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Abstract 

Cough is one of the most common symptoms in all respiratory diseases.  It is important to 

provide the healthcare professionals with useful clinical information such as frequency, 

severity and nature of cough to have a better diagnosis and hence better treatment. The 

main objective of this thesis is to analyze cough sounds and extract features that can 

differentiate dry and wet cough sounds. This thesis proposes two features to achieve this 

goal. The first feature is the number of peaks of the energy envelope of the cough signal. 

The second feature is the power ratio of two frequency bands of the second phase of the 

cough signal. A set of nine highly dry and eight highly wet cough recordings were used 

in this thesis. Using these two features, a clear separation was observed among the dry 

and wet cough recordings. Furthermore, a Graphical User Interface (GUI) was designed 

in this thesis as a tool to analyze the cough signals in both time and frequency domain. 
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Chapter 1:  

Introduction 

1.1 Thesis Motivation 

Cough is one of the most common symptoms in all respiratory diseases.  It is important to 

provide healthcare professionals with useful clinical information such as frequency, 

severity and nature of cough to have a better diagnosis and hence better treatment [1][2]. 

Describing the frequency, severity and nature of the cough is difficult for patients or their 

caregivers and in some cases impossible due to factors such as age, illness and lack of 

medical knowledge. For instance, patients who suffer from a cognitive impairment such 

as Alzheimer‟s disease may have difficulty remembering and/or describing their cough to 

their doctors. In addition, remembering the severity, frequency or nature of cough during 

sleep is challenging for patients of all ages.  

Due to the challenges mentioned above, an automated cough monitoring system 

capable of determining the frequency, severity and nature of cough is highly desirable. 

This automated system could be integrated in smart homes or embedded in smart phones 

such as a blackberry device. The primary idea of smart homes is to monitor a patient‟s 
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various health conditions remotely and continuously [3][4]. This includes monitoring 

biological sounds via microphones, monitoring the patient‟s condition at rest using 

pressure sensor mats, monitoring the force applied over time using smart grab bars, and 

much more [5][6]. Integrating cough information such as frequency, severity and nature 

along with other information collected by various smart home sensors could significantly 

increase the quality of information provided to healthcare professionals. This could 

improve the accuracy of diagnosis and treatment for patients [7][8].  

    

1.2 Problem Statement 

Characterizing coughs is an important factor in the diagnosis of respiratory diseases. 

Having information such as frequency, severity and nature of coughs can improve the 

treatment for respiratory diseases [9]. Cough could be classified as dry, wet, whooping 

and much more. Therefore, cough sound analysis has gained a lot of attention in the 

research community and in health care organizations. 

Cough sound analysis consists of two main parts: cough sound detection and cough 

sound classification, as depicted in Figure 1.1. The cough sound detection portion 

involves collecting various sound types using microphones and extracting unique features 

specific to each type of sound collected (such as speech, laughter, snore, cough) and 

performing cough detection based on the extracted features.  
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The cough sound classification portion, on the other hand, involves extracting unique 

features specific to each type of cough and classifying them into different types, such as 

dry or wet.  

 

Figure 1.1: Cough Sound Analysis System. 

 

The main focus of this thesis is to identify features that can differentiate dry and wet 

coughs. Based on these unique extracted features, the cough sounds could be classified 

into two types of cough, dry or wet.  
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1.3 Thesis Objectives 

The main objective of this thesis is to differentiate between dry and wet cough. A novel 

Digital Signal Processing (DSP) algorithm was designed in order to extract useful clinical 

information from cough sounds. Two feature extraction algorithms are proposed in order 

to differentiate cough signals into two classes, dry and wet. Cough signals were analyzed 

in both time and frequency domain. Features that could be used to discriminate the two 

types of cough were extracted. The feature extraction algorithms were verified with 

highly dry and highly wet cough sounds. Furthermore, a Graphical User Interface (GUI) 

was designed with various functionalities, as a tool to analyze cough sounds.  

1.4 Thesis Contributions 

The contributions that were made during this thesis research are listed below, followed by 

a detailed explanation of all the contributions in the following chapters of this thesis. 

 

Contribution 1: Collected cough sound data and built a database of dry and wet cough 

sounds. The nature of the coughs was verified by clinicians. 

Contribution 2: Analyzed cough signals and identified unique features associated with 

dry and wet coughs. 
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Contribution 3: Proposed and implemented two feature extraction algorithms capable of 

differentiating dry and wet coughs. The first feature extraction algorithm is based on the 

number of peaks of the energy envelope of the cough signal. The second feature 

algorithm is based on the power ratio of the two frequency bands of the second phase of 

the cough signal. These features were tested using the collected cough sound database. 

This contribution was published in [10].  

H. Chatrzarrin, A. Arcelus, R. Goubran, and F. Knoefel, “Feature extraction for the 

differentiation of dry and wet cough sounds,” in Proc.  IEEE International Symposium on 

Medical Measurements and Applications, Bari, Italy, May 2011, pp. 162-166. 

Contribution 4: Designed a GUI in Matlab in order to analyze cough signals in time and 

frequency domains. The GUI has various functionalities such as computing the Fast 

Fourier Transform (FFT), Short-time Fourier Transform (STFT), signal energy and signal 

length of an input signal, in addition to playing the input signal and extracting the two 

features.  

1.5 Thesis Outline 

Chapter 2 will provide a detailed discussion and literature review on cough sound 

discrimination, cough sound detection and feature extraction algorithms. This chapter 
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continues to describe the use of such cough analysis systems in smart homes and Remote 

Patient Monitoring systems (RPM). 

Chapter 3 discusses the characteristics of dry and wet cough signals in both time 

domain and frequency domain. It will point out the similarities and differences between 

the two types of coughs.  

Chapter 4 explains the cough sound database, cough sound acquisition and the pre-

processing algorithm performed on the cough samples.  

Chapter 5 explains the two feature extraction algorithms in detail. The first feature 

extraction algorithm computes the number of peaks of the energy envelope of the cough 

signals and the second feature extraction algorithm extracts the power ratio of the two 

frequency bands of the second phase of the cough signals. This chapter proceeds to show 

the result of the feature extraction algorithms and at the end discusses the results of the 

combination of the two features.  

Chapter 6 explains the GUI and its various functionalities, followed by Chapter 7, 

which presents the thesis conclusion and suggestions for future work.   
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Chapter 2:  

Background Review 

2.1 Introduction 

This chapter provides detailed discussions and literature review of cough sound analysis, 

smart home and Remote Patient Monitoring. Section 2.2 gives an introduction on the 

nature of cough. Section 2.3 describes cough sound discrimination. Cough sound 

detection, which consists of cough sound acquisition and feature extraction, is discussed 

in Section 2.4. Section 2.5 introduces smart homes and Remote Patient Monitoring 

systems. In the end, Section 2.6 gives a summary of this chapter.  

2.2 Cough 

Cough is the most common symptom of respiratory diseases. Fontana describes cough as 

“a three-phase expulsive motor act characterized by an aspiratory effort (aspiratory 

phase) followed by a forced expiratory effort initially against a closed glottis 

(compressive phase), and then by active glottal opening and rapid expiratory flow 
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(expulsive phase).”[11]. The three phases mentioned by Fontana are referred to as Phase 

1, Phase 2 and Phase 3 throughout this thesis. 

Chronic respiratory diseases need constant care and it is required to monitor cough 

during day and night. The variables that can be measured from cough are respiratory flow 

and volume, respiratory muscle activity, respiratory pressures and cough sound. From the 

measured variables, cough frequency, severity and nature can be determined and that 

information can be provided to healthcare professionals for diagnostic and treatment 

purposes. Depending on the type of required information, any of the above variables 

could be measured. A combination of various measured variables could be more useful 

than individual variables. For instance, measuring only the cough frequency is not 

sufficient for differentiating between different types of coughs and it will not provide the 

healthcare professionals with enough information regarding any changes in coughs [11].  

Frequently, patients cannot describe their coughs to their healthcare professionals. On 

the other hand, determining the nature of the cough might not be an obvious task for the 

healthcare professionals. Therefore, cough sound discrimination is desirable since it 

could assist healthcare professionals in determining the nature of cough and improve the 

accuracy of diagnosis and treatment.  

2.3 Cough Characterization 

This section introduces research that has focused on cough analysis and discrimination 

between different types of coughs. As mentioned previously, it is important to provide 
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healthcare professionals with important cough related clinical information such as cough 

frequency, severity and nature for a better diagnosis and treatment [12][13][14]. 

There are various ways to discriminate cough based on either physiological 

mechanisms or pathological causes, as summarized in Table 1 [15]. In this thesis, the 

pathological discrimination is of interest.  

Korpas et al. analyzed cough signal characteristics to extract clinical information such 

as the structural nature of the tissue during therapy and also the behaviour of the glottis 

[16]. Providing healthcare professionals with this information could have significant 

value in prognosis.  

Another study focused on discriminating between productive (wet) and non-

productive (dry) coughs. Murata et al. compared the sound spectrogram and time-

expanded waveform of the normal cough with both productive and non-productive cough 

sounds. They found that there were no significant differences in duration of Phase 1 and 3 

between the two groups; however, Phase 2 tended to have a longer duration in productive 

coughs [17]. 

 

 

 

 



10 

 

 

 

Table 1: Cough characterization [15] 

Classification  Definition  Example 

Behavioural  Depends on the manner or 

situation in which cough occurs 

Throat clearing, caused by 

dusts and irritations; Voluntary 

cough, mainly at night when 

lying down 

Pathology Evaluation of cough for the 

purpose of medical diagnosis 

Dry, wet, whooping, hacking,  

Duration  Evaluation of cough based on 

its overall length  

Acute, subacute, chronic 

Effect Evaluation of cough based on 

its effect on an individual‟s 

health condition  

Pain/distress, urinary 

incontinence, rib fracture, 

sleeplessness 

Grade Evaluation of cough based on 

its sensitivity 

Normal (Eutussia), sensitized 

(Hypertussia), desensitized 

(Hypotussia), pathological 

(Dystussia), absent (Atussia) 

 

Piirila et al. investigated the similarities of various types of pulmonary diseases in 

acoustics and dynamic features of cough. They collected cough samples from 31 patients 

with different types of respiratory diseases, such as asthma, acute and chronic bronchitis, 



11 

 

 

 

tracheobronchial collapse and pulmonary fibrosis. They compared the flow dynamic and 

sound spectra of each group and found significant differences between the different 

groups. For instance, they discovered that the cough produced by asthma patients had a 

lower peak expiratory flow, longer duration of the first cough sound and lower frequency 

components as compared to the other types of coughs [18].  

