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Abstract 

Recent computer attacks target networks and there is a need to detect these network 

anomalies quickly and efficiently.  This area has been widely studied and solutions typically use 

data not freely available.  A labeled available dataset, Kyoto2006+, has been recently created.  

Most existing works using Kyoto2006+ apply various clustering approaches.  Our research 

leverages existing spectral analysis and statistical analysis techniques. 

One well known spectral analysis technique is Haar Wavelet filtering analysis.  It 

measures the amount and magnitude of abrupt changes in data.  Another popular approach is a 

statistical analysis technique, Principle Component Analysis (PCA).  PCA describes data in a 

new dimension to better express the data.  A modified PCA which incorporates time shifting to 

account for changes over time is considered.  Both approaches have strengths and limitations.  In 

response, this thesis proposes Hybrid PCA – Haar Wavelet Analysis.  This approach uses PCA to 

describe the data and Haar Wavelet filtering for analysis. 

Based on prototyping and measurement, an investigation of the Hybrid PCA – Haar 

Wavelet Analysis technique is performed.  Experimental results are presented to demonstrate the 

accuracy and precision of the combined approach compared to the two algorithms individually.  

Furthermore, tests to examine the impact of algorithm parameters are discussed. 
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1.0 Introduction 

The way networks are being used is rapidly changing and a by-product of this change is 

the amount of network traffic volume is rapidly increasing.  Similarly, the types of computer 

attacks are rapidly evolving.  For example, malicious attacks are no longer limited to desktop 

computer viruses, but can target a network itself.  These attacks are designed to create failures in 

the system.  A failure brings upon anomalous network behaviour and can be categorized into two 

forms, soft failures and hard failures.  A soft failure can be thought of as a performance 

degradation; whereas, a hard failure would be elements ceasing to operate [1].  Depending on the 

network, these failures can cause mild inconveniences, loss of productivity, loss of economic 

activity, or even, loss of public well being.  This research applies statistical analysis and spectral 

analysis techniques to network traffic data in order to identify potential malicious network 

attacks.  Specifically, this thesis focuses on a hybrid technique to provide information to a 

network operator such that the source of malicious behaviour can be isolated. 

1.1  Motivation of Thesis 

There is a need for effective and scalable approaches to maintain network stability and to 

detect anomalous network traffic behaviour created by attacks.  The state of the art to manage 

massive amounts of data transmission is Cisco’s NetFlow protocol [2].  This protocol resides on 

routers and each packet that passes through is examined for a set of IP packet attributes.  The 

output of NetFlow is a multi-tuple record, called a flow.  Some core features of a flow are: 

Source IP address, Destination IP address, total bytes, etc (See Figure 2.1 for an illustration of 

NetFlow collection).  NetFlow does not provide any information if the flow is a part of abnormal 

or malicious behaviour [3]. 
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Current intrusion detection systems (IDS), such as Bro, use existing knowledge base and 

identify attacks through patterns for signatures [4].  As a result of the high volume of traffic, 

inspecting individual signatures or traces of known hazards is time consuming and inefficient.  

Furthermore, the turnaround from discovery to updating the knowledge base can be extensive.  

Another approach, called anomaly detection, attempts to detect patterns which do not conform to 

expected behaviour [5].  Anomaly detection does not have to be dependent on an existing 

knowledge base.  Some statistical models and signal processing algorithms do not require an 

existing knowledge base.  These methods can be applied relatively quickly to create relationships 

and discover patterns from a range of data types and sizes.  The types of computer attacks rapidly 

change, and hackers are constantly coming up with new techniques.  As a result, no matter how 

refined the detection method becomes; a comprehensive IDS will require a significant amount of 

human expertise [5]. 

1.2  Proposed Solution 

This thesis proposes a hybrid solution, based on statistical and spectral analysis 

techniques, which provide the network administrator time slices of potential network traffic 

intrusions.  To the best of our knowledge, no such hybrid techniques has deployed by systems 

described in existing literature.   

 The statistical analysis studied is a Modified Principal Component Analysis (PCA) 

technique to determine abnormal behaviour [6].  Components are extracted by comparing feature 

data similarity.  For example, consider a two-dimensional data set, a line of best fit can be 

considered as a component (See Figure 2.4).  A ranked subset of components, selected by 

comparing sparsity of projected data, is used to create a subspace that describes anomalous 



3 

 

behaviour.  Time grouped data is projected onto this space and spectral analysis is applied.  The 

Modified PCA algorithm is described in more detail in section 3.1.1.  The feature with the most 

spread out data is considered in spectral analysis portion. 

The spectral analysis technique adopted is Haar Wavelet decomposition [7].  This type of 

wavelet decomposition uses a Haar basis function to decompose the input dataset set into core 

time functions.  Thresholds are applied to remove noise and highlight network traffic anomaly 

characteristics.  The signal is reconstructed and a weighted score to describe the magnitude of 

fluctuations within each time slice is calculated.  The Haar wavelet algorithm is described in 

more detail in section 3.1.2.  A high score represents a large change in a time window and 

suggests to the network administrator that abnormal and potentially malicious behaviour is 

present. 

This research uses a hybrid technique and illustrates how much more accurate and 

informative it is compared to the statistical and spectral analysis techniques independently.  This 

hybrid approach examines network traffic data grouped into time bins and summarized.  Next, it 

applies statistical analysis to reduce the complex nature of the network traffic.  It then applies 

spectral analysis to determine time slices of interest where there is a change in behaviour.  

Network traffic data can be grouped by start time into bins and features describing each time bin 

behaviour are extracted (See Table 3.1.2 and Table 3.1.3 for a complete outline of features).  The 

time binning approach is described in more detail in section 3.1. 

To evaluate the performance of the algorithms, a prototype test bed is used.  Furthermore, 

a novel labeled dataset, called Kyoto2006+, was used in analysis [8].  The design and 

implementation of the test bed is discussed in chapter 4 and an outline of the dataset is presented 

in Section 2.2.1. 
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1.3 Scope of the Thesis 

This thesis focuses on the hybrid approach which is based on a modified PCA approach 

and a Haar wavelet approach.  As discussed in Section 1.2, network traffic data is grouped into 

time bins, and descriptive features are derived.  Then a hybrid analysis approach is applied is 

obtain a measure of potential anomalies for each time slice.  The algorithm can provide a time 

slice, and features of interest as breadcrumbs, to lead to the offending source.  As no specific 

host is highlighted, manual investigation of the network traffic data is required.  A subsequent 

technique applied on the time slice to isolate the core source of the anomalous behaviour is 

beyond the scope of this thesis and can form a direction for future research.  Further discussion is 

provided in Section 7.2. 

1.4 Contribution of the Thesis 

The main contributions of the thesis are presented next. 

  A hybrid analysis: a novel technique which uses a statistical analysis technique, Principle 

Component Analysis, to reduce the complexity of the time binned dataset and produces 

an anomalous subspace.  Next, a spectral analysis technique, Haar wavelet 

decomposition, is applied to highlight network traffic anomalies and to produce a 

measure of potential malicious behaviour. 

 Independent applications of statistical analysis and spectral analysis applied on 

Kyoto2006+ dataset.  The Kyoto2006+ dataset is a network traffic dataset which provides 

intrusion information and anti-virus alerts from existing open source detectors.  To the 

best of our knowledge, none of the works using the Kyoto2006+ dataset have focused on 

Haar wavelet decomposition or Principle Component Analysis. 

 Investigation of several algorithms for performance measurement and studying the 

impact in order to automatically indicate a set time slices which may contain potentially 

malicious behaviour. 
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 A prototype test bed is built and the performance of each of the algorithms is evaluated 

through various measurements made by the system.  A number of insights into the 

algorithm behaviour and performance are obtained from the experimental results that 

include the following: 

o A demonstration of the effectiveness of each of the adopted approaches for 

identifying network anomalies is presented.  The performance improvement of the 

hybrid approach compared to only the statistical approach and only the spectral 

approach is discussed. 

o The effect of different algorithm parameter values on the performance of the 

approaches is presented. 

1.5 Thesis Outline 

The rest of the thesis is organized as follows.  Chapter 2 provides background 

information on network traffic and anomaly detection, and discusses related works.  Chapter 3 

outlines the statistical analysis algorithm, the spectral analysis algorithm and the hybrid 

algorithm in more detail.  Chapter 4 describes the test bed prototype design and operation.  

Chapter 5 outlines each step of the experimental approach in detail. Chapter 6 presents and 

discusses the results of the performance analysis on the hybrid approach, on only the statistical 

approach and on only the spectral approach.  Finally, Chapter 7 concludes the thesis and 

discusses possible directions for future research. 
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2.0 Background and Related Works 

This chapter presents background information on network traffic.  It then describes 

spectral and statistical analysis techniques in intrusion detection.  In addition, it provides a 

background about the algorithms used in this research.  Lastly, the chapter discusses related 

works. 

2.1 Intrusion Detection in Network communication 

Network traffic intrusion detection is identification of observed activities that do not 

conform to an established norm in computer communication [9].  There exist two main types of 

intrusion detection methods: misuse detection and anomaly detection.  Misuse detection is based 

on an existing knowledge of known attacks and identifies attacks through patterns or signatures 

[9].  As a result of the high volume of traffic, inspecting individual packets for signatures or 

traces of known hazards is time consuming and inefficient.  Anomaly detection is not dependent 

on an existing knowledge base and identifies potential network threats by finding deviations 

from normal behaviour.   

Spectral analysis, also known as frequency analysis, looks at time-varying signals to 

reveal special characteristic [10].  Wavelet analysis is one form of spectral analysis and divides a 

complicated function into several simple ones.  The term wavelet comes from the characteristic 

of converging to zero, and is illustrated by waving above and below the horizontal axis [11].  It 

represents a signal by a finite sum of components of different resolutions.  Individual 

components can be examined for anomalies [12].  Statistical analysis deals with the 

discrimination, classification and interpretation of collected datasets [13].  In this research, 

principle component analysis is considered.  PCA aims to represent data in a lower dimensional 
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space through a transformation of the original features.  The new variables or features are 

uncorrelated orthogonal linear combinations of the original dataset.  They are a ranked in order 

of significance and describe trends in data with greater details [13].  Anomaly detection 

techniques are applied to these components.  These various anomaly detection techniques can be 

applied relatively quickly to create relationships between observed variables over a range of data 

types and determine deviations. 

2.2 Network Traffic Communication 

Traditional computer network communication use a specific protocol to route data from 

an origin to a destination.  A packet is a unit of data which contains user application information 

and control information used to properly deliver the data.  A network protocol is a set of 

standards used to format communication between source and destinations [14].  A widely used 

protocol is Transmission Control Protocol (TCP).  A session or flow is a set of packets sent from 

the same source and source port to a specific destination and destination port with the same 

network protocol.  The network traffic software collects the data for the flow until the flow is 

terminated.  It can be terminated with either a timeout or a finish flag, FIN.  [2] 

A flow can be described by a number of characteristics or features and are measured by 

software on network routers or network probes [3].  These probes examine the control 

information of data packets.  An example is Cisco’s NetFlow, an industry standard protocol, 

which describes a flow through seven features: source IP address, destination IP address, source 

port, destination port, protocol type, Class of Service, and Router or switch interface [2].  The 

observation software is loaded on Cisco routers (See Figure 2.1). 
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Figure 2.1: Creating a flow in the NetFlow cache [2] 

2.2.1 Network Traffic Data Sources 

A number of the data sources in anomaly detection research are from large research 

networks.  An example of this is the Geant research network based in Europe [15].  This network 

connects over 30 European countries and connects national and education computer networks 

[15].  Although there are many research networks which create datasets, it has become extremely 

difficult to obtain data due to privacy concerns and competitive issues. 

In 1999, a competition was held at the Knowledge Discovery and Data Mining annual 

conference to build a network intrusion detection system that would detect anomalies.  Network 

traffic data was made up of nine weeks of raw TCP dump data.  The data simulated network 

traffic on a typical U.S. Air Force LAN and takes about 743 MB of memory.  The nine weeks 

were broken up into seven weeks of training, and two weeks of testing data.  Unlike many 

research networks, which only provide flow data or sanitized raw TCP data, each observation 

contains anomaly labels and descriptions.  This data source has been widely used in research.  

While it is very commonly used in algorithm evaluation; there are two major drawbacks.  The 
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data is more than ten years old and does not reflect current threats [8].  Even though the there are 

41 features describing a flow, the most common descriptors, such as source port, are omitted.  

This is a major drawback as many popular approaches, like in [16] and [6], use various entropy 

measurements for their analysis. [17] 

In response to this major drawback, Song et al. [8] created a new evaluation dataset 

called Kyoto2006+.  This novel dataset was used in this research.  It contains over three years of 

real traffic data and described by 24 characteristics or features.  The primary 14 statistical 

features are derived from the KDD’99 dataset.  The authors analyzed the features of this dataset 

and kept only those they believed relevant.  Then the authors added six features of connection 

information, which was previously omitted.  An example is source address, source port, 

destination address, etc.  The remaining four features provide detector information that, to the 

best of our knowledge, no other research dataset provides.  The authors used open source tools; 

an intrusion detection software tool called SNORT, an anti virus program called ClamAV and 

the Ashula detection software to detect exploit code.  Along with the output information from 

these programs, the authors provide a “label” feature is a cross correlation between their research 

findings and that of the open source tools.  (See Table 2.1 for an outline of the features). [8] 

Feature Name Description 

Duration The length (seconds) of the connection. 

Service The connection’s service type, e.g., http, telnet. 

Source bytes The number of data bytes sent by the source IP address. 

Destination bytes The number of data bytes sent by the destination IP address 

Count The number of connections whose source IP address and destination 

IP address are the same to those of the current connection in the past 

two seconds. 

Same srv rate Percentage of connections to the same service in Count feature 

Serror rate Percentage of connections that have “SYN” errors in Count feature 

Srv serror rate Percentage of connections that have “SYN” errors in Srv count(the 

number of connections whose service type is the same to that of the 

current connection in the past two seconds) feature  
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Dst host count Among the past 100 connections whose destination IP address is the 

same to that of the current connection, the number of connections 

whose source IP address is also the same to that of the current 

connection. 

Dst host srv count Among the past 100 connections whose destination IP address is the 

same to that of the current connection, the number of connections 

whose service type is also the same to that of the current connection 

Dst host same src 

port rate 

Percentage of connections whose source port is the same to that of the 

current connection in Dst host count feature 

Dst host serror rate Percentage of connections that have “SYN” errors in Dst host count 

feature 

Dst host srv serror 

rate 

Percentage of connections that “SYN” errors in Dst host srv count 

feature 

Flag The state of the connection at the time the connection was written. 

IDS detection Reflects if IDS triggered an alert for the connection; ‘0’ means any 

alerts were not triggered, and an arabic numeral means the different 

kinds of the alerts. Parenthesis indicates the number of the same alert. 

Malware detection Indicates if malware, also known as malicious software, was 

observed in the connection; ‘0’ means no malware was observed, and 

a string indicates the corresponding malware observed at the 

connection.  Parenthesis indicates the number of the same malware. 

Ashula detection Means if shellcodes and exploit codes were used in the connection; 

‘0’ means no shellcode nor 35 exploit code was observed, and an 

arabic numeral means the different kinds of the shellcodes or exploit 

codes. Parenthesis indicates the number of the same shellcode or 

exploit code. 

Label Indicates whether the session was attack or not; ‘1’ means the session 

was normal, ‘-1’ means known attack was observed in the session, 

and ‘-2’ means unknown attack was observed in the session. 

Source IP Address Means the source IP address used in the session. The original IP 

address on IPv4 was sanitized. 

Source Port Number Indicates the source port number used in the session. 

Destination IP 

Address 

It was also sanitized. 

Destination Port 

Number 

Indicates the destination port number used in the session. 

Start Time Indicates when the session was started. 

Duration Indicates how long the session was being established. 
Table 2.1: Kyoto2006+ dataset features [8] 

2.2.2 Network Traffic Volume 

The volume of network traffic data is very high and there is need for efficient and 

scalable solutions for network anomaly detection.  Considering traffic data alone can be 
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excessive, and overly granular.  Depending on the data source, raw traffic data can consist of 

millions of observations.  One approach to limit data size, which would not add any extra 

overhead, is to create smaller summaries or profiles.  A profile consists of composite features, 

such as summations, or statistical features, such as entropy.  The most common approach, as 

seen in [16] and [6], is to create a number of time slices and assigning the flows, by start time, to 

each time slice.  Then, a set of features describe each of these time bins.  For example, in [6], the 

TCP traffic in a time slice was summarized by seven features: total bytes, total packets, total 

number of flows, destination address entropy, unique number of hosts, and unique number of 

destinations.  Alternatively, Wanner [18] modeled each observation around a node.  Each unique 

source node in the dataset was described through 41 composite features.  These features 

consisted of total bytes received by the host, total bytes sent by the host, total number of unique 

ports, etc.  Both approaches produce an observation table much smaller than the primary flow 

data set.  In this research, time bin profiling is used.  The number of observations comes down 

from millions of flows to a few thousand hosts, or a few hundred time bins. 

2.3 Wavelet Analysis 

Recently wavelets have become popular due to the effectiveness of representing time 

varying signals in a compact fashion.  Unlike Fourier transforms, which use the sine and cosine 

function as bases, wavelets use signals localized in time and frequency [10].  Wavelet 

decomposition provides accurate resolution both the time and frequency domain [19].  Wavelets 

can represent a signal by a finite sum of component functions [12].  The components can be 

examined for anomalies (See Figure 2.2 for block diagram of wavelet data analysis).  A natural 

extension of collecting metrics is to organize the observations by time.  The input time signal is 
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first decomposed using wavelet decomposition into several orthogonal components.  Next, 

threshold techniques are applied.  According to a set of parameters and depending on the type of 

analysis, various values are filtered out or set to zero.  Lastly, the signal is reconstructed to 

produce a filtered time signal, where parameter dependant behaviour is illustrated. [11] 

 
Figure 2.2: Data analysis by Wavelets [11] 

There are different types of wavelet approaches, and each has their own basis function and 

decomposition approaches.  The simplest wavelet analysis, used in this research, is the Haar 

wavelet analysis [10].  The Haar wavelet basis function,      (See Equation 2.1), and the 

scaling function,       (See Equation 2.2), are used to create a piecewise decomposition of the 

input time signal.  The decomposition function is a sum of the scaling function and basis 

functions.  (See Equation 2.3 for the decomposition function).  The scaling function is used to 

make the decomposition discrete, such that an infinite amount of pieces are not needed to 

represent the input signal.  In the decomposition, versions of the Haar function, denoted        

(See Equation 2.4), are translated and dilated to represent different frequency resolutions, 

specified by j and k.  These components are orthonormal which means that they are independent, 

non-overlapping and analysis produces distinct results.  As shown in [11], in order satisfy that 

the frequency components are orthonormal, the const from equation 2.4 must equal 2
j/2

.  

