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Abstract 

Surface electromyography (sEMG) is a useful tool for non-invasively measuring the 

electrical activity associated with contracting skeletal muscles. Applications of sEMG 

include ergonomics, controlling powered prostheses, and clinical neuromuscular 

assessment. SEMG signals can become contaminated with various forms of noise 

which can invalidate conclusions drawn from the data. This thesis presents methods 

to detect, identify, quantify, and mitigate various types of contamination in sEMG. 

A least squares adaptive algorithm is evaluated for estimating power line 

interference. Analog-to-digital converter clipping can be detected by searching for 

consecutive extrema in the signal. Quantization noise can be estimated from the 

smallest observed difference between any two values. Amplifier saturation can be 

detected if the sEMG amplitude fails a test for normality. Electrocardiogram 

interference and motion artifact can be quantified using a combination of moving 

averages. A one-class support vector machine is also trained to differentiate clean 

from contaminated sEMG. These methods were evaluated on simulated and real 

sEMG artificially contaminated at controlled signal-to-noise ratios (SNR). Performance 

is expressed as a function of SNR. The objective is to contribute towards the 

development of an open-source user-friendly software tool to automatically assess 

sEMG quality. Future work should investigate other types of contaminants, the 

differentiation between similar contaminants, and the isolation of different 

contaminants in the same signal. 
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1 Introduction 

1.1 Introduction 

The focus of the work in this thesis is to develop and evaluate methods to detect, identify, 

quantify, or mitigate contamination in surface electromyography (sEMG). SEMG is used in a 

variety of applications but the presence of contamination can cause uncertainty or errors in 

the interpretation of the data. This chapter introduces surface electromyography (sEMG) 

along with its current applications and limitations. The scope of the work in this thesis is 

defined, as well as how this work fits into a larger ongoing research project, CleanEMG [1]. 

The aim of CleanEMG is to develop a user-friendly open-source software tool to perform 

automatic signal quality assessment in sEMG. Such a tool would remove the requirement for 

a trained sEMG technician and would enable reliable acquisition of clean sEMG without 

additional costs or complexities. This thesis contributes methods to detect six individual 

signal contaminants in sEMG, as well as a pattern classification approach to differentiate 

clean from contaminated sEMG. The need for this work in the field of sEMG acquisition and 

signal processing is demonstrated and the overall structure, contributions, and results of 

this thesis are outlined. 

1.2 Motivation 

Electromyography (EMG) is the measuring of the electrical activity associated with the 

contraction of skeletal muscles in the body. SEMG is the non-invasive measurement of EMG 

from the surface of the skin. Currently, sEMG is used in ergonomic studies, exercise 

physiology, movement and gait analysis, rehabilitation, biofeedback, powered control of 

prostheses, and clinical neuromuscular assessment. Acquired sEMG signals are susceptible 

to various forms of contamination which can invalidate conclusions drawn from the data. 

Many sources of contamination can be avoided through a proper data acquisition system 
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setup; however, this can be complex and requires considerable training and expertise from 

an sEMG technician. Furthermore, since there currently exists no universally accepted 

method to determine sEMG signal quality, sEMG cannot be reliably collected without the 

presence of such a technician which can incur considerable cost, add a significant time 

requirement, and severely limit the feasibility of sEMG collection. The result is limited 

clinical use of sEMG despite its promising potential [2]. 

 

Uncontaminated sEMG closely resembles random noise (Figure 1-1) and even with proper 

training it can be difficult to know if collected sEMG is clean or contaminated. 

 

Figure 1-1: A typical sEMG signal 

The development of a set of methods to detect, identify, quantify, or mitigate  

contamination in sEMG could reduce the cost associated with acquiring sEMG, remove 

uncertainty surrounding sEMG in a variety of its current applications, thus, improving their 

quality and encouraging clinical use,  and potentially lead to new applications that were not 

previously feasible. 
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1.3 Statement of the Problem 

In this thesis, a set of methods are proposed and evaluated to detect, identify, quantify, or 

mitigate specific types of contaminants in sEMG. Each contaminant (e.g., power line 

interference, motion artifact, or ECG interference) will manifest itself in a different manner 

within the sEMG signal. Contaminant detection is specific to each individual form of 

contamination and so a separate method is required for each type. To assess the 

performance of the proposed methods, each method is evaluated by artificially 

contaminating a clean sEMG signal, allowing for a known ground truth. Both simulated and 

real sEMG are used for performance evaluation. Contamination levels are evaluated on the 

raw signals and not on extracted features which are typically used in a clinical setting. The 

acceptable level of contamination is expected to be application specific. Findings from this 

research can be adapted appropriately to suit each application (e.g., by setting appropriate 

thresholds of contamination). 

 

A second objective of this thesis is to determine if clean and contaminated sEMG can be 

automatically differentiated regardless of contaminant type. This is done by investigating 

the classification of clean versus contaminated sEMG via a one-class support vector machine 

(SVM). In practice, it is unlikely that the type of contamination is known beforehand so this 

approach may be more appropriate for most applications. Contaminants are also unlikely to 

occur in isolation. It is also important to be able detect the presence of contamination in 

general even if the type or types cannot be identified. 

1.4 Contributions 

This thesis provides six main contributions in the area of biosignal quality assessment for 

surface electromyography (sEMG). These contributions are as follows: 
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1. Development and evaluation of a method using a least squares adaptive 

algorithm to identify, quantify, and mitigate power line interference in 

sEMG.  

Our results indicate that power line interference can be effectively detected using a 

least squares adaptive algorithm. The proposed method can accurately quantify and 

mitigate the interference for SNR below 20 dB and for typical length sEMG signals 

(i.e., 5 seconds or more). This performance is superior to that of notch filtering and 

offers much less signal distortion.  

2. A method to identify and quantify analog-to-digital converter clipping for 

typical length sEMG signals. 

Analog-to-digital converter (ADC) clipping can be reliably detected when the ADC 

range is unknown by searching for consecutive minimum or maximum values in the 

signal. Two consecutive extrema are sufficient for 1000-2000 Hz sampling rates. 

Above this, it is beneficial to search for 3 consecutive extrema to reduce the false 

positive rate. 

3. A method to identify, and quantify the quantization noise in an sEMG signal. 

Quantization noise can be quantified successfully for typical length sEMG signals 

(i.e., 5 seconds or more) with up to 16 bits of resolution by measuring the smallest 

difference between any two values in the signal. 

4. A method to identify the potential for amplifier saturation in sEMG. 

Amplifier saturation can be detected by measuring the correlation between the  

Gaussian probability density function and the sEMG time-domain amplitude 

distribution. 
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5. A method using moving averages to quantify and mitigate 

electrocardiogram interference in sEMG. A similar method can also be used 

to quantify motion artifact. 

Electrocardiogram (ECG) interference can be estimated using a combination of 

moving averages with different window lengths. The accuracy of the noise estimate 

is superior to a popular existing method (i.e., template subtraction) at lower SNR 

and exhibits smaller variance. The proposed method is also better suited to 

automation. Performance degrades as SNR increases, however, at high SNR, the 

interference becomes insignificant. A moving average can also be used to quantify 

motion artifact in sEMG up to 10 dB. A modified implementation of Sinderby’s 

method [3] can be used to extend the range of accuracy up to 20 dB. 

6. A method using a one-class support vector machine to differentiate clean 

from contaminated sEMG. 

A one-class SVM can be trained to differentiate clean and contaminated sEMG with 

one or more contaminants. The normalized decision function value from the SVM can 

be used as a confidence indicator in the classification decision. Accuracy will depend 

on the intensity of the contamination, as well as the quality of the clean dataset. 

Motion artifact, power line interference, and ECG interference can be detected with 

high accuracy, although detection is also possible in many cases by visually 

examining the signal or frequency spectrum. Detection of quantization noise, 

clipping, and amplifier saturation is possible even when no contamination is evident 

by visually examining the signal. 

 

Methods developed here were directed at sEMG, however many are likely applicable to other 

biosignals such as electroencephalography (EEG) and ECG. 
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Some of these contributions were disseminated in the following publications: 

• G. D. Fraser, A. D. C. Chan, J. R. Green, D. MacIsaac. "Removal of 

Electrocardiogram Artifacts in Surface Electromyography using a Moving Average 

Method." 2012 IEEE Symposium on Medical Measurements and Applications, 

Budapest, Hungary, pp. 128-131, May 18-19, 2012. 

• G. D. Fraser, A. D. C. Chan, J. R. Green, D. MacIsaac. "Detection of ADC Clipping, 

Quantization Noise, and Amplifier Saturation in Surface Electromyography." 2012 

IEEE Symposium on Medical Measurements and Applications, Budapest, Hungary, pp. 

162-166, May 18-19, 2012. 

• G. D. Fraser, A. D. C. Chan, J. R. Green, N. Abser, D. MacIsaac. “CleanEMG - Power 

line interference estimation in sEMG using an adaptive least squares algorithm.” 33rd 

Annual International Conference of the IEEE EMBS, Boston, Massachusetts USA, 

August 30 - September 3, 2011, pp. 7941- 7944. 

 

Related publications that the author has contributed to are: 

• Nurul Abser, Dawn MacIsaac, Adrian. D. C. Chan, Graham Fraser, James R. Green. 

“Clean EMG: Comparing Interpolation Strategies for Power Line Interference 

Quantification in Surface EMG Signals.” Canadian Medical and Biomedical Engineering 

Conference, Halifax, Nova Scotia, Canada, June 18-22, 2012. 

• Nurul Abser, Dawn MacIsaac, Graham Fraser, Adrian D. C. Chan, James R Green. 

“CleanEMG: Quantifying power line interference in surface EMG signals.” 34th 

Conference of the Canadian Medical & Biological Engineering Society and Festival of 

International Conferences on Caregiving, Disability, Aging and Technology, Toronto, 

Canada, 69825, pp. 1-4, June 4- 9, 2011. 

1.5 Organization of Thesis 

This thesis consists of eight chapters.  
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Chapter 2 serves as a background in sEMG and a review of relevant literature in sEMG 

biosignal quality assessment. 

 

Chapter 3 presents a method to simulate sEMG signals as well as a protocol for collection of 

clean sEMG for evaluation purposes. 

 

Chapter 4 examines power line interference and evaluates an adaptive algorithm in terms of 

its ability to detect, identify, quantify, and mitigate power line interference under certain 

conditions. This algorithm is compared with traditional notch filtering. 

 

Chapter 5 presents and evaluates methods for detecting three types of contaminants 

related to a poor data acquisition system setup, namely clipping, quantization noise, and 

amplifier saturation. 

 

Chapter 6 examines contamination due to the electrocardiogram (ECG) and motion artifact. 

A method for quantifying and mitigating ECG interference is evaluated along with a 

comparison of methods for quantifying motion artifact. 

 

In Chapter 7, the biosignal quality assessment problem is approached from the top down. 

Signals are processed by a support vector machine (SVM) which is trained to detect any 

contamination in the sEMG. The performance of this classification is evaluated for the six 

types of noise examined in this thesis, as well as with varying signal-to-noise ratios (SNR). 

 

Chapter 8 presents a summary of contributions and provides recommendations for future 

work in sEMG signal quality assessment. 
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2 Literature Review 

2.1 Introduction 

This chapter presents a background of relevant research in biosignal quality analysis using 

digital signal processing techniques, with particular emphasis on surface electromyography 

(sEMG). It serves to provide information regarding sEMG, summarizes previous research on 

biosignal quality analysis, and identifies gaps that will be addressed by the work presented 

in this thesis. 

2.2 Principles of Electromyography 

Electromyography (EMG) refers to the measuring of the electrical activity associated with 

skeletal muscle contractions. All muscles in the body are composed of cells organized to 

form muscle fibres, each of which are innervated by the axon of a motor neuron (and in 

rare cases, multiple motor neurons [4]) from the peripheral nervous system (Figure 2-1). 

The innervation zone of a muscle fibre is a given region (typically a few millimetres in 

length) where the fibre is innervated by axons from a given motor unit [5]. These motor 

neurons are stimulated by the motor system of the central nervous system, resulting in 

action potentials that travel along the axon and subsequently initiate action potentials in 

muscle fibres. These action potentials travel along the muscle fibres and cause the distance 

between cells that form the muscle to shorten, resulting in a muscle contraction.  
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Figure 2-1: Innervation of muscle fibres by a motor neuron to form a motor unit 

Each motor neuron will produce a train of action potentials referred to as a single-fibre 

action potential train (SFAPT). All the muscle fibres innervated by a single motor neuron 

along with the motor neuron itself are referred to collectively as a motor unit (MU). The 

summation of all the SFAPTs in a MU is called a motor unit action potential train (MUAPT). 

The more MUs that fire, and the more often they fire, the higher the contractile force of the 

muscle will be [6]. The observed interference pattern, resulting from the superposition of 

MUAPTs under the electrode pickup area, is the EMG signal. The EMG signal is also referred 

to as the myoelectric signal (MES). 

2.3 Applications of Electromyography 

EMG was initially used to monitor abnormal neuromuscular conditions in patients; however, 

its applications have widened since the discovery of its ability to quantify muscle activity 

levels [6]. EMG applications now include ergonomic studies, exercise physiology, movement 

and gait analysis, rehabilitation, biofeedback, and control of powered prostheses [6]. 

 

Ergonomic studies have been used to identify problems with physical loading on the body 

when performing strenuous tasks such as heavy material handling in the workplace [6]. Due 

to the inability to observe force loadings and internal force distributions on the body, EMG 



 10

lends itself well to providing this additional information. Of particular note is the use for 

postural investigation as these problems can arise when a person is at rest under normal 

musculoskeletal loading conditions [6]. Load estimation and fatigue studies are often 

employed as part of ergonomics. The moving average of the rectified value of an EMG signal 

is related to the muscular force of an individual, although the force-EMG relationship can 

differ between patients [6]. Muscular fatigue can also be identified via EMG either by 

observing a decrease in the mean/median frequency of the power spectrum [7], or by a 

decrease in the average rectified value of the raw signal (although controversy exists with 

this approach [8]). Fatigue can be a useful indicator of problems related to ergonomics. 

 

Psychological stress has also been shown to manifest itself in increased EMG activity, 

particularly in the trapezius muscle [6]. This suggests it may be possible to use EMG as an 

indicator for elevated stress while performing a task. 

 

EMG has been applied to determine sequences of muscle activation during different 

exercises such as walking, speed walking, and running [6]. Analysis has identified agonist 

and antagonist muscles during different activities as well as correlating muscle-fibre 

conduction velocity in the vastus lateralis of the quadriceps with sprinting capability [6]. 

EMG has also shed light on the science of weight-training, showing that MU firing rate and 

recruitment are the determinants of muscle force. A variance in the firing threshold of MUs 

is what differentiates highly-conditioned strength athletes and amateurs with similar levels 

of muscle hypertrophy [6]. 

 

With respect to weight training-related injuries, EMG has been applied to determine 

musculoskeletal loadings during different exercises prone to injury. This information can 

then be used to determine safe and proper ways to perform these exercises while 

minimizing risk to the body [6]. 



 11

 

EMG has been used successfully in gait analysis by determining the sequence of muscle 

activation in normal and abnormal gaits [6]. 

 

The EMG of a muscle or muscle group during a rehabilitation phase allows the monitoring of 

the motor control and, if required, the retraining of those muscles via biofeedback [6]. 

Muscle retraining can be used to both increase or decrease muscle activation if required. 

 

Perhaps one of the most significant applications of EMG is to the control of powered 

prostheses. If a limb is amputated, a prosthetic limb can be fabricated and attached in place 

of the amputated limb. The EMG from either residual muscles, in the case of a partial 

amputation, or alternative muscles, in the case of a complete amputation, is used as a 

control signal to the prosthesis. EMG information representing the signal intensity and MU 

firing rate are extracted from the signal and used to make control decisions [6]. Different 

strategies exist for interpreting control parameters and making control decisions. 

2.4 Electromyography Data Acquisition 

2.4.1 Needle vs. Surface Electromyography 

 

Figure 2-2: Typical EMG data acquisition setup 

EMG data acquisition consists of a number of stages (Figure 2-2). The EMG signal is 

measured from the patient’s muscles via electrodes. An EMG signal can be recorded from a 
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subject invasively using needle electrodes, or non-invasively using surface electrodes [9]. 

Needle electrodes will record from fewer muscle fibres than surface electrodes, offering 

greater spatial selectivity than surface electrodes. Needle electrodes may be more 

susceptible to motion artifact even when the subject appears stationary due to small 

movements within the muscle tissue [9]. On the other hand, surface electrodes are easier 

to apply than needles, more suitable to patient comfort, and carry a much smaller risk of 

infection or laceration. EMG collected from surface electrodes is susceptible to the low-pass 

filtering properties of the skin and fat tissue layer between the muscle fibres and surface 

electrodes [10]. EMG recorded with surface electrodes is often referred to as surface 

electromyography (sEMG). Due to its non-invasive nature, sEMG is often the preferred 

method of signal acquisition unless increased spatial selectivity is required, in which case 

needles should be used [9]. This thesis is focused solely on sEMG. 

 

Factors such as electrode placement, orientation, electrode configuration, and electrode 

type can influence the sEMG being measured. The SENIAM project (Surface 

Electromyography for the Non-Invasive Assessment of Muscles) is a compilation of research 

to serve as a guide in best practices for reliable, repeatable sEMG acquisition [11]. 

2.4.2 Surface Electrodes 

SEMG electrodes will either be dry or gelled. Dry electrodes (e.g., stainless steel, silver, 

gold, brass, or anodized aluminum [12]) are in direct contact with the skin (i.e., no gel in 

between) and are used when gelled electrodes are not feasible due to size or geometry 

constraints such as with electrode arrays [13]. Dry electrodes are also used for long-term 

recording as the electrolytic gel can dry up in a matter of hours [14]. Dry electrodes will 

have higher impedances than gelled electrodes [13]. Hence, dry electrodes generally 

provide poorer signal quality and are more susceptible to motion artifact. 
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Gelled electrodes are coated on the surface with an electrolytic gel. The purpose of the gel 

is to facilitate transmission of current from the muscle fibre to the electrode via the skin 

which ensures minimal noise. The most common type of gelled electrode is silver-silver-

chloride (Ag-AgCl, Figure 2-3) [13]. Gelled electrodes can be disposable or reusable; 

however disposable electrodes are common as they are light and are fitted with a highly-

adhesive backing to minimize noise associated with electrode movement [13]. 

 

Figure 2-3: MVAP-II Ag-AgCl Electrodes. 

Electrode shape and size can vary, however circular electrodes 8 to 10 mm in diameter are 

the most common [6] [11]. 

2.4.3 Electrode configurations 

Three main types of electrode configurations for sEMG measurement are unipolar, bipolar, 

and double differential. Unipolar measurements are taken from a single electrode with 

respect to a reference (ground) electrode placed on an electrically inactive site on the body, 

usually above a bony area. A bipolar configuration uses two recording electrodes and one 

reference electrode. It measures the difference between the two recording electrodes. The 

double differential configuration measures the difference between two adjacent bipolar 

electrode configurations where the centre electrode is common. SEMG is usually recorded 

using a bipolar configuration aligned with the muscle fibres and away from the innervation 

zone and tendons with an inter-electrode distance of the smaller of 20 mm and ¼ the 

length of the muscle fibre [11]. Other electrode configurations offer advantages in terms of 

ease of recording and muscle selectivity [15–17]. The electrode configuration will also apply 
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a transfer function such that sEMG recorded under different configurations are generally not 

directly comparable [2]. 

2.4.4 Amplifier 

Amplification is essential in sEMG signal acquisition to improve the signal-to-noise ratio 

(SNR) [13]. A significant advantage to using a differential (bipolar) or double differential 

electrode configuration is to leverage the common mode rejection capability of the 

differential amplifier. Common signals to both electrodes such as those due to noise or deep 

muscle fibres are rejected [13]. The common mode rejection ratio (CMRR) for reliable sEMG 

acquisition should be at least 95 dB [9]. 

 

An amplifier is often separated into two components: a pre-amplifier and an amplifier (or 

power amplifier). The pre-amplifier is often as close to the electrodes as possible (and in 

some cases, contained within the electrodes) to ensure minimal contamination. The pre-

amplifier will provide a small amount of voltage amplification and pass the signal to the 

amplifier which provides more substantial amplification. 

 

SEMG is typically in the range of 6 mV peak to peak [13]; therefore, a gain of at least 1000 

is recommended [9], although a higher gain may be needed for low amplitude signals [9]. 

The majority of the sEMG bandwidth occurs between 10 Hz and 500 Hz [9]. Other 

frequencies can be filtered out using amplifier settings although, notch filtering (e.g., for 60 

Hz power line interference) is not recommended as it can cause loss of useful sEMG signal 

information [9]. 

 

The input impedance of the amplifier needs to be considerably higher than the skin 

impedance to avoid distortion due to input loading [13]. For Ag-AgCl electrodes, an input of 
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at least 10 MΩ is recommended [13]. Dry electrodes will result in a much larger skin 

impedance and can require an amplifier input impedance as high as 1 GΩ [13]. 

2.4.5 Analog-to-Digital Converter 

An analog-to-digital converter (ADC) is required to sample and quantize the analog input 

from the amplifier. The ADC should have sufficient bit resolution to accurately represent the 

signal, and it should have a sufficient sampling rate to represent the entire signal 

bandwidth. A resolution of 12 bits is adequate for most applications [9]. 

 

The sampling rate should be set to at least twice the bandwidth of the signal as given by the 

Nyquist sampling theorem [18]. For sEMG this is at least 1000 Hz but often higher sampling 

rates are used to account for the finite roll-off of the anti-aliasing filter and avoid signal loss 

[9]. 

