
New Iterative Decoding Algorithms for

Low-Density Parity-Check (LDPC) Codes

by

Nastaran Mobini, B.Sc.

A thesis submitted to the

Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Master of Applied Science in Electrical Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

August, 2011

c©Copyright

The undersigned hereby recommends to the

Faculty of Graduate and Postdoctoral Affairs

acceptance of the thesis

New Iterative Decoding Algorithms for Low-Density

Parity-Check (LDPC) Codes

submitted by Nastaran Mobini, B.Sc.

in partial fulfillment of the requirements for the degree of

Master of Applied Science in Electrical Engineering

Professor Claude D’Amours, Examiner

Professor Ian Marsland, Examiner

Professor Amir Banihashemi, Thesis supervisor

Professor Thomas Kunz, Chair

iii

Abstract

Low-Density Parity-Check (LDPC) codes have gained lots of popularity due to their

capacity achieving/approaching property. This work studies the iterative decoding

also known as message-passing algorithms applied to LDPC codes. Belief propagation

(BP) algorithm and its approximations, most notably min-sum (MS), are popular

iterative decoding algorithms used for LDPC and turbo codes. The thesis is divided

in two parts. In the first part, a low-complexity binary message-passing algorithm

derived from the dynamic of analog decoders is presented and thoroughly studied.

In the second part, a modification for improving the performance of BP and MS

algorithms is proposed. It uses adaptive normalization of variable node messages.

v

Table of Contents

Abstract v

Table of Contents vi

List of Tables viii

List of Figures ix

Nomenclature xi

1 Introduction 1

1.1 Research Motivation and Contributions 1

2 Channel Coding 4

2.1 Communication Systems . 4

2.2 Error Control Codes . 5

2.3 Block Codes . 6

2.4 Low-Density Parity-Check Codes . 8

2.5 Iterative Decoding . 10

2.5.1 Hard-decision Algorithms . 10

2.5.2 Soft-decision Algorithms . 11

3 Fixed Point Problem of Iterative Decoding 14

vi

3.1 Successive Substitution . 15

3.2 Solving the First Order Differential Equation 18

4 Differential Binary Message Passing Decoding 22

4.1 Algorithm . 23

4.1.1 DD-BMP Algorithm . 24

4.1.2 Complexity . 25

4.2 Simulation results . 27

5 Adaptive Belief Propagation Decoding of LDPC Codes 40

5.1 System Model and the Adaptive Control Technique 42

5.2 Simulation Results and Analysis . 44

6 Conclusions and Future Work 50

List of References 52

vii

List of Tables

4.1 Optimal values of q and 4∗ for different codes 29

5.1 Breakdown of errors based on their type for the (1268,456) code, de-

coded by standard BP and adaptive BP, as a function of the maximum

number of iterations at different SNR values; “C”, “P” and “F” stand

for “Chaotic”, “Periodic” and “Fixed-pattern”, respectively. 48

5.2 Breakdown of errors based on their type for the (504,252) code, de-

coded by standard BP and adaptive BP, as a function of the maximum

number of iterations at different SNR values; “C”, “P” and “F” stand

for “Chaotic”, “Periodic” and “Fixed-pattern”, respectively. 48

viii

List of Figures

2.1 Elements of a communication system. 4

3.1 Illustration of the orbit of the function f(x) = λx(1−x) with different

values of λ. (a) illustrates an attractive fixed point, (b) repelling fixed

point, (c) periodic cycle and (d) chaos. 16

3.2 BER curves of BP, MS, SR-MS for (1268,456) code. 19

3.3 Average number of iterations vs. BER for BP, MS, and SR-MS for

(1268,456) code. 20

3.4 BER curves of BP, MS, SR-MS for (504,252) code. 21

3.5 Average number of iterations vs. BER for BP, MS, and SR-MS for

(504,252) code. 21

4.1 BER vs. 4 for different values of q at SNR values 4 dB and 4.25 dB

for code (3000, 1000)(4,6). 28

4.2 BER curves of BP, MS, DD-BMP, and GA for codes (3000, 1000)(4,6),

(6000, 2000)(4,6) and (12000, 4000)(4,6). 30

4.3 BER curves of BP, MS, DD-BMP, and GA for code (4000, 2000) with

different degree distributions. 31

4.4 BER curves of BP, MS, DD-BMP, and GA for code (1057, 813)(3,13). . 31

4.5 BER curves of BP, MS, IMWBF, DD-BMP, MDD-BMP and GA for

code (273, 191)(17,17). 32

ix

4.6 BER curves of BP, MS, IMWBF, DD-BMP, MDD-BMP and GA for

code (1023, 781)(32,32). 32

4.7 BER curves of BP, MS, DD-BMP, and GA for irregular code (1008, 504). 33

4.8 Average number of iterations vs. BER for BP, MS, DD-BMP and GA

for code (3000, 1000)(4,6), (6000, 2000)(4,6) and (12000, 4000)(4,6). . . . 35

4.9 Average number of iterations vs. BER for BP, MS, DD-BMP and GA

for code (4000, 2000) with different degree distributions. 35

4.10 Average number of iterations vs. BER for BP, MS, DD-BMP, and GA

for code (1057, 813)(3,13). 36

4.11 Average number of iterations vs. BER for BP, MS, IMWBF, DD-BMP,

MDD-BMP and GA for code (273, 191)(17,17). 36

4.12 Average number of iterations vs. BER for BP, MS, IMWBF, DD-BMP,

MDD-BMP and GA for code (1023, 781)(32,32). 37

4.13 Average number of iterations vs. BER for BP, MS, DD-BMP, and GA

for irregular code (1008, 504). 37

5.1 An example of Eq. (5.1). 43

5.2 BER for a) (1268,456) and b) (504,252) LDPC codes decoded by stan-

dard BP, Normalized BP, and adaptive BP algorithms. 46

5.3 Average number of iteration versus BER for a) (1268,456) and b)

(504,252) LDPC codes decoded by standard BP, Normalized BP, and

adaptive BP algorithms. 46

5.4 Iterative decoding trajectories for the (1268,456) LDPC code at

Eb/N0 = 2.5 dB: a) number of decision errors versus the iteration

number. b) E(i+1) vs. E(i) ; 1) fixed-pattern 2) periodic-pattern, and

3) random-like or chaotic. 47

x

Nomenclature

List of Acronyms

Acronym Explanation

AWGN Additive White Gaussian Noise

BCH Bose and Ray-Chaudhuri

BER Bit Error Rate

BF Bit Flipping

BP Belief Propagation

BPSK Binary Phase Shift Keying

DD-BMP Differential Decoding - Binary Message Passing

IMWBF Improved Modified Weighted Bit Flipping

LDPC Low-Density Parity-Check

LLR Log-Likelihood Ratio

LR Likelihood Ratio

xi

MBω Majority Based algorithms

MWBF Modified Weighted Bit Flipping

WER Word Error Rate

MS Min-Sum

SP Sum-Product

SS Successive Substitution

SR Successive Relaxation

WBF Weighted Bit Flipping

xii

List of Symbols

Symbol Explanation

0 all zero-vector or matrix depending on context

1 all-one vector

α normalization parameter

a a node in a Tanner graph

A coding alphabet

b a node in a Tanner graph

β normalization parameter

B`
a,b memory content of the edge adjacent to node a and b in the `-th iteration

c a codeword (a row vector)

cj a check node

cth clipping threshold

C a binary linear code

dc degree of check node

dv degree of variable node

dmin minimum distance

dx/dy derivative of x with respect to y

xiii

E number of edges in a Tanner graph

E a posteriori average entropy

Eb energy of an information bit

f variable node operation

γ relaxation factor

G generator matrix

H parity-check matrix

Imax maximum number of iterations

k length of message

` iteration index

m a message word (a row vector)

m`
a→b a message in LLR domain sent from node a to node b in the `-th iteration

ni zero-mean Gaussian noise

N block length of code equal to the number of variable nodes

N0 one-sided noise power spectral density

N (a) set of neighboring nodes of the node a

M number of check nodes

xiv

p0j(i) probability of j-th bit being “0” in the i-th iteration

p1j(i) probability of j-th bit being “1” in the i-th iteration

q number of quantized bits

Q quantization function

R code rate

σ2 noise variance

T transpose

vi a variable node

x a binary random variable

yi channel output corresponding to ci

zi hard decision value corresponding to i-th bit

xv

Chapter 1

Introduction

1.1 Research Motivation and Contributions

In the current century, the need for efficient and reliable digital data transmission and

storage systems has been significantly highlighted. Since 1962, when Gallager intro-

duced low-density parity-check (LDPC) codes along with various iterative decoding

algorithms [1], numerous encoding and decoding algorithms have been proposed and

standardized to fulfil the need. But it was not until 35 years later that the work

of MacKay and Neal [2, 3] brought LDPC codes back to light. Because of their very

good error correcting performance - close to the Shannon limit - they have been widely

studied and became part of various standards in the recent years [4–7].

Iterative decoding algorithms, also known as the message-passing algorithms are

used for decoding LDPC codes. An example is the belief propagation (BP) algorithm;

theoretically the most complex and the best decoding algorithm from the error rate

point of view that has been presented so far. There are lots of published papers with

emphasis on reducing the complexity of BP along with preserving its performance.

The min-sum (MS) algorithm [8] is a well-known approximation of BP that is much

easier to implement. The use of MS algorithm also eliminates the need for estimat-

ing the noise power in the communication channel which additionally reduces the

1

2

complexity of the decoder. A review of reduced complexity algorithms can be found

in [9]. In contrast with these works, several research groups have aimed to further

improve the performance of BP algorithm at the expense of more complexity [10–12].

In this thesis we propose one modification to the current algorithms and one new

low-complexity high-performance algorithm.

There is always a tradeoff between performance and complexity in the choice of

soft-decision and hard-decision algorithms. The hard-decision algorithms in compar-

ison to the soft-decision algorithms are considerably less complex but their perfor-

mance is not as good as soft-decision algorithms. In the first part of this thesis we

propose a new approach in which both the low complexity property of hard-decision

algorithms and the good performance property of soft-decision algorithms are pre-

served. We do this by adding memory with a limited number of bits to the Gallager

A algorithm which is a binary message-passing algorithm. The memory improves the

error rate of the proposed algorithm with only a moderate increase in complexity.