      
           

             
  

Equation 2.1: Haar Wavelet basis function [11] 
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Equation 2.2: Haar Wavelet scaling function [11] 

                       
    

   

   

   
 

Equation 2.3: Haar Wavelet decomposition function [11] 

                      

Equation 2.4: Haar Wavelet frequency adjusted basis function [11] 

The input signal size is directly proportional to the complexity of the decomposition 

function.  The larger the input signal, the more coefficients are produced.  Usually one can assign 

a frequency range to each component.  Each coefficient scales a specific component.  Haar 

wavelet filtering applies threshold techniques to these coefficients.  Depending on the type of 

filter, a number of coefficients are assigned to zero.  Typical filtering approaches include high 

pass frequency filters, low pass frequency filters and medium frequency filters.  The user 

determines the filtering by providing a specific frequency range.  Filtering occurs through the 

coefficients outside this range being set to zero.  After filtering is applied, the signal is then 

reconstructed by reversing the decomposition approach.  The result is a filtered version of the 

original signal. 

The Haar Wavelet Filtering approach bisects the input data between higher and lower 

frequency values given a certain input.  The lower pass frequency values are then fed back into 

the system until a defined limit is reached.  A visualization of Equation 2.3 can be seen in Figure 

2.3.  Each iteration is referred to as a level and has its own set of components which correspond 

to a certain frequency range.  It is possible to describe filters or frequency ranges by the number 

of levels applied.  For example, in Figure 2.3, a dataset of eight observations is filtered.  The four 
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high pass values can be considered to be in level one, the two mid pass values can be considered 

in level two and the two remaining are low pass in level three.  In order to apply filtering, the 

component coefficients for a specific level are set to zero.  For example, in Figure 2.3, a high 

pass filter would set the coefficients at levels two and three to zero, and then reconstruct the 

signal. 

 
Figure 2.3: Haar Wavelet decomposition 

2.4 Principle Component Analysis (PCA) 

Principle Component Analysis derives new variables or features that are linear 

combinations of the original features and are uncorrelated [13].  It is a means of finding a 

reduced set of features which describe the dataset by examining the relationships between 

features.  PCA is a transformation that can be considered as a rotation of the original axes to a 
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new set of orthogonal axes.  It can be used as feature selection, as it determines a new set ranked 

component.  For example, in a two-dimensional dataset, a line of best fit on a Cartesian Graph 

would be considered a principle component (See Figure 2.4 for an illustration) [20]. 

 

Figure 2.4: Eigenvalue Components [20] 

There are a number of methods in deriving the set of principle components, ξ.  In this 

research, eigenvalue decomposition approach is used.  Typically, the new components will not 

have a zero mean.  Therefore, the data must be standardized in order to create a zero mean.  This 

requires that each original features set are shifted to have a zero mean.  The principle 

components can be obtained by using Equation 2.5, where A is a matrix of observation 

coefficients, x is a matrix of random vectors, x1..xp, or features, and u the sample mean. 

          
Equation 2.5: Principle Component Formula [16] 
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As shown in [20], using eigenvector decomposition to determine the principle components, 

ξ, requires calculating the covariance matrix of (x – µ), as illustrated in equation 2.6.  A 

covariance matrix is produced to illustrate the variance, or measure the spread of data, between 

every component combination (See Equation 2.6).  The eigenvectors of Σ are the principle 

components.  The nature of eigenvector decomposition produces the eigenvector and eigenvalues 

to be ordered from greatest to least.  The eigenvalues are the measure of variance when the 

dataset get projected onto its respective eigenvector [21].  As a result, the list of eigenvectors is a 

ranked from most to least significant.  These eigenvectors are the set of axis that characterize the 

data.  Considering the previous example of two-dimensional data, an eigenvector would be the 

actual line of best fit. 

                   
 

     
    

Equation 2.6: Matrix of covariance estimates [16] 

There are many components determined from decomposition.  The number of 

components can equal the number of initial features.  The components are ranked from most to 

least significant.  The principle components are based on the type of selection criteria applied.  

The most basic selection criterion is ‘Top K’ components.  The first K many elements are 

considered as the principle components.  Another approach is based on the distribution of the 

data projected onto each of the components.  Variance is the square root of standard deviation, 

and a standard deviation of one suggests that the dataset is normally distributed.  This approach 

considers any eigenvector a principle component if its corresponding eigenvalue is greater than 

one.  Lastly, an approach considered is to build a space which covers 99% of the data.  The space 

starts with the most significant principle component.  One by one, components are added to the 



17 

 

space until the sum of the variances in the space is equal to or greater than 99% of the sum of all 

the variances.  The type of selection criteria used directly affects the number of principle 

components extracted. 

2.5 Comparison with Related Works 

Intrusions Detection Systems are widely used in practice, as well as a subject of research.  

They are seen as one of the most promising countermeasures to defend computer systems and 

networks against attackers [22].  Existing systems detect intrusions by examining and comparing 

raw traffic with an existing knowledge base.  Although theses have systems have contributed a 

great deal to the network traffic security domain, a number of weaknesses still exist [23].  Open 

source IDS, such as Snort, monitor network traffic to detect invalid communication using 

predefined attacks [24].  Anomaly detection methods can examine large amounts of data in a real 

time.  Machine learning techniques require less expert knowledge and provide good 

performance; however, a truly comprehensive IDS will always require human expertise [5].  A 

number of systems were examined from literature and most proposed multi step approaches.  

The most recent approach, proposed by Zheng et al. [25], described a multi step approach based 

on Support Vector Machines(SVM) on time binned NetFlow data.  After identifying malicious 

time bins, the authors’ used Kullback-Leibler distance between the test set and training set to 

identify the features contributing to the anomaly [25].  Another approach, proposed in [22], 

involved data collection, conversion into session data and feature extraction.  Training data was 

used to build a normal profile and anomaly detection was conducted using a variety of clustering 

algorithms.  In [26] a similar approach was adopted; however, clustering was used to filter data 

and Support Vector Machine algorithms were used to detect anomalies.  In [27], a multi step 
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detector using wavelets was proposed.  Adaptive threshold methods were first applied for quick 

detection and then finer analysis was applied using continuous wavelet transforms.  In [28], a 

five step approach was proposed.  It involves data conversion, feature analysis, wavelet 

transform, statistical analysis and threshold techniques, wavelet synthesis and anomaly detection.  

The types of anomaly detection methods in anomaly detection systems vary in literature; but, to 

the best of our knowledge, all propose multi-step approaches.   

The first steps consistently involved data collection and data conversion.  None of the 

machine learning techniques reviewed analyze raw network traffic data.  There are various 

methods to characterize the data for analysis.  As seen in [29], raw TCPDUMP data from 1999 

DARPA ID dataset is converted into network flow logs which based on different basic metrics.  

In Barford et al. [7], analysis is only applied to byte and packet counts, over five minute 

sampling intervals, from wide-area routing links.  Although [17] does not reflect current network 

situations; it is still commonly used in research [8].  Another method used in literature is 

NetFlow and it is the industry standard to collect and characterize network traffic data [2].  In 

Lakhina et al. [16], NetFlow data was grouped into a time series and projected onto an 

anomalous subspace.  In [30], the time bin features used in [16] were used and discussed how 

easily they can be scaled to larger and more diverse datasets.  Brauckhoff et al. [6] used three 

weeks of NetFlow data from August 2007 by aggregating the traffic at 15 minute intervals.  

Alternatively, [31] show that there exists different ways of time binning data which offer good 

performance for tracking per-flow data.  It presented an alternative to NetFlow.   

It is common for Intrusion Detection Systems to consider raw network traffic that has 

been characterized different ways, such as NetFlow.  The data is further profiled in order to 

reduce data volume and detection algorithms are applied.  These detection methods can be 
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performed either real-time or offline [5].  Alarms can be generated through inspecting the results 

of the algorithm and is required for automated detection.  For example, if a database is used, 

SQL triggers which initiate a predefined action for a specific condition can be used [5].   

Typically, threshold techniques are used to anomalies automatically.  Yet, considering the 

importance of the network administrator, visual plotting of the output is beneficial. 

In this research, Principle Component Analysis was used.  It has been used in pervious 

works, such as [16], [30], [6] and [15].  Lakhina et al. [16] first made this approach popular.  

Ringberg et al. [15] examined [16] and critiqued it.  Through extensive analysis, they showed 

that selection criterion to build the anomalous subspace directly impacts the error rate.  More 

specifically, the PCA algorithm is very sensitive to top k parameter, and it varies across different 

networks or aggregations [15].  The authors found that sufficiently large anomalies can 

contaminate the operation of the algorithm.  Lastly, they observed that the PCA algorithm has 

different effectiveness under different traffic types and measurements.  In [15], it was concluded 

that it is difficult to pinpoint exact anomalous flows.  Brauckhoff et al. [6] also examined the 

works proposed by [16], and suggested that the standard PCA analysis lacked temporal 

consideration.  They suggested implementing a time shift technique in order to compensate for 

data trends over time. 

 This research also looked at spectral analysis and wavelet analysis.  There are different 

variations of wavelet analysis, and there have been different works on it.  In [27], the continuous 

wavelet transform was proposed to detect Denial of Service attacks.  Other works were based on 

the Discrete Wavelet Transform.  As outlined in [32], an approach which uniquely applied four 

algorithms which were based on different basis functions.  In [7], an approach used to identify 

frequency characteristics of anomalous network traffic methods.  It focused on identifying 
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anomalies by removing predictable, ambient parts and only then employing statistical methods 

[7]. 

 There have been few works comparing the spectral and statistical analysis techniques in 

the same way our research does.  One hybrid approach, as outlined in [33], proposed a multi-step 

approach that used a Kalman filter to filter out normal traffic and wavelet filtering to process the 

residual data.  The authors concluded that their approach did not perform very well.  There has 

been some work done comparing the statistical and spectral analysis approach used in our work.  

In [19], the authors examined the PCA and wavelet anomaly detection methods.  The authors 

observed that wavelets are just as good as entropy-PCA in most cases.  Considering a Distributed 

Denial of Service attacks, it was found wavelets performed better.  The authors observed that the 

effectiveness of entropy-PCA depends strong on top k parameter [19].  The authors performed 

extensive analysis and concluded that there exists no method consistently better than the other in 

detecting all types of anomalies.  There were scenarios where both methods were inconclusive. 
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3.0 Anomaly Detection Data, Algorithms, and Threshold 

Techniques 

This chapter describes profiling approaches applied to the network traffic data.  The three 

anomaly detection algorithms are described: the Haar wavelet decomposition algorithm, the 

modified principle component analysis algorithm and the hybrid analysis algorithm.  These 

algorithms are applied to profiled network traffic data in order to get a measure of anomalous 

behaviour.  Lastly, the threshold techniques used to automatically isolate potential anomalous 

time slices are discussed. 

3.1 Network Traffic Data and Data Profiles 

 The network traffic dataset used in this research is the Kyoto2006+ dataset [8].  This 

dataset provides session information, anti-virus and intrusion detector information and source–

destination routing information (See Table 2.1 for a complete listing of features).   Different data 

profiles were created to reduce the traffic volume.  One type of profile was for wavelet analysis, 

and the other for PCA analysis.  The hybrid approach used profiles created for PCA analysis.  

Each profile describes a certain period of time or time bin, and no time bins overlap.  Each of 

these time bins have a start time, end time and various aggregate features derived from flows 

which fall within that particular time bin.  For example, total bytes is the total amount of bytes 

transmitted by all flows with a start time after the bin start time and before the bin end time (See 

Table 3.1 and Table 3.2 for a complete listing of features for the wavelet and PCA profiles).  The 

anomaly detection algorithms were applied to these profiles in order to determine potential time 

slices with malicious behaviour. 
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Features Description 

Start_time The beginning of the time bin.  All flows 

beginning by this time and ending by the 

corresponding end time are placed into the 

particular bin. 

End_time The finish of the time bin.  All flows 

beginning by the corresponding start time 

and ending by this time are placed into the 

particular bin. 

TCP_Bytes Total number of bytes of the TCP protocol 

in this particular time bin. 

TCP_Flows Total number of flows of the TCP protocol 

in this particular time bin. 

TCP_Source_IP_Address_Entropy Entropy of source IP addresses from TCP 

protocol flows in this particular time bin. 

TCP_Destination_IP_Address_Entropy Entropy of destination IP addresses from 

TCP protocol flows in this particular time 

bin. 

TCP_Unique_Source_IP_Address_Count Total number distinct source IP addresses 

from TCP protocol flows in this particular 

time bin. 

TCP_Unique_Destination_IP_Address_Count Total number distinct destination IP 

addresses from TCP protocol flows in this 

particular time bin. 

OTHER_Bytes Total number of bytes not of the TCP 

protocol in this particular time bin. 

OTHER_Flows Total number of flows not of the TCP 

protocol in this particular time bin. 

OTHER_Source_IP_Address_Entropy Entropy of source IP addresses not from 

TCP protocol flows in this particular time 

bin. 

OTHER_Destination_IP_Address_Entropy Entropy of destination IP addresses from 

TCP protocol flows in this particular time 

bin. 

OTHER_Unique_Source_IP_Address_Count Total number distinct source IP addresses 

not from TCP protocol flows in this 

particular time bin. 

OTHER_Unique_Destination_IP_Address_Count Total number distinct destination IP 

addresses not from TCP protocol flows in 

this particular time bin. 
Table 3.1: PCA Profile Features 
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Features Description 

Start_time The beginning of the time bin.  All flows beginning 

by this time and ending by the corresponding end 

time are placed into the particular bin. 

End_time The finish of the time bin.  All flows beginning by 

the corresponding start time and ending by this 

time are placed into the particular bin. 

TCP_Bytes Total number of bytes of the TCP protocol in this 

particular time bin. 

TCP_Flows Total number of flows of the TCP protocol in this 

particular time bin. 

TCP_Source_IP_Address_Entropy Entropy of source IP addresses from TCP protocol 

flows in this particular time bin. 

TCP_Destination_IP_Address_Entropy Entropy of destination IP addresses from TCP 

protocol flows in this particular time bin. 

TCP_Source_Port_Entropy Entropy of source ports from TCP protocol flows 

in this particular time bin. 

TCP_Destination_Port_Entropy Entropy of destination ports from TCP protocol 

flows in this particular time bin. 

OTHER_Bytes Total number of bytes not of the TCP protocol in 

this particular time bin. 

OTHER_Flows Total number of flows not of the TCP protocol in 

this particular time bin. 

OTHER_Source_IP_Address_Entropy Entropy of source IP addresses not from TCP 

protocol flows in this particular time bin. 

OTHER_Destination_IP_Address_Entropy Entropy of destination IP addresses from TCP 

protocol flows in this particular time bin. 

OTHER_Source_Port_ Entropy Entropy of source ports not from TCP protocol 

flows in this particular time bin. 

OTHER_Destination_Port_ Entropy Entropy of destination ports not from TCP protocol 

flows in this particular time bin. 
Table 3.2: Wavelet Profile Features 

3.2 Wavelet Analysis in Anomaly Detection 

Wavelet analysis examined how quickly data changed and the magnitude of this change 

over time.  The wavelet transformations reveal the composition of a signal in terms of the 

building blocks, or translated basis functions, of the transformed domain [10].  The 

decomposition resulted in a set of orthogonal signals or components which combined, describe 

the signal entirely.  In our application, the input into the system was the wavelet time bin profiles 
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(See Table 3.2 for an outline of the input features).  The wavelet transformation applied in this 

thesis was the Haar wavelet decomposition.  Haar wavelets are the most basic wavelets and are 

able to approximate any continuous function [10].  The Haar wavelet analysis can only examine 

single dimensional signals.  In this research, the input signal was each of the feature 

observations.  Each of the features from Table 3.2 were applied independently as input signals.  

Each was decomposed and frequency components of the signal were examined in an attempt to 

detect patterns which could be previously missed.   

The process of applying Haar wavelet decomposition to network anomaly detection 

consists of three main steps.  First, a Haar wavelet high pass filter, low pass filter and mid pass 

filter were each independently applied to the input data (See Figure 3.1 for a filtering diagram).  

As outlined in [7] the motivation for frequency filtering in anomaly detection was that the high 

frequency values highlight the start and end times of the anomalous behaviours and the mid pass 

frequency values highlight the duration of the potential attacks.  Next, each of the filtered 

datasets was normalized by using Equation 3.1.  The local variability over a sliding window was 

calculated on each of the normalized datasets.  The Haar wavelet filtering occasionally produced 

an output of negative values which is not semantically meaningful in the network traffic domain.  

The local variability provided a positive measurement of how sparse the data in the window was 

(See Equation 3.2).  Specifically, a larger local variability indicates a greater change of values in 

the window.  Lastly, in order to obtain a single scalar value in time, the deviation score was 

calculated.  The deviation score was a summation of weighted local variability values for each 

point in time.  This deviation score was a measure of how often and how much values change at 

a point in time (See Equation 3.3).  Either a plot of these scores was produced for visual 
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inspection, or threshold techniques were applied for automated classification of anomalous time 

bins (See Figure 3.2). 

 
Figure 3.1: Activity Diagram of Haar Wavelet Filtering Approach 

             
              

                      
 

Normalizedi – normalized observation element i 

obs – set of observations 

Equation 3.1: Normalization Formula 

                                                         
highpass – set of normalized highpass values  

midpass – set of normalized midpass values 

lowpass – set of normalized lowpass values 

H, M, L – set of weights 

Equation 3.2: Deviation Score formula 

                                              
Size – size of window 

Var – variance of input set 

Score[x,y] – subset from scores starting at x to y 

Equation 3.3: Local Variability formula 
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Figure 3.2: Local Variability score for March 8, 2009 with 5% infection rate 

3.3 Modified Principle Component Analysis in Anomaly Detection 

 Principle Component Analysis (PCA) was designed to describe a set of observations from 

correlated variables into a set of new values of uncorrelated variables [13].  These variables were 

referred to as principle components and by definition are orthogonal.  There are an equal number 

of principal components as original variables or features.  The motivation was to create new 

independent components which describe the observations in more detail and uncover patterns 

and trends in data.  For example, in a two-dimensional dataset, a line of best fit would be 

considered a principle component.  In our application, the input into the system was the PCA 

time bin profiles (See Table 3.1 for an outline of the input features).  As discussed in [6], 

applying straightforward PCA, as in [16], for anomaly detection does not account for temporal 

change.  The type of PCA transformation applied in this work was a modified PCA approach, 

taken from [6].  In order to account for temporal changes, Brauckhoff et al. [6] proposed to 

create a spatio-temporal matrix.  This matrix was a time shifted, by a variable amount of time 

bins, version of the original data matrix.  For every feature and for every shift, a new “time shift” 
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feature was created, and consisted of the subsequent observations.  A number of time bins 

observations were dropped to compensate for the shifting (See Figure 3.3 for the time shifting 

illustration).  Unlike wavelet analysis, PCA examined the entire input matrix as a whole, and 

performed an analysis on the entire dataset. 

 
Figure 3.3: Time shifting Illustration 

The modified PCA analysis was applied to the entire spatio-temporal input matrix.  The 

result was a set of ranked principal components.  The first component was the most significant 

and the last was the least significant.  Depending on the selection criteria, a number of 

components were selected to build the anomalous subspace.  This research, examined the Top K 

component selection criteria, the normal distribution selection criteria and the 99% of total space 

selection criteria.  Applying one of these criteria built a component matrix, referred to as W.  

