Real-Time and Embedded Systems Development based on Discrete
Event Modeling and Simulation

By

Mohammad M oallemi, B. Eng., M. A. Sc.

A thesis submitted to the Faculty of Graduate apstd®dctoral Affairs

in partial fulfillment of the requirements for tdegree of

Doctor of Philosophy in Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and CongyUEngineering (OCIECE)
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario, Canada, K1S 5B6

September 2011

© Copyright 2011, Mohammad Moallemi



The undersigned recommend to
the Faculty of Graduate and Postdoctoral Affairs

acceptance of the thesis

Real-Time and Embedded Systems Development based on Discr ete Event M odeling and

Simulation

submitted by
Mohammad Moallemi, B. Eng., M. A. Sc.
in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Electricall @omputer Engineering

Chair, Howard Schwartz, Department of Systems amailiter Engineering

Thesis Supervisor, Gabriel Wainer

External Examiner, Andrea D'Ambrogio, Dept. of Biess Engineering, University of Roma

Carleton University
September 2011



To my parents,
making me who | am now with their love and support,
and to my loving wife, Shafagh,

for his constant love, support, and encouragement.



Abstract

The design and development of embedded hard reel{RT) systems is one of the most
complex software development practices, becaugbeotriticality and timeliness required for
these systems. One critical aspect of RT systemmeiproduction of outputs before the specified
deadline. A late output caused by an overrun cardin the processing of RT tasks, not only
degrades the system performance but also produwatastophic results. Formal methods are
promising alternatives in dealing with the desigsuies of these applications, however they do
not scale well for complex systems. A cost-effextigpproach to verify the design and
implementation details of such applications isube of Modeling and Simulation (M&S). These
methods provide dynamic and risk-free testing emrments to verify different variable
scenarios. M&S is now limited to feasibility anal/and verification of such systems, hence the
simulation models are not used in the developmetiteofinal embedded application.

This dissertation is proposing an M&S-based metheferred to as DEVSRT (Discrete
EVent System Specifications in Real-Time) to sdive discontinuity between the simulation
models and the final embedded software. The prapapproach combines the advantages of a
simulation-based method and a formal methodologyldeelop embedded applications, and
integrate simulation models with hardware compaosnent

The research also proposes an integration of DEVSRT Imprecise Computations theory.
The proposed I-DEVS (imprecise DEVS) formalism usealynamic scheduling algorithm based
on the criticality of the RT tasks to manage ovadigituations in the system by degrading the
system’s output accuracy in order to meet hard ldesd The algorithm detects transient
overloading conditions early enough to carry oyireper imprecise scheduling of RT tasks,

providing a more reliable runtime platform.



Acknowledgements

| want to express my sincere gratitude toward myissdl and my mentor, Professor Gabriel
Wainer, for his support, guidance, and trust trelpéd me through my graduate studies. His
diligence and commitment to science have been aldava great influence on me for many

years to come. | am grateful for having the oppatyuto learn from him and work with him.

I would also like to thank the members of the AR aratory and the Department of Systems

and Computer Engineering at Carleton University.



Table of Contents

Chapter 1: Introduction

I R O] 111 o101 0] 0 K- TR 6
1.2 RESEAICH PUDBIICAIIONS ... cceieeeee ettt e e e e e e e e aeees 8
1.3 OrganizZation ........coooeiiiiiiiiiiiii et 11

Chapter 2: Background

2.1 Modeling and Simulation ConCepts IN DEVS e vvvvvvviiiiiiiiiiiiiiiiiiieiineninnnnn. 4.1
2.2 Classical DEVS FOrmaliSm ..........oooviiiiiiieiiiieeeee, 17
2.3 Parallel DEVS FOrmaliSm ...ttt e e e 20
A) Abstract Simulation AlQOrthm ..., 22
2.4 Real-Time DEVS FOrmaliSm .......cccoooiiiiiiieeeeeeeeeeeeeeeeeeeee e 25
2.5 DEVS SIMUIation iN CD A4 ... 26
A) CD++ Software ArChiteCtUre ..........oooeviiiiiieii e, 26
B) DEVS Model Definition iN CD++......uuuuiiiiiceeeiiieieieeiieieeieeiveiiessevessnenenennnene 28
2.6 Modeling and Simulation-based ApproachesS. ..o 29.
2.7 DEVS-Based APProaches .........oooooiiiiiieeieeeicciecceces s 31
A) Model CONLINUILY .....oooeiieeei e e e 33
B) Real-Time DeadliNe............ccuuuiiiiiii e eetieveiveeiiaaseeeeaiesnsnenenssensssnenneeeeeeees 35
C) SIMUIANEOUS EVENLS .....eviiiiiiiiiiiiiitceeeeeeeeeiiieieeieetreveeaieseseesenseeersssreneeneeeeees 35

Chapter 3: The DEVSRT Formalism

3.1 Real-Time INTEITACE .......uuuieiiiiiee e 41
3.2 Implementation 0N E-CDH+ ......uuiiiiiiiicceeee e 44
A) E-CD++ Software StrUCLUIE ............ooi ettt bbb eennees 47
B) Performance EValuation ...............ooeiiceeoamiiiiiii e 50

13

37



3.3 Case Study: e-puck Robot Controller........cccccoeviiiiiiieee, 54

Chapter 4: Extended Applications of DEVSRT

4.1 DEVS-Based Collaborative Modeling .........coooeeeeiiiiiiiiiee e 65
A) MESSAJE SIIUCLUIE ....cceeiiiiieeeee et et s nennnes 67
B) Example Collaborative MOdel...............ummmeeeeeiieiiiiiiiieiieieiieiiieiieieeeeeveeeees 68

4.2 DEVSRT and ViSUANIZAtION............uueiimmmeeeeeeeees et eeee e e 73

A) Message Structure and Implementation ... . ....eeeeeeeeeeeeeeeeeieerieieenee L.

Chapter 5: Imprecise DEVS

5.1 Algorithms for Imprecise COMPULALION.....ccoaeiiiiiiiiiiiiiiiiiiiiieiiiiieieeieeeeeeeeeeees 83
5.2DEVS Task MOdEl ...t 84
A) Problem Statement ... 86
5.3 I-DEVS FOrmMaliSIM ......cooiiiiiiiii ettt mnne e e e eeees 87
A) EXAMPI ...ttt e e e e aa e e 89
5.4 ReSUILS aNd DISCUSSIONS .......eeereee s ceeeeeessasnsintseseeeeeesssssssnrsseessesssnennees 92
A) Performance EValuation ................ouuiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieeiieieeee e eeeeee s 100
B) SCAIADIIITY ...uvviiiiiiiiiii e e 101

Chapter 6: Conclusions and Future Work

6.1 Review of the Contributions
6.2 Future Work

References

Vii

65

81

102

108



List of Tables

Table2.1: Comparing RT and Embedded DEVS Modeling Apgin@s. ............cccooeeeeeieeeeenennnn. 34
Table3.1: DEVS Output Mapping Table. ... e 56

viii



List of Figures

Figure2.1: Entities in a DEVS-based M&S framework [ZeiQQ]............cevveeeeeeereiiirieiieeninnns 4.1
Figure2.2: M&S layers in a DEVS-based system (modifief{Wai09]) ..............ccoeeeeeeeee. 16
Figure2.3: DEVS atomic component state transition segeiémodified from [Wai09]) .......... 18
Figure2.4: Coupled DEVS model example [Wai09]. .....ccooo i 20
Figure3.1: DEVSRT Development Cycle (modified from [WallLL...........ccoooiiiiiiiiiiiinn. 39
Figure3.2: E-CD++ with DEVSRT Development FrameworK..............cccccviiiiiinnnnn. 46
Figure3.3: E-CD++ SOftWare SIrUCIUIE. ......ooo i e neaene 48
Figure3.4: Synthetic Model Architecture (Modified fromIfG2]). .........ouveriereiiiiiiiiiiiiiiiiinnns 8l
Figure3.5: Percentage of Overhead with Variable Depth.............cvvvviiviviviiiiiiiiiiiiiiienene 52
Figure3.6: Percentage of Overhead with Variable Width..................c.cc 53
Figure3.7: a) e-puck robot b) placetr@frsensors and LEDS. ..........ccccceveniaen 54
Figure3.8: epuck0 atomic component state diagram. ...cc.ceeeeeeeeeeiiiiiiieeee, 57
Figure3.9: Atomic Animation diagram for e-puck randomtdigce test. ...........coeeeeeeeeeeeeeeeeen. 61
Figure3.10: event-file scenarios a) scenario 1 b) scenario 2. ........ccccvvvvvvvinnnes 62
Figure3.11: Atomic Animation diagram for e-puck randorstdince test. ..........ccccvvvvvvverinennnnnns 63
Figure4.1: Overview of the Partitioned E-puUck MOdel.....c......coooviiiiiiiiiiii s 69
Figure4.2: E-Puck Controller Collaborative DEVS MOQEl..uu.....uuvviiiiiiiiiiiiiiiiiiiiiiiiiees 70
Figure4.3: E-CD++ input and output 10g fileS......coe e, 72
Figure4.4: Collaborative System Architecture [Moallb]............cccooiiiiiiiiiiiiiee, 74
Figure4.5: Detailed System Overview [MOL11Dh]........cuuiueiiiiiiieiiriiiiiiieieeiieiieiiereereneieeeenee 75
Figure4.6: DEVS Graph of the robot controller [Moal1b]........ccooovviiiiiiii, 77
Figure4.7: 3D Visualization Engine Zoomed Map [Moallb]............uuuviiiimiiiiiiiiiiniiiiiiniinns 0.8
Figure5.1: A Monotone Task Divided to Mandatory and Op#éibParts [Liu94a]. .................... 82
Figure5.2: Processing Carried for a State TranSition. . .....oooeeeeeieiiieii e, 85
Figure5.3: OVErlOad SCENAIO. ........uuu s ettt s essesebnnnnenes 86



Figure5.4: Example I-DEVS MOAEL .......oooooiiii et e 90

Figure5.5: Example Transient Overload SCENAIIO. .. cuuuuueeeeeerrerrereerneireireiinneneeeneneneneeeeess 92
Figure5.6: Applying Imprecise Computation to the Sam@erBrio. ..........ccccccvvvvviiiiiiieineeeenn. 92
Figure5.7: Synthetic Robotic Model Used for Verification..............cccvveevieeiiniiiiiiiiiciccee 94
Figure5.8: Discarded Tasks vs. Processor Utilization...............eeiiiiiiiiice e 94
Figure5.9: Response Time vs. Execution Time in Heavy Load..............coooeeieiii. 95.
Figure5.10: Number of Discarded Tasks vs. Average Regpdmae in Medium Load. ........... 96
Figure5.11: Number of Discarded Tasks vs. Processorzdtibn in Heavy Load..................... 97
Figure5.12: Number of Components per Level vs. AveraggpBese Time. ...........eevvvveeveerennns 98
Figure5.13: Number of Components per Level vs. Overheaddnhtage. ................evvvvvvvnennnnnns 99



Acronyms

DEVS Discrete EVent System Specifications

P-DEVS Parallel DEVS

RT-DEVS  Real-Time DEVS

M&S Modeling and Simulation

RC Root Coordinator

DEVSRT Discrete EVent System Specifications in Réale
E-CD++ Embedded CD++

IDE Integrated Development Environment

GGAD Generic Graphical Advanced environment fod3Emnodeling and simulation
IC Imprecise Computations

I-DEVS Imprecise DEVS

HSC Hardware-Software Co-design

HIL Hardware-In-the-Loop

HILS Hardware-In-the-Loop Simulation

RT Real-Time

SDE Simulation-Driven Engineering

Xi



Chapter 1: | ntroduction

Real-time (RT) and embedded systems are employedrious applications ranging from
telecommunications, customer electronics, tranggiort, medical equipments, and intelligent
and automated systems. An RT system is definedilyLiuO0] as “a system that is required to
complete its work and deliver its services on atynrbasis”. In this definition, those systems in
which all timing constrains must be met are comgdéhard real-time systems”. Many of these
systems are deployed in embedded microprocessaisngdn hardware computing platforms
with special configurations and interfaces. [Nict@scribes an embedded system as “a system
designed to perform a dedicated function, typicallgh tight real-time constraints, limited
dimensions, and low cost and low-power requirenientse architecture of these systems
usually integrates different types of hardware congmts such as processors, analog and digital
components, as well as mechanical (e.g. sensoractndtors) and visual components, which
demands increasingly challenging multidisciplinalgsign and development efforts [Nicl0].
Nevertheless, because of heterogeneity of thesersgsand their constraints (such as cost, time
to market, and performance), their development ecysl time consuming, error prone and
expensive.

In embedded systems with hard real-time constraitts design decisions can lead to
catastrophic consequences for infrastructuresves I{Liu00]. These days, many critical and
complex real-time control systems rely completety ammputer-based systems. Examples of
these applications are flight control systems, mwgtive applications, telecommunication
systems, railway switching, nuclear power plant tednsystems, traffic control systems,
complex manufacturing systems, space missions,Téte. size, variety, and criticality of the
computations carried out in these systems havactttt more abstract and visual design
methods that increase their complexity, reliabiéityd performance. On the other hand, heuristic,

and ad-hoc design approaches lack flexibility, abilgy, reliability and scalability in the final



system. They are also prone to tedious programndifficult code understanding, software
maintenance, and verification of time constraiessies [Butl10].

A solution proven to provide a reliable framewordr fdesigning these systems is the
adoption of formal methods. Formal methods areiapeases of mathematical-based techniques
for design, development and verification of softevand hardware systems [Mon03]. They allow
for appropriate mathematical specification and ysislof the designs, which can contribute to
the reliability of the final system, yet they addthe complexity of the design and increase the
cost of the development. Hence, they are mostlyroggpate for systems with critical
applications where safety and robustness is a fostaspect. Unfortunately, these methods do
not scale up well, as most formal proving mechasistannot provide formal proofs of
correctness when the complexity of the system gi{&wm®6, and Abr06].

Instead, Modeling and Simulation (M&S) providesragtical solution in solving the above
mentioned difficulties in the design of RT and enhied systems, caused by formal methods.
Computer-based M&S is a useful tool for efficienabysis, design, verification and optimization
of general dynamic systems. The use of M&S in saferengineering reduces costs and risks
and allows for exploring different aspects of thisteam.

Formal M&S is a branch of M&S, in which the simudet models are defined using a formal
approach. This technique has shown promising esanltmaking multidisciplinary system
development tasks manageable [Zei0O0]. It providegrchical design scheme in which higher
abstract levels are branched into levels that comere details. The system specifications are
expressed using mathematical notations in whichdttails of the behavior of the system are
accurately modeled. Other advantages of formal M&& applying formal model checking
techniques at design time [Son05, and Saa09], nmeméal refinement of the initial simulation
models, simulation-based validation, reuse of tkistiag models, risk free testing of critical
real-time applications.

The use of M&S is now popular in the early stagédsRT and embedded systems

development, because this method raises the afistrdevel and gives a clear view of the



behavior of the system to be developed. Howeveemthe scope of the development moves
towards the actual target hardware, the early sitml models are abandoned and the final
system is redeveloped from scratch, based on thédtseobtained during the simulation phase.
Consequently, M&S is often used only for testingrification, and feasibility analysis of these
systems. Currently, existing development tools arathods do not support a simulation-based
approach or they lack the model continuity condéptO4, HuO5]. Model continuity applied
from the early simulation stages to the final tadgployment, shortens the development process
and speeds up the implementation phase. In thisoapp, M&S is not only a foremost
component in the development, but also goes fulifzetilizing the simulated model as the final
target architecture. Commercial tools such as MABL3imulink [Cha09], and LabVIEW
[Tra06] are mostly limited to simulation and do mnditectly support model continuity. In
addition, approaches like UML-RT [KusO1] can be cuse develop software design models,
which are not suitable to be used as simulationetsotHua04].

Therefore, this research investigates the use oEM&iven engineering at every step in the
entire embedded RT application development phasdécl{ includes design, development,
testing, and deployment). M&S-driven engineeringaisomputational approach derived from
M&S, exploring the use of simulation models in s@te development. The use of this method
for this kind of application allows for testing ansimulated environment using virtual and real-
time simulation with different test scenarios [YaQBha07], and incrementally deploying them
in the target hardware.

The followings are the motivations in using forld&S for design and development of RT
and embedded systems:

» Rdiability and robustness: a formal methodology provides a reliable mathéraht
framework for RT applications, in which structurgpresentation of components and
formal means for explicitly specifying timings gyeesented.

* Hardware-Software Co-design (HSC): The drawbacks of independent design and

development of hardware and software parts of dveeiasied system are in the complexity



of the integration of these two parts, in which &ubus and unrecognized system
malfunctions can be caused by incompatibilitiesween the software and hardware,
producing longer and more expensive developmenedial97]. Instead, a hierarchical
and component-oriented M&S framework allows theigiesr to define the structure and
behavior of the system using state machines and rigglace them with hardware and
software surrogates after performing simulationedaserification of the components.
This method provides an integrated design platfilomco-designing the hardware and
software components together and later, decidinghwtomponent goes as hardware and
which one as software.

Model reuse: The component level encapsulation of behavior @etd and well-defined
coupling of components in these methodologies alloadel designers to reuse the
existing models. Model reuse leads to a faster indeeelopment, since many already
available sub-models can be integrated with the orees.

Knowledge reuse: Many existing techniques that are popular in M&Sreal-time and
embedded systems - such as State Charts [SchQ@hg/gKimO01], VHDL [Cap03], Petri
Nets and Timed Petri Nets [Jac02], Timed Autom&sa(3], Finite State Machines
[Zhe03], and DEVS [Zie00] — can be formally transfied into another method. This
permits sharing model-level data, allowing for degig hybrid models with sub-models
defined by different methodologies and a poterfoalcollaborative and heterogeneous
modeling.

Collaborative model execution: Different behavioral components can cooperate at
runtime via lightweight interfaces in which reakhe models implemented in different
tools communicate with each other. This collabest@pproach, where the simulators
themselves see each other as real-world devicesitsehe run-time model to collaborate
with different models implemented on various sinmis. It also allows for model
encapsulation and employing the benefits offereatiner tools (e.g. continuous system

modeling [Cel06], virtual reality environments).



* Hardware-In-the-Loop Simulation (HILS): One of the cost saving, efficient, and risk-
free ways to develop an embedded system is to géfilotechnique [GliO4a]. Integrated
design of hardware controller with the plant undendy as separate but interacting
components allows for HIL test of the controllerhile the plant components can be
incrementally replaced with the actual segmentangaime and cost in the development
of the entire system, as well as exploring dangeend impractical situations.

The Discrete-EVent System Specification (DEVS) falism [Zei00] has been chosen for
this purpose for the following reasons. DEVS pregic formal foundation to M&S that proved
to be successful in different complex applicatipp&i09]. It integrates a simulation approach
with the benefits of a formal modeling techniquehieh provides fast prototyping and
incremental development while allowing for reusepoéviously existing models. Concurrent
with these theoretical advances, various DEVS-basadlation tools have been implemented,
such as DEVS-C++ [Zei96], RTDEVS/CORBA [Cho03], D&®luster [Kim04], and
DEVS/SOA [Mit09]. In particular, the CD++ toolkiv§aiO2b] is an open-source, object-oriented
M&S environment that implements DEVS formalism gsitifferent middleware technologies
on various platforms [Wai04, Chi07, Liu07, YuO7arB8, Wai08a, Wai08b, and Wai09].

Aside from the above-mentioned motives, this dissi®n intends to investigate techniques
to overcome overrun conditions in hard-real-timstesns designed with a DEVS-based M&S-
driven approach. One critical aspect of a hard §&Iesn is the production of outputs before the
specified deadline. A late output in such systewtsomly degrades the system performance but
also produces catastrophic results (loss of lived axpensive equipments). However, in
circumstances with system overloads, it might beassible to meet the deadlines. Since RT and
embedded systems are not deterministic, tasks migy #he system at any time hence, there is
no prior knowledge of their occurrence times [LiQ100

The Imprecise Computation (IC) technique [Liu94adlps to overcome these high
computation peaks by discarding unnecessary comipougain overload conditions. The main

idea is to separate the computation into mandatodyoptional parts (the mandatory part affects



the correctness of the result and the optionalctdfets quality). This research aims at
introducing a flexible RT task execution paradiggn DEVS by incorporating IC technique with
the DEVS task model. Based on the requirementshard RT system, it is safer for a task to
produce less accurate result on time, rather thaduging the accurate result, late. The motive is
to employ IC with the proposed RT DEVS approachoider to have a formal platform for
designing hard RT systems. The objective is to egldthe above challenges in the proposed
DEVS-based RT design scheme, without complicatimegfbrmalism or adding extra processing
burden and maintaining the backward compatibihtpider to reuse previous models.

1.1 Contributions

The main contributions in this dissertation aregptopose a DEVS-based simulation-driven
development methodology for RT and embedded systemdsalso a hard RT system design
scheme by integrating the proposed approach wittet@nique. One of the key contributions
regarding these research objectives is a new M&&xdrapproach referred to &EVSRT
(Discrete-Event Systems Specifications in Real-Time), a domain extension to DEVS theory
for embedded real-time application development. DE&® SRT takes advantage of well-defined
M&S properties and constructs of DEVS to design amdrface embedded systems with the
hardware and the plant under study. DEVSRT approathdes the following contributions:

* The notion of deadline is added to the DEVS foremalimaking it appropriate for real-
time system modeling and design. Based on DEVS atatipnal properties, a set of
assumptions are defined to be used in designieglaime system. DEVSRT uses DEVS
formal outputs as output signals of the real-tigstem, therefore a relative deadline is
associated with each output produced at the epddf state.

* An efficient interfacing mechanism is added to DIEVS theory. This will satisfy the
following major motivations of this research: Mode continuity from simulation stage
up to embedding the models in the target hardvr&he entire system is designed in a
hardware-software co-design approach, in which the models represent different



hardware and software components and are testethtygas an integrated DEVS model.
3) Provideshardwar e-in-the-loop simulation platform where some of the models act as
the simulated plant components (in which the driwgerfaces provide the electrical
emulator signals) and are tested with the embedystem (controller) model to be
deployed on the hardware.

* A generic lightweight interface for message trarsteetween DEVS models running on
different DEVS-based tools is presented. This mlesia basis for component-oriented
collaborative modeling and simulation with other \l#&=based tools, allowing reusing
other models or using special services offeredthgraools.

e The Embedded CD++ (E-CD++) tool [YuO7a, YuO7b] istemded as a software
environment to implement the proposed DEVSRT fraor&vor the formal development
of embedded real-time applications. The new vergsibiE-CD++ is implemented on a
real-time kernel, incorporating real-time taskingrsces. Many new object-oriented
entities and capabilities are added to this fram&wio order to support the RT
functionalities, driver interfaces, and other featuof DEVSRT.

* An Integrated Development Environment (IDE) contagnembedded functionalities and
graphical model designer capability is provided,iclhpermits rapid design and
deployment of the models.

Finally, this approach has been used to developuwsmreal-time embedded systems on a
variety of hardware platforms (such as FPGAs, embédoards, and robotic devices), and
collaborative models. A test case using a robotaceh application is presented here and the
development process and results are discussed.

The second contribution of this dissertation inelsidintegrating the M&S-based approach
proposed in DEVSRT with the (Imprecise Computatjd@technique to build a more reliable
design and execution platform for hard real-timeteyms.



The Imprecise DEVS (I-DEVS) formalism is propospayviding flexibility to the user by

separating the behavior of the system to mandaaowy optional, to achieve a more
reliable RT task scheduling from the processor.

A detailed (model-independent) task model of DEM@malism is presented, which
identifies processing tasks being executed in &tima DEVS-based system. This
proposal is then used to develop RT IC-based sdimgdrigorithms.

An early reaction algorithm to the overrun condigoin DEVS-based hard real-time
systems is proposed, in which the system can alt eaough to save the critical tasks
from lateness.

The I-DEVS M&S framework is implemented on E-CD+providing a development

platform for imprecise modeling and execution uddigVS formalism.

1.2 Resear ch Publications

Some of the research results of this dissertatienpablished so far. The publications are

categorized in four categories. 1) Publicationatesl to DEVSRT and models developed using

this framework, 2) publications regarding I-DEVSrfmlism, 3) publications regarding the RT

collaborative modeling scheme, and 4) other putitioa concerning DEVS-based modeling and

simulation.
The following publications are related to the DEVISBnd DEVS-based embedded system

design:

Moallemi, M., M. Alcaraz, and G. Wainer, “ECD++ AHYS based Real-Time Simulator
for Embedded Systems”, Poster in proceedings adh§@imulation Conference, Ottawa,
Canada, 2008. This paper presents the basic meal-8imulation and embedded
functionalities added to E-CD++ which was later duises a basis for driver function
addition. The four embedded functionalities addethe Eclipse IDE of E-CD++ are also

discussed in this paper.