In second part we will introduce a modified versions of BP and MS algorithm

that only slightly changes the original iterative algorithm and can achieve better

performance in terms of bit error rate. The first proposed method can be applied to

both BP and MS algorithms and originates from the damping idea proposed in [11].

An adaptive control factor instead of a constant factor for damping is introduced.

Although this modification increases the complexity of the iterative decoder, there is

a noticeable improvement in bit error rate. The second proposed algorithm concerns

the analog implementation of the MS algorithm [13]. The Successive Relaxation

(SR) model was originally introduced for modeling the dynamics of analog iterative

decoders but it also can be used as an LDPC iterative decoder. The idea of using SR-

MS as an LDPC decoder has been studied in [14, 15]; the promising error correcting

property of this algorithm makes it an interesting research topic.

The rest of this thesis is organized as follow. In Chapter 2, a brief review of LDPC

3

codes and iterative decoding algorithms is given. Chapter 3 covers the conventional it-

erative algorithms. A new binary- message passing algorithm is introduced in Chapter

4. Adaptive MS based algorithms is given in Chapter 5. Finally, concluding remarks

and future work is addressed in Chapter 6.

Chapter 2

Channel Coding

2.1 Communication Systems

A communication system provides us with a medium for transferring mutual infor-

mation through free space in the case of wireless communications or a pair of wires,

coaxial cable, or optical fibers in wired communications. A typical communication

system includes different elements such as the transmitter, transmission channel, and

receiver as shown in Fig. 2.1.

Figure 1. Elements of a communication system

Transmitter
Transmission

Channel
Receiver

Input

Signal

Source Destination

Transmitted

Signal

Received

Signal
Output

Signal

Noise,
interference, and

distortion

Figure 2.1: Elements of a communication system.

The input signal is processed in the transmitter considering the characteristic of

the transmission channel while the process almost always involves modulation and in

some cases coding. Then, transmission is conducted via the channel that can cause

4

5

attenuation or loss of signal. The goal of the receiver is to retrieve the input signal that

might have changed as a result of distortion, interference, or noise. Demodulation is

performed on this received signal. The detected signal usually contains errors which

can be minimized through the used of coding. Both modulation and coding are

required for reliable long distance transmission. To improve digital communication,

different modulation and coding methods are introduced in [16,17].

The input signal may be either continuous or discrete as the case of analog or

digital data. Consequently, transmission will be carried on in analog or digital domain,

respectively. The emphasis of this thesis is digital communication systems. Hereafter

for the sake of simplicity we will assume that the information alphabet is binary i.e.

A ∈ {0, 1} and a memoryless binary-input continuous-output channel is used.

For binary data the simplest modulation scheme is binary phase-shift keying

(BPSK), the choice of the modulation in this thesis. Before modulation, binary

input signals with alphabet of A are mapped to {+1,−1} accordingly. The converted

sequence is then mapped into a set of antipodal signals that will be converted to the

desired modulation frequency for transmission through additive white Gaussian noise

(AWGN) channel, the most commonly used model for communication channels.

2.2 Error Control Codes

Claude Shannon created a mathematical foundation for the concept of channel capac-

ity in 1948 [18]. By introducing channel capacity as a limit, he implied that instead

of building a very good channel, one can achieve a desirable bit error rate by employ-

ing error-control codes. Since then numerous coding schemes have been introduced

to approach the Shannon limit. In 1950, the first block codes — a class of single-

error-correcting block codes — with a strong algebraic background were introduced

by Hamming [19]. Although Hamming codes provide mild improvement, research on

6

the subject continued until the BCH codes [20,21] and Reed-Solomon codes [22] were

created a decade later. Along came the Convolutional codes [23] and their decoding

have been enhanced by the Viterbi algorithm [24]. But it wasn’t until the 1990s

that turbo codes were able to provide reliable communications with power efficiencies

close to the theoretical limit predicted by Shannon. A short time after that, another

type of codes known as Low-Density Parity-Check (LDPC) codes [25] with the same

capacity approaching property were rediscovered. On additive white Gaussian noise

(AWGN) channels, Turbo codes and LDPC codes both closely approach capacity by

the use of iterative decoding algorithms at the receiver.

During encoding, based on the input bits, redundant bits — to help the recovery

of the lost data — are added to the input sequence in order to form a codeword.

To maintain a good performance, the minimum distance between codewords should

be maximized. A binary code of size M has M = 2k binary codewords where k is

the number of information bits. The k-bits sequences are one by one converted to

codewords with block length of n, given n > k. Such a code is referred as an (n, k)

binary code. The amount of redundancy added to the input bits is measured by 1−R,

which R = k/n is called code rate.

2.3 Block Codes

A binary linear block code is defined by three parameters: the blocklength n, the

information length k, and the minimum distance d [26]. An (n, k) code is able to

correct t errors if its minimum distance satisfies the inequality 2t+ 1 ≤ d. The larger

the minimum distance, the better the code. Finding a good code is an important

issue in designing a communication system; the subject has been studied extensively

in the literature. In this thesis our focus is not on code design, but on the decoding.

7

A subspace of n-tuples over GF (2) is a binary linear code C, in which each n-

tuple that is called a codeword must satisfy the following conditions: the sum of

two codewords is another codeword. These codewords are used as the rows of a k

by n matrix G called the generator matrix of the code. The rows of G are linearly

independent, and the number of rows k shows the dimension of the code subspace

over GF (2). There are M = 2k binary codewords that can be found by

c = iG

where i is a k-tuple of information that is encoded to c the n-tuple codeword.

C as a subspace has an orthogonal complement C⊥ with dimension n− k, that is

also a subspace and can be used as a code. Therefore n − k linearly independent,

n-tuples as rows build an H matrix that is used in finding correct codewords of C.

Since a codeword of C is orthogonal to every row vector of H then

cHT = 0.

The matrix H is called the parity-check matrix of the code C. And consequently, the

matrix G is the parity-check matrix of the code C⊥.

Associated with the parity-check matrix there exists a bipartite graph with two

sets of nodes, known as a Tanner graph [27]. Considering an (n, k) code, the first set

containing n nodes with one by one relation to the codeword bits is called the variable

nodes set. The second set, check nodes set, represents the parity bits and consist of

n−k check nodes. These two sets are connected according to the parity-check matrix

of the code, an edge exists corresponding to each nonzero element in the parity-check

matrix.

8

2.4 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes, sometimes called Gallager codes were first

proposed by Gallager in his thesis dissertation [25]. At that time they were considered

to be very complex due to the computational difficulties of the hardware of that time.

It was not until 30 years later that the work of Mackay [3, 28] brought them back

to light. Mackay showed that LDPC code ensembles can closely approach Shannon

capacity limit as block length increases [2], even closer than turbo codes [29]. Several

important factors such as: the capability of parallel decoding, less complexity per

iteration in comparison to that of turbo decoders, natural stopping criterion, error

floor at much lower BER than turbo codes, and the flexibility in the choice of rate and

codelength, have led them to appear in several standards, such as IEEE 802.16 [5],

IEEE 802.11 [6], IEEE 802.3 [4] and DBV-RS2 [7].

LDPC codes belong to the class of linear block codes and therefore are fully

described by their parity-check matrix. Their parity-check matrix is very sparse and

usually no two rows have more than one column in which they both have nonzero

elements (This means no cycle of length four in the Tanner graph). The number of

nonzero elements in each column or row is called the degree of that variable or check

node, respectively. If all the variable nodes have degree dv and all the check nodes

degree dc, the code will be a regular LDPC code otherwise an irregular one. The

design rate of a regular LDPC code is R = 1− dv/dc, where all the rows are linearly

independent; If not the actual rate will be higher than the design rate. Practical

LDPC codes have quite long block lengths while the variable and check node degrees

are around 3 or 4 in regular codes or as large as 10 to 15 in irregular codes, therefore

the density of nonzero elements in the parity-check matrix is very low — that is why

they are called low-density parity-check codes.

Each nonzero element in the parity-check matrix represents an edges in the Tanner

9

graph of the code connecting a variable node to a check node or vice versa. Neigh-

boring check nodes of a variable node are labeled byM(vi) = {cj : Hji = 1} and the

set of variable nodes connected to a check node is denoted by N (cj) = {vi : Hji = 1}.

Gallager showed that for constructing a good code, the row permutations should be

chosen at random out of n! possible choices. Good LDPC codes that have been found

are commonly computer generated and are very long, and because they don’t have

an algebraic structure their encoding is complicated. Encoding requires the generator

matrix which can be found based on H. To enhance the encoding, algebraic LDPC

codes based on finite geometries were derived [30]. They are constructed based on

well known finite geometries (FG) such as Euclidean and projective geometries over

finite fields. In [30], four classes of cyclic or quasi-cyclic FG LDPC codes known as

types I and II over these two geometries are described. Both types of FG LDPC

codes are regular, and they are the transpose of each other. Their encoding requires

simple linear feedback shift registers based on their generator (or characterization)

polynomials.

A binary J × n matrix HG whose rows and columns correspond to the lines and

points of a finite geometry G forms a FG LDPC code, if each row has dc and each

column dv 1s, while no two rows or columns have more than one 1 in common. G

is a finite geometry with n points and J lines. Each line consists of dc points and

two lines are either parallel (no intersection) or share only one point. Every point is

the intersect of dv lines and any two points are connected by one and only one line.

Extending a finite geometry LDPC codes is possible through splitting each column

or row of its parity-check matrix HG into multiple columns or rows. If properly done,

the extended code will perform very well [30].

10

2.5 Iterative Decoding

Iterative decoding algorithms based on their alphabet are generally divided into hard-

decision and soft-decision algorithms. The message alphabet can be as simple as

binary, e.g., A = {0, 1} or can consist of infinite uncountable number of symbols

such as the set of real numbers. If A is binary, the algorithm is referred to as

hard-decision; otherwise, it is called soft-decision. The computational complexity

of iterative algorithms usually increases with the alphabet size of messages.

2.5.1 Hard-decision Algorithms

In hard-decision algorithms, only binary values are used throughout the decoding

process. These algorithms are really important due to their simple implementation.