Each of the components was a column vector in the matrix W.  Lakhina et al. [16] modeled the 

normal and residual space and projected the observations onto this space (See Equation 3.4 and 

Equation 3.5).  For anomaly detection, the residual space was only considered.  The original 

dataset was projected onto the residual space and a new transformed matrix was created.  In 

order to get a measure of how anomalous each observation in time was, the Square Prediction 

Error (SPE) was calculated.  The SPE is the Euclidean magnitude squared of the transformed 
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observation in time (See Equation 3.6).  Similar to the wavelet analysis, either a plot of these 

SPE scores could be produced for visual inspection, or threshold techniques were applied for 

automated classification of anomalous time bins. 

                  

W – column matrix of selected components 

y – original data observations 

Equation 3.4: Normal Space formula [16] 

                      

W – Column matrix of selected components 

I – Identity matrix of size I 

y – Original data observations 

Equation 3.5: Abnormal Space formula [16] 

            

SPEi – Square Prediction error at observation i 

C – Matrix of anomalous subspace components 

Xi – An observation, column vector from original dataset 

Equation 3.6: Square Prediction Error (SPE) formula [16] 
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Figure 3.4: Activity Diagram of Modified PCA approach 

 
Figure 3.5: SPE score of March 8, 2009 for 5% infection rate 

3.4 A Hybrid Analysis in Anomaly Detection 

 The hybrid analysis is a combination of the traditional Principal Component Analysis 

approach, as presented in [16], and Haar wavelet analysis, as used in [7].  Each of the approaches 
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was described in sections 3.2 and 3.3 respectively.  The hybrid approach uses the statistical and 

spectral analysis in a complementary fashion, and attempts to be less parameter dependant.  The 

hybrid approach first aims to examine the entire dataset as a whole, as in PCA.  Subsequently, a 

detailed localized frequency analysis to identify potential anomalous time bins is applied.  In our 

application, the input into signal was the PCA time bin profile matrix (See Table 3.1 for an 

outline of the input features).  Creating a time shifted spatio-temporal input matrix, as adopted in 

[6], was not considered.  Next, the Haar wavelet analysis, examines the behaviour over time, and 

the concerns which shifting addressed are considered then. 

The hybrid algorithm first applied PCA analysis to obtain a set of components.  As in 

[16], the normal and residual spaces were modeled, and as before, only the residual space was 

considered.  Unlike previous analysis in this research, for simplicity, only the single most 

significant component was considered.  It was determined that the most significant component 

occupied a majority of the space.  Limiting the selection criterion to “Top K=1 components” 

reduced the dependency on user specified parameters.  As before, the original data input was 

projected onto the residual space in order to produce a transformed dataset for further analysis.  

The transformed dataset was comprised of the same amount of time bin observations as the input 

data.  Applying the projection did not drop or create any new features.  It did transform the 

existing ones, and strip them of their semantic meaning.  The semantic meaning may have been 

lost; however, the new features were more representative of the behaviour and were able to 

potentially reveal patterns or trends. 

The Haar wavelet analysis examines the degree of change of a single feature set at a time.  

This approach strives to be independent from user input parameters.  The hybrid algorithm 

applies a selection criterion between features, based on variance.  Variance is a measure of 
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spread within a dataset.  A dataset may have the same average, but the dataset with the greater 

variance is more spread out (See equation 3.7).  In the hybrid approach, every feature dataset is 

examined and the feature with the greatest variance is selected for wavelet analysis.  The 

motivation was that the most spread out data had the greatest potential for large changes over 

time.  Next, as outlined in [7], the Haar wavelet high pass filter, low pass filter and mid pass 

filter are each independently applied to the input data.  Each of the filtered dataset is normalized 

(see Equation 3.1) and a score, similar to deviation score, is calculated.  This score is a 

summation of weighted normalized frequency values for each point in time.  Local variability 

was not considered in order to be independent from user defined parameters.  The score 

highlights the descriptive properties of the filtering and was sufficient enough to characterize the 

behaviour of the data.  Examining data over a subset is offloaded to the threshold phase.  Yet, the 

Haar wavelet filtering produced an output of negative values which is not semantically 

meaningful in the network traffic domain.  In this case, the absolute difference, or delta, between 

two time bin scores (See equation 3.8) is examined.  Either a plot of these delta scores was 

produced for visual inspection, or threshold techniques were applied for automated classification 

of anomalous time bins. 

       
 

 
        

 

   

 

Equation 3.7: Variance formula 

                              
Scorei – the anomalous score for a specific time bin 

Equation 3.8: Delta score formula 
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Figure 3.6: Hybrid PCA-Haar  Wavelet Filtering activity diagram 

 
Figure 3.7: Delta score for March 8, 2009 for 5% infection rate 

3.5 Threshold Techniques 

 A visual plot was a quick and easy way to present data.  Yet, automating a specific task 

has many advantages, such as decreased detection time, reduction of human error and decreased 
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operational complexity.  The following subsections discuss various threshold techniques applied 

to the output plots of each of the anomaly detection methods.   

3.5.1 Average 

The quickest and simplest threshold calculation is the average.  This calculation considers 

the entire set of scores and calculates the statistical mean (See Equation 3.9).  However, an 

overwhelming majority of flows are less than one minute in length.  It is problematic calculating 

an average from an analysis over a day or two.  The behaviour the next day may be very much 

different and giving equal consideration to each time bin score may not be appropriate.  A 

moving average, of size N observations, is a way of handling this range in time.  The statistical 

mean for the first N elements is calculated and is the threshold value for the first N time bins.  

Then, the window slides over by one and the threshold value for time bin N+1 is the average.  

This repeats until the window reaches the end of observations (See Equation 3.10).  Any score 

greater than either than the total average or moving average at this point in time is flagged as 

potentially anomalous for the network administrator. 

                
       

 
 

score – set of scores 

n – number of elements in set 

Equation 3.9:  Static Average formula 

                
              

 
 

score[x,y] – set of scores starting at x to y 

n – number of elements in set 

Equation 3.10: Moving Average formula 
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3.5.2 Sliding Weighted Average 

As discussed in the previous section, it may not always be appropriate to give equal 

weighting to each time bin score value.  The sliding weighted average is alternative to the sliding 

moving average.  This approach applies a weighting to each time bin score value and considers 

calculates the statistical mean.  Each observation has a weight that is multiplied to the 

observation value.  The weighting has an initial weighting of 1.0 and decrements evenly to 0.  

Similar to the moving average described in section 3.10, a window size, of N observations, is 

provided and those elements in the window are considered.  This repeats until the window 

reaches the end of observations (See Equation 3.11).  Any score which is greater than this values 

determined at this point in time is flagged as potentially anomalous for the network 

administrator. 

 

                       
   

 
                 

 
 

score[x,y] – set of scores starting at x to y 

n – number of elements in set 

W – set of weights 
Equation 3.11: Weighted Moving Average formula 

3.5.3 Average without outliers 

Similar to the previously discussed anomaly detection algorithms, this threshold 

technique attempts to separate normal behaviour and residual values.  The motivation is to build 

a curve which represents the normal behaviour and act as a threshold.  There are two user 

defined parameters: the number of observations to be considered at a time, N and the growth 

tolerance, GT.  The growth tolerance, GT, defines how much larger the time bin score can be 

from the threshold value.  The first time bin score is the first threshold value.  The average of the 



35 

 

first two time bin scores is the second threshold value.  The average of the first three time bin 

scores is the third threshold.  This continues up until the first N threshold values are determined.  

The average of the first N many scores is considered the running threshold.  If the next element is 

greater than the running threshold plus the tolerance, the corresponding time bin is flagged as 

potentially anomalous.  Also, in this case, running threshold is not updated, and the threshold for 

that time bin is the current running threshold.  However, if the element is less than or equal to the 

running threshold plus the tolerance, the running threshold is updated.  The update calculates the 

average over the N elements, considering the new score and dropping the oldest score.  The 

threshold value for that time bin is the new updated threshold value.  Each element is considered 

one by one until all data has been examined.  Any time bin scores greater than the corresponding 

threshold value are flagged as potentially anomalous for the network administrator. 
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4.0 Prototype Design and Implementation 

A prototype test bed was developed to perform experiments.  The algorithms and various 

functions outlined in previous chapters were implemented in order to obtain experimental results 

perform analysis.  The prototype anomaly detection test bed is comprised of two components; 

the front end user interface and the backend server.  It is implemented with client-server 

architecture.    The front end is a browser based client interface and was implemented using an 

interactive open-source Web development framework, called Adobe Flex [34].  The browser is 

the responsible for handling user commands, making requests to the server and presenting data.  

The back end server is an open-source, Java based, web server called Apache Tomcat [35].  This 

server handles data lookup requests and applies various algorithms to specified datasets.  The 

server performs various operations requested, and responds to the front end.  The user is able to 

view the results analyze them and execute more operations (See Figure 4.1 for a system 

diagram). This chapter provides a high level overview of the test bed and describes the design 

and implementation of each of the two components. 

 
Figure 4.1: Test bed system diagram 

4.1 Front-end Interface 

 Typically, desktop applications are stand alone programs which are platform dependant 

and sensitive to a number of environment parameters, such as hardware specifications, operating 
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systems, etc.  Applications can become complex to develop and maintain.  Conversely, web 

pages are tremendously easy to implement.  The framework front end is browser based, built 

using the Adobe Flex Web framework, and is very quick and easy to implement.   The Adobe 

Flex framework is an open source technology used to create rich Internet applications.  These 

applications are web pages that are dynamic, their content is reloadable and they act like desktop 

applications.  Adobe Flex supports traditional Web framework functions such as POST and GET 

requests to servers.  Furthermore, it provides a number of graphs and widgets which bind with 

XML data to render detailed illustrations.  Adobe Flex is a powerful tool, does not require 

extensive programming experience to use and satisfies all of the client interface requirements. 

[34] 

The network administrator operates the browser based front end.  The interface enables 

the user to perform and examine all phases of the proposed anomaly detection system (See 

Figure 4.2 for a use case diagram of anomaly detection test bed).  The operator can load raw 

network traffic data into the system, and drop any existing datasets.  The operator can create 

subsets of data for analysis from loaded traffic data.  These subsets can contain a desired 

infection ratio during a specified time segment.  Data profiles can be created from the subsets 

and preserved for future analysis.  The anomaly detection algorithms, described in chapter 3, can 

be applied to data profiles, and the results are visualized in a plot for manual inspection (See 

Figure 4.3 for a screen capture of a plot).  For the results, in some cases, higher scores can 

overwhelm the behaviour of smaller scores.  The user has the ability to remove specific scores 

such that the plot can be amplified on the remaining data.  For manual investigation, the 

threshold function is plotted on top of the results.  The program supports manual shifting of the 

threshold.  The various threshold techniques, as outlined in section 3.5, can also be applied to 
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provide an automatic classification of time bins (See Figure 4.4 for a screen capture).  The 

Kyoto2006+ is a labeled dataset and the evaluation scores can be calculated to provide the user a 

scalar measure of how well the approach performs under the specified conditions (See Section 

5.2 for an outline of the evaluation measures).  The front end is comprehensive enough such that 

the user can perform their own inspection, or rely on the system automated results.  

 

Figure 4.2: Use case diagram of test bed system 
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Figure 4.3: Screen capture of SPE scores plotted from test bed 
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Figure 4.4: Screen capture of information panel from test bed 

4.2 Back-end Server 

The back end serves the client user interface.  The server sits idle until requests are made 

and responds to them in an XML format.  The back end is an Apache Tomcat Web server, which 

implements Java servlets.  To handle incoming http requests, for a pure Java Web serving 

solution [35].  All Java classes, interfaces and libraries are created, compiled, packaged together 

and then deployed on the Apache Tomcat server.  Java satisfies the requirements for this 

application, as it is a powerful platform with the ability to connect with a local file system, a 

database and perform CPU intensive computations. 

The server interfaces with various system components.  As the network traffic data comes 

in text files, the system interfaces with the file system and a database.  A database is used 
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because it provides support for complex queries and enables specific data to be accessed easily.  

The server loads network traffic data into a database.  Additionally, it poses queries to the 

database in order to create the profiles and save them into text files for future analysis.  All of the 

anomaly detection algorithms described in Chapter 3 are implemented, and can be applied to a 

user specific dataset.  In order for increased system stability, open source libraries, such as a 

Matrix library and a Haar wavelet filtering library, are leveraged (See Figure 4.5 for a class 

diagram of the system).  Open source libraries from credible sources, such as Google projects, 

are preferred because they are maintained by a community and have been used extensively.  The 

intense computations are preformed on the server side to remove workload from the user 

interface.  Java is a powerful platform which is more appropriate to perform CPU intensive 

computations over a Web scripting language.  The threshold techniques, evaluation operations 

and other utility functions were implemented in order to support all the features of the client 

interface.  As required by Adobe Flex, all server responses are formatted in the XML format. 

 
Figure 4.5: Class diagram of backend server from test bed 
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5.0 Experiments and Evaluation 

This chapter presents the experiments conducted in this research, including the data 

sources used and data profiling.  Furthermore, it outlines the intrusion detection algorithm step, 

threshold / anomaly detection step and lastly, the evaluation.   

5.1 Experiment Overview 

 There were a number of experiments conducted with the anomaly detection test bed to 

determine the performance of the three anomaly detection algorithms presented in Chapter 3.  

Prior to applying the algorithms, datasets for testing needed to be created and profiled.  A 

number of specific dates and infection times were selected for testing.  These test sets were 

created and then both the PCA and the Wavelet profiles were extracted.  The three algorithms 

were applied independently and using various parameters.  Threshold techniques were applied to 

determine the potentially anomalous time bins.  As the test sets were labeled, evaluation 

techniques were used to evaluate the performance of the intrusion detection algorithms.  

5.2 Experimental Setup 

 This section outlines how the experiments were constructed and provides the rationale for 

the experiment decisions made.  First, data setup is discussed and then evaluation techniques are 

described. 

5.2.1 Data Source Setup 

As discussed in section 3.1, the Kyoto2006+ data source was used in experimentation [8].  

The Kyoto2006+ dataset provides session data for each day, starting in November 2006 until the 

end of August 2009.  The volume of network traffic sessions increased with time.  For example, 
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November 2006 had 1,223,899 sessions, November 2008 had 2,374,504 sessions and July 2009 

had 3,870,725 sessions.  The data available in 2009 was the largest, which is why analysis began 

in January 2009. 

As per the Kyoto2006+ specification, there are three features which outline the output of 

existing open-source detectors [8].  Also, the label feature indicates the authors’ belief about the 

particular session is anomalous or not.  For our research, normal flows were defined as flows the 

authors labeled as normal (1) and raised no detector alerts.  Furthermore, infected flows were 

flows labeled anomalous (-1) by the authors and raised an alert with at least one of the three 

detectors.  This approach used the detectors as validation to remove any uncertainty from the 

labeling.  The session would more likely be normal or anomalous if all methods agreed. 

One major limitation from this dataset is the amount of flows labeled as -1.  Examining 

the flow counts (See Table 5.1), it can be observed that there is an overwhelming majority of 

these flows and this issue has been raised by Song et al. [26].  The aforementioned definition of 

anomalous flows was applied, and the number reduced so much that it became the minority.  

Next, the definition of normal flows was applied and observed that the number of normal flows 

also reduced.  The result was that there were many more normal flows than anomalous, and the 

total amount of data was less than before.  The approach used in this research, similar to [26], 

was to build a test set using some normal and some anomalous flows. 

Our analysis was applied on 24 hours at a time.  Throughout the 2009 dataset, the 

duration of sessions less than one minute was 98%.  Performing analysis on 24 hours at a time 

would maintain small enough time bin duration such that anomalies would not be hidden.  

Although other works, such as [6] and [7], used a different data source with different features, 

they still used analysis over one day.  A total of 16 24-hour time ranges, which had different 
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behaviours, were selected.  This research considered two attack characteristics: length of attack 

time and intensity of attack.  Hence, experimentation was performed over four different infection 

scenarios:  

 short length and high intensity.  

 long length and high intensity. 

 short length and low intensity.  

 short length and high intensity.   

 

The base case with no infection, 0% infection rate, was considered.  For low infection 

rates, 5%, 10%, and 20% infection were created.  For high infection rates, 75%, 100% and 150% 

infection were created (See Equation 5.1 for infection rate calculation).  A total of 16 different 

time ranges, four for each scenario, were picked out.  These ranges varied in days of the week, 

and actual time of day in which the attack occurred (See Table 5.2 for a breakdown). 

 

Month Total 

Flows 

Total 

Normal 

(label = 1) 

Total 

Abnormal 

(label = -1) 

Total our normal  

(label = 1 and no 

alerts) 

Total our abnormal  

(label = -1 and at least 

one alert) 

January 3,670,176 2,216,820 1,453,356 2,177,273 129,571 

February 3,321,532 1,947,619 1,373,913 1,911,817 113,398 

March 3,398,114 1,861,103 1,537,011 1,828,827 139,291 

April 3,767,136 2,637,097 1,130,039 2,534,233 106,136 

May 3,747,527 2,153,355 1,594,172 2,108,499 107,484 

June 3,743,655 1,852,554 1,891,101 1,807,121 101,633 

July 3,870,725 2,086,698 1,784,027 2,026,854 81,632 

August 3,710,941 1,640,651 2,070,290 1,568,229 223,476 
Table 5.1: Kyoto2006+ flow count breakdown per month 
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Dates Start Time Analysis Duration 

Short Duration and Low Infection Rates 
  

Tuesday, January 6, 2009 0:00 24 hours 

Sunday, March 8, 2009 22:00 24 hours 

Sunday, April 26, 2009 20:00 24 hours 

Tuesday, May 5, 2009 21:30 24 hours 

Short Duration and Low Infection Rates 
  

Friday, February 20, 2009 0:00 24 hours 

Thursday, March 19, 2009 0:00 24 hours 

Thursday, May 28, 2009 18:00 24 hours 

Tuesday, July 14, 2009 19:00 24 hours 

Short Duration and High Infection Rates 
  

Thursday, January 15, 2009 0:00 24 hours 

Wednesday, April 1, 2009 20:30 24 hours 

Monday, June 22, 2009 0:00 24 hours 

Sunday, July 5, 2009 0:00 24 hours 

Long Duration and High Infection Rates 
  

Monday, February 9, 2009 21:00 24 hours 

Wednesday, June 10, 2009 22:00 24 hours 

Sunday, August 9, 2009 20:00 24 hours 

Friday, August 28, 2009 19:00 24 hours 
Table 5.2: Dates in experimentation by scenario and analysis duration 

               
                            

                 
      

Equation 5.1: Infection rate formula 

 In order to maintain statistical independence, ten test sets were created.  Similar to Song 

et al. [26], all normal flows and a subset of anomalous flows to create the desired infection rate 

in a test set were used.  The test sets were derived from the original primary dataset.  At each of 

the 16 time ranges, all the normal flows from the main collection were randomly and evenly 

distributed among the test sets.  Each flow would be in only one test set, and all test set sizes had 

the same amount of flows.  Next, depending on testing scenario, or desired infection ratio, a 

number of anomalous flows were injected.   The flow characteristics were not changed.  Due to 
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the limited number of available anomalous flows, membership was not restricted to one test set.  

From these test sets, profiles were extracted and the algorithms were applied. 