Another study investigated the mucus influence on cough sound generation. 

Hashimoto et al. analyzed the differences between dry and wet cough signals by 

computing the duration and root mean square of each phase of cough signal and also 

measuring rheological properties of the airway mucus. They found that Phase 2 had a 

longer duration in wet cough sounds. This finding shows that patients prolong Phase 2 of 

a cough for an effective expectoration of airway mucus [19].  

Smith et al. examined how healthcare professionals describe coughs and whether they 

are able to diagnose a pulmonary disease condition. They randomly selected nine 

recorded coughs from patients with various respiratory diseases, such as asthma, 

idiopathic pulmonary fibrosis, laryngitis, and bronchiectasis. They categorised the coughs 

into 4 groups: (1) cough alone, (2) cough with mucus, (3) cough with wheeze, and (4) 

cough with wheeze and mucus. They performed an acoustic analysis of cough signals and 

identified that there were three distinct phases in a cough. Additionally, they discovered 

that cough with mucus had a significantly longer second phase and longer cough length 

than the other groups. Furthermore, they asked the healthcare professionals to indicate the 
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patient gender, the most appropriate cough descriptor and a diagnosis by listening to the 

coughs. The healthcare professionals were able to discriminate between coughs with and 

without mucus; however they were not able to distinguish the coughs with wheeze. They 

concluded that healthcare professionals can recognize some of the qualities of cough 

sounds but they are not very successful in making a diagnosis [20].  

Hirtum et al. examined the fundamental frequency of healthy and unhealthy coughs 

from human and pigs. They found that the fundamental frequency of the cough of healthy 

groups was higher than infected groups [21]. Ferrari et al. also found similar results to 

Hirtum. They compared the cough of healthy pigs with pigs with infected lungs. Results 

showed that healthy pigs have a significantly higher peak frequency and shorter duration 

of cough compared to the infected pigs [22].   

Bianchi et al. studied the distribution of cough peak flows (CPFs) in healthy children 

between 4-18 years old. They found that CPF values are higher in older children than 

younger ones. The purpose of this study was to provide the health care society the CPF 

level for paediatric populations to prevent the risk of acute respiratory diseases for 

younger children [23]. 

Another study investigated the effects of paralyzed vocal fold on the intensity of 

coughing. Murty et al. compared the airflow of voluntary cough in patients with vocal 

fold palsy to a healthy group. They concluded that there was no significant difference 

between the two groups in peak airflow. The only difference was the time it took each 
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group to reach the peak airflow. According to their findings, it took patients with vocal 

fold palsy longer to reach the peak airflow than the healthy group. These findings might 

be useful in detecting the presence of vocal fold palsy by testing the airflow in voluntary 

cough; however, it cannot identify the position of the lesion [24]. 

As mentioned in Chapter 1, cough sound discrimination is part of the second step 

involved in a typical cough sound analysis system (Figure 1.1). The first step of the 

cough sound analysis system is cough sound detection. Cough sound detection involves 

detecting cough from other environmental and biological sounds and will be discussed in 

the following section of this chapter. 

 

2.4 Cough Detection 

Cough is the result of rapid changes in airflow generated by the contractions of different 

muscles, such as the chest wall, abdomen, diaphragm, and larynx. Hence, there are two 

types of signal that can be monitored: sound and movement. The list of different sensors 

for each signal is presented in Table 2 [25]. In this section, cough sound monitoring and 

detection will be investigated in greater detail.  

 

 

 



14 

 

 

 

Table 2: Cough monitoring sensors [25] 

Signal Sensor 

Sound Free-field microphone 

Air-coupled microphone 

Contact microphone 

Movement Electromyography 

Accelerometer 

Induction plethysmography 

 

Cough sound detection involves collecting various sound types using microphones 

and extracting unique features specific to each type of sound collected (such as speech, 

laughter, snore, cough) and performing cough detection based on the extracted features 

[26][27]. There are three main steps involved in a typical sound detection system as 

illustrated in Figure 2.1. These three steps, which are sound acquisition, feature extraction 

algorithm and classification, will be discussed in the following two sections of this 

chapter. 

 

Figure 2.1: Sound Detection Algorithm 
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2.4.1 Sound Acquisition 

Sound acquisition is the first step in a typical sound detection system. It involves 

acquiring patient sounds using a sound acquisition device such as a microphone. The 

sound acquisition device can either be installed on a stationary platform or on a mobile 

device. Figure 2.2 shows different methods of sound acquisition from a patient. The 

sound acquisition algorithm could be different for indoor monitoring and outdoor 

monitoring; however, the concept remains the same.  

For the stationary platforms, the sound acquisition device can be attached to the 

ceiling or wall of a patient‟s home, installed on bed headboards, or embedded in a bed 

mat. For mobile devices, the sound acquisition device can be embedded in portable 

devices or smart phones, such as a Blackberry® device. These portable devices could 

then be carried by the patients in the house and outdoors.  

Cough monitoring and cough detection have been a topic of study since the 1960s [1]. 

Woolf and Rosenberg proposed a method of cough assessment under clinical conditions 

by a tape recorder system [28]. They proposed a technique to assess cough suppressants 

by counting continuously recorded cough sounds. 
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Figure 2.2: Sound acquisition device installed on a) a portable device, b,c) bed headboards, 

d) underneath the bed, e) embedded in bed mat, and f) the ceiling. 

 

Ser et al. used microphone arrays to design a wearable health monitoring system to 

detect wheezy sounds. They used two kinds of microphones: two regular air-conductive 

microphones and one bone conductive microphone. They captured the breathing sounds 

by air-conductive microphones and lung sounds by bone conductive microphone. Their 

system showed good responses in different Signal-to-Noise Ratio (SNR) conditions. 

Their system was implemented on a Personal Digital Assistance (PDA) device and was 

tested by real data [29]. 
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Matos et al. used a portable sound acquisition device to monitor cough sounds over 

24 hours [1]. They proposed a novel system to monitor cough frequency by acquiring the 

cough signal via a miniature microphone placed around the patient‟s neck. Their system 

had a user-friendly graphical user interface that allowed its use by healthcare 

professionals in clinical practice. They created a cough database from 10 patients with 

different respiratory diseases to train their system. It was stated that by using more data to 

train the system and taking the common characteristics of the cough into account, they 

can model a more precise system for a specific type of cough [1].  

Hata et al. proposed a healthcare monitoring system that consists of three systems: (1) 

heart rate detection, (2) respiration detection, and (3) cough with phlegm to suction 

detection. They used three non-contacted sensors for each system. For the heart rate 

detection, they used an ultrasonic oscillosensor attached to the bed. They used air 

pressure with an air tube in the bed mat to detect respiration. For collecting cough 

sounds, they used a PCM recorder with microphone. They used Power Spectral Density 

(PSD) ratios of different frequency bands to detect cough sounds from other types of 

sounds. [30][31].  

2.4.2 Feature Extraction Algorithm and Classification Techniques 

The next step in the sound detection system as depicted in Figure 2.1, involves extracting 

the unique features of specific sounds and classifying them into different types of sounds 

such as speech, cough, breathing, snoring and much more. 
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One of the most important types of parametric representation used in speech 

recognition is Mel Frequency Cepstral Coefficient (MFCC). MFCC describes the 

characteristics of the audio data frame in the cepstral domain. It shows the short-term 

power spectrum of a sound. Matos et al. proposed an algorithm to detect cough sounds 

from non-cough events by extracting MFCC as a feature [32]. They used a Hidden 

Markov Model (HMM) as their classifier. Their automated cough detection was able to 

detect a high percentage (82%) of cough events. However, the detection rate was 

dependent on the energy of the signal. The detection rate decreased for lower energy 

signals [32].  

In another study, Shin et al. used features such as Energy Cepstral Coefficients (ECC) 

and MFCC to develop an automated system that can monitor and detect cough sounds 

[33]. They compared cough sounds to other types of sounds such as Japanese vowels, 

tambourine sound, thunder and dog barking. It was found that cough sound had a higher 

energy level at frequency ranges between 400 Hz and 1.6 kHz compared to other types of 

sounds. By using a band-pass filter with cut-off frequencies at 400 Hz and 1.6 kHz, they 

were able to discriminate between some of the sounds such as the tambourine sound. In 

addition, their hybrid model, which consisted of an artificial neural network (ANN) and 

an HMM mode, was able to distinguish cough sounds from other environmental sounds. 

Their model had higher performance at Signal-to-Noise Ratio (SNR) levels below 5 dB 

as compared to a conventional HMM which uses only MFCC as a feature [33]. 
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Abaza et al. used various features in both time and frequency domain to classify 

cough sounds recorded from both male and female participants with normal and 

abnormal lung function. Some of the time domain features were peak cough flow, 

average cough flow, and total cough volume and some of the frequency domain features 

were total energy, dominant frequency, and peak power [34].  

In another study, Hirtum and Berckmans classified spontaneous coughs versus 

voluntary coughs. They created a cough sound database from three unhealthy and nine 

healthy subjects between 20 and 30 years old. They looked at the PSD of each cough 

sound and used different transformations of the cough PSD-vector for the classification 

[35].  

Martinek et al. proposed an ambulatory cough monitoring system to detect cough 

sounds from non-cough sounds. They performed both spectral and non-linear analysis 

(i.e. sample entropy) on both types of sounds where sample entropy measures the 

unpredictability and irregularity of signals. From their analysis, they discovered that 

cough showed more irregularity when compared to speech [36]. 

