

Real-Time and Embedded Systems Development based on Discrete
Event Modeling and Simulation

By

Mohammad Moallemi, B. Eng., M. A. Sc.

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering (OCIECE)

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada, K1S 5B6

September 2011

© Copyright 2011, Mohammad Moallemi

 ii

The undersigned recommend to

the Faculty of Graduate and Postdoctoral Affairs

acceptance of the thesis

Real-Time and Embedded Systems Development based on Discrete Event Modeling and

Simulation

submitted by

Mohammad Moallemi, B. Eng., M. A. Sc.

in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Electrical and Computer Engineering

__

Chair, Howard Schwartz, Department of Systems and Computer Engineering

Thesis Supervisor, Gabriel Wainer

External Examiner, Andrea D'Ambrogio, Dept. of Business Engineering, University of Roma

Carleton University

September 2011

 iii

To my parents,

making me who I am now with their love and support,

and to my loving wife, Shafagh,

for his constant love, support, and encouragement.

 iv

Abstract

The design and development of embedded hard real-time (RT) systems is one of the most

complex software development practices, because of the criticality and timeliness required for

these systems. One critical aspect of RT systems is the production of outputs before the specified

deadline. A late output caused by an overrun condition in the processing of RT tasks, not only

degrades the system performance but also produces catastrophic results. Formal methods are

promising alternatives in dealing with the design issues of these applications, however they do

not scale well for complex systems. A cost-effective approach to verify the design and

implementation details of such applications is the use of Modeling and Simulation (M&S). These

methods provide dynamic and risk-free testing environments to verify different variable

scenarios. M&S is now limited to feasibility analysis and verification of such systems, hence the

simulation models are not used in the development of the final embedded application.

This dissertation is proposing an M&S-based method referred to as DEVSRT (Discrete

EVent System Specifications in Real-Time) to solve the discontinuity between the simulation

models and the final embedded software. The proposed approach combines the advantages of a

simulation-based method and a formal methodology to develop embedded applications, and

integrate simulation models with hardware components.

The research also proposes an integration of DEVSRT with Imprecise Computations theory.

The proposed I-DEVS (imprecise DEVS) formalism uses a dynamic scheduling algorithm based

on the criticality of the RT tasks to manage overload situations in the system by degrading the

system’s output accuracy in order to meet hard deadlines. The algorithm detects transient

overloading conditions early enough to carry out a proper imprecise scheduling of RT tasks,

providing a more reliable runtime platform.

 v

Acknowledgements

I want to express my sincere gratitude toward my adviser and my mentor, Professor Gabriel

Wainer, for his support, guidance, and trust that helped me through my graduate studies. His

diligence and commitment to science have been and will be a great influence on me for many

years to come. I am grateful for having the opportunity to learn from him and work with him.

I would also like to thank the members of the ARS Laboratory and the Department of Systems

and Computer Engineering at Carleton University.

 vi

Table of Contents

Chapter 1: Introduction 1

1.1 Contributions ...6

1.2 Research Publications..8

1.3 Organization ..11

Chapter 2: Background 13

2.1 Modeling and Simulation Concepts in DEVS...14

2.2 Classical DEVS Formalism...17

2.3 Parallel DEVS Formalism ...20

A) Abstract Simulation Algorithm ..22

2.4 Real-Time DEVS Formalism ..25

2.5 DEVS Simulation in CD++...26

A) CD++ Software Architecture ...26

B) DEVS Model Definition in CD++..28

2.6 Modeling and Simulation-based Approaches..29

2.7 DEVS-Based Approaches ...31

A) Model Continuity ...33

B) Real-Time Deadline..35

C) Simultaneous Events ..35

Chapter 3: The DEVSRT Formalism 37

3.1 Real-Time Interface...41

3.2 Implementation on E-CD++..44

A) E-CD++ Software Structure ...47

B) Performance Evaluation ...50

 vii

3.3 Case Study: e-puck Robot Controller..54

Chapter 4: Extended Applications of DEVSRT 65

4.1 DEVS-Based Collaborative Modeling ..65

A) Message Structure ..67

B) Example Collaborative Model..68

4.2 DEVSRT and Visualization...73

A) Message Structure and Implementation ...78

Chapter 5: Imprecise DEVS 81

5.1 Algorithms for Imprecise Computation...83

5.2 DEVS Task Model ..84

A) Problem Statement ...86

5.3 I-DEVS Formalism..87

A) Example..89

5.4 Results and Discussions ..92

A) Performance Evaluation ...100

B) Scalability ...101

Chapter 6: Conclusions and Future Work 102

6.1 Review of the Contributions..103

6.2 Future Work...106

References 108

 viii

List of Tables

Table 2.1: Comparing RT and Embedded DEVS Modeling Approaches.....................................34

Table 3.1: DEVS Output Mapping Table..56

 ix

List of Figures

Figure 2.1: Entities in a DEVS-based M&S framework [Zei00]..14

Figure 2.2: M&S layers in a DEVS-based system (modified from [Wai09])16

Figure 2.3: DEVS atomic component state transition sequence (modified from [Wai09])18

Figure 2.4: Coupled DEVS model example [Wai09]..20

Figure 3.1: DEVSRT Development Cycle (modified from [Wai11]). ..39

Figure 3.2: E-CD++ with DEVSRT Development Framework. ...46

Figure 3.3: E-CD++ software structure. ..48

Figure 3.4: Synthetic Model Architecture (Modified from [Gli02]). ..51

Figure 3.5: Percentage of Overhead with Variable Depth...52

Figure 3.6: Percentage of Overhead with Variable Width. ...53

Figure 3.7: a) e-puck robot b) placement of sensors and LEDs.54

Figure 3.8: epuck0 atomic component state diagram. ...57

Figure 3.9: Atomic Animation diagram for e-puck random distance test.61

Figure 3.10: event-file scenarios a) scenario 1 b) scenario 2.62

Figure 3.11: Atomic Animation diagram for e-puck random distance test.63

Figure 4.1: Overview of the Partitioned E-puck Model. ...69

Figure 4.2: E-Puck Controller Collaborative DEVS Model..70

Figure 4.3: E-CD++ input and output log files..72

Figure 4.4: Collaborative System Architecture [Moa11b]. ...74

Figure 4.5: Detailed System Overview [Moa11b]...75

Figure 4.6: DEVS Graph of the robot controller [Moa11b].. ..77

Figure 4.7: 3D Visualization Engine Zoomed Map [Moa11b]. ..80

Figure 5.1: A Monotone Task Divided to Mandatory and Optional Parts [Liu94a].82

Figure 5.2: Processing Carried for a State Transition. ..85

Figure 5.3: Overload Scenario...86

 x

Figure 5.4: Example I-DEVS Model...90

Figure 5.5: Example Transient Overload Scenario. ..92

Figure 5.6: Applying Imprecise Computation to the Sample Scenario...92

Figure 5.7: Synthetic Robotic Model Used for Verification...94

Figure 5.8: Discarded Tasks vs. Processor Utilization..94

Figure 5.9: Response Time vs. Execution Time in Heavy Load...95

Figure 5.10: Number of Discarded Tasks vs. Average Response Time in Medium Load............96

Figure 5.11: Number of Discarded Tasks vs. Processor Utilization in Heavy Load.....................97

Figure 5.12: Number of Components per Level vs. Average Response Time..............................98

Figure 5.13: Number of Components per Level vs. Overhead Percentage.99

 xi

Acronyms

DEVS Discrete EVent System Specifications

P-DEVS Parallel DEVS

RT-DEVS Real-Time DEVS

M&S Modeling and Simulation

RC Root Coordinator

DEVSRT Discrete EVent System Specifications in Real-Time

E-CD++ Embedded CD++

IDE Integrated Development Environment

GGAD Generic Graphical Advanced environment for DEVS modeling and simulation

IC Imprecise Computations

I-DEVS Imprecise DEVS

HSC Hardware-Software Co-design

HIL Hardware-In-the-Loop

HILS Hardware-In-the-Loop Simulation

RT Real-Time

SDE Simulation-Driven Engineering

Chapter 1: Introduction

Real-time (RT) and embedded systems are employed in various applications ranging from

telecommunications, customer electronics, transportation, medical equipments, and intelligent

and automated systems. An RT system is defined by Liu [Liu00] as “a system that is required to

complete its work and deliver its services on a timely basis”. In this definition, those systems in

which all timing constrains must be met are considered “hard real-time systems”. Many of these

systems are deployed in embedded microprocessors working in hardware computing platforms

with special configurations and interfaces. [Nic10] describes an embedded system as “a system

designed to perform a dedicated function, typically with tight real-time constraints, limited

dimensions, and low cost and low-power requirements”. The architecture of these systems

usually integrates different types of hardware components such as processors, analog and digital

components, as well as mechanical (e.g. sensors and actuators) and visual components, which

demands increasingly challenging multidisciplinary design and development efforts [Nic10].

Nevertheless, because of heterogeneity of these systems and their constraints (such as cost, time

to market, and performance), their development cycle is time consuming, error prone and

expensive.

In embedded systems with hard real-time constraints, the design decisions can lead to

catastrophic consequences for infrastructures or lives [Liu00]. These days, many critical and

complex real-time control systems rely completely on computer-based systems. Examples of

these applications are flight control systems, automotive applications, telecommunication

systems, railway switching, nuclear power plant control systems, traffic control systems,

complex manufacturing systems, space missions, etc. The size, variety, and criticality of the

computations carried out in these systems have attracted more abstract and visual design

methods that increase their complexity, reliability and performance. On the other hand, heuristic,

and ad-hoc design approaches lack flexibility, reusability, reliability and scalability in the final

 2

system. They are also prone to tedious programming, difficult code understanding, software

maintenance, and verification of time constraints issues [But10].

A solution proven to provide a reliable framework for designing these systems is the

adoption of formal methods. Formal methods are special cases of mathematical-based techniques

for design, development and verification of software and hardware systems [Mon03]. They allow

for appropriate mathematical specification and analysis of the designs, which can contribute to

the reliability of the final system, yet they add to the complexity of the design and increase the

cost of the development. Hence, they are mostly appropriate for systems with critical

applications where safety and robustness is a foremost aspect. Unfortunately, these methods do

not scale up well, as most formal proving mechanisms cannot provide formal proofs of

correctness when the complexity of the system grows [Fin96, and Abr06].

Instead, Modeling and Simulation (M&S) provides a practical solution in solving the above

mentioned difficulties in the design of RT and embedded systems, caused by formal methods.

Computer-based M&S is a useful tool for efficient analysis, design, verification and optimization

of general dynamic systems. The use of M&S in software engineering reduces costs and risks

and allows for exploring different aspects of the system.

Formal M&S is a branch of M&S, in which the simulation models are defined using a formal

approach. This technique has shown promising results in making multidisciplinary system

development tasks manageable [Zei00]. It provides a hierarchical design scheme in which higher

abstract levels are branched into levels that contain more details. The system specifications are

expressed using mathematical notations in which the details of the behavior of the system are

accurately modeled. Other advantages of formal M&S are applying formal model checking

techniques at design time [Son05, and Saa09], incremental refinement of the initial simulation

models, simulation-based validation, reuse of the existing models, risk free testing of critical

real-time applications.

The use of M&S is now popular in the early stages of RT and embedded systems

development, because this method raises the abstraction level and gives a clear view of the

 3

behavior of the system to be developed. However, when the scope of the development moves

towards the actual target hardware, the early simulation models are abandoned and the final

system is redeveloped from scratch, based on the results obtained during the simulation phase.

Consequently, M&S is often used only for testing, verification, and feasibility analysis of these

systems. Currently, existing development tools and methods do not support a simulation-based

approach or they lack the model continuity concept [Hu04, Hu05]. Model continuity applied

from the early simulation stages to the final target deployment, shortens the development process

and speeds up the implementation phase. In this approach, M&S is not only a foremost

component in the development, but also goes further by utilizing the simulated model as the final

target architecture. Commercial tools such as MATLAB/Simulink [Cha09], and LabVIEW

[Tra06] are mostly limited to simulation and do not directly support model continuity. In

addition, approaches like UML-RT [Kus01] can be used to develop software design models,

which are not suitable to be used as simulation models [Hua04].

Therefore, this research investigates the use of M&S-driven engineering at every step in the

entire embedded RT application development phases (which includes design, development,

testing, and deployment). M&S-driven engineering is a computational approach derived from

M&S, exploring the use of simulation models in software development. The use of this method

for this kind of application allows for testing in a simulated environment using virtual and real-

time simulation with different test scenarios [Yu07a, Sha07], and incrementally deploying them

in the target hardware.

The followings are the motivations in using formal M&S for design and development of RT

and embedded systems:

• Reliability and robustness: a formal methodology provides a reliable mathematical

framework for RT applications, in which structural representation of components and

formal means for explicitly specifying timings are presented.

• Hardware-Software Co-design (HSC): The drawbacks of independent design and

development of hardware and software parts of an embedded system are in the complexity

 4

of the integration of these two parts, in which ambiguous and unrecognized system

malfunctions can be caused by incompatibilities between the software and hardware,

producing longer and more expensive development cycle [Bal97]. Instead, a hierarchical

and component-oriented M&S framework allows the designer to define the structure and

behavior of the system using state machines and then replace them with hardware and

software surrogates after performing simulation-based verification of the components.

This method provides an integrated design platform for co-designing the hardware and

software components together and later, deciding which component goes as hardware and

which one as software.

• Model reuse: The component level encapsulation of behavior and data and well-defined

coupling of components in these methodologies allow model designers to reuse the

existing models. Model reuse leads to a faster model development, since many already

available sub-models can be integrated with the new ones.

• Knowledge reuse: Many existing techniques that are popular in M&S of real-time and

embedded systems - such as State Charts [Sch00], Verilog [Kim01], VHDL [Cap03], Petri

Nets and Timed Petri Nets [Jac02], Timed Automata [Gia03], Finite State Machines

[Zhe03], and DEVS [Zie00] – can be formally transformed into another method. This

permits sharing model-level data, allowing for designing hybrid models with sub-models

defined by different methodologies and a potential for collaborative and heterogeneous

modeling.

• Collaborative model execution: Different behavioral components can cooperate at

runtime via lightweight interfaces in which real-time models implemented in different

tools communicate with each other. This collaborative approach, where the simulators

themselves see each other as real-world devices permits the run-time model to collaborate

with different models implemented on various simulators. It also allows for model

encapsulation and employing the benefits offered by other tools (e.g. continuous system

modeling [Cel06], virtual reality environments).

 5

• Hardware-In-the-Loop Simulation (HILS): One of the cost saving, efficient, and risk-

free ways to develop an embedded system is to deploy HIL technique [Gli04a]. Integrated

design of hardware controller with the plant under study as separate but interacting

components allows for HIL test of the controller, while the plant components can be

incrementally replaced with the actual segments, saving time and cost in the development

of the entire system, as well as exploring dangerous and impractical situations.

The Discrete-EVent System Specification (DEVS) formalism [Zei00] has been chosen for

this purpose for the following reasons. DEVS provides a formal foundation to M&S that proved

to be successful in different complex applications [Wai09]. It integrates a simulation approach

with the benefits of a formal modeling technique, which provides fast prototyping and

incremental development while allowing for reuse of previously existing models. Concurrent

with these theoretical advances, various DEVS-based simulation tools have been implemented,

such as DEVS-C++ [Zei96], RTDEVS/CORBA [Cho03], DEVSCluster [Kim04], and

DEVS/SOA [Mit09]. In particular, the CD++ toolkit [Wai02b] is an open-source, object-oriented

M&S environment that implements DEVS formalism using different middleware technologies

on various platforms [Wai04, Chi07, Liu07, Yu07a, Har08, Wai08a, Wai08b, and Wai09].

Aside from the above-mentioned motives, this dissertation intends to investigate techniques

to overcome overrun conditions in hard-real-time systems designed with a DEVS-based M&S-

driven approach. One critical aspect of a hard RT system is the production of outputs before the

specified deadline. A late output in such systems not only degrades the system performance but

also produces catastrophic results (loss of lives and expensive equipments). However, in

circumstances with system overloads, it might be impossible to meet the deadlines. Since RT and

embedded systems are not deterministic, tasks may enter the system at any time hence, there is

no prior knowledge of their occurrence times [Liu00].

The Imprecise Computation (IC) technique [Liu94a] helps to overcome these high

computation peaks by discarding unnecessary computations in overload conditions. The main

idea is to separate the computation into mandatory and optional parts (the mandatory part affects

 6

the correctness of the result and the optional affects its quality). This research aims at

introducing a flexible RT task execution paradigm for DEVS by incorporating IC technique with

the DEVS task model. Based on the requirements in a hard RT system, it is safer for a task to

produce less accurate result on time, rather than producing the accurate result, late. The motive is

to employ IC with the proposed RT DEVS approach in order to have a formal platform for

designing hard RT systems. The objective is to address the above challenges in the proposed

DEVS-based RT design scheme, without complicating the formalism or adding extra processing

burden and maintaining the backward compatibility in order to reuse previous models.

1.1 Contributions

The main contributions in this dissertation are to propose a DEVS-based simulation-driven

development methodology for RT and embedded systems and also a hard RT system design

scheme by integrating the proposed approach with IC technique. One of the key contributions

regarding these research objectives is a new M&S-driven approach referred to as DEVSRT

(Discrete-Event Systems Specifications in Real-Time), a domain extension to DEVS theory

for embedded real-time application development. The DEVSRT takes advantage of well-defined

M&S properties and constructs of DEVS to design and interface embedded systems with the

hardware and the plant under study. DEVSRT approach includes the following contributions:

• The notion of deadline is added to the DEVS formalism making it appropriate for real-

time system modeling and design. Based on DEVS computational properties, a set of

assumptions are defined to be used in designing a real-time system. DEVSRT uses DEVS

formal outputs as output signals of the real-time system, therefore a relative deadline is

associated with each output produced at the end of each state.

• An efficient interfacing mechanism is added to the DEVS theory. This will satisfy the

following major motivations of this research: 1) Model continuity from simulation stage

up to embedding the models in the target hardware. 2) The entire system is designed in a

hardware-software co-design approach, in which the models represent different

 7

hardware and software components and are tested together as an integrated DEVS model.

3) Provides hardware-in-the-loop simulation platform where some of the models act as

the simulated plant components (in which the driver interfaces provide the electrical

emulator signals) and are tested with the embedded system (controller) model to be

deployed on the hardware.

• A generic lightweight interface for message transfers between DEVS models running on

different DEVS-based tools is presented. This provides a basis for component-oriented

collaborative modeling and simulation with other DEVS-based tools, allowing reusing

other models or using special services offered by other tools.

• The Embedded CD++ (E-CD++) tool [Yu07a, Yu07b] is extended as a software

environment to implement the proposed DEVSRT framework for the formal development

of embedded real-time applications. The new version of E-CD++ is implemented on a

real-time kernel, incorporating real-time tasking services. Many new object-oriented

entities and capabilities are added to this framework in order to support the RT

functionalities, driver interfaces, and other features of DEVSRT.

• An Integrated Development Environment (IDE) containing embedded functionalities and

graphical model designer capability is provided, which permits rapid design and

deployment of the models.

Finally, this approach has been used to develop various real-time embedded systems on a

variety of hardware platforms (such as FPGAs, embedded boards, and robotic devices), and

collaborative models. A test case using a robotic model application is presented here and the

development process and results are discussed.

The second contribution of this dissertation includes: integrating the M&S-based approach

proposed in DEVSRT with the (Imprecise Computations) IC technique to build a more reliable

design and execution platform for hard real-time systems.

 8

• The Imprecise DEVS (I-DEVS) formalism is proposed, providing flexibility to the user by

separating the behavior of the system to mandatory and optional, to achieve a more

reliable RT task scheduling from the processor.

• A detailed (model-independent) task model of DEVS formalism is presented, which

identifies processing tasks being executed in a real-time DEVS-based system. This

proposal is then used to develop RT IC-based scheduling algorithms.

• An early reaction algorithm to the overrun conditions in DEVS-based hard real-time

systems is proposed, in which the system can act early enough to save the critical tasks

from lateness.

• The I-DEVS M&S framework is implemented on E-CD++, providing a development

platform for imprecise modeling and execution using DEVS formalism.

1.2 Research Publications

Some of the research results of this dissertation are published so far. The publications are

categorized in four categories. 1) Publications related to DEVSRT and models developed using

this framework, 2) publications regarding I-DEVS formalism, 3) publications regarding the RT

collaborative modeling scheme, and 4) other publications concerning DEVS-based modeling and

simulation.

The following publications are related to the DEVSRT and DEVS-based embedded system

design:

• Moallemi, M., M. Alcaraz, and G. Wainer, “ECD++ A DEVS based Real-Time Simulator

for Embedded Systems”, Poster in proceedings of Spring Simulation Conference, Ottawa,

Canada, 2008. This paper presents the basic real-time simulation and embedded

functionalities added to E-CD++ which was later used as a basis for driver function

addition. The four embedded functionalities added to the Eclipse IDE of E-CD++ are also

discussed in this paper.

 9

• Holman, K., J. Kuzub, M. Moallemi, G. A. Wainer, “Cable-Anchor Robot Implementation

using Embedded CD++”, Poster in proceedings of SIMUTools Conference, Rome, Italy,

2009. This poster paper presents a real-time model for a cable-anchor robot, developed

using the DEVSRT framework. The model specification and implementation details are

presented.

• Moallemi, M., and G. A. Wainer, “A System-On-Chip FPGA Implementation of

Embedded CD++”, Proceedings of Spring Simulation Conference, San Diego, CA, USA,

2009. This paper proposes an FPGA-based implementation of the so far DEVSRT

formalism. The RT approach was implemented on a Virtex2pro Xilinx FPGA board, on an

embedded Linux environment. Different models have been tested on this platform.

• Moallemi, M., and Gabriel Wainer, “A Simplified Real-Time Embedded DEVS Approach

Towards Embedded and Control Design”, Poster in proceedings of Winter Simulation

Conference, Austin, USA, 2010. This poster paper presents some of the later details and

refinements of DEVSRT framework, in which the theory is more revealed.

• Moallemi, M., and G. A. Wainer, “Designing an Interface for Real-Time and Embedded

DEVS”, Proceedings of Spring Simulation Conference, DEVS Symposium, Orlando,

Florida, USA, 2010. In this paper the details of driver interface functions and

implementation of DEVSRT on E-CD++ are discussed. The real-time platform, where the

E-CD++ is implemented and the DEVS model integration with hardware is presented.

• Moallemi, M., D. A. Tall, G. A. Wainer, and A. Awad, “Application of RT-DEVS in

Military”, Proceedings of Spring Simulation Conference, MMS Symposium, Orlando,

Florida, USA, 2010. This paper presents an RT and embedded DEVSRT model for a

reconnaissance tank. The model is designed as DEVS model, tested in simulation mode

and then deployed on the hardware following the DEVSRT framework.

