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Abstract

Agents in a multi-agent system observe the environment and take actions based on

their strategies. Without prior knowledge of the environment, agents need to learn to

act using learning techniques. Reinforcement learning can be used for agents to learn

their desired strategies by interaction with the environment. This thesis focuses on

the study of multi-agent reinforcement learning in games. In this thesis, we investigate

how reinforcement learning algorithms can be applied to different types of games.

We provide four main contributions in this thesis. First, we convert Isaacs’ guard-

ing a territory game to a gird game of guarding a territory under the framework of

stochastic games. We apply two reinforcement learning algorithms to the grid game

and compare them through simulation results. Second, we design a decentralized

learning algorithm called the LR−I lagging anchor algorithm and prove the conver-

gence of this algorithm to Nash equilibria in two-player two-action general-sum matrix

games. We then provide empirical results of this algorithm to more general stochastic

games. Third, we apply the potential-based shaping method to multi-player general-

sum stochastic games and prove the policy invariance under reward transformations

in general-sum stochastic games. Fourth, we apply fuzzy reinforcement learning to

Isaacs’ differential game of guarding a territory. A potential-base shaping function

is introduced to help the defenders improve the learning performance in both the

two-player and the three-player differential game of guarding a territory.
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Chapter 1

Introduction

A multi-agent system consists of a number of intelligent agents that interact with

other agents in a multi-agent environment [1–3]. An agent is an autonomous entity

that observes the environment and takes an action to satisfy its own objective based

on its knowledge. The agents in a multi-agent system can be software agents or

physical agents such as robots [4]. Unlike a stationary single-agent environment, the

multi-agent environment can be complex and dynamic. The agents in a multi-agent

environment may not have a priori knowledge of the correct actions or the desired

policies to achieve their goals.

In a multi-agent environment, each agent may have independent goals. The agents

need to learn to take actions based on their interaction with other agents. Learning

is the essential way of obtaining the desired behavior for an agent in a dynamic

environment. Different from supervised learning, there is no external supervisor to

guide the agent’s learning process. The agents have to acquire the knowledge of their

desired actions themselves by interacting with the environment.

Reinforcement learning (RL) can be used for an agent to discover the good actions

through interaction with the environment. In a reinforcement learning problem, re-

wards are given to the agent for the selection of good actions. Reinforcement learning

has been studied extensively in a single-agent environment [5]. Recent studies have

1



CHAPTER 1. INTRODUCTION 2

extended reinforcement learning from the single-agent environment to the multi-agent

environment [6]. In this dissertation, we focus on the study of multi-agent reinforce-

ment learning (MARL) in different types of games.

1.1 Motivation

The motivation of this dissertation starts from Isaacs’ differential game of guarding a

territory. This game is played by a defender and an invader in a continuous domain.

The defender tries to intercept the invader before it enters the territory. Differential

games can be studied under a discrete domain by discretizing the state space and the

players’ action space. One type of discretization is to map the differential game into

a grid world. Examples of grid games can be found in the predator-prey game [7] and

the soccer game [8]. These grid games have been studied as reinforcement learning

problems in [8–10]. Therefore, our first motivation is to study Isaacs’ guarding a

territory game as a reinforcement learning problem in a discrete domain. We want

to create a grid game of guarding a territory as a test bed for reinforcement learning

algorithms.

Agents in a multi-agent environment may have independent goals and do not share

the information with other agents. Each agent has to learn to act on its own based on

its observation and received information from the environment. Therefore, we want

to find a decentralized reinforcement learning algorithm that can help agents learn

their desired strategies. The proposed decentralized reinforcement learning algorithm

needs to have the convergence property, which can guarantee the convergence to the

agent’s equilibrium strategy.

Based on the characteristics of the game of guarding a territory, the reward is only

received when the game reaches the terminal states where the defender intercepts

the invader or the invader enters the territory. No immediate rewards are given to
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the players until the end of the game. This problem is called the temporal credit

assignment problem where a reward is received after a sequence of actions. Another

example of this problem can be found in the soccer game where the reward is only

received after a goal is scored. If the game includes a large number of states, the

delayed rewards will slow down the player’s learning process and even cause the

player to fail to learn its equilibrium strategy. Therefore, our third motivation is

to design artificial rewards as supplements to the delayed rewards to speed up the

player’s learning process.

Reinforcement learning can also be applied to differential games. In [11–13], fuzzy

reinforcement learning has been applied to the pursuit-evasion differential game. In

[12], experimental results showed that the pursuer successfully learned to capture

the invader. For Isaacs’ differential game of guarding a territory, there is a lack of

investigation on how the players can learn their equilibrium strategies by playing the

game. We want to investigate how reinforcement learning algorithms can be applied

to Isaacs’s differential game of guarding a territory.

1.2 Contributions and Publications

The main contributions of this thesis are:

1. We map Isaacs’ guarding a territory game into a grid world and create a grid

game of guarding a territory. As a reinforcement learning problem, the game

is investigated under the framework of stochastic games (SGs). We apply two

reinforcement learning algorithms to the grid game of guarding a territory. The

performance of the two reinforcement learning algorithms is illustrated through

simulation results.

2. We introduce a decentralized learning algorithm called the LR−I lagging anchor
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algorithm. We prove that the LR−I lagging anchor algorithm can guarantee

the convergence to Nash equilibria in two-player two-action general-sum ma-

trix games. We also extend the algorithm to a practical LR−I lagging anchor

algorithm for stochastic games. Three examples of matrix games and Hu and

Wellman’s [14] grid game are simulated to show the convergence of the pro-

posed LR−I lagging anchor algorithm and the practical LR−I lagging anchor

algorithm.

3. We apply the potential-based shaping method to multi-player general-sum

stochastic games. We prove that the integration of the potential-based shaping

reward into the original reward function does not change the Nash equilibria

in multi-player general-sum stochastic games. The modified Hu and Wellman’s

grid game and the grid game of guarding a territory with two defenders and one

invader are simulated to test the players’ learning performance with different

shaping rewards.

4. We apply fuzzy reinforcement learning algorithms to Isaacs’ differential game

of guarding a territory. A potential-base shaping function is introduced to solve

the temporal credit assignment problem caused by the delayed reward. We

then extend the game to a three-player differential game by adding one more

defender to the game. Simulation results are provided to show how the designed

potential-base shaping function can help the defenders improve their learning

performance in both the two-player and the three-player differential game of

guarding a territory.

The related publications are listed as follows:

1. X. Lu and H. M. Schwartz, “Decentralized Learning in General-Sum Matrix

Games: An LR−I Lagging Anchor Algorithm,” International Journal of Inno-

vative Computing, Information and Control, vol. 8, 2012. to be published.
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2. X. Lu, H. M. Schwartz, and S. N. Givigi, “Policy invariance under reward trans-

formations for general-sum stochastic games,” Journal of Artificial Intelligence

Research, vol. 41, pp. 397-406, 2011.

3. X. Lu and H. M. Schwartz, “Decentralized learning in two-player zero-sum

games: A LR-I lagging anchor algorithm,” in American Control Conference

(ACC), 2011, (San Francisco, CA), pp. 107-112, 2011

4. X. Lu and H. M. Schwartz, “An investigation of guarding a territory problem in

a grid world,” in American Control Conference (ACC), 2010, (Baltimore, MD),

pp. 3204-3210, Jun. 2010.

5. S. N. Givigi, H. M. Schwartz, and X. Lu, “A reinforcement learning adaptive

fuzzy controller for differential games,” Journal of Intelligent and Robotic Sys-

tems, vol. 59, pp. 3-30, 2010.

6. S. N. Givigi, H. M. Schwartz, and X. Lu, “An experimental adaptive fuzzy con-

troller for differential games,” in Proc. IEEE Systems, Man and Cybernetics’09,

(San Antonio, United States), Oct. 2009.

1.3 Organization of the Thesis

The outline of this thesis is as follows:

Chapter 2-A Framework for Reinforcement Learning. Under the framework

of reinforcement learning, we review Markov decision processes (MDPs), ma-

trix games and stochastic games. This chapter provides the fundamental back-

ground for the work in the subsequent chapters.

Chapter 3-Reinforcement Learning in Stochastic Games. We present and

compare four multi-agent reinforcement learning algorithms in stochastic games.
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Then we introduce a grid game of guarding a territory as a two-player zero-sum

stochastic game (SG). We apply two multi-agent reinforcement learning algo-

rithms to the game.

Chapter 4-Decentralized Learning in Matrix Games. We present and com-

pare four existing learning algorithms for matrix games. We propose an LR−I

lagging anchor algorithm as a completely decentralized learning algorithm. We

prove the convergence of the LR−I lagging anchor algorithm to Nash equilibria

in two-player two-action general-sum matrix games. Simulations are provided

to show the convergence of the proposed LR−I lagging anchor algorithm in three

matrix games and the practical LR−I lagging anchor algorithm in a general-sum

stochastic game.

Chapter 5-Potential-Based Shaping in Stochastic Games. We present the

application of the potential-based shaping method to general-sum stochastic

games. We prove the policy invariance under reward transformations in general-

sum stochastic games. Potential-based shaping rewards are applied to two grid

games to show how shaping rewards can affect the players’ learning performance.

Chapter 6-Reinforcement Learning in Differential Games. We present the

application of fuzzy reinforcement learning to the differential game of guard-

ing a territory. Fuzzy Q-learning (FQL) and fuzzy actor-critic learning (FACL)

algorithms are presented in this chapter. To compensate for the delayed re-

wards during learning, shaping functions are designed to increase the speed of

the player’s learning process. In this chapter, we first apply FQL and FACL

algorithms to the two-player differential game of guarding a territory. We then

extend the game to a three-player differential game of guarding a territory with

two defenders and one invader. Simulation results are provided to show the

overall performance of the defenders in both the two-player differential game of
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guarding a territory game and the three-player differential game of guarding a

territory game.

Chapter 7-Conclusion. We conclude this thesis by reviewing the main contribu-

tions along with new future research directions for multi-agent reinforcement

learning in games.



Chapter 2

A Framework for Reinforcement Learning

2.1 Introduction

Reinforcement learning is learning to map situations to actions so as to maximize a

numerical reward [5, 15]. Without knowing which actions to take, the learner must

discover which actions yield the most reward by trying them. Actions may affect not

only the immediate reward but also the next situation and all subsequent rewards [5].

Different from supervised learning, which is learning from examples provided by a

knowledgable external supervisor, reinforcement learning is adequate for learning from

interaction [5]. Since it is often impractical to obtain examples of desired behavior

that are both correct and representative of all the situations, the learner must be able

to learn from its own experience [5]. Therefore, the reinforcement learning problem

is a problem of learning from interaction to achieve a goal.

The learner is called the agent or the player and the outside which the agent

interacts with is called the environment. The agent chooses actions to maximize the

rewards presented by the environment. Suppose we have a sequence of discrete time

steps t = 0, 1, 2, 3, · · · . At each time step t, the agent observes the current state st

from the environment. We define at as the action the agent takes at t. At the next

time step, as a consequence of its action at, the agent receives a numerical reward

8
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Agent

1tr
reward

tr

1ts Environment

ta
actionstate

ts

Figure 2.1: The agent-environment interaction in reinforcement learning

rt+1 ∈ < and moves to a new state st+1 as shown in Fig. 2.1. At each time step, the

agent implements a mapping from states to probabilities of selecting each possible

action [5]. This mapping is called the agent’s policy and is denoted as πt(s, a) which

is the probability of taking action a at the current state s. Reinforcement learning

methods specify how the agent can learn its policy to maximize the total amount of

reward it receives over the long run [5].

A reinforcement learning problem can be studied under the framework of stochas-

tic games [10]. The framework of stochastic games contains two simpler frameworks:

Markov decision processes and matrix games [10]. Markov decision processes involve

a single agent and multiple states, while matrix games include multiple agents and

a single state. Combining Markov decision processes and matrix games, stochastic

games are considered as reinforcement learning problems with multiple agents and

multiple states.

In the following sections, we present Markov decision processes in Section 2.2,

matrix games in Section 2.3 and stochastic games in Section 2.4. Examples are

provided for different types of games under the framework of stochastic games.
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2.2 Markov Decision Processes

A Markov decision process (MDP) [16] is a tuple (S,A, Tr, γ, R) where S is the state

space, A is the action space, Tr : S × A × S → [0, 1] is the transition function,

γ ∈ [0, 1] is the discount factor and R : S × A × S → R is the reward function.

The transition function denotes a probability distribution over next states given the

current state and action such that

∑
s′∈S

Tr(s, a, s′) = 1 ∀s ∈ S, ∀a ∈ A (2.1)

where s′ represents a possible state at the next time step. The reward function

denotes the received reward at the next state given the current action and the current

state. A Markov decision process has the following Markov property: the conditional

probability distribution of the player’s next state and reward only depends on the

player’s current state and action such that

Pr

{
st+1 = s′, rt+1 = r′

∣∣∣∣ st, at, . . . , s0, a0} = Pr

{
st+1 = s′, rt+1 = r′

∣∣∣∣ st, at} . (2.2)

A player’s policy π : S → A is defined as a probability distribution over the player’s

actions from a given state. A player’s policy π(s, a) satisfies

∑
a∈A

π(s, a) = 1 ∀s ∈ S. (2.3)

For any MDP, there exists a deterministic optimal policy for the player, where

π∗(s, a) ∈ {0, 1} [17]. The goal of a player in an MDP is to maximize the expected

long-term reward. In order to evaluate a player’s policy, we have the following con-

cept of the state-value function. The value of a state s (or the state-value function)

under a policy π is defined as the expected return when the player starts at state s
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and follows a policy π thereafter. Then the state-value function V π(s) becomes

V π(s) = Eπ

{
tf−t−1∑
k=0

γkrk+t+1

∣∣∣∣ st = s

}
(2.4)

where tf is a final time step, t is the current time step, rk+t+1 is the received immediate

reward at the time step k + t + 1, γ ∈ [0, 1] is a discount factor. In (2.4), we have

tf →∞ if the task is an infinite-horizon task such that the task will run over infinite

period. If the task is episodic, tf is defined as the terminal time when each episode

is terminated at the time step tf . Then we call the state where each episode ends as

the terminal state sT . In a terminal state, the state-value function is always zero such

that V (sT ) = 0 ∀sT ∈ S. An optimal policy π∗ will maximize the player’s discounted

future reward for all states such that

V ∗(s) ≥ V π(s) ∀π,∀s ∈ S (2.5)

The state-value function under a policy in (2.4) can be rewritten as follows

V π(s) = Eπ

{
tf∑
k=0

γkrk+t+1

∣∣∣∣ st = s

}

=
∑
a∈A

π(s, a)
∑
s′∈S

Tr(s, a, s′)Eπ

{
rt+1+

γ

tf∑
k=0

γkrk+t+2

∣∣∣∣ st = s, at = a, st+1 = s′

}

=
∑
a∈A

π(s, a)
∑
s′∈S

Tr(s, a, s′)Eπ

{
rt+1

∣∣∣∣ st = s, at = a, st+1 = s′

}
+

∑
a∈A

π(s, a)
∑
s′∈S

Tr(s, a, s′)Eπ

{
γ

tf∑
k=0

γkrk+t+2

∣∣∣∣ st = s, at = a, st+1 = s′

}
(2.6)
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where Tr(s, a, s′) = Pr {st+1 = s′|st = s, at = a} is the probability of the next state

being st+1 = s′ given the current state st = s and action at = a at time step t. Based

on the Markov property given in (2.2), we get

Eπ

{
γ

tf∑
k=0

γkrk+t+2

∣∣∣∣ st = s, at = a, st+1 = s′

}
= Eπ

{
γ

tf∑
k=0

γkrk+t+2

∣∣∣∣ st+1 = s′

}

Then equation (2.6) becomes

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S

Tr(s, a, s′)Eπ

{
rt+1

∣∣∣∣ st = s, at = a, st+1 = s′

}
+

∑
a∈A

π(s, a)
∑
s′∈S

Tr(s, a, s′)Eπ

{
γ

tf∑
k=0

γkrk+t+2

∣∣∣∣ st+1 = s′

}
=

∑
a∈A

π(s, a)
∑
s′∈S

Tr(s, a, s′)
(
R(s, a, s′) + γV π(s′)

)
(2.7)

where R(s, a, s′) = E{rt+1|st = s, at = a, st+1 = s′} is the expected immediate reward

received at state s′ given the current state s and action a. The above equation (2.7)

is called the Bellman equation [18]. If the player starts at state s and follows the

optimal policy π∗ thereafter, we have the optimal state-value function denoted by

V ∗(s). The optimal state-value function V ∗(s) is also called the Bellman optimality

equation where

V ∗(s) = max
a∈A

∑
s′∈S

Tr(s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
. (2.8)

We can also define the action-value function as the expected return of choosing a

particular action a at state s and following a policy π thereafter. The action-value

function Qπ(s, a) is given as

Qπ(s, a) =
∑
s′∈S

Tr(s, a, s′)
(
R(s, a, s′) + γV π(s′)

)
(2.9)
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Then the state-value function becomes

V (s) = max
a∈A

∑
s′∈S

Qπ(s, a). (2.10)

If the player chooses action a at state s and follows the optimal policy π∗ thereafter,

the action-value function becomes the optimal action-value function Q∗(s, a) where

Q∗(s, a) =
∑
s′∈S

Tr(s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
(2.11)

The state-value function under the optimal policy becomes

V ∗(s) = max
a∈A

∑
s′∈S

Q∗(s, a). (2.12)

Similar to the state-value function, in a terminal state sT , the action-value function

is always zero such that Q(sT , a) = 0 ∀ sT ∈ S.

2.2.1 Dynamic Programming

Dynamic programming (DP) methods refer to a collection of algorithms that can

be used to compute optimal policies given a perfect model of the environment as

a Markov decision process [5, 19]. A perfect model of the environment is a model

that can perfectly predict or mimic the behavior of the environment [5]. To obtain

a perfect model of the environment, one needs to know the agent’s reward function

and transition function in an MDP.

The key idea behind DP is using value functions to search and find agent’s optimal

policy. One way to do that is performing backup operation to update the value

functions and the agent’s policies. The backup operation can be achieved by turning

the Bellman optimality equation in (2.6) into an update rule [5]. This method is
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called the value iteration algorithm and listed in Algorithm 2.1. Theoretically, the

value function will converge to the optimal value function as the iteration goes to

infinity. In Algorithm 2.1, we terminate the value iteration when the value function

converges within a small range [−θ, θ]. Then we update the agent’s policy based on

the updated value function. We provide an example to show how we can use DP to

find an agent’s optimal policy in an MDP.

Algorithm 2.1 Value iteration algorithm

1: Initialize V (s) = 0 for all s ∈ S and ∆ = 0
2: repeat
3: For each s ∈ S:
4: v ← V (s)
5: V (s)← maxa∈A

∑
s′∈S Tr(s, a, s

′)
(
R(s, a, s′) + γV (s′)

)
6: ∆ = max(∆, |v − V (s)|)
7: until ∆ < θ for all s ∈ S (θ is a small positive number)
8: Obtain a deterministic policy π(s) such that
π(s) = arg maxa∈A

∑
s′∈S Tr(s, a, s

′)
(
R(s, a, s′) + γV (s′)

)

Example 2.1. We consider an example of a Markov decision process introduced in [5].

A player on a 4× 4 playing field tries to reach one of the two goals labeled as “G” on

the two opposite corners as shown in Fig. 2.2(a). Each cell in the 4×4 grid represents

a state numbered from 1 to 16, as shown in Fig. 2.2(b). The player has 4 possible

actions in its action set A: moving up, down, left and right. At each time step, the

player takes an action a and moves from one cell to another. If the chosen action is

taking the player off the grid, the player will stay still. For simplicity, the transition

function in this game is set to 1 for each movement. For example, Tr(2, Up, 1) = 1

denotes that the probability of moving to the next state s′ = 1 is 1 given the current

state s = 2 and the chosen action a = Up. The reward function is given as

R(s, a, s′) = −1, ∀s ∈ {2, ..., 15} (2.13)
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such that the player receives −1 for each movement until the player reaches the goal

or the terminal state. There are two terminal states sT ∈ {1, 16} located at the upper

left corner and the lower right corner.

The player’s aim in this example is to reach a terminal state sT = {1, 16} with

minimum steps from its initial state s ∈ {2, ...15}. In order to do that, the player

needs to find the optimal policy among all the possible deterministic policies. We

assume we know the player’s reward function and transition function. Then we can

use the value iteration algorithm in Algorithm 2.1 to find the optimal state-value

function and the player’s optimal policy accordingly.

To be consistent with the example in [5], we set the discount factor γ = 1. Fig. 2.3

shows that the state-value function converges to the optimal state-value function after

4 iterations. The value in each cell in Fig. 2.3(d) represents the optimal state-value

function for each state. Because the reward function is undiscounted (γ = 1) and

the player receives −1 for each movement, the value in each cell can also indicate

the actual steps for the optimal player to reach the terminal state. For example, the

value −3 at the bottom left cell in Fig. 2.3(d) represents that the optimal player will

take 3 steps to reach the closest terminal state. Based on the optimal state-value

function, we can get the player’s optimal policy using Algorithm 2.1. Fig. 2.4 shows

the player’s optimal policy. The arrows in Fig. 2.4 show the moving direction of

the optimal player from any initial state s ∈ {2, ...15} to one of the terminal states.

Multiple arrows in Fig. 2.4 show that there are more than one optimal action for

the player to take at that cell. It also means that the player has multiple optimal

deterministic policies in this example.
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Figure 2.2: An example of Markov decision processes

2.2.2 Temporal-Difference Learning

Temporal-difference (TD) learning is a prediction technique that can learn how to

predict the total rewards received in the future [20]. TD methods learn directly

from raw experience without knowing the model of the environment such as the

reward function or the transition function [5]. Two main temporal-difference learning

algorithms in TD learning are Q-learning [21,22] and actor-critic learning [5].

Q-Learning

Q-learning was first introduced by Watkins [21]. Using Q-learning, the agent can learn

to act optimally without knowing the agent’s reward function and transition function.

Q-learning is an off-policy TD learning method. Off-policy methods, as opposed to

on-policy methods, separate the current policy used to generate the agent’s behavior

and the long-term policy to be improved. For on-policy methods, the policy to be

evaluated and improved is the same policy used to generate the agent’s current action.

For the problems in discrete domains, the Q-learning method can estimate an

optimal action-value function Q∗(x, a) for all state-action pairs based on the TD
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Figure 2.3: State-value function iteration algorithm in Example 2.1
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Figure 2.4: The optimal policy in Example 2.1

error [23]. For the control problems in continuous domains, the Q-learning method

can discretize the action space and the state space and select the optimal action

based on the finite discrete action a and the estimated Q(x, a). However, when a fine

discretization is used, the number of state-action pairs becomes large, which results

in large memory storage and slow learning procedures [23]. On the contrary, when a

coarse discretization is used, the action is not smooth and the resulting performance

is poor [23].

We list the Q-learning algorithm in Algorithm 2.2.

Algorithm 2.2 Q-learning algorithm

1: Initialize Q(s, a) = 0 ∀s ∈ S, a ∈ A
2: for Each iteration do
3: Select action a at current state s based on mixed exploration-exploitation strat-

egy.
4: Take action a and observe the reward r and the subsequent state s′.
5: Update Q(s, a)

Q(s, a) ← Q(s, a) + α
(
r + γmaxa′ Q(s′, a′) − Q(s, a)

)
where α is the learning

rate and γ is the discount factor.
6: Update current policy π(s)

π(s) = arg maxa∈AQ(s, a)
7: end for
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Figure 2.5: The summed error ∆V (k)

We assume that the player does not know the reward function or the transition

function. We use the above Q-learning algorithm to simulate Example 2.1. We choose

a mixed exploration-exploitation strategy such that the player selects an action ran-

domly from the action set with probability 0.2 and the greedy action with probability

0.8. The greedy action means that the player chooses an action associated with the

maximum Q value. We define the summed error ∆V (k) as

∆V (k) =
15∑
s=2

|V ∗(s)− V k(s)|. (2.14)

where V ∗(s) is the optimal state-value function obtained in Fig. 2.3(d), and V k(s) =

maxa∈AQ
k(s, a) is the state-value function at iteration k. We set the learning rate as

α = 0.9 and run the simulation for 1000 iterations. Fig. 2.5 shows that the summed

error ∆V converges to zero after 600 iterations.
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Figure 2.6: The actor-critic architecture

Actor-Critic Methods

Actor-critic methods are the natural extension of the idea of reinforcement comparison

methods to TD learning methods [5, 20]. The actor-critic learning system contains

two parts: one to estimate the state-value function V (s), and the other to choose

the optimal action for each state. The task of the critic is to predict the future

system performance. After each action selection, the critic evaluates the new state

to determine whether things have gone better or worse than expected [5]. The critic

takes the form of a TD error defined as

δt = rt+1 + γV (st+1)− V (st) (2.15)

where V is the current state-value function implemented by the critic at time step

t. This TD error can be used to evaluate the current selected action. If the TD

error is positive, it suggests that the tendency to the current selected action should
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be strengthened for the future, whereas if the TD error is negative, it suggests the

tendency should be weakened [5].

