing arrival request rates. As λ increases contention on the system increases and

WSART for any given type of Web service is observed to increase.

Figure 5.7: Performance of CWSR and CWSS for Windows command "dir" with
different request arrival ratets

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0.005	
 0.010	
 0.015	
 0.020	
 0.025	
 0.030	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

71

The RESTful Web service has 40% and 69% lower WSART than the SOAP-

based service for λ = 0.01 and λ = 0.03 respectively (see Figure 5.7). For both Windows

commands, the SOAP-based Web service has a higher WSRT than the RESTful Web

service. For increasing λ, the queuing time is higher for SOAP based Web service than

the RESTful Web service. Due to these two factors, the RESTful Web service gives rise

to a lower WSART than SOAP-based Web service for executing the Windows

commands on CWSR and CWSS.

Figure 5.8: Performance of CWSR and CWSS for Windows command "java -
version" with different request arrival rates

Figure 5.9 to Figure 5.11 show the WSART for fixed service times of 25 ms, 50

ms and 100 ms respectively on CWSR and CWSS for different request arrival rates.

Figure 5.12 shows the WSART for an exponentially distributed service time with a mean

of 25 ms on CWSR and CWSS for different request arrival rates. As observed in the

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0.002	
 0.004	
 0.006	
 0.008	
 0.010	
 0.011	
 0.012	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

72

Section 5.2.3, there is only a marginal difference in WSART for RESTful Web service

and SOAP-based Web service for higher service times and smaller arrival rates. At

higher arrival rates, however, the RESTful Web service performs better than the SOAP-

based Web service: the performance difference tends to increase as λ increases. When

the (mean) service time is 25 ms a higher difference in performance (see Figure 5.9 and

Figure 5.12) between the two types of Web services is observed. For example at a λ of

0.005 the performance difference is 54% (see Figure 5.9) and 56% (see Figure 5.12).

This indicates that a higher variation in service times produced by the exponentially

distribution leads to a higher performance difference.

Figure 5.9: Performance for executing a program on CWSR and CWSS with
different request arrival rates (fixed service time of 25 ms)

0	

2	

4	

6	

8	

10	

12	

0.0020	
 0.0030	
 0.0040	
 0.0045	
 0.0050	

W
SA

RT
	
 (s
)	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

73

Figure 5.10: Performance for executing a program on CWSR and CWSS with
different request arrival rates (fixed service time of 50 ms)

Figure 5.11: Performance for executing a program on CWSR and CWSS with
different request arrival rates (fixed service time of 100 ms)

0	

5	

10	

15	

20	

25	

30	

35	

0.0000	
 0.0010	
 0.0020	
 0.0030	
 0.0040	
 0.0050	
 0.0060	

W
SA

RT
	
 (s
)	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0.0000	
 0.0010	
 0.0020	
 0.0030	
 0.0040	
 0.0050	
 0.0060	

W
SA

RT
	
 (s
)	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

74

Figure 5.12: Performance for executing a program on CWSR and CWSS with
different request arrival rates (exponentially distributed service time with a mean of
25 ms)

5.3 Performance Evaluation for Exposing a Database Resource as a Web Service

We used both DBWSR and DBWSS (described in Sections 3.2.3 and 3.2.5) to

analyze the performance of the database resources exposed as Web services. The clients

DBWSRC and DBWSSC invoked DBWSR and DBWSS with the following database

operations or queries:

• Insert student record

• Read student record

• Update student record

• Delete student record

0	

2	

4	

6	

8	

10	

12	

0.0000	
 0.0010	
 0.0020	
 0.0030	
 0.0040	
 0.0050	
 0.0060	

W
SA

RT
	
 (s
)	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

75

5.3.1 Performance of Web Service Requests

This section presents the performance comparisons of DBWSR DBWSS for different

database queries. Figure 5.13 shows the WSART for the read database operation on

DBWSR and DBWSS which Figure 5.14, Figure 5.15 and Figure 5.16 show the WSART

for insert, delete and update database operations respectively on DBWSR and DBWSSS.

Figure 5.13 to Figure 5.16 show that WSART achieved with each operation on the

RESTful Web service is lower than that achieved on the SOAP-based Web service. The

performance for read database operation on DBWSR and DBWSS shows that the

WSART for the RESTful is 90% lower than the SOAP-based Web service (see Figure

5.13). For the remaining database operations insert, delete and update, the RESTful Web

service achieves a WSART that is lower than that achieved with the SOAP-based Web

service by 45%, 51%, and 50% respectively (see Figures 5.14 to Figure 5.16).

A RESTful Web service uses four HTTP methods GET, PUT, POST and DELETE.

According to [41] the HTTP GET method is safe, idempotent and free from side effects.

Also the HTTP GET method is used for information retrievals. The remaining HTTP

methods are capable of modifying data on DBWSR. Read, insert, update and delete

database operations use the following HTTP methods: GET, PUT, POST and DELETE

respectively. The WSART for the read database operation of RESTful Web service is

88% lower than the update database operation in RESTful Web service (highest WSART

in RESTful Web service). This is because the update operation makes changes on the

database that are not requires for the read operation. The largest performance difference

between the two types of Web services is observed for the read operation: the WSART

76

for the read database operation on the RESTful Web service is only 1/10 of the WSART

required by the read database operation on SOAP-based Web service (see Figure 5.13).