• Sadeghi, F. R., G. Wainer, and M. Moallemi “Modeling and Controlling a Robotic Arm

with E-CD++”, Poster in proceedings of Summer Simulation Conference, Ottawa, ON,

Canada, 2010. In this paper, a model of an advanced robotic arm is presented, following

 10

the proposed DEVSRT approach. The robotic arm is used in medical robotics, remote

surgery, and medical simulation.

The following publications are related to the collaborative modeling scheme:

• Moallemi, M., R. Castro, F. Bergero, and G. A. Wainer, “Component-Oriented

Interoperation of Real-Time DEVS Engines”, Proceedings of Spring Simulation

Conference, ANSS Symposium, Boston, MA, USA, 2011. This paper presents the main

idea of collaborative modeling and model execution based on component-oriented nature

of DEVS, using the interfacing and RT features of DEVSRT. The pros and cons of this

approach are discussed and some limitations that must be observed are briefed.

• Moallemi, M., S. Jafer, A. S. Ahmed, and G. Wainer “Interfacing DEVS and

Visualization Models for Emergency Management”, Proceedings of Spring Simulation

Conference, Work In Progress of the DEVS Symposium, Boston, MA, USA, 2011. This

paper introduces a method to integrate Cell-DEVS [Wai02a] models with DEVS-based

robotic agents and an advanced immersive visualization environment for Emergency

Management, using the proposed collaborative approach. The emergency is handled by an

autonomous robot controlled by a real-time DEVS model. The model controlling the robot

interacts with a simulation for emergencies, receiving real-time data about its location on

a cell space. The immersive environment is used to visualize the emergency and its

management.

• Ahmed, A. S., M. Moallemi, G. Wainer, and S. Mahmoud, “Cell-DEVS & 3D Real-Time

Visual Simulation to Support Combat”, Proceedings of Summer Simulation Conference

(SCSC'11), Netherland, 2011 (Runner up Best Paper Award). This paper presents the

design and development of a collaborative 3D real-time visual Cellular Agent model

(VCELL). VCELL is used for simulating land combat and is collaboratively modeled

comprising a Cell-DEVS agent model and an advanced visual immersive simulation

environment.

The following publications are related to the I-DEVS approach:

 11

• Moallemi, M., and G. A. Wainer, “I-DEVS: Imprecise Real-Time and Embedded DEVS

Modeling”, Proceedings of Spring Simulation Conference, DEVS Symposium, Boston,

USA, 2011 (Best Paper Award). This paper proposes the initial I-DEVS formalism, and

the RT task-scheduling algorithm based on IC technique. This approach combines the

dynamic advantages of the imprecise computation technique with the rigor of a formal

modeling methodology. A synthetic robotic model is developed and the results of the

execution of this model in different scenarios are compared and discussed.

The following publications are general DEVS-based M&S researches:

• Moallemi, M., and G. Wainer, “Design of Persian Tapestry in CD++”, Poster in

proceedings of Spring Simulation Multi-conference, Ottawa, Canada, 2008. This paper

presents a cellular automata [Neu66] model of a Persian carpet using Cell-DEVS

formalism and implemented on CD++ tool. The model produces different fascinating

tapestry shapes which can be used to weave real tapestries.

• Moallemi, M., A. Arya, and G. Wainer, “Simulation of Three Dimensional Elevator

System Using Cell-DEVS Formalism”, Proceedings of Spring Simulation Conference,

ANSS Symposium, Orlando, USA, 2010. This paper proposes a cellular model of a 3D

elevator system used in high-rise buildings. The paper investigates different strategies to

be considered in the design of the system and routing the elevator cars.

1.3 Organization

The rest of this dissertation is organized as follows: Chapter 2 presents some background

information on the general aspects of M&S and then discusses DEVS formalism and different

variants of it. Classical DEVS, Parallel DEVS, and RT-DEVS are reviewed and the abstract

simulation algorithm of the parallel DEVS (which is the basis for DEVSRT) is presented.

Chapter 3 describes several related and similar RT and embedded system development

approaches and tools, and discusses the pros and cons of these approaches. The need for an

M&S-based approach supporting model continuity and other necessary features for such systems

 12

is justified in this chapter. Later, the DEVSRT formalism, the details of DEVS task model, the

model interfacing mechanism, and the details of implementation of the scheme on E-CD++ are

presented. An example of a robotic controller model and the details of design, implementation

and deployment of the model are presented, where the simulation results are compared with the

actual system performance. Chapter 4 presents practical examples of the extended applications of

DEVSRT in collaborative modeling, and integration of RT models with virtual reality

environments. The messaging scheme, the interfacing mechanism, the limitations and finally the

models’ details are provided. Chapter 5 proposes the I-DEVS approach, where the RT tasks

working in the context of a DEVS-based system are extracted and then an RT scheduling

algorithm, confined in the DEVS atomic component level is proposed. The results of the

execution of a synthetic model using precise and imprecise modes are compared and the

effectiveness of this approach is shown. Chapter 6 concludes the dissertation and proposes some

future research directions for future researchers and students in this subject.

 13

Chapter 2: Background

As discussed earlier, the need for high quality software with no defect for real-time (RT) and

embedded applications has evolved techniques in which system specifications are expressed in

clean mathematical basis. M&S-based approaches provide various advantages however, they are

not as robust as formal methods, and the lack of a formal foundation for M&S poses difficulties

when trying to prove properties about the embedded systems modeled. Thereby, formal M&S-

based approaches are good alternatives as they provide a mathematical-driven system

specification framework, suitable for the design and development of such systems. Another

important challenge is the issue of consistency and traceability from the design stage to the

deployment [Bou05]. There are no well-established techniques in M&S-based design schemes to

bridge the gap between the modeling and the hardware deployment phases, nor techniques for

mapping the model behavior to an RT task system to adopt task scheduling algorithms in real-

time operating systems. Because of these drawbacks in using M&S-based design, often M&S

artifacts are abandoned and not used for the development of the actual embedded system,

resulting in extra development costs [Wai09].

This chapter presents the DEVS M&S framework, different variants of the DEVS formalism,

its abstract simulation algorithm, and details of model development on CD++ software.

Subsequently, the available M&S-based methodologies and tools for RT and embedded system

development are evaluated and the challenges in each of them are explored.

 14

2.1 Modeling and Simulation Concepts in DEVS

The theory of discrete event modeling and simulation is more or less a recent innovation tied

to the advancement of computer systems. Based on Zeigler et al. [Zei00], the Discrete-Event

System Specification (DEVS) theory observes the system of interest (source system) as a set of

behavioral data operating in the context of an experimental frame (EF) with a set of conditions.

A model of this system provides an abstract representation of the system under study, by means

of mathematical equations and instructions. Figure 2.1 illustrates this M&S framework with its

entities and relations. The entities are source system, experimental frame, model, and simulation,

and there are two types of relations: modeling relation, and simulation relation. The system

under study is illustrated as the source system, working in the general framework of the EF,

which is of interest to the modeler. The model represents the source system, its structure and

behavior in an abstract way, including part of the reality of the source system and its working

conditions.

Experimental Frame

Model

SimulatorSource

System

Modeling

Relation

Simulation

Relation

Behavior

Database

Figure 2.1: Entities in a DEVS-based M&S framework [Zei00]

The model is expressed as a set of instructions, rules, mathematical equations, or constraints

that are used to approximate the I/O trajectories of the source system. Consequently, the

 15

simulation is a computational implementation of an available model to execute the model and

extract these I/O trajectories.

The relations defined in Zeigler’s M&S framework envision the relation between EF and the

model and between the model and the simulator. The modeling relation affects the accuracy of

the behavior generated by the model compared to the behavior of the actual source system, while

the simulation relation is concerned with the accuracy of the executed simulation results

compared to the model that has been defined. The operational details of the simulator (e.g.

software, hardware …) affect the precision and limitations of the model. Different verification

techniques try to detect discrepancies between the model definition and the source system. On

the other hand, validation tests concern with inconsistencies between the simulation results and

the source system [Sar87].

This separation of data (model) and control (simulation) enables the modeler to confine the

efforts to model design, while using existing simulators to execute the model. On the other hand,

the use of formal techniques to describe the model provides mathematical proofs for the model.

The other advantage of this method is the ability to execute the same model on different

simulators implementing the same formalism, providing a potential for portability and

interoperability of the simulators and benefiting from the unique features of different simulators.

This scheme allows the model and simulator to evolve separately and maintain consistency. This

technique can be presented as a layered approach for executing the model using computer-based

simulation [Wai09]. Figure 2.2 illustrates the M&S layers in a DEVS-based simulation system.

 16

Simulator

Hardware (workstation/cluster/embedded board)

 and

Operating System

Model

Application

Modeler

Middleware (parallel/distributed/real-time)

Figure 2.2: M&S layers in a DEVS-based system (modified from [Wai09])

The modeler defines the model using a dedicated computer application providing specific

tools for expressing a DEVS model. After that, the simulator executes the model. The simulator

can incorporate different middleware technologies to hide the execution details from the

modeler. Middleware is the bridge between the simulator and the hardware, providing special

services regarding the details of execution of a model. The model is executed on a hardware

platform with a specific operating system or as an embedded application on an embedded board

with no operating system1.

1 Not to be confused with an embedded control system. An “embedded simulation” executes a simulation model

on an embedded board and outputs the results of the simulation.

 17

This dissertation concerns with designing a new real-time simulation approach capable of

being transformed to an RT system that executes a model as a control algorithm in the

framework of an embedded system.

2.2 Classical DEVS Formalism

As discussed in the previous section, the modeling and simulation aspects of a DEVS system

are separated in order to modularize and formulate the design of a model, based on the

requirements of the source system. To this end, DEVS has been proposed as a sound formal

framework for modeling generic dynamic systems and includes hierarchical, modular and

component-oriented structure and formal specifications for defining structure and behavior of a

discrete event model [Zie00]. A DEVS model is comprised of structural (Coupled) and

behavioral (Atomic) components, in which the coupled component maintains the hierarchical

structure of the system, while each atomic component represents a behavior of a part of the

system. The atomic component is the basic building block of the system which is composed of

I/O ports and a finite state timed automaton representing the behavior of the model. An input to

the atomic component via an input port triggers a state transition (referred to as “external

transition”), and in contrast the state transition (referred to as “internal transition”) at the end of

the time-delay of each state leads to an output generation through an output port. This dynamic

behavior is represented using the following formal notations [Zei00]:

AM = < X, S, Y, δext, δint, λ, ta >, where

X = {(p,v) | p∈IPorts, v∈Xp} is the set of input ports and values;

Y = {(p,v) | p∈OPorts, v∈Yp} is the set of output ports and values;

S is the set of states;

δext: Q × X → S, is the external transition function

Where Q is the total state set of M = {(s, e) |s ∈ S and 0 ≤ e ≤ ta(s)}

δint: S → S, is the internal transition function

λ: S → Y , is the output function

 18

ta: S → R+
0,∞, is the time advance function

An atomic component AM is affected by external input events X which in turn generates

output events Y. The internal transition function δint and the external transition function δext

compute the next state of the model. If an external event arrives at elapsed time e which is less

than or equal to ta(s) specified by the time advance function ta, a new state s′ is computed by the

external transition function δext. Then, a new ta(s′) is computed, and the elapsed time e is set to

zero. Otherwise, a new state s′ is computed by the internal transition function δint. In the case of

an internal event, the output specified by the output function λ is produced based on the state s

and a new ta(s′) is computed, and the elapsed time e is set to zero.

Figure 2.3 illustrates the state transition of an atomic component. An atomic component is in

state s for a specified time ta(s). If the atomic component passes this time without interruption it

will produce an output y at the end of this time and change state based on its δint function

(internal transition) and continues the same behavior. However, if it receives an input x during its

ta(s) time, it changes its state which is determined by its δext function and does not produce an

output (external transition).

Figure 2.3: DEVS atomic component state transition sequence (modified from [Wai09])

A coupled model connects the basic models together in order to form a new model. This

model can itself be employed as a component in a larger coupled model, thereby allowing the

hierarchical construction of complex models. The coupled model is defined as [Zei00]:

 19

CM = <Xself, Yself, D, {M i | i∈D}, {I i}, {Z i,j}, Select>, where:

X = {(p, v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

Y = {(p, v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

D is the set of the component names;

for each i in D , Mi is a component;

for each i in D ∪ {self}, I i is the influencees of i;

for each j in Ii, Zi,j is a function, the i-to-j output translation;

SELECT: 2M − Á → M, the tie-breaking selector;

The structure is subject to the constraints that for each i in D,

M i =< Xi, Si, Yi, δi, λi, tai >

I i is a subset of D ∪ {self}, i is not in Ii ;

Zself,j : Xself → Xj ;

Zi,self : Yi → Yself ;

Zi,j : Yi → Xj ;

SELECT: subset of D → D, such that for any non-empty subset E, SELECT(E) ∈ E.

A coupled model CM consists of components {Mi}, which are atomic components and/or

coupled models. The influencees {Ii} and the i-to-j output translation {Zi,j} define three types of

coupling specifications. The external input coupling connects the input events of the coupled

model itself to one or more of the input events of its components. The external output coupling

connects the output events of the components to the output events of the coupled model itself.

The internal coupling connects the output events of the components to the input events of other

components. The SELECT function is used to order the processing of the simultaneous events

for sequential events. Thus, all the events with the same time in the system can be ordered with

this function.

Figure 2.4 shows a hierarchical DEVS model. This model is composed of three atomic

components (Generator, Buffer and Processor) and two coupled models: the top-most coupled

model (GEN-BUF-PROC) that contains generator atomic component and BUF-PROC coupled

 20

model, which itself includes two atomic components: BUF and PROC. The port connections are

also visible in the figure. For example, the output port “out” of atomic component PROC is

connected to the “done” input port of BUF atomic component within the BUF-PROC coupled

model and also is connected to the output port of its parent coupled model which connects this

output to the top-most model output port.

Figure 2.4: Coupled DEVS model example [Wai09].

2.3 Parallel DEVS Formalism

The Select function in classical DEVS formalism handles simultaneous events by serializing

their occurrences based on the modeler’s preference, which reflects the closest sequence

happening in the real system. Let’s consider a scenario in which multiple imminent components

(a component which is supposed to execute an internal transition) exist at a certain time in a

coupled component. In this case, different order of the execution of the transitions in these

components will produce completely different behaviors in the entire system and will affect the

results, subsequently. To manage these ambiguities, the modeler specifies the imminent

component that has the priority to execute its transition, using the Select function and based on

the results, the rest of the components will be served in the next simulation cycle.

This technique however proposes a number of limitations. The arranged order of the events

might not exactly represent the reality in the source system. The circumstances might change

dynamically, while this technique only proposes a fixed ordering in all instances. Besides, this

method does not provide a solution for potential parallel execution of the events. To address

 21

these issues Chow and Zeigler proposed the Parallel DEVS (P-DEVS) formalism [Cho94] as a

solution.

The P-DEVS formalism handles simultaneous events inside the atomic component by

introducing a new transition function referred to as “confluent function”. It also introduces an

input bag in the atomic component, where simultaneous inputs are stored there and are serviced

afterwards. This allows the external function to handle multiple simultaneous inputs in one

function call. On the other hand simultaneous internal and external events are handled in the

confluent function by the modeler, which can be dynamically adapted to the circumstances. This

technique also provides a potential for parallelism in the execution of the model by allowing all

the atomic imminent components to be activated at the same time [Zie03].

The P-DEVS atomic component has the following structure [Cho94]:

AM = < X M, YM, S, δext, δint, δcon, λ, ta >, where:

X M,Y M, S, δext, δint, λ and ta are the same as DEVS atomic component specifications.

δcon: Q x XM
b → S is the confluent transition function;

The semantics of the P-DEVS model definitions are as follows. At any given time, a basic

model is in a state s. In the absence of external events, it will remain in that state for a period of

time determined by ta(s). When an internal transition takes place, the system outputs the value

λ(s), and transitions to state δint(s). If one or more external events E = {x1 ... xn / x ∈XM} occurs

before ta(s) expires, (i.e., when the system is in the state (s, e) with e ≤ ta(s)) the new state will

be given by δext(s, e, E). Suppose that an external and an internal transition collide, (i.e., an

external event E arrives when e = ta(s)) the new system’s state could either be given by

δext(δint(s), e, E) or δint(δext(s, e, E)). The modeler can define the most appropriate behavior with

the δcon function. As a result, the new system’s state will be the one defined by δcon(s, E).

A P-DEVS coupled model (CM) is defined the same as DEVS model except that there is no

tie breaking function (SELECT), as this problem is solved within the atomic component using

δcon function.

 22

A) Abstract Simulation Algorithm

As mentioned in section 2.1, DEVS M&S theory separates the modeling entity from the

simulation entity, in order to increase the abstraction level and dynamism of the framework. In

addition to providing rigorous model definition formalism, it also provides an abstract simulation

mechanism to understand and execute a DEVS-based model. The processors associated with

atomic and coupled components in the abstract simulation mechanism, are referred to as

simulators and coordinators, respectively. Thus, the processor hierarchy (or control hierarchy) is

composed of coordinators as middle nodes and simulators as the leaves. There is a top-most

coordinator referred to as Root Coordinator (RC) (reflecting the top-most coupled component)

which initiates each simulation phase by sending the following messages to the simulators: (q, t)

representing an input message that carries an input value from external environment and the time

stamp of the message. (@, t) also referred to as collect message carrying a signal to the simulator

in order to generate an output. (*, t) referred to as internal message carrying a wake up call to an

imminent simulator. The simulator in response replies with the following messages: (done, t)

referred to as done message which is produced in response to input and internal messages after

invoking the transition functions, carrying the duration of their new state (ta(s)). (y, t) referred to

as output message, which is produced in response to a collect message, carrying the output value.

An en-route coordinator is responsible for converting output messages to input messages in

case of an internal coupling. It is also responsible for sending the smallest time of internal event

(also referred to as next change (tN)) among its components whenever it is forwarding a done

message up to the RC. The tN time is the relative time from now up to the time when the

imminent children of a coordinator must be invoked in order to perform an internal transition.

The last change time (tL) is the relative time from the last activity in a component to the current

time.

The following pseudo code snippet represents collect message handling algorithm in a P-

DEVS simulator [Cho94].

1. when receive (@, t):

 23

2. if (t = tN) then

3. y = λ (s)

4. send (y, t) to the parent coordinator

5. send (done, t) to the parent coordinator

6. end

7. else if

8. error

9. end when

The following pseudo code snippet represents input message handling algorithm in P-DEVS

simulator [Cho94].

1. when receive (q, t):

2. lock the bag

3. Add event q to the bag

4. unlock the bag

5. send (done, t) to the parent coordinator

6. end when

In P-DEVS, the receipt of input message does not trigger the external transition function.

Instead, the input is inserted in the bag, allowing for processing simultaneous inputs stored in the

bag, when an internal message is received. Thus, an internal message must always accompany an

input message.

The following pseudo code snippet represents internal message handling algorithm in P-

DEVS simulator [Cho94].

1. when receive (*, t):

2. if (tL ≤ t < tN) and bag is not empty

3. e = t - tL

 24

4. s = δext(s, e, bag)

5. empty bag

6. tL = t

7. tN = tL + ta(s)

8. end if

9. else if (t = tN) and bag is empty

10. s = δint(s)

11. tL = t

12. tN = tL + ta(s)

13. end if

14. else if (t = tN) and bag is not empty

15. s = δcon(s, bag)

16. empty bag

17. tL = t

18. tN = tL + ta(s)

19. end if

20. else if (t > tN or t < tL)

21. error

22. end if

23. send (done, tN) to parent coordinator

24. end when

The internal message will produce three circumstances in an atomic component based on the

current time and input bag conditions. Line 2 refers to a case in which, the internal message is

received sometime before the end of current state’s life time and the input bag is not empty. This

means there are inputs to be serviced; hence the external transition is invoked. Line 9 refers to

the case when the internal message is received at the end of the lifetime of the current state,

 25

while the input bag is empty, indicating an internal transition. Line 14 shows the case when

internal message is received at the end of the state and there are inputs to be served. Therefore,

confluent function must be called to handle the collision of external and internal transitions.

2.4 Real-Time DEVS Formalism

Hong et al. [Hon97] proposed a real-time version of DEVS formalism as an extension of the

classical DEVS for real-time systems simulation. An atomic component in RT-DEVS formalism

(RTAM) is defined as:

RTAM=<X, S, Y, δext, δint, λ, ta, ti, ψ, A >, where:

X, S, Y, δint, λ and ta are the same as original DEVS.

δext: Q × X→S, an external transition function, where Q is the total state set of M= {(s,

e)|s∈S and 0 ≤ e ≤ ti(s)|max}

ti: a time interval function,

ψ: an activity mapping function,

A: a set of activities,

With constraints:

 ψ: S→A

 ti: S→ R+
0,∞ × R+

0,∞,

 Where ti(s)|min≤ t(a) ≤ ti(s)|max, ti(s)|min≤ ta(s) ≤ ti(s)|max, s∈S, a = ψ (s) ∈A and t(a) is the

execution time of an activity a.

 A= {a| t(a) ∈R+
0,∞, a∉{X?, Y!, S=}}

Where: X? is the action of receiving data from X, Y! is the action of sending data from Y and

S= is the action of modifying a state in S.

 In RT-DEVS an activity mapping function ψ and an activity set A are defined to advance

virtual time with an executable activity associated with an event. The regular ta time advance

function only verifies the correctness of activity mapping time constraints and compensates time

discrepancy problems. The time bound of each activity is specified by ti function.

 26

A coupled model within the RT-DEVS formalism is defined the same way as in the original

DEVS formalism with an exception. The exception is that there is no SELECT function in RT-

DEVS, which has been defined in the DEVS formalism to break ties for simultaneous events

scheduling. The authors justify this by claiming that in a real-time simulation environment

simultaneous events do not occur. In real-time simulation with one processor, only one event at a

time can be physically processed even if more than one event occurred from the external

environment.

2.5 DEVS Simulation in CD++

CD++ [Wai09] is an open-source simulation software that implements the DEVS abstract

simulation technique. In CD++, simulators and coordinators progress through the simulation by

exchanging messages as described by the DEVS abstract simulation mechanism. CD++ benefits

from object-oriented design, allowing the developer to make use of powerful object-oriented

techniques in integrating simulation entity with modeling entities developed by the modeler. The

rest of this section reviews CD++ software architecture and how it implements the DEVS

simulator.

A) CD++ Software Architecture

CD++ is designed as an object-oriented simulation engine, modularized as a group of

components that have well-defined behaviors and have relatively independent functionalities.

CD++ architecture consists of the following major components [Yu07b]: Main Simulator, DEVS

Modeling Subsystem, Simulation Subsystem, and Messaging Subsystem.

Main Simulator manages the overall aspects of the simulation and is the first object that is

created when the simulator starts. In general, the following tasks are performed by Main

Simulator:

 27

• Atomic component classes defined by modeler as C++ objects derived from the Atomic class

are registered in a list. These atomic models will be instantiated during the model loading

process, which is the next step performed by the Main Simulator.

