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Abstract 

The design and development of embedded hard real-time (RT) systems is one of the most 

complex software development practices, because of the criticality and timeliness required for 

these systems. One critical aspect of RT systems is the production of outputs before the specified 

deadline. A late output caused by an overrun condition in the processing of RT tasks, not only 

degrades the system performance but also produces catastrophic results. Formal methods are 

promising alternatives in dealing with the design issues of these applications, however they do 

not scale well for complex systems. A cost-effective approach to verify the design and 

implementation details of such applications is the use of Modeling and Simulation (M&S). These 

methods provide dynamic and risk-free testing environments to verify different variable 

scenarios. M&S is now limited to feasibility analysis and verification of such systems, hence the 

simulation models are not used in the development of the final embedded application.  

This dissertation is proposing an M&S-based method referred to as DEVSRT (Discrete 

EVent System Specifications in Real-Time) to solve the discontinuity between the simulation 

models and the final embedded software. The proposed approach combines the advantages of a 

simulation-based method and a formal methodology to develop embedded applications, and 

integrate simulation models with hardware components.  

The research also proposes an integration of DEVSRT with Imprecise Computations theory. 

The proposed I-DEVS (imprecise DEVS) formalism uses a dynamic scheduling algorithm based 

on the criticality of the RT tasks to manage overload situations in the system by degrading the 

system’s output accuracy in order to meet hard deadlines. The algorithm detects transient 

overloading conditions early enough to carry out a proper imprecise scheduling of RT tasks, 

providing a more reliable runtime platform.  



   v 

Acknowledgements 

 

I want to express my sincere gratitude toward my adviser and my mentor, Professor Gabriel 

Wainer, for his support, guidance, and trust that helped me through my graduate studies. His 

diligence and commitment to science have been and will be a great influence on me for many 

years to come. I am grateful for having the opportunity to learn from him and work with him. 

 

I would also like to thank the members of the ARS Laboratory and the Department of Systems 

and Computer Engineering at Carleton University.  

 



   vi 

Table of Contents 

Chapter 1: Introduction 1 

1.1 Contributions .............................................................................................................6 

1.2 Research Publications................................................................................................8 

1.3 Organization ............................................................................................................11 

Chapter 2: Background 13 

2.1 Modeling and Simulation Concepts in DEVS.........................................................14 

2.2 Classical DEVS Formalism.....................................................................................17 

2.3 Parallel DEVS Formalism .......................................................................................20 

A) Abstract Simulation Algorithm ............................................................................22 

2.4 Real-Time DEVS Formalism ..................................................................................25 

2.5 DEVS Simulation in CD++.....................................................................................26 

A) CD++ Software Architecture ...............................................................................26 

B) DEVS Model Definition in CD++........................................................................28 

2.6 Modeling and Simulation-based Approaches..........................................................29 

2.7 DEVS-Based Approaches .......................................................................................31 

A) Model Continuity .................................................................................................33 

B) Real-Time Deadline..............................................................................................35 

C) Simultaneous Events ............................................................................................35 

Chapter 3: The DEVSRT Formalism 37 

3.1 Real-Time Interface.................................................................................................41 

3.2 Implementation on E-CD++....................................................................................44 

A) E-CD++ Software Structure .................................................................................47 

B) Performance Evaluation .......................................................................................50 



   vii  

3.3 Case Study: e-puck Robot Controller......................................................................54 

Chapter 4: Extended Applications of DEVSRT 65 

4.1 DEVS-Based Collaborative Modeling ....................................................................65 

A) Message Structure ................................................................................................67 

B) Example Collaborative Model..............................................................................68 

4.2 DEVSRT and Visualization.....................................................................................73 

A) Message Structure and Implementation ...............................................................78 

Chapter 5: Imprecise DEVS 81 

5.1 Algorithms for Imprecise Computation...................................................................83 

5.2 DEVS Task Model ..................................................................................................84 

A) Problem Statement ...............................................................................................86 

5.3 I-DEVS Formalism..................................................................................................87 

A) Example................................................................................................................89 

5.4 Results and Discussions ..........................................................................................92 

A) Performance Evaluation .....................................................................................100 

B) Scalability ...........................................................................................................101 

Chapter 6: Conclusions and Future Work 102 

6.1 Review of the Contributions..................................................................................103 

6.2 Future Work...........................................................................................................106 

References 108 



   viii  

List of Tables 

Table  2.1: Comparing RT and Embedded DEVS Modeling Approaches.....................................34 

Table  3.1: DEVS Output Mapping Table......................................................................................56 

 



   ix 

List of Figures 

Figure  2.1: Entities in a DEVS-based M&S framework [Zei00]..................................................14 

Figure  2.2: M&S layers in a DEVS-based system (modified from [Wai09]) ...............................16 

Figure  2.3: DEVS atomic component state transition sequence (modified from [Wai09]) ..........18 

Figure  2.4: Coupled DEVS model example [Wai09]....................................................................20 

Figure  3.1: DEVSRT Development Cycle (modified from [Wai11]). ..........................................39 

Figure  3.2: E-CD++ with DEVSRT Development Framework. ...................................................46 

Figure  3.3: E-CD++ software structure. ........................................................................................48 

Figure  3.4: Synthetic Model Architecture (Modified from [Gli02]). ............................................51 

Figure  3.5: Percentage of Overhead with Variable Depth.............................................................52 

Figure  3.6: Percentage of Overhead with Variable Width. ...........................................................53 

Figure  3.7: a) e-puck robot                    b) placement of sensors and LEDs. ................................54 

Figure  3.8: epuck0 atomic component state diagram. ...................................................................57 

Figure  3.9: Atomic Animation diagram for e-puck random distance test. ....................................61 

Figure  3.10: event-file scenarios    a) scenario 1                      b) scenario 2. ...............................62 

Figure  3.11: Atomic Animation diagram for e-puck random distance test. ..................................63 

Figure  4.1: Overview of the Partitioned E-puck Model. ...............................................................69 

Figure  4.2: E-Puck Controller Collaborative DEVS Model..........................................................70 

Figure  4.3: E-CD++ input and output log files..............................................................................72 

Figure  4.4: Collaborative System Architecture [Moa11b]. ...........................................................74 

Figure  4.5: Detailed System Overview [Moa11b].........................................................................75 

Figure  4.6: DEVS Graph of the robot controller [Moa11b].. ........................................................77 

Figure  4.7: 3D Visualization Engine Zoomed Map [Moa11b]. ....................................................80 

Figure  5.1: A Monotone Task Divided to Mandatory and Optional Parts [Liu94a]. ....................82 

Figure  5.2: Processing Carried for a State Transition. ..................................................................85 

Figure  5.3: Overload Scenario.......................................................................................................86 



   x 

Figure  5.4: Example I-DEVS Model.............................................................................................90 

Figure  5.5: Example Transient Overload Scenario. ......................................................................92 

Figure  5.6: Applying Imprecise Computation to the Sample Scenario.........................................92 

Figure  5.7: Synthetic Robotic Model Used for Verification.........................................................94 

Figure  5.8: Discarded Tasks vs. Processor Utilization..................................................................94 

Figure  5.9: Response Time vs. Execution Time in Heavy Load...................................................95 

Figure  5.10: Number of Discarded Tasks vs. Average Response Time in Medium Load............96 

Figure  5.11: Number of Discarded Tasks vs. Processor Utilization in Heavy Load.....................97 

Figure  5.12: Number of Components per Level vs. Average Response Time..............................98 

Figure  5.13: Number of Components per Level vs. Overhead Percentage. ..................................99 



   xi 

Acronyms 

DEVS  Discrete EVent System Specifications 

P-DEVS Parallel DEVS  

RT-DEVS Real-Time DEVS  

M&S  Modeling and Simulation 

RC  Root Coordinator 

DEVSRT Discrete EVent System Specifications in Real-Time 

E-CD++ Embedded CD++  

IDE  Integrated Development Environment  

GGAD  Generic Graphical Advanced environment for DEVS modeling and simulation 

IC  Imprecise Computations 

I-DEVS Imprecise DEVS 

HSC  Hardware-Software Co-design 

HIL  Hardware-In-the-Loop  

HILS  Hardware-In-the-Loop Simulation 

RT  Real-Time 

SDE  Simulation-Driven Engineering 

 



Chapter 1: Introduction  

Real-time (RT) and embedded systems are employed in various applications ranging from 

telecommunications, customer electronics, transportation, medical equipments, and intelligent 

and automated systems. An RT system is defined by Liu [Liu00] as “a system that is required to 

complete its work and deliver its services on a timely basis”. In this definition, those systems in 

which all timing constrains must be met are considered “hard real-time systems”. Many of these 

systems are deployed in embedded microprocessors working in hardware computing platforms 

with special configurations and interfaces. [Nic10] describes an embedded system as “a system 

designed to perform a dedicated function, typically with tight real-time constraints, limited 

dimensions, and low cost and low-power requirements”. The architecture of these systems 

usually integrates different types of hardware components such as processors, analog and digital 

components, as well as mechanical (e.g. sensors and actuators) and visual components, which 

demands increasingly challenging multidisciplinary design and development efforts [Nic10]. 

Nevertheless, because of heterogeneity of these systems and their constraints (such as cost, time 

to market, and performance), their development cycle is time consuming, error prone and 

expensive.  

In embedded systems with hard real-time constraints, the design decisions can lead to 

catastrophic consequences for infrastructures or lives [Liu00]. These days, many critical and 

complex real-time control systems rely completely on computer-based systems. Examples of 

these applications are flight control systems, automotive applications, telecommunication 

systems, railway switching, nuclear power plant control systems, traffic control systems, 

complex manufacturing systems, space missions, etc. The size, variety, and criticality of the 

computations carried out in these systems have attracted more abstract and visual design 

methods that increase their complexity, reliability and performance. On the other hand, heuristic, 

and ad-hoc design approaches lack flexibility, reusability, reliability and scalability in the final 
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system. They are also prone to tedious programming, difficult code understanding, software 

maintenance, and verification of time constraints issues [But10].  

A solution proven to provide a reliable framework for designing these systems is the 

adoption of formal methods. Formal methods are special cases of mathematical-based techniques 

for design, development and verification of software and hardware systems [Mon03]. They allow 

for appropriate mathematical specification and analysis of the designs, which can contribute to 

the reliability of the final system, yet they add to the complexity of the design and increase the 

cost of the development. Hence, they are mostly appropriate for systems with critical 

applications where safety and robustness is a foremost aspect. Unfortunately, these methods do 

not scale up well, as most formal proving mechanisms cannot provide formal proofs of 

correctness when the complexity of the system grows [Fin96, and Abr06]. 

Instead, Modeling and Simulation (M&S) provides a practical solution in solving the above 

mentioned difficulties in the design of RT and embedded systems, caused by formal methods. 

Computer-based M&S is a useful tool for efficient analysis, design, verification and optimization 

of general dynamic systems. The use of M&S in software engineering reduces costs and risks 

and allows for exploring different aspects of the system.   

Formal M&S is a branch of M&S, in which the simulation models are defined using a formal 

approach. This technique has shown promising results in making multidisciplinary system 

development tasks manageable [Zei00]. It provides a hierarchical design scheme in which higher 

abstract levels are branched into levels that contain more details. The system specifications are 

expressed using mathematical notations in which the details of the behavior of the system are 

accurately modeled. Other advantages of formal M&S are applying formal model checking 

techniques at design time [Son05, and Saa09], incremental refinement of the initial simulation 

models, simulation-based validation, reuse of the existing models, risk free testing of critical 

real-time applications.  

The use of M&S is now popular in the early stages of RT and embedded systems 

development, because this method raises the abstraction level and gives a clear view of the 
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behavior of the system to be developed. However, when the scope of the development moves 

towards the actual target hardware, the early simulation models are abandoned and the final 

system is redeveloped from scratch, based on the results obtained during the simulation phase. 

Consequently, M&S is often used only for testing, verification, and feasibility analysis of these 

systems. Currently, existing development tools and methods do not support a simulation-based 

approach or they lack the model continuity concept [Hu04, Hu05]. Model continuity applied 

from the early simulation stages to the final target deployment, shortens the development process 

and speeds up the implementation phase. In this approach, M&S is not only a foremost 

component in the development, but also goes further by utilizing the simulated model as the final 

target architecture. Commercial tools such as MATLAB/Simulink [Cha09], and LabVIEW 

[Tra06] are mostly limited to simulation and do not directly support model continuity. In 

addition, approaches like UML-RT [Kus01] can be used to develop software design models, 

which are not suitable to be used as simulation models [Hua04].  

Therefore, this research investigates the use of M&S-driven engineering at every step in the 

entire embedded RT application development phases (which includes design, development, 

testing, and deployment). M&S-driven engineering is a computational approach derived from 

M&S, exploring the use of simulation models in software development. The use of this method 

for this kind of application allows for testing in a simulated environment using virtual and real-

time simulation with different test scenarios [Yu07a, Sha07], and incrementally deploying them 

in the target hardware.  

The followings are the motivations in using formal M&S for design and development of RT 

and embedded systems: 

• Reliability and robustness: a formal methodology provides a reliable mathematical 

framework for RT applications, in which structural representation of components and 

formal means for explicitly specifying timings are presented. 

• Hardware-Software Co-design (HSC): The drawbacks of independent design and 

development of hardware and software parts of an embedded system are in the complexity 
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of the integration of these two parts, in which ambiguous and unrecognized system 

malfunctions can be caused by incompatibilities between the software and hardware, 

producing longer and more expensive development cycle [Bal97]. Instead, a hierarchical 

and component-oriented M&S framework allows the designer to define the structure and 

behavior of the system using state machines and then replace them with hardware and 

software surrogates after performing simulation-based verification of the components. 

This method provides an integrated design platform for co-designing the hardware and 

software components together and later, deciding which component goes as hardware and 

which one as software.  

• Model reuse: The component level encapsulation of behavior and data and well-defined 

coupling of components in these methodologies allow model designers to reuse the 

existing models. Model reuse leads to a faster model development, since many already 

available sub-models can be integrated with the new ones.  

• Knowledge reuse: Many existing techniques that are popular in M&S of real-time and 

embedded systems - such as State Charts [Sch00], Verilog [Kim01], VHDL [Cap03], Petri 

Nets and Timed Petri Nets [Jac02], Timed Automata [Gia03], Finite State Machines 

[Zhe03], and DEVS [Zie00] – can be formally transformed into another method. This 

permits sharing model-level data, allowing for designing hybrid models with sub-models 

defined by different methodologies and a potential for collaborative and heterogeneous 

modeling. 

• Collaborative model execution: Different behavioral components can cooperate at 

runtime via lightweight interfaces in which real-time models implemented in different 

tools communicate with each other. This collaborative approach, where the simulators 

themselves see each other as real-world devices permits the run-time model to collaborate 

with different models implemented on various simulators. It also allows for model 

encapsulation and employing the benefits offered by other tools (e.g. continuous system 

modeling [Cel06], virtual reality environments).  
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• Hardware-In-the-Loop Simulation (HILS): One of the cost saving, efficient, and risk-

free ways to develop an embedded system is to deploy HIL technique [Gli04a]. Integrated 

design of hardware controller with the plant under study as separate but interacting 

components allows for HIL test of the controller, while the plant components can be 

incrementally replaced with the actual segments, saving time and cost in the development 

of the entire system, as well as exploring dangerous and impractical situations. 

The Discrete-EVent System Specification (DEVS) formalism [Zei00] has been chosen for 

this purpose for the following reasons. DEVS provides a formal foundation to M&S that proved 

to be successful in different complex applications [Wai09]. It integrates a simulation approach 

with the benefits of a formal modeling technique, which provides fast prototyping and 

incremental development while allowing for reuse of previously existing models. Concurrent 

with these theoretical advances, various DEVS-based simulation tools have been implemented, 

such as DEVS-C++ [Zei96], RTDEVS/CORBA [Cho03], DEVSCluster [Kim04], and 

DEVS/SOA [Mit09]. In particular, the CD++ toolkit [Wai02b] is an open-source, object-oriented 

M&S environment that implements DEVS formalism using different middleware technologies 

on various platforms [Wai04, Chi07, Liu07, Yu07a, Har08, Wai08a, Wai08b, and Wai09].  

Aside from the above-mentioned motives, this dissertation intends to investigate techniques 

to overcome overrun conditions in hard-real-time systems designed with a DEVS-based M&S-

driven approach. One critical aspect of a hard RT system is the production of outputs before the 

specified deadline. A late output in such systems not only degrades the system performance but 

also produces catastrophic results (loss of lives and expensive equipments). However, in 

circumstances with system overloads, it might be impossible to meet the deadlines. Since RT and 

embedded systems are not deterministic, tasks may enter the system at any time hence, there is 

no prior knowledge of their occurrence times [Liu00].  

The Imprecise Computation (IC) technique [Liu94a] helps to overcome these high 

computation peaks by discarding unnecessary computations in overload conditions. The main 

idea is to separate the computation into mandatory and optional parts (the mandatory part affects 
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the correctness of the result and the optional affects its quality). This research aims at 

introducing a flexible RT task execution paradigm for DEVS by incorporating IC technique with 

the DEVS task model. Based on the requirements in a hard RT system, it is safer for a task to 

produce less accurate result on time, rather than producing the accurate result, late. The motive is 

to employ IC with the proposed RT DEVS approach in order to have a formal platform for 

designing hard RT systems. The objective is to address the above challenges in the proposed 

DEVS-based RT design scheme, without complicating the formalism or adding extra processing 

burden and maintaining the backward compatibility in order to reuse previous models.  

1.1 Contributions 

The main contributions in this dissertation are to propose a DEVS-based simulation-driven 

development methodology for RT and embedded systems and also a hard RT system design 

scheme by integrating the proposed approach with IC technique. One of the key contributions 

regarding these research objectives is a new M&S-driven approach referred to as DEVSRT 

(Discrete-Event Systems Specifications in Real-Time), a domain extension to DEVS theory 

for embedded real-time application development. The DEVSRT takes advantage of well-defined 

M&S properties and constructs of DEVS to design and interface embedded systems with the 

hardware and the plant under study. DEVSRT approach includes the following contributions: 

• The notion of deadline is added to the DEVS formalism making it appropriate for real-

time system modeling and design. Based on DEVS computational properties, a set of 

assumptions are defined to be used in designing a real-time system. DEVSRT uses DEVS 

formal outputs as output signals of the real-time system, therefore a relative deadline is 

associated with each output produced at the end of each state. 

• An efficient interfacing mechanism is added to the DEVS theory. This will satisfy the 

following major motivations of this research: 1) Model continuity from simulation stage 

up to embedding the models in the target hardware. 2) The entire system is designed in a 

hardware-software co-design approach, in which the models represent different 
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hardware and software components and are tested together as an integrated DEVS model. 

3) Provides hardware-in-the-loop simulation platform where some of the models act as 

the simulated plant components (in which the driver interfaces provide the electrical 

emulator signals) and are tested with the embedded system (controller) model to be 

deployed on the hardware.  

• A generic lightweight interface for message transfers between DEVS models running on 

different DEVS-based tools is presented. This provides a basis for component-oriented 

collaborative modeling and simulation with other DEVS-based tools, allowing reusing 

other models or using special services offered by other tools.  

• The Embedded CD++ (E-CD++) tool [Yu07a, Yu07b] is extended as a software 

environment to implement the proposed DEVSRT framework for the formal development 

of embedded real-time applications. The new version of E-CD++ is implemented on a 

real-time kernel, incorporating real-time tasking services. Many new object-oriented 

entities and capabilities are added to this framework in order to support the RT 

functionalities, driver interfaces, and other features of DEVSRT. 