Holman, K., J. Kuzub, M. Moallemi, G. A. Wainer, 6le-Anchor Robot Implementation
using Embedded CD++", Poster in proceedings of STddls Conference, Rome, Italy,
2009. This poster paper presents a real-time mioded cable-anchor robot, developed
using the DEVSRT framework. The model specificateord implementation details are
presented.

Moallemi, M., and G. A. Wainer, “A System-On-ChipPGA Implementation of
Embedded CD++", Proceedings of Spring Simulatiomf€eence, San Diego, CA, USA,
2009. This paper proposes an FPGA-based implemamtaf the so far DEVSRT
formalism. The RT approach was implemented on geX2pro Xilinx FPGA board, on an
embedded Linux environment. Different models haserbtested on this platform.
Moallemi, M., and Gabriel Wainer, “A Simplified Retime Embedded DEVS Approach
Towards Embedded and Control Design”, Poster ircgedings of Winter Simulation
Conference, Austin, USA, 2010. This poster papes@nts some of the later details and
refinements of DEVSRT framework, in which the them more revealed.

Moallemi, M., and G. A. Wainer, “Designing an Irfre for Real-Time and Embedded
DEVS”, Proceedings of Spring Simulation ConferenB&VS Symposium, Orlando,
Florida, USA, 2010. In this paper the details ofivelr interface functions and
implementation of DEVSRT on E-CD++ are discussdtk fleal-time platform, where the
E-CD++ is implemented and the DEVS model integratiath hardware is presented.
Moallemi, M., D. A. Tall, G. A. Wainer, and A. AwadApplication of RT-DEVS in
Military”, Proceedings of Spring Simulation Confeoce, MMS Symposium, Orlando,
Florida, USA, 2010. This paper presents an RT antieelded DEVSRT model for a
reconnaissance tank. The model is designed as DEME&I, tested in simulation mode
and then deployed on the hardware following the BRY framework.

Sadeghi, F. R., G. Wainer, and M. Moallemi “Modgliand Controlling a Robotic Arm
with E-CD++”, Poster in proceedings of Summer Setioh Conference, Ottawa, ON,

Canada, 2010. In this paper, a model of an advaratsatic arm is presented, following



10

the proposed DEVSRT approach. The robotic arm el us medical robotics, remote

surgery, and medical simulation.

The following publications are related to the codleative modeling scheme:

Moallemi, M., R. Castro, F. Bergero, and G. A. Wain “Component-Oriented
Interoperation of Real-Time DEVS Engines”, Procaegdi of Spring Simulation
Conference, ANSS Symposium, Boston, MA, USA, 200His paper presents the main
idea of collaborative modeling and model executlased on component-oriented nature
of DEVS, using the interfacing and RT features &M3RT. The pros and cons of this
approach are discussed and some limitations thst beuobserved are briefed.

Moallemi, M., S. Jafer, A. S. Ahmed, and G. Waintnterfacing DEVS and
Visualization Models for Emergency Management”, d@exings of Spring Simulation
Conference, Work In Progress of the DEVS SymposiBoston, MA, USA, 2011. This
paper introduces a method to integrate Cell-DEV&ip&a] models with DEVS-based
robotic agents and an advanced immersive visualizaénvironment for Emergency
Management, using the proposed collaborative approghe emergency is handled by an
autonomous robot controlled by a real-time DEVS ato@ihe model controlling the robot
interacts with a simulation for emergencies, reiogiveal-time data about its location on
a cell space. The immersive environment is usedigoalize the emergency and its
management.

Ahmed, A. S., M. Moallemi, G. Wainer, and S. MahmptCell-DEVS & 3D Real-Time
Visual Simulation to Support Combat”, ProceedinfiSommer Simulation Conference
(SCSC'11), Netherland, 201R§nner up Best Paper Award). This paper presents the
design and development of a collaborative 3D r@adtvisual Cellular Agent model
(VCELL). VCELL is used for simulating land combandais collaboratively modeled
comprising a Cell-DEVS agent model and an advandgsdal immersive simulation

environment.

The following publications are related to the I-D&E¥pproach:



11

e Moallemi, M., and G. A. Wainer, “I-DEVS: Imprecigeeal-Time and Embedded DEVS
Modeling”, Proceedings of Spring Simulation Confere, DEVS Symposium, Boston,
USA, 2011 Best Paper Award). This paper proposes the initial I-DEVS formaljsand
the RT task-scheduling algorithm based on IC teqmni This approach combines the
dynamic advantages of the imprecise computationnigoe with the rigor of a formal
modeling methodology. A synthetic robotic modeldisveloped and the results of the
execution of this model in different scenarios @mpared and discussed.

The following publications are general DEVS-basetiS/tesearches:

e Moallemi, M., and G. Wainer, “Design of Persian sy in CD++", Poster in
proceedings of Spring Simulation Multi-conferen@fawa, Canada, 2008. This paper
presents a cellular automata [Neu66] model of asiBercarpet using Cell-DEVS
formalism and implemented on CD++ tool. The modeddpces different fascinating
tapestry shapes which can be used to weave resttags.

e Moallemi, M., A. Arya, and G. Wainer, “Simulationf @hree Dimensional Elevator
System Using Cell-DEVS Formalism”, Proceedings ¢fil®) Simulation Conference,
ANSS Symposium, Orlando, USA, 2010. This paper psep a cellular model of a 3D
elevator system used in high-rise buildings. Theepanvestigates different strategies to

be considered in the design of the system andngtitie elevator cars.

1.3 Organization

The rest of this dissertation is organized as ¥atloChapter 2 presents some background
information on the general aspects of M&S and tiscusses DEVS formalism and different
variants of it. Classical DEVS, Parallel DEVS, aRd@-DEVS are reviewed and the abstract
simulation algorithm of the parallel DEVS (which ke basis for DEVSRT) is presented.
Chapter 3 describes several related and similar @@l embedded system development
approaches and tools, and discusses the pros amsdofdhese approaches. The need for an

M&S-based approach supporting model continuity aiinétr necessary features for such systems



12

is justified in this chapter. Later, the DEVSRT rfalism, the details of DEVS task model, the
model interfacing mechanism, and the details ofl@mentation of the scheme on E-CD++ are
presented. An example of a robotic controller maded the details of design, implementation
and deployment of the model are presented, whersithulation results are compared with the
actual system performance. Chapter 4 presentdgabekamples of the extended applications of
DEVSRT in collaborative modeling, and integratiof BT models with virtual reality
environments. The messaging scheme, the interfaseahanism, the limitations and finally the
models’ details are provided. Chapter 5 proposeslHDEVS approach, where the RT tasks
working in the context of a DEVS-based system atgaeted and then an RT scheduling
algorithm, confined in the DEVS atomic componenteleis proposed. The results of the
execution of a synthetic model using precise angrétise modes are compared and the
effectiveness of this approach is shown. Chaptoreludes the dissertation and proposes some

future research directions for future researchedsstudents in this subject.



13

Chapter 22 Background

As discussed earlier, the need for high qualityvemfe with no defect for real-time (RT) and
embedded applications has evolved techniques ichMystem specifications are expressed in
clean mathematical basis. M&S-based approachesderearious advantages however, they are
not as robust as formal methods, and the lackfofraal foundation for M&S poses difficulties
when trying to prove properties about the embeddestiems modeled. Thereby, formal M&S-
based approaches are good alternatives as theyiderav mathematical-driven system
specification framework, suitable for the desigrd atevelopment of such systems. Another
important challenge is the issue of consistency @macdeability from the design stage to the
deployment [Bou05]. There are no well-establisremdhhiques in M&S-based design schemes to
bridge the gap between the modeling and the hasld@ployment phases, nor techniques for
mapping the model behavior to an RT task systerdtipt task scheduling algorithms in real-
time operating systems. Because of these drawhacksing M&S-based design, often M&S
artifacts are abandoned and not used for the dewelot of the actual embedded system,
resulting in extra development costs [Wai09].

This chapter presents the DEVS M&S framework, défe variants of the DEVS formalism,
its abstract simulation algorithm, and details obd®l development on CD++ software.
Subsequently, the available M&S-based methodologiestools for RT and embedded system

development are evaluated and the challenges mafabem are explored.



14

2.1 Modeling and Simulation Conceptsin DEVS

The theory of discrete event modeling and simutaisomore or less a recent innovation tied
to the advancement of computer systems. Based mieZet al. [Zei00], the Discrete-Event
System Specification (DEVS) theory observes theéesyf interest (source system) as a set of
behavioral data operating in the context of an grpental frame (EF) with a set of conditions.
A model of this system provides an abstract reptesien of the system under study, by means
of mathematical equations and instructions. Figufeillustrates this M&S framework with its
entities and relations. The entities are sourceerysexperimental frame, model, and simulation,
and there are two types of relations: modelingti@ia and simulation relation. The system
under study is illustrated as the source systemmking in the general framework of the EF,
which is of interest to the modeler. The model espnts the source system, its structure and
behavior in an abstract way, including part of thality of the source system and its working

conditions.

Experimental Frame

Behavior
Database

Simulation

Modeling Relation

Relation

Figure2.1: Entitiesin a DEV S-based M& S framewor k [Zei00]

The model is expressed as a set of instructiofess,rmathematical equations, or constraints
that are used to approximate the I/O trajectoriegshe source system. Consequently, the



15

simulation is a computational implementation ofauailable model to execute the model and
extract these /O trajectories.

The relations defined in Zeigler's M&S frameworkvesion the relation between EF and the
model and between the model and the simulator.riibéeling relation affects the accuracy of
the behavior generated by the model compared tbehavior of the actual source system, while
the simulation relation is concerned with the aacyrof the executed simulation results
compared to the model that has been defined. Tleeabpnal details of the simulator (e.g.
software, hardware ...) affect the precision andtations of the model. Different verification
techniques try to detect discrepancies betweemib@el definition and the source system. On
the other hand, validation tests concern with istgiencies between the simulation results and
the source system [Sar87].

This separation of data (model) and control (sitoitg enables the modeler to confine the
efforts to model design, while using existing siatals to execute the model. On the other hand,
the use of formal techniques to describe the mpdwrlides mathematical proofs for the model.
The other advantage of this method is the abilityekecute the same model on different
simulators implementing the same formalism, prowydia potential for portability and
interoperability of the simulators and benefitimgrh the unique features of different simulators.
This scheme allows the model and simulator to evskparately and maintain consistency. This
technigue can be presented as a layered approaekdouting the model using computer-based
simulation [Wai09]. Figure.2 illustrates the M&S layers in a DEVS-based s$ation system.



16

Hardware (workstation/cluster/embedded board)
and
Operating System

Middleware (parallel/distributed/real-time)

Simulator

Model

Modeler

Figure2.2: M& Slayersin a DEV S-based system (modified from [Wai09])

The modeler defines the model using a dedicatedoaten application providing specific
tools for expressing a DEVS model. After that, siraulator executes the model. The simulator
can incorporate different middleware technologieshide the execution details from the
modeler. Middleware is the bridge between the saauland the hardware, providing special
services regarding the details of execution of alehoThe model is executed on a hardware
platform with a specific operating system or assarbedded application on an embedded board
with no operating system

! Not to be confused with an embedded control sysfemtembedded simulation” executes a simulatiordeio

on an embedded board and outputs the results sfrthdation.



17

This dissertation concerns with designing a newtisge simulation approach capable of
being transformed to an RT system that executesodemas a control algorithm in the

framework of an embedded system.

2.2 Classical DEVS Formalism

As discussed in the previous section, the modelirdysimulation aspects of a DEVS system
are separated in order to modularize and formullé& design of a model, based on the
requirements of the source system. To this end, ®EBEs"s been proposed as a sound formal
framework for modeling generic dynamic systems amdudes hierarchical, modular and
component-oriented structure and formal specificetifor defining structure and behavior of a
discrete event model [Zie0O0]. A DEVS model is comsgd of structural (Coupled) and
behavioral (Atomic) components, in which the codpmponent maintains the hierarchical
structure of the system, while each atomic componepresents a behavior of a part of the
system. The atomic component is the basic builBiogk of the system which is composed of
I/O ports and a finite state timed automaton regmmésg the behavior of the model. An input to
the atomic component via an input port triggerstaestransition (referred to as “external
transition”), and in contrast the state transitjoeferred to as “internal transition”) at the erfd o
the time-delay of each state leads to an outpuergéion through an output port. This dynamic
behavior is represented using the following formatiations [Zei00]:

AM =< X, S, Y,dexs Oint, A, ta >, where

X ={(p,v) | pOIPorts, V1Xp} is the set of input ports and values;

Y ={(p,v) | pJOPorts, 1Y} is the set of output ports and values;

S is the set of states;

dext. Q X X— S, is the external transition function

Where Q is the total state set of M = {(s, €)I|S and (< e<ta(s)}

dint: S— S, is the internal transition function

A S— Y, is the output function



18

ta: S— R, is the time advance function

An atomic component AM is affected by external inpuents X which in turn generates
output events Y. The internal transition functidp and the external transition functi@gy;
compute the next state of the model. If an exteenaht arrives at elapsed time e which is less
than or equal to ta(s) specified by the time adedoaction ta, a new statéis computed by the
external transition functiofiex. Then, a new talsis computed, and the elapsed time e is set to
zero. Otherwise, a new statdsscomputed by the internal transition functig. In the case of
an internal event, the output specified by the oufpnction is produced based on the state s
and a new ta(sis computed, and the elapsed time e is set tm zer

Figure2.3 illustrates the state transition of an atoneimponent. An atomic component is in
state s for a specified time ta(s). If the atondmponent passes this time without interruption it
will produce an output y at the end of this timed ashange state based on &g function
(internal transition) and continues the same belratlowever, if it receives an input x during its
ta(s) time, it changes its state which is deterohibg its ey function and does not produce an

output (external transition).
X

1]~

Y

‘ tais) *°

S '=6i|;;(s)

Figure 2.3: DEV S atomic component state transition sequence (modified from [Wai09])

A coupled model connects the basic models togetherder to form a new model. This
model can itself be employed as a component irrgetacoupled model, thereby allowing the

hierarchical construction of complex models. Thegted model is defined as [Zei00]:



19

CM = <Xselr, Yser, D, {M; | iID}, {I i}, {Zi;}, Select>where:

X={(p,v) | pO IPorts, vI X} is the set of input ports and values;

Y ={(p, v) | pO OPorts, \L1 Y} is the set of output ports and values;

D is the set of the component names;

for each iin D, Mis a component;

for each iin DO {self}, I is the influencees of i;

for each jin | Zj is a function, the i-to-j output translation;

SELECT2M - A — M, the tie-breaking selector;

The structure is subject to the constraints thaeé&ezh i in D,

Mi=<X, S, Yi, i, Aj, ta >

li is a subset of DI {self}, iis notin | ;

Zseltj . Xself— Xj ;

Ziselt: Yi — Yself;

Zii Yi—Xj;

SELECT: subset of B> D, such that for any non-empty subset E, SELECTI([E)

A coupled model CM consists of components¥Mvhich are atomic components and/or
coupled models. The influenceeg fnd the i-to-j output translation {# define three types of
coupling specifications. The external input couglitconnects the input events of the coupled
model itself to one or more of the input eventst®icomponents. The external output coupling
connects the output events of the components toukgut events of the coupled model itself.
The internal coupling connects the output eventthefcomponents to the input events of other
components. The SELECT function is used to orderpifocessing of the simultaneous events
for sequential events. Thus, all the events withdame time in the system can be ordered with
this function.

Figure 2.4 shows a hierarchical DEVS model. This modetashposed of three atomic
components (Generator, Buffer and Processor) andctwupled models: the top-most coupled
model (GEN-BUF-PROC) that contains generator atoroimponent and BUF-PROC coupled



20

model, which itself includes two atomic compone®blF and PROC. The port connections are
also visible in the figure. For example, the outpott “out” of atomic component PROC is
connected to the “done” input port of BUF atomienpmnent within the BUF-PROC coupled
model and also is connected to the output portsoparent coupled model which connects this
output to the top-most model output port.

GEN-BUF-PROC

BUF-PROC

Gen [T BUF et inp[ proc eyl o,

Figure 2.4: Coupled DEV S modd example [Wai09].

2.3 Parallel DEVS Formalism

The Selectfunction in classical DEVS formalism handles sitankous events by serializing
their occurrences based on the modeler's prefeyewbéch reflects the closest sequence
happening in the real system. Let’s consider aatein which multiple imminent components
(a component which is supposed to execute an gltéransition) exist at a certain time in a
coupled component. In this case, different ordethef execution of the transitions in these
components will produce completely different bebawviin the entire system and will affect the
results, subsequently. To manage these ambiguities, modeler specifies the imminent
component that has the priority to execute itsditaon, using theSelectfunction and based on
the results, the rest of the components will beesin the next simulation cycle.

This technique however proposes a number of liroitat The arranged order of the events
might not exactly represent the reality in the seusystem. The circumstances might change
dynamically, while this technique only proposesxa&d ordering in all instances. Besides, this

method does not provide a solution for potentiaiajpa execution of the events. To address



21

these issues Chow and Zeigler proposedPtirallel DEVS (P-DEVS) formalism [Cho94] as a
solution.

The P-DEVS formalism handles simultaneous evenssdénthe atomic component by
introducing a new transition function referred ® “aonfluent function”. It also introduces an
input bag in the atomic component, where simultasgnputs are stored there and are serviced
afterwards. This allows the external function tadia multiple simultaneous inputs in one
function call. On the other hand simultaneous makland external events are handled in the
confluent function by the modeler, which can beaiyically adapted to the circumstances. This
technique also provides a potential for paralleliarthe execution of the model by allowing all
the atomic imminent components to be activateti@asame time [Zie03].

The P-DEVS atomic component has the following stmec[Cho94]:

AM =< X'm, Ym, S,0ext Oint, Ocons A, ta >, where:

XM Y M, S,0xs Oint, A @and ta are the same as DEVS atomic componentfispéions.

Seort Q X Xu® — S is the confluent transition function;

The semantics of the P-DEVS model definitions ardodlows. At any given time, a basic
model is in a state s. In the absence of extewsits, it will remain in that state for a period of
time determined by ta(s). When an internal traositakes place, the system outputs the value
A(s), and transitions to stadg(s). If one or more external events E 5 {xx, / x Xy} occurs
before ta(s) expires, (i.e., when the system ithénstate (s, e) with £ta(s)) the new state will
be given bydex(s, e, E). Suppose that an external and an intéraasition collide, (i.e., an
external event E arrives when e = ta(s)) the nestesys state could either be given by
Oext(Oint(S), €, E) 0lini(dex(S, €, E)). The modeler can define the most apatgpbehavior with
the dcon function. As a result, the new system’s state dlithe one defined (s, E).

A P-DEVS coupled model (CM) is defined the sam®BYS model except that there is no
tie breaking function (SELECT), as this problensddved within the atomic component using

Ocon function.



22

A) Abstract Simulation Algorithm

As mentioned in sectio2.1, DEVS M&S theory separates the modeling erftiyn the
simulation entity, in order to increase the abstoaclevel and dynamism of the framework. In
addition to providing rigorous model definition foalism, it also provides an abstract simulation
mechanism to understand and execute a DEVS-basedeél.nihe processors associated with
atomic and coupled components in the abstract ationl mechanism, are referred to as
simulatorsandcoordinators respectively. Thus, the processor hierarchy ¢otrol hierarchy) is
composed of coordinators as middle nodes and siarslas the leaves. There is a top-most
coordinator referred to &Root Coordinator(RC) (reflecting the top-most coupled component)
which initiates each simulation phase by sendimgftfiowing messages to the simulators: (q, t)
representing amput messagthat carries an input value from external envirentrand the time
stamp of the message. (@, t) also referred tmleact messagearrying a signal to the simulator
in order to generate an output. (*, t) referreédsmternal messagearrying a wake up call to an
imminent simulator. The simulator in response ephvith the following messages: (done, t)
referred to aslone messagehich is produced in response to input and infenmessages after
invoking the transition functions, carrying the diion of their new state (ta(s)). (y, t) referred t
asoutput messagevhich is produced in response to a collect messagyrying the output value.

An en-route coordinator is responsible for convgrtoutput messages to input messages in
case of an internal coupling. It is also respomsibl sending the smallest time of internal event
(also referred to asext changdty)) among its components whenever it is forwardingoae
message up to the RC. The time is the relative time from now up to the tim@en the
imminent children of a coordinator must be invokedrder to perform an internal transition.
Thelast changdime (i) is the relative time from the last activity icamponent to the current
time.

The following pseudo code snippet represents dolfleessage handling algorithm in a P-
DEVS simulator [Cho94].

1. when receive (@, t):




23

if (t = ty) then
y=A(s)
send (y, t) to the parent coordinator
send (done, t) to the parent coordinator
end
else if

error

© © N o g A~ DN

end when

The following pseudo code snippet represents inpegsage handling algorithm in P-DEVS
simulator [Cho94].

1. when receive (q, t):

2. lock the bag

Add event g to the bag
unlock the bag

send (done, t) to the parent coordinator

o g k& w

end when

In P-DEVS, the receipt of input message does ngger the external transition function.
Instead, the input is inserted in the bag, alloworgprocessing simultaneous inputs stored in the
bag, when an internal message is received. Thustemmal message must always accompany an
input message.

The following pseudo code snippet represents iatemmessage handling algorithm in P-
DEVS simulator [Cho94].

1. when receive (*, t):
2. if (t. <t <ty) and bag is not empty
3. e=t -t




24

4. s =0x(S, €, bag)

5. empty bag

6. L=t

7. =t +ta(s)

8. endif

9. elseif (t =) and bag is empty
10. s =qn(S)

11. =t

12. =t +ta(s)

13.end if

14.else if (t = &) and bag is not empty
15. s =dcon(s, bag)

16. empty bag

17. =t

18. tv=1t +ta(s)

19.end if

20.elseif(t>fort<t)

21. error

22.end if

23.send (doney) to parent coordinator

24.end when

The internal message will produce three circum&same an atomic component based on the
current time and input bag conditions. Line 2 refer a case in which, the internal message is
received sometime before the end of current stéife’me and the input bag is not empty. This
means there are inputs to be serviced; hence tieenak transition is invoked. Line 9 refers to

the case when the internal message is receiveldeagrid of the lifetime of the current state,



25

while the input bag is empty, indicating an intértransition. Line 14 shows the case when
internal message is received at the end of the stad there are inputs to be served. Therefore,

confluent function must be called to handle thdisioh of external and internal transitions.

2.4 Real-Time DEVS Formalism

Hong et al. [Hon97] proposed a real-time versio&VS formalism as an extension of the
classical DEVS for real-time systems simulation. g&omic component in RT-DEVS formalism
(RTAM) is defined as:

RTAM=<X, S, Y, dext Oint, A, ta, ti,y, A >, where:

X, S, Y,din, A and ta are the same as original DEVS.

dext Q X X—S, an external transition function, where Q is tbel state set of M= {(s,
e)|4JS and G e< ti(S) nax

ti: a time interval function,

y: an activity mapping function,

A: a set of activities,

With constraints:

y: S—HA

ti: S— R0 X R0,

Where ti(Shin< t(a) < ti(S)nax ti(S)in< ta(s)< ti(S)hax SIS, a =y (s) JA and t(a) is the
execution time of an activity a.

A= {a| t(a) OR",,, aJ{X?, Y!, S=}}

Where: X? is the action of receiving data from X,&the action of sending data from Y and
S=is the action of modifying a state in S.

In RT-DEVS an activity mapping functiomand an activity set A are defined to advance
virtual time with an executable activity associateth an event. The regular ta time advance
function only verifies the correctness of activitiapping time constraints and compensates time
discrepancy problems. The time bound of each agtiwispecified by ti function.



26

A coupled model within the RT-DEVS formalism is ihefd the same way as in the original
DEVS formalism with an exception. The exceptiorthat there is nGELECTfunction in RT-
DEVS, which has been defined in the DEVS formaltenbreak ties for simultaneous events
scheduling. The authors justify this by claimingtthn a real-time simulation environment
simultaneous events do not occur. In real-time Etran with one processor, only one event at a
time can be physically processed even if more tbae event occurred from the external

environment.

2.5 DEVS Simulation in CD++

CD++ [Wai09] is an open-source simulation softwtrat implements the DEVS abstract
simulation technique. In CD++, simulators and camatbrs progress through the simulation by
exchanging messages as described by the DEVS ethsitraulation mechanism. CD++ benefits
from object-oriented design, allowing the developemake use of powerful object-oriented
technigques in integrating simulation entity with ageting entities developed by the modeler. The
rest of this section reviews CD++ software architez and how it implements the DEVS

simulator.