Their binary structure, binary memories and limited wiring, makes them remarkable

in hardware implementation especially in the situations where only hard-decision val-

ues are available at the receiver. Gallager’s algorithm A (GA) [1] is, for instance,

a hard-decision decoder in the set of Majority Based algorithms (MBω) [31] with

alphabet A = {−1, 1}. In MBω, a variable node passes its initial channel message

to any of its neighboring check nodes unless the majority of its extrinsic incoming

messages (ddv/2e + ω messages) contradict its initial message. In addition, the out-

going message of a check node is the product of its extrinsic incoming messages. The

MBω algorithms are studied in depth in [31], by the use of density evolution [32].

Another example of hard-decision algorithms is Bit Flipping algorithm (BF) [1]. In

this algorithm a flipping function is defined that counts the number of unsatisfied

syndrome bits (check nodes) in which each variable node participates. Each variable

node has a binary buffer to store a hard decision value; the content of this buffer will

be flipped if the corresponding output of the flipping function is more than a certain

threshold. Decoding continues until all check node equations are satisfied or until the

11

maximum number of iterations is reached.

2.5.2 Soft-decision Algorithms

In contrast to hard-decision algorithms, soft-decision decoding algorithms such as

belief propagation (BP) [3,27,32] and Weighted Bit Flipping algorithms (WBF) [30]

have a continuous alphabet. The BP algorithm is the most complex and the best

LDPC decoding algorithm from the error rate point of view. Much work has been

done to reduce the complexity of BP with the least effect on its performance. Min-sum

(MS) algorithm [8, 10, 33] is a well-known approximation of BP. A review of reduced

complexity algorithms can be found in [9]. The family of WBF algorithms shows

a good tradeoff between performance and complexity. Their performance is not as

good as that of BP but they are much simpler than BP and its approximations. In

other words, they provide good performance/complexity tradeoff. The family consists

of WBF algorithm, Modified Weighted Bit Flipping (MWBF) [34] and Improved

Modified Weighted Bit Flipping (IMWBF) [35]. The last two schemes are introduced

to improve the performance of the original WBF algorithm. Unlike BF, in these

algorithms only one bit is switched per iteration. The reliability of the received

inputs, which are the absolute values of the detector outputs, are employed in the

flipping function and only one hard-decision value associated to the variable node

that maximizes the flipping function is flipped.

Starting from WBF, different steps of each algorithm can be summarized in the

following lines. The check node process in WBF is finding the minimum reliability

among the reliability values of the variable nodes connected to that check node.

The flipping function is the weighted sum of the minimum reliability coming from

the check nodes connected to a variable node, in which the weighting factor is the

syndrome in {-1,1} domain. The check node process of MWBF is the same as WBF,

but the flipping function is modified by subtracting the weighted reliability value of

12

the corresponding variable node from the summation, where the weighting factor is

a constant. This modification improves the performance with a slight increase in

complexity of the algorithm. In IMWBF, the flipping function is different to some

extent. A check node sends different messages to the variable nodes connected to it, in

which the reliability of a variable node is excluded while calculating the message going

to that node. The flipping function is similar to that of MWBF except it uses the

extrinsic incoming messages. This increases the complexity and memory requirement

in comparison to the two other algorithms, but the performance is improved.

An iterative algorithm can be implemented in different domains e.g., probabil-

ity, likelihood ratio (LR) or log-likelihood ratio (LLR). In practice, LLR domain is

mostly used since message-passing algorithms are less complex and more robust in

this domain. BP algorithm in LLR domain can be summarized as follows. We use

the notations vi , i = 1, · · · , N , and cj , j = 1, · · · ,M , to denote the set of variable

nodes and the set of check nodes, respectively. The message sent from node a to node

b is denoted by ma→b.

1. Initialization

Variable node messages are initialized with received values yi from AWGN chan-

nel mvi→cj = 2
σ2yi for i = 1, · · · , N and j = 1, · · · ,M .

2. Check node operation

mcj→vi = 2 tanh−1
(∏
vk∈N (cj)\vi

tanh
(mvk→cj

2

))
(2.1)

3. Variable node operation

mvi→cj = mvi +
∑

ck∈M(vi)\cj

mck→vi (2.2)

13

where mvi = 2
σ2yi.

4. Hard decision

ẑvi = mvi +
∑

ck∈M(vi)

mck→vi (2.3)

Vector ẑ is quantized such that zi = 0 if ẑvi ≥ 0 otherwise zi = 1. If zHT = 0

decoding is completed, otherwise go to step 2. If a codeword cannot be found

within some specified maximum iterations a decoding failure is declared.

Computing the messages in check nodes is computationally complex. As previ-

ously mentioned, the most famous algorithm introduced for simplifying BP algorithm

is MS algorithm which approximates the check node operation as

mcj→vi =

(∏
vk∈N (cj)\vi

sign(mvk→cj)

)
× min

vk∈N (cj)\vi
|mvk→cj |. (2.4)

The operations performed in the variable nodes and for hard decision are those of

the BP algorithm.

Chapter 3

Fixed Point Problem of Iterative

Decoding

Decoding algorithms are employed to retrieve the original transmitted codeword over

a noisy channel. Since the closed-form solution of these algorithms is not obtainable,

iterative methods are used to approach an acceptable solution. One important ad-

vantage of iterative methods is their adaptivity, the system evolves as new messages

are made. Also, they might require fewer computations to get close to the final solu-

tion in comparison to the closed-form solution, which is especially attractive for some

applications where the need for speed is more critical than the need for precision.

Other than convergence speed, convergence itself is an essential issue in real-time sys-

tems. For some algorithms convergence can be proved by analytical methods while

for others only by computerize simulations. If done experimentally the convergence

can be determined for some degree of confidence.

In this chapter, an overview of current iterative methods used for decoding LDPC

codes is given. Then the new approach for solving the fixed-point problem of LDPC

decoding is presented.

14

15

3.1 Successive Substitution

Iterative decoding algorithms aim at solving a non-linear system of E equations with

E unknowns, where E = N × dv is the number of edges in the Tanner graph of

a regular LDPC code [36, 37]. Solutions to these equations are fixed-points which

might lead to a codeword or not. If a codeword is found the decoding is successful

otherwise an error or decoding failure is reported. An evolution equation can define

the discrete-time dynamical system of iterative decoding algorithm in the following

form

x(`+1) = f(x(`)) (3.1)

where f is the LDPC decoding function that maps the space RE into itself and x is

a vector of length E over the space RE whose initial value x(0) is arbitrary.

A fixed point x is found when application of f doesn’t change the value, i.e.

x = f(x). Finding fixed-points by putting Eq. (3.1) into the recursion is a classical

approach and is called the successive substitution (SS) method [38]. Most of the

conventional iterative decoding algorithms use this approach, e.g. the BP and MS

algorithm.

Combining two equations of variable nodes and check nodes of an LDPC decoding

algorithm leads to a fixed point problem of

x(`+1) = f(x(`),y(0)) (3.2)

where y(0) is the received vector with length N . The set of points x(`), ` = 0, 1, 2, . . .

is called the orbit of the point x under the transformation f .

Fig. 3.1 shows different behavior of the example function f(x) = λx(1 − x) for

various λ values. We can see (a) attractive fixed point (b) repelling fixed point (c)

periodic cycle and (d) chaos.

16

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(a) λ=2.5

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(c) λ=3.2

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(d) λ=3.9

0 1 2 3 4

0

1

2

3

4

5
(b) λ=−1

Figure 3.1: Illustration of the orbit of the function f(x) = λx(1− x) with different
values of λ. (a) illustrates an attractive fixed point, (b) repelling fixed point,
(c) periodic cycle and (d) chaos.

17

In general, iterative algorithms can demonstrate any of the above behaviors known

to occur in a nonlinear dynamical systems. Based on the initial vector, the behavior

of a general dynamical system lies within following classes:

• Regular attractors: fixed-point, periodic orbits, and limit cycles;

• Irregular attractors: chaotic and strange attractors.

But only one of them, the stable unequivocal fixed-point, is desirable in which

estimated LLRs found through iterations are close to negative or positive infinity.

When the decoder converges to an indecisive fixed-point that leads to a codeword

— estimated LLRs are close to zero — an undetected error is observed which is a

serious problem because in real systems this type of error will remain unnoticed and

potentially can cause trouble. If the orbit of iterative decoder matches any class other

than unequivocal fixed-point usually the chance of observing a codeword approaches

zero [36]. In the case of periodic orbits and limit cycles there is a k in which x` = x`+k

and x never approaches the desired solution similar to chaotic and strange attractors

but in the two last ones the behavior of x is unpredictable. Different methods are

introduced to help the convergence of iterative decoders by pulling it out of periodic

orbits [39, 40] or chaos [36].

Numerous numerical methods have been introduced to improve the convergence

property of iterative decoders especially turbo decoders [41]. Although for turbo de-

coders the SS method has the best performance, for LDPC decoders other approaches

such as Gauss-Seidel [33, 42–44] and Successive Relaxation [13] have shown promis-

ing improvement in performance in comparison to that of SS based approaches. In

Section 3.2 these methods are reviewed and a scheme for improving Successive Re-

laxation method applied to MS algorithm is proposed. But before that we would like

to introduce a new modification for conventional implementation of BP algorithm.

This modification helps the iterative decoder to converge which means a better error

correcting probability.

18

3.2 Solving the First Order Differential Equation

The first order differential equation

ẋ(t) = f(x(t))− x(t), t ≥ 0 (3.3)

is interpreted as an analog or continues time representation of the iterative decoder.

In [13,37,45,46] it is pointed out that Eq. (3.3) expresses the dynamic of continuous-

time analog iterative decoding.