• An Integrated Development Environment (IDE) containing embedded functionalities and 

graphical model designer capability is provided, which permits rapid design and 

deployment of the models.  

Finally, this approach has been used to develop various real-time embedded systems on a 

variety of hardware platforms (such as FPGAs, embedded boards, and robotic devices), and 

collaborative models. A test case using a robotic model application is presented here and the 

development process and results are discussed.  

The second contribution of this dissertation includes: integrating the M&S-based approach 

proposed in DEVSRT with the (Imprecise Computations) IC technique to build a more reliable 

design and execution platform for hard real-time systems.  
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• The Imprecise DEVS (I-DEVS) formalism is proposed, providing flexibility to the user by 

separating the behavior of the system to mandatory and optional, to achieve a more 

reliable RT task scheduling from the processor.  

• A detailed (model-independent) task model of DEVS formalism is presented, which 

identifies processing tasks being executed in a real-time DEVS-based system. This 

proposal is then used to develop RT IC-based scheduling algorithms.   

• An early reaction algorithm to the overrun conditions in DEVS-based hard real-time 

systems is proposed, in which the system can act early enough to save the critical tasks 

from lateness.  

• The I-DEVS M&S framework is implemented on E-CD++, providing a development 

platform for imprecise modeling and execution using DEVS formalism.   

1.2 Research Publications 

Some of the research results of this dissertation are published so far. The publications are 

categorized in four categories. 1) Publications related to DEVSRT and models developed using 

this framework, 2) publications regarding I-DEVS formalism, 3) publications regarding the RT 

collaborative modeling scheme, and 4) other publications concerning DEVS-based modeling and 

simulation.  

The following publications are related to the DEVSRT and DEVS-based embedded system 

design:  

• Moallemi, M., M. Alcaraz, and G. Wainer, “ECD++ A DEVS based Real-Time Simulator 

for Embedded Systems”, Poster in proceedings of Spring Simulation Conference, Ottawa, 

Canada, 2008. This paper presents the basic real-time simulation and embedded 

functionalities added to E-CD++ which was later used as a basis for driver function 

addition. The four embedded functionalities added to the Eclipse IDE of E-CD++ are also 

discussed in this paper.  
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• Holman, K., J. Kuzub, M. Moallemi, G. A. Wainer, “Cable-Anchor Robot Implementation 

using Embedded CD++”, Poster in proceedings of SIMUTools Conference, Rome, Italy, 

2009. This poster paper presents a real-time model for a cable-anchor robot, developed 

using the DEVSRT framework. The model specification and implementation details are 

presented.  

• Moallemi, M., and G. A. Wainer, “A System-On-Chip FPGA Implementation of 

Embedded CD++”, Proceedings of Spring Simulation Conference, San Diego, CA, USA, 

2009. This paper proposes an FPGA-based implementation of the so far DEVSRT 

formalism. The RT approach was implemented on a Virtex2pro Xilinx FPGA board, on an 

embedded Linux environment. Different models have been tested on this platform.  

• Moallemi, M., and Gabriel Wainer, “A Simplified Real-Time Embedded DEVS Approach 

Towards Embedded and Control Design”, Poster in proceedings of Winter Simulation 

Conference, Austin, USA, 2010. This poster paper presents some of the later details and 

refinements of DEVSRT framework, in which the theory is more revealed.   

• Moallemi, M., and G. A. Wainer, “Designing an Interface for Real-Time and Embedded 

DEVS”, Proceedings of Spring Simulation Conference, DEVS Symposium, Orlando, 

Florida, USA, 2010. In this paper the details of driver interface functions and 

implementation of DEVSRT on E-CD++ are discussed. The real-time platform, where the 

E-CD++ is implemented and the DEVS model integration with hardware is presented.  

• Moallemi, M., D. A. Tall, G. A. Wainer, and A. Awad, “Application of RT-DEVS in 

Military”, Proceedings of Spring Simulation Conference, MMS Symposium, Orlando, 

Florida, USA, 2010. This paper presents an RT and embedded DEVSRT model for a 

reconnaissance tank. The model is designed as DEVS model, tested in simulation mode 

and then deployed on the hardware following the DEVSRT framework.  

• Sadeghi, F. R., G. Wainer, and M. Moallemi “Modeling and Controlling a Robotic Arm 

with E-CD++”, Poster in proceedings of Summer Simulation Conference, Ottawa, ON, 

Canada, 2010. In this paper, a model of an advanced robotic arm is presented, following 



  10

   

  

  

the proposed DEVSRT approach. The robotic arm is used in medical robotics, remote 

surgery, and medical simulation.  

The following publications are related to the collaborative modeling scheme:  

• Moallemi, M., R. Castro, F. Bergero, and G. A. Wainer, “Component-Oriented 

Interoperation of Real-Time DEVS Engines”, Proceedings of Spring Simulation 

Conference, ANSS Symposium, Boston, MA, USA, 2011. This paper presents the main 

idea of collaborative modeling and model execution based on component-oriented nature 

of DEVS, using the interfacing and RT features of DEVSRT. The pros and cons of this 

approach are discussed and some limitations that must be observed are briefed.  

• Moallemi, M., S. Jafer, A. S. Ahmed, and G. Wainer “Interfacing DEVS and 

Visualization Models for Emergency Management”, Proceedings of Spring Simulation 

Conference, Work In Progress of the DEVS Symposium, Boston, MA, USA, 2011. This 

paper introduces a method to integrate Cell-DEVS [Wai02a] models with DEVS-based 

robotic agents and an advanced immersive visualization environment for Emergency 

Management, using the proposed collaborative approach. The emergency is handled by an 

autonomous robot controlled by a real-time DEVS model. The model controlling the robot 

interacts with a simulation for emergencies, receiving real-time data about its location on 

a cell space. The immersive environment is used to visualize the emergency and its 

management. 

• Ahmed, A. S., M. Moallemi, G. Wainer, and S. Mahmoud, “Cell-DEVS & 3D Real-Time 

Visual Simulation to Support Combat”, Proceedings of Summer Simulation Conference 

(SCSC'11), Netherland, 2011 (Runner up Best Paper Award). This paper presents the 

design and development of a collaborative 3D real-time visual Cellular Agent model 

(VCELL). VCELL is used for simulating land combat and is collaboratively modeled 

comprising a Cell-DEVS agent model and an advanced visual immersive simulation 

environment. 

The following publications are related to the I-DEVS approach:  
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• Moallemi, M., and G. A. Wainer, “I-DEVS: Imprecise Real-Time and Embedded DEVS 

Modeling”, Proceedings of Spring Simulation Conference, DEVS Symposium, Boston, 

USA, 2011 (Best Paper Award). This paper proposes the initial I-DEVS formalism, and 

the RT task-scheduling algorithm based on IC technique. This approach combines the 

dynamic advantages of the imprecise computation technique with the rigor of a formal 

modeling methodology. A synthetic robotic model is developed and the results of the 

execution of this model in different scenarios are compared and discussed.  

The following publications are general DEVS-based M&S researches:  

• Moallemi, M., and G. Wainer, “Design of Persian Tapestry in CD++”, Poster in 

proceedings of Spring Simulation Multi-conference, Ottawa, Canada, 2008. This paper 

presents a cellular automata [Neu66] model of a Persian carpet using Cell-DEVS 

formalism and implemented on CD++ tool. The model produces different fascinating 

tapestry shapes which can be used to weave real tapestries.  

• Moallemi, M., A. Arya, and G. Wainer, “Simulation of Three Dimensional Elevator 

System Using Cell-DEVS Formalism”, Proceedings of Spring Simulation Conference, 

ANSS Symposium, Orlando, USA, 2010. This paper proposes a cellular model of a 3D 

elevator system used in high-rise buildings. The paper investigates different strategies to 

be considered in the design of the system and routing the elevator cars.  

1.3 Organization 

The rest of this dissertation is organized as follows: Chapter 2 presents some background 

information on the general aspects of M&S and then discusses DEVS formalism and different 

variants of it. Classical DEVS, Parallel DEVS, and RT-DEVS are reviewed and the abstract 

simulation algorithm of the parallel DEVS (which is the basis for DEVSRT) is presented. 

Chapter 3 describes several related and similar RT and embedded system development 

approaches and tools, and discusses the pros and cons of these approaches. The need for an 

M&S-based approach supporting model continuity and other necessary features for such systems 
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is justified in this chapter. Later, the DEVSRT formalism, the details of DEVS task model, the 

model interfacing mechanism, and the details of implementation of the scheme on E-CD++ are 

presented. An example of a robotic controller model and the details of design, implementation 

and deployment of the model are presented, where the simulation results are compared with the 

actual system performance. Chapter 4 presents practical examples of the extended applications of 

DEVSRT in collaborative modeling, and integration of RT models with virtual reality 

environments. The messaging scheme, the interfacing mechanism, the limitations and finally the 

models’ details are provided. Chapter 5 proposes the I-DEVS approach, where the RT tasks 

working in the context of a DEVS-based system are extracted and then an RT scheduling 

algorithm, confined in the DEVS atomic component level is proposed. The results of the 

execution of a synthetic model using precise and imprecise modes are compared and the 

effectiveness of this approach is shown. Chapter 6 concludes the dissertation and proposes some 

future research directions for future researchers and students in this subject.  
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Chapter 2:  Background  

As discussed earlier, the need for high quality software with no defect for real-time (RT) and 

embedded applications has evolved techniques in which system specifications are expressed in 

clean mathematical basis. M&S-based approaches provide various advantages however, they are 

not as robust as formal methods, and the lack of a formal foundation for M&S poses difficulties 

when trying to prove properties about the embedded systems modeled. Thereby, formal M&S-

based approaches are good alternatives as they provide a mathematical-driven system 

specification framework, suitable for the design and development of such systems. Another 

important challenge is the issue of consistency and traceability from the design stage to the 

deployment [Bou05]. There are no well-established techniques in M&S-based design schemes to 

bridge the gap between the modeling and the hardware deployment phases, nor techniques for 

mapping the model behavior to an RT task system to adopt task scheduling algorithms in real-

time operating systems. Because of these drawbacks in using M&S-based design, often M&S 

artifacts are abandoned and not used for the development of the actual embedded system, 

resulting in extra development costs [Wai09].  

This chapter presents the DEVS M&S framework, different variants of the DEVS formalism, 

its abstract simulation algorithm, and details of model development on CD++ software. 

Subsequently, the available M&S-based methodologies and tools for RT and embedded system 

development are evaluated and the challenges in each of them are explored. 
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2.1 Modeling and Simulation Concepts in DEVS 

The theory of discrete event modeling and simulation is more or less a recent innovation tied 

to the advancement of computer systems. Based on Zeigler et al. [Zei00], the Discrete-Event 

System Specification (DEVS) theory observes the system of interest (source system) as a set of 

behavioral data operating in the context of an experimental frame (EF) with a set of conditions. 

A model of this system provides an abstract representation of the system under study, by means 

of mathematical equations and instructions. Figure  2.1 illustrates this M&S framework with its 

entities and relations. The entities are source system, experimental frame, model, and simulation, 

and there are two types of relations: modeling relation, and simulation relation. The system 

under study is illustrated as the source system, working in the general framework of the EF, 

which is of interest to the modeler. The model represents the source system, its structure and 

behavior in an abstract way, including part of the reality of the source system and its working 

conditions.  

 

Experimental Frame

Model

SimulatorSource 

System

Modeling

Relation

Simulation

Relation

Behavior

Database

 

Figure  2.1: Entities in a DEVS-based M&S framework [Zei00] 

The model is expressed as a set of instructions, rules, mathematical equations, or constraints 

that are used to approximate the I/O trajectories of the source system. Consequently, the 
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simulation is a computational implementation of an available model to execute the model and 

extract these I/O trajectories.  

The relations defined in Zeigler’s M&S framework envision the relation between EF and the 

model and between the model and the simulator. The modeling relation affects the accuracy of 

the behavior generated by the model compared to the behavior of the actual source system, while 

the simulation relation is concerned with the accuracy of the executed simulation results 

compared to the model that has been defined. The operational details of the simulator (e.g. 

software, hardware …) affect the precision and limitations of the model. Different verification 

techniques try to detect discrepancies between the model definition and the source system. On 

the other hand, validation tests concern with inconsistencies between the simulation results and 

the source system [Sar87].  

This separation of data (model) and control (simulation) enables the modeler to confine the 

efforts to model design, while using existing simulators to execute the model. On the other hand, 

the use of formal techniques to describe the model provides mathematical proofs for the model. 

The other advantage of this method is the ability to execute the same model on different 

simulators implementing the same formalism, providing a potential for portability and 

interoperability of the simulators and benefiting from the unique features of different simulators. 

This scheme allows the model and simulator to evolve separately and maintain consistency. This 

technique can be presented as a layered approach for executing the model using computer-based 

simulation [Wai09]. Figure  2.2 illustrates the M&S layers in a DEVS-based simulation system.  
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Simulator

Hardware (workstation/cluster/embedded board)

 and

Operating System

Model

Application

Modeler

Middleware (parallel/distributed/real-time)

 

Figure  2.2: M&S layers in a DEVS-based system (modified from [Wai09]) 

The modeler defines the model using a dedicated computer application providing specific 

tools for expressing a DEVS model. After that, the simulator executes the model. The simulator 

can incorporate different middleware technologies to hide the execution details from the 

modeler. Middleware is the bridge between the simulator and the hardware, providing special 

services regarding the details of execution of a model. The model is executed on a hardware 

platform with a specific operating system or as an embedded application on an embedded board 

with no operating system1. 

                                                 
1 Not to be confused with an embedded control system. An “embedded simulation” executes a simulation model 

on an embedded board and outputs the results of the simulation.  
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This dissertation concerns with designing a new real-time simulation approach capable of 

being transformed to an RT system that executes a model as a control algorithm in the 

framework of an embedded system.  

2.2 Classical DEVS Formalism 

As discussed in the previous section, the modeling and simulation aspects of a DEVS system 

are separated in order to modularize and formulate the design of a model, based on the 

requirements of the source system. To this end, DEVS has been proposed as a sound formal 

framework for modeling generic dynamic systems and includes hierarchical, modular and 

component-oriented structure and formal specifications for defining structure and behavior of a 

discrete event model [Zie00]. A DEVS model is comprised of structural (Coupled) and 

behavioral (Atomic) components, in which the coupled component maintains the hierarchical 

structure of the system, while each atomic component represents a behavior of a part of the 

system. The atomic component is the basic building block of the system which is composed of 

I/O ports and a finite state timed automaton representing the behavior of the model. An input to 

the atomic component via an input port triggers a state transition (referred to as “external 

transition”), and in contrast the state transition (referred to as “internal transition”) at the end of 

the time-delay of each state leads to an output generation through an output port. This dynamic 

behavior is represented using the following formal notations [Zei00]:  

AM = < X, S, Y, δext, δint, λ, ta >, where 

X = {(p,v) | p∈IPorts, v∈Xp} is the set of input ports and values; 

Y = {(p,v) | p∈OPorts, v∈Yp} is the set of output ports and values; 

S is the set of states; 

δext: Q × X → S, is the external transition function 

Where Q is the total state set of M = {(s, e) |s ∈ S and 0 ≤ e ≤ ta(s)} 

δint: S → S, is the internal transition function 

λ: S → Y , is the output function 
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ta: S → R+
0,∞, is the time advance function 

An atomic component AM is affected by external input events X which in turn generates 

output events Y. The internal transition function δint and the external transition function δext 

compute the next state of the model. If an external event arrives at elapsed time e which is less 

than or equal to ta(s) specified by the time advance function ta, a new state s′ is computed by the 

external transition function δext. Then, a new ta(s′) is computed, and the elapsed time e is set to 

zero. Otherwise, a new state s′ is computed by the internal transition function δint. In the case of 

an internal event, the output specified by the output function λ is produced based on the state s 

and a new ta(s′) is computed, and the elapsed time e is set to zero.  

Figure  2.3 illustrates the state transition of an atomic component. An atomic component is in 

state s for a specified time ta(s). If the atomic component passes this time without interruption it 

will produce an output y at the end of this time and change state based on its δint function 

(internal transition) and continues the same behavior. However, if it receives an input x during its 

ta(s) time, it changes its state which is determined by its δext function and does not produce an 

output (external transition). 

 

Figure  2.3: DEVS atomic component state transition sequence (modified from [Wai09]) 

A coupled model connects the basic models together in order to form a new model. This 

model can itself be employed as a component in a larger coupled model, thereby allowing the 

hierarchical construction of complex models. The coupled model is defined as [Zei00]: 
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CM = <Xself, Yself, D, {M i | i∈D}, {I i}, {Z i,j}, Select>, where: 

X = {(p, v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 

Y = {(p, v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 

D is the set of the component names;  

for each i in D , Mi is a component; 

for each i in D ∪ {self}, I i is the influencees of i; 

for each j in Ii, Zi,j is a function, the i-to-j output translation; 

SELECT: 2M − Á → M, the tie-breaking selector;  

The structure is subject to the constraints that for each i in D, 

M i =< Xi, Si, Yi, δi, λi, tai > 

I i is a subset of D ∪ {self}, i is not in Ii ; 

Zself,j : Xself → Xj ; 

Zi,self : Yi → Yself ; 

Zi,j : Yi → Xj ; 

SELECT: subset of D → D, such that for any non-empty subset E, SELECT(E) ∈ E. 

A coupled model CM consists of components {Mi}, which are atomic components and/or 

coupled models. The influencees {Ii} and the i-to-j output translation {Zi,j} define three types of 

coupling specifications. The external input coupling connects the input events of the coupled 

model itself to one or more of the input events of its components. The external output coupling 

connects the output events of the components to the output events of the coupled model itself. 

The internal coupling connects the output events of the components to the input events of other 

components. The SELECT function is used to order the processing of the simultaneous events 

for sequential events. Thus, all the events with the same time in the system can be ordered with 

this function.  

Figure  2.4 shows a hierarchical DEVS model. This model is composed of three atomic 

components (Generator, Buffer and Processor) and two coupled models: the top-most coupled 

model (GEN-BUF-PROC) that contains generator atomic component and BUF-PROC coupled 
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model, which itself includes two atomic components: BUF and PROC. The port connections are 

also visible in the figure. For example, the output port “out” of atomic component PROC is 

connected to the “done” input port of BUF atomic component within the BUF-PROC coupled 

model and also is connected to the output port of its parent coupled model which connects this 

output to the top-most model output port. 

 

Figure  2.4: Coupled DEVS model example [Wai09]. 

2.3 Parallel DEVS Formalism 

The Select function in classical DEVS formalism handles simultaneous events by serializing 

their occurrences based on the modeler’s preference, which reflects the closest sequence 

happening in the real system. Let’s consider a scenario in which multiple imminent components 

(a component which is supposed to execute an internal transition) exist at a certain time in a 

coupled component. In this case, different order of the execution of the transitions in these 

components will produce completely different behaviors in the entire system and will affect the 

results, subsequently. To manage these ambiguities, the modeler specifies the imminent 

component that has the priority to execute its transition, using the Select function and based on 

the results, the rest of the components will be served in the next simulation cycle.  

This technique however proposes a number of limitations. The arranged order of the events 

might not exactly represent the reality in the source system. The circumstances might change 

dynamically, while this technique only proposes a fixed ordering in all instances. Besides, this 

method does not provide a solution for potential parallel execution of the events. To address 



  21

   

  

  

these issues Chow and Zeigler proposed the Parallel DEVS (P-DEVS) formalism [Cho94] as a 

solution.  