A) CD++ Software Ar chitecture

CD++ is designed as an object-oriented simulatiogiree, modularized as a group of
components that have well-defined behaviors ance halatively independent functionalities.
CD++ architecture consists of the following majomponents [YuO7b]Main Simulator DEVS
Modeling SubsysterBimulation SubsysterandMessaging Subsystem

Main Simulator manages the overall aspects of tmellation and is the first object that is
created when the simulator starts. In general, filewing tasks are performed by Main

Simulator:



27

Atomic component classes defined by modeler as @bjects derived from the Atomic class
are registered in a list. These atomic models lellinstantiated during the model loading
process, which is the next step performed by thim i8anulator.

The DEVS model hierarchy is constructed by pargimg modeler-defineanodel-file in
which the DEVS components and their couplings aelasled (e.g., atomic and coupled
models, ports, links, states durations, etc.). murhis phase, two hierarchical C++ tree
objects are constructed, one representing the mmgdéAtomic and Coupled) components
(Modeling Subsystem) and the other one representireg simulation (Simulator and
Coordinator) processors (Simulation Subsystem). &ach atomic or coupled object a
Simulator or Coordinator object is created, redpelyt complying with DEVS abstract
simulator mechanism discussed in sec23A).

After this, the external events are loaded fromdhent-file(in case there is one), and the
Root Coordinator (RC) corresponding to the Top ¢edipcomponent is created. RC is
responsible for starting and controlling the siniola cycles and advancing the time based
on the order of the events (in a virtual time siaboi).

The Simulation Subsysteoonsists oSimulators Coordinators and theProcessor Manager

The control messages defined in abstract simuéatotransferred among these objects, while the

behavior functions (transitions, time advance, autput function) are implemented in the

modeling subsystem. RC generates the very firssagesin the simulation, which triggers other

processors to receive and send messages. Coordifatward the messages to their children or

parents and also maintain a list of their imminelmidren. Simulators have a pointer to their

corresponding Atomic object instances and invoker-iraplemented behavior functions after

receiving the appropriate message. RC advancesirtihdation time and stops the simulation

cycle when all models become passive (i.e. all at@omponents are in a state with lifetime of

infinity) and there is no external events left togess, or when the user-specified simulation end

time arrives.



28

The Modeling Subsystem maintains the model hiesamtformation presented by the user in
model file. The subsystem is composed of coupletl Aomic component objects, Input and
Output port objects and th®odel Managerwhich keeps a hashing table of the model
components and inter-couplings.

The Messaging Subsystem consists of Message Manageand varioudMlessageclasses.
Messages Manageas responsible for delivering messages transfearadng the Coordinators
and Simulators. The incoming messages are firstelad into theMessage Queuand are
processed by thMessages Managean FIFO order. The Message fields aender, receiver

time-stampvalue andport.

B) DEVS Mode Definition in CD++

Based on the software structure described aboeemitbdeler has to provide the following
information to build a DEVS model in CD++: 1) Modgpecifications, 2) Events, 3) Atomic
component behavior.

Model specifications are defined in tiredel-filein special format defined in [Wai02b]. The
model-file contains the components (Atomic and Gedpin a top to bottom order, in which the
top-most coupled component is declared first. Fache Coupled component, its internal
components, 1/O ports, and links (EIC, EOC, and a€) declared. For each atomic component
its state durations can be defined in the mode]-iii order to easily modify them during various
execution scenarios without recompiling the souccele. The Main Simulator Subsystem
automatically instantiates Atomic and Coupled otsidor each component based on the order
defined in the model-file.

Events are defined in event-file with a specifiecnfat, containing the event time, value, and
input port. The Main Simulator stores the eventsaimevent queue at the beginning of the
execution and RC injects the event to their assegtismput port at the specified time.

Atomic components in CD++ are overridden by the ededas sub-classes of the Atomic

class. The modeler implements the desired behawomprogramming the following four



29

functions:init function external functioninternal function andoutput function These functions
are invoked using polymorphic techniques inside 8wmmulator class corresponding to that
Atomic component. The states are declared in thi@iatcomponent classes using an enumerator
type, and state durations are set by callinghthldin, or passivategfunctions. Finally the Atomic
component object pointers are handed to the Mamulgitor in its modeler-overridden
registerAtomicgunction.

2.6 Modeling and Simulation-based Approaches

Various modeling methodologies have been introdunditerature, concerning the design
and development of real-time and embedded softagstems. A typical M&S-based approach
towards this end consists of the following stepgssdecification (requirements and constraints);
2) modeling; 3) simulation/verification; 4) modebkpping to hardware/software components; 5)
prototyping and implementation. Among the modeldoapproaches, the UML-RT (the Unified
Modeling Language for Real-Time) [Sel01] is an esten of UML modeling language which
provides especial aspects for designing real-tiygseesns. UML and UMLRT have been used in
applying model-based design, verification, and grenfince analysis of different systems (see
e.g. [Cor01 and D’AmO05]). A comparison between DE&® UML-RT [Hua04] shows that,
although features such as time, scheduling anemeaince are coded using UML constructions
(i.e., not formally defined). Instead, DEVS prowdeound syntax/semantics for structure,
behavior, time representation and composition, Wwhlend themselves to well-defined
computations. DEVS, however, is not intended fdtvweare design and development, and “it is
key to support the transformation of simulation elsdo their software model counterparts and
their complementary roles in handling modeling awmdnputational complexity of embedded
systems” [HuaO04]. This research aims at overcontivege issues by introducing the model
continuity and other modifications to the DEVS M&&mework.

Among other model-based approaches, the BIP (Behdwnieraction, Priority) methodology

is a framework for heterogeneous component-basetking of real-time systems introduced in



30

[Bas06]. Components are obtained as the supemogsifithree layers: Behavior; specified as a
set of transitions, Interactions; between transgiof the behavior, and Priorities; used to choose
amongst possible interactions. BIP does not supportilation-driven approach which plays a
key role in performances analysis and reliabilityhe software. The issue of model continuity is
handled using code generation tool, which lackgecttraceability relation between the model
and the final software architecture.

The following research efforts apply simulation-églesign which is more closely related
to this work. ECSL (Embedded Control Systems Laggliss a tool-suite that supports software
development for distributed embedded controlleral(B]. ECSL offers a graphical modeling
language built using the Generic Modeling Environm@&ME) [Led01], an open-source meta-
programmable domain-specific design environmentials designed in the context of embedded
automotive systems with capabilities such as requénts specification, verification, mapping
on to a distributed platform, scheduling and perfance analysis.

Ptolemy 1l [Eke03] is a structured and hierarchioa¢thod for modeling heterogeneous
systems using a specific model of computation ¢baers the flow of data and control. SystemC
[Gro02] and Esterel [Bou91] are system descriptaorguages that can be used for generating
simulatable and executable models. They share deateres and also have their unique
characteristics, and some two-way component mapmag be performed between the
languages.

Matlab/Simulink® is a commercial tool provided byaMworks [Matl1] for modeling and
simulating embedded systems that also offers graphmterface for visual construction and
integration of hardware blocks. Simulink® can btegrated with different other tools provided
by Mathworks, such as Stateflow®, Simulink Codea®d Embedded Coder® for event-based
modeling, physical modeling, and code generatiomufink is mainly used for simulating real-
time systems, while the accompanied code generamrnproduces C/C++ code for embedded
processors. Nevertheless, the generated code imitedi usage, does not support all the

functionalities of the Simulink blocks and stillads verification.



31

None of the above-mentioned modeling approachesdealirect model continuity, whereas
DEVSRT allows for straight use of the simulationdals as the final target software. The other
advantage is the straightforward hardware-softwacedesign capability[43] (i.e. co-
specification, co-synthesis, co-simulation and efimement) in a more abstract level as well as
hybrid testing of simulation models with real haede. The use of DEVS simplifies the
transformation of the models from various othemfal methods, supporting heterogeneous
systems design, implementation, and reuse, whichnesessary in embedded system
development. DEVS, as a simulation methodology, ooty allows for simulation-driven
software development but also supports M&S of anirensystem and its surrounding
environment. This allows for verification of theftseare in a simulated environment with

changing conditions.

2.7 DEV S-Based Approaches

In [Sha07] the authors introduce the FDS-DEVS XiBle Dynamic Structure DEVS)
algorithm based on [Bar97] dynamic structure systeadeling approach. FDS-DEVS enables
adapting a simulated system’s organization to tlyeadhically changing internal/external
environment while the system execution is in pregréd he authors propose an MDA (Model
Driven Architecture) technology applied to real¢ildEVS experimental environment, which is
greatly benefited from dynamic structure capaletitiThis methodology allows building real-
time DEVS-based simulation models capable of chraptieir components dynamically, based
on real-world systems. This enhances the capa&siliof DEVS-based approaches in building
reliable and adaptive real-time systems as theyresipond to the changing contexts or recover
from errors automatically.

In [SarOla] an application of the DEVS/DOC (DiseretEvent System
Specification/Distributed Object Computing) co-dgsimethodology is presented. In this case
study model, the architectural and scalability atpeof a Mission Training and Rehearsal

System (MTRS) is analyzed and implemented, in whitchas to be accounted concurrently for



32

hardware and software requirements, given high ddmdor network bandwidth, computing
resources, and complexity of software applicatiofdie authors showed the advantage of the
DEVS/DOC approach applied to Software/Hardwaregiesiom architectural, behavioral, and
performance viewpoints. In this scenario the sysiemands a systematic approach to transition
from high-level system design to low-level compandasign. DEVS/DOC can help detect
architectural errors before they lead to lower lesyestem failure, and offer a suitable solution
for high level system specification, by introduciagnodeling layer on top of fine grained DEVS
modeling constructs.

In [HuO1], a DEVS-based RT system has been impléadeon a TINI Chip which has
limited memory and processing ability. A set of ldgfined DEVS Interfaces made it possible
to define a just-as-needed RT environment and ruthe chip efficiently. Finally a case study
model has been successfully run on the chip.

In [Hua06] a modeling approach for semiconductonuaf@acturing supply-chain systems in a
hybrid DEVS/MPC (Model Predictive Control) test-bégiat supports experimentations for
DEVS and MPC models using KiByvsmpc (Knowledge Interchange Broker) is proposed. This
test-bed supports detailed analysis and desigmtefactions between discrete processes and
tactical controller. In this work, the DEVS modealptures complex dynamics of semiconductor
manufacturing processes whereas the MPC modedpensible for tactical control.

In [HuO5] the authors show how an M&S environmeasdd on the DEVS formalism can
support model continuity in the design of dynamistributed real-time systems. The authors
prove that the discontinuity between implementatidifacts and analysis, design, and modeling
artifacts is a common deficiency of most designhods. The authors restrict model continuity
to the models that implement the system’s real-tametrol and dynamic reconfiguration, and
emphasize model continuity during the entire precef software development, where the
control models can be designed, analyzed, anddtéstsimulation methods, and then smoothly

transitioned from simulation to distributed exeontiThe proposed methodology supports model



33

continuity by making possible to deploy and exedhte control models (initially designed and
tested by simulation) directly into the real targgstem.

RT-DEVS/CORBA [Cho03] is presented as a modelingl aimulation framework, to
support the development of distributed real-timestays. The framework supports model
continuity for real-time software development fromodel design to performance evaluation and
even to final real-time control. This approach @&sé&d on RT-DEVS formalism (discussed in
section2.4) and maps activities to each state. The authmrsot mention details about real-time
control part and the focus is on real-time simolatnd a case study is presented.

Table2.1 lists a summary of the comparison among theentiDEVS-based real-time and
embedded modeling approaches using different iités it shows in the table, most of the
current approaches are limited to the simulatiothe$e systems, and none of them uses a formal
approach for model continuity or Hardware-In-thesphasimulation. On the other hand deadline
definition and simultaneous events (collision harg)l are not properly managed in the current

approaches.

A) Model Continuity

Numerous researches have been done based on RT-DEYE to use it as an RT and
embedded software design technique. However, niasieovorks are only limited to real-time
simulation while a few of them tend to bridge thep detween simulated real-time models and
the hardware using ad-hoc approaches (see e.gl[Hifa06, Cho03]) limited to specific case
study systems or a just-as-needed technique. Nbtleem proposed a generic framework for
integration of the real-time models with the actualdware counterparts. For more references in
this area of research refer to [Zei93, Cho00, Scki®2, Li03, Hua04, Sag04, Gli04, Wai05,
Hu07, and God07].

Lack of a formal transformation method from a siatidn model to hardware control
software is a common pitfall in all of the abovermened methods. The embedded coders and

code generation tools do not quite satisfy our abjes, because the final code produced by



34

these software tools is prone to error and notssardy represent the actual model accurately,
thus require extra verification steps. The objexis to directly deploy the model developed to
mimic the hardware controller as the final consoftware. Having this in mind, the model will
go through extensive formal model checking andfication tests, and the software architecture
is guaranteed to work as the final architecturendéethe code generation tools add the burden
of extra verification phase to ensure that the geed software code performs the same function
as the model itself. The other problem is that nawsilable code generation tools do not support
all the modeling constructs (e.g. MATLAB/Simulinkibedded Coder tool), thus the modeler is
confined with the constructs that are supportethieycode generator tool, limiting the modeling
formalism’s capabilities.

Table 2.1: Comparing RT and Embedded DEV S M odeling Approaches.

Criteria Model Hardware Deadline )
o o Simultaneous Events
DEVS Fra Continuity Interface Definition
DEVS-DOC SELECT function using
No No No
[SarOla] Java threads
DEVS/MPC SELECT function using
No No No
[Huao6] Java threads
FDS-DEVS Modeler defined priority
No No No
[ShaQ7] based on P-DEVS
PowerDEVS
No No No SELECT function
[Berl0]
RTDEVS [Hon97] No No t(i) function Random order
RTDEVS/CORBA ) Using RTDEVS
yes Ad-hoc interfaces ) _ Random order
[Cho03] t(i) function
Formal generic Formal . o
) ) Modeler defined priority
yes user implemented deadline
) o based on P-DEVS
DEVSRT interfaces specifications




35

B) Real-Time Deadline

The overall correctness of a real-time system ddgpem its functional correctness and
timing correctness. The timing correctness is gsonmant as its functional correctness especially
in hard real-time systems. Therefore, an appraopriaal-time system design methodology must
reflect the timing properties of such systems. Gllassical DEVS theory and most of its variants
do not provide a direct method for representing tleadline of outputs. The RT-DEVS
formalism uses t(i) function (discussed in sect2of) to verify the timing discrepancy between
the activity a mapped to stats. However, this method does not properly represiening
limitations and deadlines to be used in a real-system design method. RT-DEVS is originally
designed to simulate real-time systems. On therdthed, the output production method is not
well formulated; therefore each project uses ah@dtechnique to interface the model with the
external environment.

In the next section, the DEVSRT formalism is innodd, which manages this issue by
adding a deadline function to the DEVS formalistmalso uses DEVS standard outputs as the
outputs of the target real-time system to the hardwactuators. This will allow the system
designer to clearly specify the deadline for eaatpat. The system must meet the deadline
requirements for each specific output, unless ueebgal circumstances occur (e.g. the system
overruns due to the high number of jobs inserteéd the system and the system does not have
adequate processing resources). I-DEVS approaetsétond contribution of this thesis) tackles

this problem.

C) Simultaneous Events

Authors of RT-DEVS [Hon97] emitted th&ELECT function (of the original DEVS
formalism) from their proposed methodology, asegrthat even if two events are scheduled for
the same time, the system will only accept thenueetially, because a physical processor can
only process one event at a time. This justificati® correct; however this method does not

allow the modeler to control the sequence of siamdbus scheduled events in a real-time



36

simulation. For example, in a scenario where twonore imminent children exist (components
with simultaneous scheduled internal events) witlincoupled model, the coordinator
(corresponding to that coupled model) does not havere-determined order to signal the
simulators. Thus, the system executes a randomxed forder in all cases, sacrificing the
reliability of the target system (which is a majesue considering the critical applications of
such hard real-time systems). On the other hareh by retaining the SELECT function of the
DEVS formalism, the problem still exists based lo@ previous discussion in sectids3.

DEVSRT handles this situation by taking advantagehe P-DEVS approach (refer to
section2.3) in which this conflict is dynamically handledd the modeler has the full control

over the sequence of simultaneous events, or inputs



37

Chapter 3: The DEVSRT Formalism

A real-time (RT) simulation is in fact an RT systéhat models a part of the environment or
the target system and computes this model in nea&-tTherefore, to use the same simulation
model as eventual RT system, the simulator musthbe to handle timely inputs from external
environments such as hardware peripherals, softwaoelules, network devices, human
operators, etc. The idea is to develop discretetev®dels using DEVS formalism, afterwards,
transfer the models into embedded platform, whieeg function as controller interacting with
the hardware through formally-defined interfacesleatl to the simulator. The models are
thoroughly tested using various simulation-basedfigations and are incrementally replaced
with the hardware surrogates. This provides a Hardvin-the-Loop Simulation (HILS)
platform, where hardware and software can be dedigmd developed in parallel, allowing for
observing un-modeled characteristics of the hardigaftware designs.

Figure 3.1 illustrates the design and development cyaledmtrol software in a plant (target
platform) in the proposed DEVSRT approach. Theofelhg tasks are performed (the following
numbering of the tasks correspond to the numbeidain the arrows in the figure).

1. Initially the control software and the externavieanment (plant) are modeled together.
This will allow for hardware-software co-designtbé target system, where different parts

of the entire system are co-modeled and testeditege



38

2. Once the model specifications are defined, varfousal model checking approaches can
be used to verify the integrity and consistencthefdesigned model, resulting in a robust
software produét

3. Simulation scenarios are extracted from the tasgstem specifications, and are used as
inputs to the model.

4. The model is simulated by using the extracted satmr scenarios, investigating different
aspects of the system in a risk-free environmehis Pprocess includes virtual-time and
real-time simulation, where the former verifies tbgical aspects of the model and the
latter verifies the temporal behavior of the model.

5. The model is refined based on the results of theulsition. This provides a simulation-
based verification of the entire system in whicé thodel behavior is corrected to match
the requirements of the system. This process ise dmncurrently with the model
checking, to ensure the robustness of the design.

6. The model is partitioned into control system modet the plant model. These model
partitions are then tested together in real-time.

7. The plant models are incrementally replaced with #ictual hardware in the external
environment, allowing for HILS of the model.

8. The control model is refined based on the resdith@HILS, allowing for exploring un-
modeled and hidden aspects of the external envieahm

9. The incremental replacement of simulation model# wmardware surrogates allows for
hardware-software co-design, in which the hardveagments are initially modeled with
the software components. Later the modeler decid@sh one goes to hardware and
which one goes to software.

10.During the HILS, the model is interfaced with thardware by using formal interfacing

techniques proposed here.

2 An initial research on integration of model chexkapproaches with DEVSRT is presented in [saall]



39

11.Finally, the control model executive is embeddedtha target system with interface

functions to integrate and cooperate with the ergystem.

Control Software
&
External Environment

Re .
~ 'Squj
-~ E’nent An
~ \a/yS/'s

~ - Target System

Extract

()
(7)

IncrementallReplacement

External Environment
(Plant)

Simulation
scenario

DEVSRT
Model

Simulation

Plant
Model

Correct |(2)

Formal Model
Checking

HW/SW|Co-simulate (9)

Control | Refine | Hardware-In-the- 4I
Model (8) Loop Simulation

Control
Software

Add HW Interface (10)

DEVSRT Framework

Figure3.1: DEVSRT Development Cycle (modified from [Wail1]).

To this end, DEVSRT is proposed in this dissertatis a real-time DEVS approach built on
top of P-DEVS [Cho94] methodology (to support sitankous events in real-time) satisfying
the objectives discussed earlier. Unlike RT-DEMss fipproach applies minor modifications to
the DEVS formalism, allowing for easy reuse of girevious models. Finally, the proposed
DEVSRT approach is implemented on E-CD++ as asadlto develop real-time and embedded
applications.

The most critical characteristic of a real-timeteys is the availability of outputs within the
specified deadline. In order to express the tindogstraints of the system in a formal context,

DEVSRT assigns a deadline to each output in aniatoamponent and it verifies the deadline



40

when the associated output is produced. Hencecdheept of deadline is embedded in the
formalism and implemented in the abstract simufatiechanism.

In DEVSRT, instead of defining an activity mappifugction (as opposed to RT-DEVS) to
map the state of the model with an activity on thedware, the outputs of the atomic
components are reflected to the hardware to echdéhavior of the model on the embedded
device. In this approach, the output function gpomnsible of triggering an action on the actuator
at the end of each state, informing the hardwarmiathe new state of the model. Therefore,
hardware control signals are produced by the DEMBud function.

The atomic component of DEVSRT is formally defirmd

AMRT =< X, S, Y,8ext, Oints Ocon A, ta, d >, where:

X, S, Y, 8ext Oint» Ocon @NdA are the same as P-DEVS (sectiod).

ta: S— R, , time advance function which works with physiclaick of the system

d: S— R, is the relative deadline of each state for outpotuction. The deadline starts
from the end of the state (release time of the uiugsk).

To show the proof of closure under coupling of BIEVSRT formalism, it is necessary to
demonstrate that a DEVSRT coupled model (CMRT = ¥XD, {M; | iCD}, {I }, {Zi;}>) can
be built as a DEVSRT atomic model (AMRT = < X, Y, &xt Oint, Ocon A, ta, d>). DEVSRT
inherited all its specifications from P-DEVS [Ch¢9dxcept the deadline (d) function. Thus, the
associated atomic model derived from a coupled etllehave the following specifications:

S = xQ where iI D;

ta(s) = minimumg;|iCID}, where $1S ando; = ta(s) — € ;

d(s) =d(9 ;

The rest of the steps fdkx:, Oint, dcon, aNAA functions are the same as P-DEVS [Cho94].

In other words, ta(s) of the coupled model is eqodhe closest tajsto the current time) of
its components. Therefore, the deadline of the wwutb the coupled model’s current statés

equal to the deadline of this component.



41

DEVSRT maintains consistency with the DEVS formaliallowing reusing DEVS models
for RT and embedded system modeling. The coupledetefinition in DEVSRT is the same
as P-DEVS.

3.1 Real-Time Interface

In order to make a virtual-time simulator to work a real-time context, the logical time
representation of the simulator must be tied touhderlying computing system. In a DEVS-
based system, the simulation time advances onlyhwinere is an event waiting to be serviced,
however in DEVSRT, the time-advance is tied to ¢heck of the underlying system and the
Root Coordinator (RC) only verifies the timingstbé events and initiates the simulation cycles
based on the wall clock. In other words, RC dodsadwance the time, instead it waits for the
physical scheduled time of the next event to redlehn triggers the event by sending the
appropriate simulation message.

In order to use a DEVS model as the final targétinsoe architecture, DEVSRT employs
model outputs as hardware control signals, and gzep an efficient formal interfacing
mechanism between the model and the environmedtiv&r interfacing approach is presented
in [Cho98], which is now integrated with the propdsDEVSRT in a more efficient way by
removing the extra processing burden from the atooc@mponents. In this approach, the
standard DEVS 1/O ports of the top-most (Top) cedptomponent that are supposed to interact
with the environment, possess a driver object, wgrks an interface between the model and the
external environment. This way, the model hierarobyains unchanged and only the driver
interfaces are added to the borders of the moded driver object is an abstract function,
overridden by the model developer that can be ieddently modified for each platform,
providing portability to the model on different fflarms. The other advantage of this approach is
maintaining RC aware of the atomic component imtévas, conforming to the DEVS abstract
simulator definition by Zeigler (discussed in sent2.3A)).



42

The DEVSRT notation of the Top coupled model in thedel hierarchy is modified as
follows:

TOPCM = <X, Y, OS, IS, DX, DY, D, {M| dID}, EIC, EOC, IC>, where:

X, Y, D, My, EIC, EOC and IC are the same as DEVS

IS ={is |isis the input signals from environment} is the geénvironment input signals.

OS = {os Josis the output signal to environment} is the sehafdware output signals.

DX: IS —Xv: converts external environment input signalsyfut port value (Xv).

DY: Yv —OS: converts output port value to external envitent output signals (Yv).

Any interaction between the environment and atanimponent is routed through the formal
interconnections from the Top coupled componerth&atomic component or vice-versa. The
interfacing mechanism allows for Hardware-In-theshand Human-In-the-Loop simulation by
connecting DEVS components with the hardware or dwperipherals. The integration with
hardware can be done incrementally, by replaciet) @odel component with the corresponding
hardware counterpart (e.g. sensor, actuator...) aodding the driver functions for the model
ports previously connected to that model. The safwwmodel co-executes with the hardware
segments, allowing for investigating actual envinemt scenarios and providing safe test-bed
for each device.