The sound detection system such as the cough sound analysis system depicted in 

Figure 1.1 could be integrated as part of a smart home or a Remote Patient Monitoring 

system (RPM) in order to assist healthcare professionals and improve the quality of the 

healthcare system as a whole. The following section describes smart home technology 

and its significance in the healthcare society.  
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2.5 Smart Home Technology 

Smart home technologies provide healthcare professionals with technologies that can 

assist in the care of the elderly. Monitoring cough could be part of a smart home or could 

be embedded in smart phones. In the smart home, cough monitoring can be done through 

the use of microphone arrays. In smart phones, algorithms can be embedded into the 

phone software to collect ambient sound and analyze cough sounds. This section reviews 

various sensor technologies that are used in smart homes to monitor their occupants.  

Arcelus et al. described a prototype home equipped with a variety of sensor 

technologies such as: magnetic switches, thermistors, accelerometers, microphone arrays, 

and pressure sensitive mats [5]. Sensors were used to either monitor patient behaviour or 

activity, or used to monitor specific health signals from the patient and hence, aid patients 

to live independently. For instance, microphone arrays were used in smart homes in order 

to detect and monitor different sounds such as coughing, snoring, and breathing and 

transmit abnormal sounds to a monitoring station. An artificial intelligence (AI) system 

was used in order to make decisions based on all the information gathered from all of the 

sensors throughout the smart home [5].   

There is also a lot of research performed on locating the resident of the smart home or 

smart office. In [37], Lu et al. established ambient intelligent applications in a smart 

home. They presented a location-recognition algorithm using a Bayesian-Network-based 

fusion engine. Their design was based on various wireless sensor technologies in order to 
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collect informative features. The features were ranked based on their usefulness in 

estimating activities of interest. They included the context-awareness into the activity 

recognition using location information. The goal of this work was to utilize the context-

aware attentive services to fulfill real human needs.  

In [38], Kim et al. presented a location-recognition algorithm using infrared sensors 

for indoor location awareness system. The sensors were installed on the ceiling in order 

to determine the location of the resident. The location accuracy of the system was 

dependent on the number and location of the sensors. The lower accuracy of the system 

was outweighed by the fact that there was no need for the residents to carry any devices 

with them, which made the location-recognition system very useful and practical.  

A lot of studies have been working towards improving the sensor technologies used 

in Remote Patient Monitoring systems (RPM) and smart homes, such as using 

microphone arrays to monitor and detect sounds.  

In [39], Vacher et al. proposed a sound recognition system in smart homes. They used 

8 microphones to detect, analyze and classify different sounds and speech utterances such 

as normal and distress French sentences. They performed two experiments. The first 

experiment was to detect the distress situation. They played a scenario using 10 speakers 

and calculated the global error rate to be 15.6%. This result was expected to improve by 

taking into account the sounds generated in speech. The second experiment focused on 
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noise cancellation. They performed noise cancellation techniques during the detection of 

distress sentences uttered by four speakers. The missed alarm rate was 27%.   

Zhang et al. presented a new approach to measure the heart rate using sound signals. 

They used an air conductive microphone to collect sound signals to estimate heart beat 

parameters. They collected data from certain activities, such as sitting, jumping, reading, 

and coughing. The participants were the researchers and students working in the 

laboratory. The results showed that this new method could be an alternative method to 

measuring the heart beat [40].  

Andoh et al. monitored the sleep stages of their participants using heartbeats and their 

body motion using pneumatic microphone sensors named air cushion sensor. According 

to Andoh et al., a health monitoring system needs to fulfill the requirements outlined in 

Table 3 and they proposed a system that can meet those requirements [41]. 

Some of the information extracted from the mentioned sensors in smart homes or 

smart devices could in the future help with sound analysis. For example, cough 

information coupled with information from the pressure-sensitive mats could indicate 

whether the patient was in bed and whether they were lying or sitting when the cough 

event occurred. Also, cough information combined with body temperature sensor data 

can be helpful in the clinical diagnosis. 
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Table 3: Perquisite requirements of health monitoring at home [41]  

Condition  Experiment  

Ease of operation  The normal operation of the device is done 

by pushing three different buttons  

Non-invasive Sensing air cushion is located under the 

bed cushion  

Stress free, both physically and mentally Existence of the sensor is not noticeable, 

since it is located under the bed cushion 

Reasonable price The device is reasonably priced 

 

Smart home technologies and remote patient monitoring have gained a lot of attention 

recently since they help improve the healthcare system and also reduce the overall cost 

for both patients and healthcare facilities [42]. With all the new technologies involved in 

smart home patient monitoring, the quality of life of the elderly will improve and the cost 

of healthcare services will reduce in the long run. Furthermore, it will help the elderly 

people to live and stay independent. Elderly patients can decide where and how they want 

to live and at the same time take advantage of high quality healthcare services.  

In Canada and all other countries, the aging population is growing as compared to 

other age groups [6][43]. This trend would make it challenging for hospitals and 

healthcare facilities to provide various medical services to the aging population [44][45]. 

Another factor that makes this issue more challenging is patients who suffer from chronic 
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diseases, such as heart disease, stroke, cancer, chronic respiratory diseases and diabetes. 

Chronic diseases are long lasting and slow progressing diseases which need constant care 

and supervision [46][47][48]. Asthma and chronic obstructive pulmonary disease 

(COPD) are two common types of chronic respiratory diseases [49][50]. According to the 

World Health Organization (WHO) statistics in 2008, 300 million people suffer from 

asthma and COPD. The cost of constant care and hospitalization is very high for chronic 

diseases [51][52]. It is estimated that the cost of most common chronic diseases is more 

than $1 trillion annually in America and it is predicted that the cost will increase to $6 

trillion by the middle of the century [53]. Due to the costly treatments, the rate of death 

related to chronic diseases is very high [54] in low and middle income countries [55][56].  

As a consequence of the increase in the aging population, the need for smart homes 

and remote patient monitoring systems has increased to overcome the challenges 

associated with the aging population [57]. 

2.6 Summary 

Coughing is one of the most common symptoms in most of the respiratory diseases. 

Therefore, cough monitoring, detection and discrimination have gained a lot of attention 

among researchers. Some of the cough related clinical information that can be provided 

to healthcare professionals are the number of cough sounds in one recording, cough 

frequency, and cough severity. The mentioned information, however, does not reveal the 

nature of the cough. As a consequence, the need for new techniques to discriminate 
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cough sounds into different types (dry, wet, whooping, etc) has received significant 

attention recently. Providing the nature of cough to healthcare professionals could help 

them better prescribe a treatment process and drug selection for the patients. 

Cough monitoring and detection are performed using various sensors installed on 

stationary and portable devices. These sensors are capable of recording ambient sounds 

and classifying the recorded sounds into different types, such as speech, cough and much 

more. These devices could be integrated into smart homes and Remote Patient 

Monitoring systems (RPM) which are equipped with other types of sensors such as 

magnetic switches, thermistors, accelerometers, microphone arrays, and pressure 

sensitive mats. Providing cough related information along with other information 

collected from the mentioned sensors could help improve the quality of diagnosis and 

treatment. For instance, providing cough related information along with the body 

temperature of the patient could be more valuable than providing only cough information. 
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Chapter 3:  

Cough Sound Characteristics 

3.1 Introduction 

This chapter describes the characteristics of cough sounds. The first part of this chapter 

summarizes the state of the art literature in the area. The second part of this chapter 

presents the findings of experiments that were conducted within the scope of the thesis. 

Chapter 3 begins with Section 3.2, which provides an introduction to the nature of cough, 

followed by an explanation for different types of cough in Section 3.3. Common 

characteristics of cough sounds will be explained in Section 3.4. Section 3.5 and Section 

3.6 present the dry and wet cough signals characteristics respectively. The second phase 

of cough signal will be studied in more detail in Section 3.7. Finally Section 3.8 

compares the characteristics of both dry and wet cough signals and highlights the 

differences between the two types of cough signal.  
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3.2 Cough Sounds 

Cough is one of the most common symptoms among all respiratory diseases. The main 

purpose of cough is to clear the breathing airways of foreign objects, secretions and 

mucus [58][59].  Depending on how often it occurs and its severity, cough may persist 

and become chronic in nature [60].  

Coughing starts with the stimulation of cough receptors in the central airways by 

mechanical or chemical stimuli followed by the wide opening of the vocal cords to help 

pass more air into the lungs. At this point, the epiglottis closes off the windpipe and the 

abdominal and rib muscles contract simultaneously to increase the pressure behind the 

epiglottis. Subsequently, the air is forced to expel, which in turn creates a rushing sound 

as it quickly passes the vocal cords. The cough reflex happens until the foreign object is 

dislodged and comfortable breathing is once again possible [61]. The epiglottis, vocal 

cord and windpipe are depicted in Figure 3.1. 

Cough characteristics and its acoustic features depend on the velocity of airflow, 

dimensions of the vocal tract and airways, and location of sound generated [61].  

 



28 

 

 

 

 

Figure 3.1: Throat anatomy including vocal cord and epiglottis [62]. 

3.3 Types of Cough  

Cough sounds can be classified by nature into two types: dry (non-productive) and wet 

(productive) [17][63]. Dry coughs, as the name indicates, are dry and therefore, might 

feel ticklish or cause irritation. On the other hand, wet coughs are wet and produce mucus 

that may be thick and have white or yellow color.  

The nature of cough is important in pathological studies and for diagnostic purposes. 

Differentiation of dry and wet cough sounds however, is very subjective. Sometimes, it is 

difficult for patients to describe their cough sounds to healthcare professionals and this 
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could make the diagnosis of disease and optimal prescription more difficult. As was 

mentioned in Chapter 2, work on automated cough monitoring systems has therefore 

increased in recent years especially in the context of smart home monitoring 

[32][64][65][66].  

3.4 Common Characteristics of Cough Signal 

Morice et al. indicated that there are three main acoustic patterns of cough in the 

literature. The three patterns are shown in Figure 3.2, Figure 3.3, and Figure 3.4. The first 

pattern is a cough with three distinct phases, which is the most common pattern of cough.  