2.4.6 Skin Preparation 

Proper skin preparation in sEMG acquisition is essential to minimize electrode movement 

and to reduce skin impedance [9]. Skin preparation is more significant if dynamic 

contractions are to be used which can increase the risk of motion artifact [9]. As discussed 

below, skin preparation consists of removing the hair, cleaning and abrading of the skin, 

and securely applying the electrodes as specified in [11]. 

 

Moderate to excessive amounts of hair can compromise the adhesive abilities of the 

electrodes, increase the skin-electrode impedance, and increase the potential for motion 

artifact. It is recommended to shave the area of the skin which will be in contact with the 

electrodes [11]. 
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The skin should be cleaned with alcohol and then allowed to dry as a wet surface could 

inhibit electrode adhesion [11]. The skin should then be abraded by a fine sand paper or a 

gauze pad with abrasive gel [9]. A moderate amount of force should be used here to 

remove the outermost layer of the skin (i.e., stratum corneum) as it contributes most to the 

skin impedance [19]. Abrading the skin has also been found to reduce the skin stretch 

reflex which is a significant contributor to motion artifact [20]. After skin abrasion, the skin 

should have a light red appearance [9]. 

 

The skin impedance should be below 30 kΩ and ideally below 10 kΩ for best results [9]. If 

skin impedance is too high, this may warrant another round of skin preparation and the 

application of new electrodes [9]. It should be noted that skin impedance will decrease with 

time after application of electrodes and can take 2-3 minutes to stabilize [21]. Note that 

skin impedance is frequency dependent and tends to be highest for frequencies below 10 Hz 

and slightly lower for frequencies up to 100 Hz [22]. Impedance measurements can vary 

depending on the frequency of the impedance testing device. Proper skin preparation will 

drastically decrease the low frequency impedance of the skin [22]. 

2.4.7 Positioning of Electrodes 

The precise positioning of the electrodes will vary depending on the muscle being recorded. 

In general, electrodes should be placed on top of the muscle being measured and in the 

direction of its muscle fibres [11]. For differential recordings, the muscle innveration zone 

should be avoided [6]. The action potentials generated by this motor unit will travel along 

the muscle fibre in either direction and therefore, differential electrodes placed on top of the 

innervation zone will likely not measure the true superposition of action potentials 

constituting the MUAPTs. It has been shown that sEMG amplitude is considerably smaller 

when measured from the innervation zone [5]. To avoid measuring from the innervations 

zone, guidelines in [11] should be followed. 
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2.5 Sources of Contamination in Surface Electromyography 

A number of sources of contamination exist which can compromise the signal quality in 

sEMG. Contamination occurs when electrical potentials arising from sources other than that 

being measured are captured by the bioinstrumentation equipment, or if there is a problem 

with the equipment itself. Sources of contaminants include power line interference [9], 

baseline wander [9], electrocardiogram (ECG) artifact [9], electrode-induced motion artifact 

[3], skin-stretch-induced motion artifact [23], motion artifact due to cable-movement [24], 

crosstalk from adjacent muscles [3], ADC-related clipping and quantization noise, and 

amplifier saturation. These contaminants can be characterized as either interference from 

an unwanted signal, measurement-induced artifact due to a problem with how the signal is 

being measured, or problems with the instrumentation setup as shown in Table 2-1. 

Table 2-1: SEMG contaminants classified as interference, measurement artifact, or 
instrumentation problem 

Contaminant Type 

Power line Interference 

ECG Interference 

Crosstalk Interference 

Radio Frequency Interference 

Baseline wander Measurement artifact 

Motion artifact Measurement artifact 

Electrode Lift Measurement artifact 

ADC clipping Instrumentation problem 

Quantization noise Instrumentation problem 

Amplifier saturation Instrumentation problem 

 

Power line interference is caused by capacitive coupling of the acquisition equipment to the 

power line [25]. Ampere’s Law states that a time-changing magnetic field can induce 



 18

current flow and vice versa. A stray electric field can also directly induce current flow. 

Intense electric and magnetic fields from the power line (50 Hz in Europe or 60 Hz in North 

America) can induce current flow in EMG recording equipment which will manifest as 

unwanted changes in potential. 

 

ECG artifact occurs when EMG is measured from the torso, in close proximity to the heart 

[26]. The PQRST waves commonly seen in the ECG recording will contaminate the EMG 

signal. 

 

Crosstalk in sEMG occurs from sEMG signals originating from muscles other than that (or 

those) of interest. As much as 30% of the sEMG detected directly over the muscle fibres can 

also be detected at nearby, but otherwise inactive, sites on the body [27]. 

 

Radio frequency interference is due to electromagnetic radiation, often due to 

telecommunications equipment, which can be picked up by the recording equipment. 

 

Baseline wander occurs when the signal baseline changes over time. This can occur as a 

result of poor electrode contact either due to a malfunctioning electrode or excessive sweat 

or hair preventing proper adhesion. This improper contact causes a time-varying skin 

impedance which appears as a low frequency change in potential (less than 1 Hz) [28]. 

 

Motion artifact occurs when there is motion of either the electrode or cable, or stretching of 

the skin. Electrode motion will cause an artifact similar to baseline wander. This occurs as 

the half-cell potential of the electrode-electrolyte interface is disturbed due to motion [20]. 

This disturbance causes a charge redistribution at the electrode-electrolyte interface; the 

artifact occurs as a result of the charge attempting to re-establish an equilibrium. This 

charge redistribution is more significant for polarizable electrodes. As Ag-AgCl electrodes 
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are non-polarizable, they tend to be robust to electrode-induced motion artifact [20]. A 

more significant cause of motion artifact for non-polarizable electrodes is due to the skin-

stretch [20]. When an electrode is either pulled or pressed upon, the skin beneath will 

stretch based on location and amount of adipose tissue. Larger amounts of stretch will 

induce more significant artifacts [20]. Skin abrasion should be performed as it reduces the 

skin potential between the outermost layers which, in turn, will reduce the amount of skin-

stretch-induced motion artifact that can occur [20]. 

 

Motion of the electrode cables or nearby movement from other sources can also induce 

motion artifact in an sEMG signal. Such movement can cause a triboelectric effect where 

static electricity discharge induces current flow in the recording equipment [29]. This effect 

can be reduced by proper cable design and the use of active electrodes with pre-amplifiers 

located on the electrode. 

 

Electrode lift is when the electrode does not make a good contact and begins to lift off the 

skin either due to a failure of the electrode to adhere to the skin, or due to excessive 

tugging on the electrode. This results in a poor conduction of current between the skin and 

electrode. 

 

Clipping and quantization noise are both results of digitizing an analog signal with an ADC. 

The ADC can only represent a limited number of discrete values within its given range. 

Values outside this range are clipped and values within this range are quantized where the 

round-off error is known as the quantization error or quantization noise. 

 

Amplifier saturation occurs when the amplifier is operating outside its linear range [30]. This 

range will be dictated by the amplifier gain and the maximum output voltage, or saturation 

voltage. 
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2.6 Biosignal Quality Analysis 

2.6.1 Categories of Biosignal Quality Analysis 

Quality analysis of sEMG, or any biosignal can be broken down into the following four 

categories: 1) detection, 2) identification, 3) quantification, and 4) mitigation. Detection is 

the simplest stage as it consists of determining only if contamination is present in the 

signal. This is useful in biosignal quality analysis as it can serve as an indicator that an 

sEMG is contaminated and should not be used. 

 

Identification often follows from detection and serves to isolate what type (or types) of 

contamination are present in the signal. This information is more useful than detection alone 

as an sEMG operator may be able to correct the problem if the specific source is known. 

 

Quantification may follow from either detection or identification. Here, the amount of 

contamination is measured and expressed numerically. This provides the operator with the 

ability to make a decision to accept or reject a signal based on the amount of contamination 

present. In many cases, contamination is always present (e.g., power line interference, 

motion artifact, quantization noise) but can be safely ignored at low levels. In some cases, 

quantification is possible but identification is not. The amount of contamination can be 

estimated but the specific source of said contamination is not identifiable. This is adequate if 

one intends to quantify contamination as a whole and is not interested in what individual 

types are present. 

 

The last category of sEMG signal quality analysis is mitigation and it is often the most 

difficult to perform. To perform mitigation, some or all of the contaminant is removed while 

preserving the clean sEMG signal as much as possible. If mitigation is possible, a 

moderately or severely contaminated signal can be rectified without having to acquire new 
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data. Mitigation usually follows from quantification, but not necessarily from identification. 

Mitigation may be possible but not warranted if it results in more signal degradation than 

not attempting mitigation at all. This can be the case when the level of signal contamination 

is low. 

 

Although quantification and mitigation are useful, it is often sufficient if detection and 

potentially identification are performed. This will indicate a problem in the data acquisition 

setup that the operator should be able to easily rectify and then the data collection can be 

repeated. 

 

The biosignal quality assessment can be approached from two perspectives. A bottom-up 

approach involves examining the signal for individual contaminants in isolation using 

individually tailored identification (or quantification or mitigation) methods. This information 

is then combined to make a more informed analysis. For instance, detection of ECG 

interference could also be identified as motion artifact as both can appear as lower 

frequency components. Both types of contamination identified together may warrant 

further, more sophisticated methods to differentiate the two. Quantification of each 

contaminant would then be performed and, if possible, mitigation. The end result would be 

an overall assessment of the signal where each contaminant is detected, identified, 

quantified, or mitigated in isolation. Alternatively, a top-down approach can be employed 

which involves examining the signal as a whole for any deviation from a typical clean sEMG 

signal using statistical analysis or pattern classification techniques. This approach can 

facilitate the detection stage (and can provide a rough estimate of quantification), but does 

not need to be tailored to a single contaminant. 
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2.6.2 Biosignal Quality Analysis in Surface Electromyography 

Signal quality analysis in sEMG is difficult as a typical sEMG signal will appear as random 

noise (and is often modeled as such [31]). It is difficult to visually discern contamination in 

sEMG except when the level of contamination is extreme. There is no typical time-domain 

waveform shape in sEMG such as the PQRST waveform in the electrocardiogram (ECG). The 

sEMG power spectrum does have a general shape [31]; however, significant variability can 

exist between different subjects, muscles (types, sizes, fibre types), contraction levels, and 

contraction types (static or dynamic). More sophisticated methods of quality assessment are 

thus required. 

 

Although related work has been done on the various categories of biosignal quality analysis, 

no other works have looked at biosignal quality analysis as a whole in the context of sEMG. 

In [32], the authors evaluate a method for detecting contaminated segments of esophageal 

EMG. This method consists of extracting four features from the EMG, namely the maximum 

area between two consecutive zero crossings, the skewness of the signal amplitude 

distribution, the signal-to-noise ratio (SNR), and the spectral deformation. Measuring the 

deviation in feature values can lead to the detection of signal contamination with good 

confidence. This study was performed only on diaphragmatic EMG and the types of 

contamination in the signals were unlabelled (i.e., identification was not performed). 

Furthermore, the gold standard was the visual classification performed by analysts which 

can be subjective. The results from this paper suggest a potential method of contamination 

detection only, albeit when detection via visual inspection is also possible. 

 

In [3], the authors address the detection and identification, and quantification categories by 

developing computer algorithms to objectively quantify contamination in diaphragmatic 

EMG. They evaluate four indices: 1) a signal-to-motion artifact ratio (SMR) to quantify 
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motion artifact; 2) a ratio describing the peak of the power spectrum to ensure EMG is 

being recorded (instead of noise); 3) a signal-to-noise ratio where noise, in this case, is 

assumed to have a flat power spectrum and is contributed by a variety of unknown sources; 

4) an index of spectral deformation to detect crosstalk or non-QRS ECG interference. These 

methods were evaluated on simulated EMG power spectra contaminated with simulated ECG 

and motion artifact power spectra, as well as on real signals. The evaluation of simulated 

signals was to determine relationships between the various indices and the levels of 

contamination in the signal. The authentic signals were contaminated with motion artifact, 

EMG interference from the esophagus, and ECG interference. Correlations between the 

amount of noise in the signal and the computed indices were calculated. A number of 

assumptions are made to this end (e.g., the EMG power spectrum is linear for low 

frequencies, noise has uniform power and is unaffected by EMG at high frequencies). The 

paper concludes by presenting acceptable ranges for the four indices and by claiming their 

values can quantify the amount of contamination in diaphragmatic EMG. 

 

Detection is also examined in [33] within the context of monopolar multichannel sEMG. Each 

signal is characterized by two non-overlapping-windowed standard deviations computed 

with different window lengths. Thresholds are chosen which classify signals as very poor, 

slightly poor, or good, in accordance with the visual classification of two expert operators. 

As no dataset partitioning (training/testing) was used in determining the threshold, this 

method is likely biased and prone to overfitting the sample data. Nevertheless, the results 

suggest a possible metric for detecting contamination in monopolar multichannel sEMG. 

 

The work presented in [34] also looked at detecting noisy channels in multichannel sEMG. 

SEMG was separated into training and testing databases to avoid bias. Datasets consisted of 

sEMG from a variety of subjects, contraction types, muscle groups, and force levels. Three 

features were extracted from the data and a multivariate outlier detection method was 
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applied. Performance was evaluated against a gold standard derived from the classifications 

of three human operators. High accuracy was reported, although the method assumes that 

at least 75% of the recorded channels are uncontaminated. No attempt was made to 

quantify the degree of sEMG contamination. As such, it is unknown whether the 

contaminated channels were severely contaminated or mildly contaminated. If operators 

were able to visually discern the contamination, likely the contamination was moderate to 

severe and the question can be raised as to if this method is able to detect contamination 

that is not visually discernible. The authors also note that this method may not be 

applicable for smaller muscle groups, or sEMG collected without a high-density electrode 

array. 

 

The works presented above have certain limitations which are addressed in this thesis. In 

[32] and [34], only contamination detection is performed and results are based on visual 

classification which is prone to inter-expert variability and is insensitive to low levels of 

contamination. By artificially inserting known quantities of contamination, this thesis may 

include signals with measurably varying degrees of contamination and is not limited to 

severely contaminated signals. 

 

In [32], the issue of detection when visual inspection is inconclusive (i.e., smaller amounts 

of interference) is not addressed. This issue is addressed further in this thesis, along with 

the identification, quantification, and mitigation categories. In addition, sEMG recorded from 

different sites of the body are considered. 

 

In [3], identification or quantification of individual types of contamination (i.e., motion 

artifact or ECG, but not both) is not possible as they both impact the SMR. Furthermore, 

other EMG from other muscles are not considered in the study. These limitations are 
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addressed in this thesis by including sEMG from a variety of muscles and attempting to 

quantify and, in some cases, mitigate individual contaminants.  

 

Both [33] and [34] are limited to electrode array data and present no method of 

contaminant quantification. Multichannel recordings are used to search for outliers which 

would not be applicable to single channel recordings or low density arrays. This thesis will 

use bipolar recordings collected from a single channel which is less limiting as the results 

could easily be extended to arrays. 

2.7 Summary 

Signal analysis and interpretation of results are still obstacles in sEMG [6]. There currently 

do not exist any universally accepted methods or criteria to quantify contamination in sEMG 

[3]. Many types of signal contaminants exist and each one manifests in a different manner. 

Currently, a proper background in sEMG signal acquisition is critical to ensure an acquisition 

setup is satisfactory, and that signal contaminants are at acceptable levels. SEMG setup and 

collection is normally performed only by a trained sEMG technician due to the 

aforementioned complexities with its acquisition. Untrained individuals attempting to acquire 

and analyze sEMG will likely encounter signal contamination due to an improper setup and 

be unaware of its presence. As such, development of an automatic method of sEMG quality 

assessment is warranted [1]. 
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3 Surface Electromyography Data 

3.1 Introduction 

Both simulated and real sEMG are used to develop and evaluate the artifact detection 

methods in this thesis. This chapter first presents a method for simulating sEMG. This 

method is used to generate large datasets consisting of signals which are guaranteed to be 

contaminant free. Second, a protocol is defined to support the repeatable reliable acquisition 

of real sEMG signals which are sufficiently free of contamination. Data acquired with this 

protocol can serve as examples of real clean sEMG and the signals collected were manually 

verified to ensure their quality. The simulated and real clean sEMG can then be artificially 

contaminated and the SNR will be known for evaluation purposes. Research in this thesis 

was approved by the Carleton University Research Ethics Board. Five volunteers with no 

known neuromuscular disorders were selected and informed consent was provided 

(Appendix C:). Data collection procedures are based on the guidelines from [11]. 

3.2 Surface Electromyography Simulation 

Each biosignal quality assessment method presented in this thesis is first evaluated with 

simulated sEMG as this provides a much larger dataset of signals guaranteed to be clean 

with which the method can be tested. SEMG data are simulated by passing white Gaussian 

noise through a shaping filter [31] at a sampling rate of 1 kHz although the sampling rate 

can vary depending on the method being tested. The shaping filter transfer function is given 

in (3-1). 

 ������� = 	
��
�����	������	��
 (3-1) 

In (3-1), �� and �� are parameters which adjust the shape of the EMG spectrum and � is the 

gain factor. Four shaping parameter ordered pairs were chosen as shown in Figure 3-1 
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based on [6]. Typically, these shaping parameters are varied in time to support the 

nonstationarity of the EMG signal; however, we use short signal durations for our 

simulations (less than 5 seconds) so that stationarity can be reasonably assumed, especially 

for isometric, isotonic contractions. The gain factor � was adjusted to normalize the power 

of the sEMG signal to 1. 

 

Figure 3-1: Effect of parameters on simulated sEMG power spectral density as based on [6] 

Other models of simulated sEMG were not considered in this work. More sophisticated 

models for simulating sEMG exist, however they would still not represent the same 

variability as in real sEMG. We use simulated sEMG to produce large datasets which would 

not be feasible if only real sEMG were used. We then ensure results are consistent with real 

sEMG and a much smaller dataset. It is unlikely that using other methods of simulated 

sEMG would have any significant impact on results. 

3.3 Data Collection Equipment 

SEMG data were collected using pre-gelled Ag-AgCl surface electrodes (MVAP-II, MVAP 

Medical Supplies Inc., Newbury Park, CA, USA). The electrodes were circular and 10 mm in 
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diameter. The electrodes were arranged in a bipolar configuration with an inter-electrode 

distance of 20 mm in adherence with the guidelines from [11]. 

 

The signals obtained via the bipolar electrodes were amplified (Model 15A54 Grass amplifier, 

Grass Telefactor, West Warwick, RI, USA) and then sampled (12-bit, PCI-6071E, National 

Instruments, Austin, TX, USA). The digitized signals were processed offline with Matlab 

(Mathworks, Natick, MA, USA). 

3.4 Skin Preparation 

The following skin preparation was performed prior to applying electrodes to each active 

recording site for each volunteer. 

1. Determine the location of the electrode contact area using a tape measure and the 

guidelines from [11] for the particular muscle being recorded (see Section 3.5). Mark 

the electrode centers on the skin using a marker. 

2. Clean the contact area at the recording site on the skin with alcohol swabs and let 

dry completely (approximately 20 seconds). Moisten a gauze pad with a moderate 

amount of Nuprep Skin Prep Gel (D.O. Weaver and Co., Aurora, Colorado, USA) and 

spread the gel over the recording site. Using a circular rubbing motion, abrade the 

skin using moderate force using a dry portion of the gauze pad for approximately 10 

seconds or until skin is dry and slightly red/pink. 

3. If the marks on the skin representing the electrode locations were removed in the 

process, mark them again. 

4. Remove electrodes from adhesive backing and apply EC2 electrode cream (Grass 

Telefactor West Warwick, RI, USA) to the contact area on the electrode. Place the 

electrodes on the skin on the marked locations and attach the electrode leads. The 

use of EC2 electrode cream serves a similar purpose as the electrolyte gel on the 
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electrodes. It is used here to mitigate any issues that may occur if the electrolyte gel 

has dried out. 

5. Wrap the electrode wires to the skin to prevent tugging using Life sports tape 

(Shoppers Drug Mart, Toronto, ON, Canada). 

6. Perform an electrode impedance test using the Grass amplifier electrode impedance 

test function [35]. If the impedance is greater than 10 kΩ then remove electrodes 

and perform the skin preparation again. Note that a threshold of 10 kΩ was chosen 

from [9], although 5 kΩ or less was observed to be optimal. 

3.5 Muscle Contractions and Landmarks 

Three muscles (biceps, quadriceps, and tibialis anterior) were chosen for recording such 

that a range of muscle sizes (in terms of number of fibres) were covered. The electrode 

placements and a description of the contractions are listed in Table 3-1, Table 3-2, and 

Table 3-3. These placements are based on the guidelines from [11]. 
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Table 3-1: Landmarks and Contraction Description for Biceps Brachii 

Muscle Biceps Brachii 

Starting Position Sitting on a chair with the elbow flexed at a right angle and the 

dorsal side of the forearm in a horizontal downwards position 

(supination). The palm should be pressed against the bottom of a 

table or desk. 

Electrode 

Location 

On the line between medial acromion (highest part of shoulder 

bone) and cubital fossa (frontal elbow joint) at 1/3 the distance 

from the cubital fossa (see Figure 3-2). 

Electrode 

Orientation 

Parallel to the line between medial acromion and cubital fossa. 

Reference 

Electrode 

On wrist bone. 

Contraction From starting position, press against supinated forearm in direction 

of extension. 