The state-value function V (·) in (2.15) can be approximated by a nonlinear func-

tion approximator such as a neural network or a fuzzy system [24]. We define V̂ (·)

as the prediction of the value function V (·) and rewrite (2.15) as

∆ = [ rt+1 + γV̂ (st+1) ]− V̂ (st) (2.16)

where ∆ is denoted as the temporal difference that is used to adapt the critic and the

actor as shown in Fig. 2.6. Compared with the Q-learning method, the actor-critic

learning method is an on-policy learning method where the agent’s current policy is

adjusted based on the evaluation from the critic.

2.3 Matrix Games

A matrix game [25] is a tuple (n,A1, . . . , An, R1, . . . , Rn) where n is the number of

players, Ai(i = 1, . . . , n) is the action set for player i and Ri : A1 × · · · × An → R is

the reward function for player i. A matrix game is a game involving multiple players

and a single state. Each player i(i = 1, . . . , n) selects an action from its action set Ai

and receives a reward. The player i’s reward function Ri is determined by all players’

joint action from joint action space A1 × · · · × An.

In a matrix game, each player tries to maximize its own reward based on the

player’s strategy. A player’s strategy in a matrix game is a probability distribution

over the player’s action set. To evaluate a player’s strategy, we present the following

concept of Nash equilibrium (NE).

Definition 2.1. A Nash equilibrium in a matrix game is a collection of all players’
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strategies (π∗1, · · · , π∗n) such that

Vi(π
∗
1, · · · , π∗i , · · · , π∗n) ≥ Vi(π

∗
1, · · · , πi, · · · , π∗n), ∀πi ∈ Πi, i = 1, · · · , n (2.17)

where Vi(·) is player i’s value function which is the player i’s expected reward given

all players’ strategies, and πi is any strategy of player i from the strategy space Πi.

In other words, a Nash equilibrium is a collection of strategies for all players such

that no player can do better by changing its own strategy given that other players

continue playing their Nash equilibrium strategies [26, 27]. We define Qi(a1, . . . , an)

as the received reward of the player i given players’ joint action a1, . . . , an, and πi(ai)

(i = 1, . . . , n) as the probability of player i choosing action ai. Then the Nash

equilibrium defined in (2.17) becomes

∑
a1,...,an∈A1×···×An

Qi(a1, . . . , an)π∗1(a1) · · · π∗i (ai) · · · π∗n(an) ≥∑
a1,...,an∈A1×···×An

Qi(a1, . . . , an)π∗1(a1) · · · πi(ai) · · · π∗n(an), ∀πi ∈ Πi, i = 1, · · · , n

(2.18)

where π∗i (ai) is the probability of player i choosing action ai under the player i’s Nash

equilibrium strategy π∗i .

We provide the following definitions regarding matrix games.

Definition 2.2. A Nash equilibrium is called a strict Nash equilibrium if (2.17) is

strict [28].

Definition 2.3. If the probability of any action from the action set is greater than

0, then the player’s strategy is called a fully mixed strategy.

Definition 2.4. If the player selects one action with probability of 1 and other actions

with probability of 0, then the player’s strategy is called a pure strategy.
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Definition 2.5. A Nash equilibrium is called a strict Nash equilibrium in pure

strategies if each player’s equilibrium action is better than all its other actions, given

the other players’ actions [29].

2.3.1 Nash Equilibria in Two-Player Matrix Games

For a two-player matrix game, we can set up a matrix with each element containing

a reward for each joint action pair [30]. Then the reward function Ri for player

i(i = 1, 2) becomes a matrix.

A two-player matrix game is called a zero-sum game if the two players are fully

competitive. In this way, we have R1 = −R2. A zero-sum game has a unique Nash

equilibrium in the sense of the expected reward. It means that, although each player

may have multiple Nash equilibrium strategies in a zero-sum game, the value of the

expected reward or the value of the state under these Nash equilibrium strategies will

be the same. A general-sum matrix game refers to all types of matrix games. In a

general-sum matrix game, the Nash equilibrium is no longer unique and the game

might have multiple Nash equilibria. Unlike the deterministic optimal policy for a

single agent in an MDP, the equilibrium strategies in a multi-player matrix game may

be stochastic.

For a two-player matrix game, we define πi = (πi(a1), · · · , πi(ami
)) as the set of

all probability distributions over player i’s action set Ai(i = 1, 2) where mi denotes

the number of actions for player i. Then Vi becomes

Vi = π1Riπ
T
2 (2.19)

A Nash equilibrium for a two-player matrix game is the strategy pair (π∗1, π
∗
2) for two
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players such that, for i = 1, 2,

Vi(π
∗
i , π

∗
−i) ≥ Vi(πi, π

∗
−i),∀πi ∈ PD(Ai) (2.20)

where −i denotes any other player than player i, and PD(Ai) is the set of all proba-

bility distributions over player i’s action set Ai.

Given that each player has two actions in the game, we can define a two-player

two-action general-sum game as

R1 =

 r11 r12

r21 r22

 , R2 =

 c11 c12

c21 c22

 (2.21)

where rlf and clf denote the reward to the row player (player 1) and the reward to

the column player (player 2) respectively. The row player chooses action l ∈ {1, 2}

and the column player chooses action f ∈ {1, 2}. Based on Definition 2.2 and (2.20),

the pure strategies l and f are called a strict Nash equilibrium in pure strategies if

rlf > r−lf , clf > cl−f for l, f ∈ {1, 2} (2.22)

where −l and −f denote any row other than row l and any column other than column

f respectively.

Linear programming in two-player zero-sum matrix games

Finding the Nash equilibrium in a two-player zero-sum matrix game is equal to finding

the minimax solution for the following equation [8]

max
πi∈PD(Ai)

min
a−i∈A−i

∑
ai∈Ai

Riπi(ai) (2.23)
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where πi(ai) denotes the probability distribution over player i’s action ai, and a−i

denotes any action from another player than player i. According to (2.23), each

player tries to maximize the reward in the worst case scenario against its opponent.

To find the solution for (2.23), one can use linear programming.

Assume we have a 2× 2 zero-sum matrix game given as

R1 =

 r11 r12

r21 r22

 , R2 = −R1 (2.24)

where R1 is player 1’s reward matrix and R2 is player 2’s reward matrix. We define

pj (j = 1, 2) as the probability distribution over player 1’s jth action and qj as the

probability distribution over player 2’s jth action.

Then the linear program for player 1 is:

Find (p1, p2) to maximize V1

subject to

r11p1 + r21p2 ≥ V1 (2.25)

r12p1 + r22p2 ≥ V1 (2.26)

p1 + p2 = 1 (2.27)

pj ≥ 0, j = 1, 2 (2.28)

The linear program for player 2 is:

Find (q1, q2) to maximize V2
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subject to

−r11q1 − r12q2 ≥ V2 (2.29)

−r21q1 − r22q2 ≥ V2 (2.30)

q1 + q2 = 1 (2.31)

qj ≥ 0, j = 1, 2 (2.32)

To solve the above linear programming, one can use the simplex method to find the

optimal points geometrically. We provide three 2× 2 zero-sum games below.

Example 2.2. We take the matching pennies game for example. The reward matrix

for player 1 is

R1 =

 1 −1

− 1 1

 (2.33)

Since p2 = 1− p1, the linear program for player 1 becomes

Player 1: find p1 to maximize V1

subject to

2p1 − 1 ≥ V1 (2.34)

−2p1 + 1 ≥ V1 (2.35)

0 ≤ p1 ≤ 1 (2.36)

We use the simplex method to find the solution geometrically. Fig. 2.7 shows

the plot of p1 over V1 where the grey area satisfies the constraints in (2.34)-(2.36).

From the plot, the maximum value of V1 within the grey area is 0 when p1 = 0.5.
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Figure 2.7: Simplex method for player 1 in the matching pennies game

Therefore, p1 = 0.5 is the Nash equilibrium strategy for player 1. Similarly, we can

use the simplex method to find the Nash equilibrium strategy for player 2. After

solving (2.29) - (2.32), we can find that the maximum value of V2 is 0 when q1 = 0.5.

Then this game has a Nash equilibrium (p∗1 = 0.5, q∗1 = 0.5) which is a fully mixed

strategy Nash equilibrium.

Example 2.3. We change the reward r12 from −1 in (2.33) to 2 and call this game

as the revised version of the matching pennies game. The reward matrix for player 1

becomes

R1 =

 1 2

− 1 1

 (2.37)

The linear program for player 1 is

Player 1: find p1 to maximize V1
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Figure 2.8: Simplex method for player 1 in the revised matching pennies game

subject to

2p1 − 1 ≥ V1 (2.38)

p1 + 1 ≥ V1 (2.39)

0 ≤ p1 ≤ 1 (2.40)

From the plot in Fig. 2.8, we can find that the maximum value of V1 in the grey

area is 1 when p1 = 1. Similarly, we can find the maximum value of V2 = −1 when

q1 = 1. Therefore, this game has a Nash equilibrium (p∗1 = 1, q∗1 = 1) which is a pure

strategy Nash equilibrium.

Example 2.4. We now consider the following zero-sum matrix game

R1 =

 r11 2

3 − 1

 , R2 = −R1 (2.41)
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where r11 ∈ <. Based on different values of r11, we want to find the Nash equilibrium

strategies (p1, q1). The linear program for each player becomes

Player 1: Find p1 to maximize V1

subject to

(r11 − 3)p1 + 3 ≥ V1 (2.42)

3p1 − 1 ≥ V1 (2.43)

0 ≤ p1 ≤ 1 (2.44)

Player 2: Find q1 to maximize V2

subject to

(2− r11)q1 − 2 ≥ V2 (2.45)

−4q1 + 1 ≥ V2 (2.46)

0 ≤ q1 ≤ 1 (2.47)

We use the simplex method to find the Nash equilibria for the players with a

varying r11. When r11 > 2, we found that the Nash equilibrium is in pure strategies(
p∗1 = 1, q∗1 = 0

)
. When r11 < 2, we found that the Nash equilibrium is in fully mixed

strategies
(
p∗1 = 4/(6 − r11), q

∗
1 = 3/(6 − r11)

)
. For r11 = 2, we plot the players’

strategies over their value functions in Fig. 2.9. From the plot we found that player

1’s Nash equilibrium strategy is p∗1 = 1, and player 2’s Nash equilibrium strategy is

q∗1 ∈ [0, 0.75] which is a set of strategies. Therefore, at r11 = 2, we have multiple

Nash equilibria which are p∗1 = 1, q∗1 ∈ [0, 0.75]. We also plot the Nash equilibria (p1,
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(b) Simplex method for player 2 at r11 = 2

Figure 2.9: Simplex method at r11 = 2 in Example 2.4
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Figure 2.10: Players’ NE strategies v.s. r11

q1) over r11 in Fig. 2.10.

2.4 Stochastic Games

A Markov decision process contains a single player and multiple states while a matrix

game contains multiple players and a single state. For a game with more than one

player and multiple states, it becomes a stochastic game (or Markov game) [31,32] as

the combination of Markov decision processes and matrix games. A stochastic game is

a tuple (n, S,A1, . . . , An, T r, γ, R1, . . . , Rn) where n is the number of the players, Tr :

S×A1×· · ·×An×S → [0, 1] is the transition function, Ai(i = 1, . . . , n) is the action

set for the player i, γ ∈ [0, 1] is the discount factor and Ri : S×A1×· · ·×An×S → R

is the reward function for player i. The transition function in a stochastic game is

a probability distribution over next states given the current state and joint action of

the players. The reward function Ri(s, a1, . . . , an, s
′) denotes the reward received by

player i in state s′ after taking joint action (a1, . . . , an) in state s. Similar to Markov
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decision processes, stochastic games also have the Markov property. That is, the

player’s next state and reward only depend on the current state and all the players’

current actions.

For a multi-player stochastic game, we want to find the Nash equilibria in the

game if we know the reward function and transition function in the game. A Nash

equilibrium in a stochastic game can be described as a tuple of n strategies (π∗1, . . . , π
∗
n)

such that for all s ∈ S and i = 1, · · · , n,

Vi(s, π
∗
1, . . . , π

∗
i , . . . , π

∗
n) ≥ Vi(s, π

∗
1, . . . , πi, . . . , π

∗
n) for all πi ∈ Πi (2.48)

where Πi is the set of strategies available to player i and Vi(s, π
∗
1, . . . , π

∗
n) is the

expected sum of discounted rewards for player i given the current state and all

the players’ equilibrium strategies. To simplify notation, we use V ∗i (s) to repre-

sent Vi(s, π
∗
1, · · · , π∗n) as the state-value function under Nash equilibrium strategies.

We can also define the action-value function Q∗(s, a1, · · · , an) as the expected sum of

discounted rewards for player i given the current state and the current joint action

of all the players, and following the Nash equilibrium strategies thereafter. Then we

can get

V ∗i (s) =
∑

a1,··· ,an∈A1×···×An

Q∗i (s, a1, · · · , an)π∗1(s, a1) · · · π∗n(s, an) (2.49)

Q∗i (s, a1, . . . , an) =
∑
s′∈S

Tr(s, a1, . . . , an, s
′)
[
Ri(s, a1, . . . , an, s

′) + γV ∗i (s′)
]
(2.50)

where π∗i (s, ai) ∈ PD(Ai) is a probability distribution over action ai under player i’s

Nash equilibrium strategy, Tr(s, a1, . . . , an, s
′) = Pr {sk+1 = s′|sk = s, a1, . . . , an} is

the probability of the next state being s′ given the current state s and joint action

(a1, . . . , an), and Ri(s, a1, . . . , an, s
′) is the expected reward received in state s′ given

the current state s and joint action (a1, . . . , an). Based on (2.49) and (2.50), the Nash
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equilibrium in (2.48) can be rewritten as

∑
a1,...,an∈A1×···×An

Q∗i (s, a1, . . . , an)π∗1(s, a1) · · · π∗i (s, ai) · · · π∗n(s, an) ≥∑
a1,...,an∈A1×···×An

Q∗i (s, a1, . . . , an)π∗1(s, a1) · · · πi(s, ai) · · · π∗n(s, an). (2.51)

Stochastic games can be classified based on the players’ reward functions. If all the

players have the same reward function, the game is called a fully cooperative game or

a team game. If one player’s reward function is always the opposite sign of the other

player’s, the game is called a two-player fully competitive game or zero-sum game.

For the game with all types of reward functions, we call it a general-sum stochastic

game.

To solve a stochastic game, we need to find a strategy πi : S → Ai that can

maximize player i’s discounted future reward with a discount factor γ. Similar to

matrix games, the player’s strategy in a stochastic game is probabilistic. An example

is the soccer game introduced by Littman [8] where an agent on the offensive side

must use a probabilistic strategy to pass to an unknown defender. In the literature,

a solution to a stochastic game can be described as Nash equilibrium strategies in

a set of associated state-specific matrix games [8, 33]. A state-specific matrix

game is also called a stage game. In these state-specific matrix games, we define

the action-value function Q∗i (s, a1, . . . , an) as the expected reward for player i when

all the players take joint action a1, . . . , an in state s and follow the Nash equilibrium

strategies thereafter. If the value of Q∗i (s, a1, . . . , an) is known for all the states, we

can find player i’s Nash equilibrium strategy by solving the associated state-specific

matrix game [33]. Therefore, for each state s, we have a matrix game and we can

find the Nash equilibrium strategies in this matrix game. Then the Nash equilibrium

strategies for the game are the collection of Nash equilibrium strategies in each state-

specific matrix game for all the states. We present an example here.



CHAPTER 2. A FRAMEWORK FOR REINFORCEMENT LEARNING 34

Example 2.5. We define a 2× 2 grid game with two players denoted as P1 and P2.

Two players’ initial positions are located at the bottom left corner for player 1 and

the upper right corner for player 2, as shown in Fig. 2.11(a). Both players try to

reach one of the two goals denoted as “G” in minimum steps. Starting from their

initial positions, each player has two possible moves which are moving up or right for

player 1, and moving left or down for player 2. Figure 2.11(b) shows the numbered

cells in this game. Each player takes an action and moves one cell at a time. The

game ends when either one of the players reaches the goal and receives a reward 10.

The dash line between the upper cells and the bottom cells in Fig. 2.11(a) is the

barrier that the player can pass through with a probability 0.5. If both players move

to the same cell, both players bounce back to their original positions. Figure 2.11(c)

shows the possible transitions in the game. The number of possible states (players’

joint positions) is 7 containing the players’ initial positions s1 = (2, 3) and 6 terminal

states (s2, ..., s7) which are shown in Fig. 2.11.

According to the above description of the game, we can find the Nash equilibrium

in this example. The NE in this game is to avoid the barrier and move to the goals

next to them without crossing the barrier. Therefore, the Nash equilibrium is the

players’ joint action (a1 = Right, a2 = Left). Based on (2.49) and (2.50), the state-

value function V ∗i (s1) under the Nash equilibrium strategies is

V ∗i (s1) = Ri(s1,Right,Left, s7) + γV ∗i (s7)

= 10 + 0.9 · 0 = 10 (2.52)

where γ = 0.9, Ri(s1,Right,Left, s7) = 10, and V ∗i (s7) = 0 (the state-value func-

tions at terminal states are always zero). We can also find the action-value function

Q∗i (s1, a1, a2). For example, the action-value function Q∗1(s1,Up,Down) for player 1
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Figure 2.11: An example of stochastic games
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Table 2.1: The action-value function Q∗i (s1, a1, a2) in Example 2.5

a2

Q∗1(s1, a1, a2) Left Down

a1
Up 4.5 7.25

Right 10 9.5

a2

Q∗2(s1, a1, a2) Left Down

a1
Up 9.5 7.25

Right 10 4.5

can be written as

Q∗1(s1,Up,Down) =
∑

s′=s1∼s4

Tr(s1,Up,Down, s′)
[
R1(s1,Up,Down, s′)

+γV ∗1 (s′)
]

= 0.25(0 + 0.9V ∗1 (s1)) + 0.25(0 + 0.9V ∗1 (s2))

+ 0.25(10 + 0.9V ∗1 (s3)) + 0.25(10 + 0.9V ∗1 (s4))

= 0.25 · 0.9 · 10 + 0.25 · 0 + 0.25 · 10 + 0.25 · 10

= 7.25 (2.53)

Table 2.1 shows the action-value functions under the players’ Nash equilibrium strate-

gies.

2.5 Summary

In this chapter, we reviewed reinforcement learning under the framework of stochastic

games. We presented Markov decision processes and matrix games as the special cases

of stochastic games. In Markove decision processes, we reviewed dynamic program-

ming as the method to find the agent’s optimal policy if we have the perfect model

of the environment. And we presented temporal-difference learning as the learning

algorithm to learn the agent’s optimal policy if we do not know the agent’s reward

function and transition function. In matrix games, we presented the basic concepts
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and definitions of matrix games including Nash equilibrium, strict Nash equilibrium,

fully mixed strategies, etc. We also presented linear programming as the approach

to find Nash equilibria in matrix games. We provided examples using the simplex

method to find the Nash equilibrium strategies for three 2×2 zero-sum matrix games.

Stochastic games were also presented in this chapter. We denoted that the Nash equi-

librium strategies can be found by solving the associated state-specific matrix game

for all the possible states in a stochastic game. Then we provided an example to

demonstrate how to find a solution in a two-player stochastic game. This chapter

provides the fundamental background for the works in the subsequent chapters.



Chapter 3

Reinforcement Learning in Stochastic

Games

3.1 Introduction

Learning in stochastic games can be formalized as a multi-agent reinforcement learn-

ing problem [10, 34]. Agents select actions simultaneously at the current state and

receive rewards at the next state. Different from the algorithm that can solve for

a Nash equilibrium in a stochastic game, the goal of a reinforcement learning algo-

rithm is to learn equilibrium strategies through interaction with the environment.

Generally, in a multi-agent reinforcement learning problem, agents may not know the

transition function or the reward function from the environment. Instead, agents are

required to select actions and observe the received immediate reward and the next

state in order to gain information of the transition function or the reward function.

Rationality and convergence are two desirable properties for multi-agent learning

algorithms in stochastic games [10,35]. The property of rationality means that the

learning agent will converge to a stationary strategy that is optimal to the other

players’ stationary strategies. The property of convergence means that the learning

38
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agent will converge to a stationary strategy while the other agents using an algo-

rithm from some class of learning algorithms [10]. In the literature, the property of

convergence usually refers to the convergence of self-play. It means that, if all the

players use the same learning algorithm, the players’ strategies will converge to their

equilibrium strategies. Another way to distinguish the learning algorithms is based

on the applicability to different types of stochastic games, which can be zero-sum

games or general-sum games.

In this chapter, we review some existing reinforcement learning algorithms in

stochastic games. We analyze these algorithms based on their applicability, rationality

and convergence properties.

Isaacs [36] introduced a differential game of guarding a territory where a defender

tries to intercept an invader before the invader reaches the territory. In this chapter,

we introduce a grid version of Isaacs’ game called the grid game of guarding a territory.

It is a two-player zero-sum stochastic game where the defender plays against the

invader in a grid world. We then study how the players learn to play the game using

multi-agent reinforcement learning algorithms. We apply two reinforcement learning

algorithms to this game and test the performance of these learning algorithms based

on convergence and rationality properties.

The main contribution in this chapter is:

• Establish a grid game of guarding a territory;

• Apply two multi-agent reinforcement learning algorithms to the game.

The above contribution has been published in [37].

In Sect. 3.2, we present four multi-agent reinforcement learning algorithms and

compare them. We define the grid game of guarding a territory in Sect. 3.3.1 and

provide simulations in Sect. 3.3.2.
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3.2 Reinforcement Learning Algorithms in

Stochastic Games

In this section we examine four existing reinforcement learning algorithms in stochas-

tic games. We compare these reinforcement learning algorithms based on their appli-

cability, rationality and convergence properties.

3.2.1 Minimax-Q Algorithm

Littman [8] proposed a minimax-Q algorithm specifically designed for two-player zero-

sum stochastic games. The minimax-Q algorithm uses the minimax principle to

solve for players’ Nash equilibrium strategies and values of states for two-player zero-

sum stochastic games. Similar to Q-learning, minimax-Q algorithm is a temporal-

difference learning method that perform back-propagation on values of states or state-

action pairs. We show the minimax-Q algorithm as follows.

In a two-player zero-sum stochastic game, given the current state s, we define the

state-value function for player i as

V ∗i (s) = max
πi(s,·)

min
a−i∈A−i

∑
ai∈Ai

Q∗i (s, ai, a−i)πi(s, ai), (i = 1, 2) (3.1)

where −i denotes player i’s opponent, πi(s, ·) denotes all the possible strategies of

player i at state s, and Q∗i (s, ai, a−i) is the expected reward when player i and its

opponent choose action ai ∈ Ai and a−i ∈ A−i respectively and follow their Nash

equilibrium strategies after that. If we know Q∗i (s, ai, a−i), we can solve the above

equation (3.1) and find player i’s Nash equilibrium strategy π∗(s, ·). Similar to finding

the minimax solution for (2.23), one can use linear programming to solve equation

(3.1). For a multi-agent reinforcement learning problem, Q∗i (s, ai, a−i) is unknown

to the players in the game. Therefore, an updating rule similar to the Q-learning
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algorithm in Section 2.2.2 is needed.

The minimax-Q algorithm is listed in Algorithm 3.1.

Algorithm 3.1 Minimax-Q algorithm

1: Initialize Qi(s, ai, a−i), Vi(s) and πi
2: for Each iteration do
3: Player i takes an action ai from current state s based on an exploration-

exploitation strategy
4: At the subsequent state s′, player i observes the received reward ri and the

opponent’s action taken at the previous state s.
5: Update Qi(s, ai, a−i) :

Qi(s, ai, a−i)← (1− α)Qi(s, ai, a−i) + α
[
ri + γVi(s

′)
]

(3.2)

where α is the learning rate and γ is the discount factor.
6: Use linear programming to solve equation (3.1) and obtain the updated πi(s, ·)

and Vi(s)
7: end for

Note: an exploration-exploitation strategy means that the player selects an action
randomly from the action set with a probability of ε and the greedy action with
a probability of 1− ε.

The minimax-Q algorithm can guarantee the convergence to a Nash equilibrium

if all the possible states and players’ possible actions are visited infinitely often [38].

The proof of convergence for the minimax-Q algorithm can be found in [38]. One

drawback of this algorithm is that we have to use linear programming to solve for

πi(s, ·) and Vi(s) at each iteration in step 6 of Algorithm 3.1. This will lead to a slow

learning process. Also, in order to perform linear programming, player i has to know

the opponent’s action space.

Using the minimax-Q algorithm, the player will always play a “safe” strategy

in case of the worst scenario caused by the opponent. However, if the opponent

is currently playing a stationary strategy which is not its equilibrium strategy, the

minimax-Q algorithm cannot make the player adapt its strategy to the change in the
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opponent’s strategy. The reason is that the minimax-Q algorithm is an opponent-

independent algorithm and it will converge to the player’s Nash equilibrium strategy

no matter what strategy the opponent uses. If the player’s opponent is a weak oppo-

nent that does not play its equilibrium strategy, then the player’s optimal strategy is

not the same as its Nash equilibrium strategy. The player’s optimal strategy will do

better than the player’s Nash equilibrium strategy in this case.

Overall, the minimax-Q algorithm, which is applicable to zero-sum stochastic

games, does not satisfy the rationality property but it does satisfy the convergence

property.