Model continuity is ensured, since the original mlod finally deployed on the hardware,
acting as the embedded control software. The inen¢éah hardware deployment technique
provides a seamless integration mechanism, whexesyistem is reliably embedded in the
hardware. The benefit of this approach versus gaeration approaches is the limitless use of
the simulation model features on the hardware anetra verification of the generated code as
the same model and source code are deployed dratbeare. The only component added to the
model is the driver interface functions that araduyally verified in the incremental integration
steps.

The algorithm of the RC main loop in DEVSRT is abdws:

1. main():




43

2. forever for each DEVSRT model /* main loop */
3 wait foris signals from environment or internal time out
4 if an external event then

5. g = DX(1S)

6 send (g, t) msg

7 send (*, t) msg

8 else if an internal time out then

9 send (@, t) msg

10. send (*, t) msg

11. else if receive (y, t)

12. OS =DY(y)

13. send oy signal to the hardware

14. else if receive (done, t)

15. W=t

16. endif

17.end forever

Lines 5 and 12 show the driver object functionst tbanvert input and output signals,
respectively. The cycle starts with the RC waitioginputs from hardware or an internal event
time out (line 3). A soon as an input is receivied converted to a DEVS predefined input value
by the input driver function. Afterwards, an extrnrmessage is sent to the target atomic
component (based on P-DEVS simulation mechanisouséed ir2.3A) an external message is
always accompanied by an internal message). lugpub message is received, the DEVS output
value is converted to a DEVS signal via the DY driinterface function.

The external and internal message handling funetiortheSimulatorobject are the same as
P-DEVS (presented ir2.3A)). The following pseudo code represents thHecb message
handling function in a DESVRT Simulator object:



44

10.when receive (@, t):

11.if (t = ty) then

12.  y=A(s)

13.  if (thow<t_ + ta(s)+ d(s))

14. send (y, t) to the parent coordinator
15. else

16. error //deadline missed

17. endif

18. send (done, t) to the parent coordinator
19.end

20.else if

21. error

22.end when

The simulator is responsible to verify the timinfgtiee output. Thus in line 13 the deadline
function d(s) associated to the current state lisct#o verify whether the output is produced on
time. The d(s) function returns the relative deasllof the output from the end of the current
state s, thus it is added with ¢ ta(s)) that indicates the end of the currertestéthe deadline
is missed an error signal is raised, informing sgstem about a late deadline, thus the system

can decide what action to pursue.

3.2 Implementation on E-CD++

The DEVS formalism proposes a framework for modmhstruction and also defines an
abstract simulation mechanism that is independetiteomodel itself. This mechanism provides
a high-level implementation detail for the DEVSnfrawork, and it can be feasibly implemented

by computer software.



45

E-CD++ [YuO7a and YuO7b] extends the CD++ [WaiOZbinulator (a DEVS-based
framework for M&S introduced in sectidh5, and RT-CD++ [Wai04] (an extension of CD++
for real-time simulation). E-CD++ support modelingal-time systems by converting CD++
virtual time-advance function to real-time and pdes an RT simulation platform for
verification of such models. It also support FDSVMIE framework [ShaO7], where model
components can change dynamically during the simonlaDuring this research, the proposed
DEVSRT M&S framework is implemented on E-CD++ sadte, by modifying its simulation
engine to execute real-time models more precisetlyiateracting with environment, based on
the driver interfaces proposed earlier. To allow doect replacement of models with external
entities, the 1/0 ports of E-CD++ models implemehé formal interfacing mechanism of
DEVSRT. The underlying middleware is replaced withreal-time kernel and the runtime
objects are imported to this platform as RT ta3ksfollow the development cycle proposed in
the previous section, the model development intedare also upgraded and several embedded
functionalities are added. The rest of this sectmtusses the modifications carried out on E-
CD++ in the context of this research to reach tB&/BRT objectives.

Figure 3.2 illustrates the E-CD++ development frameworkhwDEVSRT modeling
approach implemented during this research. Thisidraork is a special case of the layered
M&S approach presented in Figuze? that is customized with DEVSRT in the modeliager,
E-CD++ as the simulator, Eclipse in the applicat@ayer, and Xenomai real-time Linux kernel
as the middleware platform to execute the simutatithe target embedded platform, or HILS
with the external environment is shown in this l@gkapproach, representing the cross-platform
development of models in this paradigm. The E-C@xecution engine uses Xenomai real-time
kernef with multi-tasking services to implement DEVSRTheTuser developed models and the
driver objects are merged with the E-CD++ core cigj@and the entire combination is compiled

to produce the model executable. Xenomai proviteR® kernel resting between the hardware

% Another version is also under development for aeidkd environments without OS support.



46

and Linux OS, and offers several pervasive hardsBVices to user space applications and is

seamlessly integrated with GNU/Linux environment.

Environment

Hardware (PCs/HW/

Network Soft
boards/Robots/FPGAs...) etwor oftware

A

Multi Task Real-Time Linux ‘

(Xenomai RT Kernel)

DEVSRT Driver Interface

¢

Real-Time DEVS Model

Multi Task DEVSRT engine in E-CD++

Modeler

Figure 3.2: E-CD++ with DEVSRT Development FrameworKk.

In order to improve and speedup the model developnie-CD++ incorporates Eclipse
programming environment and has user-friendly fatas suitable for real-time and embedded
execution [Moa08]. The GGAD (Generic Graphical Adead environment for DEVS modeling
and simulation) [Chr04, Bon10] graphical user if#ee tool based on DEVSgraph standard



47

[Pra93] is also integrated with E-CD++ Eclipse |0His tool allows for graph-based drawing of

the DEVS model hierarchy, interconnections, andalin representation of atomic components
to automatically generate the model-file and sofitee of the model. Since E-CD++ executable

file is to be deployed on a different platform (eedded hardware system), means for cross-
compilation for the project is also provided, adlvas means of communication to the target

platform in order to download executable binargdil run the executable and debug remotely
[Moa08].

A) E-CD++ Software Structure

As discussed earlier i2.5A), CD++ is modularized in which system objetts as separate
software modules with well-defined behaviors andlependent functionalities. E-CD++
inherited the main object entities of CD++, applyithe proposed DEVSRT approach by
modifying object behaviors or adding new entitiesthie software architecture of CD++. Four
main components of E-CD++ are: Main Runtime Systé&nodeling Subsystem, Runtime

Subsystem and Messaging Subsystem (see F3g8)e



48

Real-Time Input

Non Real-Time Context DEVSRT Real-Time Task Driver Tasks  Environment
| | RunTime Sub = RT Input
| y Driver «—
; Task 1
0 Hardware
External N ” Input (PCs/HW/
Event |
Table i [ Rg !nput boards/
| T ”‘:(eg 1| Robots/
1 @s FPGAs...)
I
Start & terminate Spawn & Terminate i Processo
i\ rAdmin
Main Spawn RT Task| | IS ’
Runtime t 77777777777777 ;,,,'5’ - R T Input
System & Driver a—
i : Network
b MapPINg. Mapping 8 Task n
i | Modelling Subsystem E
@ Coupled Has— |
) —
Model
Admin Ha Software
Environment
Read In » Connected A—
Port Table

Figure 3.3: E-CD++ software structure.

The Main Runtime System manages the overall asp#ctbe real-time execution and
provides timing functions with microsecond preaisid his is done by incorporating Xenomai
native skin clock functions [Xns11] in the E-CD#¥meclass which is itself instantiated by the
Main Runtime System class. Th@meclass is modified to handle microsecond time djera
and also provide the physical elapsed time of #ez@tion to be used by the RC to schedule the
events. The Main Runtime System is the first objkat is created in non real-time context and
spawns the Runtime Subsystem as a Xenomai realtéiske In general, it does the following
tasks in sequence:

* Registers Atomic component objects.

* Registers the Top coupled component ports that @menected to the external

environment.

* Reads in the external events (from event-file) lamittds an external event table.



49

* Reads in the model-file and builds the model hidrar
* Spawns the main real-time task in which the Roatr@imator (RC) is created to start the
DEVSRT execution cycle.

The Runtime Subsystem consists of Simulators, Goatals, and the Processor Manager. In
E-CD++, The Simulators work as run-time executiamgiees that correspond to atomic
components and perform the main job of executirapditions and output function after
receiving the proper messages.

The RC is a special Coordinator that manages tietime event scheduling. It initializes the
global Driver object which spawns the real-time input drivek$aévhich are associated with
input ports of the Top coupled component in the [3EYodel hierarchy) declared by the user.
Running in the context of the main real-time taRK; manages the inputs received from input
driver tasks while it is waiting for the next tréien time to occur and at the same time releases
outputs to the output driver objects.

The Messaging Subsystem consists of the Messagaddarand various Message classes.
Messages are transferred to the coordinators amalegors via the Message Manager, which is
responsible for delivering messages. The incomiegsages are first buffered into the Message
Queue and are processed by the Message Managa-imne.

The Modeling Subsystem holds the model hierarchigrimation extracted from the model
file. The subsystem is composed of Coupled and Ataomponent classes, Input and Output
port classes and the Models Manager, which mastinhashing table of the model components
and port influence lists.

The Port Adminobject is a new entity added to the E-CD++ to rtama list of the Top
model ports that use a driver object. This listai®r accessed by the glodativer object to
spawn and control the input tasks.

The Global Driver object is another new entity to control the iraenmhg mechanism with the
environment. It invokes hardware driver initialivet and termination functions. After

initializing the hardware, it spawns a Xenomai R$k (thread) for each input driver function.



50

The driver function is handed to the thread asthread function, whose job is to receive
external input signals and convert them to DEVSlefieed input values. The RT thread can be
periodic and the period interval is declared in thedel-file. In order to synchronize the
execution of the RT input tasks and minimize tkterjj a multi-value semaphore is used to signal
all the tasks at the beginning of the executiosueng the start of the simulation cycle as close
as possible to the physical start time of the satmoh. It also invokes outputs port driver
functions via the RC, whenever the latter recearesutput message.

The initialization and termination functions of tever class as well as the input and output
port driver functions of the port class are abst@e+ functions, implemented by the user for

each specific platform.

B) Performance Evaluation

In order to verify the efficiency of the implemetiten and to prove the performance gains of
the multi-tasking approach on a real-time middledhe proposed implementation is tested
with synthetic models and compared with the previBT-CD++ [Wai04] implementation. The
tests are performed using two different sets oftstic models with different depth and width in
the model hierarchy. The results of tests are coaapwith the reported results of the previous
evaluation of RT-CD++ published in [GIi02].

In order to compare the two implementations in gona¢ and fair condition, the synthetic
model proposed in [Gli02] is duplicated in the nBACD++ implementation. The model is
composed of one coupled component and several @atoomponents in each level of the
hierarchy. Figure8.4.a illustrates the Top coupled component aloitg s inter-connections.
The model can have multiple levels with the sanchitecture and several atomic components in

each level. Figur8.4.b shows the last level, which only has one at@mmponent.



51

TOP (Coupled Component # 0)

|
in | _injCoupled Component # 1 out_| out

| Atomic Component # 1 Coupled Component # m

»| Atomic Component # 7 out, ] ou

5

Y
Y
\

» Atomic Component # n

a) b)

Figure 3.4: Synthetic Modd Architecture (M odified from [Gli02]).

Given a specified depth d and width w, we end warttak coupled components with w-1
atomic components inside each model (except forldlse coupled model, which will only
include one atomic component). An input to this elgatopagates to each sub-component and
repels to the last level. This will trigger the extal function in each atomic component. All of
the atomic components follow the same behaviowtich they are in a passive state, until an
input is received. The external transition (invoksdthe input) changes the state to a temporary
state with zero time-advance, which produces aputiand then transitions to a passive state,
waiting for the next input. This cycle continued@sg as there is an input to the system.

The goal is to measure the overhead of the protgssicurred in the simulation engine
proportional to the processing time of the modéle Bverhead of executing a model is mainly
associated with the abstract simulation algorithmiassage transfer scheme (refer to section
2.3A)), the handling of input and message queuddlantime-advance management. The major
processing in a DEVS model is performed in the reeleand internal transition functions in the
atomic component. Hence, to produce a computatidansive model, a fixed delay of 50
milliseconds is assigned to the external and imdetransition functions of all the atomic
components. To make the comparison platform-indégety the models are executed on the



52

same workstation with the same computing power urs¢@1i02]. The percentage of overhead
of the system relative to the model execution tismmeasured and compared. The percentage of
software overhead is calculated using the followeggation:

TotalProcssingTime- TotalTransiiionsProcessingTimex
TotalProcssingTime

Overhead%- 100

31

Two sets of varying tests have been carried ottt ehanges in the number of components
in each level and the depth of model hierarchy (memof levels). The first test is composed of
four models with fixed number of components in ekstel (equal to 12) and variable depths of
3, 6,9, and 12 levels for each model. The testewene with 10 inputs injected to the models
during a fixed execution time of 40 seconds. Fig8re represents the overhead percentage
calculated using equatidil for the above models in E-CD++ and compareti tie available
results of RT-CD++.

O E-CD++ m RT-CD++

35

2.5
15
0.5
0

3 6 9 12

Number of Levelsin the Model Hierarchy

N w

Overhead Percentage
=

Figure 3.5: Percentage of Overhead with Variable Depth.



53

In another test, models of the same type are gestevath fixed number of levels (i.e. 4) and
variable number of components per level (i.e. 4,610, and 12). The same numbers of inputs
are injected to the models and the models are &@dar a period of 100 milliseconds. Figure

3.6 shows the results of this test.

o E-CD++ m RT-CD++

35

11111

Number of Components per Level

w

5]

Overhead Percentage
(6] N

=

5]

Figure 3.6: Percentage of Overhead with Variable Width.

As it can be seen from the above charts, the oadrpercentage in E-CD++ is dramatically
lower than the RT-CD++ in all scenarios. This i®da the use of a real-time middleware and
employing a multi-tasking approach. The efficieasks scheduling service offered by the
Xenomai kernel speeds up the execution of the soéywhich results to a lower overhead. On
the other hand, the chart demonstrates the eftigiedfi the simulation algorithm of DEVSRT,
which does not add any significant processing hutdethe E-CD++ execution engine. Another
observed feature of this implementation is the tamtsoverhead over different sizes and
architectures of models. This guarantees a fixedw@ion engine overhead, allowing for reliable

schedulability analysis of the tasks executed erfitial real-time system.



54

3.3 Case Study: e-puck Robot Controller

As a proof of concept, a robot controller modehgdDEVSRT is designed and implemented
on E-CD++ to perform various tests and apply déferfeatures. The model is used to
demonstrate the model continuity, HILS, and haréssoftware co-design contributions of the
proposed methodology and tools.

The E-puck [Mon09] is a mobile robot with differesensors and motors. It has eight
infrared distance proximity sensors to detect atbstaaround it. There are eight LEDs mounted
around the robot’s body. It also has two motorsneated to the two wheels on both sides, which
make the robot capable of moving forward, backwardj spinning in both directions. Figure
3.7.a shows the e-puck robot and Fig8ré.b illustrates the placement of IR sensors aaDd

on the robot.

Forward Direction

LED4

Figure 3.7: a) e-puck robot b) placement of sensorsand LEDs.

A DEVSRT controller model is designed to steer thbot in a field, while avoiding
obstacles. The model contains an atomic comporegtck) representing the behavior of the
controller and a coupled component (Top) contaitimegepuckO atomic component. There are 8
input ports (NIRO ,... InIRY in the DEVS model, which each of them is intendedeceive



55

periodic inputs from a proximity sensor (the dis&ambetween the obstacle and the sensor). There
are also two output portutMotor. transferring the output commands to the motord an
OutLED: transferring LED on/off commands to the LEDs.

The controller commands the following 5 differentians based on the inputs received from
the censorsmove forwardturn 45 degrees left, turn 45 degrees right, tubnd@grees left, turn
90 degrees right, turn 180 degrees and stioyttially, the robot starts moving forward while
receiving the periodic inputs from proximity sersand analyzes them. As soon as it detects an
obstacle around itself, the former performs on¢hefturning actions based on the direction of
the obstacle. The robot keeps turning until it §reth empty space on the front. The controller
also uses LEDs to signal the action that is beerjopmed. For example, if the robot is moving
forward, the front LED (ledO) turns on and if ittigning 45 degrees to left, led7 turns on.

Table 3.1 lists the outputs of the DEVS model and thesoaiated actions to be performed
on the robot hardware. The driver interfaces tamsfnumeric values to the command signals
on the robot.

Figure 3.8 illustrates the state diagram of the epuckO pmrant. The DEVSgraph state
diagram summarizes the behavior of a DEVS atomimpoment by presenting the states,
transitions, inputs, outputs and state duratiomplgcally [Pra93]. The circles represent states
and the double circle is the initial state. The aaand duration of a state is shown in the circle.
The continuous edges between the states repregenta transitions, with the input port, the
input value and any condition on the input (withof{?value” format). The discrete lines

represent internal transitions with the associatgguts (with “port!lvalue” format).



Table 3.1: DEVS Output Mapping Table.

56

Port Name Port Value Hardware Command Comment
100 Turn all LEDs off
0,10,20 ... 70 Turn LED off The most significant digit is the
OutLED number of Led to be turned off
1,11,21..71 Turn LED on The most significant digit is the
number of Led to be turned on
0 Set horizontal & rotational speed Stop
to 0 m/s
1 Set horizontal speed to 0.5 m/s Move Forward
OutMotor
2 Set rotational speed to 1 r/s Turn 45°Left
3 Set rotational speed to -1 t/s Turn 45°Right
4 Set rotational speed to -1 r/s Turn 90°Right
5 Set rotational speed to 1 r/s Turn 90°Left
6 Set rotational speed to 1 /s Turn 180°

The controller always watches for any obstacle lan ftont of the robot by checking the
values of IR0, IR1, IR6 and IR7 sensors. Initidiye robot moves forward and if there is no
obstacle, it continues moving forward. As soon asobstacle is detected by one of the IR
sensors, the controller verifies IR6 sensor, ant shows no obstacle then the left side of the
robot is open hence, it performs a 45° turn towdhesleft side. Otherwise, it checks the IR1
value and if it is open, the robot turns 45° to tight. If both IR1 and IR6 are blocked then, it
looks at IR2 sensor and if it shows an open spheerobot performs a 90° turn to the right. The

same story happens when IR2 is blocked and IRpes,athe robot turn 90° to the left. If all of

the sensors are blocked, the robot tries turnirtgempposite direction (180°).




57

Prépare to Moye,
Forward
0s

/%
™ I8 |
o5 LED{100
(Ro>3, . ‘ & Motor!1

N1R15. - LE.’DH
IR6>0.04 0024 LEDI7O |
Motor!,,
LEDH N,

__---~Miotorld___
LEDIO .,
LEDI21

Prepare to Turn'
90° Right

fv IR0<0.05°& IR7<0.05 & IR5>0.04

(IR0?<0.05 || IR1?<0.02) &
1R6>0.04

LED!20
Motort -

LED!1

IR0<0.05 & IR7#0.05 & IR2>0.04 ’ Z%
)
Prepare to Tumn! LED!40 r@
Motor!5 90° Left Motar!1 P %/
LEDI0 .- 0s AEDN 740/(&
e LEDIG . e
R IR0<0.05 & IR7<P.05 & IR2>0.05 X ‘bo >>>>>> Motori3——————__ 3
& IR570.05 e LEDIO

LED!"1

(IR62<0.02 | IR7?<0.05) &
IR1>0.04

Prepare to Turn'
oy
Tum 180° Left B it
2s TTw.__Motorle
TEDIO_
LEDMT e
o0 5 TRE!

Prepare to Turn
180° Left
Os

Figure 3.8: epuck0 atomic component state diagram.

As mentioned earlier, in order to program a DEVSdeioon E-CD++, three main
components are required: 1) Model-file: where theglel components, input and output ports of
each component and I/O couplings are declared. mbdel-file is passed to the E-CD++
executable as a runtime argument and the lattéannates model components based on the
declarations in this file. It also contains infotina about the period of the input driver tasks and
duration of states for each atomic component. 2y&ofiles: for each atomic component a C++

class is defined and the external and internakitianms and output function are programmed as



58

methods of the component class. 3) Driver intetfége each 1/0 port at the top level of the
model hierarchy that is connected to a hardwarepoment, a C++ port driver function is
overridden from the Port super-class.

In this example, a period of 50 milliseconds isimed for the IR sensor inputs, poling the
values of the IR sensors and injecting them tontleelel, which in response invokes the e-puck
atomic component’s external transition function.

Bellow is the model file of the e-puck controlleodel.

1 [top]

2 conponents : epuckO@puck

3 out : outnptor outled

4 in: inir0inirl inir2 inir3inir4d inir5inir6 inir7
5 link : inir0 ir0@puckO

6 link : inirl irl@puckO

7 link : inir2 ir2@puckO

8 link : inir3 ir3@puckO

9 link : inird ird@puckO

10 link : inir5 ir5@puckO

11 link : inir6 ir6@puckO

12 link : inir7 ir7@puckO

13 link : notor @puckO outnotor
14 link : led@puckO outled

15 inir0 : 00:00:00: 100

16 inirl : 00:00:00: 100

17 inir2 : 00:00:00: 100

18 inir3 : 00:00:00: 100

19 inir4 : 00:00:00: 100

20 inir5 : 00:00:00: 100

21 inir6 : 00:00:00: 100

22 inir7 : 00:00:00: 100

23 [epuckO

24 preparationTime : 00:00: 00: 000
25 turnd5Time : 00:00: 00: 100
26 turn90Time : 00:00: 00: 700
27 turnl80Tinme : 00:00:02: 000

Line 1 starts the declaration of the Top couplethponent and line 2 declares the DEVS
components inside the Top. Lines 3 and 4 declageotiiput and input ports within the Top,
respectively. Lines 5 to 14 define the interconioest between the ports inside the Top coupled

component and lines 15 to 22 declare the periadmfts for the IR sensor driver tasks. Line 23



59

starts the declaration of epuckO atomic componedt lenes 24 to 27 declare the duration of
states within the epuckO atomic component.

The external function performs the state trans#tidtased on the model specifications
presented above. Bellow is the source code of tigbahe external transition function of the

epuckO atomic component.

1 if(state!=Mov_Fwd && | R0>0.04 && |R7>0.04 && | R1>0.02 && | R6>0.02){
2 lelse if((state==Mov_Fwd) &&( 1 R0<0.05 || I Rl< 0.02) && | R6>0.04){

3 state = Pre_Trn_45 Lft;

4 hol dl n( Atom c::active, preparationTine );

5 lelse if((state==Trn_45 Lft)&&(1R0<0.05 || |R1<0.02) && | R6>0.04){

6 state = Trn_45 Lft;

7 hol dl n( Atomi c::active, turnd5Tinme);

8 lelse if((state == Mov_Fwd) & (I R6< 0.02 || I R7< 0.05) && IR1> 0.04){
9 state = Pre_Trn_45 Rgt;

10 hol dl n( Atom c::active, preparationTine);

11 }else if((state==Trn_45 Rgt) &% (I R6< 0.02 || IR7< 0.05) && I R1> 0.04){

12 state = Trn_45_ Rgt;

13 hol dl n( Atom c::active, turnd5Tinme);

14 }else if(state == Mov_Fwd & & IR[0]< 0.05 & IR[7]< 0.05 && I R[2] > 0.04){
15 state = Pre_Trn_90_Rgt;

16 hol dI n( Atomi c::active, preparationTine);

17 }else if(state == Mov_Fwmd && IR[0]< 0.05 && IR[7]< 0.05 && I R[ 5] > 0.04){
18 state = Pre_Trn_90 Lft;

19 hol dl n( Atomi c::active, preparationTine);

20 }else if(state!l =Trn_180&&I R 0] <0. 05&&I R[ 7] <0. 05&&! R[ 2] <0. 05&&I R 5] <0. 05) {
21 state = Pre_Trn_180;

22 hol dl n( Atomi c::active, preparationTine);

23 }

Line 1 shows the case when there is open spadeeifrant of the robot; thereby no state
change is necessary. Line 2 manages the case Wif@earlIR1 is blocked, indicating that the
right side of the robot is obstructed therefore, state of the robot is changedotepare to turn
45° leftand the time duration of this state is set indiBeand 4. The other cases and the state
changes are also shown in the above code snippsim#ar program is used in the internal
transition function and output function to perfotine internal transitions and output functions.