 

 

Figure 3-2: Contraction starting position and electrode placement for the biceps brachii as 
based on [11] 
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Table 3-2: Landmarks and Contraction Description for Rectus Femoris 

Muscle Quadriceps femoris (rectus femoris) 

Starting Position Sitting on a table with legs hanging over the edge. One leg should be 

hanging right in front of the table leg and is fastened to the table by a strap 

around the ankle. The knee joint is at 90 degrees and the foot is above the 

ground (see Figure 3-3). 

Electrode Location On the line 50% of the distance between the anterior superior iliac spine 

(front of hip bone) and the superior part of the patella (see Figure 3-3). 

Electrode Orientation In the direction of the line between the anterior superior iliac spine (front of 

hip bone) and the superior part of the patella. 

Reference Electrode On the malleolus (ankle). 

Contraction Attempt to extend the leg away from the table without moving the thigh or 

the hips. The edge of the table can be held with the hands for stability. 

 

 

Figure 3-3: Contraction starting position and electrode placement for the rectus femoris as 
based on [11] 
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Table 3-3: Landmarks and Contraction Description for Tibialis Anterior 

Muscle Tibialis anterior 

Starting Position Sitting on a table with legs hanging over the edge. One knee should be bent 

such that the bottom of the foot is pressed against the table leg.  The foot is 

fastened to the table with a strap around the ball of the foot. The foot does 

not make contact with the ground (see Figure 3-4). 

Electrode Location 1/3 the distance between the proximal tip of the fibula and medial malleolus 

(see Figure 3-4). 

Electrode Orientation In the direction of the line between the tip of the fibula and medial 

malleolus. 

Reference Electrode On ankle bone. 

Contraction Start with the foot at full eversion and plantarflexed. Attempt to invert and 

dorsiflex the foot against resistance. 

 

 

Figure 3-4: Contraction starting position and electrode placement for the tibialis anterior as 
based on [11] 

 

Muscle contractions were chosen to be isometric (constant length) and isotonic (constant 

force) to minimize motion artifact and ensure consistency between recordings. Three levels 
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of force (20%, 40%, and 60% of the maximum voluntary contraction (MVC)) were chosen 

for each volunteer. For each subject and muscle, three MVC calibration recordings are 

performed where the subject contracts at his/her maximum for three seconds. Counter-

resistance was provided using the bottom of a desk for the biceps, and a Velcro strap for 

the rectus femoris and tibialis anterior. For each of the three MVC recordings, the MVC is 

computed as the maximum of the root mean square (RMS) of the signal using a sliding 

window with a length of 1 second. If L is the number of samples corresponding to a window 

length of 1 second (� = ���� for sampling rate ��) and x[n] is the sEMG signal then this 

computation is realized as shown in (3-2) where * is the convolution operator. 

 ��� = max�� ![#] ∗ &[#]' (3-2) 

 &[#] = ( �) ,			0 ≤ # ≤ � − 10,			n	1	0	or	n	4	L-1 
The MVC value that is used thereafter is the maximum of the three MVC calibration 

recordings. 

 

For contractions at fractions of the MVC, a bar graph is displayed on the screen (Figure 3-5) 

to provide feedback to the subject regarding their contraction level. Two horizontal lines are 

drawn, indicating the region of 5% tolerance on that MVC value. The subject is instructed to 

try to keep the bar in that range. The colour of the bar changes from red to green to blue if 

the bar is above, within, or below the target range, respectively. The bar graph is updated 

approximately every 10 ms and computes the instantaneous contraction level as the RMS 

from the most recent 1 s of the signal. 
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Figure 3-5: MVC feedback bar graph 

3.6 Data Collection Procedure 

For each volunteer, the procedure consisted of recording five trials for three different 

muscles at three different fractions of their maximum voluntary contraction (MVC) (i.e., 

20%, 40%, and 60% MVC). Initially, the MVC level must be determined for each of the 

three muscles (this MVC calibration trial is referred to as trial 0) as specified in the previous 

section (Section 3.5). This is then followed by 5 contraction trials. Each trial, including the 

MVC calibration trial (trial 0) involved three recordings. Each recording is made at a 

different fraction of the MVC for the contraction trials. In the case of trial 0, the three 

recordings are all at 100% MVC and the maximum over all three recordings is taken as the 

overall MVC. Each recording consisted of four recording parts (referred to here as 

measurements) consisting of: 1) an impedance measurement, 2) a rest measurement, 3) a 

contraction measurement, and 4) a second rest measurement. This classification of 

measurements, recordings, and trials is summarized in Figure 3-6. 
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Figure 3-6: Hierarchy of terminology for sEMG MVC dataset (a) and contraction 

dataset (b). 

Each measurement was examined for validity by ensuring the spectrum shape was typical of 

sEMG with no low frequency or power line frequency spikes, that the signal amplitude fell 

within the range of the ADC (no clipping or quantization noise), and that the rest recording 

was very low amplitude with no baseline wander. If any of these conditions were not met, 

the measurement was repeated. The file format for saving the files was 

“s<subject_num>m<muscle_num> t<trial_num>l<mvc_level_num>(i | r1 | r2 | c).daq” 

where angle brackets indicate numbered identifiers. For example, an impedance recording 

for subject #2, muscle #1 (biceps), trial #4, and MVC level #1, the file would be saved as 

s2m1t4l1i.daq. Note that trial 0 has no level (always 100% MVC) but three sub-trial 

a 

b 
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recordings are performed from which to get the maximum value to use as the MVC. The 

level number indicates the sub-trial number for trial 0 only. 

Data collection proceeds as follows: 

1. Run the amplifier configuration software. Program channels 1 through 3 to the 

settings indicated in Table 3-4. 

Table 3-4: Amplifier settings 

Setting Value 

Low Freq (HPF) 0.3 Hz 

High Freq (LPF) 1000 Hz 

Gain 2000* 

Line Filter Disabled 

* Note that this value was increased if the signal amplitude was observed to be small 

(approximately less than 20% of the ADC range) 

2. Run the data acquisition software and set the data acquisition settings as given in 

Table 3-5. 

Table 3-5: Data acquisition settings 

Setting Value 

MVC Calibration % MVC Contraction 

Number of channels 3 3 
Sampling rate 3000.3 Hz 3000.3 Hz 

Sampling duration 3 s 10 s 
ADC range ±10 V ±5 V 
MVC level N/A 0.2 for level 1, 0.4 for level 

2, 0.6 for level 3 
 

3. Apply the skin preparation and attach the electrodes based on the guidelines in 

Section 3.4. Attach all electrodes and ensure each muscle is connected to a separate 

recording channel. Channels 1 through 3 should be connected to one of the biceps, 

quadriceps, and tibialis anterior, respectively. Wrap the electrode wires to the body 

close to the electrode leads to minimize tugging on the electrode leads. 
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4. MVC calibration: Note that the first impedance-rest-contraction trial should be 

numbered as trial 0 and this indicates the MVC calibration trial. The recording level 

number indicates the MVC sub-trial in this case. The ADC range will need to be 

increased to 10 V for this and the sampling duration reduced to 3 seconds. Once 

MVC calibration is complete, reset the settings as given in Table 3-5. Three sub-trials 

are performed and the maximum is taken as the MVC for that muscle. For example, 

the second MVC calibration sub-trial for a contraction measurement for subject #1 

and muscle #3 would be saved as "s1m3t0l2c.daq". 

5. Impedance Test: Run the Grass Telefactor amplifier electrode impedance test 

function (subject is relaxed) and ensure the electrode impedance is less than 10 kΩ. 

Save the recording as 

 “s<subject_num>m<muscle_num>t<trial_num>l<mvc_level_num>i.daq” where 

<subject_num>, <muscle_num>, <trial_num>, and <mvc_level_num> are 

numbers indicating the subject, muscle, trial, and MVC level respectively. 

 

If the impedance is too high, wait a minute and perform another repetition. Mark the 

current data file as erroneous by appending “_error#” to the filename (where # is 

incremented for each time an error occurs for that filename). If the impedance is not 

below 10 kΩ after 5 repetitions, remove and discard electrodes and perform the skin 

prep again. Note that this did not occur for the data collected in this thesis, 

indicating well-performed skin prep. 

6. Rest1: Specify the save file as  

“s<subject_num>m<muscle_num>t<trial_num>l<mvc_level_num>r1.daq” and 

instruct the subject to relax the muscle being recorded. Once the subject’s muscle is 

relaxed, start recording. If a problem is identified with the given recording, perform 

another repetition and mark the current file as erroneous by appending “_error#” to 

the filename. 
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7. Contraction: Specify the save file as  

“s<subject_num>m<muscle_num>t<trial_num>l<mvc_level_num>c.daq” and 

instruct the subject to perform the appropriate contraction for the first muscle. If this 

is the MVC calibration trial (number 0), the subject is instructed to contract as hard 

as they can for 3 seconds. Once the subject is performing the contraction, start 

recording. For subsequent trials (numbers 1-5), the subject should try to maintain 

the contraction level of corresponding to the current MVC level (20%, 40%, or 60% 

MVC). The subject’s predicted MVC level should be relayed visually to them in real 

time. 

Observe the signal as it is recorded and when recording is complete, plot the power 

spectrum and ensure everything is as expected. If a problem is identified with the 

given recording, perform another repetition and mark the current file as erroneous 

by appending “_error#” to the filename. 

8. Rest2: Specify the save file as 

“s<subject_num>m<muscle_num>t<trial_num>l<mvc_level_num>r2.daq” and 

instruct the subject to relax the muscle being recorded once again as in step 7. 

9. Repeat steps 5-9 for each of the 3 muscles being recorded, for 5 trials per muscle 

(and one MVC calibration trial), and for each MVC level recording (20%, 40%, and 

60% MVC). Note that each MVC level should be performed in sequence for a given 

trial and muscle. Once 5 trials are complete, the next muscle can be recorded in the 

same manner. 

10. When all recordings are complete, carefully remove all electrodes from the subject's 

skin and clean the contact area with alcohol wipes and clean gauze pads. 

3.7 Removal of Contaminated Data 

To ensure all data recorded was sufficiently free of contamination, an SNR was estimated for 

each signal by measuring the power of the sEMG signal and dividing it by the power of the 
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rest signal taken immediately afterwards (rest2). If the SNR was below 18 dB, the signal 

was deemed contaminated and was removed from the dataset. Out of the 225 signals 

recorded, 58 signals were removed in this manner. 

3.8 Summary 

This chapter described the methodology in simulating sEMG and collecting real sEMG for use 

in evaluation of the methods in this thesis. The purpose of the simulated sEMG is to 

facilitate the generation of a very large sEMG dataset. The real sEMG provides the variability 

likely to be encountered in practice on a much smaller dataset. The procedure for collection 

of real sEMG is to ensure contamination in the collected sEMG is minimal. 
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4 Power Line Interference Estimation and Mitigation 

4.1 Introduction 

Power line interference is a major source of noise in sEMG measurements due to capacitive 

and magnetic coupling between the subject or sEMG data acquisition apparatus, and the AC 

power source (60 Hz/120 V in North America) [25]. It has been demonstrated that power 

line interference can compromise the analysis of EMG signals [36–38]. 

 

There exist methods of mitigating power line interference including removing sources of 

noise and shielding, however the focus here is on digital signal processing techniques to 

remove power line interference, without requiring modifications or additions to the data 

acquisition equipment. Traditionally, power line interference is removed from sEMG signals 

using a notch filter centered on the contaminated frequency components. A number of 

disadvantages exist with this approach. Firstly, the notch filter removes all frequencies 

within the stopband, which includes frequency components of the sEMG signal. Secondly, 

practical notch filters have finite roll-off on each side of the stopband, which causes 

distortion in those sEMG frequency components [39]. Lastly, there exists variance in the 

power line interference frequency; a notch filter could miss the power line interference 

entirely [40]. 

 

Adaptive algorithms can be used to filter a reference input which is correlated with the 

power line interference to produce an accurate estimate of the noise [41]. This reference 

input must either be a recorded signal, which is expensive in terms of memory, or a 

synthetic signal which presupposes a known power line frequency. 
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In this chapter, a least squares adaptive power line estimation algorithm is evaluated which 

estimates the unknown amplitude, phase, and frequency of the power line interference, with 

no need for a reference input. The noise estimate can be used to quantify the signal-to-

noise ratio (SNR). The power line interference can subsequently be mitigated in the sEMG 

by subtracting this noise estimate. The algorithm is evaluated in terms of its ability to 

accurately estimate the power line interference at different frequencies in simulated sEMG 

with varying spectral content, SNR, and signal length. The results are then validated by 

running the algorithm on real sEMG contaminated with artificial power line interference. 

4.2 Least Squares Adaptive Power Line Estimation Algorithm 

An iterative least squares steepest descent algorithm adapted from [42] is used to estimate 

the parameters of the power line interference. A full derivation of the algorithm can be 

found in Appendix A. The power line interference, 78[#], is assumed to consist of a single 

frequency component; that is, a sinusoid with an unknown amplitude 9:, angular frequency 
;8, and phase ϕ=	=  as given in (4-1). 

 78[#] = 9: cos�;8 ∙ # + BC'  (4-1) 

Such a sinusoid can be expressed as a linear combination of a cosine and sine function as: 

 78[#] = DE cos�;8 ∙ #� + FCsin	�;8 ⋅ #�	 (4-2) 

where DE and FC are the amplitudes of the in-phase and quadrature components, 9: =
�DE! + FC!, and BC = − tanJ� KL. 
At iteration k of the least squares algorithm, the mean squared error function is defined as: 

 MN = �O∑ � [#] − 78N[#]�!OJ�QRS  (4-3) 

In (4-3),   is the noisy sEMG signal, 78N is the power line noise estimate, and T is the signal 

length. It can be shown that minimizing the mean squared error (MN) between   and 78N is 
equivalent to minimizing the mean squared error between 78N (the noise estimate) and the 
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actual noise, given that the clean sEMG signal (without power line interference) is 

uncorrelated with the noise. A proof of this statement can be found in Appendix A. 

 

The mean squared error function in (4-3) is minimized using an iterative steepest descent 

algorithm in the frequency parameter space. The frequency is updated as specified by (4-4), 

(4-5), and (4-6). 

 ;8N�� = ;8N − 0.5W X�YXZ8Y (4-4) 

 
X�YXZ8Y = −2\ − ]ℎ_`abc]ℎ_`a (4-5) 

 ℎ_`a = dDE_`aFC_`ae (4-6) 

In (4-5), ℎ_`a can be determined using the linear least squares estimator since 78 is linear in 
terms of DE and FC as given in (4-7). The parameter W is the learning rate. 
 ℎ_`a = �]c]�J�]c  (4-7) 

 ] = fcos�;8N ⋅ #�sin�;8N ⋅ #�gc (4-8) 

 

A disadvantage of the iterative steepest descent approach is that it can converge on a local 

minimum. To mitigate this, we confine the search space by assuming that the frequency is 

in the range of 59.5 Hz to 60.5 Hz. The initial frequency for the search was determined by 

minimizing the mean squared error defined by (4-3) using the least squares estimator in 

terms of DE and FC. For each frequency in the desired range at intervals of 0.001 Hz, (4-7) 

was used to calculate ℎ_`a, 78N was then calculated from (4-1) and MN from (4-3). Once the 

mean squared error, MN, is calculated for each frequency in the search space, the minimum 

can be located and that frequency is chosen as the starting point for the steepest descent 

algorithm. 
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The algorithm proceeds by iteratively stepping in the opposite direction of the gradient 

vector and terminates when the frequency step size is less than 10-7 Hz, or if this condition 

is not met after 200 iterations. It was determined that if the algorithm does not converge 

after 200 iterations, it is unlikely that it ever will because it is actually diverging from the 

power line frequency. The learning rate, µ, represents the fraction of the gradient to use as 

the step size for each iteration. It is normally chosen as a small number to ensure accurate 

convergence. The smaller the learning rate, the more accuracy can be achieved, however 

more iterations will be required. The learning rate was initialized to 10-8. If the frequency 

step changes direction, this indicates a local minimum was overshot due to the step size 

being too large. To prevent continually overshooting the minimum, the learning rate was 

reduced by 10% whenever the frequency step changed direction to decrease the step size. 

4.3 sEMG Simulation and Insertion of Noise 

To evaluate the performance of the least squares adaptive power line estimation algorithm, 

sEMG data was simulated using the method described in Chapter 3. Power line interference 

was added to the simulated sEMG signal by generating a sinusoid with a given amplitude 

and frequency; the phase was randomized using a uniform distribution in the range [-π,π] 

radians. The amplitude of the sinusoid was calculated based on the desired SNR. For the 

simulations, SNR, power line frequency, signal length, and sEMG spectrum shape were 

varied to examine their impact on algorithm performance. 

4.4 Simulation Results 

The purpose of the simulation was to estimate the sinusoidal noise components in terms of 

their frequencies and amplitudes where amplitude is related to SNR. That is to say, the goal 

was to evaluate the accuracy of the least squares adaptive power line estimation algorithm's 

estimated frequency and estimated SNR with respect to each control variable in the 
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simulation, namely sEMG spectrum shape, power line frequency, SNR, and signal length. 

Refer to section 3.2 for the sEMG simulation method. 

4.4.1 sEMG Spectrum Shape 

The effect of shaping parameters �� and �� was investigated for a constant signal length of 

4096 (sampled at 1000 Hz), SNR of 10 dB, and power line frequency of 60 Hz. Simulations 

were replicated 1000 times. SEMG shapes were defined as indices for simplicity as given in 

Table 4-1. 

Table 4-1: sEMG spectrum shape index values and corresponding parameter values. These 4 
parameter pairs were chosen as they were the same as used in [6]. 

Index Parameters ��� , ��� 
1 (30,60) 
2 (40,100) 
3 (60,120) 
4 (50,150) 

 

In Figure 4-1, a box plot of the root mean square (RMS) error between the original sEMG 

signal before noise was added, and the final noisy signal with the noise estimate subtracted 

is shown for each sEMG shape. Analysis of variance (ANOVA) resulted in a p-value very 

close to zero. This indicates that there is strong evidence that the null hypothesis (that each 

of the distributions for different sEMG spectrum shapes have the same mean) is false and 

can be rejected (p < 0.05). That is to say, that sEMG spectrum shape does have a 

significant effect on RMS error. However, the largest difference between any two mean RMS 

errors was 0.0063 and the largest difference in medians was 0.0060. These small 

differences suggest that sEMG shape, although statistically significant, does not have a 

practical significance on the RMS error. 
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Figure 4-1: Box plot of RMS error for 4 sEMG spectrum shapes between original clean signal 
and noisy signal with noise estimate subtracted. 

4.4.2 Frequency and SNR 

The average RMS error was calculated over all 1000 iterations for 5 different power line 

frequencies (59.5, 59.75, 60, 60.25, 60.5) Hz. These frequencies were chosen as they 

represent a range much larger than what would typically be observed in North America. A 

constant signal length of 4096 samples (sampled at 1000 Hz) was used, along with a 

constant sEMG shape of ��� , ��� = �30,60�. It was observed that power line frequency had no 

effect on the RMS error. This can be seen in Figure 4-2 where the RMS error for each power 

line frequency is shown at each SNR. We can observe that each frequency follows the same 

trend, and the variances are all similar. 
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Figure 4-2: Average RMS error for 5 different power line frequencies at various SNRs. Error 
bars are at plus or minus one standard deviation. Frequencies are offset on the SNR-axis 

such that error bars do not overlap. 

We notice that for large noise power (SNR between -10 dB and 15 dB), the RMS error is 

smaller. For SNR above 15 dB, the RMS error becomes larger, with the variance in the error 

also noticeably larger. For high SNR sEMG signals (greater than 15 dB), the power line 

interference is small and there may exist larger sinusoidal components in the sEMG signal 

that the least squares adaptive algorithm can mistakenly identify as power line interference. 

This can also be seen in Figure 4-3 as a plot of mean frequency error versus actual SNR. 
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Figure 4-3: Mean frequency error for 5 different power line frequencies at various SNRs. 

Error bars are at plus or minus one standard deviation. Frequencies are offset on the SNR-
axis such that error bars do not overlap. 

We see a divergence of errors for high SNR (past 15 dB) when the algorithm performed 

poorly. This divergence is explained by the constraining of the frequency parameter space 

to 59.5 Hz to 60.5 Hz. When the algorithm starts to perform badly, its estimate becomes 

essentially useless and will reflect the expected value of the frequency parameter space (in 

this case, the mean was 60 Hz). This produces an error of virtually zero when the actual 

frequency was 60 Hz, but produces larger errors as the actual frequency deviates from the 

mean (e.g., 59.5 Hz or 60.5 Hz). This is supported by Figure 4-4 which shows histograms 

for two SNRs run for 1000 iterations. At a low SNR, the distribution has a mean of 60 Hz 

(the actual power line frequency) and a small variance. For high SNR the variance is much 

larger and the distribution begins to resemble a uniform distribution. This indicates that for 

high SNR, the algorithm is tracking a random frequency component in the sEMG which 

resembles a sinusoid, and that these frequency components are essentially uniformly 

distributed within the parameter space. 
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Figure 4-4: Distribution of power line frequency estimates for 60 Hz noise at (a) SNR=-5 dB 
and (b) SNR=40 dB. Note the x-axis scales are different. 

4.4.3 Signal Length and SNR 

The average RMS errors were calculated over 1000 iterations for each SNR and signal length 

T where T ∈ {64,128,256,512,1024,2048,4096} as shown in Figure 4-5. We observe that signal 

length has a large effect on the RMS error between the original clean signal and the final 

signal after the noise estimate has been removed. Increasing the SNR has a negligible 

impact on RMS error since, even though the noise estimate worsens, the magnitude of the 

noise is small enough that the difference has minimal impact on the overall RMS error. The 

dependency of RMS error on signal length can be explained by recognizing that shorter 

signals have much poorer temporal and frequency resolution than longer signals. This lack 

of resolution results in identifying sEMG frequency components together with noise 

components as interference and ultimately would cause a loss of useful information when 

the signal is cleaned. 