The P-DEVS formalism handles simultaneous events inside the atomic component by 

introducing a new transition function referred to as “confluent function”. It also introduces an 

input bag in the atomic component, where simultaneous inputs are stored there and are serviced 

afterwards. This allows the external function to handle multiple simultaneous inputs in one 

function call. On the other hand simultaneous internal and external events are handled in the 

confluent function by the modeler, which can be dynamically adapted to the circumstances. This 

technique also provides a potential for parallelism in the execution of the model by allowing all 

the atomic imminent components to be activated at the same time [Zie03].   

The P-DEVS atomic component has the following structure [Cho94]: 

AM = < X M, YM, S, δext, δint, δcon, λ, ta >, where: 

X M,Y M, S, δext, δint, λ and ta are the same as DEVS atomic component specifications.  

δcon: Q x XM
b → S is the confluent transition function; 

The semantics of the P-DEVS model definitions are as follows. At any given time, a basic 

model is in a state s. In the absence of external events, it will remain in that state for a period of 

time determined by ta(s). When an internal transition takes place, the system outputs the value 

λ(s), and transitions to state δint(s). If one or more external events E = {x1  ... xn / x ∈XM} occurs 

before ta(s) expires, (i.e., when the system is in the state (s, e) with e ≤ ta(s)) the new state will 

be given by δext(s, e, E). Suppose that an external and an internal transition collide, (i.e., an 

external event E arrives when e = ta(s)) the new system’s state could either be given by 

δext(δint(s), e, E) or δint(δext(s, e, E)). The modeler can define the most appropriate behavior with 

the δcon function. As a result, the new system’s state will be the one defined by δcon(s, E).  

A P-DEVS coupled model (CM) is defined the same as DEVS model except that there is no 

tie breaking function (SELECT), as this problem is solved within the atomic component using 

δcon function.  
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A) Abstract Simulation Algorithm  

As mentioned in section  2.1, DEVS M&S theory separates the modeling entity from the 

simulation entity, in order to increase the abstraction level and dynamism of the framework. In 

addition to providing rigorous model definition formalism, it also provides an abstract simulation 

mechanism to understand and execute a DEVS-based model. The processors associated with 

atomic and coupled components in the abstract simulation mechanism, are referred to as 

simulators and coordinators, respectively. Thus, the processor hierarchy (or control hierarchy) is 

composed of coordinators as middle nodes and simulators as the leaves. There is a top-most 

coordinator referred to as Root Coordinator (RC) (reflecting the top-most coupled component) 

which initiates each simulation phase by sending the following messages to the simulators: (q, t) 

representing an input message that carries an input value from external environment and the time 

stamp of the message. (@, t) also referred to as collect message carrying a signal to the simulator 

in order to generate an output. (*, t) referred to as internal message carrying a wake up call to an 

imminent simulator. The simulator in response replies with the following messages: (done, t) 

referred to as done message which is produced in response to input and internal messages after 

invoking the transition functions, carrying the duration of their new state (ta(s)). (y, t) referred to 

as output message, which is produced in response to a collect message, carrying the output value.  

An en-route coordinator is responsible for converting output messages to input messages in 

case of an internal coupling. It is also responsible for sending the smallest time of internal event 

(also referred to as next change (tN)) among its components whenever it is forwarding a done 

message up to the RC. The tN time is the relative time from now up to the time when the 

imminent children of a coordinator must be invoked in order to perform an internal transition. 

The last change time (tL) is the relative time from the last activity in a component to the current 

time.  

The following pseudo code snippet represents collect message handling algorithm in a P-

DEVS simulator [Cho94]. 

1. when receive (@, t): 
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2. if (t = tN) then  

3.     y = λ (s)  

4.     send (y, t) to the parent coordinator  

5.     send (done, t) to the parent coordinator  

6. end  

7. else if 

8.     error  

9. end when 

The following pseudo code snippet represents input message handling algorithm in P-DEVS 

simulator [Cho94].  

1. when receive (q, t): 

2. lock the bag 

3. Add event q to the bag 

4. unlock the bag 

5. send (done, t) to the parent coordinator 

6. end when 

In P-DEVS, the receipt of input message does not trigger the external transition function. 

Instead, the input is inserted in the bag, allowing for processing simultaneous inputs stored in the 

bag, when an internal message is received. Thus, an internal message must always accompany an 

input message. 

The following pseudo code snippet represents internal message handling algorithm in P-

DEVS simulator [Cho94]. 

1. when receive (*, t): 

2. if (tL ≤ t < tN) and bag is not empty 

3.     e = t  - tL 
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4.     s = δext(s, e, bag) 

5.     empty bag 

6.     tL = t 

7.     tN = tL + ta(s) 

8. end if 

9. else if (t = tN) and bag is empty 

10.     s = δint(s) 

11.     tL = t 

12.     tN = tL + ta(s) 

13. end if 

14. else if (t = tN) and bag is not empty 

15.     s = δcon(s, bag) 

16.     empty bag 

17.     tL = t 

18.     tN = tL + ta(s) 

19. end if 

20. else if (t > tN or t < tL) 

21.     error 

22. end if 

23. send (done, tN) to parent coordinator 

24. end when 

The internal message will produce three circumstances in an atomic component based on the 

current time and input bag conditions. Line 2 refers to a case in which, the internal message is 

received sometime before the end of current state’s life time and the input bag is not empty. This 

means there are inputs to be serviced; hence the external transition is invoked. Line 9 refers to 

the case when the internal message is received at the end of the lifetime of the current state, 
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while the input bag is empty, indicating an internal transition. Line 14 shows the case when 

internal message is received at the end of the state and there are inputs to be served. Therefore, 

confluent function must be called to handle the collision of external and internal transitions. 

2.4 Real-Time DEVS Formalism 

Hong et al. [Hon97] proposed a real-time version of DEVS formalism as an extension of the 

classical DEVS for real-time systems simulation. An atomic component in RT-DEVS formalism 

(RTAM) is defined as:  

RTAM=<X, S, Y, δext, δint, λ, ta, ti, ψ, A >, where:  

X, S, Y, δint, λ and ta are the same as original DEVS.  

δext: Q × X→S, an external transition function, where Q is the total state set of M= {(s, 

e)|s∈S and 0 ≤ e ≤ ti(s)|max}  

ti: a time interval function,  

ψ: an activity mapping function, 

A: a set of activities, 

With constraints:  

 ψ: S→A 

 ti: S→ R+
0,∞ × R+

0,∞, 

 Where ti(s)|min≤ t(a) ≤ ti(s)|max, ti(s)|min≤ ta(s) ≤ ti(s)|max, s∈S, a = ψ (s) ∈A and t(a) is the 

execution time of an activity a.  

 A= {a| t(a) ∈R+
0,∞, a∉{X?, Y!, S=}} 

Where: X? is the action of receiving data from X, Y! is the action of sending data from Y and 

S= is the action of modifying a state in S.  

 In RT-DEVS an activity mapping function ψ and an activity set A are defined to advance 

virtual time with an executable activity associated with an event. The regular ta time advance 

function only verifies the correctness of activity mapping time constraints and compensates time 

discrepancy problems. The time bound of each activity is specified by ti function. 
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A coupled model within the RT-DEVS formalism is defined the same way as in the original 

DEVS formalism with an exception. The exception is that there is no SELECT function in RT-

DEVS, which has been defined in the DEVS formalism to break ties for simultaneous events 

scheduling. The authors justify this by claiming that in a real-time simulation environment 

simultaneous events do not occur. In real-time simulation with one processor, only one event at a 

time can be physically processed even if more than one event occurred from the external 

environment.  

2.5 DEVS Simulation in CD++  

CD++ [Wai09] is an open-source simulation software that implements the DEVS abstract 

simulation technique. In CD++, simulators and coordinators progress through the simulation by 

exchanging messages as described by the DEVS abstract simulation mechanism. CD++ benefits 

from object-oriented design, allowing the developer to make use of powerful object-oriented 

techniques in integrating simulation entity with modeling entities developed by the modeler. The 

rest of this section reviews CD++ software architecture and how it implements the DEVS 

simulator.  

A) CD++ Software Architecture 

CD++ is designed as an object-oriented simulation engine, modularized as a group of 

components that have well-defined behaviors and have relatively independent functionalities. 

CD++ architecture consists of the following major components [Yu07b]: Main Simulator, DEVS 

Modeling Subsystem, Simulation Subsystem, and Messaging Subsystem.  

Main Simulator manages the overall aspects of the simulation and is the first object that is 

created when the simulator starts. In general, the following tasks are performed by Main 

Simulator: 
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• Atomic component classes defined by modeler as C++ objects derived from the Atomic class 

are registered in a list. These atomic models will be instantiated during the model loading 

process, which is the next step performed by the Main Simulator. 

• The DEVS model hierarchy is constructed by parsing the modeler-defined model-file in 

which the DEVS components and their couplings are declared (e.g., atomic and coupled 

models, ports, links, states durations, etc.). During this phase, two hierarchical C++ tree 

objects are constructed, one representing the modeling (Atomic and Coupled) components 

(Modeling Subsystem) and the other one representing the simulation (Simulator and 

Coordinator) processors (Simulation Subsystem). For each atomic or coupled object a 

Simulator or Coordinator object is created, respectively complying with DEVS abstract 

simulator mechanism discussed in section  2.3A).  

• After this, the external events are loaded from the event-file (in case there is one), and the 

Root Coordinator (RC) corresponding to the Top coupled component is created. RC is 

responsible for starting and controlling the simulation cycles and advancing the time based 

on the order of the events (in a virtual time simulator).  

The Simulation Subsystem consists of Simulators, Coordinators, and the Processor Manager. 

The control messages defined in abstract simulator are transferred among these objects, while the 

behavior functions (transitions, time advance, and output function) are implemented in the 

modeling subsystem. RC generates the very first message in the simulation, which triggers other 

processors to receive and send messages. Coordinators forward the messages to their children or 

parents and also maintain a list of their imminent children. Simulators have a pointer to their 

corresponding Atomic object instances and invoke user-implemented behavior functions after 

receiving the appropriate message. RC advances the simulation time and stops the simulation 

cycle when all models become passive (i.e. all atomic components are in a state with lifetime of 

infinity) and there is no external events left to process, or when the user-specified simulation end 

time arrives. 
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The Modeling Subsystem maintains the model hierarchy information presented by the user in 

model file. The subsystem is composed of coupled and Atomic component objects, Input and 

Output port objects and the Model Manager which keeps a hashing table of the model 

components and inter-couplings.  

The Messaging Subsystem consists of the Message Manager and various Message classes. 

Messages Manager is responsible for delivering messages transferred among the Coordinators 

and Simulators. The incoming messages are first buffered into the Message Queue and are 

processed by the Messages Manager in FIFO order. The Message fields are sender, receiver, 

time-stamp, value, and port. 

B) DEVS Model Definition in CD++  

Based on the software structure described above, the modeler has to provide the following 

information to build a DEVS model in CD++: 1) Model specifications, 2) Events, 3) Atomic 

component behavior.  

Model specifications are defined in the model-file in special format defined in [Wai02b]. The 

model-file contains the components (Atomic and Coupled) in a top to bottom order, in which the 

top-most coupled component is declared first. For each Coupled component, its internal 

components, I/O ports, and links (EIC, EOC, and IC) are declared. For each atomic component 

its state durations can be defined in the model-file, in order to easily modify them during various 

execution scenarios without recompiling the source code. The Main Simulator Subsystem 

automatically instantiates Atomic and Coupled objects for each component based on the order 

defined in the model-file.  

Events are defined in event-file with a specific format, containing the event time, value, and 

input port. The Main Simulator stores the events in an event queue at the beginning of the 

execution and RC injects the event to their associated input port at the specified time.  

Atomic components in CD++ are overridden by the modeler as sub-classes of the Atomic 

class. The modeler implements the desired behavior by programming the following four 
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functions: init function, external function, internal function, and output function. These functions 

are invoked using polymorphic techniques inside the Simulator class corresponding to that 

Atomic component. The states are declared in the atomic component classes using an enumerator 

type, and state durations are set by calling the holdIn, or passivate functions. Finally the Atomic 

component object pointers are handed to the Main Simulator in its modeler-overridden 

registerAtomics function.  

2.6 Modeling and Simulation-based Approaches 

 Various modeling methodologies have been introduced in literature, concerning the design 

and development of real-time and embedded software systems. A typical M&S-based approach 

towards this end consists of the following steps: 1) specification (requirements and constraints); 

2) modeling; 3) simulation/verification; 4) model mapping to hardware/software components; 5) 

prototyping and implementation. Among the model-based approaches, the UML-RT (the Unified 

Modeling Language for Real-Time) [Sel01] is an extension of UML modeling language which 

provides especial aspects for designing real-time systems. UML and UMLRT have been used in 

applying model-based design, verification, and performance analysis of different systems (see 

e.g. [Cor01 and D’Am05]). A comparison between DEVS and UML-RT [Hua04] shows that, 

although features such as time, scheduling and performance are coded using UML constructions 

(i.e., not formally defined). Instead, DEVS provides sound syntax/semantics for structure, 

behavior, time representation and composition, which lend themselves to well-defined 

computations. DEVS, however, is not intended for software design and development, and “it is 

key to support the transformation of simulation models to their software model counterparts and 

their complementary roles in handling modeling and computational complexity of embedded 

systems” [Hua04]. This research aims at overcoming these issues by introducing the model 

continuity and other modifications to the DEVS M&S framework.  

Among other model-based approaches, the BIP (Behavior, Interaction, Priority) methodology 

is a framework for heterogeneous component-based modeling of real-time systems introduced in 
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[Bas06]. Components are obtained as the superposition of three layers: Behavior; specified as a 

set of transitions, Interactions; between transitions of the behavior, and Priorities; used to choose 

amongst possible interactions. BIP does not support simulation-driven approach which plays a 

key role in performances analysis and reliability of the software. The issue of model continuity is 

handled using code generation tool, which lacks a direct traceability relation between the model 

and the final software architecture.  

The following research efforts apply simulation-based design which is more closely related 

to this work. ECSL (Embedded Control Systems Language) is a tool-suite that supports software 

development for distributed embedded controllers [Bal06]. ECSL offers a graphical modeling 

language built using the Generic Modeling Environment (GME) [Led01], an open-source meta-

programmable domain-specific design environment. It was designed in the context of embedded 

automotive systems with capabilities such as requirements specification, verification, mapping 

on to a distributed platform, scheduling and performance analysis.  

Ptolemy II [Eke03] is a structured and hierarchical method for modeling heterogeneous 

systems using a specific model of computation that covers the flow of data and control. SystemC 

[Gro02] and Esterel [Bou91] are system description languages that can be used for generating 

simulatable and executable models. They share some features and also have their unique 

characteristics, and some two-way component mapping can be performed between the 

languages.  

Matlab/Simulink® is a commercial tool provided by Mathworks [Mat11] for modeling and 

simulating embedded systems that also offers graphical interface for visual construction and 

integration of hardware blocks. Simulink® can be integrated with different other tools provided 

by Mathworks, such as Stateflow®, Simulink Coder®, and Embedded Coder® for event-based 

modeling, physical modeling, and code generation. Simulink is mainly used for simulating real-

time systems, while the accompanied code generation tool produces C/C++ code for embedded 

processors. Nevertheless, the generated code has limited usage, does not support all the 

functionalities of the Simulink blocks and still needs verification.  
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None of the above-mentioned modeling approaches provide direct model continuity, whereas 

DEVSRT allows for straight use of the simulation models as the final target software. The other 

advantage is the straightforward hardware-software co-design capability  [43] (i.e. co-

specification, co-synthesis, co-simulation and co-refinement) in a more abstract level as well as 

hybrid testing of simulation models with real hardware. The use of DEVS simplifies the 

transformation of the models from various other formal methods, supporting heterogeneous 

systems design, implementation, and reuse, which is necessary in embedded system 

development. DEVS, as a simulation methodology, not only allows for simulation-driven 

software development but also supports M&S of an entire system and its surrounding 

environment. This allows for verification of the software in a simulated environment with 

changing conditions. 

2.7 DEVS-Based Approaches 

 In [Sha07] the authors introduce the FDS-DEVS (Flexible Dynamic Structure DEVS) 

algorithm based on [Bar97] dynamic structure system modeling approach. FDS-DEVS enables 

adapting a simulated system’s organization to the dynamically changing internal/external 

environment while the system execution is in progress. The authors propose an MDA (Model 

Driven Architecture) technology applied to real-time DEVS experimental environment, which is 

greatly benefited from dynamic structure capabilities. This methodology allows building real-

time DEVS-based simulation models capable of changing their components dynamically, based 

on real-world systems. This enhances the capabilities of DEVS-based approaches in building 

reliable and adaptive real-time systems as they can respond to the changing contexts or recover 

from errors automatically.  

In [Sar01a] an application of the DEVS/DOC (Discrete Event System 

Specification/Distributed Object Computing) co-design methodology is presented. In this case 

study model, the architectural and scalability aspects of a Mission Training and Rehearsal 

System (MTRS) is analyzed and implemented, in which “it has to be accounted concurrently for 
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hardware and software requirements, given high demands for network bandwidth, computing 

resources, and complexity of software applications”. The authors showed the advantage of the 

DEVS/DOC approach applied to Software/Hardware design from architectural, behavioral, and 

performance viewpoints. In this scenario the system demands a systematic approach to transition 

from high-level system design to low-level component design. DEVS/DOC can help detect 

architectural errors before they lead to lower level system failure, and offer a suitable solution 

for high level system specification, by introducing a modeling layer on top of fine grained DEVS 

modeling constructs.  

In [Hu01], a DEVS-based RT system has been implemented on a TINI Chip which has 

limited memory and processing ability. A set of well-defined DEVS Interfaces made it possible 

to define a just-as-needed RT environment and run on the chip efficiently. Finally a case study 

model has been successfully run on the chip.  

In [Hua06] a modeling approach for semiconductor manufacturing supply-chain systems in a 

hybrid DEVS/MPC (Model Predictive Control) test-bed that supports experimentations for 

DEVS and MPC models using KIBDEVS/MPC (Knowledge Interchange Broker) is proposed. This 

test-bed supports detailed analysis and design of interactions between discrete processes and 

tactical controller. In this work, the DEVS model captures complex dynamics of semiconductor 

manufacturing processes whereas the MPC model is responsible for tactical control.  

In [Hu05] the authors show how an M&S environment based on the DEVS formalism can 

support model continuity in the design of dynamic distributed real-time systems. The authors 

prove that the discontinuity between implementation artifacts and analysis, design, and modeling 

artifacts is a common deficiency of most design methods. The authors restrict model continuity 

to the models that implement the system’s real-time control and dynamic reconfiguration, and 

emphasize model continuity during the entire process of software development, where the 

control models can be designed, analyzed, and tested by simulation methods, and then smoothly 

transitioned from simulation to distributed execution. The proposed methodology supports model 



  33

   

  

  

continuity by making possible to deploy and execute the control models (initially designed and 

tested by simulation) directly into the real target system. 

RT-DEVS/CORBA [Cho03] is presented as a modeling and simulation framework, to 

support the development of distributed real-time systems. The framework supports model 

continuity for real-time software development from model design to performance evaluation and 

even to final real-time control. This approach is based on RT-DEVS formalism (discussed in 

section  2.4) and maps activities to each state. The authors do not mention details about real-time 

control part and the focus is on real-time simulation and a case study is presented.  