 
Figure 5.1: Experiment high level diagram 

5.2.2 Performance Measurement Setup 

The Kyoto2006+ is a labeled dataset, so it is possible to measure how well the algorithms 

perform.  Two measurements were used to evaluate the performance of the algorithms: accuracy 

and precision.  Accuracy is defined as how correctly the time bins are classified.  It was 

measured using a hit miss count which counted the number of correct and incorrect 

classifications.  The definition of precision is how exactly the algorithm can classify time bins.  It 

was measured using a single scalar value to show how well the detection method performs. 

5.2.2.1 Hit and Miss Count 

The hit miss count compares the presence of anomalous flows within time bins.  As part 

of the profiling phase, the number of anomalous flows and the number of normal flows per time 

bin preserved in the form of a list.  If the anomalous flow count in a time slice was greater than 
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zero, the bin was classified anomalous.  Otherwise, it would be classified normal.  After applying 

the anomaly detection algorithms and using the threshold techniques, a list of presumed 

abnormal and normal time bins was produced.  The actual list and the experimental list were 

compared and the hit and miss counts were calculated.  The hit count was the number of time 

slices in which the labels matched up in both lists.  Conversely, the miss count was the number 

of time slices in which the labels did not match.  These counts provide an indication of how 

accurately the algorithm performed. 

 
Figure 5.2: Hit and miss count illustration 

5.2.2.2 Hit and Miss Score 

The hit and miss score is a credit scheme where different amounts of credits are awarded 

and taken away based on the situation.  There is some uncertainty with the information provided 

by the Kyoto2006+ detectors.  The programs are primarily signature based detection systems and 

may miss some anomalies [4].  The credit score aims to accommodate for this uncertainty (See 

Table 5.3 for an outline of the credit scoring key).  Similar to the hit and miss count, the number 

of anomalous and normal flows for each time slices was preserved.  After applying the 

algorithms, a list of presumed abnormal and normal time bins was produced.  Each time bin 

flagged as abnormal was compared with the known counts of normal and abnormal flows.  In the 

most obvious case, where there are all infections and no normal flows, two credits are awarded.  

If there are no flows at all, two credits are taken away.  No reward or penalty was awarded if 

only normal flows were present.  This may be a scenario in which the authors of the Kyoto2006+ 
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could have incorrectly classified the bin.  If a bin with normal and anomalous flows is classified, 

then one credit is awarded.  These scores provided an indication of how precisely the algorithm 

performed.  A higher score indicates a more precise analysis.   

Anomaly Count Normal Count Credits 

0 > 0 0 

0 0 -2 

> 0 > 0 +1 

> 0 0 +2 
Table 5.3: Credit Score Breakdown 

5.3 Experimental Procedure 

For each method, a number of experiments were conducted.  The parameters considered 

for each method include the combination of the infection rate, the four scenarios described in 

section 5.2.1, and the time ranges.  Table 5.4 summarizes the tunable parameters and default 

values adopted for the experiments.   The following summarizes some experimental conditions: 

 Infection rate: 0%, 5%, 10%, 20% and 75%, 100%, 120% 

 Length of attack time: short (45 minutes) and long (150 minutes) 

 Intensity of attach: low (0%, 5%, 10%, 20%) and high (75%, 100%, 120%) 

 Number of time ranges: 16 
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Algorithm Parameter Values Default Value 

Modified 

PCA 

Component Selection 

Criteria 

Subspace method, 

Top k=1, 

Variance > 1 method 

Subspace 

method 

Number of Time Shifts 1,2,3 1 

Haar 

Wavelet 

Filtering 

Input data size / 

Boundaries 

Input size / filtering levels 

128/ (2,3,2),(3,2,2) 

256 / (3,2,3),(3,3,2) 

512 / (3,3,3),(4,3,2) 

128 / ( 2,3,2) 

Local Variability Weights (5, 1, 0), 

(3, 2, 0) 

(5, 1, 0) 

BOTH Threshold method Moving Average without 

outliers, 

Moving Average, 

Static Average, 

Weighted Moving Average 

Moving Average 

without outliers 

Table 5.4: Outline of parameters used in experimentation 

5.3.1 Test Set Creation 

 Analytics were performed on each the available data for each month.  The number of 

anomalous and normal flows every 15 minutes was counted.  For each of the scenarios, listed in 

section 5.2.1, four time ranges were selected.  A total of two days from each of the 8 months in 

2009 were examined.  When examining for appropriate dates, short was defined as three 15 

minute time bins, and long was considered as ten 15 minutes time bins.  A low amount of flows 

were considered to be able to create at most a 20% infection rate.  A high amount of flows was 

considered to be able to create at most a 20% infection rate.  The Modified Principle Component 

Analysis and Haar Wavelet Filtering algorithms each have their own set of tunable parameters 

(See Table 5.4 for an outline of parameters used in experimentation). 

5.3.2 Modified Principle Component Analysis Experiments 

A number of experiments with the Modified PCA were conducted.  In addition, the 

selection criteria used were top K, subspace and variance. SPE scores were calculated as 
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evaluation measurements.  Specific experiments conducted for the thesis are described as 

follows. 

Experiment #1:  Pure data across all time ranges 

- Apply the profiling on 0% infection rate to each test sets. 

- Run the modified PCA algorithm using a number of time shifts and selected component 

selection criteria.  The number of time shifts varies from 1, 2 and 3.  The selection criteria 

options are top K, subspace and variance. 

- Average out the SPE scores from the ten test sets. 

- Plot out average SPE scores versus time. 

- Run for all combinations of time shifts and selection criteria. 

- Repeat for all 16 time ranges. 

 

Experiment #2:  For each of the four dates in the long and low scenario 

- Apply the PCA profiling on the ten 20% infection rate test sets. 

- Filter out any observations which are 15 times more than the mean on one date. 

- Run the modified PCA algorithm using a number of time shifts and selected component 

selection criteria.  The number of time shifts varies from 1, 2 and 3.  The selection criteria 

options are top K, subspace and variance. 

- Average out the SPE scores from the ten test sets. 

- Apply each of the threshold methods to the average output. 

- Apply the two evaluation techniques to each of the threshold methods. 

- Run for all nine combinations of time shifts and selection criteria. 

- Repeat using the ten 10%, and the ten 5% infection rate test sets. 

 

Experiment #3 used the dates of the short and low scenario and repeated Experiment #2.  

Experiment #4 used the dates of the long and high scenario, infection rates of 75%, 100% and 

120% and repeated Experiment #2.  Experiment #5 used the dates of the short and high scenario, 

infection rates of 75%, 100% and 120% and repeated Experiment #2. 
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5.3.3 Haar Wavelet Filtering Analysis Experiments 

A number of experiments with the Haar Wavelet Filtering were conducted.  Three 

different data input sizes of 128, 256 and 512 and their respective filtering boundaries were used.  

In addition, the local variability weights of 5,1,0 and 3,2,0 where used.  Local variability scores 

were calculated as evaluation measurements.  Specific experiments conducted for the thesis are 

described as follows. 

Experiment #1:  Pure data across all dates 

- Apply the profiling using the different number of bins / bin width on 0% infection rate 

test sets.  The number of bins per day is 128, 256 and 512. 

- Run the Haar Wavelet algorithm on the three different profiles using the respective 

boundaries and weight combinations.  See Table 5.4 for a list of sizes and boundaries.  

The weights (high pass, mid pass, low pass) used were (5,1,0) and (3,2,0)  

- Average out the Local Variability scores from the ten test sets. 

- Plot out average Local Variability scores versus time. 

- Run for all combinations of size/boundary and weightings. 

 

Experiment #2:  For each of the four time ranges in the long and low scenario 

- Apply the profiling using the different number of bins / bin width on 0% infection rate 

test sets.  The number of bins per day is 128, 256 and 512. 

- Run the Haar Wavelet algorithm on the three different profiles using the respective 

boundaries and weight combinations.  Refer to Table 5.4. 

- Average out the Local Variability scores from the ten test sets. 

- Apply each of the threshold methods to the average output. 

- Apply the two evaluation techniques to each of the threshold methods. 

- Run for all 12 combinations of boundaries and weightings. 

 

Experiment #3 used the dates of the short and low scenario and repeated Experiment #2.  

Experiment #4 used the dates of the long and high scenario, infection rates of 75%, 100% and 
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120% and repeated Experiment #2.  Experiment #5 used the dates of the short and high scenario, 

infection rates of 75%, 100% and 120% and repeated Experiment #2. 

5.3.4 Hybrid PCA - Haar Wavelet Filtering Analysis Experiments 

Experiment #1:  Pure data across all dates 

- Apply the PCA profiling on 0% infection rate test sets. 

- Run the Hybrid algorithm on the created profile. 

- Plot out average delta scores versus time. 

- Repeat for each of the 16 time ranges. 

 

Experiment #2:  For each of the four dates in the long and low scenario 

- Apply the profiling to 20% infection rate test sets. 

- Run the Hybrid algorithm on the created profile. 

- Average out the delta scores from the ten test sets. 

- Apply each of the threshold methods to the average output. 

- Apply the two evaluation techniques to each of the threshold methods. 

- Run for all 12 combinations of boundaries and weightings. 

 

Experiment #3 used the dates of the short and low scenario and repeated Experiment #2.  

Experiment #4 used the dates of the long and high scenario, infection rates of 75%, 100% and 

120% and repeated Experiment #2.  Experiment #5 used the dates of the short and high scenario, 

infection rates of 75%, 100% and 120% and repeated Experiment #2. 
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6.0 Experimental Results and Discussion 

This chapter presents and discusses the results of the anomaly detection experiments 

conducted using the Kyoto2006+ data source.  Experimental results and discussions for three 

different methods – Modified Principle Component Analysis, Wavelet Analysis, and the Hybrid 

approach – are presented in this chapter.  Those three methods and the experimental procedure 

has been outlined in Chapter 5.  

6.1 Evaluation of Modified Principle Component Analysis 

This section outlines the results obtained from running experiments with the Modified 

Principle Component Analysis (PCA) approach outlined in section 5.3.2 and concludes with a 

brief discussion. 

6.1.1 Modified PCA and Pure Data 

This section examines the results of the Modified PCA approach applied to a dataset with 

no infections.   Figure 6.1 shows the SPE scores of January 6, 2009 on all ten test sets.  This date 

is representative of the 16 selected dates.  Even though there are ten test sets, there seem to be 

test sets which produce an extremely high score compared to the other observations.   The value 

is so high that the other plots visually flatten to zero.  Upon removing these test sets, as shown in 

Figure 6.2, all the remaining test sets behave alike.  Examining the observations for the time bins 

with extremely high scores, it was observed that there were values 15 times larger than the 

particular feature mean.  For the remaining experiments, the PCA data profiles were filtered prior 

to analysis.  This filter removes time slices that have a feature value 15 times greater than the 

feature mean and flags them as potentially anomalous.  Figure 6.3 shows the output of the 
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Modified PCA approach applied to the filtered January 6, 2009 data.  After applying the filter, all 

ten sets have a similar pattern.  As a result, it is possible to create an average curve of the ten test 

sets which is representative of the entire date.  This average is referred to as a footprint.  

Applying the filtering to the 16 dates, it is observed that each date has a distinct footprint.  As 

shown in Figures 6.1, 6.2, and 6.3, regardless of the threshold technique, the algorithm suggests 

that there are anomalies.  An anomaly is present if the score is a visually high value. 

 
Figure 6.1: SPE scores from Unfiltered Modified PCA analysis on January 6, 2009 data 

 
Figure 6.2: Subset of SPE scores from Modified PCA analysis on January 6, 2009 data 
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Figure 6.3: SPE scores from Filtered Modified PCA analysis on January 6, 2009 data 

6.1.2 Short and Low Infection 

This section examines the results of the Modified PCA experiments performed on a low 

infection rate in a short period of time.  The four dates for this particular scenario, outlined in 

Table 5.2, all had consistent behaviour.  As a result, for simplicity, only March 8, 2009 is 

discussed.  Figure 6.4 illustrates the footprints observed with default parameters for the 5%, 10% 

and 20% infection ratio test sets (See Table 5.4 for default parameters).  The infected time bins 

were bins 88, 89 and 90.  None of these plots have a spike during the infected time bins, as these 

bins were filtered out, using the 15 times the column mean approach.   Table 6.1 lists the hit/miss 

scores, and the hit/miss counts.  The default threshold method generates a miss rate of about 

15%.  For other threshold methods, the results obtained for miss count range from 25% to 35%, 

see Section 6.1.8 for details. 

Infection Rate Score Hit Count (% Hit) Miss Count (% Miss) 

5% -2 83 (86%) 13 (14%) 

10% -2 83 (86%) 13 (14%) 

20% -2 84 (87%) 12 (13%) 
Table 6.1: March 8, 2009 - PCA experiment results 



56 

 

 
Figure 6.4: March 8, 2009 - PCA SPE scores 5% (top left), 10% (top right), 20% (bottom) results 

6.1.3 Long and Low Infection 

This section examines the results of the Modified PCA approach experiments performed 

on a low infection rate in a long period of time. The four dates for this particular scenario, 

outlined in Table 5.2, all had consistent behaviour.  As a result, for simplicity, only May 28, 

2009 is discussed.  Figure 6.5 illustrates the footprints observed under default parameters on the 

5%, 10% and 20% infection ratio test sets. The infected time bins were bins 61 - 71.  As before, 

none of these plots had a spike during the infected time bins.  A number of the time bins were 

filtered out.  Table 6.2 lists the hit/miss scores and the hit/miss counts.  The default threshold 

method generates a miss rate of about 20%.  The other threshold methods range from 25% to 

40%, see Section 6.1.8 for details. 
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Figure 6.5: May 28, 2009 - PCA SPE scores 5% (top left), 10% (top right), 20% (bottom) results 

Infection Rate Score Hit Count (% Hit) Miss Count (% Miss) 

5% -2 75 (78%) 21 (22%) 

10% -2 76 (79%) 20 (21%) 

20% -2 77 (80%) 19 (20%) 
Table 6.2: May 28, 2009 - PCA experiment results 

6.1.4 Short and High Infection 

This section examines the results of the Modified PCA approach experiments performed 

on a high infection rate in a short period of time. The four dates for this particular scenario, 

outlined in Table 5.2, all had consistent behaviour.  As a result, for simplicity, only January 15, 

2009 is discussed.  Figure 6.6 illustrates the footprints observed under default parameters on the 

75%, 100% and 120% infection ratio test sets.  The infected time bins were bins 83 - 86.  None 

of these plots had a spike during the infected time bins.  These infected time bins were filtered 

out.  Table 6.3 lists the hit/miss score and the hit/miss counts.  The default threshold method 
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generates a miss rate of about 30%.  The other threshold methods range from 35% to 40%, see 

Section 6.1.8 for details. 

 
Figure 6.6: January 15, 2009 – PCA SPE scores 75% (top left), 100% (top right), 120% (bottom) results 

Infection Rate Score Hit Count (% Hit) Miss Count (% Miss) 

75% 0 66 (69%) 30 (31%) 

100% 0 67 (70%) 29 (30%) 

120% 0 66 (69%) 30 (31%) 
Table 6.3: January 15, 2009 - PCA experiment results 

6.1.5 Long and High Infection 

This section examines the results of the modified PCA algorithm experiments performed 

on a high infection rate in a long period of time. The four dates for this particular scenario, 

outlined in Table 5.2, all had consistent behaviour.  As a result, for simplicity, only June 10, 

2009 is discussed.    Figure 6.7 illustrates the footprints observed under default parameters on the 

75%, 100% and 120% infection ratio test sets.  Unlike previous scenarios, the algorithm was able 
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to determine the anomalous regions.  Time bins 22 - 32 are the infected time bins.  Some of the 

time bins were filtered out, and a major spike highlighted the remainder.  Table 6.4 outlines the 

hit/miss scores and the hit/miss counts measured using the default threshold.  The threshold 

method generates a miss rate of about 20%.  The other threshold methods range from 15% to 

35%, see Section 6.1.8 for details. 

 
Figure 6.7: June 10, 2009 - PCA SPE scores 75% (top left), 100% (top right), 120% (bottom) results 

Infection Rate Score Hit Count (% Hit) Miss Count (% Miss) 

75% 0 76 (79%) 20 (21%) 

100% 0 80 (83%) 16 (17%) 

120% 0 78 (81%) 18 (19%) 
Table 6.4: June 10, 2009 - PCA experiment results 

6.1.6 Varying number of Time Shifts 

The time shifts were introduced by [6] in order to account for temporal change from [16].  

Experiments were performed varying the number of time shifts and the results listed in tables 6.5 
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– 6.8 summarize the measurements for each scenario on the specified dates.  Increasing the 

number of time shifts never improved the score.  The hit/miss scores either remained the same or 

decreased.  Increasing the time shifts increased the miss count.  This direct relationship showed 

that, using the Kyoto2006+ dataset, one time shift was optimal. 

Infection Rate Time Shifts Score Hit Count Miss Count 

5% 1 -2 83 13 

2 -2 78 18 

3 -6 73 23 

10% 1 -2 83 13 

2 -2 78 18 

3 -6 74 22 

20% 1 -2 84 12 

2 -2 78 18 

3 -6 71 25 
Table 6.5: March 8, 2009 - PCA Short and Low infection varying time shift results 

Infection Rate Time Shifts Score Hit Count Miss Count 

5% 1 -2 75 21 

2 -4 74 22 

3 -6 71 25 

10% 1 -2 76 20 

2 -4 73 23 

3 -6 71 25 

20% 1 -2 77 19 

2 -4 75 21 

3 -6 73 23 
Table 6.6: May 28, 2009 - PCA Long and Low infection varying time shift results 

Infection Rate Time Shifts Score Hit Count Miss Count 

75% 1 0 66 30 

2 0 63 33 

3 0 60 36 

100% 1 0 67 29 

2 0 64 32 

3 0 63 33 

120% 1 0 66 30 

2 0 67 29 

3 0 61 35 
Table 6.7: January 15, 2009 - PCA Short and High infection varying time shift results 
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Infection Rate Time Shifts Score Hit Count Miss Count 

75% 1 0 76 20 

2 -1 65 31 

3 -3 60 36 

100% 1 0 80 16 

2 -1 81 15 

3 -3 66 33 

120% 1 0 78 18 

2 -1 79 17 

3 -3 63 33 
Table 6.8: June 10, 2009 - PCA Long and High infection varying time shift results 

6.1.7 Varying Selection Criteria 

The selection criterion determines what and how many components are used in analysis.  

Experiments varying the selection criterion between three options were performed.  As outlined 

in section 2.4, the subspace approach, the variance approach and the top one approach were used.  

The results listed in tables 6.9 – 6.12 summarize the evaluation measurements for selection 

criteria on the specified dates.  Selecting any component with a variance of one or greater 

performed the worst.  It was observed that this approach consistently had the worse hit/miss 

score and hit/miss count.  Selecting only the top component performed better than the variance 

approach in most cases; however, the subspace approach performed the best in all cases. 