 

 

a b 
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Figure 4-5: Average RMS error for 7 different signal lengths at various SNRs. Error bars are 
at plus or minus one standard deviation. Signal lengths are offset on the SNR-axis such that 

error bars do not overlap. Signal sampled at 1000 Hz 

In Figure 4-5, a curve representing the RMS error between the noisy sEMG without noise 

cancellation, and the original clean sEMG is shown for reference. This curve effectively 

represents the square root of the noise signal power. When the average RMS error at a 

given signal length and SNR is larger than the square root of the noise power, this is an 

indication that noise cancellation results in a larger RMS error than if nothing was done and 

the original noisy signal used as is. It can be seen that at an SNR past 25 dB, it is better to 

not perform noise cancellation, regardless of signal length. However, for shorter signal 

lengths this limit shifts to a lower SNR. 

 

Mean SNR estimates were calculated for each SNR and signal length as shown in Figure 4-6. 

Ideally, the plot should have a linear one-to-one relationship, however, we see the SNR 

estimate fall below the actual SNR for values at some point which is a function of the signal 

length, that is, the SNR is underestimated for higher actual SNR values. For values above 

Signal 
Length 
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this threshold, subtraction of this noise estimate will result in a distortion of the sEMG 

frequency components. The longer the signal length, the higher this threshold SNR will be 

which is consistent with the dependency on signal length observed in Figure 4-5. Values 

range between 0 dB and 15 dB where 15 dB is the breaking point for signals of length 4096. 

 

Figure 4-6: Mean estimated SNR for each actual SNR for the noisy sEMG signal at various 
signal lengths. Ideal case is shown for reference. Error bars are at plus or minus one 

standard deviation. Signal sampled at 1000 Hz. 

4.4.4 Comparison with Notch Filtering 

The same simulation for generating sEMG and power line interference was used for testing 

an infinite impulse response (IIR) notch filter with various bandwidths. The bandwidths were 

centered on 60 Hz and the same sampling rate of 1 kHz was used. The bandwidths (BW) 

were varied by specifying the filter quality factor Q (or Q-factor). 

 ] = �pqr (4-9) 

The RMS errors for the filtered sEMG signals are shown as functions of SNR at different Q-

factors in Figure 4-7. Power line interference was generated at 60 Hz and all signal lengths 

were 4096 samples (sampled at 1000 Hz). It is shown that lower Q-factors produce lower 

RMS errors at lower SNRs. As SNR increases, higher Q-factors become slightly 

Signal 
Length 
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advantageous. At around 10-15 dB, notch filtering becomes detrimental overall as the RMS 

error increases beyond that of no noise removal. 

 

Figure 4-7: RMS error for notch filtered sEMG at 60 Hz at different SNRs and Q-factors. 

From Figure 4-7, a Q-factor of about 30 is optimal over the range of SNRs at this frequency 

resolution. The effect of deviation in the power line frequency on the effectiveness of the 

notch filter can be seen from Figure 4-8. A Q-factor of 30 is used with a signal length of 

4096 (sampled at 1000 Hz). The greater the deviation from the notch filter center 

frequency, the larger the RMS error. As expected, optimal performance is observed when 

the power line frequency is coincident with the notch filter center frequency. 
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Figure 4-8: RMS error for notch filtered sEMG at 60 Hz for different SNR and power line 
frequencies 

The signal length is varied in Figure 4-9 for a power line frequency of 60 Hz and notch filter 

Q-factor of 30. The notch filtering approach produces a larger RMS error for lower SNR and 

shorter signals. As SNR increases the RMS error decreases and eventually levels off. Notch 

filtering performance of high SNR signals is better for shorter signal lengths. 
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Figure 4-9: RMS error for notch filtered sEMG (Q-factor = 30) at 60 Hz for different SNR and 
signal lengths 

It is shown in Figure 4-10 that the adaptive algorithm results in a lower RMS error than 

notch filtering except for short signal lengths at high SNR. In other cases, it is advantageous 

to use the adaptive algorithm over notch filtering. 

 

Figure 4-10: Comparison of notch filtering (Q-factor = 30) and adaptive filtering for short 
signals (64 samples) and long signals (4096 samples at 1000 Hz) at various SNR 
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4.5 Results with Real sEMG 

Real sEMG (recorded as described in Chapter 3) was used to validate the results obtained 

with simulated data. Figures are not directly comparable due to different signal lengths (real 

sEMG was sampled at 3000.3 Hz for 10 seconds). The results for frequency estimate versus 

SNR were the same as Figure 4-3. Results for SNR estimate versus actual SNR showed a 

cut-off for the estimate around 15 to 20 dB in accordance with Figure 4-6 for long signals. 

Furthermore, we see the algorithm is applicable for SNR below approximately 20 to 25 dB 

as shown in Figure 4-11 in accordance with Figure 4-5. 

 

Figure 4-11: Average RMS error for 5 different power line frequencies at various SNRs for 
entire real sEMG dataset. Error bars are at plus or minus one standard deviation. 

Frequencies are offset on the SNR-axis such that error bars do not overlap. 

In Figure 4-11, we can observe larger variance and RMS error for 60 Hz interference at 

lower SNR. The explanation for this is that real sEMG will always have some true power line 

interference at 60 Hz unless all equipment is operating on battery power and is completely 

electrically shielded from outside interference. Since 60 Hz noise is present in the signal 

which is assumed to be clean, removal of this 60 Hz noise along with synthetic noise will 
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result in a larger RMS error even though no more clean sEMG is being sacrificed than for 

any of the other power line frequencies. 

4.6 Discussion 

Power line frequency and sEMG spectrum shape were not significant factors for estimating 

power line interference. These results are not surprising as the sEMG itself is independent 

from the noise that is introduced. There is no reason that the two should influence each 

other. The adaptive power line estimation algorithm is designed to be invariant with respect 

to frequency within its expected range so any frequency chosen within this range should 

also have no impact on performance. 

 

The adaptive power line estimation algorithm performed very well for lower SNR and higher 

signal lengths. As SNR increases (beyond 15 dB for a signal length of 4096 at 1000 Hz), the 

frequency estimate of the algorithm becomes inaccurate. This is because the power line 

interference is small and the least squares adaptive algorithm may be falsely tracking 

sinusoidal components that are part of the sEMG signal. This hypothesis is supported by 

examining the error in the estimate of the power line frequency, which also becomes 

inaccurate for SNR values above 15 dB. The range of power line frequency (i.e., [59.5 Hz, 

60.5 Hz]) is larger than what would be anticipated in reality. Narrowing this range may help 

mitigate the error in power line frequency estimate. 

 

Although SNR affected the accuracy of noise estimation, it was less significant when 

comparing the original signal before noise was introduced, and the final signal after the 

noise estimate was subtracted (i.e., the RMS error). Although the RMS error between the 

cleaned and original signals would increase in general with SNR, this increase was very 

small which is explained by the power line interference having small magnitude at high SNR 

and thus having little impact on the RMS error. 
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Signal length also was determined to affect the magnitude of the RMS error and accuracy of 

noise estimation. The explanation for this was that longer signals contained more sinusoidal 

periods of the power line interference contaminating the sEMG which allows for better 

estimation of the sinusoidal parameters. When the signal length is reduced, fewer periods of 

the sinusoidal power line interference exist and are still combined with sEMG so it is more 

difficult to extract information regarding to the sinusoid when a smaller amount of 

information is available to the algorithm. 

 

Notch filtering results in a higher RMS error with an ideal quality factor, power line 

frequency and signal length. Changing these parameters will further worsen the 

performance of the notch filter. The only case where it was observed to perform better than 

the adaptive algorithm was for short signals at moderate to high SNR. It can be seen that 

notch filtering a short signal of high SNR is similar to (but slightly better than) performing 

no mitigation whatsoever. Since the signal length is small, the frequency resolution is poor. 

The 60 Hz noise is spread out over a range of frequencies and notch filtering only removes a 

small amount and leaves the rest unchanged. It is not worth applying a notch filter in this 

case due to the negligible improvement over doing nothing, even though the performance 

may be better than the adaptive algorithm (which should not be used in this circumstance 

either). For longer signals, it is always better to apply the adaptive algorithm over the notch 

filter, even when applying the adaptive algorithm is worse than doing nothing. 

 

Whenever an attempt is made to mitigate the power line interference, there will likely be 

distortion of the sEMG signal. When the amount of interference is large (i.e., low SNR), the 

trade-off between reducing the effect of the interference and distorting the sEMG is 

justified. The trade-off may not be justified, or even required, for low levels of interference 

(i.e., high SNR). This algorithm provides an accurate estimate of the SNR up to 15 dB for a 
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signal length of 4096 when sampled at 1000 Hz. This SNR estimate can be used to decide 

whether or not any power line interference mitigation should be attempted or not. Using a 

shorter signal length will lower this SNR threshold and will increase the RMS error between 

the cleaned and original noiseless signal. 

4.7 Conclusion 

The application of the least squares adaptive power line estimation algorithm to quantify 

power line interference in sEMG produced reliable results for SNR below 15 dB for a signal 

length of 4096 when sampled at 1000 Hz. For sufficiently short sEMG signals such that the 

signal can be assumed to be stationary, this method facilitates the mitigation of power line 

interference with minimal distortion to the original signal and can do so in a timely manner. 

The method is not appropriate for signals with too few samples or signals with minimal 

power line interference. If the SNR is high (above 25 dB), it is unlikely that the power line 

interference will have much of an impact on the signal and filtering may not be necessary. 

Otherwise, an adaptive least squares method can significantly improve sEMG signal quality 

when contaminated with power line interference and results in less signal distortion than 

when applying a notch filter. While the power line interference estimation method was 

presented here in the context of sEMG, this method would be just as applicable to other 

data collection setups (e.g., electrocardiograms and electroencephalograms). 
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5 Detection of ADC Clipping, Quantization Noise, and 

Amplifier Saturation 

5.1 Introduction 

A typical sEMG collection setup is shown in Figure 5-1. In Chapter 4, the focus was on 

power line interference in the first stage of the collection setup. In this chapter, issues with 

the amplifier and analog-to-digital converter (ADC) stages are examined; specifically, ADC 

clipping, quantization noise, and amplifier saturation. When acquiring sEMG, the expected 

signal amplitude needs to be considered when setting the gain for the amplifier and range 

for the ADC. This process may be trivial for a trained sEMG technician, but can be a 

significant source of error for others, and since the overarching goal of this thesis is to 

enable non-expert users to incorporate sEMG analysis into clinical workflows, automating 

this process would be a valuable contribution. 

 

Figure 5-1: Typical sEMG collection setup 

An ADC is a device that will take a continuous input signal, sample it at discrete time 

intervals, and then quantize the signal amplitudes to discrete values. If the input dynamic 

range of the ADC is too small, ADC clipping will occur when the input signal exceeds this 

range. An ADC that has saturated will clip the output to either its maximum or minimum 
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value (Figure 5-2). This is easily detected if the dynamic range of the ADC is known; 

however, this information may not be readily available. The motivation behind this work is 

to enable sEMG acquisition without the requirement for trained bioengineers or experts 

otherwise familiar with the acquisition equipment and setup. Furthermore, in certain cases, 

sEMG acquisition and analysis are performed separately (and by different people). The 

acquisition information may not be readily available to all parties. 

 

Figure 5-2: SEMG clipped to ±1 V, sampled at 1 kHz 

Conversely, if the ADC dynamic range is too large with respect to the signal amplitude, the 

quantization noise in the signal can become significant. Quantization noise is a result of 

rounding the analog amplitude value to a discrete value (note that truncation may be used 

instead, however, only rounding associated with mid-tread quantizers will be considered 

here). Quantization noise will always be present in a sampled signal [43]. The amount of 

quantization noise can be expressed as a signal-to-quantization-noise ratio (SQNR). The 

SQNR of a signal increases by 6 dB per additional bit of resolution [44]. An n-bit ADC that is 

not utilizing its full range (i.e. when the ADC input range is set too high) will behave like a 

k-bit ADC where k < n. As such, knowing the bit resolution of the ADC is insufficient 

information to determine the effective SQNR. The step-size of the ADC can be used to 
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determine the effective SQNR, however this information may not be readily available, as 

was the case for the ADC range. Quantization noise can result in a signal that is less 

smoothed and more step-like (Figure 5-3). 

 

Figure 5-3: SEMG signal quantized to 16-bits and 6 bits showing the distortion effect of 
quantization noise 

Amplifier saturation occurs when the signal amplitude, after applying the amplifier gain, is 

outside the operating range of the amplifier, which is limited by its electrical supply. The 

amplifier will no longer provide a linear response when saturated, resulting in signal 

distortion (Figure 5-4). 
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Figure 5-4: Amplified sEMG signal with and without amplifier saturation where the amplifier 
maximum is at 10 V 

In this chapter, a set of methods are proposed and evaluated for detecting and quantifying 

ADC clipping, quantization noise, and amplifier saturation in sEMG signals. Performance of 

these methods is evaluated using simulated sEMG [31] with random shaping filter 

parameter pairs (Table 5-1). 

Table 5-1: Shaping parameter pairs for sEMG simulation 

fl (Hz) 30 40 60 50 

fh (Hz) 60 100 120 150 
 

Performance is then validated using real sEMG collected using the protocol in Chapter 3. 

5.2 Detection of ADC Clipping 

5.2.1 Method 

The detection of clipping is trivial if the range of the ADC is known. However, if the range is 

not known, clipping can be detected by searching for two consecutive maximum or 
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minimum values in the signal. This is accomplished by examining the signal in two passes. 

The first pass is to determine both the maximum and minimum values in the signal. The 

second pass is then performed to identify all occurrences where either of these values 

appears consecutively, two or more times. Due to random noise and signal variability, 

observing two consecutive minimum or maximum values is an unlikely occurrence in 

acquired biological signals unless the ADC has truly saturated. An ADC will quantize an 

analog signal and, when the ADC output saturates, clip the signal at ADC’s maximum or 

minimum value. This is shown in (5-1) where s(t) is the analog signal, s[n] is the digitized 

signal, T is the sampling period, ∆ is the ADC step size, and Amin and Amax are the ADC 

minimum and maximum values, respectively. 

 s[#] = tΔround v��Qc�w x,					9yzQ ≤ s�#{� ≤ 9yL|9yzQ,											s�#{� 1 9yzQ	9yL| ,										s�#{� 4 9yL|
 (5-1�				

5.2.2 Simulated sEMG Results 

To evaluate the proposed ADC clipping detection method, simulated sEMG (normalized to a 

power of 1) with one of four random shaping parameter pairs as specified in Table 5-1, were 

manually quantized to a fixed-point 16 bits at seven different voltage ranges (4, 3.75, 3.5, 

3.25, 3, 2.75, and 2.5) leading to increasing degrees of signal clipping. The signals were 

then clipped at those voltage levels using (5-1). For each level of clipping, 10,000 iterations 

were performed. In each iteration, a quantized sEMG signal was simulated (4096 samples in 

length and sampled at 1 kHz). If the signal was clipped, the number of samples clipped was 

recorded. If clipping did not occur then the signal was skipped. If a clipping event was 

detected in the signal, the iteration was considered a true positive (TP); if no clipping was 

detected, the iteration was considered a false negative (FN). Note that a TP does not 

necessitate that all clipped samples in the signal were detected. A sensitivity (TP/(TP+FN)) 
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can then be derived for the method. If clipping was detected in the original signal (before 

manual clipping was introduced), the iteration was considered a false positive (FP). 

 

Figure 5-5: Clipping detection sensitivity as a function of the number of clipped samples in 
the signal (plot for ADC max of 2.5 not shown as sensitivity was always 1). 

Figure 5-5 is a plot of the sensitivity of the clipping detection algorithm as an increasing 

number of samples in the sEMG were clipped. As the ADC range is lowered, it is more likely 

that a larger number of samples will be clipped which means the plot of the sensitivity curve 

for that ADC range will be pulled further to the right. Generally speaking, the lower the ADC 

range, the more clipping should occur and the easier this clipping will be to detect. 

However, occurrences where only a few samples were clipped at a small ADC range are 

actually harder to detect than if the ADC range was higher since these occurrences are very 

seldom, and when they do occur, they are unlikely to occur as consecutive minima or 

maxima. This is why sensitivity is actually lower for a lower ADC range when the number of 

samples clipped is also low. As expected, the sensitivity for each range tends to increase 

with the number of samples clipped and reaches 1 after about 20 samples clipped out of 

4096. Note that 5 false positives occurred (out of 10,000 iterations) as a result of detecting 
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clipping on an sEMG signal before the clipping had been simulated. This results in a 

specificity of 99.95%. 

 

In Figure 5-6, the distribution of the number of samples clipped for each clipping level is 

shown. The distributions will be approximately Gaussian; however for lower levels of 

clipping, the distribution is skewed as the number of samples clipped cannot be less than 1. 

The means of the distribution increase with the level of clipping, confirming that higher 

levels of clipping will result in more samples clipped on average. 

 

Figure 5-6: Histogram for number of samples clipped over each clipping level. Note that the 
distribution for ADC max of 2.5 and part of that for 2.75 is cut off. 

The method was also tested using real data obtained from a microphone connected to a 

computer, and using real sEMG in section 5.2.3. Different signal amplitudes were recorded 

over a range of frequencies by speaking and whistling into the microphone, as well as 

playing music through speakers and then feeding the music back into the microphone. 

Clipping was correctly identified in the majority of instances. Some signals whose 

amplitudes were near the threshold of the ADC would only clip at one or two (non-

consecutive) samples. This would go undetected using this method; however it also 
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represents a very small loss of information so the false negative is both not surprising and 

not critical. It is conceivable to have a signal which repeatedly clips at only a single sample 

over and over but never manifests multiple consecutive clipped samples. Such a signal 

would also not be flagged as clipped by this method, however it was determined that 

producing such a signal is difficult (unless done artificially) and likely not to occur in 

practice. False positive identifications were seldom observed, however they could occur for 

very low amplitude signals where the bit resolution was poor, thus making it more likely to 

observe consecutive minimum or maximums due to the smaller number of possible values 

available to the ADC at that range. Such an occurrence would also be detected as a source 

of quantization noise and, when corrected, would no longer be a problem. Quantization 

noise is discussed in section 5.3. 

5.2.3 Validation of ADC Clipping Detection with Real sEMG 

Real sEMG was normalized and manually clipped at seven voltage levels (5, 4.75, 4.5, 4.25, 

4, 3.75, and 3.5). Each signal was then processed using the same clipping detection method 

as for simulated sEMG. The real sEMG was sampled at 3000.3 Hz for 10 seconds. Two 

additional iterations were performed using the real data downsampled to 1500.15 Hz, and 

1000.1 Hz by keeping every second and third sample, respectively, to investigate the effect 

of sampling rate on accuracy. No low-pass filtering was performed in conjunction with 

downsampling. Results are shown in Figure 5-7 and Figure 5-8. 
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Figure 5-7: Clipping detection sensitivity as a function of the number of clipped samples in 

the signal for real sEMG at a sampling rate of (a) 3000.3 Hz, (b) 1500.15 Hz, and (c) 1000.1 
Hz. Number of samples are normalized by dividing by the signal length and multiplying by 

10000. 

We can observe that as the sampling rate is decreased, the sensitivity for a fixed number of 

samples clipped appears to decrease while the distribution of normalized samples clipped 

remains constant (Figure 5-8). This is expected as using a high sampling rate will increase 

the probability of observing consecutive maxima or minima. However, this also increases 

the chances of a false positive. The total number of false positives that occurred out of the 

167 signals before clipping was induced was 11, 5, and 1, for sampling rates of 3000.3 Hz, 

1500.15 Hz, and 1000.1 Hz, respectively. 
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Figure 5-8: Histograms for number of samples clipped over each clipping level for real sEMG 

at a sampling rate of (a) 3000.3 Hz, (b) 1500.15 Hz, and (c) 1000.1 Hz. Number of samples 
are normalized by dividing by the signal length and multiplying by 10000. 

We can mitigate the 11 false positives that occur at 3000.3 Hz by adjusting our method 

based on the sampling rate. For higher sampling rates (e.g., 2000 Hz and above) we can 

search for 3 consecutive extrema as opposed to 2. These results are compared to the 

original (using 2 consecutive extrema) in Figure 5-9. In the 3 consecutive extrema case, the 

false positive rate was reduced to 0, however it took a slightly larger number of clipped 

samples before the detection sensitivity reached 1. 
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Figure 5-9: Clipping detection sensitivity as a function of the number of clipped samples in 
the signal for real sEMG (3000.3 Hz) by searching for (a) two consecutive extrema and (b) 
three consecutive extrema. Number of samples are normalized by dividing by the signal 

length and multiplying by 10000. 

5.3 Detection of Quantization Noise 

The signal-quantization-noise ratio (SQNR) is a useful indicator of the amount of 

quantization noise present in the signal. Such an indicator can be used to determine if the 

level of quantization noise can compromise the signal quality in the current setup. 

 

The maximum quantization error for a uniform mid-tread quantizer is half the quantization 

step size (∆). The quantization error can be considered additive and the signal can be 

represented as in (5-2), where x[n] is the quantized signal, s[n] is the signal before 

quantization, and q[n] is the quantization noise (round off error). 
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  [#] = s[#] + }[#] (5-2�	
We can define the SQNR as in (5-3), where Ps and Pq are the signal power of s[n] and q[n], 

respectively. 