 

 

Figure 3.2: Three-phase cough (first pattern) (Taken with permission from [25]). 
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The second pattern of cough signal consists of only two phases. Finally, the third type 

of cough signal is a peal cough [25]. In a peal cough pattern, the amplitude of the 

successive coughs decreases as lung volume decreases [67].  

Korpas et al. explained the origin and process of each phase of cough. “First phase is 

the result of airway narrowing and bifurcations, which leads to turbulent airflow. 

Turbulent airflow produces vibrations of the airway and the surrounding lung tissue.  In 

pathological conditions the airway narrowing is multiplied due to the local thickenings of 

the airway walls (inflammation, oedema, mucus collection), bronchoconstriction, 

fibrosis, etc.”[16]. According to Korpas, the second phase shows the flow of airf in the 

trachea and collection of mucus in the trachea. The final phase has been described to be 

the vocal fold adduction at the end of the second phase of cough [16].  

 

 

Figure 3.3: Two-phase cough (second pattern) Taken with permission from [25]). 
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Figure 3.4: Peal cough (third pattern) (Taken with permission from [25]). 

 

Doherty et al. analyzed the acoustic properties of cough in both time and frequency 

domain using voluntary and spontaneous cough on healthy subjects. They observed that 

the most common pattern of a cough is the three-phase cough. Eight out of 13 

participants produced the three-phase cough, whereas three out of 13 participants 

produced the two-phase cough and only two subjects produced the peal cough [67].  

Olia et al. studied acoustic features of voluntary coughs in healthy males and females. 

They studied the cough length, duration of each phase and the level of spectral energy in 

each phase of cough. The results are summarized in Table 4 [68]. 
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Table 4: Acoustic properties of cough in healthy females and males [68] 

Cough phase Length Spectral energy  

Phase 1  Longer in females than 

males 

Loudest energy was lower 

in males than females 

Phase 2 No significant differences Energy was lower in males 

than females at lower 

frequencies 

Phase 3 No significant differences No significant differences 

 

Figure 3.5a shows a cough signal, which consists of three distinct phases: Phase 1: 

initial opening burst, Phase 2: noisy airflow, and Phase 3: glottal closure [61][17][69]. 

The duration of a cough sound typically varies between 0.2 -1 second. The first phase 

of a cough signal has a higher amplitude and shorter duration than the other two phases. 

On the other hand, the second phase, Phase 2, tends to have a longer duration and lower 

amplitude than Phase 1 and Phase 3[70]. In some instances, Phase 3 is not visible in the 

cough signal and the amplitude of the signal decays slowly as the airflow reduces 

[17][71]. 
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Figure 3.5: a) Dry cough signal with 3 phases: Phase 1, Phase 2, and Phase 3, b) 

Spectrogram of dry cough signal. 

 

Figure 3.5b shows a sound spectrogram of a cough signal where the three phases of 

cough signal, Phase 1, Phase 2, and Phase 3, can be observed. The vertical axis shows the 

frequency distribution and the horizontal axis shows time in seconds. Each color 

represents the power of the signal at a specific time and frequency, with power 

decreasing from red to blue.  

Phase 1 and Phase 3 tend to have similar characteristics in terms of frequency 

distribution. The only difference is that more power is observed in Phase 1 than in Phase 
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3. On the other hand, power observed in Phase 2, in various frequency bands is less than 

Phase 1 and Phase 3, especially in lower frequencies.  

 

3.5 Characteristics of Dry Cough Signals  

A dry cough sound is dry and without any mucus or sputum [17]. Normally all the three 

phases are visible in a dry cough sound, as depicted in Figure 3.5 and Figure 3.6. As 

could be seen from Figure 3.5a, Phase 2 starts from the point of significant reduction in 

amplitude to where the amplitude starts to increase. Phase 1 and Phase 3 are determined 

to exist on the two ends of Phase 2. The characteristics of dry cough signals could be 

observed from both the time domain and frequency domain (spectrogram). 

The spectrogram of a dry cough is shown in Figure 3.5b. As could be seen from the 

figure, Phases 1 and 3 of the dry cough sound contain high power at both lower and 

higher frequencies, whereas less power is observed in Phase 2 and especially at lower 

frequencies.  

Furthermore, in dry sound spectrograms, few horizontal bands are observed in Phase 

2. These horizontal lines show wheezing in the cough sounds [20]. Research has shown 

that identifying wheezes in cough sounds for health care professionals is not easy. 

However, wheezes can be easily identified in the sound spectrogram [20]. 

Analyzing dry cough signals in both time and frequency domain reveals many 

similarities between Phase 1 and Phase 3. They both exist for a short period of time and 
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contain a wide range of frequencies. However, the behaviour of Phase 2 is different from 

those two phases.  

Analysing dry cough signals in the time domain reveals important differences 

between the three phases of dry cough signals. One observation that can be made from 

Figure 3.6 is the fact that Phase 2 has a longer duration than the other two cough phases 

and oscillates between somewhat constant values with not much variation in its 

amplitude. Additionally, Phase 1, and in some cases Phase 3, has higher amplitude than 

that of Phase 2. 

3.6 Characteristics of Wet Cough Signals  

A wet cough is produced as a result of foreign bodies such as bacteria and viruses 

entering the body. Unlike dry cough sounds, wet cough sounds produce mucus and 

sputum [17].  

A wet cough signal is shown in Figure 3.7a. The three phases are marked in the figure 

as Phase 1, Phase 2 and Phase 3. Phase 1 has higher amplitude than Phase 2; however, the 

amplitude difference between Phase 1 and Phase 2 is not very significant. Furthermore, 

one of the common characteristics of Phase 2 is its longer duration as compared to the 

other two phases (Phase 1 and Phase 3). 
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Figure 3.6: Dry cough signal along with its sound spectrogram a) Sample 1, b) Sample 2, c) 

Sample 3, and d) Sample 4. 
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Figure 3.7: a) Wet cough signal with 3 phases: Phase 1, Phase 2, and Phase 3, b) 

Spectrogram of wet cough signal. 

 

Figure 3.8 shows four wet cough sounds along with their sound spectrograms. As can 

been seen from Figure 3.8, the three phases are not that visible in wet cough signals as 

compared to dry cough signals. Furthermore, in the sound spectrogram, detecting Phase 

1, Phase 2, and Phase 3 is also not that clear. In addition, there is not much amplitude 

difference between the three phases. From the observations made above, it is clear that 

phase detection for wet coughs is more challenging than dry coughs.  
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During Phase 2 of a wet cough, the signal oscillates randomly between different 

extremes and a large amount of amplitude variation can be observed. This is also 

reflected in its sound spectrograms.   

One last observation that could be made from the Phase 2 spectrogram is the 

existence of a few vertical lines. Those vertical lines indicate interruptions in sound, 

caused by the mucus in wet cough sounds causing its spectrograms to be discontinuous 

[17][19][20]. 

 

3.7 Cough Signal Phase 2 Analysis  

From Section 3.5 and 3.6 observations, it is obvious that most of the differences between 

dry and wet cough sounds are in their Phase 2. Therefore, in this section, Phase 2 of both 

dry and wet cough signals will be investigated in more details. 

In Section 3.5, it was mentioned that there is not much amplitude variation in Phase 2 

of dry cough signals. In Section 3.6, however, it was observed that a significant amount 

of amplitude variation exists in Phase 2 of wet cough signals. Comparing the sound 

spectrogram of both dry and wet cough sounds revealed that Phase 2 of wet cough sounds 

has more power at lower frequencies than Phase 2 of dry cough sounds. Based on these 

observations, it was decided to explore the Phase 2 characteristics at lower frequencies in 

more detail.  
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Figure 3.8: Wet cough signal along with its sound spectrogram a) Sample 1, b) Sample 2, c) 

Sample 3, and d) Sample 4. 
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A low-pass filter with a cut-off frequency of 500 Hz was used to filter out all the 

frequency components above 500 Hz as depicted in Figure 3.9. 

 

Figure 3.9: Magnitude response of a low-pass filter with cut-off frequency 500 Hz. 

 

Both dry and wet cough signals were passed through the low-pass filter, in order to 

study their behaviour at lower frequencies. Figure 3.10 shows two examples of dry cough 

signals (Figure 3.10a and Figure 3.10c) along with their low-pass filtered signals (Figure 

3.10b and Figure 3.10d). 
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Figure 3.10: a) Dry cough sample 1, b) Low-pass filtered signal of dry cough sample 1, c) 

Dry cough sample 2, and d) Low-pass filtered signal of dry cough sample 2. 
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Similar to Figure 3.10, Figure 3.11 shows two examples of wet cough signal (Figure 

3.11a and Figure 3.11c) along with their low-pass filtered signals (Figure 3.11b and 

Figure 3.11d).  

As it was predicted, for dry cough sounds, most of the signal in Phase 2 was 

attenuated after passing through the low-pass filter. However Phase 1 and Phase 3 were 

still visible after passing through the low-pass filter. 

On the other hand, unlike dry cough sounds, Phase 2 of wet cough sounds is visible, 

even though they were passed through a low-pass filter. Also the amplitude variation in 

Phase 2 can still be observed for wet cough signals.  
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Figure 3.11: a) Wet cough sample 1, b) Low-pass filtered signal of wet cough sample 1, c) 

Wet cough sample 2, and d) Low-pass filtered signal of wet cough sample 2. 
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3.8 Conclusion 

In this chapter common characteristics of both dry and wet cough signals were explained. 

In Sections 3.5 and 3.6, dry and wet cough signals were analyzed in both time and 

frequency domains.  

One of the observations was that the discrimination of phases for wet cough signals 

was more challenging than dry cough signals. The amplitude differences between Phase 

1, Phase 2 and Phase 3 were not significant in most of the cases and thus, determining the 

beginning of each phase was more difficult in wet cough signals.  

The amplitude variations between the three phases for wet cough signals were less 

than that of dry cough signals; nevertheless, the amplitude variations in Phase 2 of wet 

cough signal were greater than Phase 2 of dry cough signal. 