Infection 

Rate 

Measurement Subspace 

selection 

Variance > 1 

selection 

Top K = 1 

components 

5% Score -2 -2 -2 

Hit Count 83 59 83 

Miss Count 13 37 13 

10% Score -2 -2 -2 

Hit Count 83 58 83 

Miss Count 13 38 13 

20% Score -2 -2 -2 

Hit Count 84 57 84 

Miss Count 12 39 12 
Table 6.9: March 8, 2009 – PCA Short and Low infection varying selection criteria results 
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Infection 

Rate 

Measurement Subspace 

selection 

Variance > 1 

selection 

Top K = 1 

components 

5% Score -2 -2 -2 

Hit Count 75 61 75 

Miss Count 21 35 21 

10% Score -2 -2 -2 

Hit Count 76 63 76 

Miss Count 20 33 20 

20% Score -2 -2 -2 

Hit Count 77 60 77 

Miss Count 19 36 19 
Table 6.10: May 28, 2009 – PCA Long and Low infection varying selection criteria results 

Infection 

Rate 

Measurement Subspace 

selection 

Variance > 1 

selection 

Top K = 1 

components 

75% Score 0 0 0 

Hit Count 66 55 67 

Miss Count 30 41 29 

100% Score 0 1 0 

Hit Count 67 55 68 

Miss Count 29 41 28 

120% Score 0 0 0 

Hit Count 66 57 67 

Miss Count 30 39 29 
Table 6.11: January 15, 2009 – PCA Short and High infection varying selection criteria results 

Infection 

Rate 

Measurement Subspace 

selection 

Variance > 1 

selection 

Top K = 1 

components 

75% Score 0 2 0 

Hit Count 76 64 76 

Miss Count 20 32 20 

100% Score 0 3 0 

Hit Count 80 67 79 

Miss Count 16 29 17 

120% Score 0 4 0 

Hit Count 78 68 78 

Miss Count 18 28 18 
Table 6.12: June 10, 2009 – PCA Long and High infection varying selection criteria results 
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6.1.8 Threshold Techniques and Modified PCA 

Each of the experiments performed used four different threshold techniques to 

automatically identify anomalous time bins.  The results listed in tables 6.13 – 6.16 summarize 

the evaluation measurements for threshold techniques on the specified dates. The weighted 

average and moving average consistently had a lower SPE score and higher miss count.  The 

moving average without outliers performed the best in scenarios with low infection rates. In 

scenarios with higher infection rates, the static average performed slightly better than the moving 

average without outliers. 

Infection 

Rate 

Measurement Static 

Average 

Moving 

Average 

Moving 

Average 

without outliers 

Weighted 

Average 

5% Score -2 -2 -2 -2 

Hit Count 76 68 83 74 

Miss Count 20 28 13 22 

10% Score -2 -2 -2 -2 

Hit Count 76 68 83 74 

Miss Count 20 28 13 22 

20% Score -2 -2 -2 -2 

Hit Count 76 68 84 74 

Miss Count 20 28 12 22 
Table 6.13: March, 8, 2009 - PCA Short and Low threshold results 

Infection 

Rate 

Measurement Static 

Average 

Moving 

Average 

Moving 

Average 

without outliers 

Weighted 

Average 

5% Score -2 -26 -2 -2 

Hit Count 74 62 75 75 

Miss Count 22 34 21 21 

10% Score -2 -26 -2 -2 

Hit Count 74 62 76 75 

Miss Count 22 34 20 21 

20% Score -2 -26 -2 -2 

Hit Count 75 61 77 76 

Miss Count 21 35 19 20 
Table 6.14: May 28, 2009 - PCA Long and Low threshold results 
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Infection 

Rate 

Measurement Static 

Average 

Moving 

Average 

Moving 

Average 

without outliers 

Weighted 

Average 

75% Score 0 0 0 0 

Hit Count 64 63 66 61 

Miss Count 32 33 30 35 

100% Score 1 0 0 1 

Hit Count 64 64 67 62 

Miss Count 32 32 29 34 

120% Score 0 0 0 0 

Hit Count 63 62 66 63 

Miss Count 33 34 30 33 
Table 6.15: January 15, 2009 - PCA Short and High threshold results 

Infection 

Rate 

Measurement Static 

Average 

Moving 

Average 

Moving 

Average 

without outliers 

Weighted 

Average 

75% Score 1 1 0 1 

Hit Count 76 66 76 71 

Miss Count 20 30 20 25 

100% Score 3 0 0 1 

Hit Count 80 66 80 72 

Miss Count 16 30 16 24 

120% Score 4 1 0 1 

Hit Count 81 66 78 72 

Miss Count 15 30 18 24 
Table 6.16: June 10, 2009 - PCA Long and High threshold results 

6.1.9 Summary and Discussion 

The major advantage of the Modified Principle Component Analysis (PCA) approach was 

that it considered all of the features at once.  Regardless of how many features, all were 

considered in analysis and a single score was calculated for each time bin.  There were two user 

defined parameters: the number of time shifts and the component selection criteria. 

The number of time shifts.  In [6], the authors showed that four or more time shifts do not 

have any significant impact.  Our research examined one, two and three time shifts.  The number 

of time shifts affects how much the algorithm considers changes in time.  For instance, a large 
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number time shifts will show a great deal of change in a feature, and changes will be very 

common.  The algorithm will become less sensitive to change [6].  Conversely, no time shifts fail 

to take into account any the temporal change.  There is a need for modest consideration of how 

the data changes over the next few observations.  Our analysis concluded that one time shift 

performed the best.  This suggests that there is a great deal of change between time bins in the 

Kyoto2006+ and re-enforces the need for considering temporal changes.  As more time shifts 

were applied, the algorithm was less sensitive to the change and performed worse.  

Component Selection Criteria.  The Modified PCA approach determines a set of ranked 

components and only a subset of are used in anomaly detection. The number of selected 

components affects subspace creation and the SPE score calculation.  A selection of a large 

number of components converges close to the original feature space.  It would not unlock and 

new patterns or provide an optimizations.  Overly simple components would miss out on 

important information and not be very meaningful.  Ideally, a handful of independent 

components are needed to form the anomalous space.  In our analysis, it was observed that in 

most cases, the Top K=1 approach and the subspace approach had the same results.  This 

suggests the subspace approach used one, or close to one, components to build the subspace.  It 

can be concluded that there are a number of redundant features in the Kyoto2006+ dataset.  A 

few components describe the entire dataset.  Considering all features with variance greater than 

one builds involves a larger number of components, and explains why this approach performed 

the worst. 

A number of test sets were built using different days in the week, and different infection 

ratios.  Regardless of the infection rate or day in week, the output SPE scores of the modified 

PCA algorithm highlighted time bins.  The output SPE score was the Euclidean Magnitude, and 
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is directly related to the size of the projected.  The SPE score were always large and is due to the 

nature of the observations, and the measurement.  This can be illustrated in the 0% infection rate 

experiments.  The algorithm considered all features at once and was able to modestly pick out 

the infected time bins.  It performed best in a situation where there are a lot of malicious flows 

over a long period of time.  

6.2 Evaluation of Haar Wavelet Analysis 

This section outlines the results obtained from running the experiments with the Haar 

Wavelet Analysis approach outlined in section 5.3.3 and concludes with a brief discussion. 

6.2.1 Haar Wavelet Analysis and Pure data 

This section examines the results of the Haar wavelet filtering analysis applied to a 

dataset with no infections.  The experiments performed in this section examine all infection 

scenarios.  Figure 6.8 shows the local variability scores for each TCP feature and Figure 6.9 

shows local variability scores for each OTHER feature of all test sets on January 6, 2009.  This 

date is representative of the 16 selected dates.  It can be observed that, for a few features, there 

exists a test set with much higher local variability values than the rest of the test sets.  Similar to 

the Modified PCA approach, it is determined that an observation 15 times larger than the mean 

of that feature.  Upon removing the test sets, a footprint was noticed across the remaining test 

sets.  Unlike the Modified PCA approach, the local variability score did not have an extreme 

difference in values and did not flatten the rest of the plot to zero.  Also, the average calculations 

are not affected.  The Haar Wavelet Filtering analysis does not use initial filtering.  The average 

local variability is used in analysis and is referred to as the footprint.  As shown in Figure 6.10 



67 

 

and Figure 6.11, regardless of the threshold technique, the algorithm will suggest that there are 

anomalies present. 

 
Figure 6.8: January 6, 2009 - OTHER Wavelet flows Local Variability Scores 
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Figure 6.9: January 6, 2009 - TCP Wavelet flows Local Variability Scores 
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Figure 6.10: January 6, 2009 - Average OTHER Wavelet flows Local Variability Scores 
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Figure 6.11: January 6, 2009 - Average TCP Wavelet flows Local Variability Scores 

6.2.2 Short and Low Infection 

This section examines the results of the Haar Wavelet experiments performed on a low 

infection rate in a short period of time. The four dates for this particular scenario, outlined in 

Table 5.2, all had consistent behaviour.  As a result, for simplicity, only March 8, 2009 is 

discussed.  Figure 6.12 and Figure 6.13 illustrate the footprints observed with default parameters 

for the TCP and OTHER features for the 5% infection ratio (See Table 5.4 for a list of default 
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conditions).  The experiments were conducted on test sets of 5%, 10% and 20% infection ratios.  

The infected time bins were bins 116, 117 and 118.  A number of the feature plots depicted 

spikes during the infected times.  Table 6.17 lists the hit/miss scores and the hit/miss counts 

measured for each feature.  The default threshold method determines a 19% miss rate in the best 

feature and about a 64% miss rate in the worst performing feature.  The other threshold methods 

range from 5% to 65%, see Section 6.2.8 for details. 

 
Figure 6.12: March 8, 2009 - Average OTHER Wavelet Local Variability Scores with 5% infection rate 
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Figure 6.13: March 8, 2009 - Average TCP Wavelet Local Variability Scores with 5% infection rate 
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Infection 

Rate 

Feature Score Hit Count 

(% Hit) 

Miss Count 

(% Miss) 

5% TCP Bytes -12 51 (53%) 45 (47%) 

TCP Flows -12 54 (56%) 42 (44%) 

TCP Source Address Entropy -10 46 (48%) 50 (52%) 

TCP Destination Address Entropy -9 49 (51%) 47 (49%) 

TCP Source Port Entropy -10 51 (53%) 45 (47%) 

TCP Destination Port Entropy -14 68 (71%) 28 (29%) 

OTHER Bytes 1 72 (75%) 24 (25%) 

OTHER Flows -11 27 (28%) 69 (62%) 

OTHER Source Address Entropy -13 24 (25%) 72 (75%) 

OTHER Destination Address Entropy -9 15 (16%) 81 (84%) 

OTHER Source Port Entropy -13 39 (41%) 57 (43%) 

OTHER Destination Port Entropy -13 21 (22%) 75 (78%) 

10% TCP Bytes -12 50 (52%) 46 (48%) 

TCP Flows -12 53 (55%) 43 (45%) 

TCP Source Address Entropy -10 45 (47%) 51 (53%) 

TCP Destination Address Entropy -8 51 (53%) 45 (47%) 

TCP Source Port Entropy -9 53 (55%) 43 (45%) 

TCP Destination Port Entropy -14 67 (70%) 29 (30%) 

OTHER Bytes 1 71 (74%) 25 (26%) 

OTHER Flows -11 25 (26%) 71 (74%) 

OTHER Source Address Entropy -13 25 (26%) 71 (74%) 

OTHER Destination Address Entropy -9 16 (17%) 80 (83%) 

OTHER Source Port Entropy -13 38 (40%) 58 (60%) 

OTHER Destination Port Entropy -12 24 (25%) 72 (75%) 

20% TCP Bytes -12 49 (51%) 47 (49%) 

TCP Flows -12 52 (54%) 44 (46%) 

TCP Source Address Entropy -9 46 (48%) 50 (52%) 

TCP Destination Address Entropy -8 52 (54%) 44 (46%) 

TCP Source Port Entropy -8 55 (57%) 41 (43%) 

TCP Destination Port Entropy -14 66 (69%) 30 (31%) 

OTHER Bytes 2 71 (74%) 25 (26%) 

OTHER Flows -11 23 (24%) 73 (76%) 

OTHER Source Address Entropy -12 24 (25%) 72 (75%) 

OTHER Destination Address Entropy -8 14 (15%) 82 (85%) 

OTHER Source Port Entropy -12 36 (38%) 60 (62%) 

OTHER Destination Port Entropy -11 25 (26%) 71 (74%) 
Table 6.17: March 8, 2009 - Wavelet Experiment results 
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6.2.3 Long and Low Infection 

This section examines the results of the Haar Wavelet experiments performed on a low 

infection rate in a long period of time.  The four dates for this particular scenario, outlined in 

Table 5.2, all had consistent behaviour.  As a result, for simplicity, only May 28, 2009 is 

discussed.  Figure 6.14 and Figure 6.15 illustrate the footprints observed with default parameters 

for the TCP and OTHER features for the 5% infection ratio (See Table 5.4 for a list of default 

conditions). The experiments were conducted on test sets of 5%, 10% and 20% infection ratios.  

The infected time bins were 81 - 96.  A number of the feature plots depicted spikes during the 

infected times.  Table 6.18 lists the hit/miss scores and the hit/miss counts measured for each 

feature.  The default threshold method determines a 24% miss rate in the best feature and about a 

54% miss rate in the worst performing feature.  The other threshold methods range from 3% to 

55%, see Section 6.2.8 for details. 
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Figure 6.144: May 28, 2009 - Average OTHER Wavelet Local Variability Scores with 5% infection rate 
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Figure 6.155: May 28, 2009 - Average TCP Wavelet Local Variability Scores with 5% infection rate 



77 

 

Infection 

Rate 

Feature Score Hit Count 

(% Miss) 

Miss Count 

 (% Miss) 

5% TCP Bytes -14 49 (51%) 47 (49%) 

TCP Flows -10 46 (48%) 50 (52%) 

TCP Source Address Entropy 0 50 (52%) 46 (48%) 

TCP Destination Address Entropy -14 53 (55%) 43 (45%) 

TCP Source Port Entropy 0 49 (51%) 47 (49%) 

TCP Destination Port Entropy -12 64 (67%) 32 (33%) 

OTHER Bytes -11 70 (73%) 26 (27%) 

OTHER Flows -13 39 (41%) 57 (59%) 

OTHER Source Address Entropy -11 71 (74%) 25 (76%) 

OTHER Destination Address Entropy -11 52 (54%) 44 (46%) 

OTHER Source Port Entropy -11 58 (60%) 38 (40%) 

OTHER Destination Port Entropy -11 44 (46%) 52 (54%) 

10% TCP Bytes -14 48 (50%) 48 (50%) 

TCP Flows -10 45 (47%) 51 (53%) 

TCP Source Address Entropy 0 49 (51%) 47 (49%) 

TCP Destination Address Entropy -14 52 (54%) 44 (46%) 

TCP Source Port Entropy 0 48 (50%) 48 (50%) 

TCP Destination Port Entropy -11 65 (68%) 31 (32%) 

OTHER Bytes -10 70 (73%) 26 (27%) 

OTHER Flows -12 54 (56%) 42 (44%) 

OTHER Source Address Entropy -10 61 (64%) 35 (36%) 

OTHER Destination Address Entropy -10 52 (54%) 44 (46%) 

OTHER Source Port Entropy -10 59 (61%) 37 (39%) 

OTHER Destination Port Entropy -11 42 (44%) 54 (56%) 

20% TCP Bytes -14 46 (48%) 50 (52%) 

TCP Flows -10 44 (46%) 52 (54%) 

TCP Source Address Entropy 0 47 (49%) 49 (51%) 

TCP Destination Address Entropy -10 54 (56%) 42 (44%) 

TCP Source Port Entropy 0 46 (48%) 50 (52%) 

TCP Destination Port Entropy -10 62 (65%) 34 (35%) 

OTHER Bytes -11 67 (70%) 29 (30%) 

OTHER Flows -10 40 (42%) 56 (58%) 

OTHER Source Address Entropy -7 56 (58%) 40 (42%) 

OTHER Destination Address Entropy -7 59 (61%) 37 (39%) 

OTHER Source Port Entropy -7 54 (56%) 42 (44%) 

OTHER Destination Port Entropy -7 51 (53%) 45 (47%) 
Table 6.18: May 28, 2009 - Wavelet Experiment results 
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6.2.4 Short and High Infection 

This section examines the results of the Haar Wavelet experiments performed on a high 

infection rate in a short period of time.  The four dates for this particular scenario, outlined in 

Table 5.2, all had consistent behaviour.  As a result, for simplicity, only January 15, 2009 is 

discussed.  Figure 6.16 and Figure 6.17 illustrate the footprints observed with default parameters 

for the TCP and OTHER features for the 5% infection ratio (See Table 5.4 for a list of default 

conditions).  The experiments were conducted on test sets of 75%, 100% and 120% infection 

ratios.  The infected time bins were during bins 111, 112, 113 and 114.  A number of the feature 

plots depicted spikes during the infected times.  Table 6.19 lists the hit/miss scores and the 

hit/miss counts measured for each feature.  The default threshold method determines an 18% 

miss rate in the best feature and about a 52% miss rate in the worst performing feature.  The 

other threshold methods range from 4% to 57%, see Section 6.2.8 for details. 
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Figure 6.166: January 15, 2009 - Average OTHER Wavelet Local Variability Scores with 5% infection rate 
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Figure 6.177: January 15, 2009 - Average TCP Wavelet Local Variability Scores with 5% infection rate 
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Infection 

Rate 

Feature Score Hit Count 

(% Miss) 

Miss Count 

 (% Miss) 

75% TCP Bytes 0 33 (34%) 63 (66%) 

TCP Flows 1 29 (30%) 67 (70%) 

TCP Source Address Entropy 0 50 (52%) 46 (48%) 

TCP Destination Address Entropy 0 64 (67%) 32 (33%) 

TCP Source Port Entropy 2 43 (45%) 53 (55%) 

TCP Destination Port Entropy 0 70 (73%) 26 (27%) 

OTHER Bytes 1 42 (44%) 54 (56%) 

OTHER Flows 2 35 (36%) 61 (64%) 

OTHER Source Address Entropy 0 37 (39%) 59 (61%) 

OTHER Destination Address Entropy 0 35 (36%) 61 (64%) 

OTHER Source Port Entropy 2 40 (42%) 56 (58%) 

OTHER Destination Port Entropy 1 36 (38%) 60 (62%) 

100% TCP Bytes 0 32 (33%) 64 (67%) 

TCP Flows 2 30 (31%) 66 (69%) 

TCP Source Address Entropy 0 49 (51%) 47 (49%) 

TCP Destination Address Entropy 3 68 (71%) 28 (29%) 

TCP Source Port Entropy 3 44 (46%) 52 (54%) 

TCP Destination Port Entropy 0 69 (72%) 27 (28%) 

OTHER Bytes 1 45 (47%) 51 (53%) 

OTHER Flows 2 34 (35%) 62 (65%) 

OTHER Source Address Entropy 1 42 (44%) 54 (56%) 

OTHER Destination Address Entropy 0 32 (33%) 64 (67%) 

OTHER Source Port Entropy 2 40 (42%) 56 (58%) 

OTHER Destination Port Entropy 1 35 (36%) 61 (64%) 

120% TCP Bytes 0 32 (33%) 64 (67%) 

TCP Flows 2 30 (31%) 66 (69%) 

TCP Source Address Entropy 0 49 (51%) 47 (49%) 

TCP Destination Address Entropy 3 74 (77%) 22 (23%) 

TCP Source Port Entropy 3 44 (46%) 52 (54%) 