 ~]T� = 10 log ������ (5-3�				
We can make a reasonable assumption that the quantization error is uniformly distributed 

between –∆/2 and ∆/2. Thus, Pq is equal to the variance of this uniform distribution [45]: 

 �� = w
�! (5-4�	
The signal prior to quantization (s[n]) is unknown but its power can be estimated from the 

recorded signal x[n]. Since s[n] and q[n] are uncorrelated and q[n] is zero mean, 

 �� = �| − �� �5-5�	
 ~]T� = 10 log ����� − 1� �5-6�	
 ~]T� = 10 log v12 ��w
 − 1x �5-7�	
If the step size ∆ is not known, it can be estimated from the signal by searching for the 

smallest absolute difference between any two values in the signal, provided that the signal 

is long enough to yield a high probability of observing two values that are one step size 

apart. 

 

Accuracy of estimating SQNR using (5-7) and the estimated step size were investigated by 

generating signals consisting of random numbers with predefined bit resolutions. Bit 

resolutions from 8 to 16 bits were used by varying the step size and appropriately rounding 

off the sEMG values. Signal length was also varied from 32 to 1024 samples, increasing by 

factors of 2. The SQNR was estimated from the quantized signal (computed using (5-7)) 

and compared to the actual SQNR (computed using (5-3)). Each bit resolution and signal 

length combination was evaluated on 1000 iterations. 



 70

 

The SQNR estimates were averaged over all iterations for each signal length and bit 

resolution and are shown in Figure 5-10 along with the actual SQNR. It can be seen that 

longer signal lengths will produce more accurate SQNR estimates. The higher the bit 

resolution, the longer the signal length should be in order to accurately estimate the SQNR. 

 

Figure 5-10: Estimated average SQNR at different bit resolutions and signal lengths with 
one standard deviation error bars. Averaged actual SQNR are shown as dotted lines. Signals 

sampled at 1000 Hz. 

From Figure 5-10, it is shown that a signal length greater than 256 is more than sufficient 

to produce an accurate estimate at 12-bit resolution which is a typical resolution for an ADC 

for sEMG acquisition. This simulation assumed that all values within the signal range are 

equally likely to occur. In sEMG signals, the time-domain voltage is approximately normal 

[31] so values close to the baseline are more likely to occur than peak values. However, the 

purpose of this simulation was to show how the estimated SQNR will approach the actual 

SQNR given by the bit resolution in the simulation. The actual minimum and maximum 

values of the signal are not important. What is important is that given certain minimum and 
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maximum values, the SQNR can be estimated by ultimately estimating the signal step size, 

and the accuracy of this step size estimate is determined by signal length. 

5.4 Detection of Amplifier Saturation 

Real amplifiers are not ideal and will have both linear and nonlinear ranges of operation. As 

the expected output approaches the amplifier rails, the amplifier tends to provide a 

diminishing gain factor. This nonlinearity introduces contamination in the sEMG signal. The 

approximate shape of this curve is shown in Figure 5-11; it is a sigmoid function scaled to 

the desired amplifier range and shifted vertically to yield an odd function about the origin. 

The equation for the curve is given in (5-8) where sinput(t) is the original signal, soutput(t) is 

the signal after amplification, G is the gain factor, and Ampmax is the amplifier maximum 

value (minimum value is -Ampmax). 

 s_�a`�a��� = 97�yL| � !
��� �
���������������� − 1� �5-8�	

5.4.1 Method 

The amplitude of an sEMG signal can be modeled as a Gaussian process [31]. The histogram 

of a given sEMG signal with a given mean and variance should exhibit a high correlation 

with a normal distribution with equal mean and variance. A similar normality test was 

evaluated in [46]. As the level of amplifier saturation increases, the value of the Pearson 

correlation coefficient [47] between the sEMG histogram and normal probability density 

function should decrease. This measure of correlation is a potential method of automatically 

detecting amplifier saturation in sEMG. The level of amplifier saturation was measured by 

calculating the fraction of samples in the nonlinear range. The nonlinear range was defined 

to be when the percent difference between the actual and expected amplified values was 

greater than 5%. This occurs when the condition in (5-9) is met. 
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��������a����y`��� 4 0.4 �5-9�	

 

Figure 5-11: Transfer function of a typical amplifier with linear and non-linear ranges of 
operation and a gain factor of 1. Linear range corresponds to an input between -0.4 and 0.4. 

5.4.2 Simulated sEMG Results 

Simulated sEMG with a length of 4096 samples (sampled at 1000 Hz) were scaled to have 

an initial signal power of 0.1. Using (5-8) to simulate the predicted amplifier output, the 

gain G was varied from 1 to 20, with Ampmax=10. An amplifier maximum of 10 V is the case 

for our lab and gain values were chosen to include a range from little to no amplifier 

saturation to severe amplifier saturation. These gain values were applied in software and 

will differ from values used on a real amplifier in hardware. Each simulation was repeated 

over 1000 iterations and the average Pearson correlation coefficients between the sEMG 

amplitude histogram and normal probability density function were computed for both the 

original signal and each amplified signal. The trend is shown in Figure 5-12. A decrease in 

correlation can be observed as the fraction of the signal amplitude in the nonlinear zone 

increases. 
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Figure 5-12: Pearson correlation coefficient calculated when different fractions of the signal 
samples were in the nonlinear zone of the amplifier range for simulated sEMG. 

5.4.3 Validation of Amplifier Saturation Detection with Real sEMG 

Real sEMG were also used here to ensure the hypothesis of normality was reasonable in 

practice (i.e., real sEMG without significant amplifier saturation should pass the normality 

test). Simulating amplifier saturation in the same method using real sEMG after 

normalization to a signal power of 0.1 yields the results in Figure 5-13. The plot is similar to 

Figure 5-12. The decrease in correlation coefficient is more gradual. Variance is larger for 

real sEMG than simulated sEMG under controlled conditions which is expected. 
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Figure 5-13: Pearson correlation coefficient calculated when different fractions of the signal 
samples were in the nonlinear zone of the amplifier range for real sEMG. Error bars are at 

±1 standard deviation. 

In Figure 5-14 we see a histogram of correlation coefficients for the real sEMG without 

amplifier saturation with mean 0.9943 and standard deviation 0.0058. It can be seen that 

the majority of the distribution falls very close to 1, indicating a strong correlation with the 

normal probability density function. 
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Figure 5-14: Correlation coefficient distribution for real sEMG. Mean is indicated by the red 
vertical line. 

5.5 Discussion 

As ADC clipping becomes more significant, the sensitivity increases quickly, reaching 90% 

with 10 of the 4096 samples clipped (Figure 5-5). Such a small amount of clipping would be 

difficult to observe visually, yet can be detected with the proposed method. ADCs operate 

with fixed ranges so it is more likely that clipping will be either significant or nonexistent as 

opposed to being present but very minimal. In the case that only a few samples are clipped 

and this goes undetected, the resulting signal distortion could be considered insignificant. 

 

SQNR can be reliably estimated given a signal of sufficient length. For lower bit resolutions, 

a shorter signal length is sufficient for an accurate SQNR estimate. The smallest difference 

between any two values will become a reasonable estimate of the true ADC step size as the 

signal length increases. A larger pool of samples will result in a greater probability that the 

difference between two of them will represent the true step size. As sEMG is usually 

sampled at a minimum of 1000 Hz and often for at least a few seconds, signal lengths of 
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4096 and greater are typical which, from Figure 5-10, would translate into a highly accurate 

estimate of the SQNR and a reliable indicator of quantization noise. 

 

The assumption that sEMG amplitude is approximately normal is reasonable for both 

simulated and real sEMG. The normality decreases as the degree of amplifier saturation 

increases (Figure 5-12). It is possible to determine a threshold value for the Pearson 

correlation coefficient to distinguish clean signals from those affected by amplifier 

saturation. Other factors can influence the normality of the signal (e.g., ADC clipping). Also, 

the large variance for real data when there is a large amount of saturation present makes 

choosing a correlation coefficient threshold more difficult (i.e., this method could result in 

more false positives for real sEMG data). As such, while this test can detect amplifier 

saturation, additional tests would be required to definitively identify the source of the sEMG 

contaminant. In addition, motion artifact or baseline wander can increase the kurtosis of the 

distribution and, although it may still be strongly correlated with the normal probability 

density function, the variance in the correlation may increase and warrant a less restrictive 

threshold. Real sEMG signals will always have a small amount of motion artifact and will 

produce distributions that are more peaked (i.e., exhibit higher kurtosis). As these signals 

become saturated, the tails of their distributions become truncated which usually results in 

a decrease in kurtosis. Since the initial kurtosis of the real sEMG was above normal, the 

correlation to the normal distribution will actually increase with a small amount of amplifier 

saturation (this can be seen in Figure 5-13 but it is extremely slight). As the saturation 

becomes more significant, the correlation will decrease and will follow a similar trend to that 

of simulated sEMG as shown in Figure 5-12. More investigation is required to determine a 

robust correlation coefficient threshold, but our current results suggest that the normality of 

the sEMG amplitude can be used as an indicator for amplifier saturation. 
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5.6 Conclusion 

Methods of detecting ADC clipping, quantization noise, and amplifier saturation in sEMG 

signals were investigated. ADC clipping can be detected in sEMG by searching for 

consecutive minimum or maximum values. Quantization noise can be measured by 

estimating the SQNR of the signal by determining the smallest step size. Amplifier 

saturation can be detected by examining the correlation between the sEMG amplitude 

histogram and the Gaussian probability density function. More investigation is required to 

determine the robustness of this method, however, especially with real signals and 

hardware. These methods can be employed automatically in software in any sEMG 

acquisition setup. 
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6 Detection and Mitigation of Electrocardiogram Artifact and 

Quantification of Motion Artifact 

6.1 Introduction 

When acquiring sEMG signals from the abdomen, back, or chest, significant 

electrocardiogram (ECG) artifact can contaminate the sEMG signal [26]. This is of particular 

concern for esophageal and diaphragmatic sEMG, as well as recording of any muscle in the 

torso (e.g., myoelectrially controlled prostheses with targeted muscle reinnervation [48]). 

The high signal power of the QRS complex from the ECG can greatly increase the power of 

the recorded signal and alter extracted features such as mean/median frequency [49]. 

Although a variety of methods exist to mitigate this interference, there is currently no 

universally accepted method for mitigation of ECG artifact [50]. Alternatives include spike 

clipping [26], gating [49], high-pass filtering [26], adaptive filtering [51], and template 

subtraction [49]. 

 

Spike clipping and high-pass filtering were used in [26]; however, only sEMG between QRS 

complexes were used to compute an average rectified value for performance evaluation. 

This presupposes that the P and T waves are not significant sources of interference. Also, 

the average rectified value may not be the best performance indicator for all applications. 

Spike clipping clamps the QRS complex at a predetermined (or adaptive) threshold and 

results in replacing the complex with a wave that is almost square and discontinuous which 

compromises the signal coincident with each clamped QRS complex. Furthermore, if the P 

and T wave amplitude are significant but below the clipping threshold, this contamination 

will remain. High-pass filtering can remove most ECG contamination but may also remove 

low frequency sEMG components due to their overlapping spectra [50]. 
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Gating is similar to clipping. Segments of the signal that exceed a threshold (either 

positively or negatively) are clamped, but to zero, instead of the threshold value. This 

results in a loss of information. If the heart rate is particularly high, a large portion of the 

sEMG can be removed along with the ECG [49]. 

 

Adaptive filtering has been successfully applied to ECG artifact mitigation in [51]; however, 

it requires a separate reference channel which may not be suitable for all applications. This 

additional reference channel increases system complexity and reduces usability. 

 

Template subtraction involves creating an ECG beat morphology template based on portions 

of the signal consisting of little sEMG, aligning this template to the original signal through 

cross-correlation, and then subtracting it from the original [49]. This method requires that a 

silent period (i.e., a period free from the sEMG signal content) exist within the signal (such 

as expiration for recording from the diaphragm), or requires a parameter optimization 

procedure to fit an averaged waveform to each ECG beat [52], which can be 

computationally expensive. 

 

In this chapter, a new subtraction method is presented to mitigate ECG artifacts in sEMG 

recordings. This method does not use a beat-averaged template, but rather an estimate of 

the ECG waveform derived from a moving average of the ECG contaminated sEMG 

recording. As such, this method does not require a silent period from which to obtain an 

ECG template. Performance of the moving average method is evaluated on real sEMG 

artificially contaminated with ECG and is compared to the template subtraction method 

[49]. The template subtraction method is chosen for comparison as it has been shown to 

offer good, reliable performance when compared with other methods [50]. The use of a 
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moving average is later applied to quantifying motion artifact which is similar in frequency 

content to the P and T waves of the ECG. 

6.2 Moving Average Method 

The moving average method for ECG mitigation uses two moving averages to estimate the 

ECG signal, which can then be subtracted from the contaminated sEMG recording. A moving 

average y can be calculated by the linear convolution of the original signal x, and the 
impulse response of the moving average filter h where N is the signal length: 

 �[#] = ∑ ℎ[7] [# − 7]OJ�yRS  �6-1�	
In this work a rectangular window is used. Other windows were investigated (Hamming and 

Hann) but the rectangular window was found to produce the best performance, empirically. 

The filter impulse function is therefore:  

	 ℎ[#] = �) ,			− )J�! ≤ # ≤ )J�! 	 �6-2�	
where L is the length of the filter, which must be an odd valued integer. This filter impulse 

function is centered around n=0, so the filter is non-causal; however, this is not an issue for 

offline data processing of pre-recorded data and real-time operation is still possible with 

appropriate data buffering. 

 

The frequency response of this filter is given by (6-3). A full derivation can be found in 

Appendix B. 

 �� 	Z' = ¡ 1,				; = 2¢£,			£ ∈ ℤ J	Z¥�¦
 ��§¨v©¥
 x�§¨v©
x � ,			; ≠ 2¢£, £ ∈ ℤ �6-3�	
Figure 6-1 shows a plot of the frequency response for a window length of 15. It is shown 

that the moving average filter acts as a type of low-pass filter and has nulls at ±2¢£/� for 
any nonzero integer k.	
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Figure 6-1: Magnitude and phase of the frequency response for a moving average filter with 
L=15. 

Two moving averages are combined to obtain an accurate estimate of the ECG morphology; 

one to estimate the low frequency parts of the waveform (P and T wave) and another to 

estimate the high frequency parts (QRS complex). A larger window size smoothes out more 

of the sEMG but may also smooth out the ECG waveform. An appropriate window size to 

obtain the shape for the P and T waves was determined empirically to be 50 ms. Due to its 

higher frequency components, the QRS complex is attenuated using such a large window 

size (Figure 6-2b). A smaller window size of 10 ms is used to detect the QRS complex even 

though significant high-frequency sEMG will remain (Figure 6-2c). As the moving average 

filter can be thought of as a low-pass filter, the window length is directly related to the 

frequency cutoff. A longer window length will offer a greater smoothing effect on the signal 

and translates to a lower frequency cutoff (lower bandwidth low-pass filter). This is needed 

to estimate the P and T waves as they consist of low frequencies. The QRS complex contains 

higher frequency components and requires less aggressive low-pass filtering. 
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Figure 6-2: (a) SEMG signal contaminated with ECG artifact (SNR = -8 dB). The 

contaminated sEMG filtered using a moving average window size of (b) 50 ms and (c) 10 
ms. 

Let the moving average computed with a 50 ms window be denoted s50[n], and the moving 

average computed with a 10 ms window to represent the QRS complexes be denoted s10[n]. 
The estimate of the ECG waveform is s50[n], except during the QRS complexes where it is 

s10[n]. If we let T be the set of sample indices identified as part of a QRS complex, the ECG 

estimate can be expressed as: 

 ŝ�®�[#] = ¯s�S[#],				# ∈ {s°S[#],				# ∉ { �6-4�	
QRS detection must be performed to identify the set of samples T. QRS detection was 

performed on s50[n], which was first filtered in the forward and backward direction, ensuring 

a zero-phase response, using a 2nd order Butterworth low-pass filter with a cutoff frequency 

of 15 Hz. A derivative threshold method was then applied to locate the QRS complexes. The 

Q, R, and S waves were then labelled by finding where the derivative was zero. A minimum 

R-R interval (300 ms, corresponding to a maximum pulse rate of 200 beats per minute) was 

imposed to reduce false positive QRS detection.  
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The ECG estimate ŝECG[n] is subtracted from the original contaminated signal s0[n] and the 

result ŝEMG[n] is an estimate of the sEMG. The moving average method is summarized in 

Figure 6-3. 

 

Figure 6-3: Block diagram of the moving average method. 

6.3 Template Subtraction Method 

The template subtraction method [49] requires a reference signal of the contaminating ECG, 

which can be obtained by recording while the muscle is relaxed. QRS detection is performed 

on the sEMG-free signal (i.e., ECG-only signal) using a thresholding technique. This is a 

simpler technique than that used for the moving average method. In this case, the QRS 

complexes are identified from an ECG signal free of sEMG and the Q and S wave locations 

are unimportant. The first and last beats are discarded to ensure no partial beats. The 

remaining beats are segmented (divided at the midpoints of the R-R intervals) and aligned 

to each other using cross-correlation. Zero-padding is used at the start and end of shorter 

beat segments to ensure consistent signal lengths, while keeping the beat segments 

centered on their R waves. A subtraction template is formed by averaging the beat 

segments. 

 

Cross-correlation is performed between the contaminated signal and the subtraction 

template. In this work, PQRST complexes were identified at locations where the cross-
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correlation value was above the 99th percentile of the cross-correlation function computed 

over the entire signal. At these points, the aligned template was subtracted from the 

contaminated signal. The resulting signal was the sEMG with ECG artifact removed. 

6.4 Data Acquisition 

This research was approved by the Carleton University Research Ethics Board. ECG and 

sEMG were recorded from one male subject with no known cardiovascular or neuromuscular 

disorders. An amplifier system with programmable gain and bandwidth (Model 15A54, Grass 

Telefactor, West Warwick, RI, USA) and a 12-bit analog-to-digital converter (PCI-6071E, 

National Instruments, Austin, TX, USA) were used to record the signals, which were 

processed offline using Matlab. SEMG and ECG were sampled at 3000.3 Hz. Each recording 

was 10 seconds in duration. 

 

ECG recordings were made using Ag/AgCl electrodes (Blue Sensor T, Ambu, Ballerup, 

Denmark) with four standard configurations: lead I, lead II, V4 and V5. These leads were 

chosen to ensure a positive QRS deflection. The skin was cleaned with alcohol before 

applying electrodes. Signals were band-pass filtered in hardware from 0.3 Hz to 100 Hz, 

with a gain of 2000. Two separate recordings were performed for a total of eight ECG 

waveforms. The first recording was used as a contaminant, and the second served as the 

ECG-only reference signal required for template subtraction. The subject was relaxed and 

breathed normally to ensure minimal sEMG contamination. 

 

SEMG were collected from the biceps brachii of the right arm using Ag/AgCl electrodes 

(MVAP-II, Newbury Park, CA, USA) in bipolar configuration with an inter-electrode distance 

of 20 mm. Electrodes were placed according to SENIAM guidelines [11]. Skin preparation 

involved cleaning with alcohol, abrading the skin with Nuprep gel, and applying EC2 

electrode cream to the electrodes. Impedance between the electrodes, measured by the 
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amplifier system between recordings, was 8-12 kΩ throughout the recording process. Ten 

sEMG recordings were made consisting of five isometric, isotonic contractions, and five rest 

trials when no muscle contraction occurred. Biceps contractions were made holding a 15 lb 

load with the forearm parallel to the floor and upper arm perpendicular to the floor. SEMG 

recordings were band-pass filtered from 0.3 Hz and 1000 Hz, with a gain of 2000. 

6.5 Comparison of Methods 

Each of the five sEMG signals was added to each of the four ECG contaminant signals 

yielding a total of 20 sEMG/ECG combinations. SEMG was normalized to a signal power of 1 

and ECG was scaled to obtain an SNR between -8 dB and 8 dB in 2 dB increments. A wide 

SNR range was used as the degree of ECG contamination can vary substantially in practice 

[26], [53]. Each of the ECG-only signals was paired with a corresponding ECG contaminant 

signal. Both signals were scaled using the same factor to preserve their magnitudes relative 

to one another. SEMG and rest recordings were also paired and scaled using the same 

factors. 

 

For each signal combination, both the moving average method and the template subtraction 

method were applied to mitigate the ECG contamination. For the moving average method, 

s50[n] and s10[n] were computed with moving average filter lengths of L=151 and L=31, 

respectively. The root mean square (RMS) error between the cleaned signal and original 

sEMG signal was computed. 

 

A sample contaminated sEMG signal is shown in Figure 6-4 at a signal to noise ratio of 2 dB 

along with the filtered signal using the moving average method and the error between the 

filtered and original sEMG signals. 
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Figure 6-4: (a) sEMG contaminated with ECG (SNR = 2 dB). (b) sEMG filtered with moving 

average method. (c) sEMG estimate error with moving average (RMS error = 0.1883). (d) 
sEMG filtered with template subtraction method. (e) sEMG estimate error with template 

subtraction (RMS error = 0.2229). 