As a first experiment, a random environment was etextland the controller model behavior
was observed. The model was first tested usingalitime simulation mode, in which we added

a distance generator model, which produces rand®raehsor values and inputs them to the



60

controller model. The controller model reacts te tombination of values every one second,
generated by this model. FiguB9 is the Atomic Animation diagram generated b B++
Integrated Animation tool, which shows the sequerafeinput and output events in a specified
period. Some of the outputs of motor and led partsinterpreted for easier understanding. The
port names and scales are shown on the left pawlethee values sent or received in the ports
versus the time of simulation are shown on thetrggnel. As can be seen from the figure, at
time 0 “Move Forward” output is produced by the timotor” port and the value of 100 is
produced from the “outled” port, causing the ledltdrn on (signaling the forward moving
action). After one second “ir0” receives a valueOahdicating an obstacle on the right corner,
thus the robot must turn to the left side, prodgdhme value of 2 indicating a 45° turn to left. The
rest of the diagram can be traced by following ithguts from IR sensors and the associated

outputs produced in response to the inputs frontlédtiand “outmotor” ports, on the timelines.



Atomic Animate

ltop | D ®
== e 2R =]
-\l = Fed
7] irl 2 = i
‘_L_!@ 077
scale 00 [0.077 |
rescale 0.0 Blﬂ B'D o3 F 05 (1] U?D [+ g 10
7, =N
V] it <) =
‘-“}_!L’ 0,095 03
Scale  |on0 || 79200001 |
A e . .
rescale oo I 8] T3 iE3 0= [} F |15 0=} i}

outmotar

Scale

&"E] ﬁfun ﬁfun ﬁfun ﬁ| ol

) = Move Turn 45°
Y s = 4.4 anrward*— Left ; } - FJE 5
| il [ 1'Dr|
0.0 0o

'

rescale

rescale . T 0 U N U Y N T 1 F 1
Turn
= =
v outie 5 +, led7 on ; }
‘-**_]L, 110.C! \ . :
Scale 0.0 [t1o0 |

o oo WU e Usle Wl

)
L > /
‘_L_!@ p.03e
scale 00 9900001 |
rescale 0.0 T 8] T3 iE3 |6} ]2} s L5 1 in
755 =N
V] ir6 < =
‘f_]w P05 7
Scale  |on0 || 79200001 | :
rescale oo |61 8] T3 iC3 =3 [} s |15 1 in

irs
Scale

rescale

'

2 s 0,09
00 [1ss00001 EI.EIL‘lDﬁ_L 04

i
0.0 UT [ LK} % i3 13 L [ 07 10

ir4
Scale

rescale

'

+) 3
I & )| A 0.0%5 D—”E—L 0f 008
0.0 || 79200001 | 03 00
0.0 Dln = L] 0% 8] Ubn 7 R 8] ld:l

; +) =)
Scale 0.0 9900001 |
= Il
rescale 0.0 T [0 )& . = 8] Fa [A}5] 14 ld:l
755 =N
v|irz £) #
““}—]L, p.035 u_uﬂ_llm_rl”L
Scals  |0.0 [ 39200001 | 3
0.8 Jeoiece ;
rescale % 0.0 T 2 73 5G] [8}=] 8] [1F [i}=] e 10
< R | »

Figure 3.9: Atomic Animation diagram for e-puck random distance test.




62

After this test, two scenarios were designed byegsing obstacles using events in the
event-file. Figure3.10 illustrates these two sample scenarios in hvbixstacles block the robot’s

path.

Forward Direction

Forward Direction

@ / LED4

Figure 3.10: event-filescenarios @) scenario 1 b) scenario 2.

Figure3.11 shows the I/0O diagram of the model using tHe@&+ Atomic Animation plug-
in. The two scenarios shown in FigBeL0 are injected to the model at times 4 and 8rsis;
respectively. The outputs of the “outmotor” and tled” ports are shown in the third and fourth
row in Figure3.11 and the associated commands are indicatée ifigure. The robot starts with
moving forward (by producing value 1 from port “mdtor”), when at time 4, the first set of
inputs (Figure3.10.a) are injected to the system (shown in th@’ ‘o “ir7” rows at time 4),
forcing the robot to react by turning 90° right {jout value of 4 from “outmotor” port) and
turning led2 on (output value of 21 from “outleddrp. The second input set (FiguBel0.b) is
injected at time 8 seconds, triggering a 180° {urdicated in Figure.11 in the “outmotor” row
with output value of 6) and turning the rear leedd) on (the value of 41 is produced from

“outled” port).



B Atomic Animate

= = £ ~
v]irl e = 5 T
. .) | F 0.02z L0
Stale (0.0 (== hot
rescale b.o aC3 03]
. ® =)
[#] D >~ = ST Lot 0,01
Seale 00 [oont |
rescale 0.0 T i3]
Move Turn 90° Move
= ) i v
outmaker ‘j—’) = - eac|  Forward Right { Forward Turn 180°
Seal 0.0 || 6000004 | ﬁ
cale [ fl | g 0 .
rescale 0.0 o7 TR 0= ]
PO S L10.C ] Turn LED 0 OFF Turn LED 2 OFF
Tumn LED 2 ON YV ¥V TumLEDOON _
Sale 00 |10 | - L0 4
rescale 0.0 o U U -
(+) =
s o, 0.011
Sle |00 [oomr |
rescale 0.0 o o
e PO BFS oy L1 n.01
Scle 00 |oonn |
resials 0.0 o L
s o P o 0.0l .ot
Seals (00 |oon1 |
rescale u.0 i L
: ® | @ 01
ir4 >~ = p.iic
Scle 0011000001 | —
rescale L R 13
"3 21 L D.11c pht—
Scale 0.0 | 11000001 ] o
rescale 08 o o
[#] iz )33 2 0.11C f
Seale 00 (11000001 | bt
rescale bt 0.0 0 3] v
< b €| 2<€ | >

63

Figure 3.11: Atomic Animation diagram for e-puck random distance test.



64

After verifying the model behavior in various sceas like the ones discussed above, the
model was deployed in a real robot, where it wascated in real-time mode in which, the driver
interfaces were activated and performed the tramsfon of 1/0. The same behavior was
observed and the robot could find its way throughdbstaclée's

This example provided a prototype of a real systierigned and developed using the
DEVSRT development cycle. The controller and thgiremment models were co-designed
together; where they were tested in virtual-timmwdation mode representing the hardware-
software co-design approach. The controller moded ®lso tested with virtual inputs, allowing
for simulation-based verification of the controliara risk-free environment. Finally, the tested
model was deployed on the hardware proving the inomiginuity feature of DEVRT. Various
other RT models have been designed and deployéiferent hardware, such as robots, FPGA,
and embedded boards (see [Moa08, Hol09, Moa09, 8xnaloalOb, MoalOc, and Sad10]).

* A video of the robot is available lttp://www.youtube.com/watch?v=UFHzLkOoXyQ




65

Chapter 4: Extended Applications of DEVSRT

This chapter discusses practical applications efpifoposed DEVSRT approach. One of the
proposed applications is developing a generic agitweight technique comprising of an
interface and a message format for deploying liegad-solutions allowing for communication of
DEVS models with external environments. There igadety of DEVS-based RT simulation
engines and a large number of existing models éir ttmodel repository. This technique lets
modelers to reuse these models in an RT collaherakecution environment, allowing for
incorporating specific services each simulationieagffers (e.g. continuous systems modeling).
The formal interfacing mechanism of DEVSRT allows ihtegration of RT models with virtual
reality engines, providing a visual representatmnthe simulation activities in real-time.
Combining these capabilities with the embeddedufeatof the DEVSRT, allows for visual and
remote supervision of control systems developedgusiis framework.

The main goal is to follow a Hardware-In-The-Log@peoach where RT simulators (numeric
or visual simulation engines) themselves see edlobr @s real-world devices (black boxes),
interacting solely at the network messaging leVee motivations for this research are to show
how to interface M&S-based systems under DEVS §pations implemented on different

tools, and also a Hardware-In-the-Loop simulatiatin\weal-time visualization engines.

4.1 DEVS-Based Collaborative M odeling

A collaborative simulation consists of a source sladhose components are broken into two
or more groups prior to execution. These groupsoofiponents execute separately on different

simulators that may or may not be implemented usiiegsame simulation engine. The idea of



66

collaborative modeling using DEVS has been followegrevious works. Collaborative DEVS

Modeler [Sar99, Sar01b] provides a virtual modeklaykspace for expert modelers to develop
hierarchical and modular collaborative models. Trasnework allows for model development,

transformation of coupled models (federates) imautation object, and verification of behavior

synchronization among the federates. Neverthetbssenvironment is limited to collaborative

model development and does not implement collab@raimulation.

[Wan03] presents a web-based collaborative enviesinfior DEVS model development.
This framework uses an XML document to presentrtizalel digraph and code to different
parties and allow for exchange of ideas during riiedeling phase. This approach is again
limited to collaborative model development, andktamterfacing of different models together in
order to build a collaborative simulation.

Another more related approach to this work is takgnLom06] which uses independent
real-time simulation engines that accept the irglewrapping of selected components wishing to
interact with other simulation tools at a high lew&rappers hide the components and provide a
means of communication with the components modelége external environments.

In this research, to make the interfacing visildetie modeler and allowing for dynamic
exploitation of the interaction among the simulaipthe wrappers are confined in the topmost
coupled component. This will increase the efficierad the system as the extra processing
burden is removed from the atomic components. Tthercadvantage of this approach is the
modeler-developed interfacing mechanism, allowirggy fnodel level integration of the
simulation entities. The purpose of this reseaschoi develop collaborative models in an RT
context with the DEVSRT M&S framework to providgktform for collaborative execution of
the final embedded system.

Models developed for a specific tool can be re-enptnted into another tool by following
their DEVS formal specification. However, this i1$ @rror prone and time-consuming approach.
A more robust and scalable strategy is to keep oomapts implemented in their original DEVS

tools and make them interact over a network-cenimfcastructure. In this decentralized



67

approach, applications resulting from the collabweeaactivity of the simulators (and other real-
world devices) must be designed to be as robustcqsred in the presence of anomalies (e.qg.,
packet loss, corruption, and sequence inversidm). participating DEVS engines do not need to
worry about synchronization of time or behavioitas handled at the model level.

In this approach, the output ports of a DEVS mael interfaced to input ports of another
DEVS model and exchange DEVS formal 1/0O throughadapted message structure. While the
simulation engines are running in real-time, déf@rmodels can join this collaborative network
of running models and feed from the outputs of otlmdels while contributing their own
outputs to the other models in the network. Thevoek interface for each DEVS port can be
implemented in a different way (even using différeatwork protocols), thanks to the abstract
message structure for transfer of the DEVS outplite component-oriented aspect of DEVS
allows different coupled components (federates) model to operate autonomously following a
common real-time clock advance. This plays the oblan implicit synchronization mechanism
for event transfers between DEVS tools.

The approach delegates to the modeler the respliysith being aware about the worst case
scenarios expected for many real-world non-ide&dlab®rs. For instance, clock crystals of the
hardware platforms hosting each simulator may ,dnétwork latencies may vary considerably
depending on load conditions, and also messagesdearorrupted or delivered disordered.
While these and other potential problems can bladdy adding fault tolerance mechanisms
into interfaces and/or underlying communicatiorrasfructures, there are applications in which
they can be regarded as non-critical. Hence, thaach can be categorized as a soft RT

collaborative simulation approach, suitable forteyss requiring a fast and best effort solution.

A) Message Structure

To implement the proposed communication schemelobaly message architecture is
required. The message is supposed to carry DEVutsubf one model to the input port(s) of
other model(s) over a communication layer. A DEMS8pat set (Y) (defined in the DEVS



68

formal specification) contains the (port, valuejrpen which the port is the output port and the
value is the actual output value produced by thelehdNe need to transfer this pair over the
network and inject it to another model running aother DEVS tool as an input pair. In order to
transfer this data, a lightweight message structaeying DEVS 1/O is defined with the
following data fields:

Port_ID: an integercontaining the destination model’s input port idsBd on this field, the
receiving model delivers the input to the corregiut port.

Value: a character array carrying the value. The valueatso be a sequence of values, sent
to a specific input port in the destination modée format of the input value is interpreted by
the input interface at the destination model

The generic message structure allows for submittifferent types of data between
networked models. A message interface at each DEWiSof the model provides the embedding
of the message as a network packet and its exiraeti the destination. Each port owns an
independent interface, which can be configureditorst and receive different types and formats
of messages.

The modeler designs the collaborating models, lgainnmind the synchronization of their
behavior, using a scheme to collaborate safely.régghes and tools such as Collaborative
DEVS Modeler [Sar99] can be used to design theabolative models and verify their behavior

in terms of synchronization and consistency, piaogxecution.

B) Example Collaborative M odel

Previous experimentation with DEVSRT models for nebobot control applications made
available a repository of target-specific low-lew@ntrollers. As controller complexity grows
and new requirements arise, it is convenient td spstem’s design tasks into specialized and
collaborative teams, reusing both experience aedipusly developed solutions. Following a

component-based approach to demonstrate the ppadenique, the plan is to split the e-puck



69

robot control model (presented 313) to two main components: one for the contrgbathms,
and the other for dealing with robot-specific drisie

The e-puck logical controller is divided into twarfs: theController and theDriver. The
Controller is the main decision making unit, where the conmsato avoid obstacles are
generated. Thd®river model works as a client who forwards the inputamfrrobot to the
Controller and the outputs fror@ontroller to the robot. The interface to the robot is pérthe
Driver model. Figure4.1 shows an overview of the execution of the tadltative e-puck

controller model running on two workstations.

Controller Driver

Figure4.1: Overview of the Partitioned E-puck M odel.

The e-puck robot communicates with tBgiver model running on workstation 1 via
Bluetooth connection. Th&ontroller model runs on another workstation communicating
through network infrastructure with th@river. Figure 4.2 depicts the e-puck collaborative
DEVS model details. The e-pucontroller receives IR sensor values frdnmiR input port via
the network and sends the motor output©tdMotor output port, which is forwarded to the
Driver model. TheDriver receives the IR sensor values from the e-pucktridfrough eight
input ports, and submits them to tBentroller model by serializing them through one output
port. This method reduces the network traffic wieiteapsulating all the values into one network
packet. TheController model does not deal with LED commands, and thaak-priver model

generates these commands based on the motor commnemedved from th€ontroller.



70

IR

I Lr\IR m‘ OutR|  |R2net LRO E“RO roximity
< < C > ) < b S ( sensors

IR7 InIR7
Epuck Epyck
Controller Driver || gp OutLED
> »~ LEDs
InMotor
Motor =OutMotor > "‘N etwo rk") > Net2Mptor Motor > OutMotor @

Figure 4.2: E-Puck Controller Collaborative DEVS M od€l.

The Controller model is implemented on PowerDEVS [BerlO] (by aeskers from
Argentina) and theDriver model on E-CD++. UDP network protocol is used foessage
transfer over an Ethernet network. UDP is chosesr G\CP for its simplicity and low latency,
and since the experiments were done on a localankefithe chances of loosing a UDP datagram
were negligible.

The DEVSRT formal interfacing technique allowed fiwe design of the I/O interface
functions, and the E-CD++ user-implemented drivemctions provided a fast development
platform to implement the interfacing mechanismbe Driver model’s OutIiR and InMotor
DEVS I/O ports were interfaced with the network &nkR0, ..., InIR7, OutLED, andOutMotor
were interfaced with the robot hardware. TDever is initially in idle state waiting for the
periodic inputs from IR sensors. As soon as it ikaethe first value from an IR sensor, the
former buffers it until it receives the inputs dff sensors. Eventually, it forwards the inputs im a
array of values embedded in a network packet \e@0mitIR port to theController running on
PowerDEVS. TheDriver stays inidle state listening to the inputs from IR sensors &nch
InMotor port, where the motor commands are received from Qontroller. The Driver
generates the appropriate LED commands based aedbed motor commands and forwards
them to the robot. Therefore, a generic Contrat@del running on a different simulator with

different platform is used to control a specifibob on another platform. Each DEVS output is



71

associated with an action on the robot (listed abl€3.1). The driver functions of the robot
output ports QutLED and OutMoton submit the commands to the robot via Bluetooth
connection. An embedded program on the robot pegdahe commands on the robot hardware.

Bergero [Berl0] and Castro [Casll] implemented Goatroller model on PowerDEVS
using an ad-hoc interface to connect Bréver model 1/0O to the PowerDEVS RT simulation
engine. The two models were executed on two diffeveorkstations, transferring data through
network infrastructure.

Various experiments on testing the example modeewarried out. To show the results of
the two simulators collaborating over a networle kbg files of the experiment in E-CD++ with
real-time timestamps are shown in Figwt8. The input log file records all the real-time
incoming data (from the environment) to the modaijsut ports while the output file saves all
the outputs of a DEVS model (with microseconds igien). The inputs and associated outputs
are highlighted with red boxes in the figure. le first box of the input file, two series of the IR
sensor values inputted at time zero and after Jgsatonds are shown (the IR sensor inputs are
received every 50 milliseconds.) The first box loé butput file shows the output to tBeitiR
port, which triggers the output driver associatethis port to send the array of inputs containing
the values of the eight IR sensors. Therefore, wdlenf the IR values are received, they are
forwarded to the&Controller. Box 2 of the input file shows an input signale®med frominMotor
port containing value “1”, which is interpretedbox 2 of the output file with the accompanying
LED commands (added by theiver). The same sequence happens in box 3 where tbhehab
found an obstacle and the associated IR sensoevahe forwarded to thi@ontroller, hence the

Controlleris instructing the robot to spin 180 degrees.



72

ECD++ Input Log File
00:00:00:000:990 inir0 0.0738992
00:00:00:000:228 inirl 0.0736404 ECD++ L Fil
00:00:00:000:442 inir2 0.0706652 ¢ OUtpUt 09 e
00:00:00:000:654 inir3 0.0702771
00:00:00:000:866 inir4 0.0665256
00:00:00:001:079 :!.n:!.rs 0.0609632 00:00:00:001:967 outir 0 |—T® Send IR Values
00:00:00:001:291  inir6 0.0658788 | > 000 i00 ocsiocs ol 0 | Send IR Voloes
00:00:00:001:503 inir7 0.0748047 | e :
00:00:00:050:327 inir0 0.0738992 00:00:00:888:589 outled 100 Turn all LEDS OFI
00:00:00:050:763 inirl 0.0736404 -

L » 00:00:00:888:695 outmotor 1 P Move Forward
00:00:00:050:989 inir2 0.0706652 00:00:00:888:793 outled 1 P Turn LED 0 ON
00:00:00:051:211 inir3 0.0702771 : : : : o
00:00:00:051:432 :!.n:!.r4 0.0665256 00:00:02:538:095 outmotor 6 ++—p» Turn 180°
00:00:00:051:653 inir5 0.0609632 2 o

.. » 00:00:02:538:248 outled 0 P Turn LED 0 OFF
00:00:00:051:875 inir6é 0.0658788 00:00:02:538:351 outled 41 B Turn LED 4 ON
00:00:00:052:097 inir7 0.0748047 I . o
Y. - - 3 00:00:04:590:298 outled 100——P» Turn all LEDS OFI
100:00:00:888:086 inmotor 1 FJ 00:00:04:590:448 outmotor 1 P Move Forward
. : 00:00:04:590:548 outled 1 p Turn LED 0 ON
[00:00:02:506:446 _ inmotor 6 }7 F’ 00:00:04:591:178 outmotor 2 1 Turn 45° Left
- 00:00:04:591:277 outled 0 P Turn LED 0 OFF
00:00:04:558:369 inmotor 1 4 -
00:00:04:590: 728 inmotor > 00:00:04:591:376 outled 71 g Turn LED 7 ON

Figure 4.3: E-CD++ input and output log files.

The robot succeeded to perform obstacle detectidndaection changing when the original
DEVS-based system was split into two collaborateal-time models: Controller and Drivers
running on PowerDEVS and E-CD++, respectively

The potential advantage of interfacing E-CD++ tavBdEVS is the collaborative execution

of discrete and continuous systems under DEVS paoons. PowerDEVS provides means for

® A video of the collaborative e-puck model in antiocan be viewed online at

http://www.youtube.com/arslab#p/u/12/iRqrwkPL-kQ




73

DEVS-based execution of continuous models, progidan great potential for RT hybrid
execution of continuous and discrete models betviReemerDEVS and E-CD++. This example
showed a collaborative model design, implementateord execution cycle, where two
development teams designed a shared model, impteth@non different tools, and executed it

in a connected manner.

4.2 DEVSRT and Visualization

Integration of a computer-based virtual environmewith a mathematical computer
simulation provides a 3D graphical visualizatianyihich the user can interact with the model in
real-time and conceive the model's behavior. Theérenment can be shared among different
users and the simulation engine can also be geloigedly remote. This platform provides a
collaborative environment for users and can be usegbplications such as supervisory control,
education, and entertainment. Several generic lmmiddive virtual environments exist (see e.g.
[Car93, Pan96, Wat97, Ara08, Bou08, and BouO9jinde their own communication scheme,
which use sophisticated middleware technology saschlLA [IEE10]. The objective here is to
show an example where lightweight user configurabléaboration between DEVS models and
a virtual reality environment is achieved, using fnterfacing delegates of DEVSRT and a
specific message structure defined for this apiina

In this application, an RT Cell-DEVS [Wai02a] mod@émplemented by Jafer [Jafl0,
Moallb]) interfaced with the e-puck robotic agemdigned in DEVSRT) and an advanced
immersive visualization environment (developed bymed [Ahm11, Moallb]) for Emergency
Management is developed. The emergency is hanglexh kautonomous robot controlled by a
DEVSRT model, through interaction with the RT ckllusimulation of emergencies, receiving
RT data about the location of emergencies on aspalte. The immersive environment is used to
visualize the emergency management activities basede RT data received from the other two

parties.



74

Figure 4.4 shows the system architecture of this comlmnatlt integrates a Cell-DEVS
model for navigating the emergencies, a DEVSRT gamay response model by a robotic
agent, and a virtual reality component that rendlees3D scenes. The three components are
designed and developed collaboratively by differestarchers, incorporating DEVSRT formal
interfacing technique as the principal interaceotity between the robot, the Cell-DEVS model,

and the virtual reality environment.

EDE Cell-DEVS

Emergency
Simulation

DEVS Emergency
Response Model

iluetooth : *M *
') *31?; b

Robot 3D Visualization

Figure 4.4: Collabor ative System Architecture [Moallb].

As can be seen in the figure, each sub-systemonresdifferent computer, communicating
through messages transferred over a network. F§brdepicts a more detailed overview of this
framework with the components in each federate @mhections. The emergency simulation
sub-system is in charge of the Cell-DEVS emergenogel. It communicates with the DEVSRT
emergency response sub-system informing it abaudiimensions of the emergency area, and

sends updates about the location of the emergesaay bn the grid. At the same time, it also



75

sends this information to the visualization subterysproviding it with RT data about the scene.
The DEVS-based control model uses the emergenoyniaition received from the Cell-DEVS
engine to respond to the emergency. Based on tbesenands, the robot moves on the
simulated grid and deals with the emergencies dee another. The emergency response sub-
system dynamically updates the cellular emergemawlation and visualization sub-system
when emergencies have been resolved. This procassnwees until all emergencies are
extinguished. The visualization sub-system prod@t2scenes of the dynamic updates received
from both the cellular emergency simulation and@E®8/SRT emergency response sub-system.

DEVS Emergency Response Model Cell-DEVS Emergency Simulation
P D Emergency area dimensions
Model Reader I ce-‘lls update

cells datai Network

Robot Controller !

A

A
4 i control

i commands
Bluetoot‘h

Fire DataManager

uonisod joqo.

I
I
I
i
Sen50r§
I
I
I
I
i

data
o

The autonomous robot interacts with the Cell-DEWSutation engine in RT. The robot tries

.| Robot DataManager

Figure 4.5: Detailed System Overview [Moallb].

to reach an emergency location and extinguish é @na time by using the cellular space as a
map to navigate. Initially, the robot model recaivke size of the cell space and builds a copy of
the cellular space for itself. The robot also reesithe updates of cell values from the cell-

DEVS model and marks the changes on its own copy.



76

The robot controller model consists of two levelsontrols: a High-level and a Low-level
control, referred to as HLC and LLC, respectiv@lire former is responsible for path planning
towards the closest emergency location (using #ta grovided by the cell space), while the
latter is in charge of avoiding obstacles (the nhapecifications for this control algorithm are
the same as the example model present in se&i®n The robot model has two atomic
components: th&lodel Readeand theController. TheModel Readers responsible for creating
the local cell space, updating the cell space bgiveng the updates from the Cell-DEVS engine,
and signaling theController component to make path-planning decisions. Tuentroller
implements the HLC and LLC algorithms, sending ontommands to the robot and informing
the visualization engine about the robot movements.

Figure4.6 depicts an abstract representation of the h@hakthe two components in DEVS
Graph [Pra93]. Thdodel Readestarts inwait for dimensionyhere it is waiting to receive the
dimensions of the cell space from the Cell-DEVSieagAs soon as this happens, it builds a
local copy of the cell space, then transitionsdie. During theidle state, theModel Reader
receives cell space updates and marks them onotted topy. If an emergency update is
received, it is added to the emergency list. Atehd of this state, th€ontroller is signaled to

carry out the next movement.