TCP Destination Port Entropy 0 69 (72%) 27 (28%) 

OTHER Bytes 1 45 (47%) 51 (53%) 

OTHER Flows 2 34 (35%) 62 (65%) 

OTHER Source Address Entropy 1 40 (42%) 56 (58%) 

OTHER Destination Address Entropy 1 33 (34%) 63 (66%) 

OTHER Source Port Entropy 2 39 (41%) 57 (59%) 

OTHER Destination Port Entropy 4 39 (41%) 57 (59%) 
Table 6.19: January 15, 2009 - Wavelet Experiment results 
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6.2.5 Long and High Infection 

This section examines the results of the Haar Wavelet experiments performed on a high 

infection rate in a long period of time.  The four dates for this particular scenario, outlined in 

Table 5.2, all had consistent behaviour.  As a result, for simplicity, only June 10, 2009 is 

discussed.  Figure 6.18 and Figure 6.19 illustrate the footprints observed with default parameters 

for the TCP and OTHER features for the 5% infection ratio (See Table 5.4 for a list of default 

conditions).  The experiments were conducted on test sets of 75%, 100% and 120% infection 

ratios.  The infected time bins were during bins 30 - 40.  A number of the feature plots depicted 

spikes during the infected times.  Table 6.20 lists the hit/miss scores and the hit/miss counts 

measured for each feature. The default threshold method determines a 12% miss rate in the best 

feature and about a 57% miss rate in the worst performing feature.  The other threshold methods 

range from 4% to 63%, see Section 6.2.8 for details. 
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Figure 6.188: June 10, 2009 - Average OTHER Wavelet Local Variability Scores with 5% infection rate 
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Figure 6.19: June 10, 2009 - Average TCP Wavelet Local Variability Scores with 5% infection rate 
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Infection 

Rate 

Feature Score Hit Count 

(% Miss) 

Miss Count 

 (% Miss) 

75% TCP Bytes -6 51 (53%) 45 (47%) 

TCP Flows -11 48 (50%) 48 (50%) 

TCP Source Address Entropy -14 36 (38%) 60 (62%) 

TCP Destination Address Entropy -3 71 (74%) 25 (26%) 

TCP Source Port Entropy -12 35 (36%) 61 (64%) 

TCP Destination Port Entropy 3 72 (75%) 24 (25%) 

OTHER Bytes 4 80 (83%) 16 (17%) 

OTHER Flows -17 57 (59%) 39 (41%) 

OTHER Source Address Entropy -9 27 (28%) 69 (72%) 

OTHER Destination Address Entropy -18 24 (25%) 72 (75%) 

OTHER Source Port Entropy -9 65 (68%) 31 (32%) 

OTHER Destination Port Entropy -7 30 (31%) 66 (69%) 

100% TCP Bytes -5 52 (54%) 44 (46%) 

TCP Flows -11 49 (51%) 47 (49%) 

TCP Source Address Entropy -7 60 (63%) 36 (27%) 

TCP Destination Address Entropy -2 71 (74%) 25 (26%) 

TCP Source Port Entropy -12 34 (35%) 62 (65%) 

TCP Destination Port Entropy 6 74 (77%) 22 (23%) 

OTHER Bytes 6 81 (84%) 15 (16%) 

OTHER Flows -17 56 (58%) 40 (42%) 

OTHER Source Address Entropy -9 26 (27%) 70 (73%) 

OTHER Destination Address Entropy -18 23 (24%) 73 (76%) 

OTHER Source Port Entropy -1 72 (75%) 24 (25%) 

OTHER Destination Port Entropy -6 34 (35%) 62 (65%) 

120% TCP Bytes -4 53 (55%) 43 (45%) 

TCP Flows -12 47 (49%) 49 (51%) 

TCP Source Address Entropy -6 51 (53%) 45 (47%) 

TCP Destination Address Entropy -2 70 (73%) 26 (27%) 

TCP Source Port Entropy -12 32 (33%) 64 (67%) 

TCP Destination Port Entropy 6 73 (76%) 23 (24%) 

OTHER Bytes 6 80 (83%) 16 (17%) 

OTHER Flows -17 55 (57%) 41 (43%) 

OTHER Source Address Entropy -7 55 (57%) 41 (43%) 

OTHER Destination Address Entropy -17 24 (25%) 72 (75%) 

OTHER Source Port Entropy -4 68 (71%) 28 (29%) 

OTHER Destination Port Entropy -3 31 (32%) 65 (68%) 
Table 6.20: June 10, 2009 - Wavelet Experiment results 
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6.2.6 Varying Dataset size 

 A number of experiments varying input dataset size and corresponding filtering 

boundaries were performed.  The results in tables 6.21 – 6.24 summarize the evaluation 

measurements for each scenario on the previously specified dates.   It was observed that 

increasing the dataset size did not improve the hit/miss scores or hit/miss counts. 

Size Bounds 

(High pass, 

Mid pass, Low 

pass) 

Feature Miss count 

5% 10% 20% 

128 2,3,2 TCP Bytes 45 46 47 

TCP Flows 42 43 44 

TCP Source Address Entropy 50 51 50 

TCP Destination Address Entropy 47 45 44 

TCP Source Port Entropy 45 43 41 

TCP Destination Port Entropy 28 29 30 

OTHER Bytes 24 25 25 

OTHER Flows 69 71 73 

OTHER Source Address Entropy 72 71 72 

OTHER Destination Address Entropy 81 80 82 

OTHER Source Port Entropy 57 58 60 

OTHER Destination Port Entropy 75 72 71 

3,2,2 TCP Bytes 43 44 45 

TCP Flows 45 46 47 

TCP Source Address Entropy 59 60 61 

TCP Destination Address Entropy 50 49 52 

TCP Source Port Entropy 52 53 53 

TCP Destination Port Entropy 28 29 30 

OTHER Bytes 24 25 30 

OTHER Flows 72 76 77 

OTHER Source Address Entropy 72 73 74 

OTHER Destination Address Entropy 78 79 80 

OTHER Source Port Entropy 55 57 60 

OTHER Destination Port Entropy 75 75 75 

256 3,2,3 TCP Bytes 65 66 68 

TCP Flows 86 87 89 

TCP Source Address Entropy 111 112 114 

TCP Destination Address Entropy 51 50 51 

TCP Source Port Entropy 100 101 103 

TCP Destination Port Entropy 42 43 45 
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OTHER Bytes 25 27 26 

OTHER Flows 138 140 136 

OTHER Source Address Entropy 84 85 85 

OTHER Destination Address Entropy 103 106 103 

OTHER Source Port Entropy 60 65 65 

OTHER Destination Port Entropy 82 80 80 

3,3,2 TCP Bytes 65 66 68 

TCP Flows 85 86 88 

TCP Source Address Entropy 109 110 112 

TCP Destination Address Entropy 56 50 58 

TCP Source Port Entropy 97 98 100 

TCP Destination Port Entropy 40 41 43 

OTHER Bytes 26 27 26 

OTHER Flows 138 139 133 

OTHER Source Address Entropy 84 85 85 

OTHER Destination Address Entropy 104 105 103 

OTHER Source Port Entropy 60 65 65 

OTHER Destination Port Entropy 82 80 80 

512 3,3,3 TCP Bytes 109 112 117 

TCP Flows 139 142 141 

TCP Source Address Entropy 233 236 237 

TCP Destination Address Entropy 53 45 52 

TCP Source Port Entropy 223 226 227 

TCP Destination Port Entropy 49 53 56 

OTHER Bytes 29 30 31 

OTHER Flows 238 238 240 

OTHER Source Address Entropy 80 84 81 

OTHER Destination Address Entropy 128 135 133 

OTHER Source Port Entropy 71 73 70 

OTHER Destination Port Entropy 79 82 82 

4,3,2 TCP Bytes 107 109 114 

TCP Flows 56 158 157 

TCP Source Address Entropy 246 248 252 

TCP Destination Address Entropy 55 51 64 

TCP Source Port Entropy 238 239 240 

TCP Destination Port Entropy 45 47 52 

OTHER Bytes 30 30 31 

OTHER Flows 239 239 236 

OTHER Source Address Entropy 71 72 69 

OTHER Destination Address Entropy 124 132 129 

OTHER Source Port Entropy 60 62 66 

OTHER Destination Port Entropy 72 71 73 
Table 6.21: March 8, 2009 Varying input data / boundary size results 
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Size Bounds 

(High pass, Mid 

pass, Low pass) 

Feature Miss count 

5% 10% 20% 

128 2,3,2 TCP Bytes 47 48 50 

TCP Flows 50 51 52 

TCP Source Address Entropy 46 47 49 

TCP Destination Address Entropy 43 44 42 

TCP Source Port Entropy 47 48 50 

TCP Destination Port Entropy 32 31 34 

OTHER Bytes 27 26 29 

OTHER Flows 58 42 56 

OTHER Source Address Entropy 36 35 40 

OTHER Destination Address Entropy 45 44 37 

OTHER Source Port Entropy 39 37 42 

OTHER Destination Port Entropy 53 54 45 

3,2,2 TCP Bytes 47 48 50 

TCP Flows 50 51 52 

TCP Source Address Entropy 44 45 47 

TCP Destination Address Entropy 42 43 42 

TCP Source Port Entropy 39 40 42 

TCP Destination Port Entropy 33 32 33 

OTHER Bytes 30 30 37 

OTHER Flows 63 42 40 

OTHER Source Address Entropy 36 35 36 

OTHER Destination Address Entropy 45 44 44 

OTHER Source Port Entropy 39 39 40 

OTHER Destination Port Entropy 46 45 46 

256 3,2,3 TCP Bytes 89 92 95 

TCP Flows 91 94 97 

TCP Source Address Entropy 76 79 82 

TCP Destination Address Entropy 67 70 48 

TCP Source Port Entropy 73 76 78 

TCP Destination Port Entropy 40 37 38 

OTHER Bytes 49 53 54 

OTHER Flows 93 92 93 

OTHER Source Address Entropy 53 55 69 

OTHER Destination Address Entropy 102 103 98 

OTHER Source Port Entropy 55 57 66 

OTHER Destination Port Entropy 73 81 71 

3,3,2 TCP Bytes 87 90 93 

TCP Flows 91 94 98 

TCP Source Address Entropy 75 78 81 

TCP Destination Address Entropy 67 70 48 

TCP Source Port Entropy 72 75 77 
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TCP Destination Port Entropy 40 37 42 

OTHER Bytes 31 35 36 

OTHER Flows 89 89 92 

OTHER Source Address Entropy 53 55 69 

OTHER Destination Address Entropy 102 103 100 

OTHER Source Port Entropy 55 57 66 

OTHER Destination Port Entropy 72 81 70 

5

1

2 

3,3,3 TCP Bytes 170 174 180 

TCP Flows 206 212 217 

TCP Source Address Entropy 196 190 199 

TCP Destination Address Entropy 75 81 62 

TCP Source Port Entropy 192 190 198 

TCP Destination Port Entropy 52 52 42 

OTHER Bytes 54 53 64 

OTHER Flows 193 185 190 

OTHER Source Address Entropy 91 97 104 

OTHER Destination Address Entropy 208 205 208 

OTHER Source Port Entropy 52 59 57 

OTHER Destination Port Entropy 130 134 126 

4,3,2 TCP Bytes 167 17 177 

TCP Flows 197 203 209 

TCP Source Address Entropy 193 189 189 

TCP Destination Address Entropy 73 79 66 

TCP Source Port Entropy 186 182 184 

TCP Destination Port Entropy 50 50 44 

OTHER Bytes 26 42 38 

OTHER Flows 196 192 201 

OTHER Source Address Entropy 86 99 103 

OTHER Destination Address Entropy 213 207 210 

OTHER Source Port Entropy 52 55 57 

OTHER Destination Port Entropy 125 133 113 
Table 6.22: May 28, 2009 Varying input data / boundary size results 
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Size Bounds 

(High pass, Mid 

pass, Low pass) 

Feature Miss count 

75% 100% 120% 

128 2,3,2 TCP Bytes 63 64 64 

TCP Flows 67 66 66 

TCP Source Address Entropy 46 47 47 

TCP Destination Address Entropy 32 28 22 

TCP Source Port Entropy 53 52 52 

TCP Destination Port Entropy 26 27 27 

OTHER Bytes 54 51 51 

OTHER Flows 61 62 62 

OTHER Source Address Entropy 59 51 56 

OTHER Destination Address Entropy 61 64 63 

OTHER Source Port Entropy 56 56 57 

OTHER Destination Port Entropy 60 61 57 

3,2,2 TCP Bytes 62 63 63 

TCP Flows 65 64 64 

TCP Source Address Entropy 57 58 58 

TCP Destination Address Entropy 35 29 22 

TCP Source Port Entropy 53 52 52 

TCP Destination Port Entropy 28 29 30 

OTHER Bytes 54 55 55 

OTHER Flows 62 63 62 

OTHER Source Address Entropy 55 57 55 

OTHER Destination Address Entropy 54 55 54 

OTHER Source Port Entropy 61 62 61 

OTHER Destination Port Entropy 61 63 59 

2

5

6 

3,2,3 TCP Bytes 109 107 108 

TCP Flows 104 102 102 

TCP Source Address Entropy 124 121 121 

TCP Destination Address Entropy 42 37 31 

TCP Source Port Entropy 107 105 105 

TCP Destination Port Entropy 47 49 50 

OTHER Bytes 98 99 100 

OTHER Flows 105 108 109 

OTHER Source Address Entropy 69 70 65 

OTHER Destination Address Entropy 124 125 114 

OTHER Source Port Entropy 77 79 80 

OTHER Destination Port Entropy 73 77 75 

3,3,2 TCP Bytes 110 109 108 

TCP Flows 105 104 103 

TCP Source Address Entropy 123 122 123 

TCP Destination Address Entropy 43 36 31 

TCP Source Port Entropy 106 105 104 
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TCP Destination Port Entropy 47 48 50 

OTHER Bytes 105 105 107 

OTHER Flows 104 107 109 

OTHER Source Address Entropy 68 69 65 

OTHER Destination Address Entropy 123 124 114 

OTHER Source Port Entropy 78 78 79 

OTHER Destination Port Entropy 73 75 75 

5

1

2 

3,3,3 TCP Bytes 246 248 249 

TCP Flows 173 173 174 

TCP Source Address Entropy 246 244 245 

TCP Destination Address Entropy 50 39 39 

TCP Source Port Entropy 241 240 241 

TCP Destination Port Entropy 85 88 86 

OTHER Bytes 104 111 108 

OTHER Flows 221 224 230 

OTHER Source Address Entropy 71 76 74 

OTHER Destination Address Entropy 217 219 219 

OTHER Source Port Entropy 77 77 87 

OTHER Destination Port Entropy 82 97 82 

4,3,2 TCP Bytes 236 239 239 

TCP Flows 194 197 197 

TCP Source Address Entropy 243 240 240 

TCP Destination Address Entropy 48 41 41 

TCP Source Port Entropy 237 238 238 

TCP Destination Port Entropy 76 81 86 

OTHER Bytes 118 121 123 

OTHER Flows 221 228 226 

OTHER Source Address Entropy 73 72 63 

OTHER Destination Address Entropy 207 213 206 

OTHER Source Port Entropy 84 89 91 

OTHER Destination Port Entropy 84 98 81 
Table 6.23:  January 15, 2009 Varying input data / boundary size results 
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Size Bounds 

(High pass, Mid 

pass, Low pass) 

Feature Miss count 

75% 100% 120% 

128 2,3,2 TCP Bytes 45 44 43 

TCP Flows 48 47 49 

TCP Source Address Entropy 60 36 45 

TCP Destination Address Entropy 25 25 26 

TCP Source Port Entropy 61 62 64 

TCP Destination Port Entropy 24 22 23 

OTHER Bytes 16 15 16 

OTHER Flows 39 40 41 

OTHER Source Address Entropy 69 70 41 

OTHER Destination Address Entropy 72 73 72 

OTHER Source Port Entropy 31 24 28 

OTHER Destination Port Entropy 66 62 65 

3,2,2 TCP Bytes 44 43 42 

TCP Flows 42 37 38 

TCP Source Address Entropy 63 35 47 

TCP Destination Address Entropy 32 32 30 

TCP Source Port Entropy 52 54 55 

TCP Destination Port Entropy 27 25 26 

OTHER Bytes 20 22 20 

OTHER Flows 39 40 41 

OTHER Source Address Entropy 75 75 41 

OTHER Destination Address Entropy 75 41 77 

OTHER Source Port Entropy 39 32 34 

OTHER Destination Port Entropy 69 70 65 

2

5

6 

3,2,3 TCP Bytes 95 94 91 

TCP Flows 81 78 80 

TCP Source Address Entropy 121 112 114 

TCP Destination Address Entropy 31 28 30 

TCP Source Port Entropy 114 115 117 

TCP Destination Port Entropy 52 33 53 

OTHER Bytes 35 25 28 

OTHER Flows 57 58 61 

OTHER Source Address Entropy 96 95 57 

OTHER Destination Address Entropy 119 119 122 

OTHER Source Port Entropy 46 41 46 

OTHER Destination Port Entropy 84 79 80 

3,3,2 TCP Bytes 93 92 89 

TCP Flows 83 82 80 

TCP Source Address Entropy 122 113 115 

TCP Destination Address Entropy 31 29 31 

TCP Source Port Entropy 116 117 118 
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TCP Destination Port Entropy 51 32 31 

OTHER Bytes 26 19 22 

OTHER Flows 60 61 64 

OTHER Source Address Entropy 98 99 45 

OTHER Destination Address Entropy 124 124 126 

OTHER Source Port Entropy 48 41 45 

OTHER Destination Port Entropy 85 81 82 

5

1

2 

3,3,3 TCP Bytes 189 190 184 

TCP Flows 130 131 132 

TCP Source Address Entropy 235 232 236 

TCP Destination Address Entropy 50 49 51 

TCP Source Port Entropy 234 228 231 

TCP Destination Port Entropy 59 49 55 

OTHER Bytes 54 40 43 

OTHER Flows 97 100 105 

OTHER Source Address Entropy 107 110 112 

OTHER Destination Address Entropy 207 205 203 

OTHER Source Port Entropy 74 61 64 

OTHER Destination Port Entropy 103 99 98 

4,3,2 TCP Bytes 192 190 84 

TCP Flows 121 122 125 

TCP Source Address Entropy 233 231 237 

TCP Destination Address Entropy 52 47 55 

TCP Source Port Entropy 234 232 238 

TCP Destination Port Entropy 63 45 49 

OTHER Bytes 45 33 38 

OTHER Flows 99 101 107 

OTHER Source Address Entropy 111 105 102 

OTHER Destination Address Entropy 200 208 205 

OTHER Source Port Entropy 47 57 59 

OTHER Destination Port Entropy 106 99 98 
Table 6.24: June 10, 2009 Varying input data / boundary size results 

6.2.7 Varying Local Variability Weights 

A number of experiments were performed using the default parameters, and two different 

local variability weights.  The results in tables 6.25 – 6.28 summarize the evaluation 

measurements for each scenario on the previously specified dates.  It was observed that the 
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weights, which applied an emphasis to high pass values, had the lowest miss counts best.  The 

miss counts were never worse using weights focusing on the mid pass values. 