• The DEVS model hierarchy is constructed by parsing the modeler-defined model-file in

which the DEVS components and their couplings are declared (e.g., atomic and coupled

models, ports, links, states durations, etc.). During this phase, two hierarchical C++ tree

objects are constructed, one representing the modeling (Atomic and Coupled) components

(Modeling Subsystem) and the other one representing the simulation (Simulator and

Coordinator) processors (Simulation Subsystem). For each atomic or coupled object a

Simulator or Coordinator object is created, respectively complying with DEVS abstract

simulator mechanism discussed in section 2.3A).

• After this, the external events are loaded from the event-file (in case there is one), and the

Root Coordinator (RC) corresponding to the Top coupled component is created. RC is

responsible for starting and controlling the simulation cycles and advancing the time based

on the order of the events (in a virtual time simulator).

The Simulation Subsystem consists of Simulators, Coordinators, and the Processor Manager.

The control messages defined in abstract simulator are transferred among these objects, while the

behavior functions (transitions, time advance, and output function) are implemented in the

modeling subsystem. RC generates the very first message in the simulation, which triggers other

processors to receive and send messages. Coordinators forward the messages to their children or

parents and also maintain a list of their imminent children. Simulators have a pointer to their

corresponding Atomic object instances and invoke user-implemented behavior functions after

receiving the appropriate message. RC advances the simulation time and stops the simulation

cycle when all models become passive (i.e. all atomic components are in a state with lifetime of

infinity) and there is no external events left to process, or when the user-specified simulation end

time arrives.

 28

The Modeling Subsystem maintains the model hierarchy information presented by the user in

model file. The subsystem is composed of coupled and Atomic component objects, Input and

Output port objects and the Model Manager which keeps a hashing table of the model

components and inter-couplings.

The Messaging Subsystem consists of the Message Manager and various Message classes.

Messages Manager is responsible for delivering messages transferred among the Coordinators

and Simulators. The incoming messages are first buffered into the Message Queue and are

processed by the Messages Manager in FIFO order. The Message fields are sender, receiver,

time-stamp, value, and port.

B) DEVS Model Definition in CD++

Based on the software structure described above, the modeler has to provide the following

information to build a DEVS model in CD++: 1) Model specifications, 2) Events, 3) Atomic

component behavior.

Model specifications are defined in the model-file in special format defined in [Wai02b]. The

model-file contains the components (Atomic and Coupled) in a top to bottom order, in which the

top-most coupled component is declared first. For each Coupled component, its internal

components, I/O ports, and links (EIC, EOC, and IC) are declared. For each atomic component

its state durations can be defined in the model-file, in order to easily modify them during various

execution scenarios without recompiling the source code. The Main Simulator Subsystem

automatically instantiates Atomic and Coupled objects for each component based on the order

defined in the model-file.

Events are defined in event-file with a specific format, containing the event time, value, and

input port. The Main Simulator stores the events in an event queue at the beginning of the

execution and RC injects the event to their associated input port at the specified time.

Atomic components in CD++ are overridden by the modeler as sub-classes of the Atomic

class. The modeler implements the desired behavior by programming the following four

 29

functions: init function, external function, internal function, and output function. These functions

are invoked using polymorphic techniques inside the Simulator class corresponding to that

Atomic component. The states are declared in the atomic component classes using an enumerator

type, and state durations are set by calling the holdIn, or passivate functions. Finally the Atomic

component object pointers are handed to the Main Simulator in its modeler-overridden

registerAtomics function.

2.6 Modeling and Simulation-based Approaches

 Various modeling methodologies have been introduced in literature, concerning the design

and development of real-time and embedded software systems. A typical M&S-based approach

towards this end consists of the following steps: 1) specification (requirements and constraints);

2) modeling; 3) simulation/verification; 4) model mapping to hardware/software components; 5)

prototyping and implementation. Among the model-based approaches, the UML-RT (the Unified

Modeling Language for Real-Time) [Sel01] is an extension of UML modeling language which

provides especial aspects for designing real-time systems. UML and UMLRT have been used in

applying model-based design, verification, and performance analysis of different systems (see

e.g. [Cor01 and D’Am05]). A comparison between DEVS and UML-RT [Hua04] shows that,

although features such as time, scheduling and performance are coded using UML constructions

(i.e., not formally defined). Instead, DEVS provides sound syntax/semantics for structure,

behavior, time representation and composition, which lend themselves to well-defined

computations. DEVS, however, is not intended for software design and development, and “it is

key to support the transformation of simulation models to their software model counterparts and

their complementary roles in handling modeling and computational complexity of embedded

systems” [Hua04]. This research aims at overcoming these issues by introducing the model

continuity and other modifications to the DEVS M&S framework.

Among other model-based approaches, the BIP (Behavior, Interaction, Priority) methodology

is a framework for heterogeneous component-based modeling of real-time systems introduced in

 30

[Bas06]. Components are obtained as the superposition of three layers: Behavior; specified as a

set of transitions, Interactions; between transitions of the behavior, and Priorities; used to choose

amongst possible interactions. BIP does not support simulation-driven approach which plays a

key role in performances analysis and reliability of the software. The issue of model continuity is

handled using code generation tool, which lacks a direct traceability relation between the model

and the final software architecture.

The following research efforts apply simulation-based design which is more closely related

to this work. ECSL (Embedded Control Systems Language) is a tool-suite that supports software

development for distributed embedded controllers [Bal06]. ECSL offers a graphical modeling

language built using the Generic Modeling Environment (GME) [Led01], an open-source meta-

programmable domain-specific design environment. It was designed in the context of embedded

automotive systems with capabilities such as requirements specification, verification, mapping

on to a distributed platform, scheduling and performance analysis.

Ptolemy II [Eke03] is a structured and hierarchical method for modeling heterogeneous

systems using a specific model of computation that covers the flow of data and control. SystemC

[Gro02] and Esterel [Bou91] are system description languages that can be used for generating

simulatable and executable models. They share some features and also have their unique

characteristics, and some two-way component mapping can be performed between the

languages.

Matlab/Simulink® is a commercial tool provided by Mathworks [Mat11] for modeling and

simulating embedded systems that also offers graphical interface for visual construction and

integration of hardware blocks. Simulink® can be integrated with different other tools provided

by Mathworks, such as Stateflow®, Simulink Coder®, and Embedded Coder® for event-based

modeling, physical modeling, and code generation. Simulink is mainly used for simulating real-

time systems, while the accompanied code generation tool produces C/C++ code for embedded

processors. Nevertheless, the generated code has limited usage, does not support all the

functionalities of the Simulink blocks and still needs verification.

 31

None of the above-mentioned modeling approaches provide direct model continuity, whereas

DEVSRT allows for straight use of the simulation models as the final target software. The other

advantage is the straightforward hardware-software co-design capability [43] (i.e. co-

specification, co-synthesis, co-simulation and co-refinement) in a more abstract level as well as

hybrid testing of simulation models with real hardware. The use of DEVS simplifies the

transformation of the models from various other formal methods, supporting heterogeneous

systems design, implementation, and reuse, which is necessary in embedded system

development. DEVS, as a simulation methodology, not only allows for simulation-driven

software development but also supports M&S of an entire system and its surrounding

environment. This allows for verification of the software in a simulated environment with

changing conditions.

2.7 DEVS-Based Approaches

 In [Sha07] the authors introduce the FDS-DEVS (Flexible Dynamic Structure DEVS)

algorithm based on [Bar97] dynamic structure system modeling approach. FDS-DEVS enables

adapting a simulated system’s organization to the dynamically changing internal/external

environment while the system execution is in progress. The authors propose an MDA (Model

Driven Architecture) technology applied to real-time DEVS experimental environment, which is

greatly benefited from dynamic structure capabilities. This methodology allows building real-

time DEVS-based simulation models capable of changing their components dynamically, based

on real-world systems. This enhances the capabilities of DEVS-based approaches in building

reliable and adaptive real-time systems as they can respond to the changing contexts or recover

from errors automatically.

In [Sar01a] an application of the DEVS/DOC (Discrete Event System

Specification/Distributed Object Computing) co-design methodology is presented. In this case

study model, the architectural and scalability aspects of a Mission Training and Rehearsal

System (MTRS) is analyzed and implemented, in which “it has to be accounted concurrently for

 32

hardware and software requirements, given high demands for network bandwidth, computing

resources, and complexity of software applications”. The authors showed the advantage of the

DEVS/DOC approach applied to Software/Hardware design from architectural, behavioral, and

performance viewpoints. In this scenario the system demands a systematic approach to transition

from high-level system design to low-level component design. DEVS/DOC can help detect

architectural errors before they lead to lower level system failure, and offer a suitable solution

for high level system specification, by introducing a modeling layer on top of fine grained DEVS

modeling constructs.

In [Hu01], a DEVS-based RT system has been implemented on a TINI Chip which has

limited memory and processing ability. A set of well-defined DEVS Interfaces made it possible

to define a just-as-needed RT environment and run on the chip efficiently. Finally a case study

model has been successfully run on the chip.

In [Hua06] a modeling approach for semiconductor manufacturing supply-chain systems in a

hybrid DEVS/MPC (Model Predictive Control) test-bed that supports experimentations for

DEVS and MPC models using KIBDEVS/MPC (Knowledge Interchange Broker) is proposed. This

test-bed supports detailed analysis and design of interactions between discrete processes and

tactical controller. In this work, the DEVS model captures complex dynamics of semiconductor

manufacturing processes whereas the MPC model is responsible for tactical control.

In [Hu05] the authors show how an M&S environment based on the DEVS formalism can

support model continuity in the design of dynamic distributed real-time systems. The authors

prove that the discontinuity between implementation artifacts and analysis, design, and modeling

artifacts is a common deficiency of most design methods. The authors restrict model continuity

to the models that implement the system’s real-time control and dynamic reconfiguration, and

emphasize model continuity during the entire process of software development, where the

control models can be designed, analyzed, and tested by simulation methods, and then smoothly

transitioned from simulation to distributed execution. The proposed methodology supports model

 33

continuity by making possible to deploy and execute the control models (initially designed and

tested by simulation) directly into the real target system.

RT-DEVS/CORBA [Cho03] is presented as a modeling and simulation framework, to

support the development of distributed real-time systems. The framework supports model

continuity for real-time software development from model design to performance evaluation and

even to final real-time control. This approach is based on RT-DEVS formalism (discussed in

section 2.4) and maps activities to each state. The authors do not mention details about real-time

control part and the focus is on real-time simulation and a case study is presented.

Table 2.1 lists a summary of the comparison among the current DEVS-based real-time and

embedded modeling approaches using different criteria. As it shows in the table, most of the

current approaches are limited to the simulation of these systems, and none of them uses a formal

approach for model continuity or Hardware-In-the-Loop simulation. On the other hand deadline

definition and simultaneous events (collision handling) are not properly managed in the current

approaches.

A) Model Continuity

Numerous researches have been done based on RT-DEVS theory to use it as an RT and

embedded software design technique. However, most of the works are only limited to real-time

simulation while a few of them tend to bridge the gap between simulated real-time models and

the hardware using ad-hoc approaches (see e.g. [Hu01, Hua06, Cho03]) limited to specific case

study systems or a just-as-needed technique. None of them proposed a generic framework for

integration of the real-time models with the actual hardware counterparts. For more references in

this area of research refer to [Zei93, Cho00, Sch00, Gli02, Li03, Hua04, Sag04, Gli04, Wai05,

Hu07, and God07].

Lack of a formal transformation method from a simulation model to hardware control

software is a common pitfall in all of the above-mentioned methods. The embedded coders and

code generation tools do not quite satisfy our objectives, because the final code produced by

 34

these software tools is prone to error and not necessarily represent the actual model accurately,

thus require extra verification steps. The objective is to directly deploy the model developed to

mimic the hardware controller as the final control software. Having this in mind, the model will

go through extensive formal model checking and verification tests, and the software architecture

is guaranteed to work as the final architecture. Hence, the code generation tools add the burden

of extra verification phase to ensure that the generated software code performs the same function

as the model itself. The other problem is that most available code generation tools do not support

all the modeling constructs (e.g. MATLAB/Simulink Embedded Coder tool), thus the modeler is

confined with the constructs that are supported by the code generator tool, limiting the modeling

formalism’s capabilities.

Table 2.1: Comparing RT and Embedded DEVS Modeling Approaches.

 Criteria

DEVS Frame

Model

Continuity

Hardware

Interface

Deadline

Definition
Simultaneous Events

DEVS-DOC

[Sar01a]
No No No

SELECT function using

Java threads

DEVS/MPC

[Hua06]
No No No

SELECT function using

Java threads

FDS-DEVS

[Sha07]
No No No

Modeler defined priority

based on P-DEVS

PowerDEVS

[Ber10]
No No No SELECT function

RTDEVS [Hon97] No No t(i) function Random order

RTDEVS/CORBA

[Cho03]
yes Ad-hoc interfaces

Using RTDEVS

t(i) function
Random order

DEVSRT

yes

Formal generic

user implemented

interfaces

Formal

deadline

specifications

Modeler defined priority

based on P-DEVS

 35

B) Real-Time Deadline

The overall correctness of a real-time system depends on its functional correctness and

timing correctness. The timing correctness is as important as its functional correctness especially

in hard real-time systems. Therefore, an appropriate real-time system design methodology must

reflect the timing properties of such systems. The classical DEVS theory and most of its variants

do not provide a direct method for representing the deadline of outputs. The RT-DEVS

formalism uses t(i) function (discussed in section 2.4) to verify the timing discrepancy between

the activity a mapped to state s. However, this method does not properly represent timing

limitations and deadlines to be used in a real-time system design method. RT-DEVS is originally

designed to simulate real-time systems. On the other hand, the output production method is not

well formulated; therefore each project uses an ad-hoc technique to interface the model with the

external environment.

In the next section, the DEVSRT formalism is introduced, which manages this issue by

adding a deadline function to the DEVS formalism. It also uses DEVS standard outputs as the

outputs of the target real-time system to the hardware actuators. This will allow the system

designer to clearly specify the deadline for each output. The system must meet the deadline

requirements for each specific output, unless unexpected circumstances occur (e.g. the system

overruns due to the high number of jobs inserted into the system and the system does not have

adequate processing resources). I-DEVS approach (the second contribution of this thesis) tackles

this problem.

C) Simultaneous Events

Authors of RT-DEVS [Hon97] emitted the SELECT function (of the original DEVS

formalism) from their proposed methodology, asserting that even if two events are scheduled for

the same time, the system will only accept them sequentially, because a physical processor can

only process one event at a time. This justification is correct; however this method does not

allow the modeler to control the sequence of simultaneous scheduled events in a real-time

 36

simulation. For example, in a scenario where two or more imminent children exist (components

with simultaneous scheduled internal events) within a coupled model, the coordinator

(corresponding to that coupled model) does not have a pre-determined order to signal the

simulators. Thus, the system executes a random or fixed order in all cases, sacrificing the

reliability of the target system (which is a major issue considering the critical applications of

such hard real-time systems). On the other hand, even by retaining the SELECT function of the

DEVS formalism, the problem still exists based on the previous discussion in section 2.3.

DEVSRT handles this situation by taking advantage of the P-DEVS approach (refer to

section 2.3) in which this conflict is dynamically handled and the modeler has the full control

over the sequence of simultaneous events, or inputs.

 37

Chapter 3: The DEVSRT Formalism

 A real-time (RT) simulation is in fact an RT system that models a part of the environment or

the target system and computes this model in real-time. Therefore, to use the same simulation

model as eventual RT system, the simulator must be able to handle timely inputs from external

environments such as hardware peripherals, software modules, network devices, human

operators, etc. The idea is to develop discrete-event models using DEVS formalism, afterwards,

transfer the models into embedded platform, where they function as controller interacting with

the hardware through formally-defined interfaces added to the simulator. The models are

thoroughly tested using various simulation-based verifications and are incrementally replaced

with the hardware surrogates. This provides a Hardware-In-the-Loop Simulation (HILS)

platform, where hardware and software can be designed and developed in parallel, allowing for

observing un-modeled characteristics of the hardware/software designs.

Figure 3.1 illustrates the design and development cycle for control software in a plant (target

platform) in the proposed DEVSRT approach. The following tasks are performed (the following

numbering of the tasks correspond to the number labels on the arrows in the figure).

1. Initially the control software and the external environment (plant) are modeled together.

This will allow for hardware-software co-design of the target system, where different parts

of the entire system are co-modeled and tested together.

 38

2. Once the model specifications are defined, various formal model checking approaches can

be used to verify the integrity and consistency of the designed model, resulting in a robust

software product2.

3. Simulation scenarios are extracted from the target system specifications, and are used as

inputs to the model.

4. The model is simulated by using the extracted simulation scenarios, investigating different

aspects of the system in a risk-free environment. This process includes virtual-time and

real-time simulation, where the former verifies the logical aspects of the model and the

latter verifies the temporal behavior of the model.

5. The model is refined based on the results of the simulation. This provides a simulation-

based verification of the entire system in which the model behavior is corrected to match

the requirements of the system. This process is done concurrently with the model

checking, to ensure the robustness of the design.

6. The model is partitioned into control system model and the plant model. These model

partitions are then tested together in real-time.

7. The plant models are incrementally replaced with the actual hardware in the external

environment, allowing for HILS of the model.

8. The control model is refined based on the results of the HILS, allowing for exploring un-

modeled and hidden aspects of the external environment.

9. The incremental replacement of simulation models with hardware surrogates allows for

hardware-software co-design, in which the hardware segments are initially modeled with

the software components. Later the modeler decides which one goes to hardware and

which one goes to software.

10. During the HILS, the model is interfaced with the hardware by using formal interfacing

techniques proposed here.

2 An initial research on integration of model checking approaches with DEVSRT is presented in [saa11]

 39

11. Finally, the control model executive is embedded in the target system with interface

functions to integrate and cooperate with the entire system.

Control Software

&

External Environment

DEVSRT Framework

DEVSRT

Model

Formal Model

Checking

Correct

Simulation
Simulation

scenario

Refine

Control

Model

Plant

Model

External Environment

(Plant)

H
W
/S
W
 C
o-
m
od
el

Incremental Replacement

Execute

Add HW Interface

Control

Software

Target System

Deploy Extract

Hardware-In-the-

Loop Simulation

Refine

HW/SW Co-simulate

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Requirement Analysis

Figure 3.1: DEVSRT Development Cycle (modified from [Wai11]).

To this end, DEVSRT is proposed in this dissertation as a real-time DEVS approach built on

top of P-DEVS [Cho94] methodology (to support simultaneous events in real-time) satisfying

the objectives discussed earlier. Unlike RT-DEVS, this approach applies minor modifications to

the DEVS formalism, allowing for easy reuse of the previous models. Finally, the proposed

DEVSRT approach is implemented on E-CD++ as a tool-suit to develop real-time and embedded

applications.

The most critical characteristic of a real-time system is the availability of outputs within the

specified deadline. In order to express the timing constraints of the system in a formal context,

DEVSRT assigns a deadline to each output in an atomic component and it verifies the deadline

 40

when the associated output is produced. Hence, the concept of deadline is embedded in the

formalism and implemented in the abstract simulation mechanism.

In DEVSRT, instead of defining an activity mapping function (as opposed to RT-DEVS) to

map the state of the model with an activity on the hardware, the outputs of the atomic

components are reflected to the hardware to echo the behavior of the model on the embedded

device. In this approach, the output function is responsible of triggering an action on the actuator

at the end of each state, informing the hardware about the new state of the model. Therefore,

hardware control signals are produced by the DEVS output function.

The atomic component of DEVSRT is formally defined by:

AMRT = < X, S, Y, δext, δint, δcon, λ, ta, d >, where:

X, S, Y, δext, δint, δcon and λ are the same as P-DEVS (section 2.3).

ta: S → R+
0,∞ , time advance function which works with physical clock of the system

d: S → R+
0,∞, is the relative deadline of each state for output production. The deadline starts

from the end of the state (release time of the output task).

To show the proof of closure under coupling of the DEVSRT formalism, it is necessary to

demonstrate that a DEVSRT coupled model (CMRT = <X, Y, D, {M i | i∈D}, {I i}, {Z i,j}>) can

be built as a DEVSRT atomic model (AMRT = < X, Y, S, δext, δint, δcon, λ, ta, d>). DEVSRT

inherited all its specifications from P-DEVS [Cho94], except the deadline (d) function. Thus, the

associated atomic model derived from a coupled model will have the following specifications:

S = ×Qi where i ∈ D;

ta(s) = minimum{σi|i∈D}, where s∈S and σi = ta(si) – ei ;

d(s) = d(si) ;

The rest of the steps for δext, δint, δcon, and λ functions are the same as P-DEVS [Cho94].

In other words, ta(s) of the coupled model is equal to the closest ta(si) (to the current time) of

its components. Therefore, the deadline of the output of the coupled model’s current state s is

equal to the deadline of this component.

 41

DEVSRT maintains consistency with the DEVS formalism, allowing reusing DEVS models

for RT and embedded system modeling. The coupled model definition in DEVSRT is the same

as P-DEVS.

3.1 Real-Time Interface

In order to make a virtual-time simulator to work in a real-time context, the logical time

representation of the simulator must be tied to the underlying computing system. In a DEVS-

based system, the simulation time advances only when there is an event waiting to be serviced,

however in DEVSRT, the time-advance is tied to the clock of the underlying system and the

Root Coordinator (RC) only verifies the timings of the events and initiates the simulation cycles

based on the wall clock. In other words, RC does not advance the time, instead it waits for the

physical scheduled time of the next event to reach, then triggers the event by sending the

appropriate simulation message.

In order to use a DEVS model as the final target software architecture, DEVSRT employs

model outputs as hardware control signals, and proposes an efficient formal interfacing

mechanism between the model and the environment. A driver interfacing approach is presented

in [Cho98], which is now integrated with the proposed DEVSRT in a more efficient way by

removing the extra processing burden from the atomic components. In this approach, the

standard DEVS I/O ports of the top-most (Top) coupled component that are supposed to interact

with the environment, possess a driver object, working as an interface between the model and the

external environment. This way, the model hierarchy remains unchanged and only the driver

interfaces are added to the borders of the model. The driver object is an abstract function,

overridden by the model developer that can be independently modified for each platform,

providing portability to the model on different platforms. The other advantage of this approach is

maintaining RC aware of the atomic component interactions, conforming to the DEVS abstract

simulator definition by Zeigler (discussed in section 2.3A)).

 42

The DEVSRT notation of the Top coupled model in the model hierarchy is modified as

follows:

TOPCM = <X, Y, OS, IS, DX, DY, D, {Md | d∈D}, EIC, EOC, IC>, where:

X, Y, D, Md, EIC, EOC and IC are the same as DEVS

IS = {is | is is the input signals from environment} is the set of environment input signals.

OS = {os | os is the output signal to environment} is the set of hardware output signals.

DX: IS →Xv: converts external environment input signals to input port value (Xv).