Figure 5.13: Performance of DBWSR and DBWSS for the read database operation

Figure 5.14: Performance of DBWSR and DBWSS for the insert database operation

0	

10	

20	

30	

40	

50	

60	

70	

REST	
 SOAP	

W
SA

RT
	
 (m

s)
	

Read	
 DB	
 OperaCon	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

REST	
 SOAP	

W
SA

RT
	
 (m

s)
	

Insert	
 DB	
 OperaCon	

77

Figure 5.15: Performance of DBWSR and DBWSS for the delete database operation

Figure 5.16: Performance of DBWSR and DBWSS for the update database
operation

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

REST	
 SOAP	

W
SA

RT
	
 (m

s)
	

Delete	
 DB	
 OperaCon	

0	

20	

40	

60	

80	

100	

120	

REST	
 SOAP	

W
SA

RT
	
 (m

s)
	

Update	
 DB	
 OperaCon	

78

5.3.2 Effect of Web Service Request Size

The effect of Web service request size on the performance of a database resource

exposed as a Web service is discussed in this section. The clients DBWSRC and

DBWSSC perform the same database operation on DBWSR and DBWSS respectively

with varying number of student records. For each record a separate Web service

invocation is made. Figure 5.17 shows the WSART for the read database operation

performed on DBWSR and DBWSS with Figure 5.18, Figure 5.19 and Figure 5.20

showing the WSART for insert, delete and update operations performed respectively on

DBWSR and DBWSS. The operation is repeated on one record until when the number

reach n.

For any given number of records, the WSART for reading student record(s) for the

RESTful Web service is much smaller than that that of the SOAP-based Web service (see

Figure 5.17). Figure 5.18 to Figure 5.20 display the WSARTs computed for the other

database operations. In all the cases, the RESTful Web service has a smaller WSART

compared to that of the SOAP-based Web service. Both types of Web services provide

the same student information to its client but the size of the message is different. As

discussed earlier, for the RESTful Web service the message contains only the student

information but in the case of SOAP-based Web service the message contains the student

information as well as the XML markup required by SOAP messages. This is the

primary reason why the RESTful Web service to gives rises to a lower response time in

comparison to the SOAP-based Web service.

79

As the number of records increases the performance difference between the two types

of Web services namely RESTful Web service and SOAP-based Web service is observed

to increase (see Figure 5.17 to Figure 5.20).

Figure 5.17: Effect of Web service request size on DBWSR and DBWSS - read
student records database operation

Figure 5.18: Effect of Web service request size on DBWSR and DBWSS - insert
student records database operation

0	

50	

100	

150	

200	

250	

0	
 1	
 2	
 3	
 4	
 5	
 6	

W
SA

RT
	
 (m

s)
	

#	
 of	
 Records	

REST	

SOAP	

0	

100	

200	

300	

400	

500	

0	
 1	
 2	
 3	
 4	
 5	
 6	

W
SA

RT
	
 (m

s)
	

#	
 of	
 Records	

REST	

SOAP	

80

Figure 5.19: Effect of Web service request size on DBWSR and DBWSS - delete
student records database operation

Figure 5.20: Effect of Web service request size on DBWSR and DBWSS - update
student records database operation

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0	
 1	
 2	
 3	
 4	
 5	
 6	

W
SA

RT
	
 (m

s)
	

#	
 of	
 Records	

REST	

SOAP	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0	
 1	
 2	
 3	
 4	
 5	
 6	

W
SA

RT
	
 (m

s)
	

#	
 of	
 Records	

REST	

SOAP	

81

5.3.3 Effect of the Arrival Rates of Request

The effect of the arrival rates of request on a database resource exposed as a Web

service is presented in this section. The clients DBWSRC and DBWSSC performed

different database operations (described in Section 5.3) on DBWSR and DBWSS. The

number of student record was held at 1 for all the database queries. Similar technique

used in Section 5.2.4 was used for generating the arrival rate of Web service requests.

Figure 5.21 shows the WSART for the update database operation performed on

DBWSR and DBWSS for different request arrival rates with Figure 5.22, Figure 5.23 and

Figure 5.24 showing the WSART for read, insert and delete operations performed

respectively on DBWSR and DBWSS for different request arrival rates. For the update

database operation with a request arrival rate of λ = 0.002 the WSART for RESTful Web

service is 46% lower than the SOAP-based Web service. However when λ = 0.009 the

WSART for RESTful Web service is 87% lower than that of the SOAP-based (see Figure

5.21). A similar relative performance was achieved by the two types of Web services

with the other database operations (see Figure 5.22 to Figure 5.24). As discussed earlier,

for DBWSS the WSART increases with λ. This is because at the higher queuing delay

experienced by the Web requests at higher values of λ. In all these cases as λ increases

the queuing delay increases and the performance difference between two types of Web

services increases. For a given λ, the highest WSART is achieved with the update

operation, the graph for which is shown in Figure 5.21.