Bounds 

(High pass, 

Mid pass, 

Low pass) 

Weights 

(High pass, 

Mid pass, 

Low pass) 

Features Miss Count 

5% 10% 20% 

2,3,2 5,1,0 TCP Bytes 45 46 47 

TCP Flows 42 43 44 

TCP Source Address Entropy 50 51 50 

TCP Destination Address Entropy 47 45 44 

TCP Source Port Entropy 45 43 41 

TCP Destination Port Entropy 28 29 30 

OTHER Bytes 24 25 25 

OTHER Flows 69 71 73 

OTHER Source Address Entropy 72 71 72 

OTHER Destination Address Entropy 81 80 82 

OTHER Source Port Entropy 57 58 60 

OTHER Destination Port Entropy 75 72 71 

3,2,0 TCP Bytes 44 45 46 

TCP Flows 41 42 43 

TCP Source Address Entropy 51 52 53 

TCP Destination Address Entropy 46 45 46 

TCP Source Port Entropy 51 52 53 

TCP Destination Port Entropy 28 29 30 

OTHER Bytes 25 31 32 

OTHER Flows 68 67 70 

OTHER Source Address Entropy 71 72 73 

OTHER Destination Address Entropy 77 80 80 

OTHER Source Port Entropy 53 57 59 

OTHER Destination Port Entropy 75 74 74 

3,2,2 5,1,0 TCP Bytes 43 44 45 

TCP Flows 45 46 47 

TCP Source Address Entropy 59 60 61 

TCP Destination Address Entropy 50 49 52 

TCP Source Port Entropy 52 53 53 

TCP Destination Port Entropy 28 29 30 

OTHER Bytes 24 25 30 

OTHER Flows 72 76 77 

OTHER Source Address Entropy 72 73 74 

OTHER Destination Address Entropy 78 79 80 

OTHER Source Port Entropy 55 57 60 

OTHER Destination Port Entropy 75 75 75 
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3,2,0 TCP Bytes 43 44 45 

TCP Flows 42 43 44 

TCP Source Address Entropy 47 48 49 

TCP Destination Address Entropy 52 50 50 

TCP Source Port Entropy 49 50 50 

TCP Destination Port Entropy 28 29 30 

OTHER Bytes 30 28 24 

OTHER Flows 64 66 67 

OTHER Source Address Entropy 72 73 70 

OTHER Destination Address Entropy 82 82 78 

OTHER Source Port Entropy 54 54 57 

OTHER Destination Port Entropy 75 74 74 
Table 6.25:  March 8, 2009 Varying Local Variability weights results 
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Bounds 

(High pass, 

Mid pass, 

Low pass) 

Weights 

(High pass, 

Mid pass, 

Low pass) 

Features Miss Count 

5% 10% 20% 

2,3,2 5,1,0 TCP Bytes 47 48 50 

TCP Flows 50 51 52 

TCP Source Address Entropy 46 47 49 

TCP Destination Address Entropy 43 44 42 

TCP Source Port Entropy 47 48 50 

TCP Destination Port Entropy 32 31 34 

OTHER Bytes 27 26 29 

OTHER Flows 58 42 56 

OTHER Source Address Entropy 36 35 40 

OTHER Destination Address Entropy 45 44 37 

OTHER Source Port Entropy 39 37 42 

OTHER Destination Port Entropy 53 54 45 

3,2,0 TCP Bytes 48 49 51 

TCP Flows 49 50 52 

TCP Source Address Entropy 47 48 50 

TCP Destination Address Entropy 42 43 37 

TCP Source Port Entropy 47 48 50 

TCP Destination Port Entropy 33 32 29 

OTHER Bytes 27 26 28 

OTHER Flows 62 36 60 

OTHER Source Address Entropy 36 36 43 

OTHER Destination Address Entropy 49 47 45 

OTHER Source Port Entropy 39 39 41 

OTHER Destination Port Entropy 46 45 43 

3,2,2 5,1,0 TCP Bytes 47 48 50 

TCP Flows 50 51 52 

TCP Source Address Entropy 44 45 47 

TCP Destination Address Entropy 42 43 42 

TCP Source Port Entropy 39 40 42 

TCP Destination Port Entropy 33 32 33 

OTHER Bytes 30 30 37 

OTHER Flows 63 42 40 

OTHER Source Address Entropy 36 35 36 

OTHER Destination Address Entropy 45 44 44 

OTHER Source Port Entropy 39 39 40 

OTHER Destination Port Entropy 46 45 46 

3,2,0 TCP Bytes 46 45 48 

TCP Flows 50 49 52 

TCP Source Address Entropy 46 45 48 

TCP Destination Address Entropy 44 43 37 
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TCP Source Port Entropy 46 45 48 

TCP Destination Port Entropy 33 34 30 

OTHER Bytes 31 28 31 

OTHER Flows 36 62 38 

OTHER Source Address Entropy 36 36 37 

OTHER Destination Address Entropy 46 46 45 

OTHER Source Port Entropy 37 39 38 

OTHER Destination Port Entropy 48 56 45 
Table 6.26:  May 28, 2009 Varying Local Variability weights results 
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Bounds 

(High pass, 

Mid pass, Low 

pass) 

Weights 

(High pass, 

Mid pass, 

Low pass) 

Features Miss Count 

75

% 

100% 120% 

2,3,2 5,1,0 TCP Bytes 63 64 64 

TCP Flows 67 66 66 

TCP Source Address Entropy 46 47 47 

TCP Destination Address Entropy 32 28 22 

TCP Source Port Entropy 53 52 52 

TCP Destination Port Entropy 26 27 27 

OTHER Bytes 54 51 51 

OTHER Flows 61 62 62 

OTHER Source Address Entropy 59 51 56 

OTHER Destination Address Entropy 61 64 63 

OTHER Source Port Entropy 56 56 57 

OTHER Destination Port Entropy 60 61 57 

3,2,0 TCP Bytes 58 59 59 

TCP Flows 64 63 63 

TCP Source Address Entropy 50 51 51 

TCP Destination Address Entropy 29 29 22 

TCP Source Port Entropy 58 57 57 

TCP Destination Port Entropy 25 26 26 

OTHER Bytes 49 49 49 

OTHER Flows 58 59 56 

OTHER Source Address Entropy 53 54 55 

OTHER Destination Address Entropy 55 56 55 

OTHER Source Port Entropy 54 56 57 

OTHER Destination Port Entropy 63 63 57 

3,2,2 5,1,0 TCP Bytes 62 63 63 

TCP Flows 65 64 64 

TCP Source Address Entropy 57 58 58 

TCP Destination Address Entropy 35 29 22 

TCP Source Port Entropy 53 52 52 

TCP Destination Port Entropy 28 29 30 

OTHER Bytes 54 55 55 

OTHER Flows 62 63 62 

OTHER Source Address Entropy 55 57 55 

OTHER Destination Address Entropy 54 55 54 

OTHER Source Port Entropy 61 62 61 

OTHER Destination Port Entropy 61 63 59 

3,2,0 TCP Bytes 60 61 61 

TCP Flows 64 63 63 

TCP Source Address Entropy 55 56 56 

TCP Destination Address Entropy 28 31 25 
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TCP Source Port Entropy 61 60 60 

TCP Destination Port Entropy 28 29 29 

OTHER Bytes 59 60 60 

OTHER Flows 60 60 56 

OTHER Source Address Entropy 60 56 55 

OTHER Destination Address Entropy 57 60 59 

OTHER Source Port Entropy 62 61 58 

OTHER Destination Port Entropy 66 65 61 
Table 6.27: January 15, 2009 Varying Local Variability weights results 
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Bounds 

(High pass, 

Mid pass, Low 

pass) 

Weights 

(High pass, 

Mid pass, 

Low pass) 

Features Miss Count 

75% 100% 120% 

2,3,2 5,1,0 TCP Bytes 45 44 43 

TCP Flows 48 47 49 

TCP Source Address Entropy 60 36 45 

TCP Destination Address Entropy 25 25 26 

TCP Source Port Entropy 61 62 64 

TCP Destination Port Entropy 24 22 23 

OTHER Bytes 16 15 16 

OTHER Flows 39 40 41 

OTHER Source Address Entropy 69 70 41 

OTHER Destination Address Entropy 72 73 72 

OTHER Source Port Entropy 31 24 28 

OTHER Destination Port Entropy 66 62 65 

3,2,0 TCP Bytes 46 45 44 

TCP Flows 49 45 47 

TCP Source Address Entropy 61 47 57 

TCP Destination Address Entropy 24 24 22 

TCP Source Port Entropy 64 65 66 

TCP Destination Port Entropy 24 22 23 

OTHER Bytes 16 15 15 

OTHER Flows 39 40 41 

OTHER Source Address Entropy 70 74 38 

OTHER Destination Address Entropy 66 75 70 

OTHER Source Port Entropy 31 25 28 

OTHER Destination Port Entropy 63 63 63 

3,2,2 5,1,0 TCP Bytes 44 43 42 

TCP Flows 42 37 38 

TCP Source Address Entropy 63 35 47 

TCP Destination Address Entropy 32 32 30 

TCP Source Port Entropy 52 54 55 

TCP Destination Port Entropy 27 25 26 

OTHER Bytes 20 22 20 

OTHER Flows 39 40 41 

OTHER Source Address Entropy 75 75 41 

OTHER Destination Address Entropy 75 41 77 

OTHER Source Port Entropy 39 32 34 

OTHER Destination Port Entropy 69 70 65 

3,2,0 TCP Bytes 46 45 44 

TCP Flows 44 42 43 

TCP Source Address Entropy 62 56 58 

TCP Destination Address Entropy 28 31 28 
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TCP Source Port Entropy 57 57 59 

TCP Destination Port Entropy 24 22 23 

OTHER Bytes 21 22 20 

OTHER Flows 39 40 41 

OTHER Source Address Entropy 69 72 37 

OTHER Destination Address Entropy 69 70 72 

OTHER Source Port Entropy 40 35 37 

OTHER Destination Port Entropy 65 70 70 
Table 6.28: June 10, 2009 - Varying Local Variability weights results 
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6.2.8 Threshold Techniques and Haar Wavelet Filtering analysis 

Each of the experiments performed used four different threshold techniques to 

automatically identify anomalous time bins.  The results listed in tables 6.29 – 6.32 summarize 

the evaluation measurements for threshold techniques on the specified dates.  In each scenario, at 

least one feature was able to detect the infected time.  It was observed that all the dynamic 

averages performed worse than the static average. 

Infection 

Rate 

Feature Miss Count 

Static 

Average 

Moving 

Average 

without 

Outliers 

Moving 

Average 

Weighted 

Moving 

Average 

5% TCP Bytes 33 45 61 49 

TCP Flows 29 42 56 38 

TCP Source Address Entropy 26 50 58 44 

TCP Destination Address Entropy 30 47 71 50 

TCP Source Port Entropy 32 45 53 39 

TCP Destination Port Entropy 10 28 65 38 

OTHER Bytes 7 24 50 38 

OTHER Flows 8 69 70 70 

OTHER Source Address Entropy 16 72 79 74 

OTHER Destination Address Entropy 18 81 79 81 

OTHER Source Port Entropy 10 57 76 68 

OTHER Destination Port Entropy 57 75 79 76 

10% TCP Bytes 34 46 62 50 

TCP Flows 30 43 57 39 

TCP Source Address Entropy 27 51 59 45 

TCP Destination Address Entropy 17 45 70 50 

TCP Source Port Entropy 33 43 52 38 

TCP Destination Port Entropy 11 29 64 41 

OTHER Bytes 8 25 52 40 

OTHER Flows 8 71 73 70 

OTHER Source Address Entropy 12 71 79 74 

OTHER Destination Address Entropy 13 80 80 82 

OTHER Source Port Entropy 9 58 77 69 

OTHER Destination Port Entropy 55 72 79 72 

20% TCP Bytes 35 47 63 51 

TCP Flows 31 44 58 40 

TCP Source Address Entropy 28 50 58 44 
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TCP Destination Address Entropy 7 44 69 51 

TCP Source Port Entropy 34 41 51 37 

TCP Destination Port Entropy 16 30 65 42 

OTHER Bytes 8 25 52 40 

OTHER Flows 8 73 73 69 

OTHER Source Address Entropy 11 72 80 72 

OTHER Destination Address Entropy 11 82 80 81 

OTHER Source Port Entropy 8 60 78 67 

OTHER Destination Port Entropy 39 71 77 71 
Table 6.29: March 8, 2009 – Wavelet Short and Low threshold results 
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Infection 

Rate 

Feature Miss Count 

Static 

Average 

Moving 

Average 

without 

Outliers 

Moving 

Average 

Weighted 

Moving 

Average 

5% TCP Bytes 47 65 52 39 

TCP Flows 50 65 46 42 

TCP Source Address Entropy 46 64 44 23 

TCP Destination Address Entropy 43 43 43 42 

TCP Source Port Entropy 47 62 32 24 

TCP Destination Port Entropy 32 47 36 35 

OTHER Bytes 26 43 33 27 

OTHER Flows 57 70 44 28 

OTHER Source Address Entropy 25 65 39 10 

OTHER Destination Address Entropy 44 58 43 41 

OTHER Source Port Entropy 38 63 40 9 

OTHER Destination Port Entropy 52 67 56 54 

10% TCP Bytes 40 48 68 53 

TCP Flows 43 51 68 47 

TCP Source Address Entropy 24 47 67 45 

TCP Destination Address Entropy 41 44 46 44 

TCP Source Port Entropy 25 48 65 33 

TCP Destination Port Entropy 34 31 44 35 

OTHER Bytes 27 26 44 27 

OTHER Flows 13 42 70 40 

OTHER Source Address Entropy 9 35 64 39 

OTHER Destination Address Entropy 35 44 57 42 

OTHER Source Port Entropy 8 37 62 40 

OTHER Destination Port Entropy 54 54 68 53 

20% TCP Bytes 42 50 70 55 

TCP Flows 46 52 68 49 

TCP Source Address Entropy 26 49 69 46 

TCP Destination Address Entropy 4 42 52 43 

TCP Source Port Entropy 26 50 67 35 

TCP Destination Port Entropy 4 34 46 36 

OTHER Bytes 29 29 48 35 

OTHER Flows 57 56 71 49 

OTHER Source Address Entropy 23 40 58 39 

OTHER Destination Address Entropy 64 37 51 49 

OTHER Source Port Entropy 16 42 60 42 

OTHER Destination Port Entropy 37 45 63 46 
Table 6.30: May 28, 2009 - Wavelet Long and Low threshold results 
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Infection 

Rate 

Feature Miss Count 

Static 

Average 

Moving 

Average 

without 

Outliers 

Moving 

Average 

Weighted 

Moving 

Average 

75% TCP Bytes 63 63 67 62 

TCP Flows 59 67 73 64 

TCP Source Address Entropy 53 46 45 41 

TCP Destination Address Entropy 54 32 57 50 

TCP Source Port Entropy 60 53 56 51 

TCP Destination Port Entropy 23 26 55 29 

OTHER Bytes 11 54 55 55 

OTHER Flows 6 61 62 51 

OTHER Source Address Entropy 9 59 65 60 

OTHER Destination Address Entropy 25 61 60 61 

OTHER Source Port Entropy 8 56 68 64 

OTHER Destination Port Entropy 17 60 61 56 

100% TCP Bytes 64 64 68 63 

TCP Flows 60 66 72 65 

TCP Source Address Entropy 54 47 46 42 

TCP Destination Address Entropy 13 28 50 40 

TCP Source Port Entropy 61 52 55 52 

TCP Destination Port Entropy 24 27 52 30 

OTHER Bytes 10 51 52 56 

OTHER Flows 7 62 62 53 

OTHER Source Address Entropy 9 54 64 56 

OTHER Destination Address Entropy 22 64 62 61 

OTHER Source Port Entropy 9 56 69 63 

OTHER Destination Port Entropy 13 61 62 58 

120% TCP Bytes 64 64 68 63 

TCP Flows 60 66 72 65 

TCP Source Address Entropy 54 47 46 42 

TCP Destination Address Entropy 12 22 44 39 

TCP Source Port Entropy 61 52 55 52 

TCP Destination Port Entropy 25 27 51 30 

OTHER Bytes 10 51 52 56 

OTHER Flows 7 62 61 53 

OTHER Source Address Entropy 10 56 63 58 

OTHER Destination Address Entropy 15 63 60 60 

OTHER Source Port Entropy 10 57 69 63 

OTHER Destination Port Entropy 9 57 56 55 
Table 6.31: January 15, 2009 - Wavelet Short and High threshold results 
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Infection 

Rate 

Feature Miss Count 

Static 

Average 

Moving 

Average 

without 

Outliers 

Moving 

Average 

Weighted 

Moving 

Average 

75% TCP Bytes 33 45 59 55 

TCP Flows 33 48 65 50 

TCP Source Address Entropy 30 60 60 54 

TCP Destination Address Entropy 7 25 63 44 

TCP Source Port Entropy 43 61 62 55 

TCP Destination Port Entropy 5 24 53 37 

OTHER Bytes 10 16 46 20 

OTHER Flows 17 39 80 41 

OTHER Source Address Entropy 8 69 68 58 

OTHER Destination Address Entropy 9 72 71 67 

OTHER Source Port Entropy 8 31 67 54 

OTHER Destination Port Entropy 24 66 67 61 

100% TCP Bytes 32 46 58 42 

TCP Flows 32 47 64 44 

TCP Source Address Entropy 19 36 55 39 

TCP Destination Address Entropy 6 25 60 33 

TCP Source Port Entropy 44 62 64 50 

TCP Destination Port Entropy 6 22 53 30 

OTHER Bytes 9 15 45 11 

OTHER Flows 10 40 79 40 

OTHER Source Address Entropy 10 70 69 56 

OTHER Destination Address Entropy 17 73 71 69 

OTHER Source Port Entropy 9 24 57 40 

OTHER Destination Port Entropy 24 67 67 57 

120% TCP Bytes 31 43 57 41 

TCP Flows 31 49 65 15 

TCP Source Address Entropy 17 45 55 39 

TCP Destination Address Entropy 5 26 62 34 

TCP Source Port Entropy 45 64 65 51 

TCP Destination Port Entropy 5 25 53 29 

OTHER Bytes 9 16 45 10 

OTHER Flows 11 41 80 41 

OTHER Source Address Entropy 11 41 66 50 

OTHER Destination Address Entropy 11 72 70 70 

OTHER Source Port Entropy 10 28 62 43 

OTHER Destination Port Entropy 22 65 65 55 
Table 6.32: June 10, 2009 - Wavelet Long and High threshold results 
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6.2.9 Summary and Discussion 

 The Haar Wavelet Filtering Analysis approach examines each feature and provides an 

indication of which features might have anomalies.  There were three user-defined parameters: 

the size of the input data, filtering boundaries and the local variability weights for score 

calculation.  The dataset size affects the bin width and the resolution of the filtering.  A typical 

attack is short and 98% of the flows are less than a minute.  A larger bin will have more flows, 

overall higher values, and will less likely to reflect quick spikes in values.  Conversely, if the bin 

width is too small then the feature values will be small, and analysis becomes overly granular.   