Table  2.1 lists a summary of the comparison among the current DEVS-based real-time and 

embedded modeling approaches using different criteria. As it shows in the table, most of the 

current approaches are limited to the simulation of these systems, and none of them uses a formal 

approach for model continuity or Hardware-In-the-Loop simulation. On the other hand deadline 

definition and simultaneous events (collision handling) are not properly managed in the current 

approaches.  

A) Model Continuity  

Numerous researches have been done based on RT-DEVS theory to use it as an RT and 

embedded software design technique. However, most of the works are only limited to real-time 

simulation while a few of them tend to bridge the gap between simulated real-time models and 

the hardware using ad-hoc approaches (see e.g. [Hu01, Hua06, Cho03]) limited to specific case 

study systems or a just-as-needed technique. None of them proposed a generic framework for 

integration of the real-time models with the actual hardware counterparts. For more references in 

this area of research refer to [Zei93, Cho00, Sch00, Gli02, Li03, Hua04, Sag04, Gli04, Wai05, 

Hu07, and God07]. 

Lack of a formal transformation method from a simulation model to hardware control 

software is a common pitfall in all of the above-mentioned methods. The embedded coders and 

code generation tools do not quite satisfy our objectives, because the final code produced by 
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these software tools is prone to error and not necessarily represent the actual model accurately, 

thus require extra verification steps. The objective is to directly deploy the model developed to 

mimic the hardware controller as the final control software. Having this in mind, the model will 

go through extensive formal model checking and verification tests, and the software architecture 

is guaranteed to work as the final architecture. Hence, the code generation tools add the burden 

of extra verification phase to ensure that the generated software code performs the same function 

as the model itself. The other problem is that most available code generation tools do not support 

all the modeling constructs (e.g. MATLAB/Simulink Embedded Coder tool), thus the modeler is 

confined with the constructs that are supported by the code generator tool, limiting the modeling 

formalism’s capabilities.  

Table  2.1: Comparing RT and Embedded DEVS Modeling Approaches. 

              Criteria 

DEVS Frame 

Model 

Continuity 

Hardware 

Interface 

Deadline 

Definition 
Simultaneous Events 

DEVS-DOC 

[Sar01a] 
No No No 

SELECT function using 

Java threads  

DEVS/MPC 

[Hua06] 
No No No 

SELECT function using 

Java threads  

FDS-DEVS 

[Sha07] 
No No No 

Modeler defined priority 

based on P-DEVS 

PowerDEVS 

[Ber10] 
No No No SELECT function 

RTDEVS [Hon97] No No t(i) function Random order 

RTDEVS/CORBA 

[Cho03] 
yes  Ad-hoc interfaces 

Using RTDEVS 

t(i) function 
Random order  

DEVSRT 

yes 

Formal generic 

user implemented 

interfaces 

Formal 

deadline 

specifications 

Modeler defined priority 

based on P-DEVS 
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B) Real-Time Deadline  

The overall correctness of a real-time system depends on its functional correctness and 

timing correctness. The timing correctness is as important as its functional correctness especially 

in hard real-time systems. Therefore, an appropriate real-time system design methodology must 

reflect the timing properties of such systems. The classical DEVS theory and most of its variants 

do not provide a direct method for representing the deadline of outputs. The RT-DEVS 

formalism uses t(i) function (discussed in section  2.4) to verify the timing discrepancy between 

the activity a mapped to state s. However, this method does not properly represent timing 

limitations and deadlines to be used in a real-time system design method. RT-DEVS is originally 

designed to simulate real-time systems. On the other hand, the output production method is not 

well formulated; therefore each project uses an ad-hoc technique to interface the model with the 

external environment.  

In the next section, the DEVSRT formalism is introduced, which manages this issue by 

adding a deadline function to the DEVS formalism. It also uses DEVS standard outputs as the 

outputs of the target real-time system to the hardware actuators. This will allow the system 

designer to clearly specify the deadline for each output. The system must meet the deadline 

requirements for each specific output, unless unexpected circumstances occur (e.g. the system 

overruns due to the high number of jobs inserted into the system and the system does not have 

adequate processing resources). I-DEVS approach (the second contribution of this thesis) tackles 

this problem.  

C) Simultaneous Events   

Authors of RT-DEVS [Hon97] emitted the SELECT function (of the original DEVS 

formalism) from their proposed methodology, asserting that even if two events are scheduled for 

the same time, the system will only accept them sequentially, because a physical processor can 

only process one event at a time. This justification is correct; however this method does not 

allow the modeler to control the sequence of simultaneous scheduled events in a real-time 
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simulation. For example, in a scenario where two or more imminent children exist (components 

with simultaneous scheduled internal events) within a coupled model, the coordinator 

(corresponding to that coupled model) does not have a pre-determined order to signal the 

simulators. Thus, the system executes a random or fixed order in all cases, sacrificing the 

reliability of the target system (which is a major issue considering the critical applications of 

such hard real-time systems). On the other hand, even by retaining the SELECT function of the 

DEVS formalism, the problem still exists based on the previous discussion in section  2.3.  

DEVSRT handles this situation by taking advantage of the P-DEVS approach (refer to 

section  2.3) in which this conflict is dynamically handled and the modeler has the full control 

over the sequence of simultaneous events, or inputs.  
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Chapter 3: The DEVSRT Formalism    

 A real-time (RT) simulation is in fact an RT system that models a part of the environment or 

the target system and computes this model in real-time. Therefore, to use the same simulation 

model as eventual RT system, the simulator must be able to handle timely inputs from external 

environments such as hardware peripherals, software modules, network devices, human 

operators, etc. The idea is to develop discrete-event models using DEVS formalism, afterwards, 

transfer the models into embedded platform, where they function as controller interacting with 

the hardware through formally-defined interfaces added to the simulator. The models are 

thoroughly tested using various simulation-based verifications and are incrementally replaced 

with the hardware surrogates. This provides a Hardware-In-the-Loop Simulation (HILS) 

platform, where hardware and software can be designed and developed in parallel, allowing for 

observing un-modeled characteristics of the hardware/software designs.  

Figure  3.1 illustrates the design and development cycle for control software in a plant (target 

platform) in the proposed DEVSRT approach. The following tasks are performed (the following 

numbering of the tasks correspond to the number labels on the arrows in the figure). 

1.  Initially the control software and the external environment (plant) are modeled together. 

This will allow for hardware-software co-design of the target system, where different parts 

of the entire system are co-modeled and tested together.  
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2. Once the model specifications are defined, various formal model checking approaches can 

be used to verify the integrity and consistency of the designed model, resulting in a robust 

software product2.  

3. Simulation scenarios are extracted from the target system specifications, and are used as 

inputs to the model.  

4. The model is simulated by using the extracted simulation scenarios, investigating different 

aspects of the system in a risk-free environment. This process includes virtual-time and 

real-time simulation, where the former verifies the logical aspects of the model and the 

latter verifies the temporal behavior of the model.  

5. The model is refined based on the results of the simulation. This provides a simulation-

based verification of the entire system in which the model behavior is corrected to match 

the requirements of the system. This process is done concurrently with the model 

checking, to ensure the robustness of the design.  

6. The model is partitioned into control system model and the plant model. These model 

partitions are then tested together in real-time.  

7. The plant models are incrementally replaced with the actual hardware in the external 

environment, allowing for HILS of the model.  

8. The control model is refined based on the results of the HILS, allowing for exploring un-

modeled and hidden aspects of the external environment.  

9. The incremental replacement of simulation models with hardware surrogates allows for 

hardware-software co-design, in which the hardware segments are initially modeled with 

the software components. Later the modeler decides which one goes to hardware and 

which one goes to software. 

10. During the HILS, the model is interfaced with the hardware by using formal interfacing 

techniques proposed here.  

                                                 
2 An initial research on integration of model checking approaches with DEVSRT is presented in [saa11] 
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11. Finally, the control model executive is embedded in the target system with interface 

functions to integrate and cooperate with the entire system.  
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Figure  3.1: DEVSRT Development Cycle (modified from [Wai11]).  

To this end, DEVSRT is proposed in this dissertation as a real-time DEVS approach built on 

top of P-DEVS [Cho94] methodology (to support simultaneous events in real-time) satisfying 

the objectives discussed earlier. Unlike RT-DEVS, this approach applies minor modifications to 

the DEVS formalism, allowing for easy reuse of the previous models. Finally, the proposed 

DEVSRT approach is implemented on E-CD++ as a tool-suit to develop real-time and embedded 

applications.   

The most critical characteristic of a real-time system is the availability of outputs within the 

specified deadline. In order to express the timing constraints of the system in a formal context, 

DEVSRT assigns a deadline to each output in an atomic component and it verifies the deadline 
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when the associated output is produced. Hence, the concept of deadline is embedded in the 

formalism and implemented in the abstract simulation mechanism.  

In DEVSRT, instead of defining an activity mapping function (as opposed to RT-DEVS) to 

map the state of the model with an activity on the hardware, the outputs of the atomic 

components are reflected to the hardware to echo the behavior of the model on the embedded 

device. In this approach, the output function is responsible of triggering an action on the actuator 

at the end of each state, informing the hardware about the new state of the model. Therefore, 

hardware control signals are produced by the DEVS output function.  

The atomic component of DEVSRT is formally defined by: 

AMRT = < X, S, Y, δext, δint, δcon, λ, ta, d >, where:  

X, S, Y, δext, δint, δcon and λ are the same as P-DEVS (section  2.3). 

ta: S → R+
0,∞ , time advance function which works with physical clock of the system 

d: S → R+
0,∞, is the relative deadline of each state for output production. The deadline starts 

from the end of the state (release time of the output task).  

To show the proof of closure under coupling of the DEVSRT formalism, it is necessary to 

demonstrate that a DEVSRT coupled model (CMRT = <X, Y, D, {M i | i∈D}, {I i}, {Z i,j}> ) can 

be built as a DEVSRT atomic model (AMRT = < X, Y, S, δext, δint, δcon, λ, ta, d>). DEVSRT 

inherited all its specifications from P-DEVS [Cho94], except the deadline (d) function. Thus, the 

associated atomic model derived from a coupled model will have the following specifications: 

S = ×Qi where i ∈ D; 

ta(s) = minimum{σi|i∈D}, where s∈S and σi = ta(si) – ei ;  

d(s) = d(si) ; 

The rest of the steps for δext, δint, δcon, and λ functions are the same as P-DEVS [Cho94]. 

In other words, ta(s) of the coupled model is equal to the closest ta(si) (to the current time) of 

its components. Therefore, the deadline of the output of the coupled model’s current state s is 

equal to the deadline of this component.  
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DEVSRT maintains consistency with the DEVS formalism, allowing reusing DEVS models 

for RT and embedded system modeling. The coupled model definition in DEVSRT is the same 

as P-DEVS.  

3.1 Real-Time Interface  

In order to make a virtual-time simulator to work in a real-time context, the logical time 

representation of the simulator must be tied to the underlying computing system. In a DEVS-

based system, the simulation time advances only when there is an event waiting to be serviced, 

however in DEVSRT, the time-advance is tied to the clock of the underlying system and the 

Root Coordinator (RC) only verifies the timings of the events and initiates the simulation cycles 

based on the wall clock. In other words, RC does not advance the time, instead it waits for the 

physical scheduled time of the next event to reach, then triggers the event by sending the 

appropriate simulation message.  

In order to use a DEVS model as the final target software architecture, DEVSRT employs 

model outputs as hardware control signals, and proposes an efficient formal interfacing 

mechanism between the model and the environment. A driver interfacing approach is presented 

in [Cho98], which is now integrated with the proposed DEVSRT in a more efficient way by 

removing the extra processing burden from the atomic components. In this approach, the 

standard DEVS I/O ports of the top-most (Top) coupled component that are supposed to interact 

with the environment, possess a driver object, working as an interface between the model and the 

external environment. This way, the model hierarchy remains unchanged and only the driver 

interfaces are added to the borders of the model. The driver object is an abstract function, 

overridden by the model developer that can be independently modified for each platform, 

providing portability to the model on different platforms. The other advantage of this approach is 

maintaining RC aware of the atomic component interactions, conforming to the DEVS abstract 

simulator definition by Zeigler (discussed in section  2.3A)).  
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The DEVSRT notation of the Top coupled model in the model hierarchy is modified as 

follows:  

TOPCM = <X, Y, OS, IS, DX, DY, D, {Md | d∈D}, EIC, EOC, IC>, where: 

X, Y, D, Md, EIC, EOC and IC are the same as DEVS  

IS = {is | is is the input signals from environment} is the set of environment input signals. 

OS = {os | os is the output signal to environment} is the set of hardware output signals.   

DX: IS →Xv:  converts external environment input signals to input port value (Xv).  

DY: Yv →OS:  converts output port value to external environment output signals (Yv).  

Any interaction between the environment and atomic component is routed through the formal 

interconnections from the Top coupled component to the atomic component or vice-versa. The 

interfacing mechanism allows for Hardware-In-the-Loop and Human-In-the-Loop simulation by 

connecting DEVS components with the hardware or human peripherals. The integration with 

hardware can be done incrementally, by replacing each model component with the corresponding 

hardware counterpart (e.g. sensor, actuator…) and providing the driver functions for the model 

ports previously connected to that model. The software model co-executes with the hardware 

segments, allowing for investigating actual environment scenarios and providing safe test-bed 

for each device.  

Model continuity is ensured, since the original model is finally deployed on the hardware, 

acting as the embedded control software. The incremental hardware deployment technique 

provides a seamless integration mechanism, where the system is reliably embedded in the 

hardware. The benefit of this approach versus code generation approaches is the limitless use of 

the simulation model features on the hardware and no extra verification of the generated code as 

the same model and source code are deployed on the hardware. The only component added to the 

model is the driver interface functions that are gradually verified in the incremental integration 

steps.  

The algorithm of the RC main loop in DEVSRT is as follows: 

1. main():  



  43

   

  

  

2. forever for each DEVSRT model /* main loop */ 

3.     wait for is signals from environment or internal time out 

4.     if an external event then  

5.         q = DX(IS) 

6.         send (q, t) msg   

7.         send (*, t) msg 

8.     else if an internal time out then  

9.         send (@, t) msg 

10.         send (*, t) msg 

11.     else if receive (y, t) 

12.         OS = DY(y) 

13.         send oy signal to the hardware  

14.     else if receive (done, t) 

15.         tN = t  

16.     end if  

17. end forever 

Lines 5 and 12 show the driver object functions that convert input and output signals, 

respectively. The cycle starts with the RC waiting for inputs from hardware or an internal event 

time out (line 3). A soon as an input is received, it is converted to a DEVS predefined input value 

by the input driver function. Afterwards, an external message is sent to the target atomic 

component (based on P-DEVS simulation mechanism discussed in  2.3A) an external message is 

always accompanied by an internal message). If an output message is received, the DEVS output 

value is converted to a DEVS signal via the DY driver interface function.   

The external and internal message handling functions in the Simulator object are the same as 

P-DEVS (presented in  2.3A)). The following pseudo code represents the collect message 

handling function in a DESVRT Simulator object:  
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10. when receive (@, t): 

11. if (t = tN) then  

12.     y = λ(s)  

13.     if (tnow ≤ tL + ta(s)+ d(s)) 

14.         send (y, t) to the parent coordinator  

15.     else 

16.          error //deadline missed 

17.     end if 

18.     send (done, t) to the parent coordinator  

19. end  

20. else if 

21.     error  

22. end when 

The simulator is responsible to verify the timing of the output. Thus in line 13 the deadline 

function d(s) associated to the current state is called to verify whether the output is produced on 

time. The d(s) function returns the relative deadline of the output from the end of the current 

state s, thus it is added with (tL + ta(s)) that indicates the end of the current state. If the deadline 

is missed an error signal is raised, informing the system about a late deadline, thus the system 

can decide what action to pursue.  

3.2 Implementation on E-CD++   

The DEVS formalism proposes a framework for model construction and also defines an 

abstract simulation mechanism that is independent of the model itself. This mechanism provides 

a high-level implementation detail for the DEVS framework, and it can be feasibly implemented 

by computer software.  
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E-CD++ [Yu07a and Yu07b] extends the CD++ [Wai02b] simulator (a DEVS-based 

framework for M&S introduced in section  2.5, and RT-CD++ [Wai04] (an extension of CD++ 

for real-time simulation). E-CD++ support modeling real-time systems by converting CD++ 

virtual time-advance function to real-time and provides an RT simulation platform for 

verification of such models. It also support FDS-DEVS framework [Sha07], where model 

components can change dynamically during the simulation. During this research, the proposed 

DEVSRT M&S framework is implemented on E-CD++ software, by modifying its simulation 

engine to execute real-time models more precisely and interacting with environment, based on 

the driver interfaces proposed earlier. To allow for direct replacement of models with external 

entities, the I/O ports of E-CD++ models implement the formal interfacing mechanism of 

DEVSRT. The underlying middleware is replaced with a real-time kernel and the runtime 

objects are imported to this platform as RT tasks. To follow the development cycle proposed in 

the previous section, the model development interfaces are also upgraded and several embedded 

functionalities are added. The rest of this section discusses the modifications carried out on E-

CD++ in the context of this research to reach the DEVSRT objectives. 

Figure  3.2 illustrates the E-CD++ development framework with DEVSRT modeling 

approach implemented during this research. This framework is a special case of the layered 

M&S approach presented in Figure  2.2 that is customized with DEVSRT in the modeling layer, 

E-CD++ as the simulator, Eclipse in the application layer, and Xenomai real-time Linux kernel 

as the middleware platform to execute the simulation. The target embedded platform, or HILS 

with the external environment is shown in this layered approach, representing the cross-platform 

development of models in this paradigm. The E-CD++ execution engine uses Xenomai real-time 

kernel3 with multi-tasking services to implement DEVSRT. The user developed models and the 

driver objects are merged with the E-CD++ core objects and the entire combination is compiled 

to produce the model executable. Xenomai provides an RT kernel resting between the hardware 

                                                 
3 Another version is also under development for embedded environments without OS support.  
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and Linux OS, and offers several pervasive hard RT services to user space applications and is 

seamlessly integrated with GNU/Linux environment. 

 

Figure  3.2: E-CD++ with DEVSRT Development Framework. 

In order to improve and speedup the model development, E-CD++ incorporates Eclipse 

programming environment and has user-friendly interfaces suitable for real-time and embedded 

execution [Moa08]. The GGAD (Generic Graphical Advanced environment for DEVS modeling 

and simulation) [Chr04, Bon10] graphical user interface tool based on DEVSgraph standard 
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[Pra93] is also integrated with E-CD++ Eclipse IDE. This tool allows for graph-based drawing of 

the DEVS model hierarchy, interconnections, and behavior representation of atomic components 

to automatically generate the model-file and source files of the model. Since E-CD++ executable 

file is to be deployed on a different platform (embedded hardware system), means for cross-

compilation for the project is also provided, as well as means of communication to the target 

platform in order to download executable binary files, run the executable and debug remotely 

[Moa08].  

A) E-CD++ Software Structure 

As discussed earlier in  2.5A), CD++ is modularized in which system objects run as separate 

software modules with well-defined behaviors and independent functionalities. E-CD++ 

inherited the main object entities of CD++, applying the proposed DEVSRT approach by 

modifying object behaviors or adding new entities to the software architecture of CD++. Four 

main components of E-CD++ are: Main Runtime System, Modeling Subsystem, Runtime 

Subsystem and Messaging Subsystem (see Figure  3.3).  
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Figure  3.3: E-CD++ software structure. 