82

Figure 5.21: Performance of DBWSR and DBWSS for the update database
operation with different request arrival rates

Figure 5.22: Performance of DBWSR and DBWSS for the read database operation
with different request arrival rates

0	

100	

200	

300	

400	

500	

600	

700	

0.002	
 0.004	
 0.006	
 0.007	
 0.008	
 0.009	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0.002	
 0.004	
 0.006	
 0.008	
 0.010	
 0.011	
 0.012	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

83

Figure 5.23: Performance of DBWSR and DBWSS for the insert database operation
with different request arrival rates

Figure 5.24: Performance of DBWSR and DBWSS for the delete database operation
with different request arrival rates

0	

100	

200	

300	

400	

500	

600	

0.002	
 0.004	
 0.006	
 0.008	
 0.009	
 0.010	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0.000	
 0.002	
 0.004	
 0.006	
 0.008	
 0.010	
 0.012	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

REST	

SOAP	

84

5.4 Performance Evaluation of a Resource Exposed as a Hybrid Web Service

A new parameter p is introduced to evaluate the performance of the Hybrid Web

service. p is the probability of invoking the RESTful Web service. p = 0 implies that the

SOAP-based Web service is always invoked whereas p = 1 means that the client always

invokes the RESTful Web service.

Two types of performance results are presented. For experiments that used an open

stream of request arrivals the values measured on the system were plotted (Figure 5.29

and Figure 5.35 to Figure 5.39). For each of the other experiments used for plotting

WSART as a function of p (Figure 5.25 to Figure 5.28 and Figure 5.30 to Figure 5.33)

two measurements were made: one for the case in which the SOAP-based Web service

was invoked and the other for the case in which the RESTful Web service was invoked.

These two values were combined using the following equation:

 WSART = p x WSARTR + (1-p) x WSARTS

where WSARTR and WSARTS are the Web service average response time measured

for the RESTful Web service and the SOAP-based Web service respectively.

5.4.1 Performance of Computing Resource Exposed as a Hybrid Web Service

The performance for executing different Windows commands on a computing

resource exposed as Hybrid Web service is discussed in this section. CHWSC uses the

Window commands that were described earlier (see Section 5.2). CHWSC explicitly

selects the RESTful or a SOAP-based technology irrespective of the type of operations is

used in all the experiments.

85

Figure 5.25 shows the WSART as a function of p for executing Windows command

“dir” on CHWS and Figure 5.26 shows the WSART as a function of p for executing

Windows command “java - version” on CHWS. As shown in Figure 5.25 as p increases

the performance improvements achieved by the Hybrid Web service increases sharply.

This is because as p increases the lightweight RESTful Web service gets used more often

and system performance improves. System performance is observed to increase sharply

with p: WSART is observed to decrease by 38% as p is increased from 0 to 1. Even

when the RESTful Web service is used 20% of the time (p=0.2) there is a substantial

improvement in WSART achieved by the Hybrid Web service in comparison to the

conventional SOAP-based Web service (see Figure 5.25).

Figure 5.25: Performance for executing the Windows command “dir” on CHWS

0	

5	

10	

15	

20	

25	

30	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

W
SA

RT
	
 (m

s)
	

p	

86

Figure 5.26: Performance for executing the Windows command “java -version” on
CHWS

5.4.2 Performance for Executing Programs on Computing Resource Exposed as a

Hybrid Web Service

This section presents an analysis of executing programs on the computing resource

exposed as a Hybrid Web service. CHWSC executes programs with various service

times on CHWS for various values of p. As described earlier CHWSC explicitly selects

the RESTful or a SOAP-based technology then executes the programs on CHWS.

Figure 5.27 shows the WSART as a function of p for executing programs with fixed

service times of 25 ms, 50 ms and 100ms on CHWS and Figure 5.28 shows WSART as a

function of p for executing programs with the exponentially distributed service time with

a mean of 25 ms. The WSART for executing the program (exponentially distributed

0	

10	

20	

30	

40	

50	

60	

70	

80	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

W
SA

RT
	
 (m

s)
	

p	

87

service time) with different arrival rate for requests is shown in the Figure 5.29. WSART

seems to be dominated by the CPU execution time overhead and the overhead from Web

service technology play only a minor role and a comparable performance is achieved for

both the technologies. WSART is observed to decrease by 6% for both fixed and

exponentially distributed service times a mean of 25 ms as p is increased from 0 (SOAP-

based only) to 1 (RESTful only) (see Figure 5.27 and Figure 5.28). From Figure 5.29 it

can been seen the WSART increases with λ for both Web service technologies due to the

higher queuing delay experienced by the Web requests at higher values of λ.