The under relaxed version of Eq. (3.1) with a relaxation parameter γ ∈ (0, 1] can

be used to solve the Eq. (3.3). The below method is called Successive Relaxation

(SR).

x(`+1) = (1− γ)x(`) + γf(x(`)). (3.4)

The successive relaxation method employs the current value of x to estimate the

future value. In SS method the value found by f(x(`)) is considered as the new

estimate of the fixed-point in the ` + 1th iteration. But in SR method both f(x(`))

and x(`) with a certain proportion are used to create the new estimate. For example,

SR implementation of MS algorithm is possible by simply modifying the variable node

operation and the rest of iterative algorithm is untouched. In MS algorithm x is the

vector of variable node messages mv→c going to check nodes. Updating mv→c is done

by doing the original check node and variable node operations represented by f and

then involving the current value in the following form

m`+1
v→c = (1− λ)m`

v→c + λf(m`
v→c). (3.5)

Simulation results have proved the superior performance of SR implementation

of MS algorithm over SS implementation [14]. By a slight change in variable node

19

1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

SS−BP
SS−MS
SR−MS

Figure 3.2: BER curves of BP, MS, SR-MS for (1268,456) code.

operation of MS algorithm which is particularly of interest because of its low com-

plexity the performance has shown a considerable improvement. Let us call the SR

implementation of MS as SR-MS. Two codes (1268,456) and (504,252) taken from [47]

and [48] respectively, have been tested and the simulation results are given in Fig. 3.2

to 3.5. It is assumed that BPSK modulated codewords are transmitted through an

AWGN channel and are decoded with three algorithms while the maximum number

of iterations is 200 and enough codewords are simulated to generate 100 codeword

errors. The performance curves for the BP algorithms are given for reference. The

bit error rate curves generated by SR-MS are very close to those of BP algorithm and

even better in higher SNRs. The gaps between MS and SR-MS for code (1268,456)

and (504,252) are 0.4 dB and 0.3 dB respectively, even larger than the gap between

BP and MS. Even in terms of the average number of iterations SR-MS is close to

other algorithms and they all approach the same value for higher SNRs. Comparing

the complexity of BP algorithm with that of SR-MS algorithm, makes SR-MS a very

good substitute for BP in fast and real-time applications. The only drawback is the

20

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

5

10

15

20

25

30

35

40

BER

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

SS−BP
SS−MS
SR−MS

Figure 3.3: Average number of iterations vs. BER for BP, MS, and SR-MS for
(1268,456) code.

need for extra memory elements to store the previous variable node messages. Each

edge requires its own memory that makes the total of E = N × dv memories.

Inspired by the idea of memories in the variable nodes we have designed a new

binary message passing algorithm for decoding LDPC codes [49, 50]. The algorithm

incorporates soft information by storing the quantized received values and differen-

tially updating them in each iteration based on the extrinsic binary messages from

the check nodes. While the binary message-passing is particularly attractive for its

low complexity and simple implementation (translating to lower area and power con-

sumption in VLSI chips), the incorporation of soft information provides more coding

gain and improves the performance. The details of this new algorithm which is a

binary implementation of SR-MS algorithm can be found in the following Chapter.

21

1.5 2 2.5 3 3.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

SS−BP
SS−MS
SR−MS

Figure 3.4: BER curves of BP, MS, SR-MS for (504,252) code.

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0

5

10

15

20

25

30

35

BER

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

SS−BP
SS−MS
SR−MS

Figure 3.5: Average number of iterations vs. BER for BP, MS, and SR-MS for
(504,252) code.

Chapter 4

Differential Binary Message Passing

Decoding

In this chapter, we propose a binary message-passing algorithm for decoding low-

density parity-check (LDPC) codes. The algorithm substantially improves the per-

formance of purely hard-decision iterative algorithms with a small increase in the

memory requirements and the computational complexity. We associate a reliability

value to each nonzero element of the code’s parity-check matrix, and differentially

modify this value in each iteration based on the sum of the extrinsic binary messages

from the check nodes. For the tested random and finite-geometry LDPC codes, the

proposed algorithm can achieve performance as close as 1.3 dB and 0.7 dB to that of

belief propagation (BP) at the error rates of interest, respectively. This is while, un-

like BP, the algorithm does not require the estimation of channel signal to noise ratio.

Low memory and computational requirements and binary message-passing make the

proposed algorithm attractive for high-speed low-power applications.

22

23

4.1 Algorithm

We consider the application of a binary LDPC code C over a binary-input AWGN

channel. Coded bits 0 and 1 are mapped to channel input symbols +1 and −1,

respectively. The channel is memoryless and at the channel output, the received

value yi corresponding to the transmitted symbol xi is given by yi = xi+ni, where ni

is a zero-mean Gaussian noise with variance σ2 independent of xi. Assuming that the

AWGN has a power spectral density N0/2, we have σ2 = 1/(2REb/N0), where Eb and

R denote the energy per information bit and the code rate, respectively. Suppose that

C is a regular (n, k)(dv ,dc) code with length n described by an (n− k)×n parity check

matrix H = [Hij], where dv and dc represent the number of ones in each column and

each row of H, respectively. They also represent the degrees of variable and check

nodes in the Tanner graph of C, respectively.

To implement the algorithm, we consider the received values to be clipped sym-

metrically at a threshold cth, and then uniformly quantized in the range [−cth , cth].

We use the notation Q(yi) to denote the quantized value of yi. There are 2q−1 quan-

tization intervals, symmetric with respect to the origin. Each quantization interval

has a length ∆ = 2cth
2q−1 and is represented by q quantization bits. Integer numbers

−(2q−1 − 1), · · · , 2q−1 − 1 are assigned to the intervals. We associate a q-bit memory

to each edge in the graph, and initialize it with the quantized received value of the

adjacent variable node. The content of this memory is differentially updated in each

iteration by being incremented or decremented according to the sum of the extrinsic

binary messages of the check nodes. The operations in the check nodes are XOR and

the binary message passed from a variable node to a check node is the sign of the

memory associated with the edge connecting the two nodes. Decisions are made on

the values of variable nodes in each iteration according to the majority of the signs of

the adjacent edge-memories and the sign of the initial received value. The decoding

24

is stopped if the decisions satisfy the parity-check equations or if a maximum number

of iterations Imax is reached.

We use the notations vi , i = 1, · · · , N , and cj , j = 1, · · · ,M , to denote the set

of variable nodes and the set of check nodes, respectively. The message sent from

node a to node b at iteration ` is denoted by m`
a→b. All the messages passed between

variable and check nodes are binary with alphabet A = {+1,−1}. Notation B`
vi,cj

is

used for the memory content of the edge adjacent to vi and cj at iteration `. The

algorithm is then described by the following steps:

4.1.1 DD-BMP Algorithm

1. Initialization, ` = 0

z
(0)
i = (1− sgnr(yi))/2, i = 1, · · · , N where sgnr(x) = 1, for x > 0, and = -1

for x < 0. (For x = 0, sgnr(x) takes +1 or -1 randomly with equal probability.)

Let z (0) = (z
(0)
1 , · · · , z(0)N). If z (0)HT = 0, the decoding is stopped and the

transmitted codeword is estimated by z(0). Otherwise, the memory contents

are initiated by B
(0)
vi,cj = Q(yi), i = 1, · · · , N, j = 1, · · · ,M , for i and j values

that satisfy Hij = 1. The initial messages from variable nodes to check nodes

are m
(0)
vi→cj = sgnr(B

(0)
vi,cj). The algorithm is then continued at step 2.

2. Check Operation, ` ≥ 1

m(`)
cj→vi =

∏
vk∈N (cj)\vi

m(`−1)
vk→cj (4.1)

where N (b) denotes the neighboring nodes of node b, and N (b)\a denotes N (b)

excluding a.

25

3. Variable Operation and Memory Update, ` ≥ 1

B(`)
vi,cj

= B(`−1)
vi,cj

+
∑

ck∈N (vi)\cj

m(`)
ck→vi (4.2)

m(`)
vi→cj = sgnr(B

(`)
vi,cj

) (4.3)

4. Hard-Decision, ` ≥ 1

D
(`)
i =

∑
cj∈N (vi)

sgn(B(`)
vi,cj

) + sgn(yi), (4.4)

z
(`)
i =

1− sgn(D
(`)
i)

2
, i = 1, · · · , N, if D

(`)
i 6= 0 (4.5)

where sgn(x) = 1, for x > 0; = -1 for x < 0; and = 0, for x = 0. For

D
(`)
i = 0, z

(`)
i = z

(`−1)
i . The algorithm is stopped if z (`)textbfHT = 0 , or if

` = Imax. (In the former case, z (`) is used as an estimate for the transmitted

codeword, while in the latter case a decoding failure is declared.) Otherwise,

` = `+ 1, and the algorithm is continued from Step 2.

4.1.2 Complexity

To evaluate the complexity of the proposed algorithm, we first consider the number

of operations per iteration. In the check nodes, to implement Eq. (4.1) directly, we

need to perform E × (dc − 2) binary XOR operations or binary multiplications, for

the {0, 1} alphabet or the {−1, 1} alphabet, respectively, where E = N × dv is the

number of edges in the graph. This can be reduced to less than 2E if we first compute

Eq. (4.1) over all N (cj) and then exclude the term m
(`−1)
vi→cj for each vi. In the variable

nodes, to implement Eq. (4.2) and (4.3) directly, we need E × (dv − 2) additions of

26

binary values (similar to the check node operations, this can be reduced to less than

2E), and E binary additions of integer numbers. The hard-decision step is in fact to

find the binary value which has the majority among the signs of the memory elements

and the sign of the initial value of each variable node. Direct implementation based

on Eq. (4.4) requires E binary additions of binary values. In total, the complexity

per iteration of the algorithm is about 7E binary operations, many of them involving

binary values (bits) or just binary shifts. The algorithm also requires E memory

elements, each with q bits.

It should be noted that compared to purely hard-decision algorithms such as

majority-based algorithms [31], the complexity per iteration of the proposed algorithm

is only slightly higher. Memory requirement however is about q × dv times that of

purely hard-decision algorithms. Compared to soft-decision algorithms such as BP

and MS, the complexity per iteration of the proposed algorithm is substantially lower.

In addition, compared to the VLSI implementations of soft-decision algorithms with

q-bit messages, the number of interconnections for the proposed algorithm is smaller

by a factor of q. This makes the routing much simpler, and would result in shorter

interconnections and a smaller chip area. Moreover, since in the VLSI implementation

of LDPC decoders the power dissipation of the decoder is largely determined by the

switching activity of the wires [51], the proposed algorithm would significantly reduce

the power consumption.