DY: Yv →OS: converts output port value to external environment output signals (Yv).

Any interaction between the environment and atomic component is routed through the formal

interconnections from the Top coupled component to the atomic component or vice-versa. The

interfacing mechanism allows for Hardware-In-the-Loop and Human-In-the-Loop simulation by

connecting DEVS components with the hardware or human peripherals. The integration with

hardware can be done incrementally, by replacing each model component with the corresponding

hardware counterpart (e.g. sensor, actuator…) and providing the driver functions for the model

ports previously connected to that model. The software model co-executes with the hardware

segments, allowing for investigating actual environment scenarios and providing safe test-bed

for each device.

Model continuity is ensured, since the original model is finally deployed on the hardware,

acting as the embedded control software. The incremental hardware deployment technique

provides a seamless integration mechanism, where the system is reliably embedded in the

hardware. The benefit of this approach versus code generation approaches is the limitless use of

the simulation model features on the hardware and no extra verification of the generated code as

the same model and source code are deployed on the hardware. The only component added to the

model is the driver interface functions that are gradually verified in the incremental integration

steps.

The algorithm of the RC main loop in DEVSRT is as follows:

1. main():

 43

2. forever for each DEVSRT model /* main loop */

3. wait for is signals from environment or internal time out

4. if an external event then

5. q = DX(IS)

6. send (q, t) msg

7. send (*, t) msg

8. else if an internal time out then

9. send (@, t) msg

10. send (*, t) msg

11. else if receive (y, t)

12. OS = DY(y)

13. send oy signal to the hardware

14. else if receive (done, t)

15. tN = t

16. end if

17. end forever

Lines 5 and 12 show the driver object functions that convert input and output signals,

respectively. The cycle starts with the RC waiting for inputs from hardware or an internal event

time out (line 3). A soon as an input is received, it is converted to a DEVS predefined input value

by the input driver function. Afterwards, an external message is sent to the target atomic

component (based on P-DEVS simulation mechanism discussed in 2.3A) an external message is

always accompanied by an internal message). If an output message is received, the DEVS output

value is converted to a DEVS signal via the DY driver interface function.

The external and internal message handling functions in the Simulator object are the same as

P-DEVS (presented in 2.3A)). The following pseudo code represents the collect message

handling function in a DESVRT Simulator object:

 44

10. when receive (@, t):

11. if (t = tN) then

12. y = λ(s)

13. if (tnow ≤ tL + ta(s)+ d(s))

14. send (y, t) to the parent coordinator

15. else

16. error //deadline missed

17. end if

18. send (done, t) to the parent coordinator

19. end

20. else if

21. error

22. end when

The simulator is responsible to verify the timing of the output. Thus in line 13 the deadline

function d(s) associated to the current state is called to verify whether the output is produced on

time. The d(s) function returns the relative deadline of the output from the end of the current

state s, thus it is added with (tL + ta(s)) that indicates the end of the current state. If the deadline

is missed an error signal is raised, informing the system about a late deadline, thus the system

can decide what action to pursue.

3.2 Implementation on E-CD++

The DEVS formalism proposes a framework for model construction and also defines an

abstract simulation mechanism that is independent of the model itself. This mechanism provides

a high-level implementation detail for the DEVS framework, and it can be feasibly implemented

by computer software.

 45

E-CD++ [Yu07a and Yu07b] extends the CD++ [Wai02b] simulator (a DEVS-based

framework for M&S introduced in section 2.5, and RT-CD++ [Wai04] (an extension of CD++

for real-time simulation). E-CD++ support modeling real-time systems by converting CD++

virtual time-advance function to real-time and provides an RT simulation platform for

verification of such models. It also support FDS-DEVS framework [Sha07], where model

components can change dynamically during the simulation. During this research, the proposed

DEVSRT M&S framework is implemented on E-CD++ software, by modifying its simulation

engine to execute real-time models more precisely and interacting with environment, based on

the driver interfaces proposed earlier. To allow for direct replacement of models with external

entities, the I/O ports of E-CD++ models implement the formal interfacing mechanism of

DEVSRT. The underlying middleware is replaced with a real-time kernel and the runtime

objects are imported to this platform as RT tasks. To follow the development cycle proposed in

the previous section, the model development interfaces are also upgraded and several embedded

functionalities are added. The rest of this section discusses the modifications carried out on E-

CD++ in the context of this research to reach the DEVSRT objectives.

Figure 3.2 illustrates the E-CD++ development framework with DEVSRT modeling

approach implemented during this research. This framework is a special case of the layered

M&S approach presented in Figure 2.2 that is customized with DEVSRT in the modeling layer,

E-CD++ as the simulator, Eclipse in the application layer, and Xenomai real-time Linux kernel

as the middleware platform to execute the simulation. The target embedded platform, or HILS

with the external environment is shown in this layered approach, representing the cross-platform

development of models in this paradigm. The E-CD++ execution engine uses Xenomai real-time

kernel3 with multi-tasking services to implement DEVSRT. The user developed models and the

driver objects are merged with the E-CD++ core objects and the entire combination is compiled

to produce the model executable. Xenomai provides an RT kernel resting between the hardware

3 Another version is also under development for embedded environments without OS support.

 46

and Linux OS, and offers several pervasive hard RT services to user space applications and is

seamlessly integrated with GNU/Linux environment.

Figure 3.2: E-CD++ with DEVSRT Development Framework.

In order to improve and speedup the model development, E-CD++ incorporates Eclipse

programming environment and has user-friendly interfaces suitable for real-time and embedded

execution [Moa08]. The GGAD (Generic Graphical Advanced environment for DEVS modeling

and simulation) [Chr04, Bon10] graphical user interface tool based on DEVSgraph standard

 47

[Pra93] is also integrated with E-CD++ Eclipse IDE. This tool allows for graph-based drawing of

the DEVS model hierarchy, interconnections, and behavior representation of atomic components

to automatically generate the model-file and source files of the model. Since E-CD++ executable

file is to be deployed on a different platform (embedded hardware system), means for cross-

compilation for the project is also provided, as well as means of communication to the target

platform in order to download executable binary files, run the executable and debug remotely

[Moa08].

A) E-CD++ Software Structure

As discussed earlier in 2.5A), CD++ is modularized in which system objects run as separate

software modules with well-defined behaviors and independent functionalities. E-CD++

inherited the main object entities of CD++, applying the proposed DEVSRT approach by

modifying object behaviors or adding new entities to the software architecture of CD++. Four

main components of E-CD++ are: Main Runtime System, Modeling Subsystem, Runtime

Subsystem and Messaging Subsystem (see Figure 3.3).

 48

Figure 3.3: E-CD++ software structure.

The Main Runtime System manages the overall aspects of the real-time execution and

provides timing functions with microsecond precision. This is done by incorporating Xenomai

native skin clock functions [Xns11] in the E-CD++ Time class which is itself instantiated by the

Main Runtime System class. The Time class is modified to handle microsecond time operations

and also provide the physical elapsed time of the execution to be used by the RC to schedule the

events. The Main Runtime System is the first object that is created in non real-time context and

spawns the Runtime Subsystem as a Xenomai real-time task. In general, it does the following

tasks in sequence:

• Registers Atomic component objects.

• Registers the Top coupled component ports that are connected to the external

environment.

• Reads in the external events (from event-file) and builds an external event table.

 49

• Reads in the model-file and builds the model hierarchy.

• Spawns the main real-time task in which the Root Coordinator (RC) is created to start the

DEVSRT execution cycle.

The Runtime Subsystem consists of Simulators, Coordinators, and the Processor Manager. In

E-CD++, The Simulators work as run-time execution engines that correspond to atomic

components and perform the main job of executing transitions and output function after

receiving the proper messages.

The RC is a special Coordinator that manages the real-time event scheduling. It initializes the

global Driver object which spawns the real-time input driver tasks (which are associated with

input ports of the Top coupled component in the DEVS model hierarchy) declared by the user.

Running in the context of the main real-time task, RC manages the inputs received from input

driver tasks while it is waiting for the next transition time to occur and at the same time releases

outputs to the output driver objects.

The Messaging Subsystem consists of the Message Manager and various Message classes.

Messages are transferred to the coordinators and simulators via the Message Manager, which is

responsible for delivering messages. The incoming messages are first buffered into the Message

Queue and are processed by the Message Manager in real-time.

The Modeling Subsystem holds the model hierarchy information extracted from the model

file. The subsystem is composed of Coupled and Atomic component classes, Input and Output

port classes and the Models Manager, which maintains a hashing table of the model components

and port influence lists.

The Port Admin object is a new entity added to the E-CD++ to maintain a list of the Top

model ports that use a driver object. This list is later accessed by the global Driver object to

spawn and control the input tasks.

The Global Driver object is another new entity to control the interfacing mechanism with the

environment. It invokes hardware driver initialization and termination functions. After

initializing the hardware, it spawns a Xenomai RT task (thread) for each input driver function.

 50

The driver function is handed to the thread as the thread function, whose job is to receive

external input signals and convert them to DEVS predefined input values. The RT thread can be

periodic and the period interval is declared in the model-file. In order to synchronize the

execution of the RT input tasks and minimize the jitter, a multi-value semaphore is used to signal

all the tasks at the beginning of the execution, ensuring the start of the simulation cycle as close

as possible to the physical start time of the simulation. It also invokes outputs port driver

functions via the RC, whenever the latter receives an output message.

The initialization and termination functions of the driver class as well as the input and output

port driver functions of the port class are abstract C++ functions, implemented by the user for

each specific platform.

B) Performance Evaluation

In order to verify the efficiency of the implementation and to prove the performance gains of

the multi-tasking approach on a real-time middleware, the proposed implementation is tested

with synthetic models and compared with the previous RT-CD++ [Wai04] implementation. The

tests are performed using two different sets of synthetic models with different depth and width in

the model hierarchy. The results of tests are compared with the reported results of the previous

evaluation of RT-CD++ published in [Gli02].

In order to compare the two implementations in an equal and fair condition, the synthetic

model proposed in [Gli02] is duplicated in the new E-CD++ implementation. The model is

composed of one coupled component and several atomic components in each level of the

hierarchy. Figure 3.4.a illustrates the Top coupled component along with its inter-connections.

The model can have multiple levels with the same architecture and several atomic components in

each level. Figure 3.4.b shows the last level, which only has one atomic component.

 51

...

Figure 3.4: Synthetic Model Architecture (Modified from [Gli02]).

Given a specified depth d and width w, we end up having k coupled components with w-1

atomic components inside each model (except for the last coupled model, which will only

include one atomic component). An input to this model propagates to each sub-component and

repels to the last level. This will trigger the external function in each atomic component. All of

the atomic components follow the same behavior, in which they are in a passive state, until an

input is received. The external transition (invoked by the input) changes the state to a temporary

state with zero time-advance, which produces an output and then transitions to a passive state,

waiting for the next input. This cycle continues as long as there is an input to the system.

The goal is to measure the overhead of the processing occurred in the simulation engine

proportional to the processing time of the model. The overhead of executing a model is mainly

associated with the abstract simulation algorithm’s message transfer scheme (refer to section

 2.3A)), the handling of input and message queues and the time-advance management. The major

processing in a DEVS model is performed in the external and internal transition functions in the

atomic component. Hence, to produce a computation extensive model, a fixed delay of 50

milliseconds is assigned to the external and internal transition functions of all the atomic

components. To make the comparison platform-independent, the models are executed on the

 52

same workstation with the same computing power used in [Gli02]. The percentage of overhead

of the system relative to the model execution time is measured and compared. The percentage of

software overhead is calculated using the following equation:

100
ssingTimeTotalProce

essingTimeitionsProcTotalTransssingTimeTotalProce
Overhead% ×−=

 3-1

 Two sets of varying tests have been carried out with changes in the number of components

in each level and the depth of model hierarchy (number of levels). The first test is composed of

four models with fixed number of components in each level (equal to 12) and variable depths of

3, 6, 9, and 12 levels for each model. The tests were done with 10 inputs injected to the models

during a fixed execution time of 40 seconds. Figure 3.5 represents the overhead percentage

calculated using equation 3-1 for the above models in E-CD++ and compared with the available

results of RT-CD++.

0

0.5

1

1.5

2

2.5

3

3.5

3 6 9 12

Number of Levels in the Model Hierarchy

O
ve

rh
ea

d
 P

er
ce

n
ta

g
e

E-CD++ RT-CD++

Figure 3.5: Percentage of Overhead with Variable Depth.

 53

In another test, models of the same type are generated with fixed number of levels (i.e. 4) and

variable number of components per level (i.e. 4, 6, 8, 10, and 12). The same numbers of inputs

are injected to the models and the models are executed for a period of 100 milliseconds. Figure

 3.6 shows the results of this test.

0

0.5

1

1.5

2

2.5

3

3.5

4

4 6 8 10 12

Number of Components per Level

O
ve

rh
ea

d
 P

er
ce

n
ta

g
e

E-CD++ RT-CD++

Figure 3.6: Percentage of Overhead with Variable Width.

As it can be seen from the above charts, the overhead percentage in E-CD++ is dramatically

lower than the RT-CD++ in all scenarios. This is due to the use of a real-time middleware and

employing a multi-tasking approach. The efficient tasks scheduling service offered by the

Xenomai kernel speeds up the execution of the software, which results to a lower overhead. On

the other hand, the chart demonstrates the efficiency of the simulation algorithm of DEVSRT,

which does not add any significant processing burden to the E-CD++ execution engine. Another

observed feature of this implementation is the constant overhead over different sizes and

architectures of models. This guarantees a fixed execution engine overhead, allowing for reliable

schedulability analysis of the tasks executed on the final real-time system.

 54

3.3 Case Study: e-puck Robot Controller

As a proof of concept, a robot controller model using DEVSRT is designed and implemented

on E-CD++ to perform various tests and apply different features. The model is used to

demonstrate the model continuity, HILS, and hardware-software co-design contributions of the

proposed methodology and tools.

The E-puck [Mon09] is a mobile robot with different sensors and motors. It has eight

infrared distance proximity sensors to detect obstacles around it. There are eight LEDs mounted

around the robot’s body. It also has two motors connected to the two wheels on both sides, which

make the robot capable of moving forward, backward, and spinning in both directions. Figure

 3.7.a shows the e-puck robot and Figure 3.7.b illustrates the placement of IR sensors and LEDs

on the robot.

Figure 3.7: a) e-puck robot b) placement of sensors and LEDs.

A DEVSRT controller model is designed to steer the robot in a field, while avoiding

obstacles. The model contains an atomic component (epuck0) representing the behavior of the

controller and a coupled component (Top) containing the epuck0 atomic component. There are 8

input ports (InIR0 ,… InIR7) in the DEVS model, which each of them is intended to receive

 55

periodic inputs from a proximity sensor (the distance between the obstacle and the sensor). There

are also two output ports: OutMotor: transferring the output commands to the motors and

OutLED: transferring LED on/off commands to the LEDs.

The controller commands the following 5 different actions based on the inputs received from

the censors: move forward, turn 45 degrees left, turn 45 degrees right, turn 90 degrees left, turn

90 degrees right, turn 180 degrees and stop. Initially, the robot starts moving forward while

receiving the periodic inputs from proximity sensors and analyzes them. As soon as it detects an

obstacle around itself, the former performs one of the turning actions based on the direction of

the obstacle. The robot keeps turning until it finds an empty space on the front. The controller

also uses LEDs to signal the action that is being performed. For example, if the robot is moving

forward, the front LED (led0) turns on and if it is turning 45 degrees to left, led7 turns on.

Table 3.1 lists the outputs of the DEVS model and their associated actions to be performed

on the robot hardware. The driver interfaces transform numeric values to the command signals

on the robot.

Figure 3.8 illustrates the state diagram of the epuck0 component. The DEVSgraph state

diagram summarizes the behavior of a DEVS atomic component by presenting the states,

transitions, inputs, outputs and state durations graphically [Pra93]. The circles represent states

and the double circle is the initial state. The name and duration of a state is shown in the circle.

The continuous edges between the states represent external transitions, with the input port, the

input value and any condition on the input (with “port?value” format). The discrete lines

represent internal transitions with the associated outputs (with “port!value” format).

 56

Table 3.1: DEVS Output Mapping Table.

Port Name Port Value Hardware Command Comment

100 Turn all LEDs off

0,10,20 … 70 Turn LED off The most significant digit is the

number of Led to be turned off

OutLED

1, 11, 21 … 71 Turn LED on The most significant digit is the

number of Led to be turned on

0 Set horizontal & rotational speed

to 0 m/s

Stop

1 Set horizontal speed to 0.5 m/s Move Forward

2 Set rotational speed to 1 r/s Turn 45° Left

3 Set rotational speed to -1 r/s Turn 45° Right

OutMotor

4 Set rotational speed to -1 r/s Turn 90° Right

5 Set rotational speed to 1 r/s Turn 90° Left

6 Set rotational speed to 1 r/s Turn 180°

The controller always watches for any obstacle on the front of the robot by checking the

values of IR0, IR1, IR6 and IR7 sensors. Initially the robot moves forward and if there is no

obstacle, it continues moving forward. As soon as an obstacle is detected by one of the IR

sensors, the controller verifies IR6 sensor, and if it shows no obstacle then the left side of the

robot is open hence, it performs a 45° turn towards the left side. Otherwise, it checks the IR1

value and if it is open, the robot turns 45° to the right. If both IR1 and IR6 are blocked then, it

looks at IR2 sensor and if it shows an open space, the robot performs a 90° turn to the right. The

same story happens when IR2 is blocked and IR5 is open, the robot turn 90° to the left. If all of

the sensors are blocked, the robot tries turning to the opposite direction (180°).

 57

(IR0?<0.05 || IR1?<0.02) &

IR6>0.04

Pr
ep
ar
e t
o T
ur
n

45
o Le

ft

0s

Tu
rn
 45

o Le
ft

10
0m
s

Motor!2

LED!0

LED!71

LED!70

Motor!1

LED!1

Prepare to Turn

45
o
 Right

0s

Tu
rn
45
o R

igh
t

10
0m
sMotor!3

LED!0

LED!11

LED!10

Motor!1

LED!1

IR0<0.05 & IR7<0.05 & IR5>0.04

Prepare to Turn

90
o
 Right

0s

Tu
rn
 90

o R
igh
t

70
0s

Motor!4

LED!0

LED!21

LED!20

Motor!1

LED!1

IR0<0.05 & IR7<0.05 & IR2>0.04

Prepare to Turn

90
o
 Left

0s

Tu
rn
 90

o Le
ft

70
0m
s

Motor!5

LED!0

LED!61

LED!60

Motor!1

LED!1

Prepare to Move

Forward

0s

Mo
ve
 F
or
wa
rd

∞

LED!100

Motor!1

LED!1

IR
0?
>0
.0
4
&
 IR
7?
>0
.0
4
&

IR
1>
0.
02
 &
 IR
6>
0.
02

IR
0?
>0
.04
 &
 IR
7?
>0
.04
 &

IR
1>
0.0
2 &
 IR
6>
0.0
2

IR0?>0.04 & IR7?>0.04 &

IR1>0.02 & IR6>0.02

IR0?>0.04 & IR7?>0.04 &

IR1>0.02 & IR6>0.02

(IR0?<0.05 || IR1?<0.02) &
IR6>0.04

(IR6?<0.02 || IR7?<0.05) &

IR1>0.04

(IR
6?<0.02 || IR

7?<0.05) &

IR
1>0.04

IR0<0.05 & IR7<0.05 & IR2>0.05

& IR5>0.05

Prepare to Turn

180
o
 Left

0s

Turn 180
o
 Left

2s
Motor!6

LED!0

LED!41

LED!40

Motor!1

LED!1

IR0<
0.05

 & IR
7<0.

05 &

IR2>
0.05

 & IR
5>0.

05

IR0<0.05 & IR7<0.05 &

IR2>0.05 & IR5>0.05

IR0<0.05 & IR7<0.05 &

IR2>0.05 & IR5>0.05

IR0<0.05 & IR7<0.05 &

IR2>0.05 & IR5>0.05

Figure 3.8: epuck0 atomic component state diagram.

As mentioned earlier, in order to program a DEVS model on E-CD++, three main

components are required: 1) Model-file: where the model components, input and output ports of

each component and I/O couplings are declared. The model-file is passed to the E-CD++

executable as a runtime argument and the latter instantiates model components based on the

declarations in this file. It also contains information about the period of the input driver tasks and

duration of states for each atomic component. 2) Source files: for each atomic component a C++

class is defined and the external and internal transitions and output function are programmed as

 58

methods of the component class. 3) Driver interface: for each I/O port at the top level of the

model hierarchy that is connected to a hardware component, a C++ port driver function is

overridden from the Port super-class.

In this example, a period of 50 milliseconds is defined for the IR sensor inputs, poling the

values of the IR sensors and injecting them to the model, which in response invokes the e-puck

atomic component’s external transition function.

Bellow is the model file of the e-puck controller model.

1 [top]
2 components : epuck0@epuck
3 out : outmotor outled
4 in : inir0 inir1 inir2 inir3 inir4 inir5 inir6 inir7
5 link : inir0 ir0@epuck0
6 link : inir1 ir1@epuck0
7 link : inir2 ir2@epuck0
8 link : inir3 ir3@epuck0
9 link : inir4 ir4@epuck0
10 link : inir5 ir5@epuck0
11 link : inir6 ir6@epuck0
12 link : inir7 ir7@epuck0
13 link : motor@epuck0 outmotor
14 link : led@epuck0 outled
15 inir0 : 00:00:00:100
16 inir1 : 00:00:00:100
17 inir2 : 00:00:00:100
18 inir3 : 00:00:00:100
19 inir4 : 00:00:00:100
20 inir5 : 00:00:00:100
21 inir6 : 00:00:00:100
22 inir7 : 00:00:00:100
23 [epuck0]
24 preparationTime : 00:00:00:000
25 turn45Time : 00:00:00:100
26 turn90Time : 00:00:00:700
27 turn180Time : 00:00:02:000

Line 1 starts the declaration of the Top coupled component and line 2 declares the DEVS

components inside the Top. Lines 3 and 4 declare the output and input ports within the Top,

respectively. Lines 5 to 14 define the interconnections between the ports inside the Top coupled

component and lines 15 to 22 declare the period of inputs for the IR sensor driver tasks. Line 23

 59

starts the declaration of epuck0 atomic component and lines 24 to 27 declare the duration of

states within the epuck0 atomic component.

The external function performs the state transitions based on the model specifications

presented above. Bellow is the source code of a part of the external transition function of the

epuck0 atomic component.