Figure 5.27: Performance for fixed service times (25ms, 50ms and 100ms service
time)

0	

50	

100	

150	

200	

250	

300	

350	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

W
SA

RT
	
 (m

s)
	

p	

25	
 ms	

50	
 ms	

100	
 ms	

88

Figure 5.28: Performance for an exponentially distributed service time (mean 25
ms)

Figure 5.29: Performance for exponentially distributed service times (mean 25 ms)
with different request arrival rates

0	

50	

100	

150	

200	

250	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

W
SA

RT
	
 (m

s)
	

p	

0	

2	

4	

6	

8	

10	

12	

0.0000	
 0.0010	
 0.0020	
 0.0030	
 0.0040	
 0.0050	
 0.0060	

W
SA

RT
	
 (s
)	

Arrival	
 Rate	
 (req/s)	

p=0	

p=0.5	

p=1	

89

5.4.3 Performance of Database Resource Exposed as a Hybrid Web Service

This section presents an analysis of the performance of different database operations

perform on the database resource exposed as a Hybrid Web service. DBHWSC uses the

same set of database operations or queries (described in Section 5.3) to invoke the

DBHWS. The number of student record was held at 1 for all the database queries.

DBHWSC invokes the DBHWS in two ways. In the first by requesting an operation

(described earlier) where the client explicitly selects the SOAP-based or RESTful

technologies irrespective of the type of operations is used in all the experiments

(DBHWS - Type I). In the second, DBHWS client requests for the service that in turn

invokes the RESTful Web service or the SOAP-based Web service depending on the

operation performed by the DBHWSC (DBHWS - Type II). As discussed in Section

4.2.3 the read database operation invokes the RESTful Web service while the insert,

update and delete operations invoke the SOAP-based Web service.

Figure 5.30 shows the WSART as a function of p for the read database operation

performed on DBHWS - Type I with Figure 5.31, Figure 5.32 and Figure 5.33 showing

the WSART as a function of p for insert, update and delete database operations

performed respectively on DBHWS - Type I.

As shown in Figures 5.30 to Figure 5.33, as p increases, the RESTful Web service is

used more by clients and performance improvements achieved by the Hybrid Web

service increases sharply. The WSART for read database operation is decreased by 90%

as p is increased from 0 to 1 (see Figure 5.30). Similarly the WSART for insert, update,

delete and database operations decreased by 45%, 51% and 50% respectively for

90

increasing p from 0 to 1.

As observed in Figure 5.30 to Figure 5.33, the performance improvement is higher for

the read database operation as p is changed from 0 from 1. The RESTful Web service’s

message contains only the student information but for the SOAP-based Web service the

message contains the student information as well as the XML markup required by SOAP

messages. As observed with the database resource exposed as a Web service for

intermediate p values (between 0 and 1) the Hybrid Web service produces a substantially

higher system performance in comparison to the pure SOAP-based Web service for all

the database operations.

Figure 5.30: Performance for the read database operation performed on DBHWS -
Type I

0	

10	

20	

30	

40	

50	

60	

70	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

W
SA

RT
	
 (m

s)
	

p	

91

Figure 5.31: Performance for the insert database operation performed on DBHWS -
Type I

Figure 5.32: Performance for the update database operation performed on DBHWS
- Type I

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

W
SA

RT
	
 (m

s)
	

p	

0	

20	

40	

60	

80	

100	

120	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

W
SA

RT
	
 (m

s)
	

p	

92

Figure 5.33: Performance for the delete database operation performed on DBHWS -
Type I

Figure 5.34 shows the WSART for different database operations performed on

DBHWS - Type II.

Figure 5.34: Performance of DBHWS - Type II for different database operations

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	

W
SA

RT
	
 (m

s)
	

p	

0	

20	

40	

60	

80	

100	

120	

Read	
 Insert	
 Update	
 Delete	

W
SA

RT
	
 (m

s)
	

Database	
 OperaCons	

93

As described earlier the read database operation invokes the DBWSR component of

DBHWS. The rest of the database operations invoke the DBWSS component of

DBHWS. The smallest WSART is observed for the read database operation (see Figure

5.34).

5.4.4 Effect of Request Arrival Rate

This section presents the effect of the arrival rate for Web service requests on the

performance of the Hybrid Web service. Once again, the number of student record is

held at 1 for all the database queries. Three p values 0 (SOAP-based only), 0.5(SOAP-

based and RESTful) and 1 (RESTful only) were chosen for this experiments while

varying the Web service request arrival rates. Techniques used similar to that outlined in

Section 5.2.4 has been used for generating the arrival rates for Web service requests.

Figure 5.35 shows WSART for the read database operation performed on DBHWS -

Type I for different arrival rate of requests. Figure 5.36, Figure 5.37 and Figure 5.38

show WSART for insert, update and delete database operations performed respectively

on DBHWS - Type I for different arrival rate of requests.

As observed with all database operations for high λ the WSART for SOAP-based

Web service (p = 0) is significantly higher than that achieved for a Hybrid Web service (p

= 0. 5). For example, the read database operation with λ = 0.012 has a 68% lower

WSART for the Hybrid Web service (p = 0.5) than that for the pure SOAP-based Web

service (see Figure 5.35). At values of λ higher than those used in Figure 5.35 to Figure

5.38 a sharper increase in WSART is expected for each system. A higher performance

94

difference between the Hybrid and the SOAP-based Web service and between the Hybrid

and the RESTful Web service is expected.