3.2.2 Nash Q-Learning

The Nash Q-learning algorithm, first introduced in [39], extends the minimax-Q al-

gorithm [8] from zero-sum stochastic games to general-sum stochastic games. In

the Nash Q-learning algorithm, the Nash Q-values need to be calculated at each

state using quadratic programming in order to update the action-value functions and

find the equilibrium strategies. Although Nash Q-learning is applied to general-sum

stochastic games, the conditions for the convergence to a Nash equilibrium do not

cover a correspondingly general class of environments [14]. The corresponding class

of environments are actually limited to cases where the game being learned only has

coordination or adversarial equilibrium [14,40,41].

The Nash Q-Learning algorithm is shown in Algorithm 3.2.

To guarantee the convergence to Nash equilibria in general-sum stochastic games,

the Nash Q-learning algorithm needs to hold the following condition during learning,

that is, every stage game (or state-specific matrix game) has a global optimal point

or a saddle point for all time steps and all the states [14]. Since the above strict

condition is defined in terms of the stage games as perceived during learning, it
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Algorithm 3.2 Nash Q-learning algorithm

1: Initialize Qi(s, a1, . . . , an) = 0, ∀ai ∈ Ai , i = 1, . . . , n
2: for Each iteration do
3: Player i takes an action ai from current state s based on an exploration-

exploitation strategy
4: At the subsequent state s′, player i observes the rewards received from all the

players r1, . . . , rn, and all the players’ actions taken at the previous state s.
5: Update Qi(s, a1, . . . , an):

Qi(s, a1, . . . , an)← (1− α)Qi(s, a1, . . . , an) + α
[
ri + γNashQi(s

′)
]

(3.3)

where α is the learning rate and γ is the discount factor
6: Update NashQi(s) and πi(s, ·) using quadratic programming
7: end for

cannot be evaluated in terms of the actual game being learned [14].

Similar to the minimax-Q learning, the Nash Q-learning algorithm needs to solve

the quadratic programming problem at each iteration in order to obtain the Nash

Q-values which leads to a slow learning process. Above all, the Nash Q-learning algo-

rithm does satisfy the convergence property, does not satisfy the rationality property,

and it can be applied to some general-sum stochastic games with only coordination

or adversarial equilibrium.

3.2.3 Friend-or-Foe Q-Learning

For a two-player zero-sum stochastic game, the minimax-Q algorithm [8] is well suited

for the players to learn a Nash equilibrium in the game. For general-sum stochastic

games, Littman proposed a friend-or-foe Q-learning (FFQ) algorithm such that a

learner is told to treat the other players as either a “friend” or “foe” [40]. The friend-

or-foe Q-learning algorithm assumes that the players in a general-sum stochastic game

can be grouped into two types: player i’s friends and player i’s foes. Player i’s friends

are assumed to work together to maximize player i’s value, while player i’s foes are

working together to minimize player i’s value [40]. Thus, a n-player general-sum
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stochastic game can be treated as a two-player zero-sum game with an extended

action set [40].

The friend-or-foe Q-learning algorithm for player i is given in Algorithm 3.3.

Algorithm 3.3 Friend-or-foe Q-learning Algorithm

1: Initialize Vi(s) = 0 and Qi(s, a1, ..., an1 , o1, ..., on2) = 0 where (a1, ..., an1) denotes
player i and its friends’ actions and (o1, ..., on2) denotes its opponents’ actions.

2: for Each iteration do
3: Player i takes an action ai from current state s based on an exploration-

exploitation strategy.
4: At the subsequent state s′, player i observe the received reward ri, its friends’

and opponents’ actions taken at state s.
5: Update Qi(s, a1, ..., an1 , o1, ..., on2):

Qi(s, a1, ..., an1 , o1, ..., on2)← (1−α)Qi(s, a1, ..., an1 , o1, ..., on2)+α
[
ri+γVi(s

′)
]

where α is the learning rate and γ is the discount factor.
6: Update Vi(s) using linear programming:

Vi(s) = max
π1(s,·),...,πn1 (s,·)

min
o1,...,on2∈O1×···×On2

∑
a1,...,an1∈A1×···×An1

Qi(s, a1, ..., an1 , o1, ..., on2)π1(s, a1) · · · πn1(s, an1) (3.4)

7: end for

Note that the friend-or-foe Q-learning algorithm is different from the minimax-Q

algorithm for a two-team zero-sum stochastic game. In a two-team zero-sum stochas-

tic game, a team leader controls the team players’ actions and maintains the value of

the state for the whole team. The received reward is also the whole team’s reward.

For the friend-or-foe Q-learning algorithm, there is no team leader to send commands

to control the team players’ actions. The FFQ player chooses its own action and

maintains its own state-value function and equilibrium strategy. In order to update

the action-value function Qi(s, a1, ..., an1 , o1, ..., on2), the FFQ player needs to observe

its friends and opponents’ actions at each time step.

Littman’s friend-or-foe Q-learning algorithm can guarantee the convergence to a
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Nash equilibrium if all states and actions are visited infinitely often. The proof of

convergence for the friend-or-foe Q-learning algorithm can be found in [40]. Similar

to the minimax-Q and Nash Q-learning algorithms, the learning speed is slow due to

the execution of linear programming at each iteration in Algorithm 3.3.

3.2.4 WoLF Policy Hill-Climbing Algorithm

The aforementioned reinforcement learning algorithms in Sect. 3.2.1-Sect. 3.2.3 re-

quire agents to maintain their Q-functions. Each player’s Q-function includes the in-

formation of other players’ actions. We define agent i’s action space as Ai(i = 1, ..., n)

and |S| as the number of states. We assume that all the agents have the same size of

action space such that |A1| = · · · = |An| = |A|. Then the total space requirement for

each agent is |S| · |A|n. In terms of space complexity, the state requirement for these

learning algorithms lead to be exponential in the number of agents.

The “Win or Learn Fast” policy hill-climbing (WoLF-PHC) algorithm is a prac-

tical algorithm for learning in stochastic games [10]. The WoLF-PHC algorithm only

requires each player’s own action, which reduces the space requirement from |S| · |A|n

to |S| · |A|. The WoLF-PHC algorithm is the combination of two methods: the “Win

or Learn Fast” principle and the policy hill-climbing method. The “Win or Learn

Fast” principle means that a learner should adapt quickly when it is doing more

poorly than expected and be cautious when it is doing better than expected [10].

The policy hill-climbing algorithm is shown in Algorithm 3.4. The PHC method

is a rational learning algorithm [10]. With the PHC method, the agent’s policy is

improved by increasing the probability of selecting the action with the highest value

in the associated Q function according to a learning rate [10]. But the PHC method

can only guarantee the convergence to the player’s optimal policy in a stationary
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Algorithm 3.4 Policy hill-climbing algorithm

1: Initialize Qi(s, ai) ← 0 and πi(s, ai) ←
1

|Ai|
. Choose the learning rate α, δ and

the discount factor γ.
2: for Each iteration do
3: Select action ac from current state s based on a mixed exploration-exploitation

strategy
4: Take action ac and observe the reward ri and the subsequent state s′

5: Update Qi(s, ac)

Qi(s, ac) = Qi(s, ac) + α
[
ri + γmax

a′i

Q(s′, a′i)−Q(s, ac)
]

(3.5)

where a′i is player i’s action at the next state s′ and ac is the action player i
has taken at state s.

6: Update πi(s, ai)

πi(s, ai) = πi(s, ai) + ∆sai (∀ai ∈ Ai) (3.6)

where

∆sai =

{
−δsai if ac 6= arg maxai∈Ai

Qi(s, ai)∑
aj 6=ai δsaj otherwise

(3.7)

δsai = min
(
πi(s, ai),

δ

|Ai| − 1

)
(3.8)

7: end for

environment for a single agent.

To encourage the convergence in a dynamic environment, Bowling and Veloso

[10] modified the policy hill-climbing algorithm by adding a “Win or Learn Fast”

(WoLF) learning rate to the PHC algorithm. The WoLF-PHC algorithm for player i

is provided in Algorithm 3.5. In the WoLF-PHC algorithm, a varying learning rate

δ is introduced to perform “Win or Learn Fast”. The learning rate δl for the losing

situation is larger than the learning rate δw for the winning situation. If the player

is losing, it should learn quickly to escape from the losing situation. If the player is

winning, it should learn cautiously to maintain the convergence of the policy. Different

from the aforementioned learning algorithms, the WoLF-PHC algorithm does not
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Algorithm 3.5 WoLF-PHC learning algorithm

1: Initialize Qi(s, ai) ← 0, πi(s, ai) ←
1

|Ai|
, π̄i(s, ai) ←

1

|Ai|
and C(s) ← 0. Choose

the learning rate α, δ and the discount factor γ
2: for Each iteration do
3: Select action ac from current state s based on a mixed exploration-exploitation

strategy
4: Take action ac and observe the reward ri and the subsequent state s′

5: Update Qi(s, ac)

Qi(s, ac) = Qi(s, ac) + α
[
ri + γmax

a′i

Q(s′, a′i)−Q(s, ac)
]

(3.9)

where a′i is player i’s action at the next state s′ and ac is the action player i
has taken at state s.

6: Update the estimate of average strategy π̄i

C(s) = C(s) + 1 (3.10)

π̄i(s, ai) = π̄i(s, ai) +
1

C(s)

(
πi(s, ai)− π̄i(s, ai)

)
(∀ai ∈ Ai) (3.11)

where C(s) denotes how many times the state s has been visited.
7: Update πi(s, ai)

πi(s, ai) = πi(s, ai) + ∆sai (∀ai ∈ Ai) (3.12)

where

∆sai =

{
−δsai if ac 6= arg maxai∈Ai

Qi(s, ai)∑
aj 6=ai δsaj otherwise

(3.13)

δsai = min
(
πi(s, ai),

δ

|Ai| − 1

)
(3.14)

δ =

{
δw if

∑
ai∈Ai

πi(s, ai)Qi(s, ai) >
∑

ai∈Ai
π̄i(s, ai)Qi(s, ai)

δl otherwise

8: end for
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need to observe the other players strategies and actions. Therefore, compared with

the other three learning algorithms, the WoLF-PHC algorithm needs less information

from the environment. Since the WoLF-PHC algorithm is based on the policy hill-

climbing method, neither linear programming nor quadratic programming is required

in this algorithm. Since the WoLF-PHC algorithm is a practical algorithm, there

was no proof of convergence provided in [10]. Instead, simulation results in [10]

illustrated the convergence of players’ strategies by manually choosing the according

learning rate to different matrix games and stochastic games.

3.2.5 Summary

In this section, we reviewed four multi-agent reinforcement learning algorithms in

stochastic games. The analysis of these algorithms was conducted based on three

properties: applicability, rationality and convergence. Table 3.1 shows the comparison

of these algorithms based on these properties. As a practical algorithm, the WoLF-

PHC algorithm does not provide the convergence property, but showed the potential

to converge to Nash equilibria by empirical examples. Furthermore, the WoLF-PHC

algorithm is a rational learning algorithm such that it can converge to the player’s

optimal strategy when playing against an opponent with any arbitrary stationary

strategy.

In the next section, we create a grid game of guarding a territory as a test bed

for reinforcement learning algorithms. We apply the minimax-Q and WoLF-PHC

algorithms to the game and test the performance of theses learning algorithms through

simulations.
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Table 3.1: Comparison of multi-agent reinforcement learning algorithms

Algorithms Applicability Rationality Convergence

Minimax-Q Zero-sum SGs No Yes

Nash Q-learning Specific general-sum SGs No Yes

Friend-or-foe Q-learning Specific general-sum SGs No Yes

WoLF-PHC General-sum SGs Yes No

3.3 Guarding a Territory Problem in a Grid World

The game of guarding a territory was first introduced by Isaacs [36]. In the game,

the invader tries to move as close as possible to the territory while the defender

tries to intercept and keep the invader as far as possible from the territory. The

practical application of this game can be found in surveillance and security missions

for autonomous mobile robots [42]. There are few published works in this field since

the game was introduced [43, 44]. In these published works, the defender tries to

use a fuzzy controller to locate the invader’s position [43] or applies a fuzzy reasoning

strategy to capture the invader [44]. However, in these works, the defender is assumed

to know its optimal policy and the invader’s policy. There is no learning technique

applied to the players in their works. In our research, we assume the defender or the

invader has no prior knowledge of its optimal policy and the opponent’s policy. We

apply learning algorithms to the players and let the defender or the invader obtain

its own optimal behavior after learning.

The problem of guarding a territory in [36] is a differential game problem where

the dynamic equations of the players are typically differential equations. In our

research, we will investigate how the players learn to behave with no knowledge of

the optimal strategies. Therefore, the above problem becomes a multi-agent learning

problem in a multi-agent system. In the literature, there is a wealth of published

papers on multi-agent systems [6, 45]. Among the multi-agent learning applications,
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the predator-prey or the pursuit problem in a grid world has been well studied [11,45].

To better understand the learning process of the two players in the game, we create

a grid game of guarding a territory which has never been studied so far.

Most of multi-agent learning algorithms are based on multi-agent reinforcement

learning methods [45]. According to the definition of the game in [36], the grid game

we established is a two-player zero-sum stochastic game. The minimax-Q algorithm

[8] is well suited to solving our problem. However, if the player does not always

take the action that is most damaging the opponent, the opponent might have better

performance using a rational learning algorithm than the minimax-Q [6]. The rational

learning algorithm we used here is the WoLF-PHC learning algorithm. In this section,

we run simulations and compare the learning performance of the minimax-Q and

WoLF-PHC algorithms.

3.3.1 A Grid Game of Guarding a Territory

The problem of guarding a territory in this section is the grid version of the guarding

a territory game in [36]. The game is defined as follows:

• We take a 6× 6 grid as the playing field shown in Fig. 3.1. The invader starts

from the upper-left corner and tries to reach the territory before the capture.

The territory is represented by a cell named T in Fig. 3.1. The defender starts

from the bottom and tries to intercept the invader. The initial positions of the

players are not fixed and can be chosen randomly.

• Both of the players can move up, down, left or right. At each time step, both

player take their actions simultaneously and move to their adjacent cells. If the

chosen action will take the player off the playing field, the player will stay at

the current position.

• The nine gray cells centered around the defender, shown in Fig. 3.1(b), is the
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(a) One possible initial positions of the
players when the game starts

(b) One possible terminal positions of the
players when the game ends

Figure 3.1: Guarding a territory in a grid world

region where the invader will be captured. A successful invasion by the invader

is defined in the situation where the invader reaches the territory before the

capture or the capture happens at the territory. The game ends when the

defender captures the invader or a successful invasion by the invader happens.

Then the game restarts with random initial positions of the players.

• The goal of the invader is to reach the territory without interception or move to

the territory as close as possible if the capture must happen. On the contrary,

the aim of the defender is to intercept the invader at a location as far as possible

to the territory.

The terminal time is defined as the time when the invader reaches the territory

or is intercepted by the defender. We define the payoff as the distance between the

invader and the territory at the terminal time:

Payoff = |xI(tf )− xT |+ |yI(tf )− yT | (3.15)
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Table 3.2: Comparison of pursuit-evasion game and guarding a territory game

Pursuit-evasion game Guarding a territory game

Payoff DistPE DistIT

Rewards Immediate rewards Only terminal rewards

where
(
xI(tf ), yI(tf )

)
is the invader’s position at the terminal time tf and (xT , yT )

is the territory’s position. Based on the definition of the game, the invader tries to

minimize the payoff while the defender tries to maximize the payoff.

The difference between this game and the pursuit-evasion game is illustrated in

Table 3.2. In a pursuit-evasion game, a pursuer tries to capture an evader. The payoff

in the pursuit-evasion game is DistPE which is the distance between the pursuer and

the evader. The players in the pursuit-evasion game are receiving immediate rewards

at each time step. For the guarding a territory game, the payoff is DistIT which is

the distance between the invader and the territory at the terminal time. The players

are only receiving terminal rewards when the game ends.

3.3.2 Simulation and Results

We use the minimax-Q and WoLF-PHC algorithms introduced in Section 3.2.1 and

3.2.4 to simulate the grid game of guarding a territory. We first present a simple

2 × 2 grid game to analyze the NE of the game, the property of rationality and the

property of convergence. Next, the playing field is enlarged to a 6 × 6 grid and we

examine the performance of the learning algorithms based on this large grid.

We set up two simulations for each grid game. In the first simulation, the players

in the game use the same learning algorithm to play against each other. We examine

if the algorithm satisfies the convergence property. In the second simulation, we will

freeze one player’s strategy and let the other player learn its optimal strategy against
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its opponent. We use the minimax-Q and WoLF-PHC algorithms to train the learner

individually and compare the performance of the minimax-Q trained player and the

WoLF-PHC trained player. According to the rationality property shown in Tab.

3.1, we expect the WoLF-PHC trained the defender has better performance than the

minimax-Q trained defender in the second simulation.

2× 2 Grid Game

The playing field of the 2 × 2 grid game is shown in Fig. 3.2. The territory to be

guarded is located at the bottom-right corner. Initially, the invader starts at the

top-left corner while the defender starts at the same cell as the territory. To better

illustrate the guarding a territory problem, we simplify the possible actions of each

player from 4 actions defined in Sect. 3.3.1 to 2 actions. The invader can only move

down or right while the defender can only move up or left. The capture of the invader

happens when the defender and the invader move into the same cell excluding the

territory cell. The game ends when the invader reaches the territory or the defender

catches the invader before it reaches the territory. We suppose both players start

from the initial state s1 shown in Fig. 3.2(a). There are three non-terminal states

(s1, s2, s3) in this game shown in Fig. 3.2. If the invader moves to the right cell

and the defender happens to move left, then both players reach the state s2 in Fig.

3.2(b). If the invader moves down and the defender moves up simultaneously, then

they will reach the state s3 in Fig. 3.2(c). In states s2 and s3, if the invader is

smart enough, it can always reach the territory no matter what action the defender

will take. Therefore, starting from the initial state s1, a clever defender will try to

intercept the invader by guessing which direction the invader will go.

We define distP1P2 as the Manhattan distance (taxicab metric) between players P1

and P2 in a grid world. If the players’ coordinates in the grid are (xP1 , yP1) for player
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P1 and (xP2 , yP2) for player P2, then the Manhattan distance is calculated as

distP1P2 = |xP1 − xP2|+ |yP1 − yP2|. (3.16)

We now define the reward functions for the players. The reward function for the

defender is defined as

RD =


distIT , defender captures the invader;

−10, invader reaches the territory.

(3.17)

where

distIT = |xI(tf )− xT |+ |yI(tf )− yT |.

The reward function for the invader is given by

RI =


−distIT , defender captures the invader;

10, invader reaches the territory.

(3.18)

The reward functions in (3.17) and (3.18) are also used in the 6× 6 grid game.

Before the simulation, we can simply solve this game similar to solving Exam-

ple 2.5. In states s2 and s3, a smart invader will always reach the territory with-

out being intercepted. The value of the states s2 and s3 for the defender will be

VD(s2) = −10 and VD(s3) = −10. We set the discount factor as 0.9 and we

can get Q∗D(s1, aleft, oright) = γVD(s2) = −9, Q∗D(s1, aup, odown) = γVD(s3) = −9,

Q∗D(s1, aleft, odown) = 1 and Q∗D(s1, aup, oright) = 1, as shown in Tab. 3.3(a). Under

the Nash equilibrium, we define the probabilities of the defender moving up and left

as π∗D(s1, aup) and π∗D(s1, aleft) respectively. The probabilities of the invader moving

down and right are denoted as π∗I (s1, oup) and π∗I (s1, oleft) respectively. Based on
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(a) Initial positions of the
players: state s1

    

    

(b) invader in top-right vs.
defender in bottom-left: state
s2

(c) Invader in bottom-left vs.
defender in top-right: state s3

Figure 3.2: A 2× 2 grid game

the Q values in Tab. 3.3(a), we can find the value of the state s1 for the defender

by solving a linear programming problem shown in Tab. 3.3(b). The approach for

solving a linear programming problem can be found in Sect. 2.3.1. After solving the

linear constraints in Tab. 3.3(b), we get the value of the state s1 for the defender as

VD(s1) = −4 and the Nash equilibrium strategy for the defender as π∗D(s1, aup) = 0.5

and π∗D(s1, aleft) = 0.5. For a two-player zero-sum game, we can get Q∗D = −Q∗I .

Similar to the approach in Tab. 3.3, we can find the minimax solution of this game

for the invader as VI(s1) = 4, π∗I (s1, odown) = 0.5 and π∗I (s1, oright) = 0.5. Therefore,

the Nash equilibrium strategy of the invader is moving down or right with probabil-

ity 0.5 and the Nash equilibrium strategy of the defender is moving up or left with

probability 0.5.

We now test how learning algorithms can help the players learn the NE without

knowing the model of the environment. We first apply the minimax-Q algorithm to

the game. To better examine the performance of the minimax-Q algorithm, we use

the same parameter settings as in [8]. We use the ε-greedy policy as the exploration-

exploitation strategy. The ε-greedy policy is defined such that the player chooses an
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Table 3.3: Minimax solution for the defender in the state s1

(a) Q values of the defender for
the state s1

Defender

Q∗D up left

Invader
down -9 1

right 1 -9

(b) linear constraints for the defender in the state s1

Objective: Maximize V

(−9) · πD(s1, aup)+(1) · πD(s1, aleft) ≥ V

(1) · πD(s1, aup)+ (−9) · πD(s1, aleft) ≥ V

πD(s1, aup)+πD(s1, aleft) = 1

action randomly from the player’s action set with a probability ε and a greedy action

with a probability 1− ε. The greedy parameter ε is given as 0.2. The learning rate α

is chosen such that the value of the learning rate will decay to 0.01 after one million

iterations. The discount factor γ is set to 0.9. We run the simulation for 100 iterations.

The number of iterations represents the number of times the step 2 is repeated in

Algorithm 3.1. After learning, we plot the players’ learned strategies in Fig. 3.3. The

result shows that the players’ strategies converge to the Nash equilibrium after 100

iterations.

We now apply the WoLF-PHC algorithm to the 2 × 2 grid game. According to

the parameter settings in [10], we set the learning rate α as 1/(10 + t/10000), δw as

1/(10 + t/2) and δl as 3/(10 + t/2) where t is the number of iterations. The number

of iterations denotes the number of times the step 2 is repeated in Algorithm 3.5.

The result in Fig. 3.4 shows that the players’ strategies converge close to the Nash

equilibrium after 15000 iterations.

In the second simulation, the invader plays a stationary strategy against the de-

fender at state s1 in Fig. 3.2(a). The invader’s fixed strategy is moving right with

probability 0.8 and moving down with probability 0.2. Then the optimal strategy

for the defender against this invader is moving up all the time. We apply both al-

gorithms to the game and examine the learning performance for the defender. Fig.

3.5(a) shows that, using the minimax-Q algorithm, the defender’s strategy fails to
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converge to its optimal strategy. Whereas, Fig. 3.5(b) shows that the WoLF-PHC

algorithm does converge to the defender’s optimal strategy against the invader.

In the 2 × 2 grid game, the first simulation verified the convergence property

of the minimax-Q and WoLF-PHC algorithms. According to Tab. 3.1, there is no

proof of convergence for the WoLF-PHC algorithm. But simulation results in Fig.

3.4 showed that the players’ strategies converged to the Nash equilibrium when both

players used the WoLF-PHC algorithm. Under the rationality criterion, the minimax-

Q algorithm failed to converge to the defender’s optimal strategy in Fig. 3.5(a), while

the WoLF-PHC algorithm showed the convergence to the defender’s optimal strategy

after learning.

6× 6 Grid Game

We now change the 2×2 grid game to a 6×6 grid game. The playing field of the 6×6

grid game is defined in Section 3.3.1. The territory to be guarded is represented by

a cell located at (5, 5) in Fig. 3.6. The position of the territory will not be changed

during the simulation. The initial positions of the invader and defender are shown

in Fig. 3.6(a). The number of actions for each player has been changed from 2 in

the 2 × 2 grid game to 4 in the 6 × 6 grid game. Both players can move up, down,

left or right. The grey cells in Fig. 3.6(a) is the area where the defender can reach

before the invader. Therefore, if both players play their equilibrium strategies, the

invader can move to the territory as close as possible with the distance of 2 cells

shown in Fig. 3.6(b). Different from the previous 2× 2 grid game where we show the

convergence of the players’ strategies during learning, in this game, we want to show

the average learning performance of the players during learning. We add a testing

phase to evaluate the learned strategies after every 100 iterations. The number of
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(a) Defender’s strategy πD(s1, aleft) (solid line) and πD(s1, aup)(dash line)
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(b) Invader’s strategy πI(s1, odown) (solid line) and πI(s1, oright) (dash line)

Figure 3.3: Players’ strategies at state s1 using the minimax-Q algorithm in the
first simulation for the 2× 2 grid game
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(a) Defender’s strategy πD(s1, aleft) (solid line) and πD(s1, aup)(dash line)
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(b) Invader’s strategy πI(s1, odown) (solid line) and πI(s1, oright) (dash line)

Figure 3.4: Players’ strategies at state s1 using the WoLF-PHC algorithm in the
first simulation for the 2× 2 grid game
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(a) Minimax-Q learned strategy of the defender at state s1 against the invader
using a fixed strategy. Solid line: probability of defender moving up; Dash line:
probability of defender moving left
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(b) WoLF-PHC learned strategy of the defender at state s1 against the invader
using a fixed strategy. Solid line: probability of defender moving up; Dash line:
probability of defender moving left

Figure 3.5: Defender’s strategy at state s1 in the second simulation for the 2 × 2
grid game
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(b) One of the terminal positions of the
players

Figure 3.6: A 6× 6 grid game

iterations denotes the number of times the step 2 is repeated in Algorithm 3.1 or

Algorithm 3.5. A testing phase includes 1000 runs of the game. In each run, the

learned players start from their initial positions shown in Fig. 3.6(a) and end at the

terminal time. For each run, we find the final distance between the invader and the

territory at the terminal time. Then we calculate the average of the final distance

over 1000 runs. The result of a testing phase, which is the average final distance over

1000 runs, is collected after every 100 iterations.