1 if(state!=Mov_Fwd && IR0>0.04 && IR7>0.04 && IR1>0.02 && IR6>0.02){
2 }else if((state==Mov_Fwd)&&(IR0<0.05 || IR1< 0.02) && IR6>0.04){
3 state = Pre_Trn_45_Lft;
4 holdIn(Atomic::active, preparationTime);
5 }else if((state==Trn_45_Lft)&&(IR0<0.05 || IR1<0.02) && IR6>0.04){
6 state = Trn_45_Lft;
7 holdIn(Atomic::active, turn45Time);
8 }else if((state == Mov_Fwd)&& (IR6< 0.02 || IR7< 0.05) && IR1> 0.04){
9 state = Pre_Trn_45_Rgt;
10 holdIn(Atomic::active, preparationTime);
11 }else if((state==Trn_45_Rgt)&& (IR6< 0.02 || IR7< 0.05) && IR1> 0.04){
12 state = Trn_45_Rgt;
13 holdIn(Atomic::active, turn45Time);
14 }else if(state == Mov_Fwd && IR[0]< 0.05 && IR[7]< 0.05 && IR[2]> 0.04){
15 state = Pre_Trn_90_Rgt;
16 holdIn(Atomic::active, preparationTime);
17 }else if(state == Mov_Fwd && IR[0]< 0.05 && IR[7]< 0.05 && IR[5]> 0.04){
18 state = Pre_Trn_90_Lft;
19 holdIn(Atomic::active, preparationTime);
20 }else if(state!=Trn_180&&IR[0]<0.05&&IR[7]<0.05&&IR[2]<0.05&&IR[5]<0.05){
21 state = Pre_Trn_180;
22 holdIn(Atomic::active, preparationTime);
23 }

Line 1 shows the case when there is open space in the front of the robot; thereby no state

change is necessary. Line 2 manages the case when IR0 or IR1 is blocked, indicating that the

right side of the robot is obstructed therefore, the state of the robot is changed to prepare to turn

45° left and the time duration of this state is set in lines 3 and 4. The other cases and the state

changes are also shown in the above code snippet. A similar program is used in the internal

transition function and output function to perform the internal transitions and output functions.

As a first experiment, a random environment was modeled and the controller model behavior

was observed. The model was first tested using virtual-time simulation mode, in which we added

a distance generator model, which produces random IR sensor values and inputs them to the

 60

controller model. The controller model reacts to the combination of values every one second,

generated by this model. Figure 3.9 is the Atomic Animation diagram generated by E-CD++

Integrated Animation tool, which shows the sequences of input and output events in a specified

period. Some of the outputs of motor and led ports are interpreted for easier understanding. The

port names and scales are shown on the left panel and the values sent or received in the ports

versus the time of simulation are shown on the right panel. As can be seen from the figure, at

time 0 “Move Forward” output is produced by the “outmotor” port and the value of 100 is

produced from the “outled” port, causing the led1 to turn on (signaling the forward moving

action). After one second “ir0” receives a value of 0 indicating an obstacle on the right corner,

thus the robot must turn to the left side, producing the value of 2 indicating a 45° turn to left. The

rest of the diagram can be traced by following the inputs from IR sensors and the associated

outputs produced in response to the inputs from “outled” and “outmotor” ports, on the timelines.

 61

Figure 3.9: Atomic Animation diagram for e-puck random distance test.

 62

After this test, two scenarios were designed by generating obstacles using events in the

event-file. Figure 3.10 illustrates these two sample scenarios in which obstacles block the robot’s

path.

IR
6

IR7
IR0

IR
1

IR
2

IR
3IR4

IR
5

Forward Direction

e-puck

LED0

L
E
D
1

LED2

LE
D
3

LED4

LE
D
5

LED6

LED7

1cm

1cm 1cm

1cm

2cm

2cm
1cm

10cm

Figure 3.10: event-file scenarios a) scenario 1 b) scenario 2.

Figure 3.11 shows the I/O diagram of the model using the E-CD++ Atomic Animation plug-

in. The two scenarios shown in Figure 3.10 are injected to the model at times 4 and 8 seconds,

respectively. The outputs of the “outmotor” and “outled” ports are shown in the third and fourth

row in Figure 3.11 and the associated commands are indicated in the figure. The robot starts with

moving forward (by producing value 1 from port “outmotor”), when at time 4, the first set of

inputs (Figure 3.10.a) are injected to the system (shown in the “ir0” to “ir7” rows at time 4),

forcing the robot to react by turning 90° right (output value of 4 from “outmotor” port) and

turning led2 on (output value of 21 from “outled” port). The second input set (Figure 3.10.b) is

injected at time 8 seconds, triggering a 180° turn (indicated in Figure 3.11 in the “outmotor” row

with output value of 6) and turning the rear led (led4) on (the value of 41 is produced from

“outled” port).

 63

Turn 90°

Right
Move

Forward Turn 180°

Turn LED 0 OFF

Turn LED 2 ON
Turn LED 2 OFF

Turn LED 0 ON

Move

Forward

Figure 3.11: Atomic Animation diagram for e-puck random distance test.

 64

After verifying the model behavior in various scenarios like the ones discussed above, the

model was deployed in a real robot, where it was executed in real-time mode in which, the driver

interfaces were activated and performed the transformation of I/O. The same behavior was

observed and the robot could find its way through the obstacles4.

This example provided a prototype of a real system designed and developed using the

DEVSRT development cycle. The controller and the environment models were co-designed

together; where they were tested in virtual-time simulation mode representing the hardware-

software co-design approach. The controller model was also tested with virtual inputs, allowing

for simulation-based verification of the controller in a risk-free environment. Finally, the tested

model was deployed on the hardware proving the model continuity feature of DEVRT. Various

other RT models have been designed and deployed on different hardware, such as robots, FPGA,

and embedded boards (see [Moa08, Hol09, Moa09, Moa10a, Moa10b, Moa10c, and Sad10]).

4 A video of the robot is available at http://www.youtube.com/watch?v=UFHzLk0oXyQ.

 65

Chapter 4: Extended Applications of DEVSRT

This chapter discusses practical applications of the proposed DEVSRT approach. One of the

proposed applications is developing a generic and lightweight technique comprising of an

interface and a message format for deploying real-time solutions allowing for communication of

DEVS models with external environments. There is a variety of DEVS-based RT simulation

engines and a large number of existing models in their model repository. This technique lets

modelers to reuse these models in an RT collaborative execution environment, allowing for

incorporating specific services each simulation engine offers (e.g. continuous systems modeling).

The formal interfacing mechanism of DEVSRT allows for integration of RT models with virtual

reality engines, providing a visual representation of the simulation activities in real-time.

Combining these capabilities with the embedded features of the DEVSRT, allows for visual and

remote supervision of control systems developed using this framework.

The main goal is to follow a Hardware-In-The-Loop approach where RT simulators (numeric

or visual simulation engines) themselves see each other as real-world devices (black boxes),

interacting solely at the network messaging level. The motivations for this research are to show

how to interface M&S-based systems under DEVS specifications implemented on different

tools, and also a Hardware-In-the-Loop simulation with real-time visualization engines.

4.1 DEVS-Based Collaborative Modeling

A collaborative simulation consists of a source model whose components are broken into two

or more groups prior to execution. These groups of components execute separately on different

simulators that may or may not be implemented using the same simulation engine. The idea of

 66

collaborative modeling using DEVS has been followed in previous works. Collaborative DEVS

Modeler [Sar99, Sar01b] provides a virtual modeling workspace for expert modelers to develop

hierarchical and modular collaborative models. This framework allows for model development,

transformation of coupled models (federates) into simulation object, and verification of behavior

synchronization among the federates. Nevertheless, this environment is limited to collaborative

model development and does not implement collaborative simulation.

[Wan03] presents a web-based collaborative environment for DEVS model development.

This framework uses an XML document to present the model digraph and code to different

parties and allow for exchange of ideas during the modeling phase. This approach is again

limited to collaborative model development, and lacks interfacing of different models together in

order to build a collaborative simulation.

Another more related approach to this work is taken by [Lom06] which uses independent

real-time simulation engines that accept the internal wrapping of selected components wishing to

interact with other simulation tools at a high level. Wrappers hide the components and provide a

means of communication with the components modeled in the external environments.

In this research, to make the interfacing visible to the modeler and allowing for dynamic

exploitation of the interaction among the simulations, the wrappers are confined in the topmost

coupled component. This will increase the efficiency of the system as the extra processing

burden is removed from the atomic components. The other advantage of this approach is the

modeler-developed interfacing mechanism, allowing for model level integration of the

simulation entities. The purpose of this research is to develop collaborative models in an RT

context with the DEVSRT M&S framework to provide a platform for collaborative execution of

the final embedded system.

Models developed for a specific tool can be re-implemented into another tool by following

their DEVS formal specification. However, this is an error prone and time-consuming approach.

A more robust and scalable strategy is to keep components implemented in their original DEVS

tools and make them interact over a network-centric infrastructure. In this decentralized

 67

approach, applications resulting from the collaborative activity of the simulators (and other real-

world devices) must be designed to be as robust as required in the presence of anomalies (e.g.,

packet loss, corruption, and sequence inversion). The participating DEVS engines do not need to

worry about synchronization of time or behavior as it is handled at the model level.

In this approach, the output ports of a DEVS model are interfaced to input ports of another

DEVS model and exchange DEVS formal I/O through an adapted message structure. While the

simulation engines are running in real-time, different models can join this collaborative network

of running models and feed from the outputs of other models while contributing their own

outputs to the other models in the network. The network interface for each DEVS port can be

implemented in a different way (even using different network protocols), thanks to the abstract

message structure for transfer of the DEVS outputs. The component-oriented aspect of DEVS

allows different coupled components (federates) in a model to operate autonomously following a

common real-time clock advance. This plays the role of an implicit synchronization mechanism

for event transfers between DEVS tools.

The approach delegates to the modeler the responsibility of being aware about the worst case

scenarios expected for many real-world non-ideal behaviors. For instance, clock crystals of the

hardware platforms hosting each simulator may drift, network latencies may vary considerably

depending on load conditions, and also messages can be corrupted or delivered disordered.

While these and other potential problems can be tackled by adding fault tolerance mechanisms

into interfaces and/or underlying communication infrastructures, there are applications in which

they can be regarded as non-critical. Hence, this approach can be categorized as a soft RT

collaborative simulation approach, suitable for systems requiring a fast and best effort solution.

A) Message Structure

To implement the proposed communication scheme, a global message architecture is

required. The message is supposed to carry DEVS outputs of one model to the input port(s) of

other model(s) over a communication layer. A DEVS output set (Y) (defined in the DEVS

 68

formal specification) contains the (port, value) pair, in which the port is the output port and the

value is the actual output value produced by the model. We need to transfer this pair over the

network and inject it to another model running on another DEVS tool as an input pair. In order to

transfer this data, a lightweight message structure carrying DEVS I/O is defined with the

following data fields:

Port_ID: an integer containing the destination model’s input port id. Based on this field, the

receiving model delivers the input to the correct input port.

Value: a character array carrying the value. The value can also be a sequence of values, sent

to a specific input port in the destination model. The format of the input value is interpreted by

the input interface at the destination model

The generic message structure allows for submitting different types of data between

networked models. A message interface at each DEVS port of the model provides the embedding

of the message as a network packet and its extraction at the destination. Each port owns an

independent interface, which can be configured to submit and receive different types and formats

of messages.

The modeler designs the collaborating models, having in mind the synchronization of their

behavior, using a scheme to collaborate safely. Approaches and tools such as Collaborative

DEVS Modeler [Sar99] can be used to design the collaborative models and verify their behavior

in terms of synchronization and consistency, prior to execution.

B) Example Collaborative Model

Previous experimentation with DEVSRT models for mobile robot control applications made

available a repository of target-specific low-level controllers. As controller complexity grows

and new requirements arise, it is convenient to split system’s design tasks into specialized and

collaborative teams, reusing both experience and previously developed solutions. Following a

component-based approach to demonstrate the proposed technique, the plan is to split the e-puck

 69

robot control model (presented in 3.3) to two main components: one for the control algorithms,

and the other for dealing with robot-specific drivers.

The e-puck logical controller is divided into two parts: the Controller and the Driver. The

Controller is the main decision making unit, where the commands to avoid obstacles are

generated. The Driver model works as a client who forwards the inputs from robot to the

Controller and the outputs from Controller to the robot. The interface to the robot is part of the

Driver model. Figure 4.1 shows an overview of the execution of the collaborative e-puck

controller model running on two workstations.

Figure 4.1: Overview of the Partitioned E-puck Model.

The e-puck robot communicates with the Driver model running on workstation 1 via

Bluetooth connection. The Controller model runs on another workstation communicating

through network infrastructure with the Driver. Figure 4.2 depicts the e-puck collaborative

DEVS model details. The e-puck Controller receives IR sensor values from InIR input port via

the network and sends the motor outputs to OutMotor output port, which is forwarded to the

Driver model. The Driver receives the IR sensor values from the e-puck robot through eight

input ports, and submits them to the Controller model by serializing them through one output

port. This method reduces the network traffic while encapsulating all the values into one network

packet. The Controller model does not deal with LED commands, and the e-puck Driver model

generates these commands based on the motor commands received from the Controller.

 70

Figure 4.2: E-Puck Controller Collaborative DEVS Model.

The Controller model is implemented on PowerDEVS [Ber10] (by researchers from

Argentina) and the Driver model on E-CD++. UDP network protocol is used for message

transfer over an Ethernet network. UDP is chosen over TCP for its simplicity and low latency,

and since the experiments were done on a local network, the chances of loosing a UDP datagram

were negligible.

The DEVSRT formal interfacing technique allowed for the design of the I/O interface

functions, and the E-CD++ user-implemented driver functions provided a fast development

platform to implement the interfacing mechanisms. The Driver model’s OutIR and InMotor

DEVS I/O ports were interfaced with the network and InIR0, …, InIR7, OutLED, and OutMotor

were interfaced with the robot hardware. The Driver is initially in idle state waiting for the

periodic inputs from IR sensors. As soon as it receives the first value from an IR sensor, the

former buffers it until it receives the inputs of all sensors. Eventually, it forwards the inputs in an

array of values embedded in a network packet via the OutIR port to the Controller running on

PowerDEVS. The Driver stays in idle state listening to the inputs from IR sensors and from

InMotor port, where the motor commands are received from the Controller. The Driver

generates the appropriate LED commands based on the received motor commands and forwards

them to the robot. Therefore, a generic Controller model running on a different simulator with

different platform is used to control a specific robot on another platform. Each DEVS output is

 71

associated with an action on the robot (listed in Table 3.1). The driver functions of the robot

output ports (OutLED and OutMotor) submit the commands to the robot via Bluetooth

connection. An embedded program on the robot performs the commands on the robot hardware.

Bergero [Ber10] and Castro [Cas11] implemented the Controller model on PowerDEVS

using an ad-hoc interface to connect the Driver model I/O to the PowerDEVS RT simulation

engine. The two models were executed on two different workstations, transferring data through

network infrastructure.

Various experiments on testing the example model were carried out. To show the results of

the two simulators collaborating over a network, the log files of the experiment in E-CD++ with

real-time timestamps are shown in Figure 4.3. The input log file records all the real-time

incoming data (from the environment) to the model’s input ports while the output file saves all

the outputs of a DEVS model (with microseconds precision). The inputs and associated outputs

are highlighted with red boxes in the figure. In the first box of the input file, two series of the IR

sensor values inputted at time zero and after 50 milliseconds are shown (the IR sensor inputs are

received every 50 milliseconds.) The first box of the output file shows the output to the OutIR

port, which triggers the output driver associated to this port to send the array of inputs containing

the values of the eight IR sensors. Therefore, when all of the IR values are received, they are

forwarded to the Controller. Box 2 of the input file shows an input signal received from InMotor

port containing value “1”, which is interpreted in box 2 of the output file with the accompanying

LED commands (added by the Driver). The same sequence happens in box 3 where the robot has

found an obstacle and the associated IR sensor values are forwarded to the Controller, hence the

Controller is instructing the robot to spin 180 degrees.

 72

Figure 4.3: E-CD++ input and output log files.

The robot succeeded to perform obstacle detection and direction changing when the original

DEVS-based system was split into two collaborative real-time models: Controller and Drivers

running on PowerDEVS and E-CD++, respectively5.

The potential advantage of interfacing E-CD++ to PowerDEVS is the collaborative execution

of discrete and continuous systems under DEVS specifications. PowerDEVS provides means for

5 A video of the collaborative e-puck model in action can be viewed online at

http://www.youtube.com/arslab#p/u/12/iRqrwkPL-kQ

 73

DEVS-based execution of continuous models, providing a great potential for RT hybrid

execution of continuous and discrete models between PowerDEVS and E-CD++. This example

showed a collaborative model design, implementation and execution cycle, where two

development teams designed a shared model, implemented it on different tools, and executed it

in a connected manner.

4.2 DEVSRT and Visualization

Integration of a computer-based virtual environment with a mathematical computer

simulation provides a 3D graphical visualization, in which the user can interact with the model in

real-time and conceive the model’s behavior. The environment can be shared among different

users and the simulation engine can also be geographically remote. This platform provides a

collaborative environment for users and can be used in applications such as supervisory control,

education, and entertainment. Several generic collaborative virtual environments exist (see e.g.

[Car93, Pan96, Wat97, Ara08, Bou08, and Bou09]), defining their own communication scheme,

which use sophisticated middleware technology such as HLA [IEE10]. The objective here is to

show an example where lightweight user configurable collaboration between DEVS models and

a virtual reality environment is achieved, using the interfacing delegates of DEVSRT and a

specific message structure defined for this application.

In this application, an RT Cell-DEVS [Wai02a] model (implemented by Jafer [Jaf10,

Moa11b]) interfaced with the e-puck robotic agent (designed in DEVSRT) and an advanced

immersive visualization environment (developed by Ahmed [Ahm11, Moa11b]) for Emergency

Management is developed. The emergency is handled by an autonomous robot controlled by a

DEVSRT model, through interaction with the RT cellular simulation of emergencies, receiving

RT data about the location of emergencies on a cell space. The immersive environment is used to

visualize the emergency management activities based on the RT data received from the other two

parties.

 74

Figure 4.4 shows the system architecture of this combination. It integrates a Cell-DEVS

model for navigating the emergencies, a DEVSRT emergency response model by a robotic

agent, and a virtual reality component that renders the 3D scenes. The three components are

designed and developed collaboratively by different researchers, incorporating DEVSRT formal

interfacing technique as the principal interaction entity between the robot, the Cell-DEVS model,

and the virtual reality environment.

Figure 4.4: Collaborative System Architecture [Moa11b].

As can be seen in the figure, each sub-system runs on a different computer, communicating

through messages transferred over a network. Figure 4.5 depicts a more detailed overview of this

framework with the components in each federate and connections. The emergency simulation

sub-system is in charge of the Cell-DEVS emergency model. It communicates with the DEVSRT

emergency response sub-system informing it about the dimensions of the emergency area, and

sends updates about the location of the emergency team on the grid. At the same time, it also

 75

sends this information to the visualization sub-system providing it with RT data about the scene.

The DEVS-based control model uses the emergency information received from the Cell-DEVS

engine to respond to the emergency. Based on these commands, the robot moves on the

simulated grid and deals with the emergencies one after another. The emergency response sub-

system dynamically updates the cellular emergency simulation and visualization sub-system

when emergencies have been resolved. This process continues until all emergencies are

extinguished. The visualization sub-system produces 3D scenes of the dynamic updates received

from both the cellular emergency simulation and the DEVSRT emergency response sub-system.

Figure 4.5: Detailed System Overview [Moa11b].

The autonomous robot interacts with the Cell-DEVS simulation engine in RT. The robot tries

to reach an emergency location and extinguish it one at a time by using the cellular space as a

map to navigate. Initially, the robot model receives the size of the cell space and builds a copy of

the cellular space for itself. The robot also receives the updates of cell values from the cell-

DEVS model and marks the changes on its own copy.

 76

The robot controller model consists of two levels of controls: a High-level and a Low-level

control, referred to as HLC and LLC, respectively. The former is responsible for path planning

towards the closest emergency location (using the data provided by the cell space), while the

latter is in charge of avoiding obstacles (the model specifications for this control algorithm are

the same as the example model present in section 3.3. The robot model has two atomic

components: the Model Reader and the Controller. The Model Reader is responsible for creating

the local cell space, updating the cell space by receiving the updates from the Cell-DEVS engine,

and signaling the Controller component to make path-planning decisions. The Controller

implements the HLC and LLC algorithms, sending control commands to the robot and informing

the visualization engine about the robot movements.

Figure 4.6 depicts an abstract representation of the behavior of the two components in DEVS

Graph [Pra93]. The Model Reader starts in wait for dimension, where it is waiting to receive the

dimensions of the cell space from the Cell-DEVS engine. As soon as this happens, it builds a

local copy of the cell space, then transitions to idle. During the idle state, the Model Reader

receives cell space updates and marks them on the local copy. If an emergency update is

received, it is added to the emergency list. At the end of this state, the Controller is signaled to

carry out the next movement.

 77

Figure 4.6: DEVS Graph of the robot controller [Moa11b].

The Controller starts by sending the initial position of the robot to the visualization engine

and stops (a state where it receives periodic signals from the Model Reader). If there is an

emergency location in the emergency list, the Controller transitions to Calculate next step and

the following tasks are executed in the corresponding external transition: sort the emergency list,

find the closest site, apply the HLC and LLC algorithms, and calculate the next step. Based on

the result of the control algorithms, the Controller changes to one of the movement states and the

output function submits the movement commands to the robot, and in the next step this

information is also sent to the visualization engine. This sequence is repeated until the robot

reaches the emergency site. In that case, the controller transitions to prepare extinguish. After

this, it outputs the stop command to the robot, informs the Cell-DEVS and visualization engines

 78

about the emergency restraint, and transitions to the stop state, where it waits for the next

location.

A) Message Structure and Implementation

The collaboration of the three components is based on a global message structure transferred

over a network infrastructure. The message contains the following five data fields:

1. msg_id: an integer data type used to decode the type of the message and the value of the

next fields in the message. There are generally five types of messages:

• The dimension message carries the size of the cell space from the Cell-DEVS engine to

the DEVS and visualization at the start of the execution.

• The robot initial location message carries the initial coordinates of the robot from the

DEVS engine to the visualization.

• The cell space update message carries the cell value changes during the execution from

the Cell-DEVS engine to the DEVS and visualization.

• The next movement message carries the direction of the next movement at the start of

each step from DEVS to the visualization engine.

• The extinguish message carries the location of the emergency that has been

extinguished by the robot, from the DEVS sub-system to the Cell-DEVS and

visualization sub-systems.

2. x: used to carry the horizontal axis value (the horizontal dimension or the horizontal

coordinate).

3. y: used to carry the vertical axis value (the vertical dimension or the vertical coordinate).

4. dir: carries the next direction.

5. value: carries the value of the cell and is used in the cell update message.

 These messages are embedded in a UDP packet, and transferred during the execution of

the model through the network.