The distribution of the number of iterations plays an important role in the overall

complexity of an iterative algorithm and its throughput. It also affects the power

consumption of the algorithm in hardware implementations. Our simulation results

show that for the tested cases, the average number of iterations for the DD-BMP

algorithm is similar to or higher than that of BP and MS algorithms. This will be

discussed in more details in the next section.

27

4.2 Simulation results

One way to estimate the performance of DD-BMP algorithm is application of ana-

lytical tools such as density evolution (DE) [32] and EXIT charts [52]. But due to

the existence of memory in the algorithm, the analysis will be irrevocably complex.

In [53], DE analysis of DD-BMP is studied and developed based on truncating the

memory of the decoding process and approximating it with a finite order Markov

process. The analysis proves the promising performance of DD-BMP algorithm in

general. But in the case of FG codes or high rate codes the complexity of the analysis

makes it intractable due to inadequacy of computational resources such as memory

and CPU time. In this cases the only solution is to estimate the performance through

simulations.

To study the performance of the DD-BMP algorithm, we use Monte Carlo sim-

ulations. Using simulations, we have tested a large number of codes with different

rates, block lengths and degree distributions. We have also tested both randomly

constructed and finite-geometry (FG) codes. In the following, we report our re-

sults for eleven codes: eight randomly constructed regular, one irregular and two

FG codes. The randomly constructed codes are taken from [48] and are divided

into three groups. The first group consists of three codes with the degree distri-

bution of (dv, dc) = (4, 6) and different lengths. The second group contains four

(n, k) = (4000, 2000) codes with different degree distributions. And the third group

holds only one high rate (1057, 813)(3,13) code. The irregular (1008, 504) code has been

specifically designed with the following degree distribution for BP algorithm in [54]:

ρ(x) = 0.002x6 + 0.9742x7 + 0.0238x8 representing variable node degree distribution,

and λ(x) = 0.4772x+0.2808x2+0.0347x3+0.0962x4+0.0089x6+0.001x13+0.1012x14

check node degree distribution. Where xk represents a node with degree k and the

28

corresponding coefficient indicates the ratio of nodes with degree k in the code. Fi-

nally, the FG codes have parameters (273, 191)(17,17) and (1023, 781)(32,32). For all the

simulations the maximum number of iterations is set to 100 and for each simulation

point, 100 code word errors are found.

0 0.05 0.1 0.15
10

−5

10
−4

10
−3

10
−2

E
b
/N

0
=4 dB

B
E

R

5 bits
6 bits
7 bits
8 bits

0 0.05 0.1 0.15
10

−7

10
−6

10
−5

10
−4

E
b
/N

0
=4.25 dB

Quantization Step

B
E

R

5 bits
6 bits
7 bits
8 bits

Figure 4.1: BER vs. 4 for different values of q at SNR values 4 dB and 4.25 dB
for code (3000, 1000)(4,6).

Our simulation results show that the optimal quantization step 4∗ , which min-

imizes the BER, is rather independent of the SNR, and changes only slightly with

the number of quantization bits q for larger values of q. This is demonstrated for

(3000, 1000)(4,6) in Fig. 4.1, where the BER is plotted vs. 4 for different values of

q at SNR values 4 dB and 4.25 dB. Fig. 4.1 also shows that by increasing q, the

performance improves until it reaches a saturation point beyond which the improve-

ment in performance is very small. For all codes, the optimal values of 4∗ and q are

29

found and are reported in Table 4.1. These values appear to strike the right balance

between the performance and the complexity. It can be seen from Table 4.1 that for

the most of the randomly constructed codes optimal q is 7 bits and only those codes

with variable node degrees smaller than 4 can reach desired performance with fewer

bits.

Table 4.1: Optimal values of q and 4∗ for different codes

Code (n, k) (dv, dc) 4∗ q

1 (3000,1000) (4,6) 0.0952 7

2 (6000,2000) (4,6) 0.0952 7

3 (12000,4000) (4,6) 0.0952 7

4 (4000,2000) (6,12) 0.0157 8

5 (4000,2000) (5,10) 0.027 7

6 (4000,2000) (4,8) 0.0476 7

7 (4000,2000) (3,6) 0.2 5

8 (1057,813) (3,13) 0.1613 6

9 (1008,504) Irr 0.1452 6

10 (273,191) (17,17) 0.0222 7

11 (1023,781) (32,32) 0.0043 9

The BER curves of DD-BMP are given in Figures 4.2 to 4.7. In the figures, we

have also given the performance curves for BP, MS and MB algorithms for reference.

For each code, the MB algorithm with the best performance is selected. For all

given regular codes, GA has the best performance (threshold) among all the MB

algorithms [31]. For (273, 191)(17,17) and (1023, 781)(32,32), MB3 and MB5 are used,

respectively. The results show that for all the codes the performance of DD-BMP is

substantially better than that of MB algorithms. For random codes, the performance

gap is as large as about 4 dB at higher SNR values, while this gap is reduced to

30

1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

BP 3000
BP 6000
BP 12000
MS 3000
MS 6000
MS 12000
DD−BMP 3000
DD−BMP 6000
DD−BMP 12000
GA 3000

Figure 4.2: BER curves of BP, MS, DD-BMP, and GA for codes (3000, 1000)(4,6),
(6000, 2000)(4,6) and (12000, 4000)(4,6).

up to about 1.5 dB for the FG codes. In particular for some regular codes, the GA

algorithm demonstrates an early error flare while DD-BMP does not. Similar trends

are observed for the word error rate curves.

Compared to soft-decision algorithms, the results show that for all the random

codes, the performance of DD-BMP is within 1.9 dB of the BP performance. For

the FG codes, the performance gap between DD-BMP and BP is much smaller, and

is about 0.7 dB at high SNR values. The performance of DD-BMP for all random

codes is at most 0.4 dB inferior to that of MS except for (1057, 813)(3,13) for which the

gap is larger and about 1.9 dB, since for this code, BP and MS have almost identical

performance for large values of SNR. For FG codes, however, the performance of

DD-BMP is superior to that of MS by about 0.2 dB and 0.5 dB, for (273, 191)(17,17)

31

1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

BP(6,12)
BP(5,10)
BP(4,8)
BP(3,6)
MS(6,12)
MS(5,10)
MS(4,8)
MS(3,6)
DD−BMP(6,12)
DD−BMP(5,10)
DD−BMP(4,8)
DD−BMP(3,6)
GA(4,8)

Figure 4.3: BER curves of BP, MS, DD-BMP, and GA for code (4000, 2000) with
different degree distributions.

2 3 4 5 6 7 8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

BP
MS
DD−BMP
GA

Figure 4.4: BER curves of BP, MS, DD-BMP, and GA for code (1057, 813)(3,13).

32

2 2.5 3 3.5 4 4.5 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

BP
MS
IMWBF
DD−BMP
MDD−BMP

MB3

Figure 4.5: BER curves of BP, MS, IMWBF, DD-BMP, MDD-BMP and GA for
code (273, 191)(17,17).

2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

BP
MS
IMWBF
DD−BMP
MDD−BMP

MB5

Figure 4.6: BER curves of BP, MS, IMWBF, DD-BMP, MDD-BMP and GA for
code (1023, 781)(32,32).

33

0 2 4 6 8 10 12
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

BP
MS
DD−BMP
GA

Figure 4.7: BER curves of BP, MS, DD-BMP, and GA for irregular code (1008, 504).

and (1023, 781)(32,32), respectively.

In Fig. 4.2, the BER curves of DD-BMP for randomly constructed

(3000, 1000)(4,6), (6000, 2000)(4,6) and (12000, 4000)(4,6) codes are plotted. These codes

have the same degree distribution and thus the same4∗. The comparison of the three

curves shows a threshold phenomenon. Threshold values for DD-BMP algorithm can

be found in [53].

To further study the effect of degree distributions on the performance of DD-

BMP, we have tested this algorithm on a (4000, 2000) code with different variable

node degrees of 3, 4, 5, and 6. The BER results are reported in Fig. 4.3. These

results show that for the same block length and rate, the performance of DD-BMP

degrades as the variable node and the check node degrees increase. It is important

to note that the trend for both BP and MS algorithms is exactly the same, i.e., the

performance of both BP and MS degrades as dv and dc are increased for a rate 1
2

regular code [9, 32]. This can also be observed in Fig. 4.3, where we have added the

BER curves of both BP and MS algorithms for the two codes. A careful inspection

34

of Fig. 4.3 shows that the performance gap between BP and MS on one hand and

DD-BMP on the other hand is decreased as (dv, dc) is increased from (4,8) to (5,10)

and (6,12). In fact, for the (6,12) code, the performance difference between MS and

DD-BMP reverses and DD-BMP outperforms MS. In Fig. 4.3, we have also presented

the BER for a (4000, 2000)(3,6) code under DD-BMP, BP and MS. It can be seen that

this degree distribution violates the trends just explained for DD-BMP. In particular,

the BER curve for this code demonstrates an early error flare. We have tested a

(8000, 4000)(3,6) code as well, and the same behavior is also observed for that code.

All the above observations closely follow the analytical analysis reported in [53] Table

II.

Finally, DD-BMP can also be applied to irregular LDPC codes. In Fig. 4.7, we

have provided the BER curves of DD-BMP, BP and MS for a (1008,504) irregular code

with the degree distribution optimized for BP and the code is constructed using the

modified PEG construction of [54]. As can be seen it has reduced the gap between

GA and BP algorithm. But at high bit error rates it is still 3 dB away from BP

algorithm. In terms of convergence DD-BMP needs a higher average number of

iterations in comparison to other decoding algorithms.

The average number of iterations vs. BER for BP, MS, DD-BMP and MB al-

gorithms are given in Figures 4.8 to 4.13 for all codes. These figures show that the

average number of iterations for DD-BMP is in general larger than those of the other

algorithms. The difference however is smaller, and in the cases of (1057, 813)(3,13) and

(273, 191)(17,17) is negligible, for lower BER values.

WBF algorithms and their variants and modifications [30, 34, 35, 39] have proved

35

10
−8

10
−6

10
−4

10
−2

10
0

0

10

20

30

40

50

60

70

80

90

BER

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

BP 3000
BP 12000
MS 3000
MS12000
DD−BMP 3000
DD−BMP 6000
DD−BMP 12000
GA 3000
GA 12000

Figure 4.8: Average number of iterations vs. BER for BP, MS, DD-BMP and GA
for code (3000, 1000)(4,6), (6000, 2000)(4,6) and (12000, 4000)(4,6).