The Hybrid Web service (with p = 0.5) is observed to behave similarly for other

database operations (see Figure 5.36, Figure 5.37 and Figure 5.38). The Hybrid Web

service comprises of RESTful Web service and SOAP-based Web service. The WSRT

for RESTful Web service is lower than that of the SOAP-based Web service which also

leads to a smaller queuing delay for the Hybrid Web service in comparison to the SOAP-

based Web service. With more queuing occurring at higher values of λ, the performance

advantage of the Hybrid Web service increases with an increase in λ.

Figure 5.35: Performance of DBHWS - Type I for the read database operation with
different request arrival rates

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

0.000	
 0.002	
 0.004	
 0.006	
 0.008	
 0.010	
 0.012	
 0.014	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

p=0	

p=0.5	

p=1	

95

Figure 5.36: Performance of DBHWS - Type I for the insert database operation with
different request arrival rates

Figure 5.37: Performance of DBHWS - Type I for the update database operation
with different request arrival rates

0	

100	

200	

300	

400	

500	

600	

0.000	
 0.002	
 0.004	
 0.006	
 0.008	
 0.010	
 0.012	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

p=0	

p=0.5	

p=1	

0	

100	

200	

300	

400	

500	

600	

700	

0.000	
 0.002	
 0.004	
 0.006	
 0.008	
 0.010	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

p=0	

p=0.5	

p=1	

96

Figure 5.38: Performance of DBHWS - Type I for the delete database operation
with different request arrival rates

Figure 5.39 shows the WSART for different database operations performed on

DBHWS - Type II for different request arrival rates.

Figure 5.39: Performance of DBHWS - Type II for different database operations
with different request arrival rates

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

0.000	
 0.002	
 0.004	
 0.006	
 0.008	
 0.010	
 0.012	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

p=0	

p=0.5	

p=1	

0	

100	

200	

300	

400	

500	

600	

700	

0.002	
 0.004	
 0.006	
 0.008	
 0.009	
 0.01	

W
SA

RT
	
 (m

s)
	

Arrival	
 Rate	
 (req/s)	

Read	

Insert	

Update	

Delete	

97

Note that the RESTful Web service is always used for the read database operation and

the SOAP-based Web service for all the other database operations. WSART increases

with λ and the highest WSART is achieved for the update database operation on DBHWS

- Type II (see Figure 5.39).

5.5 Discussions of Experimental Results

This section summaries a set of key observations for the performance results for

exposing computing and database resources as Web services. There were three types of

systems used for the performance analysis: computing resource exposed as a Web service

(both SOAP-based and RESTful), database resource exposed as a Web service (both

SOAP-based and RESTful) and computing and database resources exposed as a Hybrid

Web service.

It can be observed from the performance results that the RESTful Web service

technology outperformed the SOAP-based Web service technology in the first two

systems. However, the level of performance difference between two technologies varied

from one system to another.

The RESTful Web service performed significantly better than that of the SOAP-based

Web service for exposing database resource as Web services. The read database

operation achieved maximum performance improvement with RESTful Web service.

The WSART was observed to be lower by as much as 90 % than that for the SOAP-based

Web service (see Section 5.3.1).

The performance advantages of the RESTful Web services technology over the

SOAP-based Web service technology are small for communication bound systems

98

characterized by a payload comprising large file size. On the other hand, when a payload

comprises a small file then the difference between the performances achieved by the

RESTful Web services and SOAP-based Web services increases. This behavior is aptly

captured in Figure 5.13 that corresponds to a system in which small database records are

read. The performance difference between the two Web service technologies is also

observed to increase with an increase in arrival rate.

However, in a system exposing a computing resource as a Web service, the

performance gain achieved by the RESTful Web service is marginal especially for higher

service times. Although the RESTful Web service performs better than the SOAP-based

Web services for each operation, both technologies demonstrate a comparable

performance for a system that is compute bound.

As discussed in Section 1.3, one of the questions that motivated this research

concerns the determination of the system and workload parameters for which a RESTful

Web service technology provides a significant performance benefit over SOAP-based

Web service. Experiments were performed to determine such parameters. In one

experiment the CPU execution on a computer resource exposed as a Web service was

varied and the CPU execution time that produced a performance difference of 5% and 2%

were determined. Similarly, the length of the file transferred on a computer resource

exposed as a Web service was varied and the file sizes that produced a performance

difference of 5% and 2% were determined. The results are presented in Table 5.2.

Clearly for a data size above 135Kb or a CPU execution time of 550 ms service time on a

computer resource exposed as a Web service the SOAP-based Web service technology

99

achieves a comparable performance with that achieved by the RESTful Web service

technology.

Table 5.2: RESTful Web service performance improvement over SOAP-based Web

service

 5% performance
improvement

2% performance
improvement

Data size (Read file) 90 Kb 135 Kb
Service time (Execute
program)

95 ms 550 ms

The performance of Hybrid Web service is discussed in Section 5.4. The Hybrid

Web service seems to achieve a significant performance advantage over a conventional

SOAP-based Web service. The performance advantage of the Hybrid Web service is

observed to improve with increase in p values.

100

Chapter 6 : Conclusions

This chapter summarizes the thesis and presents conclusions. Directions for further

research are also discussed.