The Main Runtime System manages the overall aspects of the real-time execution and 

provides timing functions with microsecond precision. This is done by incorporating Xenomai 

native skin clock functions [Xns11] in the E-CD++ Time class which is itself instantiated by the 

Main Runtime System class. The Time class is modified to handle microsecond time operations 

and also provide the physical elapsed time of the execution to be used by the RC to schedule the 

events. The Main Runtime System is the first object that is created in non real-time context and 

spawns the Runtime Subsystem as a Xenomai real-time task. In general, it does the following 

tasks in sequence: 

• Registers Atomic component objects. 

• Registers the Top coupled component ports that are connected to the external 

environment. 

• Reads in the external events (from event-file) and builds an external event table. 
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• Reads in the model-file and builds the model hierarchy. 

• Spawns the main real-time task in which the Root Coordinator (RC) is created to start the 

DEVSRT execution cycle.  

The Runtime Subsystem consists of Simulators, Coordinators, and the Processor Manager. In 

E-CD++, The Simulators work as run-time execution engines that correspond to atomic 

components and perform the main job of executing transitions and output function after 

receiving the proper messages.  

The RC is a special Coordinator that manages the real-time event scheduling. It initializes the 

global Driver object which spawns the real-time input driver tasks (which are associated with 

input ports of the Top coupled component in the DEVS model hierarchy) declared by the user. 

Running in the context of the main real-time task, RC manages the inputs received from input 

driver tasks while it is waiting for the next transition time to occur and at the same time releases 

outputs to the output driver objects.  

The Messaging Subsystem consists of the Message Manager and various Message classes. 

Messages are transferred to the coordinators and simulators via the Message Manager, which is 

responsible for delivering messages. The incoming messages are first buffered into the Message 

Queue and are processed by the Message Manager in real-time.  

The Modeling Subsystem holds the model hierarchy information extracted from the model 

file. The subsystem is composed of Coupled and Atomic component classes, Input and Output 

port classes and the Models Manager, which maintains a hashing table of the model components 

and port influence lists.  

The Port Admin object is a new entity added to the E-CD++ to maintain a list of the Top 

model ports that use a driver object. This list is later accessed by the global Driver object to 

spawn and control the input tasks.  

The Global Driver object is another new entity to control the interfacing mechanism with the 

environment. It invokes hardware driver initialization and termination functions. After 

initializing the hardware, it spawns a Xenomai RT task (thread) for each input driver function. 
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The driver function is handed to the thread as the thread function, whose job is to receive 

external input signals and convert them to DEVS predefined input values. The RT thread can be 

periodic and the period interval is declared in the model-file. In order to synchronize the 

execution of the RT input tasks and minimize the jitter, a multi-value semaphore is used to signal 

all the tasks at the beginning of the execution, ensuring the start of the simulation cycle as close 

as possible to the physical start time of the simulation. It also invokes outputs port driver 

functions via the RC, whenever the latter receives an output message.  

The initialization and termination functions of the driver class as well as the input and output 

port driver functions of the port class are abstract C++ functions, implemented by the user for 

each specific platform.  

B) Performance Evaluation  

In order to verify the efficiency of the implementation and to prove the performance gains of 

the multi-tasking approach on a real-time middleware, the proposed implementation is tested 

with synthetic models and compared with the previous RT-CD++ [Wai04] implementation. The 

tests are performed using two different sets of synthetic models with different depth and width in 

the model hierarchy. The results of tests are compared with the reported results of the previous 

evaluation of RT-CD++ published in [Gli02].  

In order to compare the two implementations in an equal and fair condition, the synthetic 

model proposed in [Gli02] is duplicated in the new E-CD++ implementation. The model is 

composed of one coupled component and several atomic components in each level of the 

hierarchy. Figure  3.4.a illustrates the Top coupled component along with its inter-connections. 

The model can have multiple levels with the same architecture and several atomic components in 

each level. Figure  3.4.b shows the last level, which only has one atomic component.  
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...

 

Figure  3.4: Synthetic Model Architecture (Modified from [Gli02]). 

Given a specified depth d and width w, we end up having k coupled components with w-1 

atomic components inside each model (except for the last coupled model, which will only 

include one atomic component). An input to this model propagates to each sub-component and 

repels to the last level. This will trigger the external function in each atomic component. All of 

the atomic components follow the same behavior, in which they are in a passive state, until an 

input is received. The external transition (invoked by the input) changes the state to a temporary 

state with zero time-advance, which produces an output and then transitions to a passive state, 

waiting for the next input. This cycle continues as long as there is an input to the system.  

The goal is to measure the overhead of the processing occurred in the simulation engine 

proportional to the processing time of the model. The overhead of executing a model is mainly 

associated with the abstract simulation algorithm’s message transfer scheme (refer to section 

 2.3A)), the handling of input and message queues and the time-advance management. The major 

processing in a DEVS model is performed in the external and internal transition functions in the 

atomic component. Hence, to produce a computation extensive model, a fixed delay of 50 

milliseconds is assigned to the external and internal transition functions of all the atomic 

components. To make the comparison platform-independent, the models are executed on the 
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same workstation with the same computing power used in [Gli02]. The percentage of overhead 

of the system relative to the model execution time is measured and compared. The percentage of 

software overhead is calculated using the following equation:  

100
ssingTimeTotalProce

essingTimeitionsProcTotalTransssingTimeTotalProce
Overhead% ×−=   

 3-1 

 Two sets of varying tests have been carried out with changes in the number of components 

in each level and the depth of model hierarchy (number of levels).  The first test is composed of 

four models with fixed number of components in each level (equal to 12) and variable depths of 

3, 6, 9, and 12 levels for each model. The tests were done with 10 inputs injected to the models 

during a fixed execution time of 40 seconds. Figure  3.5 represents the overhead percentage 

calculated using equation  3-1 for the above models in E-CD++ and compared with the available 

results of RT-CD++.  
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Figure  3.5: Percentage of Overhead with Variable Depth. 
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In another test, models of the same type are generated with fixed number of levels (i.e. 4) and 

variable number of components per level (i.e. 4, 6, 8, 10, and 12). The same numbers of inputs 

are injected to the models and the models are executed for a period of 100 milliseconds. Figure 

 3.6 shows the results of this test.  
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Figure  3.6: Percentage of Overhead with Variable Width. 

As it can be seen from the above charts, the overhead percentage in E-CD++ is dramatically 

lower than the RT-CD++ in all scenarios. This is due to the use of a real-time middleware and 

employing a multi-tasking approach. The efficient tasks scheduling service offered by the 

Xenomai kernel speeds up the execution of the software, which results to a lower overhead. On 

the other hand, the chart demonstrates the efficiency of the simulation algorithm of DEVSRT, 

which does not add any significant processing burden to the E-CD++ execution engine. Another 

observed feature of this implementation is the constant overhead over different sizes and 

architectures of models. This guarantees a fixed execution engine overhead, allowing for reliable 

schedulability analysis of the tasks executed on the final real-time system. 
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3.3 Case Study: e-puck Robot Controller  

As a proof of concept, a robot controller model using DEVSRT is designed and implemented 

on E-CD++ to perform various tests and apply different features. The model is used to 

demonstrate the model continuity, HILS, and hardware-software co-design contributions of the 

proposed methodology and tools.   

The E-puck [Mon09] is a mobile robot with different sensors and motors. It has eight 

infrared distance proximity sensors to detect obstacles around it. There are eight LEDs mounted 

around the robot’s body. It also has two motors connected to the two wheels on both sides, which 

make the robot capable of moving forward, backward, and spinning in both directions. Figure 

 3.7.a shows the e-puck robot and Figure  3.7.b illustrates the placement of IR sensors and LEDs 

on the robot.  

                     

Figure  3.7: a) e-puck robot                    b) placement of sensors and LEDs. 

A DEVSRT controller model is designed to steer the robot in a field, while avoiding 

obstacles. The model contains an atomic component (epuck0) representing the behavior of the 

controller and a coupled component (Top) containing the epuck0 atomic component. There are 8 

input ports (InIR0 ,… InIR7) in the DEVS model, which each of them is intended to receive 
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periodic inputs from a proximity sensor (the distance between the obstacle and the sensor). There 

are also two output ports: OutMotor: transferring the output commands to the motors and 

OutLED: transferring LED on/off commands to the LEDs.  

The controller commands the following 5 different actions based on the inputs received from 

the censors: move forward, turn 45 degrees left, turn 45 degrees right, turn 90 degrees left, turn 

90 degrees right, turn 180 degrees and stop. Initially, the robot starts moving forward while 

receiving the periodic inputs from proximity sensors and analyzes them. As soon as it detects an 

obstacle around itself, the former performs one of the turning actions based on the direction of 

the obstacle. The robot keeps turning until it finds an empty space on the front. The controller 

also uses LEDs to signal the action that is being performed. For example, if the robot is moving 

forward, the front LED (led0) turns on and if it is turning 45 degrees to left, led7 turns on.  

Table  3.1 lists the outputs of the DEVS model and their associated actions to be performed 

on the robot hardware. The driver interfaces transform numeric values to the command signals 

on the robot. 

Figure  3.8 illustrates the state diagram of the epuck0 component. The DEVSgraph state 

diagram summarizes the behavior of a DEVS atomic component by presenting the states, 

transitions, inputs, outputs and state durations graphically [Pra93]. The circles represent states 

and the double circle is the initial state. The name and duration of a state is shown in the circle. 

The continuous edges between the states represent external transitions, with the input port, the 

input value and any condition on the input (with “port?value” format). The discrete lines 

represent internal transitions with the associated outputs (with “port!value” format). 
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Table  3.1: DEVS Output Mapping Table. 

Port Name Port Value Hardware Command Comment 

100 Turn all LEDs off  

0,10,20 … 70 Turn LED off The most significant digit is the 

number of Led to be turned off 

 

 

OutLED 

1, 11, 21 … 71 Turn LED on The most significant digit is the 

number of Led to be turned on 

0 Set horizontal & rotational speed 

to 0 m/s 

Stop 

1 Set horizontal speed to 0.5 m/s Move Forward 

2 Set rotational speed to 1 r/s Turn 45° Left 

3 Set rotational speed to -1 r/s Turn 45° Right 

OutMotor 

4 Set rotational speed to -1 r/s Turn 90° Right 

5 Set rotational speed to 1 r/s Turn 90° Left 
 

6 Set rotational speed to 1 r/s Turn 180° 

The controller always watches for any obstacle on the front of the robot by checking the 

values of IR0, IR1, IR6 and IR7 sensors. Initially the robot moves forward and if there is no 

obstacle, it continues moving forward. As soon as an obstacle is detected by one of the IR 

sensors, the controller verifies IR6 sensor, and if it shows no obstacle then the left side of the 

robot is open hence, it performs a 45° turn towards the left side. Otherwise, it checks the IR1 

value and if it is open, the robot turns 45° to the right. If both IR1 and IR6 are blocked then, it 

looks at IR2 sensor and if it shows an open space, the robot performs a 90° turn to the right. The 

same story happens when IR2 is blocked and IR5 is open, the robot turn 90° to the left. If all of 

the sensors are blocked, the robot tries turning to the opposite direction (180°).  



  57

   

  

  

(IR0?<0.05 || IR1?<0.02) &

IR6>0.04

Pr
ep
ar
e t
o T
ur
n 

45
o  Le

ft

0s

Tu
rn
 45

o  Le
ft

10
0m
s

Motor!2

LED!0

LED!71

LED!70

Motor!1

LED!1

Prepare to Turn 

45
o
 Right

0s

Tu
rn 
45
o  R

igh
t

10
0m
sMotor!3

LED!0

LED!11

LED!10

Motor!1

LED!1

IR0<0.05 & IR7<0.05 & IR5>0.04

Prepare to Turn 

90
o
 Right

0s

Tu
rn
 90

o  R
igh
t

70
0s

Motor!4

LED!0

LED!21

LED!20

Motor!1

LED!1

IR0<0.05 & IR7<0.05 & IR2>0.04

Prepare to Turn 

90
o
 Left

0s

Tu
rn
 90

o  Le
ft

70
0m
s

Motor!5

LED!0

LED!61

LED!60

Motor!1

LED!1

Prepare to Move 

Forward

0s

Mo
ve
 F
or
wa
rd

∞

LED!100

Motor!1

LED!1

IR
0?
>0
.0
4 
&
 IR
7?
>0
.0
4 
&

IR
1>
0.
02
 &
 IR
6>
0.
02

IR
0?
>0
.04
 &
 IR
7?
>0
.04
 &

IR
1>
0.0
2 &
 IR
6>
0.0
2

IR0?>0.04 & IR7?>0.04 &

IR1>0.02 & IR6>0.02

IR0?>0.04 & IR7?>0.04 &

IR1>0.02 & IR6>0.02

(IR0?<0.05 || IR1?<0.02) &
IR6>0.04

(IR6?<0.02 || IR7?<0.05) & 

IR1>0.04

(IR
6?<0.02 || IR

7?<0.05) &
 

IR
1>0.04

IR0<0.05 & IR7<0.05 & IR2>0.05 

& IR5>0.05

Prepare to Turn 

180
o
 Left

0s

Turn 180
o
 Left

2s
Motor!6

LED!0

LED!41

LED!40

Motor!1

LED!1

IR0<
0.05

 & IR
7<0.

05 &
 

IR2>
0.05

 & IR
5>0.

05

IR0<0.05 & IR7<0.05 & 

IR2>0.05 & IR5>0.05

IR0<0.05 & IR7<0.05 & 

IR2>0.05 & IR5>0.05

IR0<0.05 & IR7<0.05 & 

IR2>0.05 & IR5>0.05

 

Figure  3.8: epuck0 atomic component state diagram. 

As mentioned earlier, in order to program a DEVS model on E-CD++, three main 

components are required: 1) Model-file: where the model components, input and output ports of 

each component and I/O couplings are declared. The model-file is passed to the E-CD++ 

executable as a runtime argument and the latter instantiates model components based on the 

declarations in this file. It also contains information about the period of the input driver tasks and 

duration of states for each atomic component. 2) Source files: for each atomic component a C++ 

class is defined and the external and internal transitions and output function are programmed as 
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methods of the component class. 3) Driver interface: for each I/O port at the top level of the 

model hierarchy that is connected to a hardware component, a C++ port driver function is 

overridden from the Port super-class.  

In this example, a period of 50 milliseconds is defined for the IR sensor inputs, poling the 

values of the IR sensors and injecting them to the model, which in response invokes the e-puck 

atomic component’s external transition function.  

Bellow is the model file of the e-puck controller model.  

1 [top] 
2 components : epuck0@epuck 
3 out : outmotor outled 
4 in : inir0 inir1 inir2 inir3 inir4 inir5 inir6 inir7 
5 link : inir0 ir0@epuck0 
6 link : inir1 ir1@epuck0 
7 link : inir2 ir2@epuck0 
8 link : inir3 ir3@epuck0 
9 link : inir4 ir4@epuck0 
10 link : inir5 ir5@epuck0 
11 link : inir6 ir6@epuck0 
12 link : inir7 ir7@epuck0 
13 link : motor@epuck0 outmotor 
14 link : led@epuck0 outled 
15 inir0 : 00:00:00:100 
16 inir1 : 00:00:00:100 
17 inir2 : 00:00:00:100 
18 inir3 : 00:00:00:100 
19 inir4 : 00:00:00:100 
20 inir5 : 00:00:00:100 
21 inir6 : 00:00:00:100 
22 inir7 : 00:00:00:100 
23 [epuck0] 
24 preparationTime : 00:00:00:000 
25 turn45Time : 00:00:00:100 
26 turn90Time : 00:00:00:700 
27 turn180Time : 00:00:02:000 

Line 1 starts the declaration of the Top coupled component and line 2 declares the DEVS 

components inside the Top. Lines 3 and 4 declare the output and input ports within the Top, 

respectively. Lines 5 to 14 define the interconnections between the ports inside the Top coupled 

component and lines 15 to 22 declare the period of inputs for the IR sensor driver tasks. Line 23 
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starts the declaration of epuck0 atomic component and lines 24 to 27 declare the duration of 

states within the epuck0 atomic component.  

The external function performs the state transitions based on the model specifications 

presented above. Bellow is the source code of a part of the external transition function of the 

epuck0 atomic component.  

1 if(state!=Mov_Fwd && IR0>0.04 &&  IR7>0.04 && IR1>0.02 && IR6>0.02){ 
2 }else if((state==Mov_Fwd)&&(IR0<0.05 || IR1< 0.02) && IR6>0.04){ 
3    state = Pre_Trn_45_Lft; 
4    holdIn( Atomic::active, preparationTime ); 
5 }else if((state==Trn_45_Lft)&&(IR0<0.05 || IR1<0.02) && IR6>0.04){ 
6    state = Trn_45_Lft; 
7    holdIn( Atomic::active, turn45Time); 
8 }else if((state == Mov_Fwd)&& (IR6< 0.02 || IR7< 0.05) && IR1> 0.04){ 
9    state = Pre_Trn_45_Rgt; 
10    holdIn( Atomic::active, preparationTime); 
11 }else if((state==Trn_45_Rgt)&& (IR6< 0.02 || IR7< 0.05) && IR1> 0.04){ 
12    state = Trn_45_Rgt; 
13    holdIn( Atomic::active, turn45Time); 
14 }else if(state == Mov_Fwd && IR[0]< 0.05 && IR[7]< 0.05 && IR[2]> 0.04){ 
15    state = Pre_Trn_90_Rgt; 
16    holdIn( Atomic::active, preparationTime); 
17 }else if(state == Mov_Fwd && IR[0]< 0.05 && IR[7]< 0.05 && IR[5]> 0.04){ 
18    state = Pre_Trn_90_Lft; 
19    holdIn( Atomic::active, preparationTime); 
20 }else if(state!=Trn_180&&IR[0]<0.05&&IR[7]<0.05&&IR[2]<0.05&&IR[5]<0.05){ 
21    state = Pre_Trn_180; 
22    holdIn( Atomic::active, preparationTime); 
23 } 

Line 1 shows the case when there is open space in the front of the robot; thereby no state 

change is necessary. Line 2 manages the case when IR0 or IR1 is blocked, indicating that the 

right side of the robot is obstructed therefore, the state of the robot is changed to prepare to turn 

45° left and the time duration of this state is set in lines 3 and 4. The other cases and the state 

changes are also shown in the above code snippet. A similar program is used in the internal 

transition function and output function to perform the internal transitions and output functions.  

As a first experiment, a random environment was modeled and the controller model behavior 

was observed. The model was first tested using virtual-time simulation mode, in which we added 

a distance generator model, which produces random IR sensor values and inputs them to the 
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controller model. The controller model reacts to the combination of values every one second, 

generated by this model. Figure  3.9 is the Atomic Animation diagram generated by E-CD++ 

Integrated Animation tool, which shows the sequences of input and output events in a specified 

period. Some of the outputs of motor and led ports are interpreted for easier understanding. The 

port names and scales are shown on the left panel and the values sent or received in the ports 

versus the time of simulation are shown on the right panel. As can be seen from the figure, at 

time 0 “Move Forward” output is produced by the “outmotor” port and the value of 100 is 

produced from the “outled” port, causing the led1 to turn on (signaling the forward moving 

action). After one second “ir0” receives a value of 0 indicating an obstacle on the right corner, 

thus the robot must turn to the left side, producing the value of 2 indicating a 45° turn to left. The 

rest of the diagram can be traced by following the inputs from IR sensors and the associated 

outputs produced in response to the inputs from “outled” and “outmotor” ports, on the timelines.  
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Figure  3.9: Atomic Animation diagram for e-puck random distance test. 
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After this test, two scenarios were designed by generating obstacles using events in the 

event-file. Figure  3.10 illustrates these two sample scenarios in which obstacles block the robot’s 

path.  
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Figure  3.10: event-file scenarios    a) scenario 1                      b) scenario 2. 