10
−8

10
−6

10
−4

10
−2

10
0

0

10

20

30

40

50

60

70

80

BER

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

BP(6,12)
BP(5,10)
BP(4,8)
MS(6,12)
MS(5,10)
MS(4,8)
DD−BMP(6,12)
DD−BMP(5,10)
DD−BMP(4,8)
GA(6,12)

Figure 4.9: Average number of iterations vs. BER for BP, MS, DD-BMP and GA
for code (4000, 2000) with different degree distributions.

36

10
−8

10
−6

10
−4

10
−2

10
0

0

5

10

15

20

25

BER

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

BP
MS
DD−BMP
GA

Figure 4.10: Average number of iterations vs. BER for BP, MS, DD-BMP, and GA
for code (1057, 813)(3,13).

10
−6

10
−4

10
−2

10
0

0

2

4

6

8

10

12

14

16

18

20

BER

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

BP
MS
IMWBF
DD−BMP
MDD−BMP

MB3

Figure 4.11: Average number of iterations vs. BER for BP, MS, IMWBF, DD-BMP,
MDD-BMP and GA for code (273, 191)(17,17).

37

10
−6

10
−4

10
−2

10
0

0

10

20

30

40

50

60

BER

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

BP
MS
IMWBF
DD−BMP
MDD−BMP

MB5

Figure 4.12: Average number of iterations vs. BER for BP, MS, IMWBF, DD-BMP,
MDD-BMP and GA for code (1023, 781)(32,32).

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

35

40

45

50

BER

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

BP
MS
DD−BMP
GA

Figure 4.13: Average number of iterations vs. BER for BP, MS, DD-BMP, and GA
for irregular code (1008, 504).

38

to perform well for decoding FG codes. The best performing algorithm in this cate-

gory is the improved modified WBF (IMWBF) algorithm of [35]. The performance of

this algorithm is given in Figures 4.5 and 4.6 for (273, 191)(17,17) and (1023, 781)(32,32),

respectively. As can be seen, IMWBF slightly outperforms DD-BMP by about 0.4 dB

and 0.2 dB for (273, 191)(17,17) and (1023, 781)(32,32), respectively. This improvement in

performance however is counter-balanced by the much larger average number of itera-

tions as illustrated in Figures 4.11 and 4.12, for (273, 191)(17,17) and (1023, 781)(32,32),

respectively. It is also important to note that all the stored and computed values

in IMWBF are floating-point real numbers. One would expect the performance to

deteriorate for a fixed-point implementation of IMWBF. For random codes, DD-BMP

usually outperforms IMWBF handily. From the computational complexity point of

view, IMWBF requires about 2E real comparisons, E real additions and N real mul-

tiplications for preprocessing before each iterative decoding to compute the reliability

information of check nodes and the initial values of the flipping functions. During

each iteration, IMWBF needs about dv × dc real additions and N real comparisons.

It also requires 2M real memory elements to store the reliability information of the

check nodes.

It is worth mentioning that we have also tried simplified variants of DD-BMP

algorithm. In particular we have tested a version of the algorithm where the memory

update operation of Eq. (4.2) is modified to

B(`)
vi,cj

= B(`−1)
vi,cj

+ sgn

(∑
ck∈N (vi)\cj

m(`)
ck→vi

)
(4.6)

It should be noted that Eq. (4.6) reduces to Eq. (4.2) for dv = 3. In general,

the performance of this algorithm appears to be only slightly inferior to that of the

original algorithm. The advantage however is the lower complexity as the operation

in Eq. (4.6) can be performed by a count up/down of the memory.

39

Another variant of the algorithm is to assign a memory to each variable node

instead of each edge in the graph and update its content in every iteration based on

the binary messages of the check nodes. The outgoing messages from a variable node

are all identical and are the sign of the memory content. This algorithm is simpler

and requires less memory but the performance for random codes is considerably worse

than that of the original algorithm. For FG codes the performance loss is smaller as

can be seen in Figures 4.5 and 4.6. In these figures the performance of this algorithm is

labeled as MDD-BMP, brief for modified DD-BMP. The average number of iterations

vs. BER for MDD-BMP is also given in Figures 4.11 and 4.12. As can be seen,

at lower BER values, MDD-BMP has a slight advantage over DD-BMP in terms of

average number of iterations.

Chapter 5

Adaptive Belief Propagation Decoding of

LDPC Codes

An adaptive control technique, originally presented by Kocarev et al. [36] to improve

the performance of turbo codes in the waterfall region, is applied to low-density

parity-check (LDPC) codes. For typical finite-length LDPC codes, the application of

the proposed technique improves the performance of belief propagation (BP) by up

to about 0.5 dB in the waterfall region. The proposed technique also improves the

performance of BP in the error floor region significantly. This is in contrast with the

results for turbo codes, where the technique appears to have no effect on the error

floor. We also show that the technique is robust against the changes of the channel

signal-to-noise ratio (SNR) and that the same control parameters can be used over a

wide range of SNR values with negligible performance degradation.

Belief propagation (BP) is widely used for decoding low-density parity-check

(LDPC) [1] and turbo [55] codes. Applied to cycle free graphs, which represent

codes with infinite block length, BP converges to a posteriori probabilities for bits.

For practical codes, where the graph representation has many small cycles, BP, al-

though still performing very well, becomes suboptimal [11]. The sub-optimality can

40

41

be attributed to the over-estimation of the reliability of messages [11], and the per-

formance of BP for finite-length codes can be enhanced by scaling or offsetting down

the reliability of messages [11,56,57].

Inspired by the representation of iterative decoding algorithms as nonlinear dy-

namical systems, Kocarev et al. proposed an alternate technique to improve the

performance of BP for finite-length turbo codes [36], [58]. The technique, which is

based on the adaptive control of transient chaos, is capable of improving the per-

formance of turbo decoders by 0.2 to 0.3 dB in the waterfall region [36], [58]. The

performance in the error floor region however remains unaffected. This is justified

by the lack of transient chaos in this region [36]. While the technique of [36, 58] is

similar to those proposed in [11,56] and [57] as it also aims at reducing the reliability

of messages, it also differs from them in that the reduction in reliability of a message

is achieved adaptively by a correction factor which is a function of the message itself.

LDPC codes, although similar to turbo codes in that they also belong to the

category of iterative coding schemes, sometimes demonstrate behaviors very different

than those of turbo codes. One example is the application of successive relaxation

(SR) to the iterative decoding of LDPC and turbo codes. While for turbo codes, SR

does not provide any improvement over the conventional successive substitution (SS)

[41], for LDPC codes significant improvements are observed [13]. We demonstrate

another example of different behavior of turbo codes and LDPC codes in this thesis.

We apply the adaptive control technique of [36,58] to the BP decoding of LDPC codes.

Using simulations, we demonstrate performance improvements of about 0.5 dB in the

waterfall region for the tested LDPC codes. Moreover, our results show significant

performance improvement in the error floor region. This is in stark contrast with the

results of turbo codes [36, 58], where the technique has almost no effect on the error

floor. This motivates us to analyze the performance of the technique in the error

floor region. To carry out the analysis, we use the a posteriori average entropy [36] as

42

a simple representation of decoding trajectories, and show that the improvement in

the error floor performance is a direct result of improvement in the chaotic transient

behavior of the decoder.

5.1 System Model and the Adaptive Control Tech-

nique

Consider the application of a binary LDPC code C over a binary-input AWGN channel

such that coded bits 0 and 1 are mapped to the channel input symbols +1 and -1,

respectively. Assume that C has length N and is described by an M ×N parity check

matrix H = [Hmn]. For a regular (dv, dc) code, parameters dv and dc represent the

number of ones in each column and each row of H, respectively. They also represent

the degrees of variable and check nodes in the Tanner graph [27] of C, respectively.

For irregular codes, not all the rows or all the columns have the same weight.

Suppose that the channel output yi corresponding to the transmitted symbol xi

is given by yi = xi + ni, where ni is a zero-mean Gaussian noise with variance σ2

independent of xi. Assuming that the AWGN has a power spectral density N0/2,

we have σ2 = 1/(2REb/N0), where Eb and R denote the energy per information bit

and the code rate, respectively. We consider a parallel BP decoder implemented in

the log-likelihood ratio (LLR) domain. The input to the decoder for the ith bit is

the channel LLR 2yi/σ
2 . The decoder performs iterations until it converges to a

codeword or a maximum number of iterations Imax is reached.

To apply the adaptive control technique, we replace the outgoing messages mv→c

of variable nodes in the original BP algorithm by [36,58]

m′v→c = αmv→ce
−β|mv→c| (5.1)

43

-300 -200 -100 0 100 200 300
-40

-20

0

20

40

mV->C

m
' V

->
C

Figure 5.1: An example of Eq. (5.1).

The control function is chosen because if xi is small, then the attenuation factor

in (5.1) is close to 1 (since α is close to 1 and β is small). In other words, the

control algorithm does nothing. If, however, xi is large, then the control algorithm

reduces the normalization factor, thereby attenuating the effect of xi on the decoding

algorithm. Fig. 5.1 shows a realization of Eq. (5.1), as can be seen in this figure the

function’s slope for small values is close to 1.

where v and c are a pair of neighboring variable and check nodes, respectively,

and parameters α and β are constants selected from the intervals (0, 1] and [0,+∞),

respectively, to optimize the error rate performance of the algorithm. The optimal

values of α and β are usually close to the end and the beginning of the corresponding

intervals, respectively. It should be noted that the normalized BP algorithm of [11]

is a special case of Eq. (5.1) with β = 0, i.e., no adaptation. We have also applied

the adaptation to the output of check nodes as well as both the outputs of variable

nodes and check nodes. In both cases, the results are similar to the results reported

44

here.

5.2 Simulation Results and Analysis

To study the effects of the adaptive control technique on the BP decoding of finite-

length LDPC codes, we consider an optimized (1268,456) irregular code, also used

in [11], and a regular (504,252) code from [48]. For all the simulations, the maximum

number of iterations is set to 200 and for each simulation point, 100 codeword errors

are generated.