6.1 Summary and Conclusions

This research focuses on exposing computing resources and database resources as

Web services. Two different Web service technologies: the RESTful Web service and

the SOAP-based Web service were used for exposing computing and database resources

as Web services.

This research proposed a new Web service technology called the Hybrid Web service.

The novel Hybrid Web service utilizes the advantages from both RESTful and SOAP-

based Web services: the lightweight characteristics of the RESTful Web service and the

support for various standards such as security, reliable messaging and atomic transactions

provided by the SOAP-based Web service.

Techniques for exposing and invoking of computing resources and database resources

as both RESTful and SOAP-based Web services were described in Chapter 3. Prototype

systems based on both the technologies were built and were subjected to various

workloads.

The computer resource and the database resource exposed as Web services (RESTful

Web service, SOAP-based Web service and Hybrid Web service) support following

operations.

101

• Computer resource exposed as a Web is capable of handling all Windows and

Linux operating systems commands.

• Database resource exposed as a Web service provides supports for inserting a

student record, reading, updating and deleting a student record.

Two versions of Hybrid Web services were devised. The first version called

DBHWS - Type I where a client explicitly requests for the RESTful or the SOAP-based

component. The second version called DBHWS - Type II. In the second version, the

client requests for the service that in turn invokes the RESTful Web service or the SOAP-

based Web service depending on the operation performed by the client. The types of

operations requiring the SOAP-based technology are stored in a configuration repository

that is consulted when a request arrives at the Hybrid Web service and an appropriate

Web service (RESTful or SOAP-based) is chosen by comparing the requested operation

with the operations stored in the configuration repository. The prototype implementation

of the Hybrid Web service was discussed in Chapter 4.

Based on prototyping and measurement a rigorous performance analysis of resources

exposed as the RESTful Web service, the SOAP-based Web service, and the Hybrid Web

service was made. The impact of various workload parameters on the relative

performance of RESTful Web service, SOAP-based Web service and Hybrid Web

service were presented in Chapter 5.

There were three types of systems used in the performance analysis: computing

resource exposed as a Web service (both SOAP-based and RESTful), database resource

exposed as a Web service (both SOAP-based and RESTful) as well as computing and

102

database resources exposed as Hybrid Web services. The insights resulting from the

analysis of system performance are summarized.

• It can be observed from performance results that the RESTful Web service

technology outperformed the SOAP-based Web service technology in all three

systems. However, the levels of performance difference between the two

technologies vary for all the three systems and are dependent on workload

parameters.

• Compute bound operation: The performance gain achieved by the RESTful

Web service is marginal when the application is characterized by a large CPU

execution times. Although the RESTful Web services perform better than the

SOAP-based Web services for each operation both technologies demonstrate a

comparable performance for a system that is compute bound (see for example

Figures 5.5 and 5.6).

• Communication bound systems: The performance advantages of the RESTful

Web service technology over the SOAP-based Web service technology are small

for communication bound systems characterized by a payload comprising large

file sizes. For small CPU execution times and small file sizes a much higher

difference in the performance between a SOAP-based and a RESTful Web service

is observed. For example, the WSART for the read database operation achieved

with the RESTful Web service was observed to be lower by as much as 90 % than

that for the SOAP-based Web service when the size of data file transfer was 85

bytes (refer Section 5.3.1).

103

• Performance improvement: Experiments were performed to determine the

system and workload parameters for which a RESTful Web service technology

provides a significant performance benefit over SOAP-based Web service. For

example, in one experiment the CPU execution on a computer resource exposed

as a Web service was varied and a CPU execution time of 95 ms and 550 ms were

observed to produce a performance difference of 5% and 2% respectively (refer to

Table 5.2). Smaller CPU execution times are required for observing higher

performance improvements for the RESTful Web service. Similarly, the length of

the file transferred on a computer resource exposed as a Web service was varied

in another experiment of a file sizes of 90 Kb and 135 Kb were observed to

produce a performance difference of 5% and 2% were respectively (refer to Table

5.2). Smaller file sizes are required for observing a higher performance

difference.

• Scalability: For applications which are characterized by a small data payload and

a small CPU execution time the RESTful Web services technology demonstrates

a much higher scalability (see Figures 5.17 to 5.20 for example). The rate of

increase in WSART with the number of records read was observed to be much

smaller for the RESTful Web services compared to that achieved with the SOAP-

based Web services.

• In comparison to the SOAP-based Web service, a higher scalability is exhibited

by the RESTful Web service when the system load is increased (see Figure 5.21

and Figure 5.22 for example).

104

• The SOAP-based component of the Hybrid Web service is used only when the

operations performed by the client demand the support of other standards such as

security that are not supported by the RESTful Web service. The lightweight

RESTful technology is activated for the other operations. The experimental

results demonstrate the effectiveness of the Hybrid Web service. Even when the

RESTful Web service was used only 20% of the time (p=0.2) there was a

substantial improvement in WSART achieved by the Hybrid Web service in

comparison to the conventional SOAP-based Web service.