 79

The controller model is implemented on E-CD++ and the proper interface functions are

programmed to send and receive the above mentioned message format. The e-puck robot

[Mon09] is used as a small-scale representation of the emergency responder robot. The

visualization engine is implemented using Vega Prime [Veg11] and OpenGL [Hil08] by Ahmed

[Ahm11]. Vega Prime is a high-performance software environment for RT simulation and virtual

reality applications. It serves as an application programmer interface (API) consisting of a

graphical user interface called LynX Prime and Vega Prime libraries and header files of C++-

callable functions. 3D scenes are rendered using 3D openflight models. The terrain model

consists of trees, different buildings, roads, etc. the robotic agent is represented by a 3D truck

model.

After testing the system in virtual-time, the model was executed in real-time and the behavior

of the model was thoroughly verified. The robot succeeded in performing the emergency

recognition based on the model discussed above and the visualization engine rendered the area

and the robot movements in a real-time streaming mode6. Figure 4.7 shows the virtual

environment in a window that is divided into two channels; one for perspective view of 3D scene

(on the left), and the other channel is for orthographical view of the 3D scene which acts as 2D

Map of the area (on the right). More details about this project can be found in [Moa11b].

6 Some of the visualization videos can be watched online at youtube.com/watch?v=9aNVZRkrtC8,

youtube.com/watch?v=5V4xNjdoEug, and youtube.com/watch?v=2qaWLJLVJt0.

 80

Figure 4.7: 3D Visualization Engine Zoomed Map [Moa11b].

Another interactive virtual reality project implemented using this framework is presented in

[Ahm11], where Cellular Agent model (VCELL) designed by Ahmed is used for simulating land

combat7 and is collaboratively simulated using a Cell-DEVS agent model and an advanced visual

immersive simulation environment.

7 However, this dissertation does not encourage or support military related research by any means.

 81

Chapter 5: Imprecise DEVS

The Imprecise Computations (IC) technique [Liu94a] is a useful approach for handling real-

time scheduling issues under transient overloads. It introduces a formal method of separating the

critical (mandatory) part of a task from its uncritical (optional) part, thus making it possible for a

real-time system to accept more tasks to the system while trying to run as many optional

subtasks as possible. In this way, the system can be dynamically configured to accept more tasks

when the system’s processing traffic is high, while producing less accurate results, versus

executing tasks completely and producing accurate result, when the system burden is low.

 “A task is monotone if the quality of its intermediate result does not decrease as it executes

longer” [Liu91]. Monotone tasks can be found in almost all areas of computation and their

flexibility in terms of duration of computation helps designers to implement the IC technique. A

solution to handle high processing peaks in an RT system is to divide the monotone tasks in the

system into two versions of a computation: the primary, which executes longer and produces

more accurate result and the secondary version which executes shorter but produces less accurate

result. Whenever the deadline is short, the secondary version can be used to meet the deadline

while having an acceptable result.

Contrary to monotone tasks are tasks with 0/1 constraints. These tasks must be executed to

completion or not executed al all. Scheduling 0/1 constraint tasks is more difficult [Liu91].

The following definitions are used in scheduling algorithms for imprecise computations:

Considering a set T = (T1, T2, …, Tn) of preemptable tasks, the following parameters are defined

regarding each task Ti:

r i is the time at which task Ti is released.

 82

di is the deadline at which task Ti must be completed.

τi is the processing time required for task Ti.

wi is the weight of the task Ti which is the relative importance.

Every task Ti is composed of two subtasks: Mandatory and Optional. The mandatory subtask

Mi needs processing time mi and the optional subtask Oi needs processing time oi. Then mi + oi =

τi. Figure 5.1 illustrates these definitions.

A task Ti is referred to as executed when at least all its mandatory subtasks included in the

associated jobs are executed (jobs are instances of tasks occurring during the execution). The

optional subtasks of task Ti are available for execution only if the mandatory subtasks of Ti are

executed properly. The scheduler can terminate an optional subtask at any time during its

execution. Based on this definition, a perfect hard real-time system is a system in which all the

tasks are composed of mandatory subtasks and a perfect soft real-time is a system in which all

the subtasks are optional [Liu94a].

Mandatory TimeOptional

Intermediate result Final result

m o
t

Figure 5.1: A Monotone Task Divided to Mandatory and Optional Parts [Liu94a].

IC has been well investigated and many RT scheduling algorithms have been introduced

(some of these algorithms are presented in section 5.1). Imprecise scheduling algorithms benefit

from the separation of mandatory and optional subtasks, using different scheduling approaches

for each of them. Some of the algorithms also take into account the priority of the jobs, and there

are also algorithms for periodic jobs. The concept of error is defined based on the portion of the

optional subtask in each task that has not been executed.

 83

A common problem in hard real-time systems is the occurrence of overrun situations when

the system does not have enough processing resources to fulfill all the requesting processes. This

issue poses critical risks to the hardware under control, and it may cause catastrophic results. In

these cases, the IC technique offers an effective way of resource utilization. This chapter shows

how to use this technique for the proposed DEVSRT framework by introducing the Imprecise-

DEVS (I-DEVS) methodology. This approach combines the dynamic advantages of the IC

technique with the rigor of a formal modeling methodology.

5.1 Algorithms for Imprecise Computation

Imprecise computation has been used for minimizing error in real-time task scheduling. The

error is calculated as a function of the amount of discarded optional processing as a result of

overrun situation happening in the system. Many off-line task scheduling algorithms have been

proposed in the past, based on IC technique (refer to [Shi91, Liu95, and Ayd99]). There is no

optimal algorithm that minimizes total error in on-line RT scheduling systems, when a feasible

schedule exists, because of the lack of a-priori knowledge of the occurrence time of the jobs

[Shi92].

The mandatory first algorithm assigns processing times to mandatory tasks first, based on

statistics to reduce the total error (refer to [Bar98 and Chu90]).

The NORA (No-Off-line tasks and on-line tasks Ready upon Arrival) algorithm [Shi96] is

based on EDF (Earliest Deadline First) algorithm and is mainly designed for online task systems,

in which each task is ready upon arrival. Each task is assigned a reserved interval based on

reverse scheduling algorithm. Each task’s mandatory subtask is assigned a reserved execution

time starting from its deadline equal to the amount of processing time required for its mandatory

subtask, based on the EDF algorithm. As long as the mandatory task set is feasible a reserved

interval set can be found.

The DOT_Sched algorithm [Che09] is an extension to the NORA algorithm for online tasks

that are ready upon arrival. It uses three reservation lists: R(M) for mandatory tasks, R(O) for

 84

optional tasks and R(M+O) for both of them. Like NORA algorithm each task is assigned a

reserved interval in R(O) or R(M) and R(M+O) lists, starting from its deadline way back equal to

its processing time.

RT-Frontier [Kob04] is a real-time operating system that presents an imprecise computation

framework for constructing real-time applications. It decomposes computations to mandatory,

optional and wind up parts. The wind up part works as a termination function after the

termination of an optional part, reducing the termination cost and increasing portability. A novel

scheduling algorithm called Slack Stealer for Optional Parts (SS-OP) is used in RT-Frontier

which is based on the above mentioned three segment imprecise computation model and imposes

small overhead to the system, while applying dynamic load balancing scheme.

Except the work presented in [Kob04], which only applies IC in a specific operating system,

no research aims at integrating this technique with a formal methodology to be used in real-time

and embedded system design and construction. The proposed I-DEVS approach, allows the

model designer to deploy this technique at the design time, specifying the optional and

mandatory behaviors of the target system.

IC has been applied to different fields, including RT and embedded systems [Liu94b, Kob04,

and Wie08], multimedia processing [Fen93, Hua95, and Chen97], planning and artificial

intelligence [Zil93, Fuj99, and Par02] and databases [Han00 and Ami03]. Despite all of these

efforts, IC is not yet widely used in industrial embedded applications. The reason might be

related to “strict theoretical assumptions and the lack of cost-effective support method that can

be easily implemented in embedded systems” [Kob04]. This dissertation attempts to address

these issues in the context of real-time DEVS-based systems.

5.2 DEVS Task Model

The main computations in a DEVSRT runtime engine occur during state transitions

(modeling subsystem) and message transfers (control subsystem). Assuming the message

transfer is an overhead associated to the context switching between the standard DEVS tasks in

 85

the system, the set of tasks in a DEVSRT system (in theory) is composed of transitions and

output function. This information is used to map the DEVS functions (δext, δint, and λ) run by RT

simulator into an RT tasking system, where we obtain a platform that IC can be applied. Figure

 5.2 shows the processing tasks in a DEVS atomic component during a state transition. The

external transition (X) is mapped into a task that initiates the state S. The task release time is

equal to the arrival of the input to the model (from the external environment in the case of the

topmost coupled model, or when the output generated on an output port is received in the atomic

model input port). We assume no deadline for the X task. The output (λ) and internal transition

tasks (I) are considered to execute together (task λI, as outputs in DEVS are always followed by

an internal transition). The release time of task λI is equal to the end of the state S and specified

by ta(s) (indicator T). Its deadline is specified by the function d(s) (indicator d) that we added to

the atomic model definition.

Figure 5.2: Processing Carried for a State Transition.

Now, in a scenario when a flock of inputs are injected to the system, the system has to

perform a pile of transitions and produce outputs. In this case, the output tasks are drifted to later

times, which might exceed their deadlines. Figure 5.3 shows an overload scenario where four

inputs are injected, starting external transitions on different atomic models. As can be seen, λ1,

λ2 and λ4 meet their deadlines; however, λ3 and λ2 (second instance at time 18) do not. The

internal transition I2 produces a new state with ta(s) equal to 4 time units, which exceeds its

deadline at time 17. This situation was preventable, provided that, the system could detect the

overload conditions early enough to apply IC-based scheduling.

In order to execute these models, we extended the DEVS atomic model definition by

dividing the above-mentioned tasks into mandatory and optional parts, incorporating the

 86

imprecise computation concept. Assuming X tasks are always mandatory, λ1 tasks can be

optional. The λ subtask of an optional λ1 task can be terminated under transient overloads. In

other words, during overloads, the model skips optional output functions to save time and

resources for the mandatory ones. For instance, an autonomous robot in a bumpy road with

obstacles (flooded with obstacle reconnaissance inputs) can discard unnecessary tasks (e.g.

reporting or video streaming to the base). A similar scenario can occur in any RT system where a

sequence of optional outputs can be skipped to alleviate the overload situation by keeping the

necessary outputs produced on-time. Schedulability analysis can be applied to this model, based

on various available methods (see e.g. [Liu73]).

Figure 5.3: Overload Scenario.

A) Problem Statement

Based on this argument, a real-time DEVS system can be prone to overload conditions at any

time during execution, proposing a significant risk and reducing the reliability of the system in

hard real-time applications. The overrun situation can be very transient, happening at very

random occasions when the system is flooded with RT inputs. Therefore, even by strengthening

the hardware and processing resources of the system, the problem can still exist and happen at

high processing peaks. The nondeterministic nature and lack of a-priory knowledge of the

occurrence times of the jobs (especially sporadic jobs [Liu00]), adds to this issue severing the

risk. Therefore, the need for a more robust mechanism is inevitable. It is almost impossible to

design a fully trusted RT system in a perfect nondeterministic situation [Liu00], however

 87

heuristic and mitigating techniques can be incorporated to reduce this risk and reach an accepted

level of reliability.

Having said this, IC approach can be a natural choice in solving such problems in a real-time

DEVS context. Defining a clear theoretical tasking system for DEVS provides a reliable starting

point to employ various available techniques and algorithms for reliable scheduling and also

schedualibility analysis of these systems. The proposed DEVSRT approach with minimal

modification to DEVS, allows for well-organized integration of IC technique with DEVS. The

rest of this chapter will elaborate the idea and present the results.

5.3 I-DEVS Formalism

Despite the theoretical advances in imprecise computation, there are few practical projects

aiming at producing effective RT tools based on this technique. As mentioned earlier, the

objective is to provide an imprecise framework for applications where the job arrival times are

not known a-priori. The approach tries to balance the computation when the system is busy and

on the other hand not reducing its performance, while keeping the run-time overhead of the

implementation as low as possible.

To satisfy these goals, Imprecise DEVS (I-DEVS) is built on top of DEVSRT. The atomic

model definition is modified by adding a mandatory or optional condition for each state, as

follows:

AM = < X, S, Y, δext, δint, δcon, λ, ta, d >

Where X, Y, δext, δint, δcon, λ, ta and d are the same as in DEVSRT,

S: {(s, c) | s∈Z+
0 and c ∈ {mandatory | optional}}.

The states of the atomic model are categorized as mandatory and optional. A mandatory state

will have a mandatory output function (represented as output task) and an optional state will

produce an optional output task. This abstraction in the definition of mandatory and optional

tasks in the level of state machine, allows the modeler to define imprecise models without being

involved in the details of the lower level tasking system.

 88

The main runtime algorithm performed in the Root Coordinator (RC) (the top coordinator in

the DEVS abstract runtime hierarchy), is unchanged. It is started first by waiting for an external

or internal event. RC routes external input through an external message (q) to the destination

atomic model (which triggers the δext function). Otherwise, it waits for the closest internal event

(λ1) to send collect (@) and internal messages (*) to the target atomic model. The collect

message executes the λ function on the atomic model and the internal message executes δint. The

atomic model responds to the @ message by executing the λ function and returning the output

value through an output (y) message. The atomic model also executes δint in response to a *

message, and returns its next internal event time by a done message.

Whenever there is more than one internal event to be serviced, the mandatory ones have

priority over the optional events. If an optional internal event is to be serviced later than its

release time plus a grace period, its output will be discarded. The grace period depends on

various factors and it defines a threshold for tolerating lateness in processing optional tasks. As

discussed earlier, when the system gets busy, the tasks are drifted later from their release times.

This situation can be seen as an indicator of an overload situation in the near future, triggering

the system to react to the conditions. The threshold at which the system starts reacting by

dropping the optional tasks is determined by the grace period. It can be a function of the

processing resources, level of criticality of the optional tasks, and system’s attitude towards

reacting to such conditions. Grace period can be used to tune the system to obtain desirable

tradeoffs between losing accuracy and meeting hard deadlines. A system with hard real-time

tasks can have a shorter grace period in order to save time for mandatory tasks by sacrificing

optional ones and gain more reliability, while a system with soft real-time nature can tolerate

more delay in order to achieve more precision and quality. The grace period can also be modified

dynamically by the system, employing intelligent learning algorithms to adapt to changing

conditions. On the other hand, these dynamic conditions can be explored by deploying RT

simulation using the DEVSRT HILS advantage. This way, the system can be verified and tuned

in a risk free environment with various test scenarios before it is deployed in action.

 89

The early reaction strategy helps the system to save time for later mandatory events that have

not been released yet. Whenever a sequence of optional events in an atomic model is delayed,

the atomic model starts discarding the output functions. The following pseudo code shows the

execution algorithm in an atomic model, when receiving a collect message.

1. Receive (@, t)

2. if (s is optional AND tL + ta(s) + tg < tnow)

3. raise error //optional tasks dropped

4. else if (tnow > tL + d(s))

5. raise error //deadline missed

6. else if (tnow ≤ tL + d(s))

7. y = λ (s)

8. send (y, t) to the parent coordinator

9. end if

10. send (done, t) to the parent coordinator

11. end collect

Line 2 verifies if the optional output is going to be executed later than its release time (tL +

ta(s)) plus the grace period (tg). Line 4 verifies the deadline condition and finally line 6 is the

case when the output function is qualified for execution.

A) Example

Figure 5.4.a shows a simple I-DEVS model hierarchy where two atomic models B and C are

coupled into D, which is itself coupled with atomic model A. Various input/output ports are used

to connect these models in the figure. Figure 5.4.b shows the description of model A using DEVS

Graph [Pra93]. Note that continuous lines indicate external transitions and dashed lines indicate

internal transitions. As it can be seen, the model is initially in state A1 (with time advance =

infinity) until an input xa is received on port InA. In that case, the external transition produces a

 90

state change to A2. The model stays in this state for 1t and its deadline is 4t. When the time is

consumed, it produces the output y2a and transitions to A3 (internal transition). A similar

scenario can be seen in states A3, A4 and A5, with outputs y3a, y4a and y5a produced

respectively. Figure 5.4.c and d show the DEVS Graphs for atomic models B and C,

respectively.

O
ut1A ! y2a

O
u
tC
 !
 y
2
c

O
utC
 ! y3c

Figure 5.4: Example I-DEVS Model.

The DEVS Graph of atomic model C (shown in Figure 5.4.d) is mapped to DEVS

specifications as follows:

C = < X, S, Y, δext, δint, δcon, λ, ta, d >, where:

X = {(InC, xc)},

S = {(C1,mandatory), (C2, mandatory), (C3, optional)}, and S0 = C1,

Y = {(OutC, y2c), (OutC, y3c)},

 91

δext (C1, e, < InC, xc >) = C2,

δint(C2) = C3, δint(C3) = C1,

δcon = δext has priority over δint

λ(C2) = <OutC, y2c>,

λ(C3) = <OutC, y3c>,

ta(C1) = ∞, ta(C2) = 1t, ta(C3) = 2t,

d(C1) = ∞, d(C2) = 4t, d(C3) = 5t,

The mapping of atomic models A and B are similar and straightforward.

In this example, the state durations are considered very small; however, in reality they are

usually longer, compared to the execution time of the X, λ and 1 tasks. In a system with large

number of atomic models, similar overload conditions can happen at different points of time,

when multiple X, λ and 1 tasks from different atomic models are very close to each other,

causing a drift in the execution of the tasks. For instance, Figure 5.5 shows a possible overload

scenario for the DEVS model presented in Figure 5.4 without considering IC technique. An input

Xa enters the system from input port In at time zero. Assuming the X task takes 1t, at time 1 (i.e.

1t) the atomic model A moves from the initial state A1 to A2. The ta(s) of state A2 is 1t, thus at

time 2, we run task λ212, producing the output y2a (for simplicity reasons the outputs are not

shown) and the internal transition from A2 to A3, (as specified in Figure 5.4.b). The output

produced by the atomic model A (y2a) is translated to an input for the atomic model B. Thus, the

task Xb is executed right after λ212, causing the atomic model B to change from B1 to B2. The

models advance according to the specifications (provided in Figure 5.4) until t=18. At this point,

the tasks λ414 of A, λ313 of C and λ212 (of A, B and C, shown in red) miss their deadlines

because of the overload condition in the system.

 92

Figure 5.5: Example Transient Overload Scenario.

On Figure 5.4.b, c and d, the mandatory and optional states are marked with an M or an O,

respectively. By applying the proposed imprecise DEVS technique and considering a zero grace

period (a hard real-time system), λ3 of A is skipped (because state A3 is optional and λ3I3 is

executed after its release time plus zero grace period, T3a), causing λ4I4 to be shifted to time 16

and saved from lateness. The same condition happens for λ3 of B and C. Hence, by discarding

three optional λ tasks the four mandatory tasks and their associated outputs are saved from

lateness.

Figure 5.6: Applying Imprecise Computation to the Sample Scenario.

5.4 Results and Discussions

The proposed imprecise DEVS formalism was implemented on E-CD++ on the Xenomai RT

framework. X tasks are made user configurable (i.e. periodic or aperiodic), and their main job is

 93

to run user-defined input driver programs as soon as they are spawned. The main RT task

implements the DEVSRT run-time abstract algorithm (discussed in 3.2) and takes care of λI

tasks. This task is also responsible to implement and verify the imprecise DEVS formalism and

its execution. The implementation of the imprecise computation on E-CD++ is seamless and

backward compatible (i.e. the previous models also can be executed and are considered precise

models).

The proposed implementation of imprecise DEVS on E-CD++ has been tested with variety of

modeling scenarios and several criteria has been applied for verification of the final

implementation. For instance, a synthetic robotic model with 20 atomic models, each of them

connected to an external input port, connected to a sonar distance sensor and an output port

connected to an electrical motor is used. To ensure that the same scenario runs every time, the

values coming from the sensors were the same in all tests. All the atomic models follow the

DEVS Graph diagram in Figure 5.7. The model is a synthetic representation of a robot

controller, which receives inputs from sensors and based on the inputs, instructs the motors. 20

atomic models are used to make it a computation intensive model where overrun situation

happens frequently. The DEVS Graph diagram in Figure 5.7 is composed of three optional states

and three mandatory states. Whenever there is an input in states C, D, E, and F, the model

transitions to state B. This model is used to perform comprehensive performance tests, and

compare the results of the imprecise execution and precise execution. In the case of precise

execution, all the states are assumed mandatory.

 94

Figure 5.7: Synthetic Robotic Model Used for Verification.

The timing for the component models varied for the different tests, performed. The first test

discussed in this section compared the number of discarded λ tasks versus processor utilization.

The diagram in Figure 5.8 shows the results of this test, for a total execution time of 20 seconds.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Numbere of Discarded Transitions

P
ro

ce
ss

o
r

U
ti

li
za

ti
o

n

P=1.1 P=0.05 P=0.1 P=0.01 P=0.5

Figure 5.8: Discarded Tasks vs. Processor Utilization.

The test was performed for input period intervals of 1.1, 0.5, 0.1 and 0.001 s. As it is

observed from the chart, by increasing the number of discarded tasks (which happens by

 95

tightening the state durations and period of the inputs) the processor utilization increases

linearly. The result demonstrates the integrity and persistency of the implementation in a

medium load scenario. In addition, as the system gets busier the number of discarded tasks also

increases. The slope of the diagram for different period configurations stays the same, showing

the integrity of the functionality of the algorithm for different levels of load on the processor.

Figure 5.9 shows the average response time of all the mandatory λI jobs versus the execution

time for the same model using imprecise and precise modes. In this case, the input period of all

X jobs was fixed (1100 ms). The test was performed five times for each instance and the average

result has been considered. As the chart shows, the average response time of the mandatory λ

jobs drops dramatically in imprecise mode. In this example, there is a heavy load that the system

must respond to, which required longer time for mandatory λ jobs to complete in precise mode.

Imprecise computation discards the optional tasks, thus the response time of the mandatory tasks

shortens.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600

Simulation Time (sec)

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
ic

ro
 s

ec
)

Imprecise Precise

Figure 5.9: Response Time vs. Execution Time in Heavy Load.

 96

Figure 5.10 shows the average response time of the model versus the number of discarded

tasks for 20 seconds of execution time. The period of inputs is set to 50 milliseconds, and by

varying the state durations, we obtain different number of discarded tasks in imprecise mode. For

each instance of the imprecise test, the same configuration was applied to obtain the

corresponding results in precise mode. It can be seen that the average response time of the

corresponding precise execution for each instance is slightly higher than the imprecise one in

medium load scenario. This is due to time being saved by discarding optional tasks in favor of

mandatory ones. However, this difference is not very visible in a medium load scenario because

the system is not as busy as a heavy load scenario. The chart shows that by increasing the

number of discarded tasks (i.e. tighter state durations) the average response time also increases.

However, this increase is not smooth as the situations change, while the system saves the

mandatory jobs in transient high processing occasions, the effect of these situations on the

average response time in medium load scenario is not as visible as heavy load scenario.