QRS detection was successful for both methods except for one signal combination where 

one QRS complex was missed for SNR ≥ 6 dB for the moving average method. The result of 

missing the QRS complex was that the moving average estimate s50[n] was used instead of 

s10[n]. The missed QRS complex could be detected by a more robust QRS detection 

algorithm; however, the consequence of the missed QRS complex was minimal given that 

the SNR was already high. The RMS error, as a function of SNR, is shown in Figure 6-5 for 

the moving average and template subtraction methods. 
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Figure 6-5: Average RMS error between filtered and original clean sEMG for ECG artifact 
mitigation with the moving average and template subtraction methods. 

6.6 Discussion 

The moving average method was found to perform better than the template subtraction 

method at lower SNR (< 0 dB) in terms of RMS error. The RMS error of both methods 

decreased with increasing SNR; however this decrease was more gradual for moving 

average. This is explained by ECG artifact dominating the signal at low SNR. Template 

subtraction works by forming an average template over a silent period and small differences 

between each PQRST waveform are significant at low SNR. This translates into a poor 

estimate with the average template and produces a large RMS error. With a moving 

average, the ECG shape can still be obtained with relative accuracy. 

 

At higher SNR, the ECG artifact may not be visible. The artifact will become clearer when 

moving averages are taken; however, these averages can still be dominated by the high 

signal power from the sEMG and the performance of the moving average method will 

saturate. The template subtraction method does not suffer from this drawback as it uses an 

sEMG-free signal to form the template. This allows for accurate ECG estimates even when 
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ECG power is relatively low. Furthermore, small differences in the ECG template will be 

negligible at high SNR. As such, the template subtraction method outperforms the moving 

average method at high SNR (when the signal power of the sEMG is dominant). 

 

The moving average method has the advantage of being less sensitive to SNR and does not 

require an EMG-free segment in the recording. It also offers an advantage in terms of 

execution delay and automation. Both methods are comparable in terms of execution time; 

however, the template subtraction requires an entire signal consisting of the contaminated 

and silent (ECG only) portions. The more heart beats present, the better the subtraction 

template estimate. It is also required that the silent portion be manually identified by a 

technician which prevents real-time execution, although it is possible to potentially 

automate this process as well. Conversely, the performance of the moving average method 

does not depend on the number of heart beats. It can be applied automatically as ECG is 

acquired and filtered in real-time with no requirement for user interaction or any additional 

recordings. 

6.7 Quantification of Motion Artifact 

6.7.1 Introduction 

Motion artifact occurs when motion of the electrode cables, electrode leads, or stretching of 

the skin disturbs the half-cell potential of the electrode-electrolyte interface [20]. This 

artifact will appear as low frequency components in the signal, typically less than 20 Hz [3]. 

Motion artifact is a serious concern for dynamic muscle contractions where motion of 

electrode and cable are unavoidable. High pass filtering can be performed in hardware to 

eliminate this interference; however useful sEMG will be sacrificed due to overlapping 

spectra, as was the case for ECG artifact. 
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6.7.2 Data 

Motion artifact was artificially added to simulated sEMG and real sEMG. The motion artifact 

was obtained from [54], [55] which consists of motion artifact, typical in ambulatory ECG 

recordings, recorded by placing electrodes on the limbs such that the ECG was not visible. 

The motion artifact was sampled at 360 Hz. SNR was varied from -40 dB to 40 dB in 5 dB 

increments. Simulated sEMG (refer to section 3.2) was sampled at 1080 Hz and the motion 

artifact was upsampled to the same sampling rate (using low-pass interpolation). Real sEMG 

was sampled at 3000.3 Hz and, in that case, the motion artifact was first upsampled to 

9000 Hz and then downsampled to 3000 Hz. For each signal, a random window of motion 

artifact (with the same length as the sEMG signal) was selected from the pre-recorded 

sample in [54], [55] to contaminate the sEMG. 

6.7.3 Methodology 

Three methods were compared for quantifying motion artifact. The first method is an 

implementation of Sinderby’s method for computing a signal-to-motion artifact ratio (SMR) 

[3]. Sinderby’s method assumes that the power spectrum of a clean sEMG signal is roughly 

linear between 0 and 20 Hz and that respiratory-induced motion artifact will manifest itself 

as an increase in low frequency sEMG components in this range. Sinderby’s method first 

uses a sliding window on the power spectrum between 35 Hz and 600 Hz (or the maximum 

frequency) to find the largest mean power density. A straight line is then drawn from the 

zero frequency to this largest mean power density. The signal-to-motion artifact ratio (SMR) 

is computed as the ratio of total signal power to the signal power below 20 Hz that exceeds 

that straight line. A number of issues exist with this approach. First, the method uses a 

basic FFT to compute the power spectrum. This results in high frequency resolution but very 

high variance in power between adjacent frequencies. This will produce a largest mean 

power density which is lower than what would be expected when the shape of the spectrum 

is examined visually. Second, motion artifact often has a frequency component at the zero 
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frequency (not necessarily DC due to limited frequency resolution). Drawing a line from the 

observed signal power at zero frequency may underestimate the motion artifact if the signal 

power at this point is not close to zero. In fact, it is unclear whether the method was 

actually intended to draw the line from the origin or from the true signal power at the zero 

frequency. Third, the method does not properly compute an SMR as would be done 

intuitively. If noise below 20 Hz and above the line is considered motion artifact, one would 

assume that clean signal power should be everything else not including this portion of the 

spectrum. Sinderby’s method uses the entire signal power including motion artifact and then 

divides by the estimated motion artifact power. The result is a ratio that is always strictly 

greater than 1 or greater than 0 dB. For the purposes of this comparison, Sinderby’s 

method is implemented by drawing the straight line from the origin, and the SMR is 

computed as the clean signal power (excluding the power above the line) divided by the 

motion artifact (the power above the line) as the results are more accurate. 

 

Sinderby’s method was modified slightly and used as the second method to detect motion 

artifact. Welch’s averaged modified periodogram with 8 Hamming windows and 50% overlap 

was used to compute the power spectrum. The maximum signal power between 10 Hz and 

20 Hz was then determined along with its corresponding frequency. A straight line from the 

original to this maximum power point was drawn and power below 20 Hz and above this line 

was considered noise while the remainder of the spectrum was considered to be clean 

sEMG. 

 

The third method used a moving average with 50 ms window length as was used for ECG 

artifact detection. The P and T wave portions of the ECG waveform are similar in frequency 

content to motion artifact. The resulting signal from the moving average was used as the 

ECG artifact estimate with which the SMR could be computed. 
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Each of the three methods was applied to quantify motion artifact. SMR was computed over 

all iterations and then averaged. Results for simulated data are shown in Figure 6-6. 

6.7.4 Results 

 

Figure 6-6: Estimated vs. actual SMR for simulated sEMG signals using three methods of 

 quantification. Error bars are at plus or minus one standard deviation. 

For simulated sEMG, the modified version of Sinderby’s algorithm is superior than the 

original above -5 dB. However, the moving average is superior to both methods for SNR of 

approximately 8 dB and below, above which the modified Sinderby algorithm is better. This 

can be seen more accurately by examining the SNR estimate errors in Figure 6-7. No 

method is accurate over the entire range of SNR, but a combination of moving average and 

modified Sinderby’s method could be used to expand the range of accuracy beyond that of 

any of the lone methods. 
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Figure 6-7: RMS error signals for simulated sEMG SMR using three methods of 
 quantification. 

Results for real sEMG are similar (Figure 6-8), albeit less accurate for the modified Sinderby 

method at higher SNR. This is likely due to the presence of real motion artifact in the signal, 

causing the SMR to be underestimated. 

 

Figure 6-8: Estimated vs. actual SMR for real sEMG signals using three methods of 
 quantification. Error bars are at plus or minus one standard deviation. 
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In this case, Sinderby’s method is superior to the modified method below approximately 5 

dB (instead of -5 dB for the simulated case). The moving average is superior to both 

methods below 10 dB, above which the modified Sinderby method is superior. However, 

even the best method is only accurate to 20 dB (Figure 6-9). 

 

Figure 6-9: RMS error signals for real sEMG SMR using three methods of 
 quantification. 

These results indicate that a moving average is the best method to quantify motion artifact 

below 10 dB. If desired, this accuracy can be extended to 20 dB by using the modified 

implementation of Sinderby’s algorithm in conjunction with the moving average. The 

moving average can be used as a first step and if the predicted SMR is above 10 dB, the 

modified Sinderby method can be used. 

6.8 Conclusion 

The comparison of a moving average method and the template subtraction method for ECG 

artifact mitigation in sEMG showed comparable results. The moving average method is 

superior for lower SNR (< 0 dB). It is also more robust to SNR, better suited for real-time 
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application, and does not require user interaction or a relaxed sEMG recording. However as 

SNR increases, better performance can be achieved with template subtraction. 

 

Future work will investigate a smoother interpolation between moving averages as given in 

(6-4) to avoid discontinuities. Further investigation is also needed for dynamic contractions 

where motion artifact and baseline wander can be present. 

 

A moving average can also be used to accurately quantify motion artifact below 10 dB. If 

used in conjunction with a modified implementation of Sinderby’s method, this range can be 

extended to 20 dB. Baseline wander could also be detected in this manner as it appears as 

low frequency components similar to motion artifact but typically less than 1 Hz. 
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7 Classification of sEMG using Support Vector Machines 

7.1 Introduction 

Noise detection in sEMG is traditionally performed by testing for a particular form of 

contamination in the given signal. If an sEMG signal is presented which is potentially 

contaminated with an unknown form of noise, it would need to be tested systematically 

using each individual method before it could be declared clean. Also, methods presented 

previously assumed the presence or absence of particular contaminants. Having multiple 

contaminants present could cause issues with some of the methods. Alternatively, a method 

to differentiate between clean and contaminated sEMG could perform this function in a 

single step. 

 

Such differentiation could be achieved using a two-class pattern classification method. 

However, contamination in sEMG comes in many forms and is highly variable. Two-class 

classification is only accurate when sufficient training examples exist for both classes, and 

when the training examples are sufficiently representative of the full range of variability of 

each class [56]. It would be nearly impossible to simulate or collect sufficient sEMG with 

every possible type of contamination in order to represent the entire class of contaminated 

sEMG. For this reason, classifying clean versus contaminated sEMG is better suited to one-

class classification in which only clean sEMG training data are used. For this analysis, a 

support vector machine (SVM) is used. 

7.2 One-class SVM 

Support vector machines are tools in pattern classification which are used to discriminate 

between two classes. Linearly inseparable datasets are mapped to a higher dimensional 

space using a kernel function such that they become linearly separable. An optimization 
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problem is then solved to find the hyperplane that maximizes the margin between the two 

classes. SVM training algorithms have been extended to support one-class classification as 

implemented in [57]. The optimization goal for one-class SVM is to find a hyperplane that 

best separates the data from the origin within kernel (i.e., higher-dimensional) space. This 

is equivalent to finding a tightly contained volume for the data in the original feature space. 

 

A set of l input feature vectors are given � �,  !, … ,  �� and  ∈ Χ where Χ is called the 
feature space. We further assume that a feature map Φ exists which maps Χ → · where · 

is a higher-dimensional space called inner product space or kernel space. 

The primal optimization problem is expressed as follows [58]. 

 min �! �|&|�! + �¹�∑ ºzz − F �7-1�	
 s. t.		& ⋅ Φ� z� ≥ F − ºz,			ºz ≥ 0 
In (7-1), w is the normal vector of the hyperplane in kernel space and b is the hyperplane 
bias. The constraint in (7-1) is that the inner product of w and Φ� z� (i.e., the mapping of 

 z in ·) should be greater than or equal to the bias b to classify  z in the positive (+1) class 

since, in a one-class classification problem, all training data is assumed to be from the 

positive class. The variable ºz is a slack variable to allow some error in the classification 

margin where ºz ≥ 0. A classifier which allows a degree of slack is referred to as a soft 

margin classifier. 

 

The parameter ¾ ∈ �0,1] in (7-1) is used to adjust the penalty of permitting slack in the 

objective function and is optimized as part of the SVM training. Optimizing this function is 

accomplished using the method of Lagrange multipliers [58]. The Lagrange function L is 
given for multipliers ¿z , Àz ≥ 0: 
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 ��&, º, F, ¿, À� = �! �|&|�! + �¹�∑ ºzz − F − ∑ ¿z��& ⋅ Φ� z�' − Fz + ºz� − ∑ Àzºzz 	 �7-2�	
Differentiating (7-2) with respect to &, º, F and setting this equal to zero yields the following 

solutions, respectively. 

 & = ∑ ¿zΦ� z�z  �7-3�	
 ¿z + Àz = �¹� �7-4�	
 ∑ ¿zz = 1 �7-5�	
The final decision function is shown in (7-6). Note that it is assumed here that sgn(0) = 1. 

 �� � = sgn�& ⋅ Φ� � − F� �7-6�	
Substituting (7-3) into (7-6), we have: 

 �� � = sgn�∑ ¿zΦ� z� ⋅ Φ� �z − F� �7-7�	
We further introduce a kernel function £� , �� (such as the Gaussian kernel [58]) which 

represents the dot product of Φ� � and Φ���, i.e., the mapping of feature vectors x and y 
in kernel space). Note that the function Φ� � need not be known explicitly so long as its dot 

product is known. 

 £� , �� = Φ� � ⋅ Φ��� �7-8�	
Substituting (7-8) into (7-7): 

 �� � = sgn�∑ ¿z£� z ,  �z − F� �7-9�	
We can transform the primal optimization problem in (7-1) into the dual optimization 

problem by using (7-3), (7-4), (7-5), and (7-8): 

	 	min �!∑ ¿z¿	£� z,  	�z,	 	 �7-10�	
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 s. t.		0 ≤ ¿z ≤ �¹� 	,				∑ ¿z = 1z  

where for all feature vectors  z for which the constraint in (7-1) is an equality: 

 F = ∑ ¿	£� 	 ,  z�	  �7-11�	
The feature vectors  z which satisfy (7-11) are the support vectors, consisting of the hardest 

points to classify in the dataset. Equation (7-10) can be solved using quadratic optimization 

techniques and an optimum is guaranteed to exist. The two difficulties are 1) reaching the 

optimum efficiently, which depends on the algorithm efficiency, and 2) generalizing well to 

unseen data, which depends on the training data. 

7.3 Feature Extraction 

To avoid the curse of dimensionality [59], pattern classification of biosignals such as sEMG 

is better performed on descriptive features extracted from each signal to be classified rather 

than operating on the raw signal values themselves. The better the discriminability of these 

features, the more accurate the classification will be. Discriminability refers to the degree to 

which each feature is able to discriminate between signals of each class. 

 

The following features [60] were extracted from each sEMG signal and were used for 

classification. The discriminability of each feature was later examined. 

7.3.1 Autoregressive Model Coefficients 

An autoregressive model (ARM) computes the nth term of a sequence,  , as a linear 

combination of the previous M terms. The aim is to find coefficients, D�, D!, … , D�, which 

minimize the squared error in (7-12). Note that &Q is a white noise error term. 
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  Q = ∑ Dz QJz�zR� + &Q �7-12�	
These coefficients are found using the linear least squares estimator. Once the coefficients 

are determined from an sEMG training sample, the coefficients may be used as descriptive 

features as input to the SVM classifier. For this analysis, M=4 is used. 

7.3.2 sEMG Histogram 

The range of the sEMG signal is computed and is split into n bins of equal size. The number 

of signal samples whose value falls in each bin is counted. The number of occurrences for 

each bin is used as a separate feature. For this analysis, n=10 is used. 

7.3.3 Mean Absolute Value 

The mean absolute value (MAV) is computed for a signal, x, of length N as shown in (7-13). 

Note it is also referred to as the average rectified value. The MAV can be used directly as a 

feature. 

 �9� = �O∑ | Q|OzR�  �7-13�	
7.3.4 Modified Median Frequency 

The median frequency of a signal is the frequency where the power spectrum is divided into 

two partitions where the total power of one partition is equal to that of the other. The 

modified median frequency is similar, only it is computed from the amplitude spectrum 

rather than the power spectrum. If the amplitude spectrum is denoted by vector A of length 

N then (7-14) should be satisfied for index M corresponding to the modified median 

frequency. Values from the amplitude spectrum are used here as they have less variability 

(since the amplitude values are not being squared). 
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 ∑ 9z�zR� = ∑ 9zOzR�  �7-14�	
7.3.5 Modified Mean Frequency 

The modified mean frequency (MMNF) is the weighted average frequency computed over 

the amplitude spectrum. It is computed for amplitude spectrum A with length N as shown in 

(6-15). 

 ��T· = ∑ ����Ã�Ä¦∑ ��Ã�Ä¦  �7-15�	
7.3.6 Power Spectral Density 

The power spectral density is computed using the Fast Fourier Transform (FFT) and then 

squaring the result. For a signal of N samples, the length of the spectrum for positive 

angular frequencies (0 to ¢) is N/2. This power spectrum can be shortened by dividing it 

into k frequency bins (where £ 1 T) and then computing the mean of each bin’s spectrum 

values. These averaged values are used as features for classification. For this analysis, 

k=10 was used. 

7.3.7 Slope Sign Changes 

The number of slope sign changes (SSC) is computed as shown in (7-16). A threshold value 

{ ≤ 0 can be used to control the false positive identification rate due to random noise, 

however this may also increase the false negative rate. A value of 0 should be used if very 

small slope values are expected. For this analysis, a value of T=0 was used. 

 ~�� = ∑ ��� z −  zJ��� z�� −  z�'OJ�zR!  �7-16�	
�� � = Å1,					 ≤ {0,				 4 {  
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7.3.8 Willison Amplitude 

The Willison Amplitude (WAMP) is defined as the number of times the absolute difference 

between adjacent samples exceeds a predetermined threshold T as shown in (7-17). An 

accepted threshold (depending on amplifier gain) is usually between 10 mV and 100 mV 

[60]. For this analysis, a value of 10 mV (T=0.01) was used. 

 Æ9�� = ∑ ��| z�� −  z|�OJ�zR�  �7-17�	
�� � = Å1,					 ≥ {0,				 1 {  

7.3.9 Waveform Length 

The waveform length (WL) is calculated as the cumulative length of the entire signal, or the 

sum of the consecutive absolute differences of the signal as given in (7-18). The 

computation is identical to that from (7-17) only without applying the threshold function f. 
 Æ� = ∑ | z�� −  z|OJ�zR�  �7-18�	
7.3.10 Zero Crossings 

The number of zero crossings (ZC) is defined as the number of times the sEMG signal 

amplitude crosses the x-axis (either positive amplitude to negative, or negative amplitude 

to positive). Once again, a threshold value { 1 0 can be used here to avoid low amplitude 

fluctuations about the baseline. The number of zeros crossings is found using (7-19). For 

this analysis, a value of T=0 was used. 

 È� = ∑ �� Q Q���OJ�zR� + ∑ É�|�Ê¦|� �OJ�zR�  �7-19�	
�� � = Å1,					 1 {0,				 ≥ {  

É� � = Å1,					 = 00,				 ≠ 0  
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7.4 Feature Optimization 

Not all features in Section 7.3 were useful for differentiating clean and contaminated sEMG. 

Some features were found to vary too much for clean sEMG samples (i.e., these features 

exhibited large intraclass variability) and may not be sensitive enough to the contamination 

to provide good discriminability. The goal of feature optimization is to identify the smallest 

subset of features that provides good discriminability between clean and contaminated 

sEMG samples. By reducing the total number of features used in classification, we also 

reduce the complexity of th e classifier and help to avoid the curse of dimensionality. 

 

To evaluate the discriminability of each feature, sEMG was simulated with varying shaping 

parameters and a signal length of 4096 samples (sampled at 1080 Hz). Referring back to 

section 3.2, fl  was randomly generated in the range [30 60] and fh in the range [60 160]. 
The simulated dataset consisted of 204 clean signals and 204 contaminated signals. The 

contamination was artificially generated and added to the clean signals. Six contaminants 

(power line interference, ECG interference, motion artifact, quantization noise, ADC clipping, 

and amplifier saturation) were inserted on equal-sized subsets of the dataset (i.e., 34 

signals per contaminant type). The levels of contamination inserted were chosen such that 

on an initial feature set (consisting of the first AR coefficient, the first and last 3 bins of the 

10-bin amplitude histogram, the first 2 bins of the 10-bin power spectrum, and all 

remaining features), classification accuracy ranged from 70% to 80%. This initial feature set 

was chosen arbitrarily based on a preliminary, non-comprehensive manual (trial and error) 

feature optimization. These contamination levels are shown in Table 7-1. 
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Table 7-1: Contaminant levels used for feature optimization 

Contaminant Amount 

Motion Artifact SNR at 3 dB 

Power line interference SNR at 5 dB 

ECG interference SNR at 3 dB 

Quantization noise Step size at 2-4.25 V 

Clipping ADC max at 2.75 V 

Amplifier saturation Amplifier gain at 3.5* 

* Note that this is an artificial software gain factor applied after the hardware gain factor 

and after the signal has been normalized (multiplied by a constant). 

 

Each of the 31 features was removed from the dataset, one at a time. For each feature, 10 

different datasets were simulated and used to train the SVM. The SVM was trained on the 

clean sEMG only and then tested on the contaminated sEMG. An average and standard 

deviation classification accuracy was computed for the 10 SVM training iterations for each 

feature removal. Once all 31 features had been removed in isolation, the feature removal 

which resulted in the highest classification accuracy (deemed the worst feature) was 

permanently removed. Following this greedy feature selection approach, the procedure 

continued removing each remaining feature and measuring the accuracy while permanently 

removing the worst feature at each iteration. The procedure automatically terminated when 

3 features were remaining, regardless of whether or not they were optimal. When 

determining the highest accuracy at the end of each round of feature removals, an effective 

accuracy (acc’) was computed as given in (7-20). 