The next observation was that more power was observed at lower frequencies of 

Phase 2 of wet cough signals than that of dry cough signals. This observation was 

explored in greater detail in Section 3.7 where both dry and wet cough signals were 

passed through a low-pass filter and the resulting Phase 2 of both types of cough signals 

were studied. For wet cough signals, a visible Phase 2 was observed, whereas this phase 

had vanished for dry cough signals. 
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Chapter 4:  

Data Acquisition and Pre-Processing 

Algorithm 

4.1 Introduction 

In this chapter, data acquisition and the pre-processing algorithm used in this research are 

explained. Section 4.2 explains how the cough sound database used in this research was 

gathered and verified by medical professionals. Section 4.3 describes the segmentation 

process and how each cough recording was divided into cough episodes. Finally, section 

4.4 explains the pre-processing algorithm that was applied on each sample of the cough 

sound database.   
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4.2 Cough Sound Database 

 A cough sound database was created from cough samples obtained from many sources 

such as: Sound-Effect [72], Freesound project website [73], online samples provided by 

[20]. Also included are some cough samples that were recorded in the DSP lab at 

Carleton University from the author and other researchers from the team. The details of 

the database are listed in Table 5. There were 47 cough sounds, which included 21 female 

and 26 male cough sounds. 

Table 5: Cough Sound Database 

Source Total 

Sound-Effect website 18 

Freesound project website 10 

Online 9 

Recorded in DSP lab 10 

 

After listening to the cough sounds and using the information provided by the 

sources, the cough sounds were divided into two groups: dry and wet coughs. The type of 

each cough sound was further verified by medical professionals as well.  

The scope of this research was to analyze the two types of cough sounds and discover 

the differences between the two. Therefore, nine highly dry and eight highly wet cough 

sounds were selected among all the cough sounds verified by medical professionals.  
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4.3 Segmentation  

Each cough recording consisted of multiple cough episodes [74]. Figure 4.1 shows a 

sample recording of a cough sound.  As it can be seen from the figure, each cough 

recording might include 3 or more consecutive cough episodes.  

 

Figure 4.1: A typical cough sound recording. 
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The first cough episode has a longer duration and more power than the subsequent 

cough episodes. Usually there is a gap between each cough episode and therefore it 

would be easy to distinguish each cough episode.  

Since an automatic cough recording segmentation algorithm was out of the scope of 

this thesis, cough recording segmentation was performed manually. Each cough 

recording was divided into 3 or more individual cough signals. The final dataset 

contained nine highly dry and eight highly wet coughs and was used in this research.  

4.4 Pre-Processing Algorithm  

This section explains the pre-processing algorithm that was applied on each cough sound 

in the database. As mentioned in Section 4.1, the cough sound database was gathered 

from different sources. Hence, the recording methods and equipment were not identical 

among the cough samples. In order to ensure consistency, a pre-processing algorithm was 

applied to all the cough sounds as depicted in Figure 4.2.  

 

 

Figure 4.2: Pre-processing algorithm. 
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The sampling frequency of each cough recording with the database was also different. 

In order to ensure a consistent sampling frequency, all the cough signals were resampled 

to 8 kHz. The resampling process was performed by passing the cough signal through an 

anti-aliasing filter with a cut-off frequency of 4 kHz and resampling the cough signal to 8 

kHz afterwards. It was observed that most of the frequency information of a cough sound 

was between 350 Hz and 4 kHz [33]; therefore, by resampling the cough signals, 

important information was not being filtered out.  
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Chapter 5:  

Feature Extraction Algorithm 

5.1 Introduction 

This chapter provides two feature extraction algorithms in order to differentiate the dry 

and wet cough sounds. It begins by introducing a time domain feature in Section 5.2 and 

a frequency domain feature in Section 5.5. In each section the feature extraction 

algorithm is explained in details. Results obtained by using each feature are reported in 

Section 5.7 and are discussed in 5.8. 

5.2 Time Domain Feature 

In Chapter 4, dry and wet cough sounds were analyzed in both time and frequency 

domains. Their characteristics in time and frequency domains were compared and their 

similarities and differences were explored.   
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It was observed that dry cough signals have higher frequency components than wet 

cough signals. Wet cough signals tend to have more energy at lower frequencies than dry 

cough signals. To confirm this observation, both dry and wet cough signals were passed 

through a low-pass filter to filter out the higher frequency components. It was observed 

that wet cough signals contained higher energy and more amplitude variation after 

passing through the low-pass filter. Based on this observation, a band-pass filter was 

chosen to investigate more the characteristics of both types of cough at different 

frequency bands.  

5.3 Energy Envelope Variation Detection 

In this section, the algorithm for extracting a time domain feature, which is the variation 

of the energy envelope of the cough signal, will be explained and referred to as Feature 1. 

In order to extract Feature 1, the algorithm depicted in Figure 5.1 was used and is 

explained in the following sections in detail.  

 

 

Figure 5.1: Feature 1 algorithm. 
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5.3.1  Band-Pass Filter 

The first step of extracting Feature 1 was to pass the cough signals through a band-pass 

filter. The band-pass filter was used in order to consider focused frequency bands and 

filter out the rest of the frequencies. A series of band-pass filters with frequency bands of 

50 Hz between 0-1000 Hz were used (i.e., 0-50 Hz, 50-100 Hz, 100-150 Hz, … 950-1000 

Hz). Magnitude response of two band-pass filters with cut-off frequencies of 200, 250 Hz 

and 250, 300 Hz are depicted in Figure 5.2. 

 

Figure 5.2: Magnitude response of a band-pass filter with cut-off frequencies of a) 200 and 

250 Hz. b) 250 and 300 Hz. 
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Figure 5.3 and Figure 5.4 show a dry cough and a wet cough signal along with their 

band-pass filtered signals at 200-250 Hz and 250-300 Hz. Figure 5.3b and Figure 5.3c 

show the band-pass filtered signal of the dry cough signal of Figure 5.3a at 200-250 Hz 

and 250-300 Hz respectively. As can been seen from the two band-pass filtered signals, 

the second phase of the dry cough signal does not contain much energy in these two 

frequency bands. This characteristic of the second phase is also true for other frequency 

bands, as was mentioned in the previous chapter. 
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Figure 5.3: a) Dry cough signal. b) Band-pass filtered dry cough signal at 200-250 Hz. c) 

Band-pass filtered dry cough signal at 250-300 Hz. 

 

On the other hand, after passing the wet cough signal through these two band-pass 

filters (200-250 Hz and 250-300 Hz), there is still a lot of the signal left at phase 2, as 
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depicted in Figure 5.4b and Figure 5.4c.  This observation is also true for other frequency 

bands.  

 

Figure 5.4: a) Wet cough signal. b) Band-pass filtered wet cough signal at 200-250 Hz.  c)  

Band-pass filtered wet cough signal at 250-300 Hz. 
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5.3.2  Energy Envelope Detector 

The energy envelope is determined by squaring the input signal S(t) to obtain S
2
(t). 

Figure 5.5a and Figure 5.5b show the S
2
(t) of the band-pass filtered dry cough signal 

from Figure 5.3b and Figure 5.3c. 

 

 

Figure 5.5: Signal square of a band-pass filtered dry cough signal at a) 200-250 Hz, b) 250-

300 Hz. 
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Similarly, the S
2
(t) of the two band-pass filtered wet cough signals (Figure 5.4b and 

Figure 5.4c) are shown in Figure 5.6a and Figure 5.6b.  

 

 

Figure 5.6: Signal square of a band-pass filtered wet cough signal at a) 200-250 Hz, b) 250-

300 Hz. 
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After computing the square of the input signal, S
2
(t) was passed through a second 

order Butterworth low-pass filter with a cut-off frequency of 10 Hz (depicted in Figure 

5.7) to determine its energy envelope E(n). The cut-off frequency of the low-pass filter 

was chosen experimentally.  

 

Figure 5.7: Magnitude response of a low-pass filter with cut-off frequency of 10 Hz. 

 

The energy envelope of both dry and wet cough signals for two frequency bands 200-

250 Hz and 250 and 300 Hz are shown in Figure 5.8 and Figure 5.9 respectively. 
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Figure 5.8: Energy envelope of dry cough signal at a) 200-250 Hz b) 250-300 Hz. 



60 

 

 

 

 

Figure 5.9: Energy envelope of wet cough signal at a) 200-250 Hz b) 250-300 Hz. 

 

5.3.3  Energy Envelope Normalizer 

The next step was to normalize the energy envelope of each cough signal between 0 and 

1. The reason for normalization was to compensate for the recording amplitude 

differences between the cough recordings.  
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Normalized energy envelope of a dry and a wet cough signal at 200-250 Hz and 250-

300 Hz are depicted in Figure 5.10 and Figure 5.11 respectively. Comparing the energy 

envelope of dry and wet cough signals shows that there is more variation in shape for wet 

cough signals in Phase 2 than there is for dry cough signals. There are some similarities, 

however, between dry and wet cough signal energy envelope E(n). E(n) of the dry cough 

signals tend to be flat in Phase 2. Energy envelope of the wet cough signals however, 

contradicts this observation. The E(n) of wet cough signals has more variation, especially 

in Phase 2.   
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Figure 5.10: Normalized energy envelope of a dry cough signal at a) 200-250 Hz, b) 250-300 

Hz. 
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Figure 5.11: Normalized energy envelope of a wet cough signal at a) 200-250 Hz, b) 250-300 

Hz. 

5.3.4  Peak Detector 

As stated in the previous section, there is a significant shape difference between the 

energy envelope of the two types of cough signals. In order to use this difference as a 

descriptive feature, a peak detection algorithm was used and is depicted in Figure 5.12.  
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The peak detection algorithm compares two adjacent points to find either the local 

maxima or a flat region. If a flat region is detected, it skips one or two points depending 

on the region being a „short‟ or „long‟ flat region respectively. If a local maximum greater 

than a certain threshold is found, it will be marked as a significant peak. The threshold 

was chosen to be 0.05 experimentally. 

 

 

Figure 5.12: Peak Detector Algorithm. 
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Peaks of the energy envelope of dry and wet cough signals were detected using the 

explained peak detector algorithm. As an example, peaks of the energy envelope of two 

dry and two wet cough signals at 200-250 Hz are shown in Figure 5.13. 