We use the same parameter settings as in the 2× 2 grid game for the minimax-Q

algorithm. In the first simulation, we test the convergence property by using the

same learning algorithm for both players. Fig. 3.7(a) shows the learning performance

when both players used the minimax-Q algorithm. In Fig. 3.7(a), the x-axis denotes

the number of iterations and the y-axis denotes the result of the testing phase (the

average of the final distance over 1000 runs) for every 100 iterations. The learning

curve in Fig. 3.7(a) is based on one learning trial including 50000 iterations. From the

result in Fig. 3.7(a), the averaged final distance between the invader and the territory

converges to 2 after 50000 iterations. The sharp changes in the curve is due to the fact
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that each player updates its Q-function by performing linear programming at each

iteration. As shown in Fig. 3.6(b), distance 2 is the final distance between the invader

and the territory when both player play their Nash equilibrium strategies. Therefore,

Fig. 3.7(a) indicates that both players’ learned strategies converge close to their Nash

equilibrium strategies. Then we use the WoLF-PHC algorithm to simulate again. We

set the learning rate α as 1/(4 + t/50), δw as 1/(1 + t/5000) and δl as 4/(1 + t/5000).

We run the simulation for 200000 iterations. The result in Fig. 3.7(b) shows that the

averaged final distance converges close to the distance of 2 after the learning.

In the second simulation, we fix the invader’s strategy to a random-walk strategy,

which means that the invader can move up, down, left or right with equal probability.

Similar to the first simulation, the learning performance of the algorithms are tested

based on the result of a testing phase after every 100 iterations. In a testing phase,

we play the game 1000 runs and average the final distance between the invader and

the territory at the terminal time for each run over 1000 runs.

We test the learning performance of both algorithms applied for the defender in

the game and compare them. The results are shown in Fig. 3.8(a) and 3.8(b). Using

the WoLF-PHC algorithm, the defender can intercept the invader further away from

the territory (distance of 6.6) than using the minimax-Q algorithm (distance of 5.9).

Therefore, based on the rationality criterion in Tab. 3.1, the WoLF-PHC learned

defender can achieve better performance than the minimax-Q learned defender as

playing against a random-walk invader.

In the above 6× 6 grid game, under the convergence criterion, the learning algo-

rithms are tested by finding the averaged final distance for every 100 iterations. The

simulation results in Fig. 3.7 showed that, after learning, the averaged final distance

converged close to 2 which is also the final distance under the players’ Nash equilib-

rium strategies. Under the rationality criterion, Fig. 3.8 showed that the WoLF-PHC
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(a) Result of the minimax-Q learned strategy of the defender against the minimax-Q
learned strategy of the invader.
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(b) Result of the WoLF-PHC learned strategy of the defender against the WoLF-
PHC learned strategy of the invader.

Figure 3.7: Results in the first simulation for the 6× 6 grid game
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(a) Result of the minimax-Q learned strategy of the defender against the invader
using a fixed strategy.

0  20000 40000 60000
0

2

4

6

8

Iterations

A
ve

ra
ge

 d
is

ta
nc

e

(b) Result of the WoLF-PHC learned strategy of the defender against the invader
using a fixed strategy.

Figure 3.8: Results in the second simulation for the 6× 6 grid game
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learned defender intercepted the random-walk invader at the averaged final distance

6.6 than the minimax-Q learned defender at the averaged final distance 5.9 after

learning.

3.4 Summary

In this chapter, we presented and compared four multi-agent reinforcement learn-

ing algorithms in stochastic games. The comparison is based on three properties:

applicability, rationality and convergence and was shown in Table 3.1.

Then we proposed a grid game of guarding a territory as a two-player zero-sum

stochastic game. The invader and the defender try to learn to play against each

other using multi-agent reinforcement learning algorithms. The minimax-Q algorithm

and WoLF-PHC algorithm were applied to the game. The comparison of these two

algorithms was studied and illustrated in simulation results. Both the minimax-Q

algorithm and the WoLF-PHC algorithm showed the convergence to the players’ Nash

equilibrium strategies in the game of guarding a territory for the 2×2 and 6×6 cases.

For the rationality property, the defender with the WoLF-PHC algorithm achieved

better performance than the defender with the minimax-Q algorithm when playing

against a stationary invader. Although there is no theoretical proof of convergence

for the WoLF-PHC algorithm, but simulations showed that the WoLF-PHC satisfied

the convergence property for the guarding a territory game.



Chapter 4

Decentralized Learning in Matrix Games

4.1 Introduction

Multi-agent learning algorithms have received considerable attention over the past

two decades [6, 45]. Among multi-agent learning algorithms, decentralized learning

algorithms have become an attractive research field. Decentralized learning means

that there is no central learning strategy for all of the agents. Instead, each agent

learns its own strategy. Decentralized learning algorithms can be used for players to

learn their Nash equilibria in games with incomplete information [28, 46–48]. When

an agent has “incomplete information” it means that the agent does not know its

own reward function, nor the other players’ strategies nor the other players’ reward

functions. The agent only knows its own action and the received reward at each

time step. The main challenge for designing a decentralized learning algorithm with

incomplete information is to prove that the players’ strategies converge to a Nash

equilibrium.

There are a number of multi-agent learning algorithms proposed in the literature

that can be used for two-player matrix games. Lakshmivarahan and Narendra [46]

presented a linear reward-inaction approach that can guarantee the convergence to

66
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a Nash equilibrium under the assumption that the game only has strict Nash equi-

libria in pure strategies. The linear reward-penalty approach, introduced in [47], can

converge to the value of the game if the game has Nash equilibria in fully mixed

strategies with the proper choice of parameters. Bowling and Veloso proposed a

WoLF-IGA approach that can guarantee the convergence to a Nash equilibrium for

two-player two-action matrix games and the Nash equilibrium can be in fully mixed

strategies or in pure strategies. However, the WoLF-IGA approach is not a completely

decentralized learning algorithm since the player has to know its opponent’s strategy

at each time step. Dahl [49, 50] proposed a lagging anchor approach for two-player

zero-sum matrix games that can guarantee the convergence to a Nash equilibrium

in fully mixed strategies. But the lagging anchor algorithm is not a decentralized

learning algorithm because each player has to know its reward matrix.

In this chapter, we evaluate the learning automata algorithms LR−I [46] and LR−P

[47], the gradient ascent algorithm WoLF-IGA [10] and the lagging anchor algorithm

[49]. We then propose the new LR−I lagging anchor algorithm. The LR−I lagging

anchor algorithm is a combination of learning automata and gradient ascent learning.

It is a completely decentralized algorithm and as such, each agent only needs to know

its own action and the received reward at each time step. We prove the convergence

of the LR−I lagging anchor algorithm to Nash equilibria in two-player two-action

general-sum matrix games. Furthermore, the Nash equilibrium can be in games with

pure or fully mixed strategies. We then simulate three matrix games to test the

performance of our proposed learning algorithm.

The motivation for this research is to develop a decentralized learning algorithm

for teams of mobile robots. In particular, we are interested in robots that learn to

work together for security applications. We have structured these applications as

stochastic games such as the guarding a territory game or the pursuit-evasion game.

These games have multiple states and multiple players. In Section 4.3, we make
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theoretical advances that prove convergence of our proposed LR−I lagging anchor

algorithm for two-player two-action general-sum matrix games. We further extend

the works to the grid game introduced by Hu and Wellman [14] and we demonstrate

the practical performance of the proposed algorithm.

The main contribution in this chapter is

• Propose a decentralized learning algorithm called the LR−I lagging anchor al-

gorithm for matrix games,

• Prove the convergence of the LR−I lagging anchor algorithm to Nash equilibria

in two-player two-action general-sum matrix games,

• Propose a practical LR−I lagging anchor algorithm for players to learn their

Nash equilibrium strategies in general-sum stochastic games,

• Simulate three matrix games and demonstrate the performance of the proposed

practical algorithm in Hu and Wellman [14]’s grid game.

The above contribution is an extension of the work we published in [51]. In [51],

we proved the convergence of the LR−I lagging anchor algorithm for two-player two-

action zero-sum matrix games. In this chapter, we extend the LR−I lagging anchor

algorithm to two-player two-action general-sum matrix games. The works in this

chapter have been accepted for publication and will appear in [52].

We first review the multi-agent learning algorithms in matrix games based on

the learning automata scheme and the gradient ascent scheme in section 4.2. In

Sect. 4.3, we introduce the new LR−I lagging anchor algorithm and provide the

proof of convergence to Nash equilibria in two-player two-action general-sum matrix

games. Simulations of three matrix games are also illustrated in Sect. 4.3 to show

the convergence of our proposed LR−I lagging anchor algorithm. In Sect. 4.4, we
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propose a practical LR−I lagging anchor algorithm for stochastic games and show the

convergence of this practical algorithm in Hu and Wellman [14]’s grid game.

4.2 Learning in Matrix Games

Learning in matrix games can be expressed as the process of each player updating its

strategy according to the received reward from the environment. A learning scheme

is used for each player to update its own strategy toward a Nash equilibrium based

on the information from the environment. In order to address the limitations of

the previously published multi-agent learning algorithms for matrix games, we divide

these learning algorithms into two groups. One group is based on learning automata

[53] and another group is based on gradient ascent learning [54].

4.2.1 Learning Automata

Learning automation is a learning unit for adaptive decision making in an unknown

environment [53,55]. The objective of the learning automation is to learn the optimal

action or strategy by updating its action probability distribution based on the en-

vironment response. The learning automata approach is a completely decentralized

learning algorithm since each agent only knows its own action and the received re-

ward from the environment. The information of the reward function and other agents’

strategies is unknown to the agent. We take the match pennies game presented in

Example 2.2 for example. Without knowing the reward function in (2.33) and its

opponent’s strategy, using decentralized learning algorithms, the agent needs to learn

its own equilibrium strategy based on the received immediate reward at each time

step.

Learning automation can be represented as a tuple (A, r, p, U) where A =

{a1, · · · , am} is the player’s action set, r ∈ [0, 1] is the reinforcement signal, p is
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the probability distribution over the actions and U is the learning algorithm which

is used to update p. We present two typical learning algorithms based on learning

automata: the linear reward-inaction (LR−I) algorithm and the linear reward-penalty

(LR−P ) algorithm.

Linear Reward-Inaction Algorithm

The linear reward-inaction (LR−I) algorithm for player i(i = 1, ..., n) is defined as

follows

pic(k + 1) = pic(k) + ηri(k)(1− pic(k)) if ac is the current action at k

pij(k + 1) = pij(k)− ηri(k)pij(k) for all aij 6= aic (4.1)

where k is the time step, the superscripts and subscripts on p denote different players

and each player’s different action respectively, 0 < η < 1 is the learning parameter,

ri(k) is the response of the environment given player i’s action aic at k and pic is the

probability distribution over player i’s action aic(c = 1, · · · ,m).

The learning procedure for the LR−I algorithm is listed as follows:

Algorithm 4.1 LR−I algorithm for player i

1: Initialize πi(ai) for ai ∈ Ai. Choose the step size η.
2: for Each iteration do
3: Select action ac at current state s based on the current strategy πi(·)
4: Take action ac and observe the reward r
5: Update player i’s policy πi(·)

pic(k + 1) = pic(k) + ηri(k)(1− pic(k)) if ac is the current action at k

pij(k + 1) = pij(k)− ηri(k)pij(k) for all aij 6= aic

6: end for

For a common payoff game with n players or a two-player zero-sum game, if each

player uses the LR−I algorithm, then the LR−I algorithm guarantees the convergence
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to strict Nash equilibria in pure strategies [46,53]. This convergence is under the as-

sumption that the game only has strict Nash equilibria in pure strategies. If the game

has Nash equilibria in mixed strategies, then there is no guarantee of convergence to

the Nash equilibria.

Example 4.1. We present two examples to show the learning performance of the

LR−I algorithm. The first game is the modified matching pennies game in Example

2.3. This game has a Nash equilibrium in pure strategies which are both players’

first actions. We apply the LR−I algorithm for both players. We set the step size η

as 0.001 and run the simulation for 30000 iterations. Figure 4.1 shows the players’

learning process where p1 denotes the probability of player 1 choosing its first action

and q1 denotes the probability of player 2 choosing its first action. The Nash equilib-

rium strategies in this game are both players’ first actions. Starting from the initial

condition (p1 = 0.3, q1 = 0.3), Figure 4.1 shows that players’ strategies converge to

the Nash equilibrium (p1 = 1, q1 = 1) after learning.

The second game we simulate is the matching pennies game. In this game, based

on the study in Example 2.2, there exists a Nash equilibrium in mixed strategies.

Given the reward function in (2.33), the players’ Nash equilibrium strategies are

(p1 = 0.5, q1 = 0.5). Similar to the previous example, we set the step size η as 0.001.

We run the simulation for 30000 iterations to test if the players’ strategies converge to

the Nash equilibrium after the simulation. Figure 4.2 shows the result. The players’

strategies starts from (p1 = 0.3, q1 = 0.3) and runs circles around the equilibrium

point (p1 = 0.5, q1 = 0.5).

The above two examples show that the LR−I algorithm can be applied to the

game that has Nash equilibria in pure strategies, and is not applicable for a game

with Nash equilibria in mixed strategies.
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Figure 4.1: Players’ learning trajectories using LR−I algorithm in the modified
matching pennies game
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Figure 4.2: Players’ learning trajectories using LR−I algorithm in the matching
pennies game
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Linear Reward-Penalty Algorithm

The linear reward-penalty (LR−P ) algorithm for player i is defined as follows

pic(k + 1) = pic(k) + η1r
i(k)[1− pic(k)]− η2[1− ri(k)]pic(k)

pij(k + 1) = pij(k)− η1ri(k)pij(k) + η2[1− ri(k)]

[
1

m− 1
− pij(k)

]
( for all aij 6= aic )

(4.2)

where aic is the current action that player i has taken, 0 < η1, η2 < 1 are learning

parameters and m is the number of actions in the player’s action set.

In a two-player zero-sum matrix game, if each player uses the LR−P and chooses

η2 < η1, then the LR−P algorithm can be made to converge arbitrarily close to the

optimal solution [47].

The learning procedure for the LR−P algorithm is listed as follows:

Algorithm 4.2 LR−P algorithm for player i

1: Initialize πi(ai) for ai ∈ Ai. Choose the step size η1 and η2 .
2: for Each iteration do
3: Select action ac at current state s based on the current strategy πi(·)
4: Take action ac and observe the reward r
5: Update player i’s policy πi(·)

pic(k + 1) = pic(k) + η1r
i(k)[1− pic(k)]− η2[1− ri(k)]pic(k)

pij(k + 1) = pij(k)− η1ri(k)pij(k)

+ η2[1− ri(k)]

[
1

m− 1
− pij(k)

]
( for all aij 6= aic )

6: end for

Example 4.2. We first test the learning convergence for the matching pennies game.

We set the step size η1 as 0.001 and η2 as 0.0005. We run the simulation for 30000

iterations. Simulation result in Fig. 4.3 shows that the players’ learning strategies are
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Figure 4.3: Players’ learning trajectories using LR−P algorithm in the matching
pennies game

moving close to the Nash equilibrium strategies (p1 = 0.5, q1 = 0.5). We also test the

learning convergence for modified matching pennies game. We use the same parameter

settings and run the simulation for 30000 iterations. Fig. 4.4 shows that the players’

strategies failed to converge to the Nash equilibrium strategies (p1 = 1, q1 = 1).

Based on the above two examples, we can verify that the LR−P algorithm converges

to the Nash equilibria if the game has Nash equilibria in mixed strategies, and fails

to converge to the Nash equilibria if the game only has Nash equilibria in mixed

strategies.

4.2.2 Gradient Ascent Learning

Gradient ascent learning can be used to update the player’s strategy in the direction of

the current gradient [54]. At each iteration, the player will adjust its strategy based on
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Figure 4.4: Players’ learning trajectories using LR−P algorithm in the modified
matching pennies game

its gradient in order to increase its expected reward in the long run. Using a gradient

ascent learning algorithm, Singh et al. [54] showed that the players’ strategies do not

converge to Nash equilibria for the general case of matrix games. In other words, there

is no learning algorithm that can be applied to all types of matrix games. However,

there are a number of gradient ascent learning algorithms that can guarantee the

convergence to Nash equilibria for specific matrix games such as two-player matrix

games. We present two gradient ascent learning algorithms that can guarantee the

convergence to the Nash equilibria in two-player two-action general-sum matrix games

and two-player zero-sum matrix games. They are the WoLF-IGA algorithm [10] and

the lagging anchor algorithm [49].
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WoLF-IGA Algorithm

The “Win or Learn Fast” infinitesimal gradient ascent (WoLF-IGA) algorithm was

introduced by Bowling and Veloso [10] for two-player two-action matrix games. As

a gradient ascent learning algorithm, the WoLF-IGA algorithm allows the player to

update its strategy based on the current gradient and a variable learning rate. The

value of the learning rate is smaller, when the player is winning and the learning rate

is larger when the player is losing. We use the term p1 as the probability of player

1 choosing the first action. Then 1 − p1 is the probability of player 1 choosing the

second action. Accordingly, q1 is the probability of player 2 choosing the first action

and 1 − q1 is the probability of player 2 choosing the second action. The updating

rules of the WoLF-IGA algorithm are as follows

p1(k + 1) = p1(k) + ηα1(k)
∂V1(p1(k), q1(k))

∂p1
(4.3)

q1(k + 1) = q1(k) + ηα2(k)
∂V2(p1(k), q1(k))

∂q1
(4.4)

α1(k) =


αmin, if V1(p1(k), q1(k)) > V1(p

∗
1, q1(k))

αmax, otherwise

α2(k) =


αmin, if V2(p1(k), q1(k)) > V2(p1(k), q∗1)

αmax, otherwise

where η is the step size, αi(i = 1, 2) is the learning rate for player i(i = 1, 2),

Vi(p1(k), q1(k)) is the expected reward of player i at time k given the current two

players’ strategy pair (p1(k), q1(k)), and (p∗1, q
∗
1) are equilibrium strategies for the

players. In a two-player two-action matrix game, if each player uses the WoLF-IGA

algorithm with αmax > αmin, the players’ strategies converge to a Nash equilibrium

as the step size η → 0 [10].
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This algorithm is a gradient ascent learning algorithm that can guarantee the

convergence to a Nash equilibrium in fully mixed or pure strategies for two-player

two-action general-sum matrix games. However, this algorithm is not a decentral-

ized learning algorithm. This algorithm requires the knowledge of V1(p
∗
1, q1(k)) and

V2(p1(k), q∗1) in order to choose the learning parameters αmin and αmax accordingly. In

order to obtain V1(p
∗
1, q1(k)) and V2(p1(k), q∗1), we need to know each player’s reward

matrix and its opponent’s strategy at time k. Whereas, in a decentralized learning

algorithm the agents would only have their own actions and the received reward at

time k.

The Lagging Anchor Algorithm

The lagging anchor algorithm for two-player zero-sum games was introduced by Dahl

[49]. As a gradient ascent learning method, the lagging anchor algorithm updates

the players’ strategies according to the gradient. We denote player 1’s strategy as a

vector v = [p1, p2, · · · , pm1 ]
T which is the probability distribution over all the possible

actions of player 1. Accordingly, player 2’s strategy is denoted as a vector w =

[q1, q2, · · · , qm2 ]
T where m1 and m2 denote the number of actions. The updating rules

are listed as follows

v(k + 1) = v(k) + ηPm1R1Y (k) + ηηd(v̄(k)− v(k))

v̄(k) = v̄(k) + ηηd(v(k)− v̄(k))

w(k + 1) = w(k) + ηPm2R2X(k) + ηηd(w̄(k)−w(k))

w̄(k) = w̄(k) + ηηd(w(k)− w̄(k)) (4.5)

where η is the step size, ηd > 0 is the anchor drawing factor, Pmi
= Imi

−(1/mi)1mi
1Tmi

is a matrix used to maintain the summation of the elements in the vector v or w to

be one. The term Y (k) is a unit vector corresponding to the actions of player 2. If
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the m2th action in player 2’s action set is selected at time k, then the m2th element

in Y (k) is set to 1 and the other elements in Y (k) are zeros. Similarly, X(k) is the

unit vector corresponding to the actions of player 1 and R1 and R2 are the reward

matrices for player 1 and 2 respectively. In (4.5), v̄ and w̄ are the anchor parameters

for v and w respectively which can be represented as the weighted average of the

players’ strategies. In a two-player zero-sum game with only Nash equilibria in fully

mixed strategies, if each player uses the lagging anchor algorithm, then the players’

strategies converge to a Nash equilibrium as the step size η → 0 [50].

This algorithm guarantees the convergence to a Nash equilibrium in fully mixed

strategies. However, the convergence to a Nash equilibrium in pure strategies has

never been discussed. Furthermore, the lagging anchor algorithm in (4.5) requires

full information of the player’s reward matrices R1 and R2. Therefore, the lagging

anchor algorithm is not a decentralized learning algorithm.

Table 4.1 compares these algorithms based on the allowable number of actions for

each player, the convergence to pure strategies or fully mixed strategies and the level

of decentralization. From this table, only the WoLF-IGA algorithm can guarantee

the convergence to both pure and mixed strategy Nash equilibrium. But it is not

a decentralized learning algorithm. Although the LR−I algorithm and the LR−P

algorithm are decentralized learning algorithms, neither of them can guarantee the

convergence to both pure and mixed strategy NE. Therefore, the main motivation

of this work is to design a decentralized learning algorithm which can guarantee the

convergence to both pure and mixed strategy NE as shown in Table 4.1.
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Table 4.1: Comparison of learning algorithms in matrix games

Applicability

Existing algorithms
Our proposed

algorithm

LR−I LR−P WoLF-IGA lagging anchor
LR−I

lagging anchor

Allowable
no limit 2 actions 2 actions no limit 2 actions

actions

Convergence
pure fully mixed

both
fully mixed

both
NE NE NE

Decentralized? Yes Yes No No Yes

4.3 LR−I Lagging Anchor Algorithm

In this section, we design an LR−I lagging anchor algorithm which is a completely

decentralized learning algorithm and can guarantee the convergence to Nash equilibria

in both pure and fully mixed strategies. We take the LR−I algorithm defined in (4.1)

as the updating law of the player’s strategy and add the lagging anchor term in (4.5).

Then the LR−I lagging anchor algorithm for player i is defined as follows

pic(k + 1) = pic(k) + ηri(k)[1− pic(k)] + η[p̄ic(k)− pic(k)]

p̄ic(k + 1) = p̄ic(k) + η[pic(k)− p̄ic(k)]


if aic is the action

taken at time k

pij(k + 1) = pij(k)− ηri(k)pij(k) + η[p̄ij(k)− pij(k)]

p̄ij(k + 1) = p̄ij(k) + η[pij(k)− p̄ij(k)]

 for all aij 6= aic (4.6)

where η is the step size and (p̄ic, p̄
i
j) are the lagging parameters for (pic, p

i
j). The

idea behind the LR−I lagging anchor algorithm is that we consider both the player’s

current strategy and the long-term average of the player’s previous strategies at the
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same time. We expect that the player’s current strategy and the long-term average

strategy will be drawn towards the equilibrium point during learning.

To analyze the above LR−I lagging anchor algorithm, we use the ordinary dif-

ferential equation (ODE) approach. The behavior of the learning algorithm can be

approximated by ODEs as the step size goes to zero [56]. We first separate the equa-

tions in (4.6) into two parts: the LR−I part and the lagging anchor part. The LR−I

part is the same equation as in (4.1). Thathachar and Sastry [56] provided the proce-

dure to find the equivalent ODEs for the LR−I part. The analysis on approximating

ODEs for the LR−I algorithm can be obtained in Appendix A in [56]. We skip the

details here. According to 4.1, the obtained ODE for the LR−I algorithm is given as

ṗic =

mi∑
j=1

picp
i
j(d

i
c − dij) (4.7)

where dic is the expected reward of player i given that player i is choosing action aic

and the other players are following their current strategies.

Combining the above ODE of the LR−I algorithm in (4.7) with the ODEs for the

lagging anchor part of our algorithm, we can find the equivalent ODEs for our LR−I

lagging anchor algorithm as

ṗic =

mi∑
j=1

picp
i
j(d

i
c − dij) + (p̄ic − pic)

˙̄pic = pic − p̄ic (4.8)

Based on the above ODEs for our proposed LR−I lagging anchor algorithm, we

now present the following theorem.