• When the system is subjected to various intensities of request arrivals, the

performance advantage of the Hybrid Web service is observed to increase with an

increase in λ. The lower WSRT achieved by the RESTful Web service in

comparison to that of the SOAP-based Web service leads to a smaller queuing

delay for the Hybrid Web service in comparison to the conventional SOAP-based

Web service. This performance difference produced by the queuing delay

increases at higher values of λ as more and more queuing starts occurring on the

system.

6.2 Future Work

Directions for future research are presented next.

• Devising a technique and tool for analysing a client program and installing

mechanisms for use with a Hybrid Web services is worthy of investigation. Such

a tool needs to able to parse the client code and use the configuration repository

(described in Section 4.2.4) to install an appropriate call to a SOAP-based or a

RESTful Web service depending on the operation being performed.

105

• Exposing a mobile device as a Web service can form an interesting direction for

future research. Mobile devices are limited in terms of processing power and

memory that add to the challenges of exposing a mobile device as a Web service.

Exposing a mobile device as a Web service and investigating its performance are

worthy of future research.

106

References

[1] F. Aijaz, S. Z. Ali, M. A. Chaudhary, and B. Walke, “Enabling High Performance

Mobile Web Services Provisioning,” in Proceedings of the IEEE 70th Vehicular

Technology Conference, Anchorage, Alaska, USA, September 2009, pp. 1–6.

[2] F. AlShahwan and K. Moessner, “Providing SOAP Web Services and RESTful

Web Services from Mobile Hosts,” in Proceedings of the 5th International

Conference on Internet and Web Applications and Services, Barcelona, Spain, May

2010, pp. 174–179.

[3] Amazon, “Amazon EC2 Pricing.” [Online]. Available:

http://aws.amazon.com/ec2/pricing/. [Accessed: 31-July-2010].

[4] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, “Poisson Process,” in

Discrete-Event System Simulation, 5th ed., New Jersey: Pearson - Prentice Hall,

2011, pp. 211–216.

[5] S. Cholia, D. Skinner, and J. Boverhof, “NEWT: A RESTful Service for Building

High Performance Computing Web Applications,” in Proceedings of the Gateway

Computing Environments Workshop, New Orleans, Louisiana, USA, November

2010, pp. 1–11.

[6] R. A. V. Engelen, “Pushing the SOAP Envelope with Web Services for Scientific

Computing,” in Proceedings of the International Conference on Web Services, Las

Vegas, Nevada, USA, June 2003, pp. 346–352.

[7] X. Feng, J. Shen, and Y. Fan, “REST: An Alternative to RPC for Web Services

Architecture,” in Proceedings of the 1st International Conference on Future

Information Networks, Beijing, China, October 2009, pp. 7–10.

107

[8] IBM, “Web Services Architecture Overview.” [Online]. Available:

http://www.ibm.com/developerworks/webservices/library/w-ovr/. [Accessed: 21-

June-2012].

[9] B. Ioannis G, “Introduction to Web Services,” 2005. [Online]. Available:

http://www.cl.cam.ac.uk/~ib249/teaching/Lecture1.handout.pdf. [Accessed: 23-

July-2012].

[10] R. Kanagasundaram, S. Majumdar, M. Zaman, P. Srivastava, and N. Goel,

“Exposing Resources as Web Services: A Performance Oriented Approach,” in

Proceedings of the International Symposium on Performance Evaluation of

Computer and Telecommunication Systems, Genoa, Italy, July 2012, pp. 1–10.

[11] E. Landre and H. Wesenberg, “REST versus SOAP as Architectural Style for Web

Services,” in Proceedings of the 5th International Workshop on SOA & Web

Services, Montreal, Quebec, Canada, October 2007.

[12] M. Lanthaler and C. Gutl, “Towards a RESTful Service Ecosystem,” in

Proceedings of the 4th IEEE International Conference on Digital Ecosystems and

Technologies, Dubai, UAE, April 2010, pp. 209–214.

[13] L. Li, C. Niu, N. Chen, and J. Wei, “High Performance Web Services Based on

Service-Specific SOAP Processor,” in Proceedings of the International Conference

on Web Services, Chicago, Illinois, USA, September 2006, pp. 603–610.

[14] N. Lim, S. Majumdar, and B. Nandy, “Providing Interoperability for Resource

Access Using Web Services,” in Proceedings of the 8th Annual Communication

Networks and Services Research Conference, Montreal, Quebec, Canada, May

2010, pp. 236–243.

108

[15] J. Mangler, E. Schikuta, and C. Witzany, “Quo Vadis Interface Definition

Languages? Towards a Interface Definition Language for RESTful Services,” in

Proceedings of the IEEE International Conference on Service-Oriented Computing

and Applications, Taipei, Taiwan, January 2009, pp. 1–4.

[16] J. Meng, S. Mei, and Z. Yan, “RESTful Web Services: A Solution for Distributed

Data Integration,” in Proceedings of the International Conference on Computational

Intelligence and Software Engineering, Wuhan, China, December 2009, pp. 1–4.

[17] M. Muehlen, J. V. Nickerson, and K. D. Swenson, “Developing Web Services

Choreography Standards: The Case of REST Vs. SOAP,” Decision Support

Systems, vol. 40, no. 1, pp. 9–29, July 2005.