 

Figure 5.13: Normalized energy envelope and peaks of a) Dry cough sample 1, b) Dry cough 

sample 2, c) Wet cough sample 1, and d) Wet cough sample 2. 
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5.3.5  Energy Envelope Characteristic Differences 

It was observed that the energy envelope of the dry cough signal followed a specific 

shape. It started with a peak, which represented the first phase of the dry cough signal 

followed by a flat region representing the second phase. It finished with a small peak, if a 

third phase existed for that particular signal, as depicted in Figure 5.14a.  The energy of 

the wet cough signal, on the other hand, did not follow a specific shape. The shape was 

more random and multiple peaks were observed especially in the second phase, as 

depicted in Figure 5.14b.  

 

Figure 5.14: a) Energy envelope of a dry cough, and b) Energy envelope of a wet cough. 
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5.4 The Impact of Low-pass Filter 

In Section 5.3, the impact of a band-pass filter was analyzed on both dry and wet cough 

signals. In this section, the impact of a low-pass filter on dry and wet cough signals will 

be discussed and summarized in Sections 5.4.1 and 5.4.2.    

5.4.1  Dry Cough Signal 

The following figures show the process of extracting Feature 1 for dry coughs using a 

low-pass filter (LPF). A dry cough sample is shown in Figure 5.15 and its low-pass 

filtered signals at different cut-off frequencies are shown in Figure 5.16, Figure 5.17, 

Figure 5.18, Figure 5.19 and Figure 5.20. Furthermore, the squares of the low-pass 

filtered dry cough signals, S
2
(t), are shown in  Figure 5.21, Figure 5.22, Figure 5.23, 

Figure 5.24, and Figure 5.25. 

 

 

Figure 5.15: Dry cough sample. 
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Figure 5.16: Low-pass filtered dry cough sample at 100 Hz. 

 

Figure 5.17: Low-pass filtered dry cough sample at 300 Hz. 

 

Figure 5.18: Low-pass filtered dry cough sample at 500 Hz. 
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Figure 5.19: Low-pass filtered dry cough sample at 700 Hz. 

 

Figure 5.20: Low-pass filtered dry cough sample at 900 Hz. 
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Figure 5.21: Signal squared of a low-pass filtered dry cough sound at 100 Hz. 

 

 

Figure 5.22:  Signal squared of a low-pass filtered dry cough sound at 300 Hz. 

 

 

Figure 5.23: Signal squared of a low-pass filtered dry cough sound at 500 Hz. 
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Figure 5.24: Signal squared of a low-pass filtered dry cough sound at 700 Hz. 

 

Figure 5.25: Signal squared of a low-pass filtered dry cough sound at 900 Hz. 

 

Finally, the energy envelope, E(t),  and  peaks of the S
2
(t) of dry cough signals at 

different frequency bands are computed and  depicted in Figure 5.26, Figure 5.27, Figure 

5.28, Figure 5.29, and Figure 5.30.  
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Figure 5.26: Normalized energy envelope and peaks of low-pass filtered dry cough at 

100Hz. 

 

Figure 5.27: Normalized energy envelope and peaks of low-pass filtered dry cough at 

300Hz. 
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Figure 5.28: Normalized energy envelope and peaks of low-pass filtered dry cough at 

500Hz. 

 

Figure 5.29: Normalized energy envelope and peaks of low-pass filtered dry cough at 

700Hz. 
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Figure 5.30: Normalized energy envelope and peaks of low-pass filtered dry cough at 

900Hz. 

 

 

5.4.2 Wet Cough Signal 

Similar to Section 5.4.1, this section shows the steps involved in extracting Feature 1 

using a low-pass filter (LPF) for wet cough signals. Figure 5.31 shows a wet cough 

sample. Figure 5.32, Figure 5.33, Figure 5.34, Figure 5.35, and Figure 5.36 show the low-

pass filtered signal of the wet cough sample with different cut-off frequencies.  
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Figure 5.31: Wet cough sample. 

 

 

Figure 5.32: Low-pass filtered wet cough sample at 100 Hz. 
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Figure 5.33: Low-pass filtered wet cough sample at 300 Hz. 

 

Figure 5.34: Low-pass filtered wet cough sample at 500 Hz. 

 

Figure 5.35: Low-pass filtered wet cough sample at 700 Hz. 
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Figure 5.36: Low-pass filtered wet cough sample at 900 Hz. 

 

 

The following figures, Figure 5.37, Figure 5.38, Figure 5.39, Figure 5.40, and Figure 

5.41 show the signal squared, S
2
(t), of the low-pass filtered wet cough sample. 

 

 

Figure 5.37: Signal squared of a low-pass filtered wet cough sound at 100 Hz. 
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Figure 5.38: Signal squared of a low-pass filtered wet cough sound at 300 Hz. 

 

Figure 5.39: Signal squared of a low-pass filtered wet cough sound at 500 Hz. 

 

Figure 5.40: Signal squared of a low-pass filtered wet cough sound at 700 Hz. 
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Figure 5.41: Signal squared of a low-pass filtered wet cough sound at 900 Hz. 

 

 

Energy envelopes and peaks of the low-pass filtered wet cough signal at different 

frequency bands are computed and depicted in Figure 5.42, Figure 5.43, Figure 5.44, 

Figure 5.45, and Figure 5.46 

 

 

Figure 5.42: Normalized energy envelope and peaks of low-pass filtered wet cough at 

100Hz. 
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Figure 5.43: Normalized energy envelope and peaks of low-pass filtered wet cough at 

300Hz. 

 

Figure 5.44: Normalized energy envelope and peaks of low-pass filtered wet cough at 

500Hz. 



81 

 

 

 

 

Figure 5.45: Normalized energy envelope and peaks of low-pass filtered wet cough at 

700Hz. 

 

Figure 5.46: Normalized energy envelope and peaks of low-pass filtered wet cough at 

900Hz. 

 

Clearly, there is still a significant difference in energy envelope of both dry and wet 

cough samples. Similar to Section 5.3.5, the energy envelope of the wet cough sample 

tends to have a random shape, whereas a consistent shape is being observed for the dry 

cough energy envelope. In order to further verify the results of this section, the same set 
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of experiments were performed on more cough samples and will be explained further in 

Section 5.7. 

5.5 Frequency Domain Feature 

As mentioned in previous section, wet cough signals show more power at lower 

frequency regions than dry cough signals. Based on this characteristic, the following 

algorithm was implemented to extract a feature in the frequency domain. The 

development of this feature will be explained in detail in the following sections.   

5.6 Power Ratio Estimation 

This section introduces an algorithm which extracts the power ratio of two frequency 

bands of the second phase of the cough signal. This will be referred to as Feature 2. The 

algorithm is depicted in Figure 5.47. 

 

Figure 5.47: Power ratio estimation feature extraction algorithm. 
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5.6.1  Cough Phase Detector 

In this section, each cough recording was divided into 3 phases, using two algorithms. 

Each algorithm will be discussed in the following sections.  

A. The first algorithm divides each cough sound into 4 equal parts as shown in 

Figure 5.48. The first part represents Phase 1, the second and third parts represent 

Phase 2 and the last part represents Phase 3. The 3 phases of each cough sound 

were detected using this algorithm. This algorithm has its own advantages and 

disadvantages. Its advantage is that the 3 phases of each cough sound would be 

detected automatically; however, since the length of the cough sounds are 

different, detecting each phase might not be as accurate as desired.  

 

Figure 5.48: Cough sound divided into 4 equal parts. 
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B. The second algorithm for phase detection was to use the start and end point of 

each phase. The beginning of the cough sound was used as the start point of 

Phase 1. The start of the second phase was chosen when the sound amplitude had 

reduced significantly from its initial peak [61]. The start of Phase 3 was selected 

when there was a rise in the sound amplitude after the second phase.  

 

 

The second algorithm was used in this thesis, since detecting the 3 phases was more 

accurate.Figure 5.49 and Figure 5.50 show a dry cough signal and a wet cough signal 

with their 3 phases respectively.  
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Figure 5.49: a) Dry cough signal, b) Phase 1, c) Phase 2, and d) Phase 3. 
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Figure 5.50: a) Wet cough signal, b) Phase 1, c) Phase 2, and d) Phase 3. 
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5.6.2 Phase Power Estimation 

The power of each phase was calculated in this step. P1, P2 and P3 are the power of 

Phase 1, Phase 2 and Phase 3 respectively.  P1, P2 and P3 for a dry and a wet cough are 

depicted in Figure 5.51 and Figure 5.52. 

 

Figure 5.51: Power of a dry cough a) Phase 1, b) Phase 2, and c) Phase 3. 
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Figure 5.52: Power of a wet cough a) Phase 1, b) Phase 2, and c) Phase 3. 

 

Comparing the power of each phase of both dry and wet cough shows that Phase 1 

and Phase 3 of both dry and wet cough signals are similar; however, some differences can 

be seen from Phase 2 of each type of cough. Therefore in this feature algorithm Phase 2 

will be further examined.  
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As mentioned previously, the recording method of each cough recording was 

different and since the power of a signal is dependent on the distance of the source to the 

microphone, P2 was normalized by dividing it by the total power of Phase 1, P1 as shown 

in (1).  

 
            

     

          
   

 
(1) 

where P1(f) and P2(f) are the power of the Phase 1 and Phase 2 at frequency f 

respectively. P2norm(f) is the normalized power of Phase 2.  

 

For dry cough signals, a large peak was observed around 1500-2500 Hz as depicted in 

Figure 5.53a, Figure 5.53b and Figure 5.53c. On the other hand, for wet cough signals, 

the peak was observed around 0-750 Hz as depicted in Figure 5.53d, Figure 5.53e and 

Figure 5.53f.    
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Figure 5.53: P2norm(f) of a) Dry sample 1, b)  Dry sample 2, c) Dry sample 3, d) Wet sample 

1, e) Wet sample2, and d) Wet sample 3. 
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5.6.3   Power Ratio Estimation 

From the previous section, it was observed that there is a peak at 1500-2250 Hz for 

P2norm(f) of dry cough sounds. On the other hand, at 0-750 Hz, there is a peak for 

P2norm(f)  of wet cough sounds. Based on this observation, the power ratio, Rp, was 

calculated as in (2). 