For the (1268,456) and (504,252) codes, the optimal values of α and β, which

minimize the bit error rate (BER), are found to be 1 and 0.008, and 0.99 and 0.010,

respectively. These values which are obtained by exhaustive search at Eb/N0 = 2.5

dB and 4 dB for the two codes, respectively, remain close-to-optimal over a wide

range of SNR values of interest. Fig. 5.2 shows BER curves of both codes decoded

by the original BP, and BP with adaptive control. We have also included in Fig. 5.2

the BER curves for normalized BP. The value of a for normalized BP, optimized for

the (1268,456) and (504,252) codes at Eb/N0 = 2.5 dB and 4 dB, is 0.9 and 0.75,

respectively. As can be seen, BP with adaptive control outperforms standard BP by

about 0.25 dB to 0.6 dB for BER values in the range of 10−7 − 10−6. Adaptive BP

also outperforms non-adaptive normalized BP. In particular, for the (1268,456) code,

the error floor performance of the former is superior to the latter. For the (504,252)

code, the performance improvement is mainly happening at lower SNR values. The

reason for this is the high sensitivity of the optimal value of α to the variations of SNR

for normalized BP. For example, for the (504,252) code while optimal α is 0.75 at

Eb/N0 = 4 dB, it increases to 0.95 at 2.0 dB. This sensitivity is substantially reduced

by the introduction of adaptive control in the algorithm of Eq. (5.1).

Fig. 5.3 compares the average number of iterations of the original BP, BP with

45

adaptive control and normalized BP versus BER for the two codes. The figure shows

that the improvement in performance for adaptive BP comes at no cost in the av-

erage number of iterations. In fact, for lower SNR values, adaptive BP requires a

smaller average number of iterations to converge compared to Normalized BP for

both codes. Compared to standard BP, there is an improvement at low SNR region

for the (504,252) code.

To analyze the superior performance of adaptive BP, we use the a posteriori av-

erage entropy defined by [36]

E(i) = − 1

N

N∑
j=1

(p0j(i) log2 p
0
j(i) + p1j(i) log2 p

1
j(i))

where i is the iteration number, and pkj (i), k ∈ {0, 1} is the a posteriori probability

of the jth bit being equal to k in iteration i. Although E(i) is probably too simple

to provide a comprehensive picture of the dynamical behavior of the decoder, its

evolution with i can be effectively used to identify the type of error events in which

the decoder is trapped. When the decoder converges to the right codeword, we

have E = 0. Fig. 5.4(b) shows the steady-state evolution of E(i + 1) vs. E(i) for

three instances of iterative decoding, which we associate with fixed-pattern, periodic-

pattern and random-like or chaotic error events. For the three instances, the number

of decoding errors versus the iteration number is also plotted in Fig. 5.4(a).

To analyze the difference in performance of standard BP and adaptive BP at

the high SNR region, we examine and categorize the failures of both algorithms and

track the changes with the increase in the maximum number of iterations Imax. In

particular, for the (1268,456) code and the (504,252) code, we present the results at

Eb/N0 = 2.5 dB, 2.75 dB, 3 dB, and 3.5 dB, 4 dB, 4.5 dB, in Tables 5.1 and 5.2,

46

1.5 2 2.5 3 3.5
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Eb/N0 (dB)

B
E
R

a) (1268,456) Code

BP

Norm alized BP

Adaptive BP

2 2.5 3 3.5 4 4.5 5
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0 (dB)

B
E
R

b) (504,252) Code

BP

Normalized BP

Adaptive BP

Figure 5.2: BER for a) (1268,456) and b) (504,252) LDPC codes decoded by stan-
dard BP, Normalized BP, and adaptive BP algorithms.

10
-8

10
-6

10
-4

10
-2

5

10

15

20

25

30

35

40

BER

A
ve
ra
ge
 N
um

be
r
of
 It
er
at
io
ns

a) (1268,456) Code

BP
Normalized BP

Adaptive BP

10
-8

10
-6

10
-4

10
-2

0

5

10

15

20

25

BER

A
ve
ra
ge
 N
um

be
r
of
 It
er
at
io
ns

b) (504,252) Code

BP
Normalized BP

Adaptive BP

Figure 5.3: Average number of iteration versus BER for a) (1268,456) and b)
(504,252) LDPC codes decoded by standard BP, Normalized BP, and adaptive
BP algorithms.

47

600 700 800 900 1000
0

2

4

1a
)

0 0.5 1 1.5 2

x 10
-3

0

1

2
x 10

-3

1b
)

800 850 900 950 1000
0

2

4

2a
)

0 0.5 1 1.5 2 2.5 3

x 10
-3

0

1

2

3
x 10

-3

2b
)

800 850 900 950 1000
0

20

40

3a
)

0 1 2 3 4 5

x 10
-3

0

2

4

x 10
-3

3b
)

Figure 5.4: Iterative decoding trajectories for the (1268,456) LDPC code at Eb/N0 =
2.5 dB: a) number of decision errors versus the iteration number. b) E(i + 1)
vs. E(i) ; 1) fixed-pattern 2) periodic-pattern, and 3) random-like or chaotic.

48

Table 5.1: Breakdown of errors based on their type for the (1268,456) code, decoded
by standard BP and adaptive BP, as a function of the maximum number of
iterations at different SNR values; “C”, “P” and “F” stand for “Chaotic”,
“Periodic” and “Fixed-pattern”, respectively.

p p y
Eb/N0 2.5 dB 2.75 dB 3 dB
Imax 200 1000 10000 200 1000 10000 200 1000 10000

Error Type C P F C P F C P F C P F C P F C P F C P F C P F C P F
Standard BP 100 0 0 44 0 0 23 0 0 100 0 0 43 0 0 18 0 0 100 0 0 38 0 0 18 0 0
Adaptive BP 5 2 1 4 2 1 2 2 1 6 0 1 4 1 1 3 1 1 7 2 1 3 6 1 3 6 1

Table 5.2: Breakdown of errors based on their type for the (504,252) code, decoded
by standard BP and adaptive BP, as a function of the maximum number of
iterations at different SNR values; “C”, “P” and “F” stand for “Chaotic”,
“Periodic” and “Fixed-pattern”, respectively.

; , , p , p y
Eb/N0 3.5 dB 4 dB 4.5 dB
Imax 200 1000 10000 200 1000 10000 200 1000 10000

Error Type C P F C P F C P F C P F C P F C P F C P F C P F C P F
Standard BP 100 0 0 44 0 0 15 0 0 100 0 0 29 1 0 9 2 0 100 0 0 24 1 0 11 1 0
Adaptive BP 10 2 0 5 2 0 2 2 0 6 5 4 5 5 4 4 5 4 6 7 2 2 7 2 1 7 2

respectively. As can be seen, for Imax = 200, all the 100 failure instances of standard

BP for both codes and at all SNR values are chaotic. The results also show that as

Imax increases to 1000 and then to 10,000, many of these chaotic instances converge

to the right codeword, indicating the transient nature of the chaos. For both codes,

at each SNR, we apply the input vectors corresponding to the 100 failure instances

of standard BP to adaptive BP. The breakdown of error types in this case is also

reported in Tables 5.1 and 5.2. For example, Table 5.1 shows that for the (1268,456)

code, by applying the 100 input vectors, which caused chaos for the standard BP with

Imax = 200 at SNR = 2.5 dB, to the adaptive BP decoder with Imax = 200, only 5

cases remain in chaos. Out of the other 95 cases, 92 converge to the right codeword, 2

are trapped in periodic patterns and one in a fixed pattern. The results of Tables 5.1

and 5.2 indicate that the improvement in performance of adaptive BP in comparison

49

with standard BP in the high Imax region is mainly due to the reduction in the chaotic

transient behavior. This effect is particularly prevalent for smaller values of Imax.

Chapter 6

Conclusions and Future Work

In this thesis we have studied iterative decoding algorithms and methods to improve

their performance. The main conclusions and proposed future work for each problem

are summarized below.

• Belief Propogation algorithm due to the existence of cycles in the Tanner graph

of practical codes is suboptimal. Improving the performance of BP is possi-

ble by normalizing the messages passed from variable nodes to check nodes in

the iterative decoder. We have proposed an adaptive normalization scheme to

improve the performance of BP algorithm.

• Inspired by the dynamics of SR, we propose a binary message-passing algorithm

for the decoding of LDPC codes. Similar to SR, the proposed algorithm is with

memory and the memory elements are updated differentially in each iteration

according to the binary messages. The proposed algorithm is able to close a large

portion of the gap between purely hard- decision and soft-decision algorithms.

• Successive Relaxation (SR) implementation of MS algorithm has shown to

achieve better bit error rates in comparison to conventional Successive Substitu-

tion (SS) implementations of MS. In SR-MS algorithm, variable node massages

are updated according to a different trajectory. As a result SR-MS generally

50

51

requires more number of iterations to converge. A further study on behavior

of orbits of SR-MS and devising a scheme to speed up the convergence while

maintaining the performance seems promising.

• The proposed adaptive normalized BP algorithm improves the BER perfor-

mance in expense of mild added complexity. The adaptive scaling factor

αe−β|mv→c| was originally chosen in [36, 58] to speed up the convergence. But

there might be other non-linear scaling functions that can perform better. A

further search for discovering other alternative scaling functions makes an in-

teresting research topic.

List of References

[1] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory,

vol. 8, pp. 21–28, 1962.

[2] D. MacKay and R. Neal, “Near Shannon limit performance of low density parity

check codes,” Electronics Letters, vol. 33, pp. 457 – 458, Aug. 1997.

[3] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

Trans. Inform. Theory, vol. 45, pp. 399 – 431, March 1999.

[4] IEEE P802.3an, “1OGBASE-T task force,” http: //www. ieee8O2.org/3/an.

[5] IEEE 802.16e, “Air interface for fixed and mobile broadband wireless access

systems,” IEEE p802.16e/d12 draft, Feb. 2005.

[6] IEEE 802.11n, “Wireless lan medium access control and physical layer specifi-

cations,” IEEE p802.11n/d3.07, March 2008.

[7] “T.T.S.I. digital video broadcasting (DVB) second generation framing struc-

ture for broadband satellite applications,” http://www.dvb.org.