Figure  3.11 shows the I/O diagram of the model using the E-CD++ Atomic Animation plug-

in. The two scenarios shown in Figure  3.10 are injected to the model at times 4 and 8 seconds, 

respectively. The outputs of the “outmotor” and “outled” ports are shown in the third and fourth 

row in Figure  3.11 and the associated commands are indicated in the figure. The robot starts with 

moving forward (by producing value 1 from port “outmotor”), when at time 4, the first set of 

inputs (Figure  3.10.a) are injected to the system (shown in the “ir0” to “ir7” rows at time 4), 

forcing the robot to react by turning 90° right (output value of 4 from “outmotor” port) and 

turning led2 on (output value of 21 from “outled” port). The second input set (Figure  3.10.b) is 

injected at time 8 seconds, triggering a 180° turn (indicated in Figure  3.11 in the “outmotor” row 

with output value of 6) and turning the rear led (led4) on (the value of 41 is produced from 

“outled” port).  
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Figure  3.11: Atomic Animation diagram for e-puck random distance test. 
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After verifying the model behavior in various scenarios like the ones discussed above, the 

model was deployed in a real robot, where it was executed in real-time mode in which, the driver 

interfaces were activated and performed the transformation of I/O. The same behavior was 

observed and the robot could find its way through the obstacles4. 

This example provided a prototype of a real system designed and developed using the 

DEVSRT development cycle. The controller and the environment models were co-designed 

together; where they were tested in virtual-time simulation mode representing the hardware-

software co-design approach. The controller model was also tested with virtual inputs, allowing 

for simulation-based verification of the controller in a risk-free environment. Finally, the tested 

model was deployed on the hardware proving the model continuity feature of DEVRT. Various 

other RT models have been designed and deployed on different hardware, such as robots, FPGA, 

and embedded boards (see [Moa08, Hol09, Moa09, Moa10a, Moa10b, Moa10c, and Sad10]).  

                                                 
4 A video of the robot is available at http://www.youtube.com/watch?v=UFHzLk0oXyQ. 
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Chapter 4: Extended Applications of DEVSRT   

This chapter discusses practical applications of the proposed DEVSRT approach. One of the 

proposed applications is developing a generic and lightweight technique comprising of an 

interface and a message format for deploying real-time solutions allowing for communication of 

DEVS models with external environments. There is a variety of DEVS-based RT simulation 

engines and a large number of existing models in their model repository. This technique lets 

modelers to reuse these models in an RT collaborative execution environment, allowing for 

incorporating specific services each simulation engine offers (e.g. continuous systems modeling). 

The formal interfacing mechanism of DEVSRT allows for integration of RT models with virtual 

reality engines, providing a visual representation of the simulation activities in real-time. 

Combining these capabilities with the embedded features of the DEVSRT, allows for visual and 

remote supervision of control systems developed using this framework.  

The main goal is to follow a Hardware-In-The-Loop approach where RT simulators (numeric 

or visual simulation engines) themselves see each other as real-world devices (black boxes), 

interacting solely at the network messaging level. The motivations for this research are to show 

how to interface M&S-based systems under DEVS specifications implemented on different 

tools, and also a Hardware-In-the-Loop simulation with real-time visualization engines.  

4.1 DEVS-Based Collaborative Modeling  

A collaborative simulation consists of a source model whose components are broken into two 

or more groups prior to execution. These groups of components execute separately on different 

simulators that may or may not be implemented using the same simulation engine. The idea of 
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collaborative modeling using DEVS has been followed in previous works. Collaborative DEVS 

Modeler [Sar99, Sar01b] provides a virtual modeling workspace for expert modelers to develop 

hierarchical and modular collaborative models. This framework allows for model development, 

transformation of coupled models (federates) into simulation object, and verification of behavior 

synchronization among the federates. Nevertheless, this environment is limited to collaborative 

model development and does not implement collaborative simulation.   

[Wan03] presents a web-based collaborative environment for DEVS model development. 

This framework uses an XML document to present the model digraph and code to different 

parties and allow for exchange of ideas during the modeling phase. This approach is again 

limited to collaborative model development, and lacks interfacing of different models together in 

order to build a collaborative simulation.  

Another more related approach to this work is taken by [Lom06] which uses independent 

real-time simulation engines that accept the internal wrapping of selected components wishing to 

interact with other simulation tools at a high level. Wrappers hide the components and provide a 

means of communication with the components modeled in the external environments.  

In this research, to make the interfacing visible to the modeler and allowing for dynamic 

exploitation of the interaction among the simulations, the wrappers are confined in the topmost 

coupled component. This will increase the efficiency of the system as the extra processing 

burden is removed from the atomic components. The other advantage of this approach is the 

modeler-developed interfacing mechanism, allowing for model level integration of the 

simulation entities. The purpose of this research is to develop collaborative models in an RT 

context with the DEVSRT M&S framework to provide a platform for collaborative execution of 

the final embedded system.  

Models developed for a specific tool can be re-implemented into another tool by following 

their DEVS formal specification. However, this is an error prone and time-consuming approach. 

A more robust and scalable strategy is to keep components implemented in their original DEVS 

tools and make them interact over a network-centric infrastructure. In this decentralized 
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approach, applications resulting from the collaborative activity of the simulators (and other real-

world devices) must be designed to be as robust as required in the presence of anomalies (e.g., 

packet loss, corruption, and sequence inversion). The participating DEVS engines do not need to 

worry about synchronization of time or behavior as it is handled at the model level.  

In this approach, the output ports of a DEVS model are interfaced to input ports of another 

DEVS model and exchange DEVS formal I/O through an adapted message structure. While the 

simulation engines are running in real-time, different models can join this collaborative network 

of running models and feed from the outputs of other models while contributing their own 

outputs to the other models in the network. The network interface for each DEVS port can be 

implemented in a different way (even using different network protocols), thanks to the abstract 

message structure for transfer of the DEVS outputs. The component-oriented aspect of DEVS 

allows different coupled components (federates) in a model to operate autonomously following a 

common real-time clock advance. This plays the role of an implicit synchronization mechanism 

for event transfers between DEVS tools.  

The approach delegates to the modeler the responsibility of being aware about the worst case 

scenarios expected for many real-world non-ideal behaviors. For instance, clock crystals of the 

hardware platforms hosting each simulator may drift, network latencies may vary considerably 

depending on load conditions, and also messages can be corrupted or delivered disordered. 

While these and other potential problems can be tackled by adding fault tolerance mechanisms 

into interfaces and/or underlying communication infrastructures, there are applications in which 

they can be regarded as non-critical. Hence, this approach can be categorized as a soft RT 

collaborative simulation approach, suitable for systems requiring a fast and best effort solution.  

A) Message Structure 

To implement the proposed communication scheme, a global message architecture is 

required. The message is supposed to carry DEVS outputs of one model to the input port(s) of 

other model(s) over a communication layer. A DEVS output set (Y) (defined in the DEVS 
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formal specification) contains the (port, value) pair, in which the port is the output port and the 

value is the actual output value produced by the model. We need to transfer this pair over the 

network and inject it to another model running on another DEVS tool as an input pair. In order to 

transfer this data, a lightweight message structure carrying DEVS I/O is defined with the 

following data fields: 

Port_ID: an integer containing the destination model’s input port id. Based on this field, the 

receiving model delivers the input to the correct input port. 

Value: a character array carrying the value. The value can also be a sequence of values, sent 

to a specific input port in the destination model. The format of the input value is interpreted by 

the input interface at the destination model 

The generic message structure allows for submitting different types of data between 

networked models. A message interface at each DEVS port of the model provides the embedding 

of the message as a network packet and its extraction at the destination. Each port owns an 

independent interface, which can be configured to submit and receive different types and formats 

of messages.  

The modeler designs the collaborating models, having in mind the synchronization of their 

behavior, using a scheme to collaborate safely. Approaches and tools such as Collaborative 

DEVS Modeler [Sar99] can be used to design the collaborative models and verify their behavior 

in terms of synchronization and consistency, prior to execution.  

B) Example Collaborative Model 

Previous experimentation with DEVSRT models for mobile robot control applications made 

available a repository of target-specific low-level controllers. As controller complexity grows 

and new requirements arise, it is convenient to split system’s design tasks into specialized and 

collaborative teams, reusing both experience and previously developed solutions. Following a 

component-based approach to demonstrate the proposed technique, the plan is to split the e-puck 
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robot control model (presented in  3.3) to two main components: one for the control algorithms, 

and the other for dealing with robot-specific drivers. 

The e-puck logical controller is divided into two parts: the Controller and the Driver. The 

Controller is the main decision making unit, where the commands to avoid obstacles are 

generated. The Driver model works as a client who forwards the inputs from robot to the 

Controller and the outputs from Controller to the robot. The interface to the robot is part of the 

Driver model. Figure  4.1 shows an overview of the execution of the collaborative e-puck 

controller model running on two workstations.  

  

Figure  4.1: Overview of the Partitioned E-puck Model. 

The e-puck robot communicates with the Driver model running on workstation 1 via 

Bluetooth connection. The Controller model runs on another workstation communicating 

through network infrastructure with the Driver. Figure  4.2 depicts the e-puck collaborative 

DEVS model details. The e-puck Controller receives IR sensor values from InIR input port via 

the network and sends the motor outputs to OutMotor output port, which is forwarded to the 

Driver model. The Driver receives the IR sensor values from the e-puck robot through eight 

input ports, and submits them to the Controller model by serializing them through one output 

port. This method reduces the network traffic while encapsulating all the values into one network 

packet. The Controller model does not deal with LED commands, and the e-puck Driver model 

generates these commands based on the motor commands received from the Controller. 
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Figure  4.2: E-Puck Controller Collaborative DEVS Model. 

The Controller model is implemented on PowerDEVS [Ber10] (by researchers from 

Argentina) and the Driver model on E-CD++. UDP network protocol is used for message 

transfer over an Ethernet network. UDP is chosen over TCP for its simplicity and low latency, 

and since the experiments were done on a local network, the chances of loosing a UDP datagram 

were negligible. 

The DEVSRT formal interfacing technique allowed for the design of the I/O interface 

functions, and the E-CD++ user-implemented driver functions provided a fast development 

platform to implement the interfacing mechanisms. The Driver model’s OutIR and InMotor 

DEVS I/O ports were interfaced with the network and InIR0, …, InIR7, OutLED, and OutMotor 

were interfaced with the robot hardware. The Driver is initially in idle state waiting for the 

periodic inputs from IR sensors. As soon as it receives the first value from an IR sensor, the 

former buffers it until it receives the inputs of all sensors. Eventually, it forwards the inputs in an 

array of values embedded in a network packet via the OutIR port to the Controller running on 

PowerDEVS. The Driver stays in idle state listening to the inputs from IR sensors and from 

InMotor port, where the motor commands are received from the Controller. The Driver 

generates the appropriate LED commands based on the received motor commands and forwards 

them to the robot. Therefore, a generic Controller model running on a different simulator with 

different platform is used to control a specific robot on another platform. Each DEVS output is 
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associated with an action on the robot (listed in Table  3.1). The driver functions of the robot 

output ports (OutLED and OutMotor) submit the commands to the robot via Bluetooth 

connection. An embedded program on the robot performs the commands on the robot hardware. 

Bergero [Ber10] and Castro [Cas11] implemented the Controller model on PowerDEVS 

using an ad-hoc interface to connect the Driver model I/O to the PowerDEVS RT simulation 

engine. The two models were executed on two different workstations, transferring data through 

network infrastructure.  

Various experiments on testing the example model were carried out. To show the results of 

the two simulators collaborating over a network, the log files of the experiment in E-CD++ with 

real-time timestamps are shown in Figure  4.3. The input log file records all the real-time 

incoming data (from the environment) to the model’s input ports while the output file saves all 

the outputs of a DEVS model (with microseconds precision). The inputs and associated outputs 

are highlighted with red boxes in the figure. In the first box of the input file, two series of the IR 

sensor values inputted at time zero and after 50 milliseconds are shown (the IR sensor inputs are 

received every 50 milliseconds.) The first box of the output file shows the output to the OutIR 

port, which triggers the output driver associated to this port to send the array of inputs containing 

the values of the eight IR sensors. Therefore, when all of the IR values are received, they are 

forwarded to the Controller. Box 2 of the input file shows an input signal received from InMotor 

port containing value “1”, which is interpreted in box 2 of the output file with the accompanying 

LED commands (added by the Driver). The same sequence happens in box 3 where the robot has 

found an obstacle and the associated IR sensor values are forwarded to the Controller, hence the 

Controller is instructing the robot to spin 180 degrees. 
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Figure  4.3: E-CD++ input and output log files. 

The robot succeeded to perform obstacle detection and direction changing when the original 

DEVS-based system was split into two collaborative real-time models: Controller and Drivers 

running on PowerDEVS and E-CD++, respectively5.  

The potential advantage of interfacing E-CD++ to PowerDEVS is the collaborative execution 

of discrete and continuous systems under DEVS specifications. PowerDEVS provides means for 

                                                 
5 A video of the collaborative e-puck model in action can be viewed online at 

http://www.youtube.com/arslab#p/u/12/iRqrwkPL-kQ 
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DEVS-based execution of continuous models, providing a great potential for RT hybrid 

execution of continuous and discrete models between PowerDEVS and E-CD++. This example 

showed a collaborative model design, implementation and execution cycle, where two 

development teams designed a shared model, implemented it on different tools, and executed it 

in a connected manner.  

4.2 DEVSRT and Visualization  

Integration of a computer-based virtual environment with a mathematical computer 

simulation provides a 3D graphical visualization, in which the user can interact with the model in 

real-time and conceive the model’s behavior. The environment can be shared among different 

users and the simulation engine can also be geographically remote. This platform provides a 

collaborative environment for users and can be used in applications such as supervisory control, 

education, and entertainment. Several generic collaborative virtual environments exist (see e.g. 

[Car93, Pan96, Wat97, Ara08, Bou08, and Bou09]), defining their own communication scheme, 

which use sophisticated middleware technology such as HLA [IEE10]. The objective here is to 

show an example where lightweight user configurable collaboration between DEVS models and 

a virtual reality environment is achieved, using the interfacing delegates of DEVSRT and a 

specific message structure defined for this application.  

In this application, an RT Cell-DEVS [Wai02a] model (implemented by Jafer [Jaf10, 

Moa11b]) interfaced with the e-puck robotic agent (designed in DEVSRT) and an advanced 

immersive visualization environment (developed by Ahmed [Ahm11, Moa11b]) for Emergency 

Management is developed. The emergency is handled by an autonomous robot controlled by a 

DEVSRT model, through interaction with the RT cellular simulation of emergencies, receiving 

RT data about the location of emergencies on a cell space. The immersive environment is used to 

visualize the emergency management activities based on the RT data received from the other two 

parties.  
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Figure  4.4 shows the system architecture of this combination. It integrates a Cell-DEVS 

model for navigating the emergencies, a DEVSRT emergency response model by a robotic 

agent, and a virtual reality component that renders the 3D scenes. The three components are 

designed and developed collaboratively by different researchers, incorporating DEVSRT formal 

interfacing technique as the principal interaction entity between the robot, the Cell-DEVS model, 

and the virtual reality environment.   

 

Figure  4.4: Collaborative System Architecture [Moa11b]. 

As can be seen in the figure, each sub-system runs on a different computer, communicating 

through messages transferred over a network. Figure  4.5 depicts a more detailed overview of this 

framework with the components in each federate and connections. The emergency simulation 

sub-system is in charge of the Cell-DEVS emergency model. It communicates with the DEVSRT 

emergency response sub-system informing it about the dimensions of the emergency area, and 

sends updates about the location of the emergency team on the grid. At the same time, it also 
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sends this information to the visualization sub-system providing it with RT data about the scene. 

The DEVS-based control model uses the emergency information received from the Cell-DEVS 

engine to respond to the emergency. Based on these commands, the robot moves on the 

simulated grid and deals with the emergencies one after another. The emergency response sub-

system dynamically updates the cellular emergency simulation and visualization sub-system 

when emergencies have been resolved. This process continues until all emergencies are 

extinguished. The visualization sub-system produces 3D scenes of the dynamic updates received 

from both the cellular emergency simulation and the DEVSRT emergency response sub-system. 

 

Figure  4.5: Detailed System Overview [Moa11b]. 

The autonomous robot interacts with the Cell-DEVS simulation engine in RT. The robot tries 

to reach an emergency location and extinguish it one at a time by using the cellular space as a 

map to navigate. Initially, the robot model receives the size of the cell space and builds a copy of 

the cellular space for itself. The robot also receives the updates of cell values from the cell-

DEVS model and marks the changes on its own copy.  
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The robot controller model consists of two levels of controls: a High-level and a Low-level 

control, referred to as HLC and LLC, respectively. The former is responsible for path planning 

towards the closest emergency location (using the data provided by the cell space), while the 

latter is in charge of avoiding obstacles (the model specifications for this control algorithm are 

the same as the example model present in section  3.3. The robot model has two atomic 

components: the Model Reader and the Controller. The Model Reader is responsible for creating 

the local cell space, updating the cell space by receiving the updates from the Cell-DEVS engine, 

and signaling the Controller component to make path-planning decisions. The Controller 

implements the HLC and LLC algorithms, sending control commands to the robot and informing 

the visualization engine about the robot movements.  

Figure  4.6 depicts an abstract representation of the behavior of the two components in DEVS 

Graph [Pra93]. The Model Reader starts in wait for dimension, where it is waiting to receive the 

dimensions of the cell space from the Cell-DEVS engine. As soon as this happens, it builds a 

local copy of the cell space, then transitions to idle. During the idle state, the Model Reader 

receives cell space updates and marks them on the local copy. If an emergency update is 

received, it is added to the emergency list. At the end of this state, the Controller is signaled to 

carry out the next movement.  
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Figure  4.6: DEVS Graph of the robot controller [Moa11b]. 

The Controller starts by sending the initial position of the robot to the visualization engine 

and stops (a state where it receives periodic signals from the Model Reader). If there is an 

emergency location in the emergency list, the Controller transitions to Calculate next step and 

the following tasks are executed in the corresponding external transition: sort the emergency list, 

find the closest site, apply the HLC and LLC algorithms, and calculate the next step. Based on 

the result of the control algorithms, the Controller changes to one of the movement states and the 

output function submits the movement commands to the robot, and in the next step this 

information is also sent to the visualization engine. This sequence is repeated until the robot 

reaches the emergency site. In that case, the controller transitions to prepare extinguish. After 

this, it outputs the stop command to the robot, informs the Cell-DEVS and visualization engines 
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about the emergency restraint, and transitions to the stop state, where it waits for the next 

location.  

A) Message Structure and Implementation 

The collaboration of the three components is based on a global message structure transferred 

over a network infrastructure. The message contains the following five data fields: 

1. msg_id: an integer data type used to decode the type of the message and the value of the 

next fields in the message. There are generally five types of messages:  

• The dimension message carries the size of the cell space from the Cell-DEVS engine to 

the DEVS and visualization at the start of the execution.  

• The robot initial location message carries the initial coordinates of the robot from the 

DEVS engine to the visualization.  

• The cell space update message carries the cell value changes during the execution from 

the Cell-DEVS engine to the DEVS and visualization. 