77

Model Reader Component Controller Component
Send a signal
;rto controller‘; Received Signal from Model Reader

&no ¢ y exists yet

Received
dimensions

Wait for

_ 8 dimension Prepare Stop the robot o
R end x,y to Initialize
Create local © Extinguish & ----—- & - - <fvsff~|.—yt—.—~ 0
0Os o isualization 5
cell-space Inform the visualizatio

and Cell-DEVS engine
e update
Received Signal from Model
Reader & there is emergency

Reached the location

Calculate Turn the robot right
next Step

Oms

*****

Received Signal from
Model Reader
Move the robot forward
&

Inform the visualization
about the next step

Move Turn
135° Left Forward - 180°
470ms ) 600ms
A !
I I
i |
,,,,,,,,,,,,,,,,,,,,,,,,,, Movethe e
robot forward

Figure 4.6: DEVS Graph of therobot controller [Moallb].

The Controller starts by sending the initial position of the robwm the visualization engine
and stops (a state where it receives periodic signals ftommModel Readex If there is an
emergency location in the emergency list, @antroller transitions toCalculate next stepnd
the following tasks are executed in the correspapéixternal transition: sort the emergency list,
find the closest site, apply the HLC and LLC algans, and calculate the next step. Based on
the result of the control algorithms, t@entroller changes to one of the movement states and the
output function submits the movement commands ® rbbot, and in the next step this
information is also sent to the visualization ergiithis sequence is repeated until the robot
reaches the emergency site. In that case, theatlenttransitions tqorepare extinguishAfter

this, it outputs the stop command to the roboprmis the Cell-DEVS and visualization engines



78

about the emergency restraint, and transitionshéostop state, where it waits for the next

location.

A) Message Structure and I mplementation

The collaboration of the three components is based global message structure transferred
over a network infrastructure. The message conthm$ollowing five data fields:
1. msg_id an integer data type used to decode the typeeafniessage and the value of the
next fields in the message. There are generalgytiipes of messages:

* Thedimension messagmrries the size of the cell space from the C&WMBS engine to
the DEVS and visualization at the start of the exiea.

» Therobot initial location messagearries the initial coordinates of the robot frim
DEVS engine to the visualization.

» Thecell space update messacgaries the cell value changes during the exectitam
the Cell-DEVS engine to the DEVS and visualization.

» Thenext movement messaggaries the direction of the next movement atstiaet of
each step from DEVS to the visualization engine.

» Theextinguish messagmrries the location of the emergency that has bee
extinguished by the robot, from the DEVS sub-systenhe Cell-DEVS and
visualization sub-systems.

2. X used to carry the horizontal axis value (theZzamtal dimension or the horizontal
coordinate).
3. y: used to carry the vertical axis value (the vattdimension or the vertical coordinate).
4. dir: carries the next direction.
5. value carries the value of the cell and is used incileupdate message.
These messages are embedded in a UDP packetaastetred during the execution of
the model through the network.



79

The controller model is implemented on E-CD++ ahd proper interface functions are
programmed to send and receive the above mentiomessage format. The e-puck robot
[MonQ9] is used as a small-scale representatiorthef emergency responder robot. The
visualization engine is implemented using Vega Br[vegl1] and OpenGL [Hil08] by Ahmed
[Ahm11]. Vega Prime is a high-performance softwamgironment for RT simulation and virtual
reality applications. It serves as an applicatisngpammer interface (API) consisting of a
graphical user interface called LynX Prime and V&gene libraries and header files of C++-
callable functions. 3D scenes are rendered usingofénflight models. The terrain model
consists of trees, different buildings, roads, #te. robotic agent is represented by a 3D truck
model.

After testing the system in virtual-time, the models executed in real-time and the behavior
of the model was thoroughly verified. The robot ceeded in performing the emergency
recognition based on the model discussed abovahendisualization engine rendered the area
and the robot movements in a real-time streamingiehoFigure 4.7 shows the virtual
environment in a window that is divided into twaaalmels; one for perspective view of 3D scene
(on the left), and the other channel is for ortlapdpical view of the 3D scene which acts as 2D

Map of the area (on the right). More details alibig project can be found in [Moallb].

® Some of the visualization videos can be watchedinenat youtube.com/watch?v=9aNVZRkrtC8,

youtube.com/watch?v=5V4xNjdoEug, and youtube.coneh2/=2gaWLJLVJtO0.



Figure4.7: 3D Visualization Engine Zoomed Map [Moallb].

Another interactive virtual reality project implented using this framework is presented in
[Ahm11], where Cellular Agent model (VCELL) desighley Ahmed is used for simulating land
combaf and is collaboratively simulated using a Cell-DEsgnt model and an advanced visual

immersive simulation environment.

" However, this dissertation does not encourageippart military related research by any means.



81

Chapter 5. Imprecise DEV S

The Imprecise Computations (IC) technique [Liu94ad useful approach for handling real-
time scheduling issues under transient overloadstrbduces a formal method of separating the
critical (mandatory) part of a task from its unical (optional) part, thus making it possible for a
real-time system to accept more tasks to the systhife trying to run as many optional
subtasks as possible. In this way, the system eatybamically configured to accept more tasks
when the system’s processing traffic is high, wipl®ducing less accurate results, versus
executing tasks completely and producing accuestelt; when the system burden is low.

“A task is monotone if the quality of its intermaté result does not decrease as it executes
longer” [Liu91]. Monotone tasks can be found in abhall areas of computation and their
flexibility in terms of duration of computation lpsl designers to implement the IC technique. A
solution to handle high processing peaks in an y&tes is to divide the monotone tasks in the
system into two versions of a computation: the prynwhich executes longer and produces
more accurate result and the secondary versionvexecutes shorter but produces less accurate
result. Whenever the deadline is short, the seggngasion can be used to meet the deadline
while having an acceptable result.

Contrary to monotone tasks are tasks with 0/1 caimés. These tasks must be executed to
completion or not executed al all. Scheduling @hstraint tasks is more difficult [Liu91].

The following definitions are used in schedulingalthms for imprecise computations:
Considering a set T =, T,, ..., ) of preemptable tasks, the following parameteesdafined
regarding each task.

ri is the time at which task is released.



82

di is the deadline at which ta3kmust be completed.

7 IS the processing time required for tdsk

w; is the weight of the task which is the relative importance.

Every taskT; is composed of two subtaskdandatoryandOptional The mandatory subtask
M; needs processing tinme and the optional subtagk needs processing tinig Thenm + ¢; =
7. Figure5.1 illustrates these definitions.

A taskT, is referred to as executed when at least all aadatory subtasks included in the
associated jobs are executed (jobs are instanctssks occurring during the execution). The
optional subtasks of task are available for execution only if the mandateuaptasks off; are
executed properly. The scheduler can terminate @ioral subtask at any time during its
execution. Based on this definition, a perfect haal-time system is a system in which all the
tasks are composed of mandatory subtasks and ecpedft real-time is a system in which all

the subtasks are optional [Liu94a].

Intermediate result Final result

1 n 1 o 1

1 t ]

Figure5.1: A Monotone Task Divided to Mandatory and Optional Parts[Liu94a].

IC has been well investigated and many RT scheguiigorithms have been introduced
(some of these algorithms are presented in sebtibn Imprecise scheduling algorithms benefit
from the separation of mandatory and optional slstausing different scheduling approaches
for each of them. Some of the algorithms also tateaccount the priority of the jobs, and there
are also algorithms for periodic jobs. The conagrror is defined based on the portion of the

optional subtask in each task that has not beecuec



83

A common problem in hard real-time systems is tbeuoence of overrun situations when
the system does not have enough processing resdordfill all the requesting processes. This
issue poses critical risks to the hardware undetrob and it may cause catastrophic results. In
these cases, the IC technique offers an effectawe af resource utilization. This chapter shows
how to use this technique for the proposed DEVSRméwork by introducing the Imprecise-
DEVS (I-DEVS) methodology. This approach combinbke tlynamic advantages of the IC

technique with the rigor of a formal modeling metbtmgy.

5.1 Algorithmsfor Imprecise Computation

Imprecise computation has been used for minimigimgr in real-time task scheduling. The
error is calculated as a function of the amountistarded optional processing as a result of
overrun situation happening in the system. Manylio# task scheduling algorithms have been
proposed in the past, based on IC technique (tefg@8hi91, Liu95, and Ayd99]). There is no
optimal algorithm that minimizes total error in bne RT scheduling systems, when a feasible
schedule exists, because of the lack of a-prioavkedge of the occurrence time of the jobs
[Shi92]

The mandatory first algorithm assigns processingesi to mandatory tasks first, based on
statistics to reduce the total error (refer to fBaand Chu90]).

The NORA (No-Off-line tasks and on-line tasks Reagbpn Arrival) algorithm [Shi96] is
based on EDF (Earliest Deadline First) algorithrd Bnmainly designed for online task systems,
in which each task is ready upon arrival. Each tiaskssigned a reserved interval based on
reverse scheduling algorithm. Each task’s mandasabtask is assigned a reserved execution
time starting from its deadline equal to the amafrjirocessing time required for its mandatory
subtask, based on the EDF algorithm. As long agrtaedatory task set is feasible a reserved
interval set can be found.

The DOT_Sched algorithm [Che09] is an extensiothetoNORA algorithm for online tasks

that are ready upon arrival. It uses three resenvdists: R(M) for mandatory tasks, R(O) for



84

optional tasks and R(M+0O) for both of them. Like R® algorithm each task is assigned a
reserved interval in R(O) or R(M) and R(M+0O) listtarting from its deadline way back equal to
its processing time.

RT-Frontier [Kob04] is a real-time operating systmat presents an imprecise computation
framework for constructing real-time applicatiomsdecomposes computations to mandatory,
optional and wind up parts. The wind up part wods a termination function after the
termination of an optional part, reducing the teration cost and increasing portability. A novel
scheduling algorithm called Slack Stealer for OmioParts (SS-OP) is used in RT-Frontier
which is based on the above mentioned three segmenécise computation model and imposes
small overhead to the system, while applying dyrdoad balancing scheme.

Except the work presented in [Kob04], which onlyligs IC in a specific operating system,
no research aims at integrating this technique witbrmal methodology to be used in real-time
and embedded system design and construction. Tooged I-DEVS approach, allows the
model designer to deploy this technique at the giegime, specifying the optional and
mandatory behaviors of the target system.

IC has been applied to different fields, includR§ and embedded systems [Liu94b, Kob04,
and Wie08], multimedia processing [Fen93, Hua95 &hen97], planning and artificial
intelligence [Zil93, Fuj99, and Par02] and datalsag¢an00 and AmiO3]. Despite all of these
efforts, IC is not yet widely used in industrial leedded applications. The reason might be
related to “strict theoretical assumptions andl#oi of cost-effective support method that can
be easily implemented in embedded systems” [KobT#]s dissertation attempts to address

these issues in the context of real-time DEVS-bagstems.

5.2 DEVSTask Model

The main computations in a DEVSRT runtime engineuocduring state transitions
(modeling subsystem) and message transfers (costrbfystem). Assuming the message

transfer is an overhead associated to the contaitrsng between the standard DEVS tasks in



85

the system, the set of tasks in a DEVSRT systenth@ory) is composed of transitions and
output function. This information is used to map BDEVS functions&ex:, dint, andA) run by RT
simulator into an RT tasking system, where we ob&platform that IC can be applied. Figure
5.2 shows the processing tasks in a DEVS atomicpooent during a state transition. The
external transitionX) is mapped into a task that initiates the stt@he task release time is
equal to the arrival of the input to the model ffrthe external environment in the case of the
topmost coupled model, or when the output genermateah output port is received in the atomic
model input port). We assume no deadline for thiask. The output’j and internal transition
tasks () are considered to execute together (fdsks outputs in DEVS are always followed by
an internal transition). The release time of tasis equal to the end of the st&and specified
by ta(s) (indicatoil). Its deadline is specified by the function df{aficatord) that we added to
the atomic model definition.

Time 01 2 3456 78 9101112131415
L1 L1 | I I N [ N I | -
S [A 1]

Figure5.2: Processing Carried for a State Transition.

Now, in a scenario when a flock of inputs are itgdcto the system, the system has to
perform a pile of transitions and produce outplitghis case, the output tasks are drifted to later
times, which might exceed their deadlines. Figbi® shows an overload scenario where four
inputs are injected, starting external transitionsdifferent atomic models. As can be sedp,

A2 and 14 meet their deadlines; howevé3 and12 (second instance at time 18) do not. The
internal transitionl2 produces a new state with ta(s) equal to 4 timesuwhich exceeds its
deadline at time 17. This situation was preventaptevided that, the system could detect the
overload conditions early enough to apply IC-basgteduling.

In order to execute these models, we extended tB¥Datomic model definition by

dividing the above-mentioned tasks into mandatong a@ptional parts, incorporating the



86

imprecise computation concept. AssumiKgtasks are always mandatoryl tasks can be
optional. Thel subtask of an optionall task can be terminated under transient overloads.
other words, during overloads, the model skipsamati output functions to save time and
resources for the mandatory ones. For instancequémnomous robot in a bumpy road with
obstacles (flooded with obstacle reconnaissancatsppcan discard unnecessary tasks (e.qg.
reporting or video streaming to the base). A sinsleenario can occur in any RT system where a
sequence of optional outputs can be skipped twiatke the overload situation by keeping the

necessary outputs produced on-time. Schedulakitigtysis can be applied to this model, based

BEE B

Tme 0 1 2 3 4 56 7 8 910111213141516 1718 1920
[ T T S S N S N Ny B ey

XXX X4 [x2 12[al 1M 4RSS

Figure5.3: Overload Scenario.

on various available methods (see e.qg. [Liu73]).

A) Problem Statement

Based on this argument, a real-time DEVS systenbegorone to overload conditions at any
time during execution, proposing a significant rastd reducing the reliability of the system in
hard real-time applications. The overrun situatean be very transient, happening at very
random occasions when the system is flooded withriRlits. Therefore, even by strengthening
the hardware and processing resources of the sytenproblem can still exist and happen at
high processing peaks. The nondeterministic natum@ lack of a-priory knowledge of the
occurrence times of the jobs (especially sporanls j[Liu00]), adds to this issue severing the
risk. Therefore, the need for a more robust medmans inevitable. It is almost impossible to

design a fully trusted RT system in a perfect néewheinistic situation [Liu00], however



87

heuristic and mitigating techniques can be incaeat to reduce this risk and reach an accepted
level of reliability.

Having said this, IC approach can be a naturaloghimi solving such problems in a real-time
DEVS context. Defining a clear theoretical taskaygtem for DEVS provides a reliable starting
point to employ various available techniques argbithms for reliable scheduling and also
schedualibility analysis of these systems. The gsed DEVSRT approach with minimal
modification to DEVS, allows for well-organized @gration of IC technique with DEVS. The

rest of this chapter will elaborate the idea arebent the results.

5.31-DEVS Formalism

Despite the theoretical advances in imprecise coatipn, there are few practical projects
aiming at producing effective RT tools based ors ttéchnique. As mentioned earlier, the
objective is to provide an imprecise framework &pplications where the job arrival times are
not known a-priori. The approach tries to balariee domputation when the system is busy and
on the other hand not reducing its performanceJenvkeeping the run-time overhead of the
implementation as low as possible.

To satisfy these goals, Imprecise DEVS (I-DEVShuslt on top of DEVSRT. The atomic
model definition is modified by adding a mandatany optional condition for each state, as
follows:

AM =< X, S, Y, dext Oint, Ocom A, ta, d >

Where X, Y,8ext Oints Ocons A, ta and d are the same as in DEVSRT,

S:{(s, ¢) | §1Z% and c0 {mandatory | optional}}.

The states of the atomic model are categorizedaeslatory and optional. A mandatory state
will have a mandatory output function (represerssdoutput task) and an optional state will
produce an optional output task. This abstractiothe definition of mandatory and optional
tasks in the level of state machine, allows the elerdto define imprecise models without being

involved in the details of the lower level tasksystem.



88

The main runtime algorithm performed in the Roobfmator (RC) (the top coordinator in
the DEVS abstract runtime hierarchy), is unchangfed. started first by waiting for an external
or internal event. RC routes external input throaghexternal message (q) to the destination
atomic model (which triggers they: function). Otherwise, it waits for the closesteimtal event
(A1) to send collect (@) and internal messages (*}hto target atomic model. The collect
message executes théunction on the atomic model and the internal ragesexecuteg;. The
atomic model responds to the @ message by exedin@igfunction and returning the output
value through an output (y) message. The atomiceialdo executes, in response to a *
message, and returns its next internal event tiyreedone message.

Whenever there is more than one internal eventetedyviced, the mandatory ones have
priority over the optional events. If an optionatarnal event is to be serviced later than its
release time plus a grace period, its output wéll discarded. The grace period depends on
various factors and it defines a threshold forrttiag lateness in processing optional tasks. As
discussed earlier, when the system gets busyatks tare drifted later from their release times.
This situation can be seen as an indicator of arload situation in the near future, triggering
the system to react to the conditions. The threklal which the system starts reacting by
dropping the optional tasks is determined by thecg@rperiod. It can be a function of the
processing resources, level of criticality of thgtional tasks, and system’s attitude towards
reacting to such conditions. Grace period can le&l us tune the system to obtain desirable
tradeoffs between losing accuracy and meeting deatllines. A system with hard real-time
tasks can have a shorter grace period in ordeawe me for mandatory tasks by sacrificing
optional ones and gain more reliability, while asteyn with soft real-time nature can tolerate
more delay in order to achieve more precision amlity. The grace period can also be modified
dynamically by the system, employing intelligenargng algorithms to adapt to changing
conditions. On the other hand, these dynamic camditcan be explored by deploying RT
simulation using the DEVSRT HILS advantage. Thigwhe system can be verified and tuned

in a risk free environment with various test scesabefore it is deployed in action.



89

The early reaction strategy helps the system te 8ee for later mandatory events that have
not been released yet. Whenever a sequence ohaptwents in an atomic model is delayed,
the atomic model starts discarding the output fonst The following pseudo code shows the

execution algorithm in an atomic model, when reicgj\a collect message.

Receive (@, t)
if (s is optional AND ¢ + ta(s) + § < thow)
raise error //optional tasks dropped
else if (how >t + d(s))
raise error //deadline missed
else if (how <t + d(s))
y=A(s)
send (y, t) to the parent coordinator

© © N o 00 b~ wDd PR

end if
10. send (done, t) to the parent coordinator

11.end collect

Line 2 verifies if the optional output is going be executed later than its release timer(t
ta(s)) plus the grace periog)(tLine 4 verifies the deadline condition and flgdine 6 is the

case when the output function is qualified for exim.

A) Example

Figure5.4.a shows a simple I-DEVS model hierarchy whese atomic model8 andC are
coupled intoD, which is itself coupled with atomic mod&l Various input/output ports are used
to connect these models in the figure. Figureb shows the description of modelising DEVS
Graph [Pra93]. Note that continuous lines indicateernal transitions and dashed lines indicate
internal transitions. As it can be seen, the maslehitially in stateAl (with time advance =

infinity) until an inputxa is received on potfhA. In that case, the external transition produces a



90

state change t82. The model stays in this state fbrand its deadline idt. When the time is
consumed, it produces the outpga and transitions tcA3 (internal transition). A similar
scenario can be seen in sta®3 A4 and A5, with outputsy3a y4a and y5a produced
respectively. Figure5.4.c and d show the DEVS Graphs for atomic mod&lsand C,

Top
InB?xb
D

respectively.

o
In) ng 2 ot g, Qutt 9 5
Out2A S’: ‘
%
YOut2 4t 8t

&%

a) DEVS Hierrachical structure  ¢) State dlagram of atomic
model B

o%* 59\
b) State diagram of atomic d) State diagram of atomic
model A model C

Figure5.4: Example |-DEVS Moded.

The DEVS Graph of atomic model C (shown in Figird.d) is mapped to DEVS
specifications as follows:

C=<X,S, Y.0ext Oints Ocoms A, ta, d >, where:

X ={(InC, xc)},

S = {(C1,mandatory), (C2, mandatory), (C3, optighand S = C1,

Y = {(OutC, y2c), (OutC, y3c)},



91

dext(C1, €, < InC, xc >) = C2,

dint(C2) = C3,0i(C3) = C1,

dcon = Oext NAS priority ovebin

MC2) = <OutC, y2c>,

MC3) = <OutC, y3c>,

ta(Cl) =, ta(C2) = 1t, ta(C3) = 2t,

d(C1) =, d(C2) = 4t, d(C3) = 5t,

The mapping of atomic models A and B are similat sinaightforward.

In this example, the state durations are consideeed small; however, in reality they are
usually longer, compared to the execution timehefX, 1 and1 tasks. In a system with large
number of atomic models, similar overload condgiaan happen at different points of time,
when multipleX, 4 and 1 tasks from different atomic models are very cltseeach other,
causing a drift in the execution of the tasks. iRgtance, Figur®.5 shows a possible overload
scenario for the DEVS model presented in Figudewithout considering IC technique. An input
Xa enters the system from input prtat time zero. Assuming thétask takedt, at time 1 (i.e.
1t) the atomic model moves from the initial statdl to A2. The ta(s) of staté2 is 1t, thus at
time 2, we run task212 producing the output2a (for simplicity reasons the outputs are not
shown) and the internal transition froAR to A3, (as specified in Figuré.4.b). The output
produced by the atomic modkl(y2a) is translated to an input for the atomic mo8eThus, the
taskXb is executed right after212, causing the atomic modBIto change fronB1 to B2. The
models advance according to the specificationsv{gea in Figures.4) until t=18. At this point,
the tasksi414 of A, 4313 of C andi212 (of A, B and C, shown in red) miss their deadlines

because of the overload condition in the system.



92

l @

B
B o B @ewldl

= B

CI) 1I I2 ? tlt ? : I7 ? 110111 112 1I 14 1|51|61718192021 2223242526272829303I1 3|2 3|33|4 3|5
>
A AfXaA22 1] A3 A4 B A5 [SBlAXd A2 B8
B B1 [xo|Bi2 2] B3 (3 13] B4 @ B B2 [ B3
c C1 C2 @m c3 C1 c2 [l c3

Figure5.5: Example Transient Overload Scenario.

On Figure5.4.b, ¢ and d, the mandatory and optional statesnarked with an M or an O,
respectively. By applying the proposed imprecise/BEechnique and considering a zero grace
period (a hard real-time systemB of A is skipped (because state A3 is optional &BI3 is
executed after its release time plus zero gradegér3a), causingi4l4 to be shifted to time 16
and saved from lateness. The same condition hagpen8 of B and C. Hence, by discarding
three optionall tasks the four mandatory tasks and their assaciateéputs are saved from

lateness.

fa BE B
ll ll d2 T3qT3bT44d3 d3KQT54T4 53d40[T2qT2 gd23 bd3qd2h
Time I0 ‘} 2 3 4 5 7?@9 1011 1213141516 1718%%1&2223%283135

AAA2|x2 1| A3 A4 |x4 14| A5 |xs 15| A1 A2 | 12| A3 |x3 3]

B B1 [XoB2i2n B3 B4 [AH B1 [XoB2[212]B3
c C1 [XdC2212] C3 [A313] C1 XJC@2] C3 C1

Figure5.6: Applying | mprecise Computation to the Sample Scenario.

5.4 Results and Discussions

The proposed imprecise DEVS formalism was impleeeioin E-CD++ on the Xenomai RT

framework.X tasks are made user configurable @eriodic or aperiodig, and their main job is



93

to run user-defined input driver programs as sosrthey are spawned. The main RT task
implements the DEVSRT run-time abstract algorithdisqussed i3.2) and takes care dt
tasks. This task is also responsible to implemadt\erify the imprecise DEVS formalism and
its execution. The implementation of the impreaisenputation on E-CD++ is seamless and
backward compatible (i.e. the previous models alo be executed and are considered precise
models).

The proposed implementation of imprecise DEVS b+ has been tested with variety of
modeling scenarios and several criteria has beepliedp for verification of the final
implementation. For instance, a synthetic robotmdet with 20 atomic models, each of them
connected to an external input port, connected soraar distance sensor and an output port
connected to an electrical motor is used. To enthakethe same scenario runs every time, the
values coming from the sensors were the same itest$. All the atomic models follow the
DEVS Graph diagram in Figur&.7. The model is a synthetic representation ofolaotr
controller, which receives inputs from sensors based on the inputs, instructs the motors. 20
atomic models are used to make it a computatioengite model where overrun situation
happens frequently. The DEVS Graph diagram in [E§ur is composed of three optional states
and three mandatory states. Whenever there is @t in states C, D, E, and F, the model
transitions to state B. This model is used to perfaomprehensive performance tests, and
compare the results of the imprecise execution @egdise execution. In the case of precise

execution, all the states are assumed mandatory.