 
   

          
      
      

          
     
   

 
(2) 

where P2norm(f)   is the normalized power of Phase 2. 

 

5.7 Results 

5.7.1 Results of Feature 1 Extraction Algorithm using Band-Pass Filter (BPF) 

The Feature 1 extraction algorithm was run for both dry and wet cough samples for 

different frequency bands. The number of peaks for each frequency band of each cough 

was recorded and is reported in Table 6, Table 7, Table 8, and Table 9.  

 

 

 

 

 



92 

 

 

 

Table 6: Number of peaks of dry cough samples for frequency bands between 0-500 Hz 

Dry 

Cough 

Frequency Band (Hz) 

0-50 

50-

100 

100-

150 

150-

200 

200-

250 

250-

300 

300-

350 

350-

400 

400-

450 

450-

500 

Sample1 1 1 1 2 2 2 1 2 1 1 

Sample2 1 1 1 1 1 1 1 3 2 2 

Sample3 1 1 2 1 1 1 1 3 3 3 

Sample4 2 2 2 2 2 2 2 1 2 3 

Sample5 2 2 1 2 2 2 2 2 2 3 

Sample6 2 2 2 2 2 2 1 1 2 3 

Sample7 1 1 1 2 2 2 1 2 1 1 

Sample8 2 2 2 2 2 2 2 2 2 2 

Sample9 1 1 1 2 2 2 1 2 1 1 
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Table 7: Number of peaks of dry cough samples for frequency bands between 550-1000 Hz 

Dry 

Cough 

Frequency Band (Hz) 

500-

550 

550-

600 

600-

650 

650-

700 

700-

750 

750-

800 

800-

850 

850-

900 

900-

950 

950-

1000 

Sample1 2 1 1 1 2 2 1 1 1 2 

Sample2 3 2 3 2 2 3 7 5 3 4 

Sample3 1 1 3 1 1 1 1 2 2 3 

Sample4 2 3 2 2 1 2 4 3 2 2 

Sample5 2 2 2 1 1 1 2 1 2 3 

Sample6 2 2 1 1 3 3 3 3 2 1 

Sample7 2 1 1 1 2 2 1 1 1 2 

Sample8 2 2 3 2 3 2 2 2 2 2 

Sample9 2 1 1 1 2 2 1 1 1 2 
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Table 8: Number of peaks of wet cough samples for frequency bands between 0-500 Hz 

Wet 

Cough 

Frequency Band (Hz) 

0-50 

50-

100 

100-

150 

150-

200 

200-

250 

250-

300 

300-

350 

350-

400 

400-

450 

450-

500 

Sample1 22 18 13 14 4 6 3 4 11 12 

Sample2 15 22 14 14 12 4 3 4 3 3 

Sample3 9 6 6 5 4 3 2 3 3 4 

Sample4 12 14 6 10 9 6 9 11 4 6 

Sample5 3 6 7 4 3 2 4 4 6 6 

Sample6 12 12 10 10 8 11 9 10 8 8 

Sample7 1 2 2 2 9 7 6 5 4 5 

Sample8 1 4 2 2 6 10 8 8 4 8 

 

The number of peaks for dry cough samples was observed to be between 1 and 3; 

however, on the other hand, the number of peaks for wet cough signals was observed to 

be more than 3 for most of the frequency bands. As mentioned previously, more variation 

was observed in the shape of the energy envelope for wet cough signals than dry cough 

signals. Therefore, more peaks were detected from wet cough sounds energy envelope.   
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Table 9: Number of peaks of wet cough samples for frequency bands between 550-1000 Hz 

Wet 

Cough 

Frequency band (Hz) 

500-

550 

550-

600 

600-

650 

650-

700 

700-

750 

750-

800 

800-

850 

850-

900 

900-

950 

950-

1000 

Sample1 10 4 5 7 11 5 2 6 15 9 

Sample2 5 5 3 5 4 9 5 4 4 5 

Sample3 4 10 4 2 4 4 6 5 2 3 

Sample4 10 6 8 7 10 11 9 5 6 9 

Sample5 4 4 3 4 2 4 5 4 3 4 

Sample6 8 13 10 8 7 9 6 10 8 9 

Sample7 3 4 1 2 2 2 4 2 2 1 

Sample8 5 5 5 5 3 3 3 1 1 2 

 

The number of peaks for three frequency bands 150-200 Hz, 200-250 Hz, and 250-

300 Hz were plotted and are depicted in Figure 5.54, Figure 5.55, and Figure 5.56 

respectively. In each frequency band there is an obvious separation between the two types 

of cough signals. However, the frequency band 200-250 Hz was selected as the most 

descriptive, since the most separation between dry and wet cough signals was observed.  



96 

 

 

 

 

Figure 5.54: Number of peaks at 150-200 Hz for both dry and wet cough signals. 

 

Figure 5.55: Number of peaks at 200-250 Hz for both dry and wet cough signals. 
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Figure 5.56: Number of peaks at 250-300 Hz for both dry and wet cough signals. 
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5.7.2 Results of Feature 1 Extraction Algorithm using Low-Pass Filter (LPF) 

The number of peaks for both dry and wet cough samples using a low-pass filter with 

different cut-off frequencies are listed in Table 10, Table 11, Table 12, and Table 13. 

 

Table 10: Number of peaks of dry cough samples using LPF with cut-off frequency between 

50-500 Hz 

Dry 

Cough 

Cut-off Frequency (Hz) 

50 100 150 200 250 300 350 400 450 500 

Sample1 1 1 2 2 2 2 2 2 2 2 

Sample2 1 1 1 1 1 1 3 2 2 2 

Sample3 1 1 1 1 1 1 1 1 1 1 

Sample4 1 1 2 4 4 5 5 5 4 4 

Sample5 2 2 2 2 2 2 2 2 2 2 

Sample6 2 2 2 2 2 4 4 4 4 4 

Sample7 2 2 2 2 2 2 2 2 2 2 

Sample8 1 1 2 2 2 2 2 2 2 2 

Sample9 2 2 2 2 2 2 2 2 2 2 
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Table 11: Number of peaks of dry cough samples using LPF with cut-off frequency between 

550-1000 Hz 

Dry 

Cough 

Cut-off Frequency (Hz) 

550 600 650 700 750 800 850 900 950 1000 

Sample1 2 2 2 2 2 2 2 2 2 2 

Sample2 2 2 2 2 2 2 2 3 2 2 

Sample3 1 1 1 1 1 1 1 1 1 1 

Sample4 5 4 5 5 4 4 4 4 4 4 

Sample5 2 2 2 2 2 2 2 2 2 2 

Sample6 5 4 5 4 5 4 4 4 5 5 

Sample7 5 2 2 2 2 2 2 2 2 3 

Sample8 2 2 2 2 2 2 2 2 3 2 

Sample9 2 2 2 4 8 7 6 5 6 6 
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Table 12: Number of peaks of wet cough samples using LPF with cut-off frequency between 

50-500 Hz 

Wet 

Cough 

Cut-off Frequency (Hz) 

50 100 150 200 250 300 350 400 450 500 

Sample1 
22 23 22 18 20 17 16 13 13 15 

Sample2 
15 31 30 32 29 31 31 32 34 32 

Sample3 
9 11 7 9 8 6 6 6 6 7 

Sample4 
12 16 16 17 13 10 6 6 6 6 

Sample5 
3 6 3 6 5 5 6 6 6 6 

Sample6 
12 12 14 13 15 15 16 14 12 13 

Sample7 
1 7 2 4 7 5 4 4 4 5 

Sample8 
1 2 2 4 4 4 4 4 4 4 

 

The results obtained for Feature 1 using the low-pass filter are similar to the results 

obtained with the band-pass filter at lower frequencies. The number of peaks for dry 

cough samples for most of the cut-off frequencies was between 1 and 3. On the other 

hand, for most cases, the number of peaks for wet cough samples was more than 3 peaks. 

Hence, a clear separation was observed between the two types of cough sounds.  
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Table 13: Number of peaks of wet cough samples using LPF with cut-off frequency between 

550-1000 Hz 

Wet 

Cough 

Cut-off Frequency (Hz) 

550 600 650 700 750 800 850 900 950 1000 

Sample1 20 20 20 19 23 21 21 20 20 20 

Sample2 30 30 29 30 30 31 31 31 30 30 

Sample3 3 3 3 4 4 3 4 4 5 4 

Sample4 6 6 6 6 6 6 6 6 6 6 

Sample5 5 6 7 7 8 8 8 8 8 8 

Sample6 12 11 11 11 12 13 13 12 13 12 

Sample7 5 7 5 5 6 4 3 3 3 3 

Sample8 4 4 3 4 4 4 4 4 4 4 

 

Figure 5.57, Figure 5.58, and Figure 5.59 show the number of peaks of dry and wet 

cough samples for three different low-pass cut-off frequencies. As it can be seen from the 

figures, a separation between dry and wet cough samples can be observed. 
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Figure 5.57: Number of peaks at 150-200 Hz for both dry and wet cough signals. 

 

Figure 5.58: Number of peaks at 200-250 Hz for both dry and wet cough signals. 
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Figure 5.59: Number of peaks at 250-300 Hz for both dry and wet cough signals. 

 

From the results obtained from using low-pass and band-pass filter to extract Feature 

1, a clear separation between the two types of coughs is observed. In order to determine 

which type of filter is more suitable in extracting Feature 1, the misclassified cough 

samples for each frequency band were determined and depicted in Figure 5.60. The 

results show that BPF behaved better than LPF in most of the frequency bands. There 

were a few cases where the number of misclassified cough samples was equal for both 

low-pass and band-pass filter; however, for most of the cases, the band-pass filter showed 

a better result. 
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Figure 5.60: Misclassified cough samples 

 

As can be seen from Figure 5.60, the frequency band 200-250 Hz for the band-pass 

filter results in 100% separation between dry and wet cough signals and therefore this 

frequency band was chosen as the most descriptive frequency band for Feature 1 

extraction.  
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5.7.3 Results of Feature 2 Extraction Algorithm 

The second feature extraction algorithm was run for the same dry and wet cough signals 

as the previous section. The power ratio, Rp, was calculated for both dry and wet cough 

signals and it is summarized in Table 14. 