0

50

100

150

200

250

300

350

400

450

500

0 5000 10000 15000 20000 25000 30000

Number of discarded tasks

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
ic

ro
 s

ec
)

Imprecise Precise

Figure 5.10: Number of Discarded Tasks vs. Average Response Time in Medium Load.

 Figure 5.11 depicts the processor utilization versus the number of discarded tasks in a

heavy load scenario with the input period of 2 milliseconds and 20 seconds execution time. The

 97

chart shows steady but higher processor utilization for precise execution. The processor

utilization for precise execution in all instances of the test is almost full, therefore as the load

increases; the utilization remains almost the same. However, the imprecise processor utilization

is instable and decreases as the number of discarded tasks increases. This is due to the instable

and varying conditions that occur in a very heavy load scenario in imprecise mode. As the

number of the discarded tasks increases, less processor usage is required. This decrease is not

smooth neither linear, because of the change in conditions in each run, and admission of more

mandatory jobs. Nevertheless, the system is successful in opening space for mandatory jobs by

discarding optional ones.

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

4000 5000 6000 7000 8000 9000 10000

Number of discarded tasks

P
ro

ce
ss

o
r

u
ti

li
za

ti
o

n

Imprecise Precise

Figure 5.11: Number of Discarded Tasks vs. Processor Utilization in Heavy Load.

In a different test scenario, the synthetic models introduced in section 3.2B) were used to

measure and compare the performance and overhead of the imprecise and precise executions of

the same models. In this test, the models with fixed number of levels (4 layers) and variable

number of components in each level (i.e. 4, 6, 8, 10, and 12) were used to measure the execution

overhead and response time of the output tasks. The processing time of the X, λ, and I tasks was

 98

set to 10 milliseconds for each atomic component. Figure 5.12 shows the average response time

of the tasks during an execution time of 40 seconds for different number of components per

level. The output produced in each cycle of input, is marked as optional, therefore whenever the

system faces an overrun condition, the λ tasks are skipped. The chart shows that the average

response time of the tasks is slightly shorter in imprecise execution in each scenario, due to the

time saved because of dropping the optional tasks. On the other hand, it is observed that, when

the size of the model increases (the number of call to the tasks also increases), the difference

between the average response time of imprecise and precise runs also increases. This is due to

heavier workload produced in bigger models and propagation of data in the model, which is

efficiently handled by the imprecise scheduling algorithm, reducing the response time of the

tasks.

55

555

1055

1555

2055

4 6 8 10 12

Number of Components per Level

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
il

li
se

co
n

d
s)

Imprecise Precise

Figure 5.12: Number of Components per Level vs. Average Response Time.

The other interesting fact, observed with this test is the lower overhead in the imprecise

computation in heavy processing models. Figure 5.13 represents the overhead percentage

 99

(calculated using equation 3-1) of the execution engine relative to the tasks processing times, in

imprecise and precise scenarios. The other parameters of the execution were the same as the

previous test. Based on the results presented in this figure, the overhead percentage in imprecise

mode is less than the one in precise mode, due to the drop of messaging overhead produced by

the optional output tasks. A discarded output task eliminates the time required for transfer of (@,

t) and (done, t) messages from the atomic component to the Top model. The other interesting

fact extracted from this diagram is the lower overhead percentage for heavier models (bigger

modeling hierarchy with computation intensive tasks), due to the increase of the task processing

time portion over the execution processing time. In other words, in a computation intensive

model, as the size of the model grows the overhead percentage decreases, because the processor

is mainly busy with the tasks rather than the execution overhead.

2

2.2

2.4

2.6

2.8

3

3.2

4 6 8 10 12
Number of Components per Level

O
ve

rh
ea

d
 P

er
ce

n
ta

g
e

Imprecise Precise

Figure 5.13: Number of Components per Level vs. Overhead Percentage.

 100

A) Performance Evaluation

The criticality of RT systems requires efficient development approaches, in which the

theoretical design and its associated implementation produce efficient throughput from the

system and the resources. Various performance evaluation approaches for RT systems exist in

the literature. The Rhealstone benchmark [Kar89, Kar90] evaluates the performance of an RT

operating system using the following metrics: average task switch time, average pre-emption

time, average interrupt latency, semaphore shuffle time, deadlock break time, and inter-task

message latency. These metrics can be incorporated into DEVSRT and I-DEVS formalisms to

evaluate the RT application. The M&S capability of these formalisms allows early performance

evaluation of the system in simulation mode, where the system can be tested against the above-

mentioned criteria. This will provide early information regarding the required hardware

resources to implement the final system. The Rhealstone benchmark metrics can be applied to

DEVS task system proposed in 5.2. The average task switch time between the X, λ, and I tasks

can be measured in order to have a concrete idea about system overhead. The average interrupt

latency can be applied to X tasks, when the system receives an input until the input is accepted

by the main runtime system. The inter-task message latency can be used to approximate the

delay in RT message transfer between the RT tasks in the multi-tasking implementation

approach. Semaphore shuffle time can be used to measure the delay in switching the semaphore

used for synchronizing the input tasks and for semaphores used by the modeller in the RT input

tasks in order to avoid input resource deadlock.

The Hartstone benchmark [Ada90] developed at Carnegie Mellon University evaluates hard

real-time systems using a set of operational requirements for synthetic applications. The

synthetic application is used to verify the deadline requirement, whether the output meets the

deadline or not. As a future work, these performance evaluation techniques can be applied to the

DEVSRT and I-DEVS RT platform to measure the availability of outputs in different models

using different scenarios. Scenarios can include: periodic, a-periodic and sporadic tasks,

harmonic and non-harmonic state durations.

 101

On the other hand, metrics like performance profiling, A-B timing, and response to external

events can be also incorporated in model execution.

B) Scalability

RT systems working in the context of embedded hardware are prone to several limitations.

One major constraint in these systems is the power consumption or battery life. High

performance requirement in these systems conflicts with the low power objective. To achieve

these goals performance degradation strategies can be incorporated. I-DEVS can be a natural

choice for this purpose, providing a dynamic and early reaction scheme to tackle this problem.

The graceful degradation strategy based on Imprecise Computations theory allows for degrading

the system performance when needed by dropping the optional transitions. This threshold can

include battery life or any other constraint conflicting with performance of the system.

On the other hand, performance of the system also depends on the underlying hardware.

Figure 5.12 can be viewed as a scalability indicator in the current implementation of the I-DEVS

approach on E-CD++ software. As the number of components per level increases the average

response time increases too. This means that the tasks are executed later to their release time,

when the system scales up. Likewise, this delay also affects the deadline of the tasks, thus

proposing a risk. A simple solution might include upgrading the underlying hardware resources

in order to solve the scalability problem. As this will be a natural solution to this problem,

however the “Speed-Performance Tradeoff Anomalies” [but06] dilemma shows that in an RT

system with timing and resource constraints, increasing the processor speed does not necessarily

lead to a better performance, and vice versa.

 102

Chapter 6: Conclusions and Future Work

This dissertation addressed some of the issues in the area of RT and embedded system design

and development by employing an M&S-driven engineering approach. The issue of model

continuity providing reuse of simulation models for the final hardware embedding has been

discussed and the Discrete EVent System Specification in Real-Time (DEVSRT) approach is

presented as a DEVS-based solution. The proposed DEVSRT was employed in developing a

lightweight collaborative RT model execution and virtual reality integration framework for

specific applications. Finally, this platform was integrated with Imprecise Computation (IC)

technique to propose the novel Imprecise DEVS (I-DEVS), a DEVS-based RT task scheduling

and resource management technique.

DEVSRT as an RT domain extension of the DEVS formalism provided a model-driven

approach towards RT and embedded application development. The formal and intrinsic

advantages of DEVS are combined with RT features to propose a design scheme for such

applications. Issues such as Hardware-In-the-Loop Simulation (HILS) or Human-In-the-Loop

Simulation are addressed in this framework by introducing formal interfacing mechanisms

between the DEVS model and the target embedded environment. The benefits of simulation-

based verification are employed by DEVSRT, allowing for pervasive verification of the system

under development in a risk-free setting, exploring varying test scenarios. The concept of model

continuity and reuse of simulation models in the development of final embedded software

architecture are addressed. This is a shortcoming of most of the available approaches that has

been solved in this dissertation. DEVSRT provides a high level abstract hardware-software

modeling scheme, where different components of the target system can be modeled together. The

 103

co-modeling approach allows for co-simulation and verification of hardware and software

segments of an embedded system in a unified framework, while an incremental replacement of

the models with hardware surrogates explores the un-modeled aspects of the devices with the

controller component.

The formal interfacing techniques in DEVSRT enabled the collaborative execution of RT

models independent from the underlying simulator platform. It also allows for interfacing DEVS

models with visualization engines, collaborative control of an embedded system by co-executing

different models on different RT engines and at the same time, interacting with the target

hardware platform. The method is lightweight and it allows for quick reuse of available models

on different simulation or runtime platforms, without the need for sophisticated middleware

technologies.

Finally, the runtime computation details of the DEVSRT approach were investigated and an

RT task model comprising of the DEVS intrinsic processes has been proposed. This model was

used as starting point for further investigation regarding task scheduling and resource

management in a DEVS-based RT system. The DEVSRT task model was integrated with IC

approach in an innovative method, in which the model behavior is prioritized, allowing for

efficient and dynamic task scheduling in the system. The overload management policy

introduced in this framework provides an early reaction mechanism to transient overrun

situations, saving critical outputs from lateness, preventing catastrophic results in the system.

The outcome of this research enables RT and embedded system designers to adopt an M&S-

based approach, bridging the gap between simulation and RT software development. It also

opens a new horizon towards model-based operating system design, allowing for creation of

systems dedicated to run models as processes.

6.1 Review of the Contributions

This section reviews the major contributions in the two research areas investigated in this

dissertation, namely: the DEVSRT simulation-driven development methodology for RT and

 104

embedded systems development and the I-DEVS approach to achieve a hard RT system design

scheme by integrating the DEVSRT with IC techniques. The following subsections summarize

the key contributions regarding these research objectives.

A) DEVSRT

DEVSRT applies a dynamic DEVS-based approach for embedded real-time application

development. It takes advantage of well-defined M&S properties and constructs of DEVS to

design and interface embedded systems with their hardware surrogates. The following

contributions are the outcome of this approach:

• The use of physical time in the DEVS event scheduling paradigm, enabling the runtime

engine to trigger the events based on the clock of the system, providing an RT simulation

engine.

• DEVS has been investigated to be adopted as an RT and embedded application

development technique; hence the corresponding features of DEVS are highlighted and

applied in the design of example models.

• A formal way of defining deadline for DEVS outputs has been proposed and the details of

hardware interaction using DEVS have been discussed. DEVS formal I/O ports were used

to interface models with hardware or external environment. This method provided the

basis for hardware integration and model continuity.

• The interfacing mechanism between DEVS and external environment has been improved

and a new version has been adopted for DEVSRT.

• A generic lightweight interface for message transfers between DEVS models running on

different DEVS-based tools has been presented. This framework was used to develop and

execute shared controller model for robots, emergency management and combat

simulations.

 105

• The Embedded CD++ (E-CD++) tool has been extended to implement the DEVSRT

approach. The new version of E-CD++ was implemented on Xenomai real-time kernel,

incorporating real-time services provided by the kernel.

• The input receiving stubs are implemented as separate Xenomai tasks working

concurrently, to receive data from different ports, though not interrupting the main

runtime task.

• An Eclipse-based plug-in IDE offering embedded functionalities and graphical model

designer capability was provided allowing for rapid design and deployment of the models.

• Several RT embedded systems and controllers have been designed and implemented on a

variety of hardware platforms such as FPGAs, embedded boards, and robotic devices.

B) I-DEVS (Imprecise DEVS)

The second major contribution of this dissertation is the adoption of the IC approach with the

DEVSRT platform to propose a more reliable model-based design and execution platform for

hard real-time systems. The followings were the contributions towards this goal:

• The active processes in an RT DEVS-based system have been identified and a task system

has been proposed to be used as a foundation for further investigation and study of RT

aspects in these systems.

• The Imprecise DEVS (I-DEVS) formalism has been proposed incorporating IC-based

inherent concepts with the DEVSRT framework.

• A scheduling algorithm based on reacting early to the overload scenario has been

introduced, which was later demonstrated through experiments.

• The IC concepts have been integrated with DEVS modeling framework, in an abstract

way, enabling the modeler to design imprecise models independent of the simulation

engine.

• Detailed examples of overload scenarios and the efficiency of the approach have been

presented.

 106

• The I-DEVS M&S framework was implemented on E-CD++, providing a development

platform for imprecise modeling and execution using DEVS formalism.

• Several test cases measuring the integrity, consistency, and efficiency of the algorithm

have been carried out.

6.2 Future Work

The following is a list of possible future research trends in DEVSRT, collaborative RT

modeling, and I-DEVS approache:

• Integration of model checking and formal verification techniques with the DEVSRT

approach can be investigated in order to have an integrated modeling tool incorporating

techniques to discover anomalies, inconsistencies, deadlocks, and other pitfalls in the

model.

• Design and development of embedded operating systems can be investigated using

DEVSRT as a platform. The OS will autonomously operate by executing the models

functioning as processes in the system. This will open a new direction in embedded

system design employing MDE approach in the entire design and development phases.

• Design and development of techniques to formally interface DEVSRT with different

graphical modeling and visualization tools on embedded platforms towards the creation of

interactive virtual reality and simulation-based games.

• Integration of more efficient synchronization protocols can be investigated in the

lightweight RT model execution protocol. For example, Lamportian physical clock

synchronization [Lam78] using partial and total ordering of events can be explored

further.

• Incorporating Dynamic DEVS formalism with the proposed I-DEVS formalism to

introduce a new imprecise DEVS capable of prioritizing different components of the

model besides the behaviors. This way, the system can shut down an entire optional

component in a model in order to open space for the other processes.

 107

• Sensitivity analysis on the I-DEVS and DEVSRT functional parameters (e.g. grace period,

inter-thread message transfer delay, …), in order to explore target specific configurations

and help system designers tune their system according to the underlying hardware and

middleware platform.

• Applying schedulability analysis to the proposed DEVS-based task model in order to

determine the system capacity in handling different sizes of processing load. On the other

hand it helps the scheduler to determine whether it can accept a task or not. Rate

monotonic tests can be a good starting point to measure the schedulability of the model on

any specific hardware platform.

• Expansion of the key scheduling and overload detection algorithms in the I-DEVS

framework, in order to design more efficient and target-specific hard RT system

development tools.

• Investigating approaches to make the run-time engine more efficient and reducing the

overhead of model execution. E-CD++ currently support flat coordinator technique, where

the control hierarchy is flattened to reduce the message transfer overhead. However, there

is a tradeoff between the complexity of the flat coordinator and the reduced overhead.

These challenges can be researched to propose recommendations for modelers about the

best choice in using flattened or hierarchical coordinator for any specific model.

 108

References

[Abr06] Abrial, J. R., “Formal methods in industry: achievements, problems, future”, Proceeding
of the 28th international conference on Software engineering, pp. 761–768, New York,
NY, USA, 2006.

[Ada90] “Ada performance issues”, Ada Letters, SIGAda, ACM Press, vol. 10, no. 3, 1990.

[Ahm11] Ahmed, A. S., M. Moallemi, G. Wainer, and S. Mahmoud, “Cell-DEVS & 3D Real-
Time Visual Simulation to Support Combat”, Proceedings of Summer Simulation
Conference (SCSC'11), Netherland, 2011 (Second Best Paper).

[Ami03] Amirijoo, M., J. S. Hansson, and H. Son, “Error-Driven QoS Management in Imprecise
Real-Time Databases”, Proceedings of the 15th Euromicro Conference on Real-Time
Systems, pp. 63, Porto, Portugal, 2003.

[Ara08] Araujo, R. B., F. M. Iwasaki, E. B. Pizzolato, A. Boukerche, “A Framework for 3D
web-based visualization of HLA-compliant simulations”, Proceedings of the 13th
international symposium on 3D web technology, pp. 83-90, Los Angeles, CA, 2008.

[Ayd99] Aydin, H., P. Mejia-Alvarez, R. Melhem, and D. Moss´e, “Optimal Reward-Based
Scheduling of Periodic Real-Time Tasks”, IEEE Transactions On Computers, pp. 111-
130, 1999.

[Bal97] Balarin, F., et. al. "Hardware-Software Co-design of Embedded Systems. The POLIS
Approach", Kluwer Academic Publishers, 1997.

[Bal06] Balasubramanian, K., A. Gokhale, G. Karsai et al., “Developing Applications Using
Model-Driven Design Environments”, Journal of COMPUTER, vol. 39, no. 2, pp. 33-40,
2006.

[Bar97] Barros, F. J., “Modeling Formalisms for Dynamic Structure Systems”, ACM
Transactions on Modeling and Computer Simulation, vol. 7, no. 1, pp. 501-515, 1997.

 109

[Bar98] Baruah, S., and M. Hickey, “Competitive On-Line Scheduling of Imprecise
Computations” IEEE Transaction on Computer, vol. 47, no.9, pp. 1027–1032, 1998.

[Bas06] Basu, A., M. Bozga, and J. Sifakis, “Modeling Heterogeneous Real-time Components in
BIP”, Proceedings of 4th IEEE International Conference on Software Engineering and
Formal Methods, pp. 3-12, Pune, India, 2006.

[Ber10] Bergero, F., and E. Kofman. “PowerDEVS: A Tool for Hybrid System Modeling and
Real-time Simulation”, Journal of SIMULATION, vol. 87, no. 1-2, pp. 113-132, 2010.

[Bon10] Bonaventura, M., G. A. Wainer, R. Castro, “Advanced IDE for Modeling and
Simulation of Discrete Event Systems”, Proceedings of 2010 Spring Simulation
Conference (SpringSim10), DEVS Symposium, Orlando, FL, 2010.

 [Bou97] Boussinot, F., and R. de Simone, “The ESTEREL language”, Proceedings of the IEEE
Software Journal, vol. 79, no. 9, pp. 1293-1304, 1991.

[Bou05] Bouyssounouse, B., and J. Sifakis, “Embedded Systems Design: The ARTIST Roadmap
for Research and Development”, Lecture Notes in Computer Science 3436, Springer-
Verlag, 2005.

[Bou08] Boukerche, A., F. M. Iwasaki, R. B. Araujo, E. B. Pizzolato, “Web-Based Distributed
Simulations Visualization and Control with HLA and Web Services”, Proceedings of the
2008 12th IEEE/ACM International Symposium on Distributed Simulation and Real-
Time Applications, pp.17-23, Vancouver, BC, Canada, 2008.

[Bou09] Boukerche, A., M. Zhang, and R. Pazzi, “An adaptive virtual simulation and RT
emergency response system”, Proceedings of the International Conference on Virtual
Environments, Human-Computer Interfaces and Measurement Systems, pp. 360-364,
Hong Kong, China, 2009.

[But06] G. Buttazzo, “Achieving Scalability in Real-Time Systems” IEEE Computer, vol. 39,
no. 5, pp. 54–59, May 2006.

[But10] Buttazzo, G. C., "Hard real-time computing systems: predictable scheduling algorithms
and applications", Springer, Second Edition, 2010, ISBN: 0792399943.

[Cap03] Capocchi, L., F. Bernardi, D. Federici, and P. Bisgambiglia, “Transformation of VHDL
descriptions into DEVS models for fault modeling and simulation”, Proceedings of the
IEEE Systems, Man and Cybernetics Conference, pp. 1205-1211, Washington, USA,
2003.

 110

[Car93] Carlsson, C., and O. Hagsand, “DIVE: A Multi-user Virtual Reality System”, IEEE
Virtual Reality Annual International Symposium, pp. 394-400, Seattle, WA , USA, 1993.

[Cas11] Castro, R., E. Kofman, and F. E. Cellier, “Quantization-based integration methods for
delay-differential equations”, Journal of Simulation Modelling Practice and Theory, vol.
19, no. 1, pp. 314-336, 2011.

[Cel06] Cellier, F., and E. Kofman, “Continuous System Simulation”, Springer-Verlag, ISBN:
978-0-387-26102-7, New York, 2006.

[Cha09] Chaturvedi, D. K., "Modeling and Simulation of Systems Using MATLAB and
Simulink", CRC Press, 2009, ISBN: 1439806721.

[Che97] Chen, X., and A. M. K. Cheng, “An Imprecise Algorithm for Real-Time Compressed
Image and Video Transmission”, Proceedings of 6th International Conference on
Computer Communications and Networks, pp. 390-397, Las Vegas, NV., USA, 1997.

[Che09] Chen, J. M., W. C. Lu, W. K. Shih, M. C. Tang, “Imprecise Computations with
Deferred Optional Tasks”, Journal of Information Science and Engineering, vol. 25, no.
1, pp. 185-200, 2009.

[Chi07] Chidisiuc, C., and G. Wainer, “CD++Builder: An Eclipse-based IDE for DEVS
Modeling”, Proceedings of the 2007 Spring Simulation Multiconference, pp. 235-240,
Norfolk, VA, 2007.

[Cho94] Chow, A. C., and B. P. Zeigler, “Parallel DEVS: A Parallel, Hierarchical, Modular
Modeling Formalism”, Proceedings of Winter Simulation Conference, pp. 716-722,
Orlando, FL, 1994.

[Cho98] Cho, S. M., and Kim T. G. “Real-Time DEVS Simulation: Concurrent, Time-Selective
Execution of Combined RT-DEVS Model and Interactive Environment”, Proceeding of
Summer Simulation Conference, pp. 410-415, Reno, Nevada, 1998.

[Cho00] Cho, Y. K., B. P. Zeigler, H. J. Cho, et al., “Design Considerations for Distributed Real-
Time DEVS” Proceedings of AI, Simulation and Planning Conference, Tucson, Arizona,
2000.

[Cho03] Cho, Y. K., X. Hu, and B. P. Zeigler, “The RTDEVS/CORBA Environment for
Simulation-Based Design of Distributed Real-Time Systems”, SIMULATION, vol. 79,
no.4, pp. 197-210, 2003.

 111

[Chr04] Christen, G., A. Dobniewski and G. Wainer, “Modeling State-Based DEVS Models in
CD++”, Proceedings of MGA, Advanced Simulation Technologies Conference 2004
(ASTC'04). Arlington, VA. U.S.A

[Chu90] Chung, J. Y., J.W. S. Liu, and K. J. Lin, “Scheduling Periodic Jobs That Allow
Imprecise Results”, IEEE Transaction on Computer, vol. 39, no9, pp. 1156–1174, 1990.

[Cor01] Cortelessa, V., A. D’Ambrogio, and G. Iazeolla, “Automatic Derivation of Software
Performance Models from Case Documents,” Journal of Performance Evaluation, vol.
45, no. 2-3, pp. 81-105, 2001.

[D’Am05] D’Ambrogio, A., “A Model Transformation Framework for the Automated Building
of Performance Models from UML Models”, Proceedings of the ACM Fifth International
Workshop on Software and Performance, pp. 75-86, Palma de Mallorca, Spain, 2005.