[8] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decod-

ing of low-density parity check codes based on belief propagation,” IEEE Trans.

Commun., vol. 47, pp. 673 – 680, May 1999.

[9] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, “Reduced-

complexity decoding of LDPC codes,” IEEE Trans. Commun., vol. 53, pp. 1288

– 1299, July 2005.

[10] M. Fossorier, “Iterative reliability-based decoding of low-density parity check

code,” IEEE J. Select. Areas Commun., vol. 19, pp. 908 – 917, May 2001.

[11] M. Yazdani, S. Hemati, and A. Banihashemi, “Improving belief propagation on

graphs with cycles,” IEEE Comm. Letters, vol. 8, pp. 57 – 59, Jan. 2004.

52

53

[12] Y. Mao and A. Banihashemi, “Decoding low-density parity-check codes with

probabilistic scheduling,” IEEE Commun. Letters, vol. 5, pp. 414 – 416, Oct.

2001.

[13] S. Hemati and A. Banihashemi, “Dynamics and performance analysis of analog

iterative decoding for low-density parity-check (LDPC) codes,” IEEE Trans. on

Commun., vol. 54, pp. 61 – 70, Jan. 2006.

[14] H. Xiao, S. Tolouei, and A. Banihashemi, “Successive relaxation for decoding of

LDPC codes,” in 24th Biennial Symposium on Communications, pp. 107 – 110,

June 2008.

[15] H. Xiao and A. H. Banihashemi, “Comments on successive relaxation for decod-

ing of LDPC codes,” IEEE Trans. on Comm., vol. 57, pp. 2846 – 2848, Oct.

2009.

[16] J. Proakis, Digital Communications. McGraw-Hill Series, 2000.

[17] S. Lin and D. Costello, Error Control Coding: Fundamentals And Applications.

Prentice-Hall, Englewood Cliffs, NJ, 2004.

[18] C. Shannon, “A mathematical theory of communication,” Bell System Technical

Journal, vol. 27, pp. 379 – 423, 623 – 656, July and October 1948.

[19] R. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech. J.,

vol. 29, pp. 147 – 160, April 1950.

[20] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary group

codes,” Information and Control, vol. 3, pp. 68 – 79, March 1960.

[21] A. Hocquenghem, “Codes correcteurs derreurs,” Chiffres, vol. 2, pp. 147 – 156,

September 1959.

[22] I. Reed, , and G. Solomon, “Polynomial codes over certain finite fields,” Journal

of the Society for Industrial and Applied Mathematics, vol. 8, pp. 300 – 304, June

1960.

[23] P. Elias, “Coding for noisy channels,” IRE Conv. Rec., vol. 4, pp. 37–46, Sept.

1955.

[24] A. Viterbi, “Error bounds for convolutional codes and an asymptotically opti-

mum decoding algorithm,” IEEE Trans. on Inform. Theory, vol. IT-13, pp. 260–

269, February 1967.

54

[25] R. Gallager, Low-Density Parity-Check Codes. PhD thesis, Cambridge, MA:

MIT Press, 1963.

[26] R. Blahut, Theory and Practice of Error Control Codes. Addison-Weseley Pub-

lishing Co., 1984.

[27] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.

Theory, vol. 27, pp. 533 – 547, Sept. 1981.

[28] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE

Comm. Letters, vol. 2, pp. 165 – 167, June 1998.

[29] D. MacKay, “Gallager codes that are better than Turbo codes,” in in Proc. 36th

Allerton Conf. Communication, Control, and Computing, Monticello, IL, Sept.

1998.

[30] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on

finite geometries: a rediscovery and new results,” IEEE Trans. Inform. Theory,

vol. 47, pp. 2711 – 2736, Nov. 2001.

[31] P. Zarrinkhat and A. Banihashemi, “Threshold values and convergence proper-

ties of majority-based algorithms for decoding regular low-density parity-check

codes,” IEEE Trans. Commun., vol. 52, pp. 2087 – 2097, Dec. 2004.

[32] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes

under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599

– 618, Feb. 2001.

[33] H. Xiao and A. H. Banihashemi, “Graph-based message-passing schedules for

decoding LDPC codes,” IEEE Trans. Comm., vol. 52, pp. 2098 – 2105, Dec.

2004.

[34] J. Zhang and M. Fossorier, “A modified weighted bit-flipping decoding of low-

density parity-check codes,” IEEE Commun. Letters, vol. 8, pp. 165 – 167, March

2004.

[35] M. Jiang, C. Zhao, Z. Shi, and Y. Chen, “An improvement on the modified

weighted bit flipping decoding algorithm for LDPC codes,” IEEE Communica-

tions Letters, vol. 9, pp. 814 – 816, Sept. 2005.

[36] L. Kocarev, F. Lehmann, G. Maggio, B. Scanavino, Z. Tasev, and A. Vardy,

“Nonlinear dynamics of iterative decoding systems: Analysis and applications,”

IEEE Trans. Inform. Theory, vol. 52, pp. 1366 – 1384, April 2006.

55

[37] S. Hemati, Iterative Decoding in Analog VLSI. PhD thesis, Ottawa-Carleton

Institute For Electrical and Computer Engineering, 2005.

[38] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal

Processing. Prentice Hall, 1999.

[39] Z. Liu and D. A. Pados, “A decoding algorithm for finite-geometry LDPC

codes,” IEEE Trans. Comm., vol. 53, pp. 415 – 421, April 2005.

[40] T. M. N. Ngatched, F. Takawira, and M. Bossert, “A modified bit-flipping decod-

ing algorithm for low-density parity-check codes,” in IEEE International Con-

ference on Commun. ICC ’07, pp. 653 – 658, August 2007.

[41] P. Moqvist and T. M. Aulin, “Turbo-decoding as a numerical analysis problem,”

in Information Theory, 2000. Proceedings. IEEE International Symposium on,

p. 485, June 2000.

[42] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “High throughput low-

density parity-check decoder architectures,” in IEEE Global Telecommunications

Conference, GLOBECOM ’01, vol. 5, pp. 3019 – 3024, Nov. 2001.

[43] J. Dielissen, A. Hekstra, and V. Berg, “Low cost LDPC decoder for DVB-S2,”

in DATE Designers’ Forum 2006, pp. 130 – 135, March 2006.

[44] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy approximations

and generalized belief propagation algorithms,” IEEE Trans. on Inform. Theory,

vol. 51, pp. 2282 – 2312, July 2005.

[45] S. Hemati and A. Banihashemi, “On the dynamics of continuous-time analog

iterative decoding,” in IEEE International Symposium on Information Theory,

ISIT ’04, p. 262, June 2004.

[46] A. Amat, S. Benedetto, G. Montorsi, D. Vogrig, A. Neviani, and A. Gerosa,

“Design, simulation, and testing of a CMOS analog decoder for the block length-

40 UMTS Turbo code,” IEEE Trans. Comm., vol. 54, pp. 1973 – 1982, Nov.

2006.

[47] Y. Mao and A. Banihashemi, “A heuristic search for good low-density parity-

check codes at short block lengths,” in IEEE International Conference on Com-

munications, ICC 2001, vol. 1, pp. 41 – 44, June 2001.

[48] D. J. C. MacKay, “Encyclopedia of sparse graph codes [online],” in Available at:

http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

56

[49] N. Mobini, A. Banihashemi, and S. Hemati, “A differential binary message pass-

ing LDPC decoder,” in IEEE Global Telecommunications Conference, GLOBE-

COM ’07, pp. 1561 – 1565, Nov. 2007.

[50] N. Mobini, A. Banihashemi, and S. Hemati, “A differential binary message-

passing ldpc decoder,” IEEE Trans. on Commun., vol. 57, pp. 2518 – 2523,

Sept. 2009.

[51] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-

density parity-check code decoder,” IEEE J. Solid-State Circuits, vol. 37, pp. 404

– 412, March 2002.

[52] S. T. Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity check

codes for modulation and detection,” IEEE Trans. Comm., vol. 52, pp. 670 –

678, April 2004.

[53] E. Janulewicz and A. Banihashemi, “Performance analysis of iterative decoding

algorithms with memory,” in IEEE Information Theory Workshop (ITW), pp. 1

– 5, Jan. 2010.

[54] H. Xiao and A. Banihashemi, “Improved progressive-edge-growth (PEG) con-

struction of irregular LDPC codes,” IEEE Comm. Letters, vol. 8, pp. 715 – 717,

Dec. 2004.

[55] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-

correcting coding and decoding: Turbo-codes,” in Technical program, confer-

ence record, IEEE international conference on Communications, ICC 93, vol. 2,

pp. 1064 –1070, May 1993.

[56] D. MacKay and M. Davey, “Evaluation of gallager codes for short block length

and high rate applications,” Codes, Systems and Graphical Models, vol. 123,

pp. 113–130, 1999.

[57] R. Lucas, M. Fossorier, Y. Kou, and S. Lin, “Iterative decoding of one-step

majority logic deductible codes based on belief propagation,” Communications,

IEEE Transactions on, vol. 48, pp. 931–937, June 2000.

[58] L. Kocarev, Z. Tasev, and A. Vardy, “Improving turbo codes by control of tran-

sient chaos in turbo-decoding algorithms,” Electronics Letters, vol. 38, pp. 1184

– 1186, Sep. 2002.

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	 1 Introduction
	1.1 Research Motivation and Contributions

	 2 Channel Coding
	2.1 Communication Systems
	2.2 Error Control Codes
	2.3 Block Codes
	2.4 Low-Density Parity-Check Codes
	2.5 Iterative Decoding
	2.5.1 Hard-decision Algorithms
	2.5.2 Soft-decision Algorithms

	 3 Fixed Point Problem of Iterative Decoding
	3.1 Successive Substitution
	3.2 Solving the First Order Differential Equation

	 4 Differential Binary Message Passing Decoding
	4.1 Algorithm
	4.1.1 DD-BMP Algorithm
	4.1.2 Complexity

	4.2 Simulation results

	 5 Adaptive Belief Propagation Decoding of LDPC Codes
	5.1 System Model and the Adaptive Control Technique
	5.2 Simulation Results and Analysis

	 6 Conclusions and Future Work
	List of References