Table 14: Rp for both dry and wet cough samples 

Dry cough    Wet cough    

Sample 1 19.1 Sample 1 0.4 

Sample 2 6.5 Sample 2 0.5 

Sample 3 8.7 Sample 3 0.3 

Sample 4 7.4 Sample 4 0.2 

Sample 5 4.3 Sample 5 0.6 

Sample 6 6.0 Sample 6 0.5 

Sample 7 19.2 Sample 7 2.2 

Sample 8 6.9 Sample 8 1.0 

Sample 9 19.1   

 

As can be seen from Table 14, the value of the Rp was observed to be 4 < Rp < 20 

and  0 < Rp < 2.5 for dry and wet cough sounds approximately. Figure 5.61 shows the Rp 

for both dry and wet cough signals. From the figure, an obvious separation can be seen 

for the two types of cough signals.  
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Figure 5.61: Rp for both dry and wet cough signals. 

 

5.7.4 Results of Feature 1 vs. Feature 2 

In this section, both Feature 1 and Feature 2 were used in order to differentiate between 

dry and wet cough signals. Figure 5.62 shows a clear separation between dry and wet 

cough signals using both Feature 1 and Feature 2.   
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Figure 5.62: Separation of nine highly dry and eight highly wet cough sounds using Feature 

1 and Feature 2. 

 

 

5.8 Discussion 

This chapter introduced two feature extraction algorithms in order to differentiate 

between two types of coughs, dry and wet. The first feature was based on the shape of the 

energy envelope of band-pass filtered cough signals. It was concluded that energy 

envelopes of dry cough signals have a specific shape. This observation, however, was not 

true for wet cough signals. The shape of the energy envelope of wet cough signals is 
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mostly random and contains more peaks than dry cough signals. The frequency band 200-

250 Hz was selected as the most descriptive frequency band. A clear separation line was 

observed between dry and wet cough samples (Figure 5.55).  

The effect on Feature 1 of using a low-pass instead of band-pass filter was also 

explored. The performance of Feature 1 using low-pass filter was reasonable; however, 

the performance of the band-pass filter for the limited cough samples available was more 

satisfactory. Nevertheless, this does not mean that a low-pass filter cannot be used in 

computing Feature 1. 

The second feature was based on the power ratio of two frequency bands of Phase 2 

of the cough samples. This feature showed that the power ratio between the frequency 

band 1500–2250 Hz and the frequency band 0–750 Hz of Phase 2 of dry cough signals is 

greater than that of wet cough signals. Similar to Feature 1, a clear separation between 

the two types of coughs was observed for Feature 2 (Figure 5.61).  

Using both Feature 1 and Feature 2, a clear separation is observed between the two 

types of cough samples (Figure 5.62). In Figure 5.62, blue markers show dry cough 

samples and red markers show wet coughs samples. As it can be seen from the figure, dry 

cough samples are spread along the x-axis and wet cough samples along the y-axis.  

The cough samples used in this thesis were highly dry and highly wet cough samples 

as verified by clinicians. There are many cough samples, however, that fall between these 

two extremes. By taking into account cough samples with various degrees of wetness, the 
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gap observed in Figure 5.62 between dry and wet cough samples decreases. Figure 5.63 

illustrates the result of extracting Feature 1 and Feature 2 for cough samples that are not 

highly dry and highly wet. As seen from Figure 5.63, although there is still a clear 

separation between dry and wet cough sounds, the gap between the two types of coughs 

has decreased significantly. Further tests are needed to verify the results of Feature 1 and 

2 for more samples.  

 

Figure 5.63: Separation of dry and wet cough samples using Feature 1 and Feature 2. 
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Chapter 6:  

Graphical User Interface 

6.1 Introduction 

This chapter introduces the Graphical User Interface (GUI) which was designed and 

implemented in order to help with the research conducted as part of this thesis. 

Section 6.2 explains the design and functionality of the GUI in greater detail followed by 

conclusions in Section 6.3.  

6.2 Graphical User Interface Design 

A GUI was designed and implemented with Matlab in order to help with the extensive 

digital signal processing and analysis involved in the research. A snapshot of the GUI is 

depicted in Figure 6.1. The various functionalities of the GUI are grouped into three 

different panels, each of which will be explained in the following paragraphs. 
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The first panel, distinguished with a blue background, performs basic functions such 

as opening and playing a file, zooming in and out of the displayed signal and playing the 

zoomed portion of the signal. Furthermore, this panel is responsible for performing 

various DSP related algorithms such as FFT and STFT and plotting them in a separate 

window, as depicted in Figure 6.2. Finally, this panel is capable of computing the length, 

total energy and the standard deviation of the input signal.  

 

 

Figure 6.1: Graphical User Interface snapshot. 
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Figure 6.2: Show the STFT of the input signal in a separate figure. 

 

The second panel, distinguished with a pink color theme, is responsible for 

performing the various signal processing algorithms used for computing the energy 

envelope variations (i.e. Feature 1), as depicted in Figure 6.3. This panel consists of 4 

major buttons labelled “LPF”, “BPF”, “Signal^2” and “Num of Peaks”. The “LPF” 

button performs low-pass filter with various cut-off frequencies on the input signal. The 

cut-off frequencies are selectable via a drop-down menu. The “LPF” button also plots the 
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result of the input signal passed through the low-pass filter in a new window. Similar to 

the “LPF” button, the “BPF” button performs band-pass filtering on the input signal with 

different cut-off frequencies selectable through a drop-down menu. Also, similar to the 

“LPF” button, a new figure is generated to show the band-pass filtered signal. The 

“Signal^2” button computes the square of the input signal which  is the band-pass filtered 

signal generated by the “BFP” button. Finally, the “Num of Peaks” button calculates the 

number of peaks of the band-pass filtered signal and depicts it in a new figure as shown 

in Figure 6.3.  

 

Figure 6.3: Functionality of the Feature 1 panel. 
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Panel three, which has the color theme of green, can perform the signal processing 

algorithms related to Feature 2, such as power ratio estimation (depicted in Figure 6.4). 

 

 

Figure 6.4: Functionality of the Feature 2 panel. 

 

The power of each of the three phases of the input signal can be computed using the 

“Power of Phase1”, “Power of Phase2” and “Power of Phase3” buttons respectively. The 
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result of each button will be plotted in a new figure. The Rp of Feature 2 can be 

calculated using the “Rp” button.  

 

6.3 Conclusion 

This chapter explained the design and functions of the GUI tool that was designed in this 

thesis. The goal of this thesis is to find unique features which could distinguish between 

the two types of cough sounds. The purpose of the GUI was to provide a graphical user 

interface which contained all the functionalities required to conduct the research 

explained in this thesis. The GUI acted as a container that provided all the necessary 

signal analysis and signal processing algorithms in one convenient location. Furthermore, 

the GUI plotted the input signal after passing through various digital filters in order to 

provide visual feedback to the user and thus make the process easier and more efficient. 
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Chapter 7:  

 

Conclusion 

7.1 Thesis Conclusions and Contributions 

The main objective of this thesis was to differentiate between dry and wet cough. A novel 

Digital Signal Processing (DSP) algorithm was designed in order to extract useful clinical 

information from cough sounds. 

A cough sound database was created using recorded cough sounds obtained from 

various sources. Cough signals were analyzed in both time and frequency domain. Two 

feature extraction algorithms were proposed in order to differentiate cough sounds into 

two classes, dry and wet. The first feature was the number of peaks of the energy 

envelope of the cough signal. The second feature was the power ratio of two frequency 
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bands of the second phase of the cough signal. The feature extraction algorithms were 

verified with highly dry and highly wet cough sounds. 

Using these two features, a significant differentiation between highly dry and highly 

wet cough sounds was observed, as depicted in Figure 5.62. The developed algorithms 

were trained and tested on a cough sound database which was verified by healthcare 

professionals. 

The contributions that were made during this thesis research are the following: 

Contribution 1: Collected cough sound data and built a database of dry and wet 

cough sounds. The nature of the coughs was verified by clinicians. 

Contribution 2: Analyzed cough signals and identified unique features associated 

with dry and wet coughs. 

Contribution 3: Proposed and implemented two feature extraction algorithms 

capable of differentiating dry and wet coughs. The first feature extraction algorithm is 

based on the number of peaks of the energy envelope of the cough signal. The second 

feature algorithm is based on the power ratio of the two frequency bands of the second 

phase of the cough signal. These features were tested using the collected cough sound 

database. This contribution was published in [10].  

H. Chatrzarrin, A. Arcelus, R. Goubran, and F. Knoefel, “Feature extraction for the 

differentiation of dry and wet cough sounds,” in Proc.  IEEE International Symposium on 

Medical Measurements and Applications, Bari, Italy, May 2011, pp. 162-166. 
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Contribution 4: Designed a GUI in Matlab in order to analyze cough signals in time 

and frequency domain. The GUI has various functionalities, such as computing the Fast 

Fourier Transform (FFT), Short-time Fourier Transform (STFT), signal energy and signal 

length of an input signal in addition to playing the input signal and extracting the two 

features. 

  

7.2 Suggested Future Work 

The following is the list of future work: 

 Collect data from real patients with different respiratory diseases. 

 Rate the cough sounds that fall in between the ranges of wet and dry coughs. 

 Work towards detecting changes in cough sound from chronic cough to infected 

cough.  

 Add more feature extraction algorithms to have a better separation between dry 

and wet cough sounds. 

 Add more features to the GUI for future researches, to show clinical information 

such as the frequency of cough, intensity and nature of the cough.  

 Take into account background noise and reverberation, which might impact the 

performance of the cough monitoring systems. 
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