Theorem 4.1. We consider a two-player two-action general-sum matrix game and

assume the game only has a Nash equilibrium in fully mixed strategies or strict Nash

equilibria in pure strategies. If both players follow the LR−I lagging anchor algorithm,
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when the step size η → 0, then the following is true regarding the asymptotic behavior

of the algorithm.

• All Nash equilibria are asymptotically stable.

• Any equilibrium point which is not a Nash equilibrium is unstable.

Proof: Given a two-player two-action general-sum game as

R1 =

 r11 r12

r21 r22

 , R2 =

 c11 c12

c21 c22

 . (4.9)

We denote p1 as the probability of player 1 taking its first action and q1 as the

probability of player 2 taking its first action. Then the LR−I lagging anchor algorithm

becomes

ṗ1 =
2∑
j=1

p1pj(d
1
1 − d1j) + (p̄1 − p1)

˙̄p1 = p1 − p̄1

q̇1 =
2∑
j=1

q1qj(d
2
1 − d2j) + (q̄1 − q1)

˙̄q1 = q1 − q̄1 (4.10)

where d11 = r11q1 + r12(1− q1), d12 = r21q1 + r22(1− q1), d21 = c11p1 + c21(1− p1) and

d22 = c12p1 + c22(1− p1). Then (4.10) becomes

ṗ1 = p1(1− p1)[u1q1 + r12 − r22] + (p̄1 − p1)

˙̄p1 = p1 − p̄1

q̇1 = q1(1− q1)[u2p1 + c21 − c22] + (q̄1 − q1)

˙̄q1 = q1 − q̄1 (4.11)
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where u1 = r11− r12− r21 + r22 and u2 = c11− c12− c21 + c22. If we let the right hand

side of the above equation equal to zero, we then get the equilibrium points of the

above equations as (p∗1, q
∗
1) = (0, 0), (0, 1), (1, 0), (1, 1), ((c22 − c21)/u2, (r22 − r12)/u1) .

To study the stability of the above learning dynamics, we use a linear approxima-

tion of the above equations around the equilibrium point (p∗1, q
∗
1, p
∗
1, q
∗
1). Then the

linearization matrix J is given as

J(p∗1,q∗1) =



(1− 2p∗1)(u1q
∗
1 + r12 − r22)− 1 1 p∗1(1− p∗1)u1 0

1 − 1 0 0

q∗1(1− q∗1)u2 0 (1− 2q∗1)(u2p
∗
1 + c21 − c22)− 1 1

0 0 1 −1


(4.12)

If we substitute each of the equilibrium points (0, 0), (0, 1), (1, 0), (1, 1) into (4.12), we

get

Jpure =



−e1 − 1 1 0 0

1 − 1 0 0

0 0 − e2 − 1 1

0 0 1 − 1


(4.13)

where

e1 = r22 − r12, e2 = c22 − c21 for (0, 0); (4.14)

e1 = r21 − r11, e2 = c21 − c22 for (0, 1); (4.15)

e1 = r12 − r22, e2 = c12 − c11 for (1, 0); (4.16)

e1 = r11 − r21, e2 = c11 − c12 for (1, 1). (4.17)
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The eigenvalues of the above matrix Jpure are λ1,2 = 0.5[−(e1 + 2) ±
√
e21 + 4)] and

λ3,4 = 0.5[−(e2 + 2) ±
√
e22 + 4)]. In order to obtain a stable equilibrium point, the

real parts of the eigenvalues of Jpure must be negative. Therefore, the equilibrium

point is asymptotically stable if

0.5[−(e1,2 + 2)±
√
e21,2 + 4)] < 0 ⇒

e1,2 + 2 >
√
e21,2 + 4 ⇒

e1,2 > 0 (4.18)

For the equilibrium point ((c22 − c21)/u2, (r22 − r12)/u1), the linearization matrix be-

comes

Jmixed =



−1 1 p∗1(1− p∗1)u1 0

1 − 1 0 0

q∗1(1− q∗1)u2 0 − 1 1

0 0 1 − 1


. (4.19)

The characteristic equation of the above matrix is

λ4 + 4λ3 + (4 + e3)λ
2 + 2e3λ+ e3 = 0 (4.20)

where e3 = −p∗1(1 − p∗1)q
∗
1(1 − q∗1)u1u2. We set up the Routh table to analyze the
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locations of the roots in (4.20) as follows

λ4 1 4+e3 e3

λ3 4 2e3

λ2 4+0.5e3 e3

λ1 (e23 + 4e3)/(4 + 0.5e3)

λ0 e3

(4.21)

Based on the Routh-Hurwitz stability criterion, if (4.20) is stable, then all the coeffi-

cients of (4.20) must be positive and all the elements in the first column of the Routh

table in (4.21) are positive. In order to meet the Routh-Hurwitz stability criterion,

we must have e3 > 0. Therefore, the equilibrium point ((c22 − c21)/u2, (r22 − r12)/u1)

is asymptotically stable if

e3 = −p∗1(1− p∗1)q∗1(1− q∗1)u1u2 > 0⇒ u1u2 < 0 (4.22)

Case 1: strict Nash equilibrium in pure strategies

We first consider that the game only has strict Nash equilibrium in pure strategies.

Without loss of generality, we assume that the Nash equilibrium in this case is both

players’ first actions. According to the definition of a strict Nash equilibrium in (2.22),

if the Nash equilibrium strategies are both players’ first actions, we get

r11 > r21, c11 > c12. (4.23)

Since the Nash equilibrium in this case is the equilibrium point (1, 1), we can get

e1 = r11 − r21 > 0 and e2 = c11 − c12 > 0 based on (4.17) and (4.23). Therefore, the
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stability condition in (4.18) is satisfied and the equilibrium point (1, 1) which is the

Nash equilibrium in this case is asymptotically stable.

We now test the other equilibrium points. We first consider the equilibrium point

((c22 − c21)/u2, (r22 − r12)/u1). According to (4.22), if this equilibrium point is stable,

we must have u1u2 < 0. To be a valid inner point in the probability space (unit

square), the equilibrium point ((c22 − c21)/u2, (r22 − r12)/u1) must satisfy


0 < (c22 − c21)/u2 < 1

0 < (r22 − r12)/u1 < 1

(4.24)

If u1u2 < 0, we get


r11 > r21, r22 > r12

c11 < c12, c22 < c21

if u1 > 0, u2 < 0 (4.25)


r11 < r21, r22 < r12

c11 > c12, c22 > c21

if u1 < 0, u2 > 0 (4.26)

However, the conditions in (4.25) and (4.26) conflict with the inequalities in (4.23).

Therefore, the inequality u1u2 < 0 will not hold and the equilibrium point ((c22 −

c21)/u2,(r22 − r12)/u1) is unstable in Case 1.

For the equilibrium points (0, 1) and (1, 0), based on (4.15), (4.16) and (4.18), the

stability conditions are r21 > r11, c21 > c22 for (0, 1) and r12 > r22, c12 > c11 for (1, 0).

However, these stability conditions conflict with the inequalities r11 > r21, c11 > c12

in (4.23). Therefore, the equilibrium points (0, 1) and (1, 0) are unstable in Case 1.

For the equilibrium point (0, 0), the stability condition is r22 > r12, c22 > c21 based

on (4.14) and (4.18). From (2.22), we can find that this stability condition also meets
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the requirement for a strict Nash equilibrium (both players’ second actions) in (2.22).

Therefore, the equilibrium point (0, 0) is stable only if it is also a Nash equilibrium

point.

Thus, the Nash equilibrium point is asymptotically stable while any equilibrium

point which is not a Nash equilibrium is unstable.

Case 2: Nash equilibrium in fully mixed strategies

We now consider that the game only has Nash equilibrium in fully mixed strategies.

Singh et al. [54] showed that a Nash equilibrium in fully mixed strategies for a two-

player two-action general-sum matrix game has the from of

(pNE1 , qNE1 ) =

[
c22 − c21

u2
,
r22 − r12

u1

]
(4.27)

where (pNE1 , qNE1 ) denotes the Nash equilibrium strategies over players’ first actions

which happens to be the equilibrium point of (4.11). According to (4.22), the equi-

librium point ((c22 − c21)/u2, (r22 − r12)/u1) is asymptotically stable if u1u2 < 0. If

we assume u1u2 > 0, we get


0 < (c22 − c21)/u2 < 1

0 < (r22 − r12)/u1 < 1

(u1u2 > 0) (4.28)

The above equation (4.28) can be derived as follows


r11 > r21, r22 > r12

c11 > c12, c22 > c21

if u1 > 0, u2 > 0 (4.29)


r11 < r21, r22 < r12

c11 < c12, c22 < c21

if u1 < 0, u2 < 0 (4.30)



CHAPTER 4. DECENTRALIZED LEARNING IN MATRIX GAMES 87

According to (2.22), the above equations contain multiple Nash equilibria in pure

strategies: (pNE1 , qNE1 ) = (1, 1), (0, 0) if u1 > 0, u2 > 0 and (pNE1 , qNE1 ) = (0, 1), (1, 0)

if u1 < 0, u2 < 0. However, under our assumption, the game in Case 2 only has a

Nash equilibrium in fully mixed strategies and Nash equilibria in pure strategies do

not exist. Therefore, we always have u1u2 < 0 in Case 2 and the equilibrium point

((c22 − c21)/u2, (r22 − r12)/u1), which is also the Nash equilibrium point, is asymp-

totically stable.

For the other equilibrium points, based on (4.14)-(4.17) and (4.18), the stability

conditions become

r22 > r12, c22 > c21 for (0, 0); (4.31)

r21 > r11, c21 > c22 for (0, 1); (4.32)

r12 > r22, c12 > c11 for (1, 0); (4.33)

r11 > r21, c11 > c12 for (1, 1). (4.34)

As already noted, the game in Case 2 only has a Nash equilibrium in fully mixed

strategies and we always have u1u2 < 0. Then the inequalities in (4.25) and (4.26)

are true in Case 2. However, the stability conditions in (4.31)-(4.34) for the equilib-

rium points (0, 0), (0, 1), (1, 0), (1, 1) conflict with the inequalities in (4.25) and (4.26).

Therefore, the equilibrium points other than ((c22 − c21)/u2, (r22 − r12)/u1) are un-

stable in this case.

Thus we can conclude that the Nash equilibrium point is asymptotically stable

while the other equilibrium points are unstable in Case 2.
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Table 4.2: Examples of two-player matrix games

(a) Matching Pennies (b) Prisoner’s Dilemma (c) Rock-Paper-Scissors

R1 =

 1 − 1

− 1 1

 , R1 =

 5 0

10 1

 , R1 =


0 − 1 1

1 0 − 1

− 1 1 0

 ,

R2 = −R1 R2 = (R1)
T R2 = −R1.

NE in fully mixed strategies NE in pure strategies NE in fully mixed strategies

4.3.1 Simulation

We now simulate three matrix games to show the performance of the proposed LR−I

lagging anchor algorithm. The first game is the matching pennies game as shown

in Example 2.2. This game is a two-player zero-sum game and each player has two

actions: Heads or Tails. If both players choose the same action, then player 1 gets a

reward 1 and player 2 gets a reward -1. If the actions are different, then player 1 gets

-1 and player 2 gets 1. Based on the reward matrix in Table 4.2 (a) and the solutions

in Example 2.2, the Nash equilibrium in this game is in fully mixed strategies such

that each player plays Heads and Tails with a probability of 0.5. We set the step

size η = 0.001 in (4.6) and p1(0) = q1(0) = 0.2. We run the simulation for 30000

iterations. In Fig. 4.5, starting from (0.2, 0.2), the players’ probabilities of taking

their first actions move close to the Nash equilibrium point (0.5, 0.5) as the learning

proceeds.

The second game we simulate is a two-player general-sum game called the pris-

oner’s dilemma. In this game, we have two players and each player has two actions:
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confess or stay silent. A player receives a reward of 10 if it confesses and the other

player remains silent, or receives a reward of 0 if it remains silent and the other player

confesses. If both players stay silent, each player receives a reward of 5. If they both

confess, each player receives a reward of 1. The reward matrix is shown in Table 4.2

(b) where one player’s reward matrix is the transpose of the other player’s reward

matrix. This game has a unique Nash equilibrium in pure strategies which is both

players confessing. We set the step size η = 0.001 in (4.6) and p1(0) = q1(0) = 0.5.

We run the simulation for 30000 iterations. Figure 4.6 shows that the players’ strate-

gies move close to the Nash equilibrium strategies (both players’ second actions) as

the learning proceeds.

The third game we simulate is the rock-paper-scissors game. This game has two

players and each player has three actions: rock, paper and scissors. A winner in the

game is determined by the following rules: paper defeats rock, scissors defeat paper,

and rock defeats scissors. The winner receives a reward of 1 and the loser receives

-1. If both players choose the same action, each player gets 0. The reward matrix is

shown in Table 4.2 (c). This game has a Nash equilibrium in fully mixed strategies

which is each player choosing any action with the same probability of 1/3. We set

the step size η = 0.001, p1(0) = q1(0) = 0.6 and p2(0) = q2(0) = 0.2. We run the

simulation for 50000 iterations. Although we only prove the convergence for two-

player two-action games, the result in Fig. 4.7 shows that the proposed LR−I lagging

anchor algorithm may be applicable to a two-player matrix game with more than two

actions.
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Figure 4.5: Trajectories of players’ strategies during learning in matching pennies
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Figure 4.6: Trajectories of players’ strategies during learning in prisoner’s dilemma
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Figure 4.7: Trajectories of players’ strategies during learning in rock-paper-scissors

4.4 Extension of Matrix Games to Stochastic

Games

The proposed LR−I lagging anchor algorithm is designed based on matrix games.

In the literature, decentralized learning algorithms are also applied to stochastic

games [10, 28, 48]. In [28, 48], if each player uses the linear reward-inaction algo-

rithm, the players’ strategies will converge to Nash equilibria under the assumption

that the stochastic game only has Nash equilibria in pure strategies. In [10], a prac-

tical decentralized learning algorithm called the WoLF-PHC algorithm is applied to

stochastic games. Although there is no convergence proof for the WoLF-PHC algo-

rithm, the empirical results showed the convergence of this algorithm in [10]. In this

section, inspired by the WoLF-PHC algorithm, we design a practical decentralized
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learning algorithm for stochastic games based on the LR−I lagging anchor approach

in (4.6). The practical algorithm is shown in Algorithm 4.3.

Algorithm 4.3 A practical LR−I lagging anchor algorithm for player i

1: Initialize Qi(s, ai) ← 0 and πi(s, ai) ←
1

|Ai|
. Choose the learning rate α, η and

the discount factor γ.
2: for Each iteration do
3: Select action ac at current state s based on mixed exploration-exploitation

strategy
4: Take action ac and observe the reward r and the subsequent state s′

5: Update Qi(s, ac)

Qi(s, ac) = Qi(s, ac) + α
[
ri + γmax

a′
Qi(s

′, a′)−Qi(s, ac)
]

6: Update the player’s policy πi(s, ·)

πi(s, ac) = πi(s, ac) + ηQi(s, ac)
[
1− πi(s, ac)

]
+ η
[
π̄i(s, ac)− πi(s, ac)

]
π̄i(s, ac) = π̄i(s, ac) + η

[
πi(s, ac)− π̄i(s, ac)

]
πi(s, aj) = πi(s, aj)− ηQi(s, ac)πi(s, aj) + η

[
π̄i(s, aj)− πi(s, aj)

]
π̄i(s, aj) = π̄i(s, aj) + η

[
πi(s, aj)− π̄i(s, aj)

]
(for all aj 6= ac)

7: end for(
Qi(s, ai) is the action-value function, πi(s, ai) is the probability of player i taking

action ai at state s and ac is the current action taken by player i at state s
)

We now apply Algorithm 4.3 to a stochastic game to test the performance. The

stochastic game we simulate is a general-sum grid game introduced by Hu and Well-

man [14]. The game runs under a 3 × 3 grid field as shown in Fig. 4.8(a). We have

two players whose initial positions are located at the bottom left corner for player 1

and the bottom right corner for player 2. Both players try to reach the goal denoted

as “G” in Fig. 4.8(a). Each player has four possible moves which are moving up,

down, left or right unless the player is on the sides of the grid. In Hu and Wellman’s
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game, the movement that will take the player to a wall is ignored. Since we use the

exact same game as Hu and Wellman, the possible actions of hitting a wall have been

removed from the players’ action sets. For example, if the player is at the bottom left

corner, its available moves are moving up or right. If both players move to the same

cell at the same time, they will bounce back to their original positions. The two thick

lines in Fig. 4.8(a) represent two barriers such that the player can pass through the

barrier with a probability of 0.5. For example, if player 1 tries to move up from the

bottom left corner, it will stay still or move to the upper cell with a probability of 0.5.

The game ends when either one of the players reaches the goal. To reach the goal in

minimum steps, the player needs to avoid the barrier and first move to the bottom

center cell. Since both players cannot move to the bottom center cell simultaneously,

the players need to cooperate such that one of the players has to take the risk and

move up. The reward function for player i (i = 1, 2) in this game is defined as

Ri =


100 player i reaches the goal

−1 both players move to the same cell (except the goal)

0 otherwise

(4.35)

According to [14], this grid game has two Nash equilibrium paths as shown in Fig.

4.8(b) and Fig. 4.8(c). Starting from the initial state, the Nash equilibrium are player

1 moving up and player 2 moving left or player 1 moving right and player 2 moving

up.

We set the step size as η = 0.001, the learning rate as α = 0.001 and the discount

factor as γ = 0.9. The mixed exploration-exploitation strategy is chosen such that

the player chooses a random action with probability 0.05 and the greedy action with

probability 0.95. We run the simulation for 10000 episodes. An episode is when the

game starts with the players’ initial positions and ends when either one of the players
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reaches the goal. Figure 4.9 shows the result of two players’ learning trajectories. We

define p1 as player 1 ’s probability of moving up and q1 as player 2 ’s probability of

moving up from their initial positions. The result in Fig. 4.9 shows that two players’

strategies at the initial state converge to one of the two Nash equilibrium strategies

(player 1 moving right and player 2 moving up). Therefore, the proposed practical

LR−I lagging anchor algorithm may be applicable to general-sum stochastic games.

   

   

   

 
(a) Grid Game

   

   

   

P2P1 

 
(b) Nash equilibrium path 1

   

   

   

P2P1 

 
(c) Nash equilibrium path 2

Figure 4.8: Hu and Wellman’s grid game
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Figure 4.9: Learning trajectories of players’ strategies at the initial state in the grid
game

4.5 Summary

In this chapter, we investigated the existing learning algorithms for matrix games.

The analysis of the existing learning algorithms showed that the learning automata

technique including the LR−I algorithm and the LR−P algorithm is a good candi-

date for decentralized learning. But none of them can guarantee the convergence to

Nash equilibria in both pure and fully mixed strategies. We provided two examples

to show that the LR−I algorithm can only converge to the Nash equilibria in pure

strategies and the LR−P algorithm can only converge to the Nash equilibria in fully

mixed strategies. The WoLF-IGA algorithm can converge to both pure and mixed

strategy Nash equilibria, but it is not a decentralized learning algorithm. The lagging

anchor algorithm considers the player’s current strategy and the long term average

strategy during learning. Although the lagging anchor algorithm can guarantee the

convergence to a Nash equilibrium in fully mixed strategies, it is not a decentralized
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learning algorithm.

Inspired by the concept of lagging anchor, we proposed an LR−I lagging anchor

algorithm as a completely decentralized learning algorithm. We proved that the

LR−I lagging anchor algorithm can guarantee the convergence to a Nash equilibrium

in pure or fully mixed strategies in two-player two-action general-sum matrix games.

Through simulations, we showed the performance of the proposed LR−I lagging anchor

algorithm in three matrix games and the practical LR−I lagging anchor algorithm in

a general-sum stochastic game. Simulation results showed the possibility of applying

the proposed LR−I lagging anchor algorithm to a two-player matrix game with more

than two actions and the possibility of applying the proposed practical LR−I lagging

anchor algorithm to general-sum stochastic games.



Chapter 5

Potential-Based Shaping in Stochastic

Games

5.1 Introduction

In reinforcement learning, one may suffer from the temporal credit assignment prob-

lem [5] where a reward is received after a sequence of actions. The delayed reward

will lead to difficulty in distributing credit or punishment to each action from a long

sequence of actions and this will cause the algorithm to learn slowly. An example of

this problem can be found in some episodic tasks such as a soccer game [57] where

the player is only given credit or punishment after a goal is scored. If the number

of states in the soccer game is large, it will take a long time for a player to learn its

equilibrium policy.

The term shaping was first introduced by Skinner [58] in experimental psychology.

Shaping was later implemented in the field of machine learning by Selfridge, Sutton,

and Barto [59] such that the learning agent was first assigned to learn several easy

tasks before achieving a complex task. Reward shaping is a technique to improve the

learning performance of a reinforcement learner by introducing shaping rewards to the

environment [60,61]. When the state space is large, the delayed reward will slow down

97
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the learning dramatically. To speed up the learning, the learner may apply shaping

rewards to the environment as a supplement to the delayed reward. In this way, a

reinforcement learning algorithm can improve its learning performance by combining

a “good” shaping reward function with the original delayed reward.

The applications of reward shaping can be found in the literature [60–63]. Gul-

lapalli and Barto [60] demonstrated the application of shaping to a key-press task

where a robot was trained to press keys on a keyboard. Dorigo and Colombetti [62]

applied shaping policies for a robot to perform a predefined animate-like behavior.

Mataric [61] presented an intermediate reinforcement function for a group of mobile

robots to learn a foraging task. Randlv and Alstrm [63] combined reinforcement

learning with shaping to make an agent learn to drive a bicycle to a goal.

The theoretical analysis of reward shaping can be found in the literature [64–66].

Ng et al. [64] presented a potential-based shaping reward that can guarantee the

policy invariance for a single agent in a Markov decision process. Ng et al. proved

that the optimal policy keeps unchanged after adding the potential-based shaping

reward to an MDP environment. Following Ng et al., Wiewiora [65] showed that

the effects of potential-based shaping can be achieved by a particular initialization of

Q-values for agents using Q-learning. Asmuth et al. [66] applied the potential-based

shaping reward to a model-based reinforcement learning approach.

The above articles focus on applications of reward shaping to a single agent in an

MDP. For the applications of reward shaping in general-sum games, Babes, Munoz

de Cote, and Littman [67] introduced a social shaping reward for players to learn

their equilibrium policies in the iterated prisoner’s dilemma game. But there is no

theoretical proof of policy invariance under the reward transformation. In this chap-

ter, we prove that the Nash equilibria under the potential-based shaping reward

transformation [64] will also be the Nash equilibria for the original game for general-

sum stochastic games. Note that the similar work of Devlin and Kudenko [68] was
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published while our work was under review. But Devlin and Kudenko only proved

sufficiency based on a proof technique introduced by Asmuth et al. [66], while we

prove both sufficiency and necessity using a different proof technique in our work.

We then apply the potential-based shaping method to two grid games to test how

reward shaping can affect the players’ learning performance. The two grid games

we simulate are the modified version of Hu and Wellman’s [14] grid game and the

guarding a territory game with two defenders and one invader. We first apply two

reinforcement learning algorithms to these games which are Littman’s [40] friend-

or-foe Q-learning algorithm for the modified Hu and Wellman’s [14] grid game and

Bowling and Veloso’s [10] WoLF-PHC algorithm for the three-player grid game of

guarding a territory. Then we design two shaping rewards and combine them with

these learning algorithms. We then run simulations to test the performance of these

algorithms with different shaping rewards. Comparison of the learning algorithms

with and without shaping rewards is illustrated based on simulation results.

The main contributions in this chapter are:

• Extend the potential-based shaping method from MDPs to multi-player general-

sum stochastic games.

• Prove the policy invariance for the potential-based shaping method in multi-

player general-sum stochastic games.

• Apply two reinforcement learning algorithms combined with the potential-based

shaping method to two grid games.

• Run simulations and compare the learning performance of players with and

without shaping rewards.

The contribution on the proof of policy invariance for general-sum stochastic games

has been published in [69].
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In this chapter, we first present shaping rewards in MDPs in Sect. 5.2. The proof

of policy invariance under reward transformations for general-sum stochastic games is

provided in Sect. 5.3. In Sect. 5.4, we present two grid games to test the performance

of two learning algorithms based on different shaping reward functions.

5.2 Shaping Rewards in MDPs

We first present the framework of shaping rewards in MDPs. Assume we have an

MDP defined as a tuple N = (S,A, Tr, γ, R) where S is the state space, A is the

action space, γ is the discount factor and R is the reward function. An agent in the

MDP wants to learn a desired policy using a learning algorithm. In order to help the

learning algorithm to learn the desired policy, one can add additional shaping rewards

to the MDP to guide the learning algorithm. With the additional shaping rewards

added to the original MDP, we get a transformed MDP N ′ = (S,A, Tr, γ, R′), where

R′ is the new reward function in the transformed MDP. The new reward function R′

is given as R′ = R + F where F : S × A× S → R is a bounded real-valued function

called the shaping reward function [64].

The transformed MDP N ′ includes the same state space, action space and tran-

sition function as the original MDP N . In the transformed MDP N ′, instead of

receiving the reward R(s, a, s′), we will receive the new reward R(s, a, s′) +F (s, a, s′)

for moving from s to s′ on action a. The aim of the reward transformation is to help

the learning algorithm to learn the desired or optimal policy in the original MDP.