94

Controller

Figure5.7: Synthetic Robotic Model Used for Verification.

The timing for the component models varied for diféerent tests, performed. The first test
discussed in this section compared the numbersohdied tasks versus processor utilization.

The diagram in Figurg.8 shows the results of this test, for a totateken time of 20 seconds.

| +—P=11 @ P=005 —+ P=0.L —+ P=0.01 4 P=05]

0.6

Processor Utilization

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Numbere of Discarded Transitions

Figureb5.8: Discarded Tasksvs. Processor Utilization.

The test was performed for input period intervalsld, 0.5, 0.1 and 0.001 s. As it is

observed from the chart, by increasing the numbediscarded tasks (which happens by



95

tightening the state durations and period of theuis) the processor utilization increases
linearly. The result demonstrates the integrity gredsistency of the implementation in a
medium load scenario. In addition, as the systets lgagsier the number of discarded tasks also
increases. The slope of the diagram for differeariqal configurations stays the same, showing
the integrity of the functionality of the algorithfor different levels of load on the processor.

Figure5.9 shows the average response time of all the atand.l jobs versus the execution
time for the same model using imprecise and preuigdes. In this case, the input period of all
X jobs was fixed (1100 ms). The test was perforiinegitimes for each instance and the average
result has been considered. As the chart showsaverege response time of the mandatory
jobs drops dramatically in imprecise mode. In #ample, there is a heavy load that the system
must respond to, which required longer time for daary) jobs to complete in precise mode.
Imprecise computation discards the optional takss the response time of the mandatory tasks
shortens.

—&— Imprecise —&— Precise

9000
WO & ¢ — & & ¢
7000
6000
5000 s = B B =
4000
3000
2000

1000

Average Response Time (micro sec)

0 100 200 300 400 500 600

Simulation Time (sec)

Figure5.9: Response Time vs. Execution Timein Heavy L oad.



96

Figure5.10 shows the average response time of the madels the number of discarded
tasks for 20 seconds of execution time. The peoiothputs is set to 50 milliseconds, and by
varying the state durations, we obtain differenthbar of discarded tasks in imprecise mode. For
each instance of the imprecise test, the same guoation was applied to obtain the
corresponding results in precise mode. It can lem shat the average response time of the
corresponding precise execution for each instascgightly higher than the imprecise one in
medium load scenario. This is due to time beingedawy discarding optional tasks in favor of
mandatory ones. However, this difference is noy wesible in a medium load scenario because
the system is not as busy as a heavy load scendr®.chart shows that by increasing the
number of discarded tasks (i.e. tighter state dung} the average response time also increases.
However, this increase is not smooth as the sdosatichange, while the system saves the
mandatory jobs in transient high processing occasithe effect of these situations on the

average response time in medium load scenariotiamnaisible as heavy load scenario.

. se —e )
500 Imprecise Precise

— 4
8 450
o 400 5
5 f
‘= 350
E [
g 300 4
o 250 -
%]
S
S 200
)
r 150
(]
& 100
g
L 50

0

0 5000 10000 15000 20000 25000 30000
Number of discarded tasks

Figure 5.10: Number of Discarded Tasksvs. Average Response Timein Medium L oad.

Figure5.11 depicts the processor utilization versus theber of discarded tasks in a

heavy load scenario with the input period of 2 is@itonds and 20 seconds execution time. The



97

chart shows steady but higher processor utilizafion precise execution. The processor
utilization for precise execution in all instanaafsthe test is almost full, therefore as the load
increases; the utilization remains almost the sadtiosvever, the imprecise processor utilization
is instable and decreases as the number of digtéadks increases. This is due to the instable
and varying conditions that occur in a very heawgdl scenario in imprecise mode. As the
number of the discarded tasks increases, less ggocesage is required. This decrease is not
smooth neither linear, because of the change iditons in each run, and admission of more
mandatory jobs. Nevertheless, the system is suttessopening space for mandatory jobs by

discarding optional ones.

—&— |mprecise —&— Precise
0.96
0.94
$  $o 6% _, o
0.92
0.9
0.88

0.86

0.84

Processor utilization

0.82

08 %'\r/ "

0.78
4000 5000 6000 7000 8000 9000 10000

Number of discarded tasks

Figure5.11: Number of Discarded Tasks vs. Processor Utilization in Heavy Load.

In a different test scenario, the synthetic modeisoduced in sectio3.2B) were used to
measure and compare the performance and overhdahd ohprecise and precise executions of
the same models. In this test, the models withdfirRember of levels (4 layers) and variable
number of components in each level (i.e. 4, 6,08,ahd 12) were used to measure the execution

overhead and response time of the output taskspfdwessing time of the X, and | tasks was



98

set to 10 milliseconds for each atomic componeigure5.12 shows the average response time
of the tasks during an execution time of 40 secdonddifferent number of components per
level. The output produced in each cycle of inmitharked as optional, therefore whenever the
system faces an overrun condition, théasks are skipped. The chart shows that the awerag
response time of the tasks is slightly shortemipriecise execution in each scenario, due to the
time saved because of dropping the optional ta®ksthe other hand, it is observed that, when
the size of the model increases (the number oftoathe tasks also increases), the difference
between the average response time of imprecisguaauise runs also increases. This is due to
heavier workload produced in bigger models and @ggagion of data in the model, which is
efficiently handled by the imprecise schedulingoaitpm, reducing the response time of the
tasks.

I Imprecise H Precise

2055

1555
1055
555
55

8 10

4 6
Number of Components per Level

Average Response Time (milliseconds)

12

Figure5.12: Number of Components per Level vs. Average Response Time.

The other interesting fact, observed with this issthe lower overhead in the imprecise

computation in heavy processing models. FigGr#3 represents the overhead percentage



99

(calculated using equatidtl) of the execution engine relative to the tgmksessing times, in
imprecise and precise scenarios. The other paranetehe execution were the same as the
previous test. Based on the results presentedsrigure, the overhead percentage in imprecise
mode is less than the one in precise mode, dueetdrop of messaging overhead produced by
the optional output tasks. A discarded output &skinates the time required for transfer of (@,
t) and (done, t) messages from the atomic compaietite Top model. The other interesting
fact extracted from this diagram is the lower oeath percentage for heavier models (bigger
modeling hierarchy with computation intensive tgskisie to the increase of the task processing
time portion over the execution processing timeother words, in a computation intensive
model, as the size of the model grows the overlpeacentage decreases, because the processor
is mainly busy with the tasks rather than the eenwverhead.

3.2 ) )
@ Imprecise  m Precise

(LETY

Number of Components per Level

N
o3

Overhead Percentage
N N
IN o

N
N

Figure5.13: Number of Components per Level vs. Overhead Per centage.



100

A) Performance Evaluation

The criticality of RT systems requires efficientvd®pment approaches, in which the
theoretical design and its associated implememagimduce efficient throughput from the
system and the resources. Various performance ai@uapproaches for RT systems exist in
the literature. The Rhealstone benchmark [Kar8398kevaluates the performance of an RT
operating system using the following metrics: agerdask switch time, average pre-emption
time, average interrupt latency, semaphore shuiffe, deadlock break time, and inter-task
message latency. These metrics can be incorponatie@dEVSRT and I-DEVS formalisms to
evaluate the RT application. The M&S capabilitytiedse formalisms allows early performance
evaluation of the system in simulation mode, whaesystem can be tested against the above-
mentioned criteria. This will provide early infortien regarding the required hardware
resources to implement the final system. The Riwadsbenchmark metrics can be applied to
DEVS task system proposed52. The average task switch time between thg, and | tasks
can be measured in order to have a concrete ida# apgstem overhead. The average interrupt
latency can be applied to X tasks, when the sysesmmives an input until the input is accepted
by the main runtime system. The inter-task messamgacy can be used to approximate the
delay in RT message transfer between the RT taskthe multi-tasking implementation
approach. Semaphore shuffle time can be used tsureethe delay in switching the semaphore
used for synchronizing the input tasks and for sgmees used by the modeller in the RT input
tasks in order to avoid input resource deadlock.

The Hartstone benchmark [Ada90] developed at Ca&ndgllon University evaluates hard
real-time systems using a set of operational requents for synthetic applications. The
synthetic application is used to verify the deagllnequirement, whether the output meets the
deadline or not. As a future work, these perforneagmaluation techniques can be applied to the
DEVSRT and I-DEVS RT platform to measure the avdlily of outputs in different models
using different scenarios. Scenarios can includeriodic, a-periodic and sporadic tasks,

harmonic and non-harmonic state durations.



101

On the other hand, metrics like performance pragiliA-B timing, and response to external

events can be also incorporated in model execution.

B) Scalability

RT systems working in the context of embedded hardvare prone to several limitations.
One major constraint in these systems is the poearsumption or battery life. High
performance requirement in these systems conflitis the low power objective. To achieve
these goals performance degradation strategiedbedncorporated. I-DEVS can be a natural
choice for this purpose, providing a dynamic andye@action scheme to tackle this problem.
The graceful degradation strategy based on Imgré@isnputations theory allows for degrading
the system performance when needed by dropping@plienal transitions. This threshold can
include battery life or any other constraint castfiig with performance of the system.

On the other hand, performance of the system atpermtls on the underlying hardware.
Figure5.12 can be viewed as a scalability indicator e¢brrent implementation of the I-DEVS
approach on E-CD++ software. As the number of campts per level increases the average
response time increases too. This means that ¢he tae executed later to their release time,
when the system scales up. Likewise, this delag af$ects the deadline of the tasks, thus
proposing a risk. A simple solution might includegwading the underlying hardware resources
in order to solve the scalability problem. As thwdl be a natural solution to this problem,
however the “Speed-Performance Tradeoff Anomal[bsit06] dilemma shows that in an RT
system with timing and resource constraints, irgirgathe processor speed does not necessarily

lead to a better performance, and vice versa.



102

Chapter 6: Conclusions and Future Work

This dissertation addressed some of the issué®iarea of RT and embedded system design
and development by employing an M&S-driven engimegrapproach. The issue of model
continuity providing reuse of simulation models fitve final hardware embedding has been
discussed and thBiscrete EVent System Specification in Real-Time (DEVSRT) approach is
presented as a DEVS-based solution. The proposadSRE was employed in developing a
lightweight collaborative RT model execution andvirtual reality integration framework for
specific applications. Finally, this platform wastagrated with Imprecise Computation (IC)
technique to propose the novehprecise DEVS (I-DEVS), a DEVS-based RT task scheduling
and resource management technique.

DEVSRT as an RT domain extension of the DEVS forsnalprovided a model-driven
approach towards RT and embedded application dewelot. The formal and intrinsic
advantages of DEVS are combined with RT featureprapose a design scheme for such
applications. Issues such as Hardware-In-the-Loopuldtion (HILS) or Human-In-the-Loop
Simulation are addressed in this framework by ohiging formal interfacing mechanisms
between the DEVS model and the target embeddedoamvent. The benefits of simulation-
based verification are employed by DEVSRT, allowiagpervasive verification of the system
under development in a risk-free setting, explonagying test scenarios. The concept of model
continuity and reuse of simulation models in thevedepment of final embedded software
architecture are addressed. This is a shortcomingost of the available approaches that has
been solved in this dissertation. DEVSRT providebigh level abstract hardware-software

modeling scheme, where different components ofdlget system can be modeled together. The



103

co-modeling approach allows for co-simulation aretification of hardware and software

segments of an embedded system in a unified framigwdniile an incremental replacement of
the models with hardware surrogates explores thmanteled aspects of the devices with the
controller component.

The formal interfacing techniques in DEVSRT enalllee collaborative execution of RT
models independent from the underlying simulatatfprm. It also allows for interfacing DEVS
models with visualization engines, collaborativatcol of an embedded system by co-executing
different models on different RT engines and at slaene time, interacting with the target
hardware platform. The method is lightweight andllibws for quick reuse of available models
on different simulation or runtime platforms, witliothe need for sophisticated middleware
technologies.

Finally, the runtime computation details of the DERT approach were investigated and an
RT task model comprising of the DEVS intrinsic pFsses has been proposed. This model was
used as starting point for further investigatiorgamling task scheduling and resource
management in a DEVS-based RT system. The DEVSBX rteodel was integrated with IC
approach in an innovative method, in which the rhdmhavior is prioritized, allowing for
efficient and dynamic task scheduling in the systefhe overload management policy
introduced in this framework provides an early tmec mechanism to transient overrun
situations, saving critical outputs from latengsgyenting catastrophic results in the system.

The outcome of this research enables RT and embexyd¢éem designers to adopt an M&S-
based approach, bridging the gap between simulaieh RT software development. It also
opens a new horizon towards model-based operatisigra design, allowing for creation of

systems dedicated to run models as processes.

6.1 Review of the Contributions

This section reviews the major contributions in the research areas investigated in this
dissertation, namely: the DEVSRT simulation-drivéevelopment methodology for RT and



104

embedded systems development and the I-DEVS agptoaachieve a hard RT system design
scheme by integrating the DEVSRT with IC techniqulse following subsections summarize

the key contributions regarding these researchctiogs.

A) DEVSRT

DEVSRT applies a dynamic DEVS-based approach fobesltled real-time application
development. It takes advantage of well-defined M@®perties and constructs of DEVS to
design and interface embedded systems with therdwsae surrogates. The following
contributions are the outcome of this approach:

* The use of physical time in the DEVS event scheduparadigm, enabling the runtime
engine to trigger the events based on the clockesystem, providing an RT simulation
engine.

e DEVS has been investigated to be adopted as an Ml eenbedded application
development technique; hence the correspondingiresatof DEVS are highlighted and
applied in the design of example models.

» A formal way of defining deadline for DEVS outpuitas been proposed and the details of
hardware interaction using DEVS have been discu$3eY'S formal 1/0O ports were used
to interface models with hardware or external eswinent. This method provided the
basis for hardware integration and model continuity

* The interfacing mechanism between DEVS and externgironment has been improved
and a new version has been adopted for DEVSRT.

* A generic lightweight interface for message trarsteetween DEVS models running on
different DEVS-based tools has been presented. fldnsework was used to develop and
execute shared controller model for robots, emargemanagement and combat

simulations.



105

The Embedded CD++ (E-CD++) tool has been extendetnplement the DEVSRT
approach. The new version of E-CD++ was implememiedenomai real-time kernel,
incorporating real-time services provided by thenké

The input receiving stubs are implemented as stparKenomai tasks working
concurrently, to receive data from different portispugh not interrupting the main
runtime task.

An Eclipse-based plug-in IDE offering embedded fioralities and graphical model
designer capability was provided allowing for ragesign and deployment of the models.
Several RT embedded systems and controllers hare designed and implemented on a

variety of hardware platforms such as FPGAs, eméediadards, and robotic devices.

B) I-DEVS (Imprecise DEVYS)

The second major contribution of this dissertatthe adoption of the IC approach with the

DEVSRT platform to propose a more reliable modeddshdesign and execution platform for

hard real-time systems. The followings were thetrdoutions towards this goal:

The active processes in an RT DEVS-based systemlheen identified and a task system
has been proposed to be used as a foundation rtbefunvestigation and study of RT

aspects in these systems.

The Imprecise DEVS (I-DEVS) formalism has been psmul incorporating 1C-based

inherent concepts with the DEVSRT framework.

A scheduling algorithm based on reacting early e bverload scenario has been
introduced, which was later demonstrated througieaments.

The IC concepts have been integrated with DEVS ihagldramework, in an abstract

way, enabling the modeler to design imprecise nwdadependent of the simulation
engine.

Detailed examples of overload scenarios and theieity of the approach have been

presented.



106

 The I-DEVS M&S framework was implemented on E-CD9toviding a development
platform for imprecise modeling and execution uddigVS formalism.

* Several test cases measuring the integrity, camsigt and efficiency of the algorithm
have been carried out.

6.2 FutureWork

The following is a list of possible future researtbnds in DEVSRT, collaborative RT

modeling, and I-DEVS approache:

* Integration of model checking and formal verificati techniques with the DEVSRT
approach can be investigated in order to have tegrated modeling tool incorporating
techniques to discover anomalies, inconsistenaeagdlocks, and other pitfalls in the
model.

» Design and development of embedded operating sgstean be investigated using
DEVSRT as a platform. The OS will autonomously eperby executing the models
functioning as processes in the system. This wikroa new direction in embedded
system design employing MDE approach in the extisgn and development phases.

» Design and development of techniques to formalkgriace DEVSRT with different
graphical modeling and visualization tools on enasetiplatforms towards the creation of
interactive virtual reality and simulation-baseangss.

» Integration of more efficient synchronization pratts can be investigated in the
lightweight RT model execution protocol. For exaapLamportian physical clock
synchronization [Lam78] using partial and total emidg of events can be explored
further.

e Incorporating Dynamic DEVS formalism with the poged I-DEVS formalism to
introduce a new imprecise DEVS capable of priangzdifferent components of the
model besides the behaviors. This way, the systamstut down an entire optional

component in a model in order to open space foother processes.



107

Sensitivity analysis on the I-DEVS and DEVSRT fuowcal parameters (e.g. grace period,
inter-thread message transfer delay), in order to explore target specific configuraso
and help system designers tune their system acgptdi the underlying hardware and
middleware platform.

Applying schedulability analysis to the proposedM3=based task model in order to
determine the system capacity in handling diffesenés of processing load. On the other
hand it helps the scheduler to determine whethesait accept a task or not. Rate
monotonic tests can be a good starting point tosomegthe schedulability of the model on
any specific hardware platform.

Expansion of the key scheduling and overload detecalgorithms in the I-DEVS
framework, in order to design more efficient andgeéd-specific hard RT system
development tools.

Investigating approaches to make the run-time engmore efficient and reducing the
overhead of model execution. E-CD++ currently supflat coordinator technique, where
the control hierarchy is flattened to reduce thessage transfer overhead. However, there
is a tradeoff between the complexity of the flabmbnator and the reduced overhead.
These challenges can be researched to propose mezatations for modelers about the

best choice in using flattened or hierarchical dowtor for any specific model.



108

References

[Abr06] Abrial, J. R., “Formal methods in industgchievements, problems, future”, Proceeding
of the 28th international conference on Softwargireering, pp. 761-768, New York,
NY, USA, 2006.

[Ada90] “Ada performance issues”, Ada Letters, SHBAACM Press, vol. 10, no. 3, 1990.

[Ahm11] Ahmed, A. S., M. Moallemi, G. Wainer, and ahmoud, “Cell-DEVS & 3D Real-
Time Visual Simulation to Support Combat”, Procegdi of Summer Simulation
Conference (SCSC'11), Netherland, 2011 (SecondfBastr).

[Ami03] Amirijoo, M., J. S. Hansson, and H. Son rf&r-Driven QoS Management in Imprecise
Real-Time Databases”, Proceedings of the 15th EwxronConference on Real-Time
Systems, pp. 63, Porto, Portugal, 2003.

[Ara08] Araujo, R. B., F. M. lwasaki, E. B. Pizztda A. Boukerche, “A Framework for 3D
web-based visualization of HLA-compliant simulasdn Proceedings of the 13th
international symposium on 3D web technology, 98, Los Angeles, CA, 2008.

[Ayd99] Aydin, H., P. Mejia-Alvarez, R. Melhem, and. Moss’e, “Optimal Reward-Based
Scheduling of Periodic Real-Time Tasks”, IEEE Tamt®ns On Computers, pp. 111-
130, 1999.

[Bal97] Balarin, F., et. al. "Hardware-Software @Gesign of Embedded Systems. The POLIS
Approach”, Kluwer Academic Publishers, 1997.

[BalO6] Balasubramanian, K., A. Gokhale, G. Karetial., “Developing Applications Using
Model-Driven Design Environments”, Journal of COMFER, vol. 39, no. 2, pp. 33-40,
2006.

[Bar97] Barros, F. J., “Modeling Formalisms for Dynic Structure Systems”, ACM
Transactions on Modeling and Computer Simulatiah, ¥, no. 1, pp. 501-515, 1997.



109

[Bar98] Baruah, S., and M. Hickey, “Competitive Qmme Scheduling of Imprecise
Computations” IEEE Transaction on Computer, vol.r.9, pp. 1027-1032, 1998.

[Bas06] Basu, A., M. Bozga, and J. Sifakis, “ModglHeterogeneous Real-time Components in
BIP”, Proceedings of 4th IEEE International Confere on Software Engineering and
Formal Methods, pp. 3-12, Pune, India, 2006.

[Berl0] Bergero, F., and E. Kofman. “PowerDEVS: AdI for Hybrid System Modeling and
Real-time Simulation”, Journal of SIMULATION, vd7, no. 1-2, pp. 113-132, 2010.

[Bon10] Bonaventura, M., G. A. Wainer, R. CastrdAdVanced IDE for Modeling and
Simulation of Discrete Event Systems”, Proceedimgs 2010 Spring Simulation
Conference (SpringSim10), DEVS Symposium, Orlaidg,2010.

[Bou97] Boussinot, F., and R. de Simone, “The EBIEL language”, Proceedings of the IEEE
Software Journal, vol. 79, no. 9, pp. 1293-1304119

[Bou05] Bouyssounouse, B., and J. Sifakis, “Embddagstems Design: The ARTIST Roadmap
for Research and Development”, Lecture Notes in @der Science 3436, Springer-
Verlag, 2005.

[Bou08] Boukerche, A., F. M. lwasaki, R. B. Arauje, B. Pizzolato, “Web-Based Distributed
Simulations Visualization and Control with HLA akdeb Services”, Proceedings of the
2008 12th IEEE/ACM International Symposium on Dimited Simulation and Real-
Time Applications, pp.17-23, Vancouver, BC, Can&{{)8.

[Bou09] Boukerche, A., M. Zhang, and R. Pazzi, “Adaptive virtual simulation and RT
emergency response system”, Proceedings of thenatienal Conference on Virtual
Environments, Human-Computer Interfaces and Measemé Systems, pp. 360-364,
Hong Kong, China, 2009.

[But06] G. Buttazzo, “Achieving Scalability in Re@lme Systems” IEEE Computer, vol. 39,
no. 5, pp. 54-59, May 2006.

[Butl0] Buttazzo, G. C., "Hard real-time computisigstems: predictable scheduling algorithms
and applications”, Springer, Second Edition, 2038N: 0792399943.

[Cap03] Capocchi, L., F. Bernardi, D. Federici, &disgambiglia, “Transformation of VHDL
descriptions into DEVS models for fault modelingdasimulation”, Proceedings of the
IEEE Systems, Man and Cybernetics Conference, pp5-1211, Washington, USA,
2003.



110

[Car93] Carlsson, C., and O. Hagsand, “DIVE: A Nwbker Virtual Reality System”, IEEE
Virtual Reality Annual International Symposium, [394-400, Seattle, WA , USA, 1993.

[Casll1] Castro, R., E. Kofman, and F. E. Celli€@uantization-based integration methods for
delay-differential equations”, Journal of SimulaiModelling Practice and Theory, vol.
19, no. 1, pp. 314-336, 2011.

[Cel06] Cellier, F., and E. Kofman, “Continuous &a Simulation”, Springer-Verlag, ISBN:
978-0-387-26102-7, New York, 2006.

[Cha09] Chaturvedi, D. K., "Modeling and Simulatiasf Systems Using MATLAB and
Simulink", CRC Press, 2009, ISBN: 1439806721.

[Che97] Chen, X., and A. M. K. Cheng, “An Impreci&tgorithm for Real-Time Compressed
Image and Video Transmission”, Proceedings of Giterhational Conference on
Computer Communications and Networks, pp. 390-88%,Vegas, NV., USA, 1997.

[Che09] Chen, J. M., W. C. Lu, W. K. Shih, M. C.na “Imprecise Computations with
Deferred Optional Tasks”, Journal of Informationedce and Engineering, vol. 25, no.
1, pp. 185-200, 2009.

[ChiO7] Chidisiuc, C., and G. Wainer, “CD++BuildeAn Eclipse-based IDE for DEVS
Modeling”, Proceedings of the 2007 Spring Simulatiulticonference, pp. 235-240,
Norfolk, VA, 2007.

[Cho94] Chow, A. C., and B. P. Zeigler, “ParalleEYS: A Parallel, Hierarchical, Modular
Modeling Formalism”, Proceedings of Winter Simubati Conference, pp. 716-722,
Orlando, FL, 1994.

[Cho98] Cho, S. M., and Kim T. G. “Real-Time DEV8rilation: Concurrent, Time-Selective
Execution of Combined RT-DEVS Model and Interacti#gvironment”, Proceeding of
Summer Simulation Conference, pp. 410-415, Renvadlke 1998.