[18] S. Murugesan, “Understanding Web 2.0,” IT Professional, vol. 9, no. 4, pp. 34–41,

July–August 2007.

[19] MySQL, “MySQL Downloads.” [Online]. Available:

http://dev.mysql.com/downloads/. [Accessed: 09-June-2011].

[20] T. O’Reilly, “What is Web 2.0 - O’Reilly Media,” What is Web 2.0 Design Patterns

and Business Models for the Next Generation of Software, 30-September-2005.

[Online]. Available: http://oreilly.com/pub/a/web2/archive/what-is-web-

20.html?page=1. [Accessed: 25-January-2012].

[21] S. Oh and G. C. Fox, “Optimizing Web Service Messaging Performance in Mobile

Computing,” Future Generation Computer Systems, vol. 23, no. 4, pp. 623–632,

May 2007.

[22] Oracle, “NetBeans IDE - Features.” [Online]. Available:

http://netbeans.org/features/index.html. [Accessed: 21-August-2012].

109

[23] Oracle, “RESTful Web Services.” [Online]. Available:

http://www.oracle.com/technetwork/articles/javase/index-137171.html. [Accessed:

08-March-2012].

[24] Oracle, “Oracle GlassFish Server.” [Online]. Available:

http://www.oracle.com/us/products/middleware/application-server/oracle-glassfish-

server/index.html. [Accessed: 08-March-2012].

[25] Oracle, “Runtime (Java 2 Platform SE v1.4.2).” [Online]. Available:

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Runtime.html. [Accessed: 12-

February-2012].

[26] Oracle, “Process (Java 2 Platform SE v1.4.2).” [Online]. Available:

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Process.html. [Accessed: 12-

February-2012].

[27] Oracle, “Building Web Services with JAX-WS - The Java EE 6 Tutorial (JAX-

RS).” [Online]. Available: http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html.

[Accessed: 27-November-2011].

[28] Oracle, “Building Web Services with JAX-WS - The Java EE 6 Tutorial.” [Online].

Available: http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html. [Accessed: 27-

November-2011].

[29] Oracle, “JavaServer Pages Overview.” [Online]. Available:

http://www.oracle.com/technetwork/java/overview-138580.html. [Accessed: 22-

June-2012].

110

[30] Oracle, “Java SE Technologies - Database.” [Online]. Available:

http://www.oracle.com/technetwork/java/javase/jdbc/index.html. [Accessed: 21-

August-2012].

[31] Oracle, “12 Database Web Services.” [Online]. Available:

http://docs.oracle.com/cd/B14117_01/java.101/b12021/callouts.htm. [Accessed: 01-

February-2012].

[32] Oracle, “System (Java 2 Platform SE 5.0).” [Online]. Available:

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/System.html. [Accessed: 25-

March-2011].

[33] C. Pautasso, O. Zimmermann, and F. Leymann, “RESTful Web Services vs. "Big‟

Web Services: Making the Right Architectural Decision,” in Proceedings of the

17th International Conference on World Wide Web, Beijing, China, April 2008, pp.

805–814.

[34] S. Sangeetha, “JAX-RS: Developing RESTful Web Services in Java.” [Online].

Available: http://www.devx.com/Java/Article/42873/1954. [Accessed: 27-

November-2011].

[35] F. Sha, K. Yu, L. Zhang, and X. Wu, “A Performance Evaluation Method and It’s

Implementation for Web Service,” in Proceedings of the 3rd IEEE International

Conference on Broadband Network and Multimedia Technology, Beijing, China,

October 2010, pp. 218–222.

[36] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau, “Migration of SOAP-based

Services to RESTful Services,” in Proceedings of the 13th IEEE International

111

Symposium on Web Systems Evolution, Williamsburg, Virginia, USA, September

2011, pp. 105–114.

[37] W3C, “Web Services Architecture.” [Online]. Available:

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#whatis. [Accessed: 23-

July-2012].

[38] W3C, “SOAP Version 1.2 Part 1: Messaging Framework.” [Online]. Available:

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/#transpbindframew.

[Accessed: 02-August-2012].

[39] W3C, “Web Application Description Language.” [Online]. Available:

http://www.w3.org/Submission/wadl/. [Accessed: 02-August-2012].

[40] W3C, “Web Services Glossary.” [Online]. Available: http://www.w3.org/TR/ws-

gloss/. [Accessed: 02-August-2012].

[41] W3C, “HTTP/1.1: Method Definitions.” [Online]. Available:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html. [Accessed: 22-August-

2012].

[42] Wiki, “What is Wiki.” [Online]. Available: http://wiki.org/wiki.cgi?WhatIsWiki.

[Accessed: 26-February-2012].

[43] T. A. Yang, D. J. Kim, V. Dhalwani, and T. K. Vu, “The 8C Framework as a

Reference Model for Collaborative Value Webs in the Context of Web 2.0,” in

Proceedings of the 41st Annual Hawaii International Conference on System

Sciences, Waikoloa, Hawaii, USA, January 2008, pp. 319–328.