[Eke03] Eker, J., J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs and Y.
Xiong, “Taming heterogeneity the Ptolemy approach”, Proceedings of the IEEE
Transaction, vol. 91, pp. 127-144, 2003.

[Fen93] Feng, W., and J. W. S. Liu, “An Extended Imprecise Computation Model for Time-
Constrained Speech Processing and Generation”, Proceedings of the IEEE Workshop on
Real-Time Applications, pp. 76 – 80, New York, NY., USA, 1993.

[Fin96] Finney, K., “Mathematical notation in formal specification: too difficult for the masses”,
IEEE Transactions on Software Engineering, vol. 22, no.2, pp.158–159, 1996.

[Fuj99] Fujisawa, K., S. Hayakawa, T. Aoki, T. Suzuki, and S. Okuma, “Real Time Motion
Planning for Autonomous Mobile Robot, using Framework of Anytime Algorithm”
Proceedings of the IEEE International Conference on Robotics & Automation, pp. 1347-
1352, Detroit, Michigan, USA, 1999.

[Gia03] Giambiasi, N., J. L. Paillet, and F. Châne, “Simulation and verification II: from timed
automata to DEVS models”, Proceedings of the Winter Simulation Conference, pp. 923–
931, Louisiana, USA, 2003.

[Gli02] Glinsky, E., and G. Wainer, “Performance analysis of real-time DEVS models”,
Proceedings of the Winter Simulation Conference, pp. 588–594, San Diego, CA, 2002.

[Gli04a] Glinsky, E., and G. Wainer, “Modeling and simulation of systems with hardware-in-
the-loop”, Proceedings of Winter Simulation Conference, Washington D.C, 2004.

 112

[Gli04b] Glinsky, E., and G. Wainer, “Model-Based Development of Embedded Systems with
RT-CD++”, Proceedings of the WIP session, IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, ON, Canada, 2004.

[God07] Godding, G., H. Sarjoughian, and K. Kempf, “Application of Combined Discrete-event
Simulation and Optimization Models in Semiconductor Enterprise Manufacturing
Systems”, Proceedings of the Winter Simulation Conference, pp. 1729-1736, Washington
D.C., 2007.

[Gro02] Grotker, T., S. Liao, G. Martin, and S. Swan, “System Design with SystemC”, Kluwer
Academic Publishers, Netherlands, 2002.

[Han00] Hansson, J., M. Thuresson, and S. Son, “Imprecise Task Scheduling and Overload
Management using OR-ULD”, Proceedings of 7th International Conference on Real-
Time Computing Systems and Applications, pp. 307-314, Cheju Island, South Korea,
2000.

[Har08] Harzallah, Y., V. Michel, Q. Liu, and G. Wainer, “Distributed Simulation and Web Map
Mash-Up for Forest Fire Spread”, Proceedings of the 2008 IEEE Congress on Services –
Part I, pp. 176-183, Honolulu, HI, 2008.

[Hil08] Hill, F.S., and S.M. Kelley, “Computer Graphics using OpenGL”, Prentice Hall
publishers, ISBN: 0131496700, 3rd Edition, 2008.

[Hol09] Holman, K., J. Kuzub, M. Moallemi, G. A. Wainer, “Cable-Anchor Robot
Implementation using Embedded CD++”, Poster in proceedings of SIMUTools
Conference, Rome, Italy, 2009.

[Hon97] Hong J. S., Song H. H., Kim T. G., and Park K. H., “A Real-Time Discrete Event
System Specification Formalism for Seamless Real-Time Software Development”,
Springer Netherlands, 1997.

[Hu01] Hu, X., B. P. Zeigler, and J. Couretas, “DEVS-On-A-Chip: Implementing DEVS In
Embedded Java On A Tiny Internet Interface For Scalable Factory Automation”,
Proceedings of the IEEE Systems, Man, and Cybernetics Conference, pp. 3051-3056,
Tucson, AZ , USA, 2001.

[Hu04] Hu, X., and B. P. Zeigler, “Model Continuity to Support Software Development for
Distributed Robotic Systems: a Team Formation Example”, Journal of Intelligent &
Robotic Systems, Theory & Application, vol. 39, no. 1, pp. 71-87, 2004.

 113

[Hu05] Hu, X., and B. P. Zeigler, “Model continuity in the design of dynamic distributed real-
time systems”, IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 35, no.
6, pp. 867-878, 2005.

[Hu07] Hu, W., and H. Sarjoughian, “A co-design modeling approach for computer network
systems”, Proceedings of the 39th Winter Simulation Conference, pp. 685–693,
Washington D.C., 2007.

[Hua95] Huang, X., and A. M. K. Cheng, “Applying Imprecise Algorithms to Real-Time Image
and Video Transmission” Proceedings of Real-Time Technology and Applications
Symposium, pp. 390, Chicago, Illinois, USA, 1995.

[Hua04] Huang, D., and H. Sarjoughian, “Software and Simulation Modeling for Real-Time
Software-Intensive Systems”, In Proceedings of 8th IEEE Symposium on Distributed
Simulation and Real-time Applications, pp. 196-203, Budapest, Hungary, 2004.

[Hua06] Huang, D., H. Sarjoughain, G. Godding et al., “Flexible experimentation and analysis
for hybrid DEVS and MPC models”, Proceedings of the 38th Winter Simulation
Conference, pp. 1863-1870, Monterey, CA, USA, 2006.

[IEE10] IEEE standard for “Modeling and Simulation (M&S) High Level Architecture (HLA)
Framework and Rules”, IEEE Std. pp. 1516-2010, 2010.

[Jac02] Jacques, C., and G. Wainer, “Using the CD++ DEVS toolkit to develop Petri Nets”,
Proceedings of Summer Computer Simulation Conference, San Diego, CA. USA. 2002.

[Jaf10] Jafer, S., and G. A. Wainer, “Conservative DEVS - A Novel Protocol for Parallel
Conservative Simulation of DEVS and Cell-DEVS Models”, Proceedings of Spring
Simulation Conference, DEVS Symposium, pp. 168-175, Orlando, FL., 2010.

[Kar89] Kar, R. P., and K. Porter, “Rhealstone, a real time benchmark proposal; an
independently verifiable metric for complex multitaskers”, Dr. Dobb’s Journal,1989.

[Kar90] Kar, R. P., “Implementing the Rhealstone real-time benchmark, where a proposal’s
rubber meets the real-time road”, Dr. Dobb’s Journal, April 1990.

 [Kim01] Kim, J. K., Y.G. Kim, and T.G. Kim, “DHMIF: DEVS-Based Hardware Model
Interchange Format”, Proceedings of European Simulation Symposium, Marseille,
France, 2001.

[Kim04] Kim, K. H., and W. S. Kang, “CORBA-Based, Multi-threaded Distributed Simulation
of Hierarchical DEVS Models: Transforming Model Structure into a Nonhierarchical

 114

One”, Proceedings of the 2004 International Conference on Computational Science and
Its Applications, Assisi, Italy, pp. 167-176, 2004.

[Kob04] Kobayashi, H., and N. Yamasaki, “RT-Frontier: A Real-Time Operating System for
Practical Imprecise Computation”, Proceedings of the 10th IEEE Real-Time and
Applications Symposium, pp. 255-264, Toronto, Canada, 2004.

[Kus01] Kuster, J., and J. Stroop, “Consistent Design of Embedded Real-Time Systems with
UML-RT”, Proceedings of 4th Int. Symp. on Object-Oriented Real-Time Distributed
Computing, pp. 31-40, Magdeburg , Germany, 2001.

[Lam78] Lamport, L. “Time, clocks, and the ordering of events in a distributed system”,
Communications of ACM, vol. 21, no. 7, pp. 558-565. 1978

[Led01] Lédeczi, Á., Á. Bakay, M. Maróti et al., “Composing Domain-Specific Design
Environments,” Journal of COMPUTER, vol. 34, no. 11, pp. 44-51, 2001.

[Li03] Li, L., T. Pearce, and G. Wainer, “Interfacing Real-time DEVS models with a DSP
platform”, Proceedings of the Industrial Simulation Symposium, Valencia, Spain, 2003.

[Liu73] Liu, C. L., and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment”, Journal of ACM, vol. 20, no. 1, pp. 46-61, 1973.

[Liu91] Liu, J. W. S., K. J. Lin, W. K. Shih J. Y. Chung, A. Yu, and W. Zhao, “Algorithms for
Scheduling Imprecise Computations”, IEEE Transaction on Computer, vol. 24, no. 5, pp.
58-68, May 1991.

[Liu94a] Liu, J. W. S., W. Shih, K. J. Lin, R. Bettati, and J. Chung, "Imprecise Computations",
Proceedings of the IEEE, vol. 82, no.1, pp. 83–94, 1994.

[Liu94b] Liu, J.W.S., K. J. Lin, R. Bettati, D. Hull, and A. Yu. “Use of imprecise computation to
enhance dependability of real-time systems”, The International Series in Engineering and
Computer Science, vol. 284, no. 3, pp.157-182, 1994.

[Liu95] Liu, J. W. S., and W. K. Shih, “Algorithms for Scheduling Imprecise Computations with
Timing Constraints to Minimize Maximum Error”, IEEE Transaction on Computer, vol.
44, no. 3, pp. 466–471, 1995.

[Liu00] Liu, J. W. S., “Real-Time Systems” Upper Saddle River, NJ: Prentice-Hall, 2000, ISBN:
0-13-099651-3.

 115

[Liu07] Liu, Q., and G. Wainer, “Parallel Environment for DEVS and Cell-DEVS Models”,
Journal of SIMULATION, vol.83, no.6, pp. 449-471, 2007.

[Lom06] Lombardi, S., G. Wainer, and B. P. Zeigler, “Interoperation of DEVS models in
DEVS/C# and CD++” Proceedings of SISO Fall Interoperability Workshop, Huntsville,
AL, 2006.

[Mat11] The MathWorks website: http://www.mathworks.com, visited July 2011.

[Mit09] Mittal, S., J. L. Risco-Martin, and B. P. Zeigler, “DEVS/SOA: A Cross-Platform
Framework for Net-centric Modeling and Simulation in DEVS Unified Process”,
SIMULATION, vol. 85, no.7, pp. 419-450, 2009.

[Moa08] Moallemi, M., M. Alcaraz, and G. Wainer, “ECD++ A DEVS based Real-Time
Simulator for Embedded Systems”, Poster in proceedings of Spring Simulation
Conference, Ottawa, Canada, 2008.

[Moa09] Moallemi, M., and G. A. Wainer, “A System-On-Chip FPGA Implementation of
Embedded CD++”, Proceedings of Spring Simulation Conference, San Diego, CA, USA,
2009.

[Moa10a] Moallemi, M., and Gabriel Wainer, “A Simplified Real-Time Embedded DEVS
Approach Towards Embedded and Control Design”, Poster in proceedings of Winter
Simulation Conference, Austin, USA, 2010.

[Moa10b] Moallemi, M., and G. A. Wainer, “Designing an Interface for Real-Time and
Embedded DEVS”, Proceedings of Spring Simulation Conference, DEVS Symposium,
Orlando, Florida, USA, 2010.

[Moa10c] Moallemi, M., D. A. Tall, G. A. Wainer, and A. Awad, “Application of RT-DEVS in
Military”, Proceedings of Spring Simulation Conference, MMS Symposium, Orlando,
Florida, USA, 2010.

[Moa11a] Moallemi, M., R. Castro, F. Bergero, and G. A. Wainer, “Component-Oriented
Interoperation of Real-Time DEVS Engines”, Proceedings of Spring Simulation
Conference, ANSS Symposium, Boston, MA, USA, 2011.

[Moa11b] Moallemi, M., S. Jafer, A. S. Ahmed, and G. Wainer “Interfacing DEVS and
Visualization Models for Emergency Management”, Proceedings of Spring Simulation
Conference, Work In Progress of the DEVS Symposium, Boston, MA, USA, 2011.

 116

[Mon03] Monin, J. F., and M. G. Hinchey, “Understanding formal methods”, Springer, 2003,
ISBN: 1852332476.

[Mon09] Mondada, F., M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-
C. Zufferey, D. Floreano, and A. Martinoli, “The e-puck, a robot designed for education
in engineering”, Proceedings of the 9th Conference on Autonomous Robot Systems and
Competitions, pp. 59–65, Castelo Branco, Portugal, 2009.

[Neu66] Neumann, J. V., and A. W. Burks, “Theory of Self-Reproducing Automata”,
Champaign: University of Illinois Press, 1966.

[Nic10] Nicolescu, G., and P. J. Mosterman “Model-Based Design for Embedded Systems”,
CRC Press 2010, ISBN: 978-1-4200-6784-2.

[Pan96] Pandzic, I., T. Capin, N. Magnenat-Thalmann, and D. Thalmann, “Towards Natural
Communication in Networked Collaborative Virtual Environments”, Proceedings of
FIVE Conference, Framework for Immersive Virtual Environments, pp. 37-47, 1996.

[Par02] Parker, G. B., “Punctuated Anytime Learning for Hexapod Gait Generation”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System,
vol. 3, pp. 2664–2671, Beijing, China, 2002.

[Pra93] Praehofer, H., and D. Pree, “Visual Modeling of DEVS-based Multiformalism Systems
Based on Higraphs”, Proceedings of the Winter Simulation Conference, pp.595-603, Los
Angeles, CA, 1993.

[Saa09] Saadawi, H., and G. Wainer, “Verification of real-time DEVS models”, Proceedings of
DEVS Symposium, San Diego, CA. 2009.

[Saa11] Saadawi, H., G. Wainer, and M. Moallemi, “Principles of DEVS Models Verification
for Real-Time Embedded Applications” chapter in the book “Real-time Simulation
Technologies: Principles, Methodologies, and Applications”, Pieter Mosterman and
Katalin Popovici, CRC Press, 2011.

[Sad10] Sadeghi, F. R., G. Wainer, and M. Moallemi “Modeling and Controlling a Robotic Arm
with E-CD++”, Poster in proceedings of Summer Simulation Conference, Ottawa, ON,
Canada, 2010.

[Sag04] Saghir, A., T. Pearce, and G. Wainer, “Modeling Computer Hardware Platforms using
DEVS and HLA Simulation,” SIMULATION SERIES, vol. 36, no. 4, pp. 218, 2004.

 117

[Sar87] Sargent, R.G., “An Overview of Verification and Validation of Simulation Models”,
Proceedings of the Winter Simulation Conference, New York, NY, USA, 1987.

[Sar98] Sarjoughian, H., and B. P. Zeigler, “DEVSJAVA: Basis for a DEVS-based collaborative
M&S environment”, Proceedings of the International Conference on Web-based
Modeling & Simulation, pp. 29-36, San Diego, CA, 1998.

[Sar99] Sarjoughian, H., J. Nutaro, and B. P. Zeigler, “Collaborative DEVS Modeler”
Proceedings of the International Conference on Web-Based Modeling and Simulation,
San Francisco, CA, 1999.

[Sar00] Sarjoughian, H., and B. P. Zeigler, “DEVS and HLA: Complimentary Paradigms for
M&S”, Transactions of the SCS Organization, vol. 17, no. 1, pp. 187-197, 2000.

[Sar01a] Sarjoughian, H., X. Hu, D. Hild et al., “Simulation-based SW/HW Architectural Design
Configurations for Distributed Mission Training Systems”, Journal of SIMULATION,
vol. 77, no. 1/2, pp. 23-38, 2001.

[Sar01b] Sarjoughian, H., S. Park, and B. P. Zeigler, “Collaborative distributed network system:
a lightweight middleware supporting collaborative DEVS modeling”, Future Generation
Computer Systems vol. 17, no. 1, pp. 89–105, 2001.

[Sch00] Schulz, S., T.C. Ewing, and J.W. Rozenblit, “Discrete event system specification
(DEVS) and statemate statecharts equivalence for embedded systems modeling”,
Proceedings of IEEE International Conference on the Engineering of Computer Based
Systems, pp. 308-308, Edinburgh, UK, 2000

[Sel01] Selic, B., “The emerging real-time standard [UML]”, Proceedings of 6th international
Workshop Object-Oriented Real-Time Dependable Systems, pp. 3-9, Rome, Italy, 2001.

[Sha07] Shang, H., and G. A. Wainer, “A flexible dynamic structure DEVS algorithm towards
embedded systems”, Proceedings of the Summer Computer Simulation Conference, pp.
339-345, San Diego, California, 2007.

[Shi91] Shih, W. K., J. W. S. Liu, and J. Y. Chung, “Algorithms for Scheduling Imprecise
Computations with Timing Constraints”, SIAM Journal of Computer, vol. 20, no. 3, pp.
537–552, 1991.

[Shi92] Shih, W. K. and J. W. S. Liu, “On-Line Scheduling of Imprecise Computations to
Minimize Total Error”, Proceedings of the 13th IEEE Real-Time Systems Symposium,
Phoenix, Arizona, pp. 280-289, 1992.

 118

[Shi96] Shih, W. K., and J. W. S. Liu, “On-line algorithms for scheduling imprecise
computations”, SIAM Journal on Computing, vol. 25, no. 1, pp. 1105-1121, 1996.

[Son05] Song, H. S., and T. G. Kim, "Application of Real-Time DEVS to Analysis of Safety-
Critical Embedded Control Systems: Railroad Crossing Control Example",
SIMULATION, vol. 81, no. 2: pp. 119-136, 2005.

[Tra06] Travis, J., and J. Kring, “LabVIEW for Everyone: Graphical Programming Made Easy
and Fun”, 3rd Edition, Prentice Hall, 2006, ISBN: 0-13-185672-3.

[Tro03] Troccoli, A., and G. Wainer, “Implementing Parallel CD++”, Proceedings of the Annual
Simulation Symposium, Orlando, FL. 2003.

[Veg11] Vega Prime software page on Presagis corporation website, available at:
http://www.presagis.com/products_services/products/ms/visualization/vega_prime,
accessed July 2011.

[Wai02a] Wainer, G., and N. Giambiasi, “N-dimensional Cell-DEVS Models”, Discrete Event
Dynamic Systems, vol. 12, no. 2, pp. 135-157, 2002.

[Wai02b] Wainer, G., “CD++: A Toolkit to Develop DEVS Models”, Software – Practice and
Experience, vol.32, no.13, pp. 1261-1306, 2002.

[Wai04] Wainer, G., and E. Glinsky, "Model-Based Development of Embedded Systems with
RT-CD++", Proceedings of the WIP session, IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, ON., Canada, 2004

[Wai05] Wainer, G., E. Glinsky, P. MacSween “A Model-Driven Technique for Development of
Embedded Systems Based on the DEVS Formalism”. Model-driven Software
Development, Vol. 2 of Research and Practice in Software Engineering. S. Beydeda and
V.Gruhn Eds. Springer-Verlag. 2005.

[Wai08a] Wainer, G., Q. Liu, J. Chazal, L. Quinet, and M. K. Traore, “Performance Analysis of
Web-based Distributed Simulation in DCD++: A Case Study across the Atlantic Ocean”,
Proceedings of the 2008 Spring Simulation Multiconference: High Performance
Computing Symposium, pp. 413-420, Ottawa, Canada, 2008.

[Wai08b] Wainer, G., R. Madhoun, and K. Al-Zoubi, “Distributed Simulation of DEVS and
Cell-DEVS Models in CD++ using Web-Services”, Simulation Modeling Practice and
Theory, 16(9), pp. 1266-1292, 2008.

 119

[Wai09] Wainer, G. A., "Discrete-event modeling and simulation; a practitioner's approach",
CRC / Taylor & Francis, ISBN: 9781420053364, 2009.

[Wai11] Wainer, G., and R. Castro “DEMES: a Discrete-Event methodology for Modeling and
simulation of Embedded Systems”, Accepted in Modeling and Simulation Magazine,
Society for Modeling and Simulation International, San Diego, CA., 2011.

[Wan03] Wang, Y. and Y. Liao, “Implementation of a Collaborative Web-based Simulation
Modeling Environment”, Proceedings of the Seventh IEEE Workshop on Distributed
Simulation and Real-Time Applications, pp.150-157, 2003.

[Wat97] Waters, R., D. Anderson, J. Barrus, D. Brogan, M. Casey, S. Mckeown, T. Nitta, I.
Sterns, and W. Yerazunis, “Diamond Park and SPLINE: Social Virtual Reality with 3D
Animation, Spoken Interaction and Runtime Extendability Presence”, Journal of
Teleoperators and Virtual Environments, vol. 6, no. 4, pp. 461–481, 1997.

[Wie08] Wiedenhoft, G. R., and A.A. Fröhlich. “Using Imprecise Computation Techniques for
Power Management in Real-Time Embedded Systems”, Proceedings of 6th IFIP
Working conference on Distributed and Parallel Embedded Systems, pp. 121-130,
Milano, Italy. 2008.

[Xen11] Xenomai Real-Time Kernel for Linux: www.xenomai.org, visited July 2011.

[Xns11] Xenomai Native Skin Functions User Reference:
www.xenomai.org/documentation/branches/v2.3.x/pdf/Native-API-Tour-rev-C.pdf,
visited July 2011.

[Yu07a] Yu, Y. H., and G. Wainer, “eCD++: an engine for executing DEVS models in
embedded platforms” Proceedings of the 2007 SCS Summer Computer Simulation
Conference, San Diego, CA, USA, pp. 323-330. 2007

[Yu07b] Yu, Y. H., “Designing extensions for the use of CD++ to build embedded discrete-event
systems”, Master thesis submitted to Systems and Computer Engineering Department,
Carleton University, 2007.

[Zei93] Zeigler, B. P., and J. Kim, “Extending the DEVSScheme Knowledge-Based Simulation
Environment for Real-Time Event-Based Control”, IEEE Transaction On Robotics and
Automation, vol. 9, no. 3, pp. 351-356, 1993.

[Zei96] Zeigler, B. P., Y. Moon, D. Kim, and J. G. Kim, “DEVS-C++: A High Performance
Modelling and Simulation Environment”, Proceedings of the 29th Annual Hawaii
International Conference on System Sciences, Maui, HI, pp. 350-359, 1996.

 120

[Zei00] Zeigler, B., T. Kim, and H. Praehofer, “Theory of Modeling and Simulation”, Academic
Press, ISBN: 0127784551, 2000.

[Zei03] Zeigler, B. P., “DEVS Today: Recent Advances in Discrete Event-Based Information
Technology”, Proceedings of the 11th IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer Telecommunications Systems, Orlando,
FL, pp. 148-161, 2003.

[Zhe03] Zheng, T., and G. Wainer, “Implementing finite state machines using the CD++ toolkit”,
Proceedings of the SCS Summer Simulation Conference, Montreal, Canada, 2003.

[Zil93] Zilberstein, S., and S. J. Russel. “Anytime Sensing, Planning and Action: A Practical
Model for Robot Control” Proceedings of the 13th International Joint Conference on
Artificial Intelligence, pp. 1402-1407, Chambery, France, 1993.