Therefore, we want to know what forms of shaping reward function F can guarantee

that the optimal policy in N ′ will also be optimal in N .

In [64], Ng et al. introduced a potential-based shaping function that can guarantee

the policy invariance under reward transformations. The potential-based shaping
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Figure 5.1: An example of reward shaping in MDPs

function F , which is a difference of potentials, has the form of

F (s, a, s′) = γΦ(s′)− Φ(s), (5.1)

where γ is the discount factor given in the MDP and the shaping potential Φ(·) : S →

R is a real-valued function. Without prior knowledge of the transition function Tr

and the reward function R in N , Ng et al. proved that the potential-based shaping

functions F are the only form of F that will guarantee consistency with the optimal

policy in N . The details of the proof can be found in [64].

Example 5.1. We now modify Example 2.1 presented in Sect. 2.2.1 to show how

the potential-based shaping function can help the player learn its optimal policy. We

present a 9× 9 grid as the playing field shown in Fig. 5.1. The player starts from the

bottom left corner and tries to reach the goal labeled as “G” on the opposite corner.

The player has 4 possible actions: moving up, down, left and right. The player takes

an action a and moves one cell each time. If the player’s chosen action is taking the

player off the grid, the player will stand still. Similar to Example 2.1, the transition
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function is set to 1 for each movement and the reward function is given as

R(s, a, s′) = −1, for each movement (5.2)

To encourage the player to move towards the goals, we choose F (s, a, s′) such that

the player receives a higher reward when the next state s′ is closer to the goal. We

define the shaping potential Φ(s) as

Φ(s) = −distPG(s) (5.3)

where distPG(s) is the Manhattan distance between player’s current state and the

goal.

Based on (5.1), the reward function in (5.2) is transformed to

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′)

= −1 + distPG(s)− γdistPG(s′) (5.4)

We now simulate the game using Q-learning described in Sect. 2.2.2. The discount

factor is set to 1. We define one trial as 200 episodes or 200 runs of the game. Each

episode or run starts from the initial position of the player, which is located at the

bottom left corner, and ends when the player reaches the goal. We record the total

steps for the player to reach the goal at each episode. Then we average them over

40 trials. The simulation results are shown in Fig. 5.2, where the dash line is the

learning result without the shaping function and the solid line is the result with the

shaping function. Compared with the learning without shaping, the potential-based

shaping function defined in (5.4) helped the player speed up the learning process.
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Figure 5.2: Simulation results with and without the shaping function in Example
5.1

5.3 Potential-Based Shaping in General-Sum

Stochastic Games

Ng et al. [64] presented a reward shaping method to deal with the credit assignment

problem by adding a potential-based shaping reward to the environment. The com-

bination of the shaping reward with the original reward may improve the learning

performance of a reinforcement learning algorithm and speed up the convergence to

the optimal policy. The existing theoretical studies on potential-based shaping meth-

ods in the literature only consider the case of a single agent in an MDP [64–66]. In

our research, we extend the potential-based shaping method from Markov decision

processes to multi-player stochastic games. We prove that the Nash equilibria under

the potential-based shaping reward transformation will be the Nash equilibria for the

original game under the framework of general-sum stochastic games. To be consistent
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with the terms used in [64], in this chapter, we use the term “policy” to replace the

term “strategy” defined in Sect. 2.4 for the players in stochastic games. These two

terms are interchangeable.

We define a potential-based shaping reward Fi(s, s
′) for player i as

Fi(s, s
′) = γΦi(s

′)− Φi(s), (5.5)

where Φ : S → R is a real-valued shaping function and Φ(sT ) = 0 for

any terminal state sT . We define a multi-player stochastic game as a tuple

M = (S,A1, . . . , An, T r, γ, R1, . . . , Rn) where S is a set of states, A1, . . . , An

are players’ action sets, Tr is the transition function, γ is the discount fac-

tor, and Ri(s, a1, . . . , an, s
′)(i = 1, . . . , n) is the reward function for player

i. After adding the shaping reward function Fi(s, s
′) to the reward function

Ri(s, a1, . . . , an, s
′), we define a transformed multi-player stochastic game as a tu-

ple M ′ = (S,A1, . . . , An, T r, γ, R
′
1, . . . , R

′
n) where R′i(i = 1, . . . , n) is the new reward

function given by R′i(s, a1, . . . , an, s
′) = Fi(s, s

′) +Ri(s, a1, . . . , an, s
′). Inspired by Ng

et al.’s proof of policy invariance in an MDP in [64] , we prove the policy invariance

in a multi-player general-sum stochastic game as follows.

Theorem 5.1. Given an n-player discounted stochastic game M =

(S,A1, . . . , An, T r, γ, R1, . . . , Rn), we define a transformed n-player discounted

stochastic game M ′ = (S,A1, . . . , An, T r, γ, R1 + F1, . . . , Rn + Fn) where Fi ∈ S × S

is a shaping reward function for player i. We call Fi a potential-based shaping

function if Fi has the form of (5.5). Then, the potential-based shaping function

Fi is a necessary and sufficient condition to guarantee the Nash equilibrium policy

invariance such that

• (Sufficiency) If Fi (i = 1, . . . , n) is a potential-based shaping function, then

every Nash equilibrium policy in M ′ will also be a Nash equilibrium policy in M
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(and vice versa).

• (Necessity) If Fi (i = 1, . . . , n) is not a potential-based shaping function, then

there may exist a transition function Tr and reward function R such that the

Nash equilibrium policy in M ′ will not be the Nash equilibrium policy in M .

The proof is conducted as follows. In the proof of sufficiency, we first present the

definition of the Nash equilibrium in the stochastic game M . Then the definition of

the Nash equilibrium in M ′ can be derived from equations in (2.49)-(2.51). We then

find that the definition of the Nash equilibrium in M ′ is exactly the same definition

of the Nash equilibrium in M . In the proof of necessity, we first build a stochastic

game in M . Then we choose a shaping function which is not potential based and add

it to M . We find that the Nash equilibrium policy in M ′ is no longer the same Nash

equilibrium policy in M .

Proof. (Proof of Sufficiency)

Based on (2.51), a Nash equilibrium in the stochastic game M can be represented as

a set of policies such that for all i = 1, . . . , n, s ∈ S and πMi
∈ Π

∑
a1,...,an∈A1×···×An

Q∗Mi
(s, a1, . . . , an)π∗M1

(s, a1) · · · π∗Mi
(s, ai) · · · π∗Mn

(s, an) ≥∑
a1,...,an∈A1×···×An

Q∗Mi
(s, a1, . . . , an)π∗M1

(s, a1) · · · πMi
(s, ai) · · · π∗Mn

(s, an). (5.6)

We subtract Φi(s) on both sides of (5.6) and get

∑
a1,...,an∈A1×···×An

Q∗Mi
(s, a1, . . . , an)π∗M1

(s, a1) · · · π∗Mi
(s, ai) · · · π∗Mn

(s, an)− Φi(s) ≥∑
a1,...,an∈A1×···×An

Q∗Mi
(s, a1, . . . , an)π∗M1

(s, a1) · · · πMi
(s, ai) · · · π∗Mn

(s, an)− Φi(s). (5.7)

Since
∑

a1,...,an∈A1×···×An
πM1(s, a1) · · · πMi

(s, ai) · · · πMn(s, an) = 1 (∀s ∈ S), we can
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get

∑
a1,...,an∈A1×···×An

[Q∗Mi
(s, a1, . . . , an)− Φi(s)]π

∗
M1

(s, a1) · · · π∗Mi
(s, ai) · · · π∗Mn

(s, an) ≥∑
a1,...,an∈A1×···×An

[Q∗Mi
(s, a1, . . . , an)− Φi(s)]π

∗
M1

(s, a1) · · · πMi
(s, ai) · · · π∗Mn

(s, an).(5.8)

We define

Q̂M ′i
(s, a1, . . . , an) = Q∗Mi

(s, a1, . . . , an)− Φi(s). (5.9)

Then we can get

∑
a1,...,an∈A1×···×An

Q̂M ′i
(s, a1, . . . , an)π∗M1

(s, a1) · · · π∗Mi
(s, ai) · · · π∗Mn

(s, an) ≥∑
a1,...,an∈A1×···×An

Q̂M ′i
(s, a1, . . . , an)π∗M1

(s, a1) · · · πMi
(s, ai) · · · π∗Mn

(s, an).(5.10)

We now use some algebraic manipulations to rewrite the action-value function under

the Nash equilibrium in (2.50) for player i in the stochastic game M as

Q∗Mi
(s, a1, . . . , an)− Φi(s) =

∑
s′∈S

Tr(s, a1, . . . , an, s
′)
[
RMi

(s, a1, . . . , an, s
′)+

γV ∗Mi
(s′) + γΦi(s

′)− γΦi(s
′)
]
− Φi(s). (5.11)

Since
∑

s′∈S Tr(s, a1, . . . , an, s
′) = 1, the above equation becomes

Q∗Mi
(s, a1, . . . , an)− Φi(s) =

∑
s′∈S

Tr(s, a1, . . . , an, s
′) [RMi

(s, a1, . . . , an, s
′)

+γΦi(s
′)− Φi(s) + γV ∗Mi

(s′)− γΦi(s
′)
]
. (5.12)
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According to (2.49), we can rewrite the above equation as

Q∗Mi
(s, a1, . . . , an)− Φi(s) =

∑
s′∈S

Tr(s, a1, . . . , an, s
′) [RMi

(s, a1, . . . , an, s
′) + γΦi(s

′)

−Φi(s) + γ
∑

a1,...,an∈A1×···×An

Q∗Mi
(s′, a′1, . . . , a

′
n)π∗M1

(s′, a′1) · · · π∗Mi
(s′, a′n)− γΦi(s

′)
]

=
∑
s′∈S

Tr(s, a1, . . . , an, s
′) {RMi

(s, a1, . . . , an, s
′) + γΦi(s

′)

−Φi(s) + γ
∑

a1,...,an∈A1×···×An

[
Q∗Mi

(s′, a′1, . . . , a
′
n)− Φi(s

′)
]
π∗M1

(s′, a′1) · · · π∗Mi
(s′, a′n)

}
.

(5.13)

Based on the definitions of Fi(s, s
′) in (5.5) and Q̂M ′i

(s, a1, . . . , an) in (5.9), the above

equation becomes

Q̂M ′i
(s, a1, . . . , an) =

∑
s′∈S

Tr(s, a1, . . . , an, s
′) [RMi

(s, a1, . . . , an, s
′) + Fi(s, s

′)

+ γ
∑

a1,...,an∈A1×···×An

Q̂M ′i
(s′, a′1, . . . , a

′
n) π∗M1

(s′, a′1) · · · π∗Mi
(s′, a′n)

]
(5.14)

Since equations (5.10) and (5.14) have the same form as equations (2.49)-(2.51),

we can conclude that Q̂M ′i
(s, a1, . . . , an) is the action-value function under the Nash

equilibrium for player i in the stochastic game M ′. Therefore, we can obtain

Q̂M ′i
(s, a1, . . . , an) = Q∗M ′i (s, a1, . . . , an) = Q∗Mi

(s, a1, . . . , an)− Φi(s). (5.15)

If the state s is the terminal state sT , then we have Q̂M ′i
(sT , a1, . . . , an) =

Q∗Mi
(sT , a1, . . . , an) − Φi(sT ) = 0 − 0 = 0. Based on (5.10) and Q̂M ′i

(s, a1, . . . , an) =

Q∗M ′i
(s, a1, . . . , an), we can find that the Nash equilibrium in M is also the Nash equi-

librium in M ′. Then the state-value function under the Nash equilibrium in the



CHAPTER 5. POTENTIAL-BASED SHAPING IN STOCHASTIC GAMES 108

stochastic game M ′ can be given as

V ∗M ′i (s) =
∑

a1,...,an∈A1×···×An

Q∗M ′i (s, a1, . . . , an)π∗M ′1(s, a1) · · · π
∗
M ′i

(s, ai) · · · π∗M ′n(s, an)

=
∑

a1,...,an∈A1×···×An

Q∗Mi
(s, a1, . . . , an)π∗M1

(s, a1) · · · π∗Mi
(s, ai) · · · π∗Mn

(s, an)

−Φi(s)

= V ∗Mi
(s)− Φi(s). (5.16)

(Proof of Necessity)

If Fi (i = 1, . . . , n) is not a potential-based shaping function, we will have Fi(s, s
′) 6=

γΦi(s
′) − Φi(s). Then we can build a stochastic game M by giving the following

transition function Tr and player 1’s reward function RM1(·)

Tr(s1, a11, a2, . . . , an, s3) = 1,

T r(s1, a12, a2, . . . , an, s2) = 1,

T r(s2, a1, . . . , an, s3) = 1,

T r(s3, a1, . . . , an, s3) = 1,

RM1(s1, a1, . . . , an, s3) =
∆

2
, (5.17)

RM1(s1, a1, . . . , an, s2) = 0,

RM1(s2, a1, . . . , an, s3) = 0,

RM1(s3, a1, . . . , an, s3) = 0,

where ai(i = 1, . . . , n) represents any possible action ai ∈ Ai from player i, and

a11 and a12 represent player 1’s action 1 and action 2 respectively. Equation

Tr(s1, a11, a2, . . . , an, s3) = 1 in (5.17) denotes that, given the current state s1, player

1’s action a11 will lead to the next state s3 no matter what joint action the other play-

ers take. Based on the above transition function and reward function, we can get the
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game model including states (s1, s2, s3) shown in Figure 5.3. Similar to Ng et al.’s [64]

proof of necessity, we define ∆ = F1(s1, s2) + γF1(s2, s3)−F1(s1, s3). Without loss of

generality, we assume F1(s3, s3) = 0 since replacing F1(s, s
′) with F1(s, s

′)−F1(s3, s3)

does not affect the player’s equilibrium policy [64]. Based on (2.49), (2.50), (5.15),

(5.16) and (5.17), we can obtain player 1’s action-value function at state s1 in M and

M ′

Q∗M1
(s1, a11, . . . ) =

∆

2
,

Q∗M1
(s1, a12, . . . ) = 0,

Q∗M ′1(s1, a11, . . . ) = F1(s1, s2) + γF1(s2, s3)−
∆

2
,

Q∗M ′1(s1, a12, . . . ) = F1(s1, s2) + γF1(s2, s3).

Then the Nash equilibrium policy for player 1 at state s1 is

π∗M1
(s1, a1) =



a11 if ∆ > 0,

a12 otherwise

, π∗M ′1(s1, a1) =



a12 if ∆ > 0,

a11 otherwise

. (5.18)

Therefore, in the above case, the Nash equilibrium policy for player 1 at state s1 in

M is not the Nash equilibrium policy in M ′.

The above analysis shows that the potential-based shaping reward with the form

of Fi(s, s
′) = γΦi(s

′)−Φi(s) guarantees the Nash equilibrium policy invariance. Now

the question becomes how to select a shaping function Φi(s) to improve the learning

performance of the learner. Ng et al. [64] showed that Φi(s) = V ∗Mi
(s) is an ideal

candidate for improving the player’s learning performance in an MDP. We substitute
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Figure 5.3: Possible states of the stochastic model in the proof of necessity

Φi(s) = V ∗Mi
(s) into (5.14) and get

Q̂M ′i
(s, a1, . . . , an) = Q∗M ′i (s, a1, . . . , an)

=
∑
s′∈S

Tr(s, a1, . . . , an, s
′) [RMi

(s, a1, . . . , an, s
′) + Fi(s, s

′)

+ γ
∑

a1,...,an∈A1×···×An

Q∗M ′i (s
′, a′1, . . . , a

′
n) π∗M1

(s′, a′1) · · · π∗Mi
(s′, a′n)

]
=
∑
s′∈S

Tr(s, a1, . . . , an, s
′) [RMi

(s, a1, . . . , an, s
′) + Fi(s, s

′)

+ γ(V ∗Mi
(s′)− Φi(s

′))
]

=
∑
s′∈S

Tr(s, a1, . . . , an, s
′) [RMi

(s, a1, . . . , an, s
′) + Fi(s, s

′)] .(5.19)

Equation (5.19) shows that the action-value function Q∗M ′i
(s, a1, . . . , an) in state s can

be easily obtained by checking the immediate reward RMi
(s, a1, . . . , an, s

′) + Fi(s, s
′)

that player i received in state s′. However, in practical applications, we will

not have all the information of the environment such as Tr(s, a1, . . . , an, s
′) and

Ri(s, a1, . . . , an, s
′). This means that we cannot find a shaping function Φi(s) such

that Φi(s) = V ∗Mi
(s) without knowing the model of the environment. Therefore, the

goal for designing a shaping function is to find a Φi(s) as a “good” approximation to

V ∗Mi
(s).
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5.4 Simulation and Results

In this section, we set up two grid games to test the performance of the reinforcement

learning algorithms with and without the shaping rewards. We apply the friend-

or-foe Q-learning algorithm presented in Sect. 3.2.3 and the WoLF-PHC algorithm

presented in Sect. 3.2.4 to the modified Hu and Wellman’s [14] grid game and the

three-player grid game of guarding a territory respectively. We show how the conver-

gence can be affected by different shaping functions through simulation results.

5.4.1 Hu and Wellman’s Grid Game

The first game we test is the modified version of the game introduced by Hu and

Wellman [14]. In [14], the game runs in a 3×3 grid field. To better show the effect of

reward shaping to a game, we increase the size of the game to a 9× 9 grid shown in

Fig. 5.4. We have two players located at the bottom of the playing field where player

1 is at the bottom left corner and player 2 is at the bottom right corner. Player 1

tries to reach its goal at the upper right corner and the player 2 tries to reach its

goal at the upper left corner. Before the two players reach their goals, each player

has to pass one specific cell located in the middle of the field shown as T1 and T2

respectively in Fig. 5.4(a). Each player has four possible moves which are moving up,

down, left or right unless the player is on the sides of the grid. For example, if the

player is at the bottom left corner, its available moves are moving up or right. If the

two players move to the same cell at the same time, they will bounce back to their

original positions. The game ends when either one of the players passes the specific

cell and reaches its goal.

Now we define the reward function and transition function for the game. For

simplicity, the transition function is set as 1 for all the possible moves such that the
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(a) Possible optimal paths of the two players

T2 T1

(b) Region G1 (grey cells) containing all the
optimal paths for player 1

Figure 5.4: A modified Hu and Wellman’s grid game

player moves from one cell to another with probability 1. For the reward function,

we give the player a reward of 100 if the player passes the specific cell and reaches

the goal. If the player reaches the goal without passing the specific cell, no reward

will be given to the player. If two players move to the same cell, each player bounces

back and receives a reward of -1. Similar to the original game introduced by Hu and

Wellman [14], this game has a global equilibrium point with multiple optimal paths.

One of the possible optimal paths is shown in Fig. 5.4(a) where two dash lines show

the least moves for two players to reach the goal. Fig. 5.4(a) shows that the smallest

number of moves to reach the goal is 16. We can also find the boundary of all the

possible optimal paths for each player. For example, the grey cells in Fig. 5.4(b)

show the region G1 containing all possible optimal paths for player 1. In other words,

it is impossible for player 1 to enter the white cells in Fig. 5.4(b) and still reach the

goal in 16 moves. Then we can find the value of the state for all the states as given in

(2.49). For example, if we choose 0.9 as the discount factor γ, the value of the state
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for player 1 can be calculated as

V ∗1 (s) =


0.9dist1G−1 · 100 if dist1G ≤ dist2G and P1 ∈ G1

0 otherwise

(5.20)

where dist1G is the Manhattan distance between the player 1 and its goal P1 at the

current time step, dist2G is the Manhattan distance between the player 2 and its goal

P2 at the current time step, and P1 ∈ G1 represents that player 1 remains inside the

region G1 shown in Fig. 5.4(b).

Littman [40] formulated the Hu and Wellman’s [14] game as a cooperative game

and apply the friend-Q algorithm to find the Nash equilibrium to the game. Due to

the similarity between this game and the Hu and Wellman’s game, we can also apply

the friend-Q algorithm for this grid game. The friend-Q algorithm is the special case

of the friend-or-foe Q-learning algorithm where the player treats all other players as

its friends. In this case, step 6 of Algorithm 3.3 in Sect. 3.2.3 becomes

Vi(s) = max
π1(s,·),...,πn(s,·)

∑
a1,...,an∈A1×···×An

Qi(s, a1, ..., an)π1(s, a1) · · · πn(s, an). (5.21)

We choose the following parameters in the friend-Q algorithm. We define the learning

rate as α(t) = 1/(1 + t/500) where t is the time step. We adopt a 0.05-greedy

exploration strategy such that the player chooses an action randomly from its action

set with a probability 0.05 and the greedy action with probability 0.95. The values

of α(t) and ε are chosen based on the parameter settings in [10]. To better compare

the performance of the learning algorithms and the shaping reward, we will keep the

value of α(t) and ε the same for all the games in this section. For a single training

episode, the game starts with the players’ initial positions and ends when the terminal

condition is reached. We use NSi(TE) to denote the number of steps taken for player
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i to reach its goal at the TEth training episode. We define one trial as one single

learning period including 1000 training episodes. In this game, we run 100 trials and

average the result of each training episode over 100 trials. The averaged result of each

training episode over 100 trials is given as

NSi(TE) =
1

100

100∑
Trl=1

NSTrli (TE), for TE = 1, ..., 1000 (5.22)

where i represents player i, and NSTrli (TE) denotes the number of steps for player i

to reach the goal at the TEth training episode in trial # Trl. We now add shaping

reward functions to the friend-Q algorithm. As discussed in Section 5.3, a desired

shaping reward function has the form of

Fi(s, s
′) = γV ∗Mi

(s′)− V ∗Mi
(s). (5.23)

For player 1, we can calculate V ∗M1
(·) from (5.20) and substitute it into (5.23) to get

the desired shaping reward function. Similarly, we can also calculate V ∗M2
(·) for player

2 and get the desired potential-based shaping function for player 2. After simulations

we compare the performance of the players with and without the desired shaping

function. The results are shown in Fig. 5.5. As for the convergence to the optimal

path(16 steps to the goal), both players converge faster with the help of the desired

shaping function.

5.4.2 A Grid Game of Guarding a Territory with Two De-

fenders and One Invader

The second game we considered is a three-player grid game of guarding a territory. In

this section, we extend the two-player grid game of guarding a territory introduced
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Figure 5.5: Learning performance of friend-Q algorithm with and without the de-
sired reward shaping
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in [37] to a three-player grid game of guarding a territory with two defenders and

one invader. Two defenders in the game try to prevent an invader from entering the

territory. The goal for the invader is to invade a territory or move as close as possible

to the territory. The goal of the two defenders is to intercept the invader and keep

the invader as far as possible away from the territory. The game is defined as follows

• We take a 6 × 6 grid as the playing field shown in Figure 5.6. The territory is

represented by a cell named T at (5, 5) in Figure 5.6(a). The position of the

territory remains unchanged. The invader starts from the upper-left corner and

the defenders start at positions (6, 4) and (4, 6) respectively.

• Each player has four possible actions. It can move up, down, left or right unless

it is on the sides of the grid. For example, if the invader is located at the top-left

corner, it can only have two actions: move down or right. At each time step,

each player takes one action and move to an adjacent cell simultaneously.

• The nine gray cells centered around the defender, shown in Figure 5.6(b), are

the terminal region where the invader will be captured by the defenders. A

successful invasion by the invader is defined in the situation where the invader

reaches the territory before the capture or the capture happens at the territory.

The game ends when either one of the defenders captures the invader or a

successful invasion by the invader happens. Then a new trial starts with the

same initial positions of the players.

• The goal of the invader is to reach the territory without interception or move to

the territory as close as possible if the capture must happen. On the contrary,

the aim of the defenders is to intercept the invader at a location as far as possible

from the territory.
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Figure 5.6: A grid game of guarding a territory with two defenders and one invader

The terminal time is defined as the time when the invader reaches the territory

or is intercepted by the defenders. We define the payoff as the Manhattan distance

between the invader and the territory at the terminal time:

Payoff = |xI(tf )− xT |+ |yI(tf )− yT | (5.24)

where (xI(tf ), yI(tf )) is the invader’s position at the terminal time tf and (xT , yT ) is

the territory’s position. If we represent the two defenders as a team, then the invader

tries to minimize the payoff while the defender team tries to maximize the payoff.

We now define the transition probability function and reward function in the game.

For simplicity, the transition probability function for all the possible moves is set to

1 which means that the players have deterministic moves. The reward function for
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the defender i (i = 1, 2) is defined as

RDi
=



DistIT , defender i captures the invader

−10, invader reaches the territory

0, others

(5.25)

where

DistIT = |xI(tf )− xT |+ |yI(tf )− yT |.