 DËËÌ = WLÍÍ − 0.25ÎLÍÍ �7-20�	
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In (7-20), the effective accuracy, acc’, is the weighted difference of the mean accuracy 

(WLÍÍ) and the standard deviation (ÎLÍÍ). This was done to ensure that a marginally higher 

classification accuracy with a much higher variance was not chosen to be preferable. 

 

Two independent executions of the feature optimization were performed. Classification 

accuracy was recorded before and after each feature removal iteration. For both execution 

runs, optimal accuracy with low variance was observed after 24 feature removals (i.e., 

when 7 features remained in the feature set). However, feature sets were identical for both 

execution runs after one more feature removal (i.e., 6 features remaining in the feature 

set). Therefore, the 6 features in common to both separate optimizations were chosen as 

the optimal feature set. The optimal feature set consisted of the first and last bins of the 10-

bin amplitude histogram, the mean absolute value, the Willison amplitude, and the first 2 

bins in the 10-bin power spectrum. This is summarized in Table 7-2. 

Table 7-2: Optimal feature set for SVM classification of sEMG 

 Feature 

1 10-bin amplitude histogram (first bin) 
2 10-bin amplitude histogram (last bin) 
3 Mean absolute value 
4 Willison amplitude 
5 10-bin power spectrum (first bin) 
6 10-bin power spectrum (second bin) 

 

7.5 SVM Performance Evaluation 

LIBSVM [57] was used to train SVMs on both simulated data [31] and real data collected 

using the experimental protocol described in Chapter 3. For one-class classification, the SVM 

is trained on the positive examples (clean sEMG) only and then tested on both clean and 

contaminated (negative) sEMG. The classification accuracy of the SVM was evaluated by 

varying the SNR of the signals being contaminated. Different contaminants were used and 

evaluated separately first, and then in combination. 



 105

 

Two datasets (i.e., one consisting of simulated sEMG and the other consisting of real sEMG) 

were used to evaluate the SVM classification accuracy. A dataset of 400 sEMG signals was 

simulated [31] and partitioned into a 50/50 training/testing split. All simulated signals were 

quantized to 16 bits using equation (5-1), shifted to zero mean, and normalized to a signal 

power of 1. One hundred iterations were repeated, simulating new signals at each iteration, 

and results were averaged. A dataset consisting of 167 real sEMG signals (shifted to zero 

mean and normalized to a signal power of 1) collected using the experimental protocol in 

Chapter 3 was also used. Fourteen iterations were performed where each iteration consisted 

of leaving out one entire muscle group for a given subject (5 subjects and 3 muscles per 

subject) to be used as the testing set. One entire muscle group was removed from the 

dataset due to poor signal quality which resulted in only 14 iterations instead of 15. Each 

iteration consisted of a test set size between 5 and 15 signals. The variation in test set size 

was due to the removal of signals with low SNR from the entire group. This SNR was 

estimated using the signal power from the rest signal immediately following contraction. The 

testing dataset was then manually contaminated with one of power line interference, ECG 

interference, motion artifact, quantization noise, clipping, or amplifier saturation. The 

degree of contamination for each contaminant type is defined in section 7.6. 

 

The 6 features determined by feature optimization in Section 7.4 were extracted from each 

signal. All features for each signal were combined into a feature vector and written to either 

a training file or testing file in LIBSVM format. The training data was linearly scaled to [-1 

+1] and the same scaling factor was then applied to the testing data. A two-dimensional 

grid search was then performed to locate the optimal values of ¾, Ï for the SVM 

classification. The parameter ¾ is used as given in (7-1) and Ï is the spread parameter in 
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the Gaussian radial basis function (RBF) kernel as shown in (7-21). Note that  , � are 
feature vectors. 

 £� , �� =  JÐ�||JÑ|�
 �7-21�	
Once the optimal values for parameters ¾, Ï were found, the SVM was trained using those 

parameters on the training dataset and the classification performance evaluated on the 

testing dataset. 

7.6 Results for Classification of sEMG with a Single Contaminant 

The entire test set was contaminated with a single type of contamination (power line 

interference, ECG interference, motion artifact, quantization noise, clipping, or amplifier 

saturation). Classification accuracy of the SVM was first evaluated on a clean test set (i.e., 

before any contamination was introduced), and second, accuracy was evaluated as a 

function of the amount of contamination inserted for each of the six contaminants. Accuracy 

is computed as the fraction of correct classifications. 

7.6.1 Classification of sEMG with Power Line Interference, ECG Interference, or 

Motion Artifact 

The testing dataset was manually contaminated with one of power line interference, ECG 

interference, or motion artifact. The power line interference was created artificially by 

generating a sinusoid with a random frequency between -59.5 Hz and 60.5 Hz, a random 

phase, and amplitude corresponding to SNR between -20 dB and 20 dB in increments of 5 

dB. ECG interference was inserted from real signals used in Chapter 6, and motion artifact 

from [54], [55]. The performance with simulated sEMG is shown in Figure 7-1. 
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Figure 7-1: Classification accuracy of one-class SVM  trained with simulated sEMG and 
tested on sEMG contaminated with power line interference, ECG interference, or motion 

artifact with varying SNR. SNR values are offset for visibility. Error bars are at ±1 standard 
deviation. 

Classification accuracy is 100% for low SNR (large amount of contamination). A transition 

point exists for each contaminant where accuracy drops substantially (approximately 10 dB 

for power line interference, 3 dB for ECG interference, and 5 dB for motion artifact). Past 

this transition point, the contamination levels are too low to be detected in the signal and 

the accuracy falls to 0. In this section, the transition point is defined as the smallest amount 

of contamination where the classification accuracy is 80% or greater. Transition point values 

are approximate and will vary with the dataset. We see the effect of power line interference 

at the transition point of 10 dB on simulated sEMG in the time and frequency domain 

(Figure 7-2). Note that classifying high SNR signals as clean is an acceptable error (and a 

reasonable decision). In these cases, the noise is minute and is not distorting any of the 

features which is the reason for the SVM being unable to differentiate them from clean 

signals. 
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Figure 7-2: The effect of power line interference at 10 dB on a simulated sEMG signal in the 

(a) time and (b) frequency domain. 

In Figure 7-3, we see time and frequency domain plots showing the effect of ECG 

interference at 3 dB. 

 

Figure 7-3: The effect of ECG interference at 3 dB on a simulated sEMG signal in (a) time 
and (b) frequency domain. 

In Figure 7-4, we see time and frequency domain plots showing the effect of motion artifact 

at 5 dB. 

a b 

a b 
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Figure 7-4: The effect of motion artifact at 5 dB on a simulated sEMG signal in (a) time and 

(b) frequency domain. 

The performance on the real sEMG data is shown in Figure 7-5. The trend is similar to that 

of the simulated data (see Figure 7-1). With real data, the transition point where the 

accuracy begins to drop occurs at a lower SNR. This is likely due to a combination of two 

factors. The first factor is that real sEMG will be more variable than the idealized simulated 

sEMG used previously. The second factor is that there is real unintended motion artifact and 

power line interference in the real data collected. Usually the amounts are small, however, 

they are still measurable and when the SVM is trained on slightly contaminated data, it will 

become less sensitive to those types of contaminants in the test data. 

a b 
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Figure 7-5: Classification accuracy of one-class SVM trained with real sEMG and tested on 
sEMG contaminated with power line interference, ECG interference, or motion artifact with 
varying SNR. SNR values are offset for visibility. Error bars are at ±1 standard deviation. 

7.6.2 Classification of sEMG with Quantization Noise 

The testing dataset was manually contaminated with quantization noise using (5-1) and 

varying the ADC step size to each the following: 2-3, 2-3.5, 2-4, 2-4.5, 2-5, 2-5.5, 2-6, 2-6.5, 2-7. 

Classification accuracy as a function of step size is shown in Figure 7-6. 
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Figure 7-6: Classification accuracy of simulated sEMG with varying degrees of quantization 

noise. Error bars are at ±1 standard deviation. 

The transition point for SVM classification with quantization noise occurs at an ADC step size 

of approximately 2JÒ.°. The effect of quantization noise at this step size on simulated sEMG 

in the time domain is shown in Figure 7-7. Note that the small deviations in the time 

domain due to the rounding (quantization) error have no effect on the frequency domain. 

Although these deviations can be seen here, they would not be apparent if the clean signal 

were not available. 
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Figure 7-7: The effect of quantization noise at an ADC step size of 2-4.5 on simulated sEMG in 
the time domain 

The performance on the dataset of real sEMG is shown in Figure 7-8. With real data, the 

accuracy is low (the variance is due to clean signals being incorrectly identified as 

contaminated in the dataset, causing unexpected performance for certain test set partitions 

and not others) until a step size of about 2-3.5 when accuracy reaches 100%. Thus, 

quantization noise appears to be more difficult to detect in real, as opposed to simulated 

signals. This could partly be due to the fact that the amplitude of the real signals tended to 

be larger than that of the simulated signals, despite the fact that both were normalized to a 

power of 1. Higher amplitude signals will be less impacted by quantization noise at a given 

resolution when compared to signals with lower amplitude. 
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Figure 7-8: Classification of real sEMG contaminated with quantization noise at different 
ADC step sizes. Error bars are at ±1 standard deviation. 

7.6.3 Classification of sEMG with ADC Clipping 

The testing dataset was manually contaminated with ADC clipping using (5-1) with a 

variable ADC max (2-4 V in 0.25 V increments). A plot of classification accuracy as a 

function of the normalized number of signal samples clipped is shown in Figure 7-9. The 

normalized number of clipped samples is computed by counting the number of clipped 

samples, dividing by the signal length and multiplying by 10000.  
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Figure 7-9: Classification of simulated sEMG contaminated with ADC clipping at different 

mean number of samples clipped (normalized by dividing by the signal length 0f 4096 and 
multiplying by 10,000). Error bars are at ±1 standard deviation. 

For ADC clipping, the transition point for the classification accuracy occurs at a normalized 

number of samples clipped of approximately 50 for simulated sEMG.  The effect of clipping 

in the time and frequency domain with a normalized number of samples clipped of 49 is 

shown in Figure 7-10. Portions of the signal where the red (clipped) series is visible indicate 

regions where the signal was clipped. 

 

Figure 7-10: The effect of clipping with a normalized number of samples clipped of 49 on 
simulated sEMG in the (a) time domain and (b) frequency domain. 

a b 
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The classification accuracy for the real sEMG dataset is shown in Figure 7-11. The accuracy 

increases gradually with the number of samples clipped. The accuracy is reasonable beyond 

a normalized number of samples clipped of approximately 55, just marginally higher than 

the 50 for simulated data. However, considering the relatively high variance here (standard 

deviation of 12.8 for real data, and 21.7 for simulated) there does not appear to be a 

significant difference between the transition points for simulated versus real data in this 

case. It should be noted that the simulated and real data were at different amplitudes 

despite having the same signal power. As such, different ADC ranges were used (for real 

data, the range values were increased from 2-4 V to 3-5 V) in order to achieve a similar 

range of number of samples clipped. 

 

Figure 7-11: Classification of real sEMG contaminated with ADC clipping at different mean 
number of samples clipped (normalized by dividing by the signal length of 30,003 and 

multiplying by 10,000). Error bars are at ±1 standard deviation. 

7.6.4 Classification of sEMG with Amplifier Saturation 

The testing dataset was manually contaminated with amplifier saturation using (5-8) with 

an amplifier max set to 10 V and variable amplifier gain (0.5-4.5 in increments of 0.5). A 
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plot of classification accuracy as a function of the fraction of the signal distorted is shown in 

Figure 7-12. The fraction of the signal distorted is defined as the fraction of signal samples 

outside the linear range of the amplifier (i.e., regions where equation (5-9) is satisfied). 

 

Figure 7-12: Classification of simulated sEMG contaminated with amplifier saturation at 
different mean fractions of the signal in the amplifier nonlinear zone. Error bars are at ±1 

standard deviation. 

The transition point for amplifier saturation occurs at approximately 16-17% of the signal in 

the nonlinear zone for simulated sEMG.  The effect of amplifier saturation in the time and 

frequency domain at this degree of amplifier saturation is shown in Figure 7-13. 
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Figure 7-13: The effect of amplifier saturation when 16% of the signal falls in the amplifier 
nonlinear zone on simulated sEMG in the (a) time domain and (b) frequency domain. 

The classification accuracy for the real sEMG dataset contaminated with amplifier saturation 

is shown in Figure 7-14. The transition point for the real data seems to be higher at around 

23% of the signal saturated and the real data exhibits higher variance. The variance in the 

fraction of the signal in the nonlinear zone figures was small for both real and real simulated 

(approximately 0.7% for real data and 0.5% for simulated data). 

 

Figure 7-14: Classification of real sEMG contaminated with amplifier saturation at different 
fractions of the signal in the amplifier nonlinear zone. Error bars are at ±1 standard 

deviation. 

a b 
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Table 7-3 summarizes the transition points for each contaminant for simulated and real 

data. 

Table 7-3: Transition points in SVM classification accuracy for each contaminant for 
simulated and real sEMG 

Contaminant Transition point for 

simulated data 

Transition point for real 

data 

Power line 
interference 

10 dB SNR: 5 dB 

ECG interference  3 dB SNR: -3 dB 
Motion artifact 5 dB SNR: 5 dB 

Quantization noise ADC step size: 2-4.5 ADC step size: 2-3.5 
ADC clipping Normalized number of 

samples clipped: 50 
Normalized number of 
samples clipped: 55 

Amplifier saturation 16% of signal in amplifier 
nonlinear zone 

23% of signal in amplifier 
nonlinear zone 

 

7.6.5 Using the SVM Classification Approach to Quantify Signal Contamination 

The SVM can perform a classification for clean versus contaminated sEMG with a degree of 

accuracy which is SNR-dependent. However, it is not designed to express the degree of 

cleanliness or contamination in the sEMG. This is not an issue for signals which are severely 

contaminated (low SNR); however it would be desirable to have a measure of contaminant 

quantification for signals with moderate to low amounts of contamination. In such 

circumstances, the magnitude of the decision function in (7-9) (i.e., the raw decision value 

before the sgn function is applied) may be very close to 0, indicating that the signal may fall 

very close to the decision boundary. It was hypothesized that the raw decision value of (7-

9) can be useful in determining how much confidence to put in a given SVM classification, 

and may also serve as a means to estimate the degree of contamination in the signal. A 

human operator can set their own threshold of acceptability (i.e., set their own decision 

boundary). For example, a higher decision boundary value would make the system more 

conservative, classifying signals that were borderline cases as contaminated. 
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For this portion of the analysis, a clean uncontaminated test set was used. This was done to 

observe how the decision values vary between and within test set partitions. For each of the 

14 SVM test partitions for the real dataset, the mean and standard deviation of the raw 

decision values for the training set were calculated. These values were used to normalize 

(subtract mean and divide by standard deviation) the decision values obtained from 

classifying the test set with that SVM. By normalizing the testing decision values in this 

manner with respect to the training decision values, we are able to compare how the test 

vector decision values cluster for a given SVM relative to others. Furthermore, considering 

that the test partitions correspond to different muscle groups for different subjects, this 

analysis examines inter-subject and inter-muscle variability. This is shown in Figure 7-15. 

The position of each marker is the mean decision value for that testing dataset partition 

after normalization relative to the training set. A position above the red line indicates a 

clean (+1) classification. A position below the red line indicates a contaminated (-1) 

classification, which is incorrect in this case since these results are on the clean portion of 

the test set only. Tighter error bars indicate better clustering of the test set data and a 

value close to zero indicates that that test set partition clustered close to the training set 

partition. 
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Figure 7-15: Decision values for clean test set sEMG normalized by training decision values 
for each SVM testing set partition. The decision boundary indicates the change in 

classification value 

The plot in Figure 7-15 also serves as an indicator for outliers. Testing set partitions which 

exhibit abnormally large variance may contain certain sEMG signals that are not, in fact, 

clean. Partitions which fall entirely below the decision boundary may contain sufficient 

contamination to be completely rejected by the classifier. We can observe that partitions 4 

and 13 exhibit high variance, and partitions 8 and 14 fall entirely below the decision 

boundary. It was noted that for partition 4, the subject did not always begin the contraction 

before the recording began, thus, creating a silent portion at the beginning of certain 

recordings. This was observed to cause a deviation in the feature values from the mean of 

the dataset. For partition 13, the power spectrum was observed to show motion artifact in 

some circumstances. This would likely account for the large variance. The power spectrum 

for some signals in partition 8 contained power line interference and harmonics, despite 

having a high SNR estimate when compared with the rest recording. Lastly, no problems 

were observed with the signals from partition 14; however these signals were from the 

subject with the largest number of rejected signals (due to low SNR) and could be a result 
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of improper contraction technique or an improper setup for that contraction. These four 

partitions were still included in the dataset which could have skewed the results if these 

partitions really did represent contaminated sEMG. It should be noted that training on a 

reduced dataset free of these outliers will not necessarily increase the transition point for 

the SVM classification. Rather, the amount of variance in the normalized decision values 

observed for low levels of contamination will be reduced. SVMs can operate in the presence 

of noisy data so long as the majority of the training set is representative of the class of data 

in question. 

 

The remaining analysis will use a contaminated test set where the contamination level is 

measurably varied. The decision values for the contaminated test set were computed for 

each of the 6 contaminants and the 14 testing set partitions at each of the 9 levels of 

contamination. These values were observed to be correlated with the amount of 

contamination in the signal. The decision values were averaged over all testing set 

partitions for each contaminant. The mean decision value curve as a function of the 

contaminant level is shown in Figure 7-16. The contaminant levels for each contaminant 

type are defined in Table 7-4. 

 

Figure 7-16: Mean decision value for each contaminant over all test set partitions at 
different contaminant levels at (a) full scale and (b) zoomed in. The contaminant levels are 

defined for each contaminant type in Table 7-4. 

a b 
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Table 7-4: Amounts of contamination for each numeric contaminant level 

Contaminant 

Level 

Power Line, ECG, 

or Motion Artifact 

(SNR in dB) 

Quantization 

(ADC step 
size) 

Clipping 

(ADC 
max) 

Amplifier 

Saturation 

(Gain) 
1 -20 2-3 3 4.5 
2 -15 2-3.5 3.25 4 
3 -10 2-4 3.5 3.5 
4 -5 2-4.5 3.75 3 
5 0 2-5 4 2.5 
6 5 2-5.5 4.25 2 
7 10 2-6 4.5 1.5 
8 15 2-6.5 4.75 1 
9 20 2-7 5 0.5 

 

We can see that the curves in Figure 7-16 follow an S shape. High levels of contamination 

cause the decision vales to saturate at very low values. Low levels of contamination cause 

the decision values to approach zero. There is also a transition region in between containing 

an inflection point. This is where the ability of the SVM is to detect the contamination will 

change. Detection of quantization noise, clipping, and amplifier saturation was more difficult 

and the ranges of contaminant levels chosen were skewed towards the right end of the S 

curve so only half of this trend is seen. It is likely that a wider range would show the same 

relationship as is seen for power line interference, ECG interference, and motion artifact. 

 

Instead of looking at the whole curve, Figure 7-17 is a plot of the rectified decision values 

(as they are negative values) for contamination levels during the transition region (i.e., 

below and above the transition point) for each contaminant. 
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Figure 7-17: Mean decision values over all testing set partitions for each contaminant below 
and above its transition point: 1) Power line interference at 5 dB and 10 dB, 2) ECG 

interference at -5 dB and 0 dB, 3) motion artifact at 5 dB and 10 dB, 4) quantization noise 
at ADC step size of 2-3.5 and 2-4, 5) ADC clipping at an ADC max of 3 V and 3.5 V, and 6) 

Amplifier saturation at an amplifier gain of 4 and 3.5. 

The decision values above the transition point in Figure 7-17 are similar for all 

contaminants. The decision values below the transition point can vary, but are usually 

sufficiently greater than the values above the transition point to allow one to develop a 

confidence threshold in the classification result based on the decision value. This implies 

that a generalized decision threshold can be used to discern contaminated signals (e.g., 

from Figure 7-17, a decision threshold of -10 could be used). The large variance in the 

values below the transition point is likely due to outliers. A larger dataset with a strict 

method of outlier rejection should reduce this variance, however, such a restricted dataset 

may not be suited for all applications. This variance in decision values below the transition 

point may be acceptable, in which case the threshold value could be adjusted based on an 

acceptable false negative rate. 
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7.7 Classification of sEMG with Two Simultaneous Contaminants 

The real sEMG dataset was combined with two of the six contaminants (motion artifact, 

power line interference, ECG interference, quantization noise, ADC clipping, and amplifier 

saturation). All 15 combinations of the contaminants were used. The order that motion 

artifact, power line interference, and ECG interference are applied does not affect the result. 

However, amplifier saturation, ADC clipping, and quantization noise must be applied after 

the former three contaminants. When a subset of the latter three contaminants were 

applied together, clipping was always applied after amplifier saturation and quantization 

noise was always applied very last. When a subset of motion artifact, power line 

interference, and ECG interference was used, SNR for the second contaminant applied was 

computed relative to the original uncontaminated signal, and not to the entire signal 

containing the first contaminant. 

 

Each of the fifteen combinations of two of the six contaminants was applied at 9 noise levels 

per contaminants (for a total of 81 noise level combinations). The contaminated dataset was 

then used to test each of the 14 SVMs. 