Input data size and filter boundaries.  In the Haar Wavelet Filtering algorithm, the 

boundary sizes are related to input size.  These boundaries define the amount of the high pass, 

mid pass and low pass values in filtering.  Larger dataset size allows more levels to be divided 

into the high, medium and low regions.  The experiments varying the data set sizes and filtering 

boundaries showed that an input size of 128 elements and emphasis on mid pass values 

performed the best.  In this case, the bin width was 11.25 minutes and similar to what was used 

in literature.  Larger input data sizes result in smaller bin sizes and performed worse.  This can be 

attributed to smaller observation values and less change between time bins. 

Local Variability Weights.  The local variability weights are used in the deviation score 

calculation.  The weights apply emphasis to each of the filtered values at a point of time.  The 

high pass weights affect the sensitivity to high frequency changes and the mid pass weights 

affect the mid pass frequency changes.  The experiments conducted examined a strong bias and a 

small bias towards high pass values.  Each feature has its own independent analysis and the 

results from all of the features were examined.  The weights with a strong bias generally had 

lower miss counts.  The feature, which isolated the injected malicious flows, consistently had 
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smaller miss counts.  A possible reason for this is because the mid pass values are not as 

meaningful as the high pass values.  Most of the anomalous flows were less than one minute 

long, in 11.25 min bins, and quick changes in features would be more evident. 

The Haar Wavelet Filtering analysis was able to isolate all of the infected bins in at least 

one of the feature analysis.  As the infection rate and duration increased, the approach performed 

better.  The major drawback of this approach is that every feature is a separate independent 

analysis and can result in several independent, unrelated results.  In practice, it would be very 

difficult to determine which feature(s) detecting the actual intrusions, and which are missing 

them. 

6.3 Evaluation of Hybrid PCA – Haar Wavelet Filtering Analysis 

This section outlines the results obtained from running the experiments with the Hybrid 

PCA- Haar Wavelet Filtering analysis approach outlined in section 5.3.4 and concludes with a 

brief discussion. 

6.3.1 Hybrid Analysis and Pure data 

This section examines the results of the Hybrid PCA – Haar Wavelet Filtering analysis 

applied to a dataset with no infections.  The results presented are for January 6, 2009, which is 

representative of all 16 dates.  Figure 6.20 shows the delta scores across all ten test sets.  Unlike 

the Modified PCA and Haar Wavelet Filtering approaches, the Hybrid PCA – Haar Wavelet 

Filtering approach does not have extreme values to influence the average or flatten the visual 

plot.  As a result, pre-algorithm filtering is not needed in the Hybrid PCA - Haar Wavelet 

Filtering approach.  The threshold analysis was applied to the average of the test sets or footprint.  
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Similar to previous approaches, as shown in Figure 6.20, regardless of the threshold technique, 

the algorithm will suggest anomalous time bins.  

 
Figure 6.200: January 6, 2009 – Hybrid Delta scores (top) and Average Delta scores (bottom) 
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6.3.2 Short and Low Infection 

This section examines the results of the Hybrid PCA – Haar Wavelet filtering analysis 

experiments performed on a low infection rate in a short period of time.  The four dates for this 

particular scenario, outlined in Table 5.2, all had consistent behaviour.  As a result, for 

simplicity, only March 8, 2009 is discussed.  Figures 6.21 illustrates the footprints observed with 

default parameters conducted on test sets of 5%, 10% and 20% infection ratios respectively (See 

Table 5.4 for a list of default conditions).  The infected time bins were during bins 88, 89 and 90 

and the plots clearly picked up the infected times.  Table 6.33 lists the hit/miss scores and the 

hit/miss counts measured for each feature. The default threshold method determines a miss rate 

of about 30%.  The other threshold methods range from 4% to 39%, see Section 6.3.6 for details 

 
Figure 6.211: March 8, 2009 - Hybrid Delta Scores of 5% (top left), 10% (top right), 20%(bottom) infection rates 
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Infection Rate Score Hit Count (% Hit) Miss Count (% Miss) 

5% 1 62 (65%) 34 (35%) 

10% 1 62 (65%) 34 (35%) 

20% 1 63 (66%) 36 (34%) 
Table 6.33: March 8, 2009 - Hybrid experiment results 

6.3.3 Long and Low Infection 

This section examines the results of the Hybrid PCA – Haar Wavelet filtering analysis 

experiments performed on a low infection rate in a short period of time.  The four dates for this 

particular scenario, outlined in Table 5.2, all had consistent behaviour.  As a result, for 

simplicity, only May 28, 2009 is discussed.  Figures 6.22 illustrates the footprints observed with 

default parameters conducted on test sets of 5%, 10% and 20% infection ratios respectively (See 

Table 5.4 for a list of default conditions).  The infected time bins were during bins 61 – 71 and 

the plots clearly picked up the infected times.  Table 6.34 lists the hit/miss scores and the 

hit/miss counts measured for each feature.  The default threshold method determines a miss rate 

of about 20%.  The other threshold methods range from 11% to 40%, see Section 6.3.6 for 

details 
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Figure 6.222: May 28, 2009 - Hybrid Delta Scores of 5% (top left), 10% (top right), 20% (bottom) infection rates 

Infection Rate Score Hit Count (% Hit) Miss Count (% Miss) 

5% 1 71 (74%) 25 (26%) 

10% 0 77 (80%) 19 (20%) 

20% 2 77 (80%) 19 (20%) 
Table 6.34: May 28, 2009 - Hybrid experiment results 

6.3.4 Short and High Infection 

This section examines the results of the Hybrid PCA – Haar Wavelet filtering analysis 

experiments performed on a low infection rate in a short period of time. The four dates for this 

particular scenario, outlined in Table 5.2, all had consistent behaviour.  As a result, for 

simplicity, only January 15, 2009 is discussed.  Figures 6.23 illustrates the footprints observed 

with default parameters conducted on test sets of 75%, 100% and 120% infection ratios 

respectively (See Table 5.4 for a list of default conditions).  The infected time bins were during 

bins 83, 84, 85, 86 and the plots clearly picked up the infected times.  Table 6.35 lists the 
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hit/miss scores and the hit/miss counts measured for each feature.  The default threshold method 

determines a miss rate of about 35%.  The other threshold methods range from 4% to 38%, see 

Section 6.3.6 for details 

 
Figure 6.233:January 15, 2009 - Hybrid Delta Scores of 75% (top left), 100% (top right), 120%(bottom) infection 

rates 

Infection Rate Score Hit Count (% Hit) Miss Count (% Miss) 

75% 1 61 (64%) 35 (36%) 

100% 2 62 (65%) 34 (35%) 

120% 3 62 (65%) 34 (35%) 
Table 6.35: January 15, 2009 - Hybrid experiment results 

6.3.5 Long and High Infection 

This section examines the results of the Hybrid PCA – Haar Wavelet filtering analysis 

experiments performed on a low infection rate in a short period of time. The four dates for this 

particular scenario, outlined in Table 5.2, all had consistent behaviour.  As a result, for 

simplicity, only June 10, 2009 is discussed.  Figures 6.24 illustrates the footprints observed with 
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default parameters conducted on test sets of 75%, 100% and 120% infection ratios respectively 

(See Table 5.4 for a list of default conditions).  The infected time bins were during bins 22 - 32 

and the plots clearly picked up the infected times.  Table 6.36 lists the hit/miss scores and the 

hit/miss counts measured for each feature.  The default threshold method determines a miss rate 

of about 25%.  The other threshold methods range from 6% to 41%, see Section 6.3.6 for details   

Infection Rate Score Hit Count (% Hit) Miss Count (% Miss) 

75% 3 73 (76%) 23 (24%) 

100% 3 76 (79%) 20 (21%) 

120% 2 70 (73%) 26 (27%) 
Table 6.36: June 10, 2009 - Hybrid experiment results 

 

 
Figure 6.244:June 10, 2009 - Hybrid Delta Scores of 75% (top left), 100% (top right), 120% (bottom) infection 

rates 
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6.3.6 Threshold Techniques and Hybrid PCA – Haar Wavelet filtering Analysis 

Each of the experiments performed used four different threshold techniques.  The results 

listed in tables 6.37 – 6.40 summarize the evaluation measurements for threshold techniques on 

the specified dates. The delta scores contain sets of distinctly high scores and are represented by 

spikes when plotted.  The static average was found to perform the best. 

 

 

 

  

Infection 

Rate 

Measurement Average Moving Average 

without outliers 

Moving 

Average 

Weighted 

Average 

5% Score 1 1 1 1 

Hit Count 90 62 63 60 

Miss Count 6 34 33 36 

10% Score 1 1 1 1 

Hit Count 92 62 63 59 

Miss Count 4 34 33 37 

20% Score 2 1 1 1 

Hit Count 89 63 66 63 

Miss Count 7 36 33 36 
Table 6.37: March 8, 2009 - Hybrid threshold results 

Infection 

Rate 

Measurement Average Moving Average 

without outliers 

Moving 

Average 

Weighted 

Average 

5% Score 2 -1 -21 -1 

Hit Count 84 77 56 69 

Miss Count 12 19 40 27 

10% Score 2 0 -20 0 

Hit Count 84 77 56 74 

Miss Count 12 19 40 24 

20% Score 4 2 -18 2 

Hit Count 85 77 57 76 

Miss Count 11 19 39 23 
Table 6.38: May 28, 2009 - Hybrid threshold results 
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Infection 

Rate 

Measurement Average Moving Average 

without outliers 

Moving 

Average 

Weighted 

Average 

75% Score 4 1 1 1 

Hit Count 92 61 58 59 

Miss Count 4 35 38 37 

100% Score 2 2 2 2 

Hit Count 91 62 59 60 

Miss Count 5 34 37 36 

120% Score 3 2 2 2 

Hit Count 91 62 59 59 

Miss Count 5 34 37 37 

Table 6.39: January 15, 2009 - Hybrid threshold results 

Table 6.40: June 10, 2009 - Hybrid threshold results 

Infection 

Rate 

Measurement Average Moving Average 

without outliers 

Moving 

Average 

Weighted 

Average 

75% Score 9 3 2 4 

Hit Count 90 73 60 66 

Miss Count 6 23 36 30 

100% Score 9 3 2 5 

Hit Count 90 76 60 68 

Miss Count 6 20 36 28 

120% Score 10 2 0 5 

Hit Count 88 73 55 68 

Miss Count 8 26 41 28 



117 

 

6.3.7 Summary and Discussion 

The Hybrid PCA - Haar Wavelet Filtering analysis is an approach that considers all 

features and has few input parameters.  This method draws upon the strengths of the Modified 

PCA approach and the Haar Wavelet Filtering analysis.  It examines all features using Principle 

Component Analysis and selects the single best principle component for anomalous subspace 

creation.  It uses the one top component to build the anomalous space.  As shown in Modified 

PCA experimentation, this approach performs best with this dataset.  Next, the Haar Wavelet 

Filtering analysis is applied with input data size of 128.  As shown in Haar Wavelet Filtering 

analysis, applying filter boundaries, and local variability weightings, which have a bias towards 

high frequency values, performs best.  In experimentation, it was able to constantly detect the 

injections.  This approach was able to detect all infected time bins; regardless of the how infected 

a time bins was or how many time bins were infected (See Table 6.41 for a summary of the 

differences between the approaches).  As the intensity or duration of anomalous behaviour 

increased, the algorithm performed better. 

Characteristic Modified PCA 

Approach 

Haar Wavelet Approach Hybrid Approach 

Number of input 

dimensions 

All 1 All 

Number of output 

dimensions 

1 All (1 for each dimension) 1 

Number of tunable 

user parameters 

2 3 0 

Overall detection 

performance 

Fair. Ranges from Good to poor, 

depending on the 

dimension. 

Good. 

Table 6.41: Summary of differences between algorithms 
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6.4 Threshold Techniques Discussion 

In order to automate the anomaly detection analysis, four different threshold techniques 

were examined.  One threshold technique considered the entire dataset and the three remaining 

threshold techniques considered sliding window.  The static average calculates a single cutoff 

line, while the dynamic techniques form a cutoff function.  Depending on the algorithm and the 

nature of the scores, the techniques performed differently.  The Modified PCA algorithm creates 

scores that have a lot of highs and lows.  Also, the extreme highs skew the average value.  In this 

approach, the static average performed the worst.  The dynamic average approaches, which 

considered only a small subset of consecutive values, had much better miss counts.  The Haar 

wavelet approach and the Hybrid approach have distinct regions of high values.  Using a sliding 

window through regions of low values is meaningless.  Dynamic thresholds are overly granular 

in these approaches.  The static average was able to calculate an appropriate cutoff to isolate 

these distinct spikes.  By examining the output plots, it is evident that the threshold techniques 

choice is directly dependant on the algorithm applied. 
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7.0 Conclusion 

This chapter summarizes the thesis and presents conclusions.  Future work and directions 

for further research are also discussed. 

7.1 Conclusions and Summary 

This thesis introduces a hybrid intrusion detection approach based on anomaly detection 

methods.  The hybrid approach involves using well known statistical analysis and spectral 

analysis techniques to provide the network administrator time slices of potential network traffic 

intrusions.  Unlike existing Intrusion Detection Systems, which primarily use signature based 

investigation, a novel technique which used as adaptive model based on flow characteristics was 

presented.  The statistical analysis technique, Modified Principle Component Analysis, considers 

data trends and creates a new set of axis to better describe the dataset.  It projects data onto the 

anomalous subspace and provides an anomalous score for each time bin.  Two parameters 

investigated in this research were the number of time shifts and how the components were 

selected for the anomalous subspace.  It was concluded that the features in the Kyoto2006+ 

dataset are highly correlated.  Building a subspace of components that contains 99% of the 

normal space performed the best in experimentation.  The difference of observation values 

between time bins changes a fair amount and it was determined that considering more than one 

time shift degraded performance.  For anomaly detection, the algorithm calculated a Square 

Prediction Error (SPE) score for an indication of how anomalous each time bin was.  

Experiments were conducted with various time bin infection rates and over a short and long 

number of infected time bins.  The PCA approach was able to produce higher SPE score for 



120 

 

infected time slices; however, these values were not large enough to stand out.  The scores were 

not one of the dominant spikes when plotted. 

 Secondly, the spectral analysis technique used Haar Wavelet Filtering analysis to 

determine abrupt changes in the data over time.  It provides a score to show how anomalous each 

time bin may be.  Three parameters investigated in this research were the number of time bins 

fed into the algorithm, the filtering boundaries and the frequency component weightings for 

score calculation.  Due to the nature of the Haar Wavelet Filtering, the input size had to be a 

power of two.  Considering the Kyoto2006+ dataset volume of observations, the optimal number 

of input time bins, through experimentation, was determined to be 128.  The time bins were large 

enough to be meaningful.  The spectral analysis algorithm modeled high pass values to represent 

the start /end time and the mid pass values to represent the duration of malicious behaviour.  

Through experimentation, boundaries where the high pass region consisted of the first two 

levels, the mid pass region consisted of the next three levels and the low pass regions consisted 

of the remaining levels performed best.  These specific boundaries resulted create a preference 

on high pass frequency values.  The local variability weights applied a further bias to each of the 

filtered values to determine a single scalar score.  Once again, the weights heavier on high pass 

performed best.  Considering this trend, it can be concluded that in the Kyoto2006+ dataset has 

significant fluctuation of feature values and are best isolated by high frequency analysis.  The 

Haar Wavelet Filtering approach performed independent feature analysis and produces several 

independent scores.  The experiments examined different days in week, different times, various 

infections ratios and various amount of infected time bins.  Under all circumstances tested, the 

analysis was able to isolate the infected time bins in at least one of the feature analysis.  When 

examining individual experiment results, it was observed that at least one of the feature results 
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identified the infected time bins ideally; yet other features were completely wrong.  Without 

knowing where the anomalies are, it would be very difficult to determine which features 

accurately picked up the anomalies.  The Haar Wavelet Filtering approach performed much 

better than the Modified PCA approach; however, it is very difficult to determine which of the 

feature plots to consider. 

Both the Modified PCA and the Haar Wavelet Filtering approach detected the infected 

time bins.  Both approaches had their strengths and drawbacks.  The Hybrid analysis draws upon 

the strengths of each approach and combines them in a complementary fashion.  The Hybrid 

analysis considers the entire feature set, as in modified PCA, and performs an in depth analysis, 

as in Haar Wavelet Filtering.  Similar to the previous two algorithms, the hybrid approach was 

tested on several dates, using various infection rates and different number of consecutive infected 

time bins.  In all circumstances, the Hybrid approach detected all the infected times bins.  It 

produced a single output score that distinctly identified regions of anomalous behaviour.   

An automated detection approach was investigated and various threshold techniques were 

applied to the output scores of each of the algorithms.  In the modified PCA approach, where the 

plotted output had many regions of high spikes, it was observed that moving thresholds 

performed best.  Applying threshold techniques to smaller portions to determine local spikes 

performed much better than considering the entire dataset.  Conversely, the hybrid and wavelet 

analysis had a distinct and localized region of high values.  The remaining scores were all very 

low.  In the experiments using these algorithms, the static average performed the best.  One 

threshold approach did not always perform the best.  Depending on which algorithm is applied, 

one threshold technique would perform better the others. 
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In conclusion, applying the modified PCA approach on the Kyoto2006+ dataset 

performed modestly well.  Applying Haar Wavelet Filtering on the Kyoto2006+ better detected 

the injected anomalous flows; however, due to the amount of independent feature analysis, it is 

not very practical.  The Hybrid approach used the strengths of both previous approaches.  This 

algorithm was applied on the Kyoto2006+ dataset and it was always able to consistently identify 

the anomalous time bins.  It can be concluded that the Hybrid PCA – Haar Wavelet Filtering 

approach performed the best. 

7.2 Future Work 

Directions for future research are discussed next. 

 Investigate techniques to isolate specific hosts or sources within time bins.  Our approach 

suggests a specific infected time bin, and it would be very useful to provide an indication 

of which hosts within this time behaved anomalously. 

 Devise techniques to isolate specific characteristics, which contributed to the anomaly.  

The major benefit of the Haar Wavelet approach was that it specifically listed the feature 

interest.  Due to the nature of the Modified PCA approach and the Hybrid approach, 

semantic meaning is lost. 

 Investigate multiple infected time bins regions.  Our analysis examined the base cases of 

a single infected region of a short or long time.  It would be useful to examine how the 

algorithms perform one datasets with multiple infected regions. 

 Apply anomaly detection algorithms on various datasets.  There are a number of different 

types of dataset available and each have their limitations.  Some datasets have higher 

traffic volume and different are characterized by different features. 

 Apply the profiling phase to involve to TCP and UDP network protocols.  Due to 

availability of data, this research involved dividing between TCP and OTHER, all 

remaining, protocols.  When considering a different dataset, the profiling could be 

divided between TCP and UDP network protocols. 
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This research was built upon existing research.  It starts with known statistical and 

spectral analysis techniques and builds upon them.  The result of these algorithms provides an 

indication of which time bins may have malicious behaviour, and it would be beneficial to 

provide the network administrator more information as to which sources are infected, or to which 

features are creating the anomaly.  Furthermore, the experiments showed promising result under 

base cases with the novel labeled dataset.  It would be interesting to apply the anomaly detection 

algorithms on different dataset with higher data volume, different features, and different protocol 

partitions.  This research provides was a good starting point in comparing the performance of the 

different anomaly detection algorithms in network traffic data. 
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