The reward function for the invader is given by

RI =



−DistIT , defender captures the invader

10, invader reaches the territory

0, others

(5.26)

In this grid game, we have three players playing on a 6 × 6 grid. Considering

each player has four possible actions, each action-value Q function in (2.50) contains

players’ joint action × players’ joint space = 43 × 363 elements. The friend-or-foe

Q-learning algorithm needs to know all the players’ actions in order to compute the

value of the state using the linear programming method at each time step. If we use

the friend-or-foe Q-learning algorithm, we have to deal with the problem of memory

requirement due to the large size of the Q function and the problem of computational

complexity due to the use of linear programming. The WoLF-PHC algorithm is a

policy online learning approach that can update each player’s policy based on the

player’s own action and the received reward. Thus the dimension of the action-value

Q function decreases from 43 × 363 to 4× 363.
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Based on the above analysis, we choose the WoLF-PHC algorithm for the three-

player grid game of guarding a territory and study the learning performance of the

players with and without reward shaping. Our aim is to test how the shaping function

can affect the learning performance of the players. To do that, we design two different

shaping reward functions and compare them through simulation results. We first

define the following shaping function called Shaping 1:

ΦI(s) = −distIT

ΦDi
(s) = −distDiI , (i = 1, 2) (5.27)

where distIT is the Manhattan distance between the invader and the territory at the

current state s, and distDiI is the Manhattan distance between the defender i (i = 1, 2)

and the invader at the current state s. To compare the learning performance of the

WoLF-PHC learning algorithm with and without the shaping function, we run two

simulations at the same time. The first simulation, called S1, applies the WoLF-

PHC learning algorithm without the shaping function to all the players. The second

simulation, called S2, applies the WoLF-PHC learning algorithm with the shaping

function to all the players. Each simulation includes 2000 training episodes. After

every 200 training episodes in each simulation, we set up a testing phase to test

the performance of the learners. In a testing phase, two tests are performed. We

denote t1 for the first test and t2 for the second test. In the first test, we let the

invader from S1 (Simulation 1) play against the two defenders from S2 (Simulation

2) for 50 runs. In the second test, we let the invader from S2 play against the two

defenders from S1 for 50 runs. A single run of the game is when the game starts

at the players’ initial positions and ends at a terminal state. The result of each run

is the distance between the invader and the territory at the terminal time. For each
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test in the testing phase, we average the result from each run over 50 runs and get

distIT,t1 =
1

50

50∑
run=1

distrunIT,t1(sT ) (5.28)

distIT,t2 =
1

50

50∑
run=1

distrunIT,t2(sT ) (5.29)

where distIT,t1 denotes the average result of 50 runs for test 1 and distIT,t2 denotes

the average result of 50 runs for test 2 in the testing phase. In each testing phase, we

calculate the average distance distIT,t1 and distIT,t2 in (5.28) and (5.29). We define

one trial as one run of Simulation 1 and Simulation 2. After 10 trials, we average the

result of each testing phase over the 10 trials. The result is given as

DistIT,t1(TE) =
1

10

10∑
Trl=1

dist
Trl

IT,t1(TE) (5.30)

DistIT,t2(TE) =
1

10

10∑
Trl=1

dist
Trl

IT,t2(TE) (5.31)

whereDistIT,t1(TE) is the average distance at the TEth training episode over 10 trials

for test 1, and DistIT,t2(TE) is the average distance at the TEth training episode

over 10 trials for test 2. We illustrate the simulation procedure in Fig. 5.7.

For simplicity, we use the same parameter settings as in the previous game for all

the simulations. Table 5.1 shows the result where DistIT,t1(TE) and DistIT,t2(TE)

denote the average results of test 1 and test 2 in a testing phase at the TEth training

episode over 10 trials. In Table 5.1, the values in test 1 (second column) are smaller

than the values in test 2 (third column). This implies that the invader from simulation

1 (without the shaping function) can move closer to the territory than the invader

from simulation 2 (with the shaping function). In other words, the defenders from

simulation 1 can keep the invader further away from the territory than the defenders
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Figure 5.7: Simulation procedure in a three-player grid game of guarding a territory
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in simulation 2. For example, the results at 200th training episode in Table 5.1 shows

that the invader from simulation 1 can move close to the territory at an average

distance of 4.72 when playing against the defenders from simulation 2, while the

invader from simulation 2 can only move close to the territory at an average distance

of 4.91 when playing against the defenders from simulation 1. In simulation 1, all

the players are trained without using shaping functions. In simulation 2, all the

players are trained using the shaping function provided in (5.27). Therefore, Table

5.1 verifies that the shaping function Shaping 1 in (5.27) does not help the players

achieve a better performance.

Table 5.1: Comparison of WoLF-PHC learning algorithms with and without shap-
ing: Case 1

Training
Episode
(TE)

Testing phase at TEth training episode

Test 1 (DistIT,t1(TE)): Test 2 (DistIT,t2(TE)): Who

Invader from S1 v.s. Defenders from S1 has better

Defenders from S2 v.s. Invader from S2 performance

200 4.72 4.91 players from S1

400 4.84 5.02 players from S1

600 4.89 5.11 players from S1

800 5.03 5.16 players from S1

1000 5.02 5.16 players from S1

1200 4.95 5.04 players from S1

1400 5.03 5.07 players from S1

1600 5.03 5.13 players from S1

1800 5.09 5.33 players from S1

2000 4.97 5.31 players from S1

According to the payoff given in (5.24), the defenders’s goal is to keep the invader

away from the territory. Based on Shaping 1 in (5.27), the goal becomes that two
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defenders try to move close to the invader. Therefore, we need to redesign our shaping

function that can better represent the goal of the defenders in the game. We define

a new shaping function, called Shaping 2, as follows

ΦI(s) = −distIT

ΦDi
(s) = distDiT − distDiI , (i = 1, 2) (5.32)

where distDiT is the Manhattan distance between the defender i (i=1,2) and the

territory at the current time step. Equation (5.32) implies that the defender i’s aim

is to intercept the invader while moving away from the territory. Therefore, this new

shaping function stays closer to the real goal of the defenders in the game rather than

the previous shaping function in (5.27). We now apply the new shaping function

Shaping 2 to the players and run simulations again. Table 5.2 shows that the values

in the second column for test 1 are greater than the values in the third column for test

2. This implies that, compared with the defenders from simulation 1 (without the

shaping function), the defenders from simulation 2 (with the new shaping function)

can keep the invader further away from the territory. Although the new shaping

function might not be the ideal shaping function, the aid of this shaping function

does improve the learning performance of the players.

5.5 Summary

A potential-based shaping method can be used to deal with the temporal credit

assignment problem and speed up the learning process in MDPs. In this chapter,

we extended the potential-based shaping method from Markov decision processes to

general-sum stochastic games. We proved that the potential-based shaping reward

applied to a general-sum stochastic game will not change the original Nash equilibrium
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Table 5.2: Comparison of WoLF-PHC learning algorithms with and without shap-
ing: Case 2

Training
Episode
(TE)

Testing phase at TEth training episode

Test 1 (DistIT,t1(TE)): Test 2 (DistIT,t2(TE)): Who

Invader from S1 v.s. Defenders from S1 has better

Defenders from S2 v.s. Invader from S2 performance

200 5.06 4.86 players from S2

400 5.28 4.96 players from S2

600 5.39 5.02 players from S2

800 5.30 4.90 players from S2

1000 5.06 4.89 players from S2

1200 5.38 4.97 players from S2

1400 5.38 4.98 players from S2

1600 5.31 4.94 players from S2

1800 5.35 4.97 players from S2

2000 5.20 5.13 players from S2

of the game. The proof of policy invariance in Sect. 5.3 has the potential to improve

the learning performance of the players in a stochastic game.

Under the framework of stochastic games, two grid games were studied in this

chapter. We applied Littman’s friend-or-foe Q-learning algorithm to the modified Hu

and Wellman’s grid game. Then we applied the WoLF-PHC learning algorithm to

the game of guarding a territory with two defenders and one invader. To speed up

the players’ learning performance, we designed two different potential-based shaping

rewards to the game of guarding a territory. Simulation results showed that a good

shaping function can improve the learning performance of the players, while a bad

shaping function can also worsen the learning performance of the players.



Chapter 6

Reinforcement Learning in Differential

Games

Future security applications will involve robots protecting critical infrastructure [42].

The robots work together to prevent the intruders from crossing the secured area.

They will have to adapt to an unpredictable and continuously changing environment.

Their goal is to learn what actions to take in order to get optimum performance in

security tasks. This chapter addresses the learning problem for robots working in such

an environment. We model this application as the “guarding a territory” game. The

differential game of guarding a territory was first introduced by Isaacs [36]. In the

game, the invader tries to get as close as possible to the territory while the defender

tries to intercept and keep the invader as far as possible away from the territory. The

Isaacs’ guarding a territory game is a differential game where the dynamic equations

of the players are differential equations.

A player in a differential game needs to learn what action to take if there is no

prior knowledge of its optimal strategy. Learning in differential games has attracted

attention in [11–13, 70, 71]. In these articles, reinforcement learning algorithms are

applied to the players in the pursuit-evasion game. The study on guarding a territory

game can be found in [43,44,72], but there is no investigation on how the players can

125
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learn their optimal strategies by playing the game. In our research, we assume the

defender has no prior knowledge of its optimal strategy nor the invader’s strategy. We

investigate how reinforcement learning algorithms can be applied to the differential

game of guarding a territory.

In reinforcement learning, a reinforcement learner may suffer from the temporal

credit assignment problem where a player’s reward is delayed or only received at the

end of an episodic game. When a task has a very large state space or continuous state

space, the delayed reward will slow down the learning dramatically. For the game of

guarding a territory, the only reward received during the game is the distance between

the invader and the territory at the end of the game. Therefore, it is extremely difficult

for a player to learn its optimal strategy based on this very delayed reward.

To deal with the temporal credit assignment problem and speed up the learn-

ing process, one can apply reward shaping to the learning problem. As discussed in

Chapter 5, shaping can be implemented in reinforcement learning by designing inter-

mediate shaping rewards as an informative reinforcement signal to the learning agent

and reward the agent for making a good estimate of the desired behavior [5, 63, 73].

The idea of reward shaping is to provide an additional reward as a hint, based on the

knowledge of the problem, to improve the performance of the agent.

Traditional reinforcement learning algorithms such as Q-leaning may lead to the

curse of dimensionality problem due to the intractable continuous state space and

action space. To avoid this problem, one may use fuzzy systems to represent the

continuous space [74]. Fuzzy reinforcement learning methods have been applied to

the pursuit-evasion differential game in [11–13]. In [12], we applied a fuzzy actor-critic

learning (FACL) algorithm to the pursuit-evasion game. Experimental results showed

that the pursuer successfully learned to capture the invader in an effective way [12].

In this chapter, we apply fuzzy reinforcement learning algorithms to the differential

game of guarding a territory and let the defender learn its Nash equilibrium strategy
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by playing against the invader. To speed up the defender’s learning process, we design

a shaping reward function for the defender in the game. Moreover, we apply the same

FACL algorithm and shaping reward function to a three-player differential game of

guarding a territory including two defenders and one invader. We run simulations to

test the learning performance of the defenders in both cases.

The main contributions of this chapter are:

• Apply fuzzy reinforcement learning algorithms to the defender in the differential

game of guarding a territory.

• Design a shaping reward function for the defender to speed up the learning

process.

• Run simulations to test the learning performance of the defenders in both the

two-player and the three-player differential game of guarding a territory.

This chapter is organized as follows. We first review the differential game of

guarding a territory in Sect. 6.1. The fuzzy Q-learning (FQL) and fuzzy actor-critic

reinforcement learning are presented in Sect. 6.2. Reward shaping is discussed in

Sect. 6.3. Simulation results are presented in Sect. 6.4.

6.1 Differential Game of Guarding a Territory

We consider a two-player zero-sum differential game with system dynamics described

as

˙̄x(t) = f(x̄(t), φ̄(t), ψ̄(t), t), x̄(t0) = x̄0 (6.1)

where x̄(t) ∈ Rn is the state vector of dimension n, function f(·) determines the

dynamics of the system, φ̄ and ψ̄ are the strategies played by each player. The
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payoff, represented as P (φ̄, ψ̄), is given in the form

P (φ̄, ψ̄) = h(tf , x̄(tf )) +

tf∫
t0

g(x̄(t), φ̄, ψ̄, t)ds (6.2)

where tf is the terminal time (or the first time the states x̄(t) intersect a given final

condition), h(·) is the payoff at the terminal time, g(·) is the integral payoff and

functions h(·) and g(·) are chosen in order to achieve an objective. We assumed that

the player who uses strategy φ̄ wants to maximize the payoff P (·), whereas the player

using strategy ψ̄ wants to minimize it. Therefore, the objective of the game is to find

control signals φ̄∗ and ψ̄∗ such that [75]

P (φ̄, ψ̄∗) ≤ P (φ̄∗, ψ̄∗) ≤ P (φ̄∗, ψ̄), ∀ φ̄, ψ̄ (6.3)

where P (φ̄∗, ψ̄∗) is the value of the game and (φ̄∗, ψ̄∗) is the saddle point containing

both players’ Nash equilibrium strategies.

The Isaacs’ guarding a territory game is a two-player zero-sum differential game.

The invader’s goal is to reach the territory. If the invader cannot reach the territory,

it at least moves to a point as close as possible to the territory [36]. Accordingly,

the defender tries to intercept the invader at a point as far as possible from the

territory [36]. We denote the invader as I and the defender as D in Fig. 6.1. The

dynamics of the invader I and the defender D are defined as

ẋD(t) = sin θD, ẏD(t) = cos θD (6.4)

ẋI(t) = sin θI , ẏI(t) = cos θI (6.5)

−π ≤ θD ≤ π, −π ≤ θI ≤ π

where θD is the defender’s strategy and θI is the invader’s strategy.



CHAPTER 6. REINFORCEMENT LEARNING IN DIFFERENTIAL GAMES129

In order to simplify the problem, we establish a relative coordinate frame centered

at the defender’s position with its y′-axis in the direction of the invader’s position as

shown in Fig. 6.1. The territory is represented by a circle with center T (x′T , y
′
T ) and

radius R. Different from θD and θI in the original coordinate frame, we define uD as

the defender’s strategy and uI as the invader’s strategy in relative coordinates.

Based on (6.2), the payoff for this game is defined as

Pip(uD, uI) =
√

(x′I(tf )− x′T )2 + (y′I(tf )− y′T )2 −R (6.6)

where ip denote the players’ initial positions, R is the radius of the target and tf is the

terminal time. The terminal time is the time when the invader reaches the territory

or the invader is intercepted before it reaches the territory. The above payoff indicates

how close the invader can move to the territory if both players start from their initial

positions and follow their stationary strategies uD and uI thereafter. In this game,

the invader tries to minimize the payoff P while the defender tries to maximize it.

In Fig. 6.1, we draw the bisector BC of the segment ID. According to the

dynamics of the players in (6.4) and (6.5), the players can move in any direction

instantaneously with the same speed. Therefore, the region above the line BC is

where the invader can reach before the defender and the region below the line BC is

where the defender can reach before the invader. We draw a perpendicular line TO

to the bisector BC through the point T . Then point O is the closest point on the

line BC to the territory T . Starting from the initial position (I,D), if both players

play their optimal strategies, the invader can only reach point O as its closest point

to the territory.

The value of the game can be found as the shortest distance between the line BC
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Figure 6.1: The differential game of guarding a territory

and the territory. We define the value of the game as

P (u∗D, u
∗
I) = ‖

−→
TO‖ −R (6.7)

where u∗D and u∗I are the players’ Nash equilibrium strategies given by

u∗D = ∠
−−→
DO, (6.8)

u∗I = ∠
−→
IO, (6.9)

−π ≤ u∗D ≤ π,−π ≤ u∗I ≤ π.

6.2 Fuzzy Reinforcement Learning

The value of the game in (6.7) is obtained based on the assumption that both players

play their Nash equilibrium strategies. In practical applications, one player may not

know its own Nash equilibrium strategy or its opponent’s strategy. Therefore, learning

algorithms are needed to help the player learn its equilibrium strategy. Most of the

learning algorithms applied to differential games, especially to the pursuit-evasion
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game, are based on reinforcement learning algorithms [11–13].

The players’ Nash equilibrium strategies given in (6.8) and (6.9) are continuous.

A typical reinforcement learning approach such as Q-learning needs to discretize the

action space and the state space. However, when the continuous state space or action

space is large, the discrete representation of the state or action is computationally

intractable [23]. Wang [76] proved that a fuzzy inference system (FIS) is a universal

approximator which can approximate any nonlinear function to any degree of pre-

cision. Therefore, one can use fuzzy systems to generate continuous actions of the

players or represent the continuous state space.

In this chapter, we present two fuzzy reinforcement learning algorithms for the

defender to learn to play against an invader. The two fuzzy reinforcement learn-

ing methods are the fuzzy actor-critic learning (FACL) and fuzzy Q-learning (FQL),

which are based on actor-critic learning and Q-learning respectively. In fuzzy rein-

forcement learning methods, the parameters of fuzzy systems are tuned by reinforce-

ment signals [77].

The fuzzy system in this chapter, as shown in Fig. 6.2, is implemented by Takagi-

Sugeno (TS) rules with constant consequents [78]. It consists of L rules with n

fuzzy variables as inputs and one constant number as the consequent. Each rule
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l (l = 1, . . . , L) is of the form

rule l : IFx1 isF l
1, · · · , andxn is F l

n

THENu = cl (6.10)

where x̄ = (x1, · · · , xn) are the inputs passed to the fuzzy controller, F l
i is the fuzzy

set related to the corresponding fuzzy variable, u is the rule’s output, and cl is a

constant that describes the center of a fuzzy set. If we use the product inference for

fuzzy implication [76], t -norm, singleton fuzzifier and center-average defuzzifier, the

output of the system becomes

U(x̄) =

L∑
l=1

((
n∏
i=1

µF
l
i (xi)) · cl)

L∑
l=1

(
n∏
i=1

µF
l
i (xi))

=
L∑
l=1

Φlcl (6.11)

where µF
l
i is the membership degree of the fuzzy set F l

i and

Φl =

n∏
i=1

µF
l
i (xi)

L∑
l=1

(
n∏
i=1

µF
l
i (xi))

. (6.12)

6.2.1 Fuzzy Q-Learning

Among fuzzy reinforcement learning algorithms, one may use a fuzzy Q-learning

algorithm to generate a global continuous action for the player based on a predefined

discrete action set [74,79,80]. We assume that the player has m possible actions from

an action set A = {a1, a2, · · · , am}. To generate the player’s global continuous action,
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we use the following form of fuzzy IF-THEN rules

rule l : IFx1 isF l
1, · · · , andxn is F l

n

THEN u = al (6.13)

where al is the chosen action from the player’s discrete action set A for rule l. The

action al is chosen based on an exploration-exploitation strategy [5]. In this chapter,

we use the ε-greedy policy as the exploration-exploitation strategy. The ε-greedy

policy is defined such that the player chooses a random action from the player’s

discrete action set A with a probability ε and a greedy action with a probability

1− ε. The greedy action is the action that gives the maximum value in an associated

Q-function. Then we have

al =


random action from A Prob(ε)

arg max
a∈A

(
Q(l, a)

)
Prob(1− ε)

(6.14)

where Q(l, a) is the associated Q-function given the rule l and the player’s action

a ∈ A. Based on (6.11), the global continuous action at time t becomes

Ut(x̄t) =
L∑
l=1

Φl
ta
l
t (6.15)

where Φl
t is given by (6.12), x̄t = (x1, x2, . . . , xn) are the inputs, L is the number of

fuzzy IF-THEN rules and alt is the chosen action in (6.14) for rule l at time t.

Similar to (6.15), we can generate the global Q-function by replacing cl in (6.11)

with Qt(l, a
l
t) and get

Qt(x̄t) =
L∑
l=1

Φl
tQt(l, a

l
t). (6.16)
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We can also define Q∗t (x̄t) as the global Q-function with the maximum Q-value for

each rule. Then (6.16) becomes

Q∗t (x̄t) =
L∑
l=1

Φl
t max
a∈A

Qt(l, a) (6.17)

where max
a∈A

Qt(l, a) denotes the maximum value of Qt(l, a) for all a ∈ A in rule l.

Given (6.16) and (6.17), we define the temporal difference error as

ε̃t+1 = rt+1 + γQ∗t (x̄t+1)−Qt(x̄t) (6.18)

where γ ∈ [0, 1) is the discount factor and rt+1 is the received reward at time t + 1.

According to [74], the update law for the Q-function is given as

Qt+1(l, a
l
t) = Qt(l, a

l
t) + ηε̃t+1Φ

l
t, (l = 1, ..., L) (6.19)

where η is the learning rate.

The FQL algorithm is summarized in Algorithm 6.1.

Algorithm 6.1 FQL algorithm

1: Initialize Q(·) = 0 and Q(·) = 0;
2: for Each time step do
3: Choose an action for each rule based on (6.14) at time t;
4: Compute the global continuous action Ut(x̄t) in (6.15);
5: Compute Qt(x̄t) in (6.16);
6: Take the global action Ut(x̄t) and run the game;
7: Obtain the reward rt+1 and the new inputs x̄t+1 at time t+ 1;
8: Compute Q∗t (x̄t+1) in (6.17);
9: Compute the temporal difference error ε̃t+1 in (6.18);

10: Update Qt+1(l, a
l
t) in (6.19) for l = 1, ..., L;

11: end for

Example 6.1. We present an example to show the learning performance of the FQL
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Figure 6.3: An example of FQL algorithm

algorithm. In this example, we let a player move towards a target. The playing field is

a two-dimensional space shown in Fig. 6.3. The player starts from its initial position

at (5, 5) and tries to reach the target. The target is a circle with the center at (20, 20)

and a radius of 2 units. The player’s speed is 1 unit/second and it can move to any

direction spontaneously. The goal of the player is to reach the target in minimum

time. The optimal strategy for the player is going straight to the target. The game

starts from the player’s initial position at (5, 5) and ends when the player reaches the

target or the edges of the playing field. If the player starts from the initial position

(5, 5), then the optimal path is the straight line between the player’s initial position

(5, 5) and the center of the target at (20, 20).

We now apply the FQL algorithm in Algorithm 6.1 to the game. The player uses

the FQL algorithm to learn its optimal path. In order to apply the FQL algorithm to
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Figure 6.4: An example of FQL algorithm: action set and fuzzy partitions

a game in a continuous domain, the continuous action space needs to be discretized

into an action set A. For this game, we discretize the player’s action space into an

action set with 8 actions. These 8 actions are the player’s turning angles given as

A = {π, 3π/4, π/2, π/4, 0,−π/4,−π/2,−3π/4}. In this example, we use fuzzy systems

to represent the continuous state space. We define four fuzzy sets for each coordinate

in the state space. To reduce the computational load, the fuzzy membership function

µF
l
i (xi) in (6.11) is defined as a triangular membership function (MF). Fig. 6.4 shows

the membership functions for the coordinates on the plane. The number of fuzzy

rules is 4 × 4 = 16. Each rule l has the associated Q(l, a) where l = 1, ..., 16 and
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a ∈ A. For example, rule 1 has the form of

rule 1: IF x is ZE and y is ZE

THEN u =


random action from A Prob(ε)

arg max
a∈A

(
Q(1, a)

)
Prob(1− ε)

(6.20)

where Q(1, a) is the associated Q function for rule 1.

For each movement at time t, the player receives a reward signal rt+1. The player’s

goal is to reach the target in the shortest path or shortest time. Therefore, we present

the following reward function r as

r = distPT (t)− distPT (t+ 1) (6.21)

where distPT (t) denotes the distance between the player and the target at time t.

This reward function encourages the player to move towards the target. For example,

if the player moves closer to the target, the player receives a positive reward. If the

player’s action leads to the opposite direction to the target, the player receives a

negative reward.

We set the following parameters for the FQL algorithm. The discount factor γ in

(6.18) is set to 0.9 and the learning rate α in (6.19) is set to 0.1. The exploration

parameter ε is chosen as 0.2. We run the simulation for 200 episodes. Fig. 6.5 shows

the result where the lower line is the player’s moving trajectory before learning and

the upper line is the player’s moving trajectory after learning.

6.2.2 Fuzzy Actor-Critic Learning

In fuzzy Q-learning, one has to define the player’s action set A based on the knowledge

of the player’s continuous action space. Suppose we do not know how large the action
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Figure 6.5: An example of FQL algorithm: simulation results

space is or the exact region the action space is in, the determination of the action

set becomes difficult. Moreover, the number of elements in the action set will be

prohibitively large when the action space is large. Correspondingly, the dimension of

the Q function in (6.19) will be intractably large. To avoid this, we present in this

section a fuzzy actor-critic learning method.

The actor-critic learning system contains two parts: one is to choose the optimal

action for each state called the actor, and the other is to estimate the future system

performance called the critic. Figure 6.6 shows the architecture of the actor-critic

learning system. The actor is represented by an adaptive fuzzy controller which

is implemented as a FIS. We also propose to implement the critic as a FIS. We

have implemented the adaptive fuzzy critic in [13, 81]. We showed that the adaptive

fuzzy critic in [13] performed better than the neural network proposed in [23]. In

the implementation proposed in this chapter, we only adapt the output parameters
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Figure 6.6: Architecture of the actor-critic learning system

of the fuzzy system, whereas in [13] the input and output parameters of the fuzzy

system are adapted which is a more complex adaptive algorithm. The reinforcement

signal rt+1 is used to update the output parameters of the adaptive controller and the

adaptive fuzzy critic as shown in Fig. 6.6.

The actor is represented by an adaptive fuzzy controller which is implemented by

TS rules with constant consequents. Then the output of the fuzzy controller becomes

ut =
L∑
l=1

Φlwlt (6.22)

where wl is the output parameter of the actor.