• The next movement message carries the direction of the next movement at the start of 

each step from DEVS to the visualization engine.  

• The extinguish message carries the location of the emergency that has been 

extinguished by the robot, from the DEVS sub-system to the Cell-DEVS and 

visualization sub-systems. 

2. x: used to carry the horizontal axis value (the horizontal dimension or the horizontal 

coordinate).  

3. y: used to carry the vertical axis value (the vertical dimension or the vertical coordinate). 

4. dir: carries the next direction.  

5. value: carries the value of the cell and is used in the cell update message. 

 These messages are embedded in a UDP packet, and transferred during the execution of 

the model through the network.  
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The controller model is implemented on E-CD++ and the proper interface functions are 

programmed to send and receive the above mentioned message format. The e-puck robot 

[Mon09] is used as a small-scale representation of the emergency responder robot. The 

visualization engine is implemented using Vega Prime [Veg11] and OpenGL [Hil08] by Ahmed 

[Ahm11]. Vega Prime is a high-performance software environment for RT simulation and virtual 

reality applications. It serves as an application programmer interface (API) consisting of a 

graphical user interface called LynX Prime and Vega Prime libraries and header files of C++-

callable functions. 3D scenes are rendered using 3D openflight models. The terrain model 

consists of trees, different buildings, roads, etc. the robotic agent is represented by a 3D truck 

model.  

After testing the system in virtual-time, the model was executed in real-time and the behavior 

of the model was thoroughly verified. The robot succeeded in performing the emergency 

recognition based on the model discussed above and the visualization engine rendered the area 

and the robot movements in a real-time streaming mode6. Figure  4.7 shows the virtual 

environment in a window that is divided into two channels; one for perspective view of 3D scene 

(on the left), and the other channel is for orthographical view of the 3D scene which acts as 2D 

Map of the area (on the right). More details about this project can be found in [Moa11b]. 

                                                 
6 Some of the visualization videos can be watched online at youtube.com/watch?v=9aNVZRkrtC8, 

youtube.com/watch?v=5V4xNjdoEug, and youtube.com/watch?v=2qaWLJLVJt0. 
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Figure  4.7: 3D Visualization Engine Zoomed Map [Moa11b]. 

Another interactive virtual reality project implemented using this framework is presented in 

[Ahm11], where Cellular Agent model (VCELL) designed by Ahmed is used for simulating land 

combat7 and is collaboratively simulated using a Cell-DEVS agent model and an advanced visual 

immersive simulation environment. 

                                                 
7 However, this dissertation does not encourage or support military related research by any means.  
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Chapter 5: Imprecise DEVS   

The Imprecise Computations (IC) technique [Liu94a] is a useful approach for handling real-

time scheduling issues under transient overloads. It introduces a formal method of separating the 

critical (mandatory) part of a task from its uncritical (optional) part, thus making it possible for a 

real-time system to accept more tasks to the system while trying to run as many optional 

subtasks as possible. In this way, the system can be dynamically configured to accept more tasks 

when the system’s processing traffic is high, while producing less accurate results, versus 

executing tasks completely and producing accurate result, when the system burden is low.  

 “A task is monotone if the quality of its intermediate result does not decrease as it executes 

longer” [Liu91]. Monotone tasks can be found in almost all areas of computation and their 

flexibility in terms of duration of computation helps designers to implement the IC technique. A 

solution to handle high processing peaks in an RT system is to divide the monotone tasks in the 

system into two versions of a computation: the primary, which executes longer and produces 

more accurate result and the secondary version which executes shorter but produces less accurate 

result. Whenever the deadline is short, the secondary version can be used to meet the deadline 

while having an acceptable result.  

Contrary to monotone tasks are tasks with 0/1 constraints. These tasks must be executed to 

completion or not executed al all. Scheduling 0/1 constraint tasks is more difficult [Liu91]. 

The following definitions are used in scheduling algorithms for imprecise computations: 

Considering a set T = (T1, T2, …, Tn) of preemptable tasks, the following parameters are defined 

regarding each task Ti: 

r i is the time at which task Ti is released.  
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di is the deadline at which task Ti must be completed. 

τi is the processing time required for task Ti.  

wi is the weight of the task Ti which is the relative importance. 

Every task Ti is composed of two subtasks: Mandatory and Optional. The mandatory subtask 

Mi needs processing time mi and the optional subtask Oi needs processing time oi. Then mi + oi = 

τi. Figure  5.1 illustrates these definitions.   

A task Ti is referred to as executed when at least all its mandatory subtasks included in the 

associated jobs are executed (jobs are instances of tasks occurring during the execution). The 

optional subtasks of task Ti are available for execution only if the mandatory subtasks of Ti are 

executed properly. The scheduler can terminate an optional subtask at any time during its 

execution. Based on this definition, a perfect hard real-time system is a system in which all the 

tasks are composed of mandatory subtasks and a perfect soft real-time is a system in which all 

the subtasks are optional [Liu94a].  

Mandatory TimeOptional

Intermediate result Final result 

m o
t

 

Figure  5.1: A Monotone Task Divided to Mandatory and Optional Parts [Liu94a]. 

IC has been well investigated and many RT scheduling algorithms have been introduced 

(some of these algorithms are presented in section  5.1). Imprecise scheduling algorithms benefit 

from the separation of mandatory and optional subtasks, using different scheduling approaches 

for each of them. Some of the algorithms also take into account the priority of the jobs, and there 

are also algorithms for periodic jobs. The concept of error is defined based on the portion of the 

optional subtask in each task that has not been executed.  
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A common problem in hard real-time systems is the occurrence of overrun situations when 

the system does not have enough processing resources to fulfill all the requesting processes. This 

issue poses critical risks to the hardware under control, and it may cause catastrophic results. In 

these cases, the IC technique offers an effective way of resource utilization. This chapter shows 

how to use this technique for the proposed DEVSRT framework by introducing the Imprecise-

DEVS (I-DEVS) methodology. This approach combines the dynamic advantages of the IC 

technique with the rigor of a formal modeling methodology.   

5.1 Algorithms for Imprecise Computation 

Imprecise computation has been used for minimizing error in real-time task scheduling. The 

error is calculated as a function of the amount of discarded optional processing as a result of 

overrun situation happening in the system. Many off-line task scheduling algorithms have been 

proposed in the past, based on IC technique (refer to [Shi91, Liu95, and Ayd99]). There is no 

optimal algorithm that minimizes total error in on-line RT scheduling systems, when a feasible 

schedule exists, because of the lack of a-priori knowledge of the occurrence time of the jobs 

[Shi92].  

The mandatory first algorithm assigns processing times to mandatory tasks first, based on 

statistics to reduce the total error (refer to [Bar98 and Chu90]).  

The NORA (No-Off-line tasks and on-line tasks Ready upon Arrival) algorithm [Shi96] is 

based on EDF (Earliest Deadline First) algorithm and is mainly designed for online task systems, 

in which each task is ready upon arrival. Each task is assigned a reserved interval based on 

reverse scheduling algorithm. Each task’s mandatory subtask is assigned a reserved execution 

time starting from its deadline equal to the amount of processing time required for its mandatory 

subtask, based on the EDF algorithm. As long as the mandatory task set is feasible a reserved 

interval set can be found.  

The DOT_Sched algorithm [Che09] is an extension to the NORA algorithm for online tasks 

that are ready upon arrival. It uses three reservation lists: R(M) for mandatory tasks, R(O) for 
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optional tasks and R(M+O) for both of them. Like NORA algorithm each task is assigned a 

reserved interval in R(O) or R(M) and R(M+O) lists, starting from its deadline way back equal to 

its processing time.  

RT-Frontier [Kob04] is a real-time operating system that presents an imprecise computation 

framework for constructing real-time applications. It decomposes computations to mandatory, 

optional and wind up parts. The wind up part works as a termination function after the 

termination of an optional part, reducing the termination cost and increasing portability. A novel 

scheduling algorithm called Slack Stealer for Optional Parts (SS-OP) is used in RT-Frontier 

which is based on the above mentioned three segment imprecise computation model and imposes 

small overhead to the system, while applying dynamic load balancing scheme.  

Except the work presented in [Kob04], which only applies IC in a specific operating system, 

no research aims at integrating this technique with a formal methodology to be used in real-time 

and embedded system design and construction. The proposed I-DEVS approach, allows the 

model designer to deploy this technique at the design time, specifying the optional and 

mandatory behaviors of the target system.  

IC has been applied to different fields, including RT and embedded systems [Liu94b, Kob04, 

and Wie08], multimedia processing [Fen93, Hua95, and Chen97], planning and artificial 

intelligence [Zil93, Fuj99, and Par02] and databases [Han00 and Ami03]. Despite all of these 

efforts, IC is not yet widely used in industrial embedded applications. The reason might be 

related to “strict theoretical assumptions and the lack of cost-effective support method that can 

be easily implemented in embedded systems” [Kob04]. This dissertation attempts to address 

these issues in the context of real-time DEVS-based systems.  

5.2 DEVS Task Model 

The main computations in a DEVSRT runtime engine occur during state transitions 

(modeling subsystem) and message transfers (control subsystem). Assuming the message 

transfer is an overhead associated to the context switching between the standard DEVS tasks in 
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the system, the set of tasks in a DEVSRT system (in theory) is composed of transitions and 

output function. This information is used to map the DEVS functions (δext, δint, and λ) run by RT 

simulator into an RT tasking system, where we obtain a platform that IC can be applied. Figure 

 5.2 shows the processing tasks in a DEVS atomic component during a state transition. The 

external transition (X) is mapped into a task that initiates the state S. The task release time is 

equal to the arrival of the input to the model (from the external environment in the case of the 

topmost coupled model, or when the output generated on an output port is received in the atomic 

model input port). We assume no deadline for the X task. The output (λ) and internal transition 

tasks (I) are considered to execute together (task λI, as outputs in DEVS are always followed by 

an internal transition). The release time of task λI is equal to the end of the state S and specified 

by ta(s) (indicator T). Its deadline is specified by the function d(s) (indicator d) that we added to 

the atomic model definition. 

 

Figure  5.2: Processing Carried for a State Transition. 

Now, in a scenario when a flock of inputs are injected to the system, the system has to 

perform a pile of transitions and produce outputs. In this case, the output tasks are drifted to later 

times, which might exceed their deadlines. Figure  5.3 shows an overload scenario where four 

inputs are injected, starting external transitions on different atomic models. As can be seen, λ1, 

λ2 and λ4 meet their deadlines; however, λ3 and λ2 (second instance at time 18) do not. The 

internal transition I2 produces a new state with ta(s) equal to 4 time units, which exceeds its 

deadline at time 17. This situation was preventable, provided that, the system could detect the 

overload conditions early enough to apply IC-based scheduling.  

In order to execute these models, we extended the DEVS atomic model definition by 

dividing the above-mentioned tasks into mandatory and optional parts, incorporating the 
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imprecise computation concept. Assuming X tasks are always mandatory, λ1 tasks can be 

optional. The λ subtask of an optional λ1 task can be terminated under transient overloads. In 

other words, during overloads, the model skips optional output functions to save time and 

resources for the mandatory ones. For instance, an autonomous robot in a bumpy road with 

obstacles (flooded with obstacle reconnaissance inputs) can discard unnecessary tasks (e.g. 

reporting or video streaming to the base). A similar scenario can occur in any RT system where a 

sequence of optional outputs can be skipped to alleviate the overload situation by keeping the 

necessary outputs produced on-time. Schedulability analysis can be applied to this model, based 

on various available methods (see e.g. [Liu73]).  

 

Figure  5.3: Overload Scenario. 

A) Problem Statement 

Based on this argument, a real-time DEVS system can be prone to overload conditions at any 

time during execution, proposing a significant risk and reducing the reliability of the system in 

hard real-time applications. The overrun situation can be very transient, happening at very 

random occasions when the system is flooded with RT inputs. Therefore, even by strengthening 

the hardware and processing resources of the system, the problem can still exist and happen at 

high processing peaks. The nondeterministic nature and lack of a-priory knowledge of the 

occurrence times of the jobs (especially sporadic jobs [Liu00]), adds to this issue severing the 

risk. Therefore, the need for a more robust mechanism is inevitable. It is almost impossible to 

design a fully trusted RT system in a perfect nondeterministic situation [Liu00], however 
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heuristic and mitigating techniques can be incorporated to reduce this risk and reach an accepted 

level of reliability.  

Having said this, IC approach can be a natural choice in solving such problems in a real-time 

DEVS context. Defining a clear theoretical tasking system for DEVS provides a reliable starting 

point to employ various available techniques and algorithms for reliable scheduling and also 

schedualibility analysis of these systems. The proposed DEVSRT approach with minimal 

modification to DEVS, allows for well-organized integration of IC technique with DEVS. The 

rest of this chapter will elaborate the idea and present the results. 

5.3 I-DEVS Formalism  

Despite the theoretical advances in imprecise computation, there are few practical projects 

aiming at producing effective RT tools based on this technique. As mentioned earlier, the 

objective is to provide an imprecise framework for applications where the job arrival times are 

not known a-priori. The approach tries to balance the computation when the system is busy and 

on the other hand not reducing its performance, while keeping the run-time overhead of the 

implementation as low as possible.  

To satisfy these goals, Imprecise DEVS (I-DEVS) is built on top of DEVSRT. The atomic 

model definition is modified by adding a mandatory or optional condition for each state, as 

follows:  

AM = < X, S, Y, δext, δint, δcon, λ, ta, d > 

Where X, Y, δext, δint, δcon, λ, ta and d are the same as in DEVSRT, 

S: {(s, c) | s∈Z+
0 and c ∈ {mandatory | optional}}.  

The states of the atomic model are categorized as mandatory and optional. A mandatory state 

will have a mandatory output function (represented as output task) and an optional state will 

produce an optional output task. This abstraction in the definition of mandatory and optional 

tasks in the level of state machine, allows the modeler to define imprecise models without being 

involved in the details of the lower level tasking system.  
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The main runtime algorithm performed in the Root Coordinator (RC) (the top coordinator in 

the DEVS abstract runtime hierarchy), is unchanged. It is started first by waiting for an external 

or internal event. RC routes external input through an external message (q) to the destination 

atomic model (which triggers the δext function). Otherwise, it waits for the closest internal event 

(λ1) to send collect (@) and internal messages (*) to the target atomic model. The collect 

message executes the λ function on the atomic model and the internal message executes δint. The 

atomic model responds to the @ message by executing the λ function and returning the output 

value through an output (y) message. The atomic model also executes δint in response to a * 

message, and returns its next internal event time by a done message. 

Whenever there is more than one internal event to be serviced, the mandatory ones have 

priority over the optional events. If an optional internal event is to be serviced later than its 

release time plus a grace period, its output will be discarded. The grace period depends on 

various factors and it defines a threshold for tolerating lateness in processing optional tasks. As 

discussed earlier, when the system gets busy, the tasks are drifted later from their release times. 

This situation can be seen as an indicator of an overload situation in the near future, triggering 

the system to react to the conditions. The threshold at which the system starts reacting by 

dropping the optional tasks is determined by the grace period. It can be a function of the 

processing resources, level of criticality of the optional tasks, and system’s attitude towards 

reacting to such conditions. Grace period can be used to tune the system to obtain desirable 

tradeoffs between losing accuracy and meeting hard deadlines. A system with hard real-time 

tasks can have a shorter grace period in order to save time for mandatory tasks by sacrificing 

optional ones and gain more reliability, while a system with soft real-time nature can tolerate 

more delay in order to achieve more precision and quality. The grace period can also be modified 

dynamically by the system, employing intelligent learning algorithms to adapt to changing 

conditions. On the other hand, these dynamic conditions can be explored by deploying RT 

simulation using the DEVSRT HILS advantage. This way, the system can be verified and tuned 

in a risk free environment with various test scenarios before it is deployed in action. 
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The early reaction strategy helps the system to save time for later mandatory events that have 

not been released yet. Whenever a sequence of optional events in an atomic model is delayed, 

the atomic model starts discarding the output functions. The following pseudo code shows the 

execution algorithm in an atomic model, when receiving a collect message.  

1. Receive (@, t) 

2. if (s is optional AND tL + ta(s) + tg < tnow) 

3.     raise error //optional tasks dropped 

4. else if (tnow > tL + d(s)) 

5.     raise error //deadline missed 

6. else if (tnow ≤ tL + d(s)) 

7.     y = λ (s)  

8.     send (y, t) to the parent coordinator  

9. end if 

10.     send (done, t) to the parent coordinator  

11. end collect 

Line 2 verifies if the optional output is going to be executed later than its release time (tL + 

ta(s)) plus the grace period (tg). Line 4 verifies the deadline condition and finally line 6 is the 

case when the output function is qualified for execution.  

A) Example  

Figure  5.4.a shows a simple I-DEVS model hierarchy where two atomic models B and C are 

coupled into D, which is itself coupled with atomic model A. Various input/output ports are used 

to connect these models in the figure. Figure  5.4.b shows the description of model A using DEVS 

Graph [Pra93]. Note that continuous lines indicate external transitions and dashed lines indicate 

internal transitions. As it can be seen, the model is initially in state A1 (with time advance = 

infinity) until an input xa is received on port InA. In that case, the external transition produces a 
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state change to A2. The model stays in this state for 1t and its deadline is 4t. When the time is 

consumed, it produces the output y2a and transitions to A3 (internal transition). A similar 

scenario can be seen in states A3, A4 and A5, with outputs y3a, y4a and y5a produced 

respectively. Figure  5.4.c and d show the DEVS Graphs for atomic models B and C, 

respectively.    

O
ut1A ! y2a

O
u
tC
 !
 y
2
c

O
utC
 ! y3c

 

Figure  5.4: Example I-DEVS Model. 

The DEVS Graph of atomic model C (shown in Figure  5.4.d) is mapped to DEVS 

specifications as follows:  

C = < X, S, Y, δext, δint, δcon, λ, ta, d >, where: 

X = {(InC, xc)}, 

S = {(C1,mandatory), (C2, mandatory), (C3, optional)}, and S0 = C1,  

Y = {(OutC, y2c), (OutC, y3c)}, 
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δext (C1, e, < InC, xc >) = C2,  

δint(C2) = C3, δint(C3) = C1, 

δcon = δext has priority over δint 

λ(C2) = <OutC, y2c>, 

λ(C3) = <OutC, y3c>, 

ta(C1) = ∞, ta(C2) = 1t, ta(C3) = 2t, 

d(C1) = ∞, d(C2) = 4t, d(C3) = 5t, 

The mapping of atomic models A and B are similar and straightforward.  

In this example, the state durations are considered very small; however, in reality they are 

usually longer, compared to the execution time of the X, λ and 1 tasks. In a system with large 

number of atomic models, similar overload conditions can happen at different points of time, 

when multiple X, λ and 1 tasks from different atomic models are very close to each other, 

causing a drift in the execution of the tasks. For instance, Figure  5.5 shows a possible overload 

scenario for the DEVS model presented in Figure  5.4 without considering IC technique. An input 

Xa enters the system from input port In at time zero. Assuming the X task takes 1t, at time 1 (i.e. 

1t) the atomic model A moves from the initial state A1 to A2. The ta(s) of state A2 is 1t, thus at 

time 2, we run task λ212, producing the output y2a (for simplicity reasons the outputs are not 

shown) and the internal transition from A2 to A3, (as specified in Figure  5.4.b). The output 

produced by the atomic model A (y2a) is translated to an input for the atomic model B. Thus, the 

task Xb is executed right after λ212, causing the atomic model B to change from B1 to B2. The 

models advance according to the specifications (provided in Figure  5.4) until t=18. At this point, 

the tasks λ414 of A, λ313 of C and λ212 (of A, B and C, shown in red) miss their deadlines 

because of the overload condition in the system.  
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Figure  5.5: Example Transient Overload Scenario. 