[Cho0O0] Cho, Y. K., B. P. Zeigler, H. J. Cho, et design Considerations for Distributed Real-
Time DEVS” Proceedings of Al, Simulation and PlargqnConference, Tucson, Arizona,
2000.

[Cho03] Cho, Y. K., X. Hu, and B. P. Zeigler, “THRTDEVS/CORBA Environment for
Simulation-Based Design of Distributed Real-Timest®yns”, SIMULATION, vol. 79,
no.4, pp. 197-210, 2003.



111

[Chr04] Christen, G., A. Dobniewski and G. Waintodeling State-Based DEVS Models in
CD++", Proceedings of MGA, Advanced Simulation Teclogies Conference 2004
(ASTC'04). Arlington, VA. U.S.A

[Chu90] Chung, J. Y., JW. S. Liu, and K. J. Lirscheduling Periodic Jobs That Allow
Imprecise Results”, IEEE Transaction on Computer, 39, no9, pp. 1156-1174, 1990.

[Cor01] Cortelessa, V., A. D’Ambrogio, and G. laltap “Automatic Derivation of Software
Performance Models from Case Documents,” Journd?eformance Evaluation, vol.
45, no. 2-3, pp. 81-105, 2001.

[D’AmO5] D’Ambrogio, A., “A Model Transformation Fimework for the Automated Building
of Performance Models from UML Models”, Proceedingshe ACM Fifth International
Workshop on Software and Performance, pp. 75-8&dde Mallorca, Spain, 2005.

[Eke03] Eker, J., J. Janneck, E. Lee, J. Liu, Xi, 3. Ludvig, S. Neuendorffer, S. Sachs and Y.
Xiong, “Taming heterogeneity the Ptolemy approacFroceedings of the IEEE
Transaction, vol. 91, pp. 127-144, 2003.

[Fen93] Feng, W., and J. W. S. Liu, “An Extendedptetise Computation Model for Time-
Constrained Speech Processing and Generation”e&dows of the IEEE Workshop on
Real-Time Applications, pp. 76 — 80, New York, NUSA, 1993.

[Fin96] Finney, K., “Mathematical notation in foringpecification: too difficult for the masses”,
IEEE Transactions on Software Engineering, vol.i222, pp.158-159, 1996.

[Fuj99] Fujisawa, K., S. Hayakawa, T. Aoki, T. Skguand S. Okuma, “Real Time Motion
Planning for Autonomous Mobile Robot, using Framewof Anytime Algorithm”
Proceedings of the IEEE International Conferenc&®ohotics & Automation, pp. 1347-
1352, Detroit, Michigan, USA, 1999.

[Gia03] Giambiasi, N., J. L. Paillet, and F. Charf@imulation and verification II: from timed
automata to DEVS models”, Proceedings of the WiSierulation Conference, pp. 923—
931, Louisiana, USA, 2003.

[Gli02] Glinsky, E., and G. Wainer, “Performanceabysis of real-time DEVS models”,
Proceedings of the Winter Simulation Conference 588—594, San Diego, CA, 2002.

[Gli04a] Glinsky, E., and G. Wainer, “Modeling amst@mulation of systems with hardware-in-
the-loop”, Proceedings of Winter Simulation Confere, Washington D.C, 2004.



112

[Gli04b] Glinsky, E., and G. Wainer, “Model-Based\zlopment of Embedded Systems with
RT-CD++", Proceedings of the WIP session, IEEE Reéale and Embedded
Technology and Applications Symposium, Toronto, @dnada, 2004.

[God07] Godding, G., H. Sarjoughian, and K. Kenfgipplication of Combined Discrete-event
Simulation and Optimization Models in Semiconducténterprise Manufacturing
Systems”, Proceedings of the Winter Simulation @oerice, pp. 1729-1736, Washington
D.C., 2007.

[Gro02] Grotker, T., S. Liao, G. Martin, and S. SwaSystem Design with SystemC”, Kluwer
Academic Publishers, Netherlands, 2002.

[Han00] Hansson, J., M. Thuresson, and S. Son, réoipe Task Scheduling and Overload
Management using OR-ULD”, Proceedings of 7th Irdéomal Conference on Real-
Time Computing Systems and Applications, pp. 30Z;3heju Island, South Korea,
2000.

[Har08] Harzallah, Y., V. Michel, Q. Liu, and G. \idar, “Distributed Simulation and Web Map
Mash-Up for Forest Fire Spread”, Proceedings of20@8 IEEE Congress on Services —
Part I, pp. 176-183, Honolulu, HI, 2008.

[HilO8] Hill, F.S., and S.M. Kelley, “Computer Grhms using OpenGL”, Prentice Hall
publishers, ISBN: 0131496700 Edition, 2008.

[Hol09] Holman, K., J. Kuzub, M. Moallemi, G. A. Wwr, “Cable-Anchor Robot
Implementation using Embedded CD++”, Poster in eedings of SIMUTools
Conference, Rome, Italy, 2009.

[Hon97] Hong J. S., Song H. H., Kim T. G., and P&kH., “A Real-Time Discrete Event
System Specification Formalism for Seamless RealeTiSoftware Development”,
Springer Netherlands, 1997.

[HuO1] Hu, X., B. P. Zeigler, and J. Couretas, “D&E®n-A-Chip: Implementing DEVS In
Embedded Java On A Tiny Internet Interface For &xal Factory Automation”,
Proceedings of the IEEE Systems, Man, and Cybesm&bnference, pp. 3051-3056,
Tucson, AZ , USA, 2001.

[HuO4] Hu, X., and B. P. Zeigler, “Model Continuitp Support Software Development for
Distributed Robotic Systems: a Team Formation EXxamplournal of Intelligent &
Robotic Systems, Theory & Application, vol. 39, dopp. 71-87, 2004.



113

[HuO5] Hu, X., and B. P. Zeigler, “Model continuity the design of dynamic distributed real-
time systems”, IEEE Transactions on Systems, MahGybernetics, Part A, vol. 35, no.
6, pp. 867-878, 2005.

[HuO7] Hu, W., and H. Sarjoughian, “A co-design ratdg approach for computer network
systems”, Proceedings of the 39th Winter SimulatiGonference, pp. 685-693,
Washington D.C., 2007.

[Hua95] Huang, X., and A. M. K. Cheng, “Applying precise Algorithms to Real-Time Image
and Video Transmission” Proceedings of Real-Timechhelogy and Applications
Symposium, pp. 390, Chicago, lllinois, USA, 1995.

[Hua04] Huang, D., and H. Sarjoughian, “Softwarel &8imulation Modeling for Real-Time
Software-Intensive Systems”, In Proceedings of IBBE Symposium on Distributed
Simulation and Real-time Applications, pp. 196-2B8dapest, Hungary, 2004.

[Hua06] Huang, D., H. Sarjoughain, G. Godding et ‘&lexible experimentation and analysis
for hybrid DEVS and MPC models”, Proceedings of tB&h Winter Simulation
Conference, pp. 1863-1870, Monterey, CA, USA, 2006.

[IEE10] IEEE standard for “Modeling and Simulati@&S) High Level Architecture (HLA)
Framework and Rules”, IEEE Std. pp. 1516-2010, 2010

[Jac02] Jacques, C., and G. Wainer, “Using the CIDEVS toolkit to develop Petri Nets”,
Proceedings of Summer Computer Simulation Confere8an Diego, CA. USA. 2002.

[Jaf10] Jafer, S., and G. A. Wainer, “ConservatEVS - A Novel Protocol for Parallel
Conservative Simulation of DEVS and Cell-DEVS MaelProceedings of Spring
Simulation Conference, DEVS Symposium, pp. 168-Offando, FL., 2010.

[Kar89] Kar, R. P., and K. Porter, “Rhealstone, @alrtime benchmark proposal; an
independently verifiable metric for complex multkass”, Dr. Dobb’s Journal,1989.

[Kar90] Kar, R. P., “Implementing the Rhealstonal#&me benchmark, where a proposal’s
rubber meets the real-time road”, Dr. Dobb’s Jolypril 1990.

[Kim01] Kim, J. K., Y.G. Kim, and T.G. Kim, “DHMIEF DEVS-Based Hardware Model
Interchange Format”, Proceedings of European SimalaSymposium, Marseille,
France, 2001.

[Kim04] Kim, K. H., and W. S. Kang, “CORBA-Based,Ulli-threaded Distributed Simulation
of Hierarchical DEVS Models: Transforming Model &fture into a Nonhierarchical



114

One”, Proceedings of the 2004 International Comfeeeon Computational Science and
Its Applications, Assisi, Italy, pp. 167-176, 2004.

[Kob04] Kobayashi, H., and N. Yamasaki, “RT-Fronti®& Real-Time Operating System for
Practical Imprecise Computation”, Proceedings of ttOth IEEE Real-Time and
Applications Symposium, pp. 255-264, Toronto, CanaD04.

[Kus01] Kuster, J., and J. Stroop, “Consistent Bessf Embedded Real-Time Systems with
UML-RT”, Proceedings of 4th Int. Symp. on Objecti€hted Real-Time Distributed
Computing, pp. 31-40, Magdeburg , Germany, 2001.

[Lam78] Lamport, L. “Time, clocks, and the orderimj events in a distributed system”,
Communications of ACM, vol. 21, no. 7, pp. 558-56978

[Led01] Lédeczi, A., A. Bakay, M. Maréti et al., 8@posing Domain-Specific Design
Environments,” Journal of COMPUTER, vol. 34, no, fifh. 44-51, 2001.

[LiO3] Li, L., T. Pearce, and G. Wainer, “Interfag Real-time DEVS models with a DSP
platform”, Proceedings of the Industrial Simulat®ymposium, Valencia, Spain, 2003.

[Liu73] Liu, C. L., and J. W. Layland, “Schedulifdgorithms for Multiprogramming in a Hard
Real-Time Environment”, Journal of ACM, vol. 20,.Mg pp. 46-61, 1973.

[Liu91] Liu, J. W. S., K. J. Lin, W. K. Shih J. XChung, A. Yu, and W. Zhao, “Algorithms for
Scheduling Imprecise Computations”, IEEE Transactin Computer, vol. 24, no. 5, pp.
58-68, May 1991.

[Liu94a] Liu, J. W. S., W. Shih, K. J. Lin, R. Batt, and J. Chung, "Imprecise Computations”,
Proceedings of the IEEE, vol. 82, no.1, pp. 831994.

[Liu94b] Liu, J.W.S., K. J. Lin, R. Bettati, D. Huland A. Yu. “Use of imprecise computation to
enhance dependability of real-time systems”, Therhational Series in Engineering and
Computer Science, vol. 284, no. 3, pp.157-182, 1994

[Liu95] Liu, J. W. S., and W. K. Shih, “Algorithmfer Scheduling Imprecise Computations with
Timing Constraints to Minimize Maximum Error”, IEEEansaction on Computer, vol.
44, no. 3, pp. 466—-471, 1995.

[Liu00] Liu, J. W. S., “Real-Time Systems” Upperdside River, NJ: Prentice-Hall, 2000, ISBN:
0-13-099651-3.



115

[Liu07] Liu, Q., and G. Wainer, “Parallel Environmefor DEVS and Cell-DEVS Models”,
Journal of SIMULATION, vol.83, no.6, pp. 449-470.

[LomO06] Lombardi, S., G. Wainer, and B. P. Zeigl&interoperation of DEVS models in
DEVS/C# and CD++” Proceedings of SISO Fall Interapdity Workshop, Huntsville,
AL, 2006.

[Matl11] The MathWorks website: http://www.mathwsréom, visited July 2011.

[Mit09] Mittal, S., J. L. Risco-Martin, and B. P.efler, “DEVS/SOA: A Cross-Platform
Framework for Net-centric Modeling and Simulation DEVS Unified Process”,
SIMULATION, vol. 85, no.7, pp. 419-450, 2009.

[Moa08] Moallemi, M., M. Alcaraz, and G. Wainer, CB++ A DEVS based Real-Time
Simulator for Embedded Systems”, Poster in procegdiof Spring Simulation
Conference, Ottawa, Canada, 2008.

[Moa09] Moallemi, M., and G. A. Wainer, “A Systerm@hip FPGA Implementation of
Embedded CD++”, Proceedings of Spring Simulationf€e@nce, San Diego, CA, USA,
20009.

[Moal0Oa] Moallemi, M., and Gabriel Wainer, “A Sinfigd Real-Time Embedded DEVS
Approach Towards Embedded and Control Design”, é?ast proceedings of Winter
Simulation Conference, Austin, USA, 2010.

[MoalOb] Moallemi, M., and G. A. Wainer, “Designinan Interface for Real-Time and
Embedded DEVS”, Proceedings of Spring Simulatiomf€ence, DEVS Symposium,
Orlando, Florida, USA, 2010.

[MoalOc] Moallemi, M., D. A. Tall, G. A. Wainer, dnA. Awad, “Application of RT-DEVS in
Military”, Proceedings of Spring Simulation Confaoe, MMS Symposium, Orlando,
Florida, USA, 2010.

[Moalla] Moallemi, M., R. Castro, F. Bergero, and & Wainer, “Component-Oriented
Interoperation of Real-Time DEVS Engines”, Procegdi of Spring Simulation
Conference, ANSS Symposium, Boston, MA, USA, 2011.

[Moallb] Moallemi, M., S. Jafer, A. S. Ahmed, and Wainer “Interfacing DEVS and
Visualization Models for Emergency Management”, d@exlings of Spring Simulation
Conference, Work In Progress of the DEVS SymposBoston, MA, USA, 2011.



116

[Mon03] Monin, J. F., and M. G. Hinchey, “Undersiamg formal methods”, Springer, 2003,
ISBN: 1852332476.

[Mon09] Mondada, F., M. Bonani, X. Raemy, J. PughCianci, A. Klaptocz, S. Magnenat, J.-
C. Zufferey, D. Floreano, and A. Martinoli, “Thepeck, a robot designed for education
in engineering”, Proceedings of the 9th ConferemteAutonomous Robot Systems and
Competitions, pp. 59-65, Castelo Branco, Port2fz09.

[Neu66] Neumann, J. V., and A. W. Burks, “Theory Bklf-Reproducing Automata”,
Champaign: University of Illinois Press, 1966.

[Nic10] Nicolescu, G., and P. J. Mosterman “ModesBd Design for Embedded Systems”,
CRC Press 2010, ISBN: 978-1-4200-6784-2.

[Pan96] Pandzic, I., T. Capin, N. Magnenat-Thalmaamd D. Thalmann, “Towards Natural
Communication in Networked Collaborative Virtual Blonments”, Proceedings of
FIVE Conference, Framework for Immersive VirtuaMgonments, pp. 37-47, 1996.

[Par02] Parker, G. B., “Punctuated Anytime Learnifgy Hexapod Gait Generation”
Proceedings of IEEE/RSJ International Conferencdntelligent Robots and System,
vol. 3, pp. 2664—-2671, Beijing, China, 2002.

[Pra93] Praehofer, H., and D. Pree, “Visual Modglof DEVS-based Multiformalism Systems
Based on Higraphs”, Proceedings of the Winter Satnah Conference, pp.595-603, Los
Angeles, CA, 1993.

[Saa09] Saadawi, H., and G. Wainer, “Verificatidnr@al-time DEVS models”, Proceedings of
DEVS Symposium, San Diego, CA. 2009.

[Saall] Saadawi, H., G. Wainer, and M. MoallemiririBiples of DEVS Models Verification
for Real-Time Embedded Applications” chapter in theok “Real-time Simulation
Technologies: Principles, Methodologies, and Amilans”, Pieter Mosterman and
Katalin Popovici, CRC Press, 2011.

[Sad10] Sadeghi, F. R., G. Wainer, and M. Moall&hodeling and Controlling a Robotic Arm
with E-CD++", Poster in proceedings of Summer Semioh Conference, Ottawa, ON,
Canada, 2010.

[Sag04] Saghir, A., T. Pearce, and G. Wainer, “MiogeComputer Hardware Platforms using
DEVS and HLA Simulation,” SIMULATION SERIES, vol63 no. 4, pp. 218, 2004.



117

[Sar87] Sargent, R.G., “An Overview of Verificatiand Validation of Simulation Models”,
Proceedings of the Winter Simulation ConferenceyNerk, NY, USA, 1987.

[Sar98] Sarjoughian, H., and B. P. Zeigler, “DEVS®A Basis for a DEVS-based collaborative
M&S environment”, Proceedings of the Internation@bnference on Web-based
Modeling & Simulation, pp. 29-36, San Diego, CA989

[Sar99] Sarjoughian, H., J. Nutaro, and B. P. Zigl“Collaborative DEVS Modeler”
Proceedings of the International Conference on Wated Modeling and Simulation,
San Francisco, CA, 1999.

[Sar00] Sarjoughian, H., and B. P. Zeigler, “DEV&&daHLA: Complimentary Paradigms for
M&S”, Transactions of the SCS Organization, vol, 4@. 1, pp. 187-197, 2000.

[SarO1a] Sarjoughian, H., X. Hu, D. Hild et al.jrfflation-based SW/HW Architectural Design
Configurations for Distributed Mission Training $gm1s”, Journal of SIMULATION,
vol. 77, no. 1/2, pp. 23-38, 2001.

[SarO1b] Sarjoughian, H., S. Park, and B. P. Zeidteollaborative distributed network system:
a lightweight middleware supporting collaborativE\X5 modeling”, Future Generation
Computer Systems vol. 17, no. 1, pp. 89-105, 2001.

[Sch00] Schulz, S., T.C. Ewing, and J.W. Rozenbildjscrete event system specification
(DEVS) and statemate statecharts equivalence fobedded systems modeling”,
Proceedings of IEEE International Conference on Emgineering of Computer Based
Systems, pp. 308-308, Edinburgh, UK, 2000

[Sel01] Selic, B., “The emerging real-time standfudL]”, Proceedings of 6th international
Workshop Object-Oriented Real-Time Dependable Syst@p. 3-9, Rome, Italy, 2001.

[Sha07] Shang, H., and G. A. Wainer, “A flexiblendynic structure DEVS algorithm towards
embedded systems”, Proceedings of the Summer CemBuhulation Conference, pp.
339-345, San Diego, California, 2007.

[Shi91] Shih, W. K., J. W. S. Liu, and J. Y. Churig\gorithms for Scheduling Imprecise
Computations with Timing Constraints”, SIAM Jourredl Computer, vol. 20, no. 3, pp.
537-552, 1991.

[Shi92] Shih, W. K. and J. W. S. Liu, “On-Line Schéing of Imprecise Computations to
Minimize Total Error”, Proceedings of the 13th IEReal-Time Systems Symposium,
Phoenix, Arizona, pp. 280-289, 1992.



118

[Shi96] Shih, W. K., and J. W. S. Liu, “On-line alihms for scheduling imprecise
computations”, SIAM Journal on Computing, vol. 85, 1, pp. 1105-1121, 1996.

[Son05] Song, H. S., and T. G. Kim, "Application Réal-Time DEVS to Analysis of Safety-
Critical Embedded Control Systems: Railroad CraggsitControl Example”,
SIMULATION, vol. 81, no. 2: pp. 119-136, 2005.

[Tra06] Travis, J., and J. Kring, “LabVIEW for Eyene: Graphical Programming Made Easy
and Fun”, 3rd Edition, Prentice Hall, 2006, ISBN18-185672-3.

[Tro03] Troccoli, A., and G. Wainer, “Implementifarallel CD++”, Proceedings of the Annual
Simulation Symposium, Orlando, FL. 2003.

[Vegll] Vega Prime software page on Presagis catjpor website, available at:
http://www.presagis.com/products_services/prodaws/isualization/vega_prime,
accessed July 2011.

[Wai02a] Wainer, G., and N. Giambiasi, “N-dimensibiCell-DEVS Models”, Discrete Event
Dynamic Systems, vol. 12, no. 2, pp. 135-157, 2002.

[Wai02b] Wainer, G., “CD++: A Toolkit to Develop DES Models”, Software — Practice and
Experience, vol.32, no.13, pp. 1261-1306, 2002.

[Wai04] Wainer, G., and E. Glinsky, "Model-Basedvi@mpment of Embedded Systems with
RT-CD++", Proceedings of the WIP session, I[EEE Ra&me and Embedded
Technology and Applications Symposium, Toronto, GDanada, 2004

[Wai05] Wainer, G., E. Glinsky, P. MacSween “A Mbdiven Technique for Development of
Embedded Systems Based on the DEVS Formalism”. Mirideen Software
Development, Vol. 2 of Research and Practice inv&oEt Engineering. S. Beydeda and
V.Gruhn Eds. Springer-Verlag. 2005.

[Wai08a] Wainer, G., Q. Liu, J. Chazal, L. Quinatd M. K. Traore, “Performance Analysis of
Web-based Distributed Simulation in DCD++: A Cased$ across the Atlantic Ocean”,
Proceedings of the 2008 Spring Simulation Multiesahce: High Performance
Computing Symposium, pp. 413-420, Ottawa, Canaolag.2

[Wai08b] Wainer, G., R. Madhoun, and K. Al-ZoubDistributed Simulation of DEVS and
Cell-DEVS Models in CD++ using Web-Services”, Siatidn Modeling Practice and
Theory, 16(9), pp. 1266-1292, 2008.



119

[Wai09] Wainer, G. A., "Discrete-event modeling asithulation; a practitioner's approach”,
CRC / Taylor & Francis, ISBN: 9781420053364, 2009.

[Waill] Wainer, G., and R. Castro “DEMES: a Diser&vent methodology for Modeling and
simulation of Embedded Systems”, Accepted in Maodgland Simulation Magazine,
Society for Modeling and Simulation Internationdén Diego, CA., 2011.

[Wan03] Wang, Y. and Y. Liao, “Implementation ofCollaborative Web-based Simulation
Modeling Environment”, Proceedings of the SeveriEEE Workshop on Distributed
Simulation and Real-Time Applications, pp.150-1%003.

[Wat97] Waters, R., D. Anderson, J. Barrus, D. BiggM. Casey, S. Mckeown, T. Nitta, I.
Sterns, and W. Yerazunis, “Diamond Park and SPLIS&cial Virtual Reality with 3D
Animation, Spoken Interaction and Runtime ExtenlitgbiPresence”, Journal of
Teleoperators and Virtual Environments, vol. 6, aqp. 461-481, 1997.

[Wie08] Wiedenhoft, G. R., and A.A. Frohlich. “Uginmprecise Computation Techniques for
Power Management in Real-Time Embedded Systemsjceldings of 6th IFIP
Working conference on Distributed and Parallel Edusel Systems, pp. 121-130,
Milano, Italy. 2008.

[Xenl11] Xenomai Real-Time Kernel for Linux: www.x@mai.org, visited July 2011.

[Xns11] Xenomai Native Skin Functions User Refemnc
www.xenomai.org/documentation/branches/v2.3.x/pati-API-Tour-rev-C.pdf,
visited July 2011.

[YuO7a] Yu, Y. H., and G. Wainer, “eCD++. an engif@ executing DEVS models in
embedded platforms” Proceedings of the 2007 SCSn&rmComputer Simulation
Conference, San Diego, CA, USA, pp. 323-330. 2007

[YuO7b] Yu, Y. H., “Designing extensions for theeusf CD++ to build embedded discrete-event
systems”, Master thesis submitted to Systems anmdp@ter Engineering Department,
Carleton University, 2007.

[Zei93] Zeigler, B. P., and J. Kim, “Extending tBEVSScheme Knowledge-Based Simulation
Environment for Real-Time Event-Based Control”, EEEransaction On Robotics and
Automation, vol. 9, no. 3, pp. 351-356, 1993.

[Zei96] Zeigler, B. P., Y. Moon, D. Kim, and J. &im, “DEVS-C++: A High Performance
Modelling and Simulation Environment”, Proceedings the 29th Annual Hawaii
International Conference on System Sciences, M#upp. 350-359, 1996.



120

[Zei00] Zeigler, B., T. Kim, and H. Praehofer, “Tdrg of Modeling and Simulation”, Academic
Press, ISBN: 0127784551, 2000.

[Zei03] Zeigler, B. P., “DEVS Today: Recent Advasda Discrete Event-Based Information
Technology”, Proceedings of the 11th IEEE/ACM Intional Symposium on
Modeling, Analysis and Simulation of Computer Teleununications Systems, Orlando,
FL, pp. 148-161, 2003.

[Zhe03] Zheng, T., and G. Wainer, “Implementingtirstate machines using the CD++ toolkit”,
Proceedings of the SCS Summer Simulation Conferévioatreal, Canada, 2003.

[zil93] Zilberstein, S., and S. J. Russel. “AnytirBensing, Planning and Action: A Practical
Model for Robot Control” Proceedings of the 13themational Joint Conference on
Artificial Intelligence, pp. 1402-1407, Chamberyakce, 1993.