In order to promote exploration of the action space, a random white noise v(0, σ)

is added to the generated control signal u. The output parameter of the actor wl is

adapted as

wlt+1 = wlt + β∆

(
u′t − ut
σ

)
∂u

∂wl
(6.23)

where β ∈ (0, 1) is the learning rate for the actor.

In order to avoid large adaptation steps in the wrong direction [24], we use only

the sign of the prediction error ∆ and the exploration part (u′t−ut)/σ in (6.23). Then
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equation (6.23) becomes

wlt+1 = wlt + βsign

{
∆

(
u′t − ut
σ

)}
∂u

∂wl
(6.24)

where

∂u

∂wl
=

n∏
i=1

µF
l
i (xi)

L∑
l=1

(
n∏
i=1

µF
l
i (xi))

= Φl
t. (6.25)

The task of the critic is to estimate the value function over a continuous state

space. The value function is the expected sum of discounted rewards defined as

Vt = E

{
∞∑
k=0

γkrt+k+1

}
(6.26)

where t is the current time step, rt+k+1 is the received immediate reward at the time

step t+ k + 1 and γ ∈ [0, 1) is a discount factor.

After each action selection from the actor, the critic evaluates the new state to

determine whether things have gone better or worse than expected. For the critic in

Fig. 6.6, we assume TS rules with constant consequents [24]. The output of the critic

V̂ is an approximation to V given by

V̂t =
L∑
l=1

Φlζ lt (6.27)

where t denotes a discrete time step, ζ lt is the output parameter of the critic defined

as cl in (6.10) and Φl is defined in (6.12).

Based on the above approximation V̂t, we can generate a prediction error ∆ as

∆ = rt+1 + γV̂t+1 − V̂t. (6.28)
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This prediction error is then used to train the critic. Supposing it has the parameter

ζ l to be adapted, the adaptation law would then be

ζ lt+1 = ζ lt + α∆
∂V̂

∂ζ l
(6.29)

where α ∈ (0, 1) is the learning rate for the critic. We set β < α, where β is given in

(6.23), so that the actor will converge slower than the critic to prevent instability in

the actor [81]. Also the partial derivative is easily calculated to be

∂V̂

∂ζ l
=

n∏
i=1

µF
l
i (xi)

L∑
l=1

(
n∏
i=1

µF
l
i (xi))

= Φl. (6.30)

The FACL learning algorithm is summarized in Algorithm 6.2.

Algorithm 6.2 FACL algorithm

1: Initialize V̂ = 0, ζ l = 0 and wl = 0 for l = 1, ..., L.
2: for Each time step do
3: Obtain the inputs x̄t.
4: Calculate the output of the actor ut in (6.22).
5: Calculate the output of the critic V̂t in (6.27).
6: Run the game for the current time step.
7: Obtain the reward rt+1 and new inputs x̄t+1.
8: Calculate V̂t+1 based on (6.27).
9: Calculate the prediction error ∆ in (6.28).

10: Update ζ lt+1 in (6.29) and wlt+1 in (6.24).
11: end for

Example 6.2. We use the same example as introduced in Example 6.1. The player

starts from the initial position at (5, 5) and tries to reach the target at (20, 20), as

shown in Fig. 6.3. We apply the FACL algorithm in Algorithm 6.2 to the example.

The fuzzy membership functions are chosen the same as the ones described in Fig.

6.4. The player’s reward function is chosen the same as in (6.21). The parameters of
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the FACL algorithm are chosen as follows. The learning rate α in (6.29) is set to 0.1

and β in (6.23) is set to 0.05. The discount factor is chosen as γ = 0.9 in (6.28).

We run the simulation for 200 episodes. Figure 6.7 shows the result. The lower

line is the player’s moving trajectory before learning. Since the initial value of wl is

set to zero, the output of the fuzzy controller in (6.22) which is the turning angle of

the player is zero before learning. Thus, the player’s moving trajectory is a horizontal

line at the beginning. After 200 episodes of learning, the upper line in Figure 6.7

shows the player’s moving path. After learning, the player’s moving path is close to

the optimal path which is a straight line between the player’s initial position and the

center of the target.
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Figure 6.7: An example of FACL algorithm: simulation results
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6.3 Reward Shaping in the Differential Game of

Guarding a Territory

In reinforcement learning, the player may suffer from the temporal credit assignment

problem where a reward is only received after a sequence of actions. For example,

players in a soccer game are only given rewards after a goal is scored. This will lead to

the difficulty in distributing credit or punishment to each action from a long sequence

of actions. We define the terminal reward when the reward is received only at the

terminal time. If the reinforcement learning problem is in the continuous domain

with only a terminal reward, it is almost impossible for the player to learn without

any information other than this terminal reward.

In the differential game of guarding a territory, the reward is received only when

the invader reaches the territory or is intercepted by the defender. According to the

payoff function given in (6.6), the terminal reward for the defender is defined as

RD =


DistIT the defender captures the invader

0 the invader reaches the territory

(6.31)

where DistIT is the distance between the invader and the territory at the terminal

time. Since we only have terminal rewards in the game, the learning process of the

defender will be prohibitively slow. To solve this, one can use a shaping reward

function for the defender to compensate for the lack of immediate rewards.

The purpose of reward shaping is to improve the learning performance of the

player by providing an additional reward to the learning process. But the question

is how to design good shaping reward functions for different types of games. In the
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pursuit-evasion game, the immediate reward is defined as

rt+1 = DistID(t)−DistID(t+ 1) (6.32)

where DistID(t) denotes the distance between the pursuer and the evader at time

t. One might consider the above immediate reward as the shaping reward function

for the differential game of guarding a territory. However, the immediate reward in

(6.32) is not a good candidate for the shaping reward function in our game. The goal

of the pursuer is to minimize the distance between the pursuer and the evader at

each time step. Different from the pursuer, the goal of the defender in the differential

game of guarding a territory is to keep the invader away from the territory. Since the

defender and the invader have the same speed, the defender may fail to protect the

territory if the defender keeps chasing after the invader all the time.

Based on the above analysis and the characteristics of the game, we design the

following shaping reward function for the defender:

rt+1 = y′T (t)− y′T (t+ 1) (6.33)

where y′T (t) and y′T (t+1) denote the territory’s relative position of the y′-axis at time

t and t+ 1 respectively.

The shaping reward function in (6.33) is designed based on the idea that the

defender tries to protect the territory from invasion by keeping the territory and the

invader on opposite sides. In other words, if the invader is on the defender’s left side,

then the defender needs to move in a direction where it can keep the territory as far

as possible to the right side. As shown in the relative coordinates in Fig. 6.1, the

invader is located on the positive side of the y′-axis. Then the goal of the defender

in Fig. 6.1 is to keep the invader on the positive side of the y′-axis and move in a
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direction where it can keep the territory further to the negative side of the y′-axis.

6.4 Simulation Results

We assume that the defender does not have any information about its optimal strat-

egy or the invader’s strategy. The only information the defender has is the players’

current positions. We apply the aforementioned FQL and FACL algorithms in Sect.

6.2 to the game and make the defender learn to intercept the invader. To compen-

sate for the lack of immediate rewards, the shaping reward functions introduced in

Sect. 6.3 are added to the FQL and FACL algorithms. Simulations are conducted to

show the learning performance of the FQL and FACL algorithms based on different

reward functions. Then we add one more defender to the game. We use the same

FACL algorithm to both defenders independently. Each defender only has its own

position and the invader’s position as the input signals. Then the FACL algorithm

becomes a completely decentralized learning algorithm in this case. We test, through

simulations, how the two defenders can cooperate with each other to achieve good

performance even though they do not directly share any information.

6.4.1 One Defender vs. One Invader

We first simulate the differential game of guarding a territory with one invade and one

defender whose dynamics are given in (6.4) and (6.5). To reduce the computational

load, µF
l
i (xi) in (6.11) is defined as a triangular membership function (MF). In this

game, we define 3 input variables which are the relative y-position y′I of the invader,

the relative x-position x′T of the territory and the relative y-position y′T of the territory.

The predefined triangular membership functions for each input variable are shown in

Fig. 6.8. The number of fuzzy rules applied to this game is 4 × 5 × 5 = 100. The

selection of the number of rules and the membership functions in the premise part of
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Figure 6.8: Membership functions for input variables

the fuzzy rules is based on a priori knowledge of the game.

For the FQL algorithm, we pick the discrete action set A as

A = {π, 3π/4, π/2, π/4, 0,−π/4,−π/2,−3π/4}. (6.34)

The ε-greedy policy in (6.14) is set to ε = 0.2. For the FACL algorithm, we set the

learning rate α = 0.1 in (6.29) and β = 0.05 in (6.23). The exploration policy in the
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FACL algorithm is chosen as a random white noise v(0, σ) with σ = 1. The discount

factor determines the present value of future rewards [5]. To reduce the influence of

the future rewards to the current state, we choose a small discount factor γ = 0.5 in

(6.18) and (6.28).

We now define episodes and training trials for the learning process. An episode

or a single run of the game is when the game starts at the players’ initial positions

and ends at a terminal state. A terminal state in this game is the state where the

defender captures the invader or the invader enters the territory. A training trial is

defined as one complete learning cycle which contains 200 training episodes. We set

the invader’s initial position at (5, 25) for each training episode. The center of the

territory is located at (20, 10) with radius R = 2.

Example 6.3. We assume the invader plays its Nash equilibrium strategy all the

time. The defender, starting at the initial position (5, 5), learns to intercept the NE

invader. We call the invader that always plays its Nash equilibrium strategy as the

NE invader. We run simulations to test the performance of the FQL and FACL

algorithms with different shaping reward functions introduced in Sect. 6.3. Figures

6.9 - 6.11 show the simulation results after one training trial including 200 training

episodes. In Fig. 6.9, with only the terminal reward given in (6.31), the trained

defender failed to intercept the invader. The same happened when the shaping reward

function given in (6.32) was used to the FQL and the FACL algorithms, as shown

in Fig. 6.10. As we discussed in Sect. 6.3, the shaping reward function in (6.32) is

not a good candidate for this game. With the help of our proposed shaping reward

function in (6.33), the trained defender successfully intercepted the invader, as shown

in Fig. 6.11. This example verifies the importance of choosing a good shaping reward

function for the FQL and FACL algorithms for our game.
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(a) Trained defender using FQL with no shaping function
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(b) Trained defender using FACL with no shaping function

Figure 6.9: Reinforcement learning with no shaping function in Example 6.3
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(a) Trained defender using FQL with the bad shaping function
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(b) Trained defender using FACL with the bad shaping function

Figure 6.10: Reinforcement learning with a bad shaping function in Example 6.3
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(a) Trained defender using FQL with the good shaping function
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(b) Trained defender using FACL with the good shaping function

Figure 6.11: Reinforcement learning with a good shaping function in Example 6.3



CHAPTER 6. REINFORCEMENT LEARNING IN DIFFERENTIAL GAMES151

Example 6.4. In this example, we want to show the average performance of the FQL

and FACL algorithms with the proposed shaping reward function given in (6.33).

The training process includes 20 training trials with 200 training episodes for

each training trial. For each training episode, the defender randomly chooses one

initial position from the defender’s initial positions 1-4 shown in Fig. 6.12. After

every 10 training episodes in each training trial, we set up a testing phase to test the

performance of the defender trained so far. In the testing phase, we let the NE invader

play against the trained defender and calculate the performance error as follows:

PEip = Pip(u
∗
D, u

∗
I)− Pip(uD, u∗I), (ip = 1, . . . , 6) (6.35)

where ip represents the initial positions of the players, the payoffs Pip(u
∗
D, u

∗
I) and

Pip(uD, u
∗
I) are calculated based on (6.6), and PEip denotes the calculated perfor-

mance difference for players’ initial positions ip. In this example, the invader’s initial

position is fixed during learning. Therefore the players’ initial positions ip are repre-

sented as the defender’s initial positions 1-6 shown in Fig. 6.12.

We use PEip(TE) to represent the calculated performance error for the defender’s

initial position ip at the TEth training episode. For example, PE1(10) denotes the

performance error calculated based on (6.35) for defender’s initial position 1 at the

10th training episode. Then we average the performance error over 20 trials and get

PEip(TE) =
1

20

20∑
Trl=1

PETrl
ip (TE), (ip = 1, . . . , 6) (6.36)

where PEip(TE) denotes the averaged performance error for players’ initial position

ip at the TEth training episode over 20 training trials.

Fig. 6.13 show the results where the average performance error PEip(TE) be-

comes smaller after learning for the FQL and the FACL algorithms. Note that the
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defender’s initial position 5 and 6 in Fig. 6.12 is not included in the training episodes.

Although we did not train the defender’s initial positions 5 and 6, the convergence

of the performance errors PE5 and PE6 verify that the defender’s learned strategy is

close to its NE strategy. Compared with Fig. 6.13(a) for the FQL algorithm, the per-

formance errors in Fig. 6.13(b) for the FACL algorithm converge closer to zero after

the learning. The reason is that the global continuous action in (6.15) for the FQL

algorithm is generated based on a fixed discrete action set A with only 8 elements

given in (6.34). The closeness of the defender’s learned action (strategy) to its NE

action (strategy) is determined by the size of the action set A in the FQL algorithm.

A larger size of the action set encourages the convergence of the defender’s action

(strategy) to its NE action (strategy), but the increasing dimension of the Q function

will cause slow learning speed, as we discussed in the beginning of Sect. 6.2.2. For

the FACL algorithm, the defender’s global continuous action is updated directly by

the prediction error in (6.28). In this way, the convergence of the defender’s action

(strategy) to its NE action (strategy) is better in the FACL algorithm.

6.4.2 Two Defenders vs. One Invader

We now add a second defender to the game with the same dynamics as the first

defender as defined in (6.4). The payoff for this game is defined as

P (uD1, uD2, uI) =
√

(x′I(tf )− x′T )2 + (y′I(tf )− y′T )2 −R (6.37)

where uD1 , uD2 and uI are the strategies for defender 1, defender 2 and the invader

respectively, and R is the radius of the target. Based on the analysis of the two-

player game in Sect. 6.1, we can also find the value of the game for the three-player

differential game of guarding a territory. For example, we call the grey region in
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Initial positions of the defender:
position 1~4 for training episodes,
position 1~6 for testing episodes.

Figure 6.12: Initial positions of the defender in the training and testing episodes in
Example 6.4

Fig. 6.14 as the invader’s reachable region where the invader can reach before the

two defenders. Then the value of the game becomes the shortest distance from the

territory to the invader’s reachable region. In Fig. 6.14, point O on the invader’s

reachable region is the closest point to the territory. Therefore, the value of the game

becomes

P (u∗D1
, u∗D2

, u∗I) = ‖
−→
TO‖ −R (6.38)
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Figure 6.13: Example 6.4: Average performance of the trained defender vs. the NE
invader
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Figure 6.14: The differential game of guarding a territory with three players

where u∗D1
, u∗D2

, u∗I are the NE strategies for defender 1, defender 2 and the invader

respectively. Based on (6.38), the players’ NE strategies are given as

u∗D1
= ∠
−−→
D1O, (6.39)

u∗D2
= ∠
−−→
D2O, (6.40)

u∗I = ∠
−→
IO, (6.41)

−π ≤ u∗D1
≤ π,−π ≤ u∗D2

≤ π,−π ≤ u∗I ≤ π.

We apply the FACL algorithm to the game and make the two defenders learn

to cooperate to intercept the invader. The initial position of the invader and the

position of the target are the same as in the two-player game. Each defender in

this game uses the same parameter settings of the FACL algorithm as in Sect. 6.4.1.

Moreover, each defender only has the information of its own position and the invader’s

position without any information from the other defender. Each defender uses the

same FACL algorithm independently, which makes the FACL algorithm a completely

decentralized learning algorithm in this game.
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Example 6.5. We assume the invader plays its Nash equilibrium strategy given

in (6.41) all the time. The two defenders, starting at the initial position (5, 5) for

defender 1 and (25, 25) for defender 2, learn to intercept the NE invader. Similar to the

two-player game in Sect. 6.4.1, we run a single trial including 200 training episodes to

test the performance of the FACL algorithm with different shaping reward functions

given in Sect. 6.3. In Fig. 6.15, two defenders failed to intercept the NE invader with

only the terminal reward and with the shaping reward function given in (6.32). On

the contrary, with the proposed shaping reward function in (6.33), the two trained

defenders successfully intercepted the NE evader after one training trial as shown in

Fig. 6.16.

Example 6.6. In this example, we want to show the average performance of the

FACL algorithm with our proposed shaping reward function for the three-player game.

Similar to Example 6.4, we run 20 training trials with 200 training episodes for each

training trial. For each training episode, the defender randomly chooses one initial

position from the defender’s initial positions 1-2 shown in Fig. 6.17(a).

After every 10 training episodes, we set up a testing phase to test the performance

of the defender trained so far. The performance error in a testing phase is defined as

PEip = Pip(u
∗
D1
, u∗D2

, u∗I)− Pip(uD1 , uD2 , u
∗
I), (ip = 1, . . . , 4) (6.42)

where ip represents the defender’s initial positions 1-4 shown in Fig. 6.17(a),

Pip(u
∗
D1
, u∗D2

, u∗I) and Pip(uD1 , uD2 , u
∗
I) are the payoffs calculated based on (6.37). Then

we average the performance error over 20 trials and get

PEip(TE) =
1

20

20∑
Trl=1

PETrl
ip (TE), (ip = 1, . . . , 4) (6.43)
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(a) Two trained defenders using FACL with no shaping function vs. the NE
invader after one training trial
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(b) Two trained defenders using FACL with the bad shaping function vs.
the NE invader after one training trial

Figure 6.15: Reinforcement learning without shaping or with a bad shaping function
in Example 6.5
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Figure 6.16: Two trained defenders using FACL with the good shaping function vs.
the NE invader after one training trial in Example 6.5

where PEip(TE) denotes the averaged performance error for players’ initial position

ip at the TEth training episode over 20 training trials.

The simulation result in Fig. 6.17(b) shows that the average performance error

PEip(TE) (ip = 1, ..., 4) converges close to zero after 200 training episodes. Based

on the simulation results, the two trained defenders successfully learned to cooperate

with each other to intercept the NE invader. Compared with the two-player game with

one invader and one defender in Fig. 6.11, two defenders can work together to keep

the invader further away from the territory. Although there is no training performed

for position 3 and 4, as shown in Fig. 6.17(a), the convergence of PE3 and PE4

in Fig. 6.17(b) verifies the good performance of two trained defenders. Simulation

results also verify the effectiveness of the proposed shaping reward function to the

FACL algorithm in the three-player differential game of guarding a territory.
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6.5 Summary

This chapter presented the application of fuzzy reinforcement learning and reward

shaping to the differential game of guarding a territory. The defender learns to

keep the invader away from the territory with no prior knowledge of its optimal

strategy. The defender’s action is generated from the output of a fuzzy system. The

membership functions of the consequence part of the fuzzy system are adjusted by

the reinforcement signal. A shaping reward function was proposed to increase the

speed of the defender’s learning process. Simulation results showed that the fuzzy

actor-critic learning method with reward shaping improves the overall performance

of the defenders in both the two-player differential game of guarding a territory game

and the three-player differential game of guarding a territory game with incomplete

information.
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(a) Initial positions of the players in the training and testing episodes
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Figure 6.17: Example 6.6: Average performance of the two trained defenders vs.
the NE invader



Chapter 7

Conclusion

In this dissertation we brought out several issues for multi-agent reinforcement learn-

ing in games. These issues include:

• Introduce Isaacs’ guarding a territory game into a grid world.

• Develop a decentralized learning algorithm for a player in a multi-player game

to learn its own equilibrium strategy with incomplete information.

• Analyze the affect of reward transformations on the player’s learning perfor-

mance and learning convergence.

• Study Isaacs’ guarding a territory game as a learning problem.

In this final chapter we summarize our contributions to address these issues. We

then describe some new directions for our future work based on these contributions.

7.1 Contributions

Four main contributions were presented in this dissertation.

1. In Chapter 3, we introduced the grid version of Isaacs’ guarding a territory

game. We defined a 6 × 6 grid as the playing field for the invader and the

161
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defender. We investigated the grid game of guarding a territory under the

framework of stochastic games and found the Nash equilibrium to the game.

The grid game of guarding a territory was also considered as a test bed for

reinforcement learning algorithms. We applied two reinforcement learning al-

gorithms which are the minimax-Q algorithm and the WoLF-PHC algorithm to

our grid game. We compared the performance of the two reinforcement learn-

ing algorithm through simulation results based on the properties of convergence

and rationality described in 3.1.

2. In Chapter 4, we developed a decentralized learning algorithm called the LR−I

lagging anchor algorithm. In this algorithm, the player only needs to know its

own action and the current state during learning. We proved that the LR−I

lagging anchor algorithm can guarantee the convergence to Nash equilibria in

two-player two-action general-sum matrix games. Three matrix games were

simulated to show the convergence of the proposed LR−I lagging anchor algo-

rithm. The convergence in the rock-paper-scissors game indicated that the LR−I

lagging anchor algorithm may be applicable to a two-player matrix game with

more than two actions. Inspired by the WoLF-PHC algorithm, we extended the

algorithm to stochastic games. We designed a practical decentralized learning

algorithm for stochastic games based on the LR−I lagging anchor algorithm. To

test the performance of this practical algorithm, we provided Hu and Wellman’s

grid game and run the simulation. The convergence to a Nash equilibrium indi-

cated the possibility of applying the practical version of the LR−I lagging anchor

algorithm to general-sum stochastic games.

3. In Chapter 5, we extended the idea of potential-based shaping from MDPs

to multi-player general-sum stochastic games. We proved that the potential-

based reward shaping method applied to a multi-player general-sum stochastic
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game does not change the players’ Nash equilibria in the game. To test how

shaping rewards can affect the learning performance, we simulated two grid

games: modified Hu and Wellman’s grid game and the grid game of guarding

a territory with two defenders and one invader. From simulation results, we

found that good shaping rewards significantly improved the players’ learning

performance in both games.

4. In Chapter 6, we studied Isaacs’ guarding a territory game as a reinforcement

learning problem in a continuous domain. The defender in the game learns its

Nash equilibrium strategy while playing against the Nash equilibrium invader.

We applied two reinforcement learning algorithms which are the FQL and FACL

algorithms to the game. To cope with the temporal credit assignment problem,

we designed a shaping function to help the defender learn its equilibrium strat-

egy. Furthermore, we added one more defender to Isaacs’ game and applied the

same FACL algorithm and shaping reward to the game. Each defender learned

individually without knowing the other defender’s action. Simulation results

showed that the combination of the reinforcement leaarning algorithms and the

shaping function helped the defenders achieve their desired performance in both

the two-player and the three-player differential game of guarding a territory.

7.2 Future Work

This dissertation also opens up new future research directions for multi-agent rein-

forcement learning in games. Similar to the structure of the contributions, we divide

these future directions into four categories.

1. In the grid game of guarding a territory, the players are playing in a 6× 6 grid

field. In future research, the size of the playing field can be increased from 6×6
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to a bigger grid such as a 12 × 12 grid. Each player in the current grid game

can only move one cell at a time. In the future, the players may have different

speed such that the invaders may move faster than the defenders. We assume

the number of defenders is greater than the number of invaders. Under this new

scenario, one may want to find the Nash equilibrium for the new game or apply

reinforcement learning algorithms to the new game.

2. In the current research, we proved that the LR−I lagging anchor algorithm can

guarantee the convergence to Nash equilibria for two-player two-action general-

sum matrix games. In the future, one may extend the proof from two-player

two-action general-sum matrix games to a wider range such as general-sum

matrix games with more than two players. Also, one may continue investigating

the practical LR−I lagging anchor algorithm and its applications to stochastic

games such as the multi-player grid game of guarding a territory.

3. We proved the policy invariance of potential-based reward shaping for multi-

player general-sum stochastic games. But the shaping reward function has to

be carefully defined based on the prior knowledge of the environment in order

to achieve a good learning performance. In [82], shaping rewards are learned

to improve performance on a rod positioning experiment. In [83], the potential

function for shaping the reward is learned online in MDPs. In the future, for

stochastic games, one may let each player learn its own shaping reward function

by playing the game when the ideal shaping function is unknown to the players.

4. We had studied Isaacs’ guarding a territory game as a reinforcement learning

problem in a continuous domain. We applied reinforcement learning algorithms

with the shaping reward function for the defenders to learn their equilibrium

strategies. In the future, one may apply reinforcement learning algorithms for

both the invader and the defender, and study how the players can learn their
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equilibrium strategies using reinforcement learning.

Moreover, one can set up a new differential game of guarding a territory by

adding more players in the game and choosing different speeds for each player.

For example, three invaders try to invade the territory by playing against four

defenders. The invaders are moving faster than the defenders. Then we assume

the players have the least information from other players such that each player

only knows all the players’ position. The goal under this new scenario is to

develop decentralized learning algorithms for players in the game and design a

learning scheme for each player to learn its own shaping reward function.

In [12], we implemented the derived fuzzy controller on real robots to perform

the pursuit-evasion game. Similar to the experiments in [12], one may consider

the implementation of decentralized learning algorithms on autonomous mobile

robots in the guarding a territory game.
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