On Figure  5.4.b, c and d, the mandatory and optional states are marked with an M or an O, 

respectively. By applying the proposed imprecise DEVS technique and considering a zero grace 

period (a hard real-time system), λ3 of A is skipped (because state A3 is optional and λ3I3 is 

executed after its release time plus zero grace period, T3a), causing λ4I4 to be shifted to time 16 

and saved from lateness. The same condition happens for λ3 of B and C. Hence, by discarding 

three optional λ tasks the four mandatory tasks and their associated outputs are saved from 

lateness. 

 

Figure  5.6: Applying Imprecise Computation to the Sample Scenario. 

 

5.4 Results and Discussions 

The proposed imprecise DEVS formalism was implemented on E-CD++ on the Xenomai RT 

framework. X tasks are made user configurable (i.e. periodic or aperiodic), and their main job is 
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to run user-defined input driver programs as soon as they are spawned. The main RT task 

implements the DEVSRT run-time abstract algorithm (discussed in  3.2) and takes care of λI 

tasks. This task is also responsible to implement and verify the imprecise DEVS formalism and 

its execution. The implementation of the imprecise computation on E-CD++ is seamless and 

backward compatible (i.e. the previous models also can be executed and are considered precise 

models). 

The proposed implementation of imprecise DEVS on E-CD++ has been tested with variety of 

modeling scenarios and several criteria has been applied for verification of the final 

implementation. For instance, a synthetic robotic model with 20 atomic models, each of them 

connected to an external input port, connected to a sonar distance sensor and an output port 

connected to an electrical motor is used. To ensure that the same scenario runs every time, the 

values coming from the sensors were the same in all tests. All the atomic models follow the 

DEVS Graph diagram in Figure  5.7. The model is a synthetic representation of a robot 

controller, which receives inputs from sensors and based on the inputs, instructs the motors. 20 

atomic models are used to make it a computation intensive model where overrun situation 

happens frequently. The DEVS Graph diagram in Figure  5.7 is composed of three optional states 

and three mandatory states. Whenever there is an input in states C, D, E, and F, the model 

transitions to state B. This model is used to perform comprehensive performance tests, and 

compare the results of the imprecise execution and precise execution. In the case of precise 

execution, all the states are assumed mandatory. 
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Figure  5.7: Synthetic Robotic Model Used for Verification. 

The timing for the component models varied for the different tests, performed. The first test 

discussed in this section compared the number of discarded λ tasks versus processor utilization. 

The diagram in Figure  5.8 shows the results of this test, for a total execution time of 20 seconds.  
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Figure  5.8: Discarded Tasks vs. Processor Utilization.  

The test was performed for input period intervals of 1.1, 0.5, 0.1 and 0.001 s. As it is 

observed from the chart, by increasing the number of discarded tasks (which happens by 
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tightening the state durations and period of the inputs) the processor utilization increases 

linearly. The result demonstrates the integrity and persistency of the implementation in a 

medium load scenario. In addition, as the system gets busier the number of discarded tasks also 

increases. The slope of the diagram for different period configurations stays the same, showing 

the integrity of the functionality of the algorithm for different levels of load on the processor. 

Figure  5.9 shows the average response time of all the mandatory λI jobs versus the execution 

time for the same model using imprecise and precise modes. In this case, the input period of all 

X jobs was fixed (1100 ms). The test was performed five times for each instance and the average 

result has been considered. As the chart shows, the average response time of the mandatory λ 

jobs drops dramatically in imprecise mode. In this example, there is a heavy load that the system 

must respond to, which required longer time for mandatory λ jobs to complete in precise mode. 

Imprecise computation discards the optional tasks, thus the response time of the mandatory tasks 

shortens. 
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Figure  5.9: Response Time vs. Execution Time in Heavy Load.  
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Figure  5.10 shows the average response time of the model versus the number of discarded 

tasks for 20 seconds of execution time. The period of inputs is set to 50 milliseconds, and by 

varying the state durations, we obtain different number of discarded tasks in imprecise mode. For 

each instance of the imprecise test, the same configuration was applied to obtain the 

corresponding results in precise mode. It can be seen that the average response time of the 

corresponding precise execution for each instance is slightly higher than the imprecise one in 

medium load scenario. This is due to time being saved by discarding optional tasks in favor of 

mandatory ones. However, this difference is not very visible in a medium load scenario because 

the system is not as busy as a heavy load scenario. The chart shows that by increasing the 

number of discarded tasks (i.e. tighter state durations) the average response time also increases. 

However, this increase is not smooth as the situations change, while the system saves the 

mandatory jobs in transient high processing occasions, the effect of these situations on the 

average response time in medium load scenario is not as visible as heavy load scenario.  
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Figure  5.10: Number of Discarded Tasks vs. Average Response Time in Medium Load.  

 Figure  5.11 depicts the processor utilization versus the number of discarded tasks in a 

heavy load scenario with the input period of 2 milliseconds and 20 seconds execution time. The 
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chart shows steady but higher processor utilization for precise execution. The processor 

utilization for precise execution in all instances of the test is almost full, therefore as the load 

increases; the utilization remains almost the same. However, the imprecise processor utilization 

is instable and decreases as the number of discarded tasks increases. This is due to the instable 

and varying conditions that occur in a very heavy load scenario in imprecise mode. As the 

number of the discarded tasks increases, less processor usage is required. This decrease is not 

smooth neither linear, because of the change in conditions in each run, and admission of more 

mandatory jobs. Nevertheless, the system is successful in opening space for mandatory jobs by 

discarding optional ones.  
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Figure  5.11: Number of Discarded Tasks vs. Processor Utilization in Heavy Load.  

In a different test scenario, the synthetic models introduced in section  3.2B) were used to 

measure and compare the performance and overhead of the imprecise and precise executions of 

the same models. In this test, the models with fixed number of levels (4 layers) and variable 

number of components in each level (i.e. 4, 6, 8, 10, and 12) were used to measure the execution 

overhead and response time of the output tasks. The processing time of the X, λ, and I tasks was 
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set to 10 milliseconds for each atomic component. Figure  5.12 shows the average response time 

of the tasks during an execution time of 40 seconds for different number of components per 

level. The output produced in each cycle of input, is marked as optional, therefore whenever the 

system faces an overrun condition, the λ tasks are skipped. The chart shows that the average 

response time of the tasks is slightly shorter in imprecise execution in each scenario, due to the 

time saved because of dropping the optional tasks. On the other hand, it is observed that, when 

the size of the model increases (the number of call to the tasks also increases), the difference 

between the average response time of imprecise and precise runs also increases. This is due to 

heavier workload produced in bigger models and propagation of data in the model, which is 

efficiently handled by the imprecise scheduling algorithm, reducing the response time of the 

tasks.  
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Figure  5.12: Number of Components per Level vs. Average Response Time.  

The other interesting fact, observed with this test is the lower overhead in the imprecise 

computation in heavy processing models. Figure  5.13 represents the overhead percentage 
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(calculated using equation  3-1) of the execution engine relative to the tasks processing times, in 

imprecise and precise scenarios. The other parameters of the execution were the same as the 

previous test. Based on the results presented in this figure, the overhead percentage in imprecise 

mode is less than the one in precise mode, due to the drop of messaging overhead produced by 

the optional output tasks. A discarded output task eliminates the time required for transfer of (@, 

t) and (done, t) messages from the atomic component to the Top model. The other interesting 

fact extracted from this diagram is the lower overhead percentage for heavier models (bigger 

modeling hierarchy with computation intensive tasks), due to the increase of the task processing 

time portion over the execution processing time. In other words, in a computation intensive 

model, as the size of the model grows the overhead percentage decreases, because the processor 

is mainly busy with the tasks rather than the execution overhead.  
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Figure  5.13: Number of Components per Level vs. Overhead Percentage.  
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A) Performance Evaluation 

The criticality of RT systems requires efficient development approaches, in which the 

theoretical design and its associated implementation produce efficient throughput from the 

system and the resources. Various performance evaluation approaches for RT systems exist in 

the literature. The Rhealstone benchmark [Kar89, Kar90] evaluates the performance of an RT 

operating system using the following metrics: average task switch time, average pre-emption 

time, average interrupt latency, semaphore shuffle time, deadlock break time, and inter-task 

message latency. These metrics can be incorporated into DEVSRT and I-DEVS formalisms to 

evaluate the RT application. The M&S capability of these formalisms allows early performance 

evaluation of the system in simulation mode, where the system can be tested against the above-

mentioned criteria. This will provide early information regarding the required hardware 

resources to implement the final system. The Rhealstone benchmark metrics can be applied to 

DEVS task system proposed in  5.2. The average task switch time between the X, λ, and I tasks 

can be measured in order to have a concrete idea about system overhead. The average interrupt 

latency can be applied to X tasks, when the system receives an input until the input is accepted 

by the main runtime system. The inter-task message latency can be used to approximate the 

delay in RT message transfer between the RT tasks in the multi-tasking implementation 

approach. Semaphore shuffle time can be used to measure the delay in switching the semaphore 

used for synchronizing the input tasks and for semaphores used by the modeller in the RT input 

tasks in order to avoid input resource deadlock. 

The Hartstone benchmark [Ada90] developed at Carnegie Mellon University evaluates hard 

real-time systems using a set of operational requirements for synthetic applications. The 

synthetic application is used to verify the deadline requirement, whether the output meets the 

deadline or not. As a future work, these performance evaluation techniques can be applied to the 

DEVSRT and I-DEVS RT platform to measure the availability of outputs in different models 

using different scenarios. Scenarios can include: periodic, a-periodic and sporadic tasks, 

harmonic and non-harmonic state durations.  
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On the other hand, metrics like performance profiling, A-B timing, and response to external 

events can be also incorporated in model execution.  

B) Scalability 

RT systems working in the context of embedded hardware are prone to several limitations. 

One major constraint in these systems is the power consumption or battery life. High 

performance requirement in these systems conflicts with the low power objective. To achieve 

these goals performance degradation strategies can be incorporated. I-DEVS can be a natural 

choice for this purpose, providing a dynamic and early reaction scheme to tackle this problem. 

The graceful degradation strategy based on Imprecise Computations theory allows for degrading 

the system performance when needed by dropping the optional transitions. This threshold can 

include battery life or any other constraint conflicting with performance of the system.  

On the other hand, performance of the system also depends on the underlying hardware. 

Figure  5.12 can be viewed as a scalability indicator in the current implementation of the I-DEVS 

approach on E-CD++ software. As the number of components per level increases the average 

response time increases too. This means that the tasks are executed later to their release time, 

when the system scales up. Likewise, this delay also affects the deadline of the tasks, thus 

proposing a risk. A simple solution might include upgrading the underlying hardware resources 

in order to solve the scalability problem. As this will be a natural solution to this problem, 

however the “Speed-Performance Tradeoff Anomalies” [but06] dilemma shows that in an RT 

system with timing and resource constraints, increasing the processor speed does not necessarily 

lead to a better performance, and vice versa.  
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Chapter 6: Conclusions and Future Work  

This dissertation addressed some of the issues in the area of RT and embedded system design 

and development by employing an M&S-driven engineering approach. The issue of model 

continuity providing reuse of simulation models for the final hardware embedding has been 

discussed and the Discrete EVent System Specification in Real-Time (DEVSRT) approach is 

presented as a DEVS-based solution. The proposed DEVSRT was employed in developing a 

lightweight collaborative RT model execution and virtual reality integration framework for 

specific applications. Finally, this platform was integrated with Imprecise Computation (IC) 

technique to propose the novel Imprecise DEVS (I-DEVS), a DEVS-based RT task scheduling 

and resource management technique.  

DEVSRT as an RT domain extension of the DEVS formalism provided a model-driven 

approach towards RT and embedded application development. The formal and intrinsic 

advantages of DEVS are combined with RT features to propose a design scheme for such 

applications. Issues such as Hardware-In-the-Loop Simulation (HILS) or Human-In-the-Loop 

Simulation are addressed in this framework by introducing formal interfacing mechanisms 

between the DEVS model and the target embedded environment. The benefits of simulation-

based verification are employed by DEVSRT, allowing for pervasive verification of the system 

under development in a risk-free setting, exploring varying test scenarios. The concept of model 

continuity and reuse of simulation models in the development of final embedded software 

architecture are addressed. This is a shortcoming of most of the available approaches that has 

been solved in this dissertation. DEVSRT provides a high level abstract hardware-software 

modeling scheme, where different components of the target system can be modeled together. The 
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co-modeling approach allows for co-simulation and verification of hardware and software 

segments of an embedded system in a unified framework, while an incremental replacement of 

the models with hardware surrogates explores the un-modeled aspects of the devices with the 

controller component.  

The formal interfacing techniques in DEVSRT enabled the collaborative execution of RT 

models independent from the underlying simulator platform. It also allows for interfacing DEVS 

models with visualization engines, collaborative control of an embedded system by co-executing 

different models on different RT engines and at the same time, interacting with the target 

hardware platform. The method is lightweight and it allows for quick reuse of available models 

on different simulation or runtime platforms, without the need for sophisticated middleware 

technologies.  

Finally, the runtime computation details of the DEVSRT approach were investigated and an 

RT task model comprising of the DEVS intrinsic processes has been proposed. This model was 

used as starting point for further investigation regarding task scheduling and resource 

management in a DEVS-based RT system. The DEVSRT task model was integrated with IC 

approach in an innovative method, in which the model behavior is prioritized, allowing for 

efficient and dynamic task scheduling in the system. The overload management policy 

introduced in this framework provides an early reaction mechanism to transient overrun 

situations, saving critical outputs from lateness, preventing catastrophic results in the system. 

The outcome of this research enables RT and embedded system designers to adopt an M&S-

based approach, bridging the gap between simulation and RT software development. It also 

opens a new horizon towards model-based operating system design, allowing for creation of 

systems dedicated to run models as processes.   

6.1 Review of the Contributions  

This section reviews the major contributions in the two research areas investigated in this 

dissertation, namely: the DEVSRT simulation-driven development methodology for RT and 
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embedded systems development and the I-DEVS approach to achieve a hard RT system design 

scheme by integrating the DEVSRT with IC techniques. The following subsections summarize 

the key contributions regarding these research objectives.  

A) DEVSRT  

DEVSRT applies a dynamic DEVS-based approach for embedded real-time application 

development. It takes advantage of well-defined M&S properties and constructs of DEVS to 

design and interface embedded systems with their hardware surrogates. The following 

contributions are the outcome of this approach: 

• The use of physical time in the DEVS event scheduling paradigm, enabling the runtime 

engine to trigger the events based on the clock of the system, providing an RT simulation 

engine.  

• DEVS has been investigated to be adopted as an RT and embedded application 

development technique; hence the corresponding features of DEVS are highlighted and 

applied in the design of example models.  

• A formal way of defining deadline for DEVS outputs has been proposed and the details of 

hardware interaction using DEVS have been discussed. DEVS formal I/O ports were used 

to interface models with hardware or external environment. This method provided the 

basis for hardware integration and model continuity.  

• The interfacing mechanism between DEVS and external environment has been improved 

and a new version has been adopted for DEVSRT.  

• A generic lightweight interface for message transfers between DEVS models running on 

different DEVS-based tools has been presented. This framework was used to develop and 

execute shared controller model for robots, emergency management and combat 

simulations. 
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• The Embedded CD++ (E-CD++) tool has been extended to implement the DEVSRT 

approach. The new version of E-CD++ was implemented on Xenomai real-time kernel, 

incorporating real-time services provided by the kernel.  

• The input receiving stubs are implemented as separate Xenomai tasks working 

concurrently, to receive data from different ports, though not interrupting the main 

runtime task.  

• An Eclipse-based plug-in IDE offering embedded functionalities and graphical model 

designer capability was provided allowing for rapid design and deployment of the models.  

• Several RT embedded systems and controllers have been designed and implemented on a 

variety of hardware platforms such as FPGAs, embedded boards, and robotic devices. 

B) I-DEVS (Imprecise DEVS) 

The second major contribution of this dissertation is the adoption of the IC approach with the 

DEVSRT platform to propose a more reliable model-based design and execution platform for 

hard real-time systems. The followings were the contributions towards this goal:  

• The active processes in an RT DEVS-based system have been identified and a task system 

has been proposed to be used as a foundation for further investigation and study of RT 

aspects in these systems.  

• The Imprecise DEVS (I-DEVS) formalism has been proposed incorporating IC-based 

inherent concepts with the DEVSRT framework.  

• A scheduling algorithm based on reacting early to the overload scenario has been 

introduced, which was later demonstrated through experiments.  

• The IC concepts have been integrated with DEVS modeling framework, in an abstract 

way, enabling the modeler to design imprecise models independent of the simulation 

engine. 

• Detailed examples of overload scenarios and the efficiency of the approach have been 

presented.   
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• The I-DEVS M&S framework was implemented on E-CD++, providing a development 

platform for imprecise modeling and execution using DEVS formalism.  

• Several test cases measuring the integrity, consistency, and efficiency of the algorithm 

have been carried out.  

6.2 Future Work  

The following is a list of possible future research trends in DEVSRT, collaborative RT 

modeling, and I-DEVS approache:  

• Integration of model checking and formal verification techniques with the DEVSRT 

approach can be investigated in order to have an integrated modeling tool incorporating 

techniques to discover anomalies, inconsistencies, deadlocks, and other pitfalls in the 

model.  

• Design and development of embedded operating systems can be investigated using 

DEVSRT as a platform. The OS will autonomously operate by executing the models 

functioning as processes in the system. This will open a new direction in embedded 

system design employing MDE approach in the entire design and development phases.  

• Design and development of techniques to formally interface DEVSRT with different 

graphical modeling and visualization tools on embedded platforms towards the creation of 

interactive virtual reality and simulation-based games.  

• Integration of more efficient synchronization protocols can be investigated in the 

lightweight RT model execution protocol. For example, Lamportian physical clock 

synchronization [Lam78] using partial and total ordering of events can be explored 

further.  

•  Incorporating Dynamic DEVS formalism with the proposed I-DEVS formalism to 

introduce a new imprecise DEVS capable of prioritizing different components of the 

model besides the behaviors. This way, the system can shut down an entire optional 

component in a model in order to open space for the other processes.  
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• Sensitivity analysis on the I-DEVS and DEVSRT functional parameters (e.g. grace period, 

inter-thread message transfer delay, …), in order to explore target specific configurations 

and help system designers tune their system according to the underlying hardware and 

middleware platform.  

• Applying schedulability analysis to the proposed DEVS-based task model in order to 

determine the system capacity in handling different sizes of processing load. On the other 

hand it helps the scheduler to determine whether it can accept a task or not. Rate 

monotonic tests can be a good starting point to measure the schedulability of the model on 

any specific hardware platform.  

• Expansion of the key scheduling and overload detection algorithms in the I-DEVS 

framework, in order to design more efficient and target-specific hard RT system 

development tools.  

• Investigating approaches to make the run-time engine more efficient and reducing the 

overhead of model execution. E-CD++ currently support flat coordinator technique, where 

the control hierarchy is flattened to reduce the message transfer overhead. However, there 

is a tradeoff between the complexity of the flat coordinator and the reduced overhead. 

These challenges can be researched to propose recommendations for modelers about the 

best choice in using flattened or hierarchical coordinator for any specific model.  
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