 

The results of the simulations reflected similar transition points for each contaminant pair as 

to when the contaminants were applied in isolation. In some cases, the transition point for a 

given contaminant would occur with a smaller amount of noise due to the combined impact 

of that contaminant and the second contaminant, even though the noise level of the second 

contaminant may have been after its own transition point (i.e., the second contaminant 

would not have been detected on its own with good accuracy). For instance, ECG artifact is 

not detected on its own with reliable accuracy at 0 dB (approximately 60% from Figure 

7-5), however when combined with quantization noise the accuracy reaches 80% at a step 
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size of 2-4.5 and almost 100% at 2-4, indicating a wider range of detection than when ECG 

interference was not present (Figure 7-18). 

 

Figure 7-18: Classification accuracy for real sEMG both with and without ECG interference at 

0 dB and quantization noise at various ADC step sizes. Error bars are at ±1 standard 
deviation. 

Figure 7-19 is a plot of the decision values for each of the 15 combinations of contaminants 

on either side of the transition point. Note that if multiple points were below the transition 

point and still at high accuracy, the closest point to 60% accuracy was chosen. The 

contaminants are listed below in Table 7-5 along with their respective noise levels both 

below and above the transition point. 
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Table 7-5: Noise combinations used in Figure 7-19 with corresponding noise levels below 
and above the transition point for each contaminant. 

Combination First 

Contaminant 

Noise level Second 

Contaminant 

Noise level 

  Below Above  Below Above 

1 Motion 
artifact 

5 dB 10 dB Power line 
interference 

20 dB 10 dB 

2 Motion 
artifact 

5 dB 10 dB ECG 
interference 

15 dB 5 dB 

3 Motion 
artifact 

5 dB 10 dB Quantization 
noise 

ADC step: 
2-6 

ADC 
step: 
2-4 

4 Motion 
artifact 

5 dB 10 dB Clipping ADC max: 
4.75 

ADC 
max: 
3.5 

5 Motion 
artifact 

5 dB 10 dB Amplifier 
saturation 

Gain: 1.5 Gain: 3 

6 Power line 
interference 

10 dB 10 dB ECG 
interference 

-5 dB 5 dB 

7 Power line 
interference 

10 dB 10 dB Quantization 
noise 

ADC step: 
2-3.5 

ADC 
step: 
2-4.5 

8 Power line 
interference 

10 dB 10 dB Clipping ADC max: 
3.25 

ADC 
max: 
3.5 

9 Power line 
interference 

10 dB 10 dB Amplifier 
saturation 

Gain: 3.5 Gain: 3 

10 ECG 
interference 

0 dB 5 dB Quantization 
noise 

ADC step: 
2-4.5 

ADC 
step: 
2-4 

11 ECG 
interference 

0 dB 5 dB Clipping ADC max: 
4 

ADC 
max: 
3.5 

12 ECG 
interference 

0 dB 5 dB Amplifier 
saturation 

Gain: 2.5 Gain: 3 

13 Clipping ADC max: 
3.25 

ADC 
max: 
3.5 

Quantization 
noise 

ADC step: 
2-6.5 

ADC 
step: 
2-4.5 

14 Amplifier 
saturation 

Gain: 3.5 Gain: 3 Quantization 
noise 

ADC step: 
2-4 

ADC 
step: 
2-4.5 

15 Amplifier 
saturation 

Gain: 3 Gain: 3 Clipping ADC max: 
3 

ADC 
max: 
3.25 
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Figure 7-19: Average rectified decision values for each contaminant combination from Table 
7-5 below and above the transition point. 

The results from Figure 7-19 show that combinations which involve entire additive signals 

(such as power line interference, motion artifact, or ECG interference, i.e., combinations 1-

6) are much better discriminated by the SVM. Significant distortion is apparent after visual 

examination of the signal in these cases. For quantization noise, ADC clipping, and amplifier 

saturation, the decision values are more clustered below and above the transition point. 

However, contamination is not evident from the visual examination of the time domain or 

frequency domain signal. Thus, the SVM classifier may offer a method for automatically 

detecting these types of contaminants, although it cannot identify the contaminants. 
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The decision values above the transition point are similar for Figure 7-17 andFigure 7-17 

Figure 7-19. A candidate threshold decision value could be -10. Values below this could be 

identified as contaminated. The large error bars in some cases present the possibility of 

type II errors (false negatives). False positives could occur but they are more dependent on 

how well the SVM conforms to the class of clean sEMG. The confidence threshold could be 

adjusted to achieve a desired sensitivity and specificity, although more investigation is 

required here along with a much larger dataset. 

7.8 Conclusion 

In this chapter, the use of a one-class SVM to differentiate clean and contaminated sEMG 

was evaluated. Results indicate that this classification is feasible and accuracy will depend 

on the intensity of the contamination, as well as the quality of the clean dataset. Motion 

artifact, power line interference, and ECG interference can be detected with high accuracy, 

although detection is also possible in many cases by visually examining the signal or 

frequency spectrum. Detection of quantization noise, clipping, and amplifier saturation is 

possible and the SVM decision function value can be used as a confidence indicator and 

compared to a pre-calibrated threshold. This provides an advantage in terms of automation 

and when visual examination of the signal is insufficient to detect contamination. The 

presence of multiple contaminants in the signal will often increase the classification accuracy 

at a given noise level. More investigation with a larger training dataset could lead to a 

robust SVM classifier with a reliable confidence threshold. 
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8 Thesis Summary and Future Recommendations 

8.1 Summary 

In this thesis, methods were presented and evaluated in terms of their accuracy in signal 

quality assessment in surface electromyography (sEMG). This thesis contributed methods to 

identify, quantify, and mitigate power line interference; identify, and quantify analog-to-

digital converter clipping and quantization noise; identify amplifier saturation; quantify and 

mitigate electrocardiogram artifact; and quantify motion artifact. These methods were 

tested on real and simulated sEMG artificially contaminated with either synthetic noise, or 

noise obtained from [54], [55] at different signal-to-noise ratios. Results indicate that 

power line interference could be mitigated at up to 20 dB SNR for signals 5 seconds in 

length or more. Clipping could be detected at levels well below that when signal quality 

becomes compromised. Quantization noise could be quantified for signals 5 seconds in 

length or more at 16-bit resolution. Amplifier saturation could be detected when a 

significant amount (> 40%) of the signal is outside the linear range of the amplifier. ECG 

interference can be mitigated using a moving average method. A moving average can also 

be used to quantify motion artifact up to 10 dB. 

 

A procedure to train a one-class support vector machine (SVM) to differentiate clean and 

contaminated sEMG (signal quality assessment from the top-down) was also investigated. 

The accuracy of the SVM was evaluated for different levels of contamination. The SVM could 

reject power line interference, motion artifact, ECG interference, quantization noise, ADC 

clipping, and amplifier saturation depending on the level of contamination and the SVM 

decision function value could be used as a confidence indicator. Detection of quantization 

noise, clipping, and amplifier saturation is possible even when no contamination is evident 

by visually examining the signal. 
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The contributions in this thesis are towards a reliable open-source user-friendly software 

tool for automatic signal quality assessment in sEMG. 

8.2 Recommendations for future work 

Future work should address the following items. 

 

1. Investigation of baseline wander and crosstalk 

Identification, quantification, and mitigation of baseline wander and crosstalk were 

introduced but not a focus in this thesis. Baseline wander is a form of low frequency 

contamination that could be mitigated in a similar manner as motion artifact (using a 

moving average or a related high-pass filtering method). Crosstalk is a difficult 

contaminant to mitigate without placing restrictions on the sEMG acquisition setup, 

however an investigation could utilize the increased selectivity of a double-differential 

electrode configuration to collect sEMG with and without crosstalk. The electrode transfer 

function would need to be taken into account. A procedure would need to be developed 

where an individual muscle could be recorded without crosstalk as well as its impact on a 

neighbouring muscle. Some correlation should be observed with an increasing contraction 

level of the interfering muscle. 

2. Contaminant differentiation 

Further investigation should be performed to differentiate one contaminant from another. 

A procedure should be in place to identify each contaminant unambiguously and rule out 

the rest. All contaminant identification methods should be tested on all forms of 

contamination to ensure they correctly identify the contaminant of interest. Further 

testing could then be done by combining contaminants and ensuring they can still be 

differentiated. In some cases, this may not be possible due to significant overlap (e.g., 

motion artifact and electrocardiogram interference). 
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3. SVM classification 

More investigation is required in training the one-class SVM classifier with a larger 

dataset of clean sEMG. Such an investigation could facilitate the selection of a confidence 

decision value threshold to achieve a range of desired sensitivities and specificities 

depending on the application. A larger, more comprehensive dataset could help to 

identify signals which are contaminated (outliers) with greater certainty. 

4. Impact of contamination on sEMG features 

This thesis examines the effect of signal contamination on the raw signal only and not on 

features such (e.g., mean absolute value and median frequency) which are more useful 

for many sEMG applications. An investigation should be conducted where the impact of 

signal contamination on different sEMG features is examined. 

5. Larger dataset 

Each method in this thesis should be validated using a larger dataset of real sEMG. 

Furthermore, methods evaluated using additive pre-recorded contaminants (i.e., ECG 

and motion artifact) should be evaluated with a larger database of those contaminants. 

Additional ECG artifact should be collected from more subjects under different conditions, 

as well as additional recordings of motion artifact. 

  



 132

Appendix A: Least Squares Adaptive 

Power Line Estimation Algorithm 
Derivation 

Appendix A includes a derivation of the least squares adaptive power line estimation 

algorithm presented in section 4.2 and adapted from [42]. The derivation shows how to 

compute the derivative of the mean squared error objective function between an sEMG 

signal contaminated with power line interference and an estimate of that power line 

interference. The minimum of the MSE between the noise and the noise estimate can be 

located iteratively by moving in small steps in the opposite direction (steepest descent) to 

the derivative. First, as the power line interference in the signal cannot be measured 

directly, we need a method for estimating the error between the noise and the noise 

estimate. 

 

A.1 Computing the Error Function for the Noise Estimate 

The noisy sEMG signal  [#] is the sum of the clean signal s[#] and the noise 7[#] 
  [#] = 	s[#] + 7[#] �A-1� 
The noise is assumed to be purely due to power line interference and of the form, 

 78[#] = DE cos�;8#� + FCsin	�;8#� �A-2�				
where 78[#] is the noise estimate, DE and FC are the amplitude estimates of the in-phase and 

quadrature components, and ;8 is the power line frequency. 

 

The squared error between the signal and the noise estimate is 

  ! = � [#] − 78[#]�!. 
The expectation of the squared error (the MSE) is as follows. 

 M[ !] = M[� [#] − 78[#]�!] 
M[ !] = M[�s[#] + 7[#] − 78[#]�!] 
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M[ !] = M[s![#]] + M[�7[#] − 78[#]�!] + 2M[s[#]�7[#] − 78[#]�] 
We will assume that the clean signal s[#] is uncorrelated with the difference in noise and 

noise estimate 7[#] − 78[#]. 
M[ !] = M[s![#]] + M[�7[#] − 78[#]�!] + 2M[s[#]]M[�7[#] − 78[#]�] 

We will further assume that 78[#] is an unbiased estimator for 7[#] so M[�7[#] − 78[#]�] = 0. 
M[ !] = M[s![#]] + M[�7[#] − 78[#]�!] 

The minimum of the MSE is then defined as follows. 

min	�M[ !]� = min	�M[s![#]]� + min	�M[�7[#] − 78[#]�!]� 
Since the signal s[#] is being measured, the minimum MSE between noise and the noise 

estimate 78[#] is achieved by minimizing the MSE between the signal  [#] and the noise 
estimate. This tells us that the best estimate we have for  [#] is 78[#]. 
	  E[#] = 78[#]	 �A-3�	
The error function to minimize using steepest descent is: 

 M = �O∑ � [#] −  E[#]�!OJ�QRS . �A-4�	
A.2 Computing the Derivative of the Error Function 

Let  =  [#] where  = [ [0]  [1] ⋯  [T − 1]]c. 
From 78[#] = DE cos�;8#� + FCsin	�;8#� �A-2� and  E[#] = 78[#]	 �A-3�, 
	  E[#] = DE cos�;8#� + FCsin	�;8#� 
Let  E =  E[#] where  E = [ E[0]  E[1] ⋯  E[T − 1]]c. 
We can rewrite (A-4) as follows. Note that the 

�O is a constant so it will be dropped since 

minimizing the total squared error is equivalent to minimizing the MSE. 

M = ‖ −  E‖!! 
 M =  c +  Ec E − 2 Ec  �A-5� 
Let ℎ = [DE FC]c and ] = [cos	�;8#� sin	�;8#�], then 
  E = ]ℎ �A-6�	
Combining (A-5) and A-6), 
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	 M =  c + ℎc]c]ℎ − 2ℎc]c 	 �A-7�	
Since (A-7) is linear in terms of h, we can find the optimal h as follows. 

ÕMÕℎ = 2]c]ℎ − 2]c 	
Let	ℎ = ℎ_`a 	when	X�X� = 0.	

2]c]ℎ_`a − 2]c = 0	
				 	 		 ×ØÙÚ = �ÛÜÛ�JÝÛÜÞ				 �A-8�	
The minimum error can then be found from (A-7)and (A-8). 

	 Mß§¨ =  c + ℎ_`ac ]c]ℎ_`a − 2ℎ_`ac ]c 	 �A-9�	
Combining (A-8) and (A-9) and noting that, ℎ_`ac =  c]�]c]�J�, 

Mß§¨ =  c +  c]�]c]�J�]c]�]c]�J�]c − 2 c]�]c]�J�]c  
Mß§¨ =  c +  c]�]c]�J�]c − 2 c]�]c]�J�]c  

	 Mß§¨ =  c −  c]�]c]�J�]c 	 �A-10�	
Taking the derivative of (A-9) with respect to ;8 where, 

]Ì = àà;8 ] 

 ]Ì = [−# sin;8# # cos;8#] 
	 XXZ8 Mß§¨ = ℎ_`ac ]′c]ℎ_`a + ℎ_`ac ]c]Ìℎ_`a − 2ℎ_`ac ]′c 	 �A-11�	
We notice that, 

 ℎ_`ac ]′c]ℎ_`a = [D_`a F_`a][−# sin;8# # cos;8#]c[cos�;8#� sin�;8#�][D_`a F_`a]c 
ℎ_`ac ]′c]ℎ_`a = �−# D_`asin;8# + # F_`acos;8#'�D_`acos�;8#� + F_`asin�;8#�� 

The value ℎ_`ac ]′c]ℎ_`a is a scalar. This makes sense since 
XXZ8 Mß§¨ must also be a scalar. This 

means that 

ℎ_`ac ]′c]ℎ_`a = \ℎ_`ac ]Ìc]ℎ_`abc 
	 ℎ_`ac ]′c]ℎ_`a = ℎ_`ac ]c]Ìℎ_`a 	 �A-12�	
Substituting (A-12) into (A-11), 
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ÕÕ;8 Mß§¨ = 2ℎ_`ac ]′c]ℎ_`a − 2ℎ_`ac ]′c  
ÕÕ;8 Mß§¨ = 2ℎ_`ac ]Ìc�]ℎ_`a −  � 

We can apply the transpose once again here since 
XXZ8 Mß§¨ is a scalar. 

	 XXZ8 Mß§¨ = −2� − ]ℎ_`a'c]Ìℎ_`a 	 �A-13�	
(A-13) can then be applied using the iterative descent update rule for a given learning rate, 

W. 
	 ;8Q�|a = ;8 − �! W XXZ8 Mß§¨	 �A-14�	
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Appendix B: Moving Average Frequency 

Response Derivation 

Appendix B lists the steps in the derivation of the frequency response presented in (6-3) in 

Section 6.2. A moving average can be implemented as a finite impulse response filter with L 

coefficients each equal to 1/L. The impulse response of this filter is: 

 ℎ�#� = �)∑ â�# − 7�)J�yRS  �B-1�	
The transfer function can then be written as: 

 ��ä� = �) �1 + äJ� + äJ! +⋯+ äJ�)J��� �B-2�	
And the frequency response: 

 �� 	Z� = �) �1 +  J	Z +  J	!Z +⋯+  J	�)J��Z� �B-3�	
(B-3) is the sum of a geometric series with a ratio of  J	Z. This sum is equivalent to: 

 �� 	Z� = v�)x �J��å©¥�J��å© ,				; ≠ 2¢£, £ ∈ ℤ �B-4�	
 �� 	Z� = v�)x ��å©v¥
xJ��å©v¥
x

�å©
J��å©
 ���å©v¥
x
��å©
 � 	,				; ≠ 2¢£, £ ∈ ℤ 

	 �� 	Z� = v�)x  J	Z¥�¦
 ��§¨v©¥
 x�§¨v©
x � ,				; ≠ 2¢£, £ ∈ ℤ	 �B-5�	
In (B-3), the sum evaluates to 1 if ω is 0 or any multiple of 2π. The result is (B-6) which is 

the same equation shown in (6-3). 

 �� 	Z� = ¡ 1,				; = 2¢£,			£ ∈ ℤ J	Z¥�¦
 ��§¨v©¥
 x�§¨v©
x � ,			; ≠ 2¢£, £ ∈ ℤ �B-6�	
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Appendix C: Informed Consent Form 

Appendix C contains a copy of the informed consent form that each participant was asked to 

read and sign. This form was approved by the Carleton University Research Ethics Board. 

The date of ethics approval was June 16, 2003 and this clearance expires on August 31, 

2012. 

 
Biological Signals Research 

Informed Consent   
Dr. Adrian D.C. Chan 

Associate Professor 

Dept Systems & Computer Engineering 

1125 Colonel By Drive 

Ottawa ON  K1S 5B6 

 

I, _____________________________ have been invited by Dr. Adrian Chan, and his 

research associates, of the Department of Systems and Computer Engineering at Carleton 

University, Ottawa, ON to participate in a study on biological signals.  

 

The purpose of the study is to examine various biological signals including: 

 

1. electrocardiogram (ECG) – heart signals 
2. myoelectric signal (MES) – muscle signals 
3. electroneurogram (ENG) – nerve signals 
4. electroencephalogram (EEG) – brain signals 
5. acoustic sound – speech for example 
6. phonocardiogram (PCG) – heart sounds 
7. RadioVibrometer – anatomical vibrations 

 

These signals can be monitored non-invasively using electrodes on the skin surface. While 

being non-invasive, these signals contain valuable information pertaining to the status of 

internal organs (e.g. heart, muscles, nerves). These signals are used in a variety of areas 

including: disease diagnosis, myoelectrically controlled prosthesis, monitoring muscle 

fatigue, and expanding physiological knowledge of our bodies. 
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Research undertaken as part of a graduate/undergraduate course requirement: 

YES  �   NO � 

 

If YES specify course name and course number  

 

Course Name  

Course 

Number 

 

 

Research undertaken as part of a graduate or undergraduate thesis research: 

YES  �   NO � 

Measurement Equipment and Risks 

Bioelectric signals 

During the data collection stage, surface electrodes with conductive gel will be placed on the 

subject to acquire the necessary biological signals. Depending on the study, the number and 

exact placement of the electrodes will vary. A maximum of 16 simultaneous channels will be 

used. 

 

Risks: The application of surface electrodes causes an associated risk that is similar to that 

of obtaining an electrocardiogram (cardiac) record (i.e. slight irritation of the skin under the 

electrode site). 

 

Bioelectric signals will be used in this study: YES  �   NO � 

If YES, I acknowledge this requires the application of surface electrodes � 
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Phonocardiogram 

If the phonocardiogram (PCG) is required, this will be obtained using an electronic 

stethoscope. This stethoscope is the same as you would find used by a medical doctor, 

except that it provides an electronic audio output connection that enables recording. 

 

Risks: None. 

 

Phonocardiogram will be used in this study: YES  �   NO � 

If YES, I acknowledge this requires the use of a stethoscope � 

Acoustic signals 

The acoustic signal may also be required in some speech related studies. In these 

circumstances, a microphone will be used to record the participant’s voice. 

 

Risks: None. 

 

Acoustic signals will be used in this study: YES  �   NO � 

If YES, I acknowledge this requires the use of a microphone and may record my voice � 

RadioVibrometer 

The RadioVibrometer (Aliph, San Francisco CA) is used to detect anatomical vibrations, 

typically used in research associated with the production of speech (e.g. detecting vibrations 

near the trachea). The RadioVibrometer operates in a similar fashion to a radar, emitting a 

very low power (less than a milliwatt of power or 1/1000 that of many mobile phones) and 

detecting the return signal. It is safe for continuous use under current FDA and FCC RF 

regulations. Use of the RadioVibrometer requires the application of electrodes on the skin 

surface. 
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Risks: There is always a risk associated with the emission of electromagnetic waves; 

however, the RadioVibrometer uses a very low emission power (less than a milliwatt of 

power or 1/1000 that of many mobile phones). It is safe for continuous use under current 

FDA and FCC RF regulations. 

 

RadioVibrometer will be used in this study: YES  �   NO � 

If YES, I acknowledge this requires the use of the RadioVibrometer � 

Electrical stimulation 

In some research, it may be required to elicit a nerve or muscle response. This will be 

accomplished using applied electrical stimulation. The electrical stimulus will initially be 

applied at the minimum level and slowly increased, in order to ensure the subject’s safety 

and comfort. Stimulation will require the application of a pair of surface electrodes with 

conductive gel. 

 

Risks: With electrical stimuli applied to the subject, there is a chance of electrocution. This 

risk has been minimized by using an electrical isolation unit, and by increasing the electrical 

stimuli slowly from the minimum level. The subject may feel slight discomfort if when a high 

stimulus level is used. The sensation is similar to some striking the stimulation site with a 

flick of a finger. 

 

Electrical stimulation will be used in this study: YES  �   NO � 

If YES, I acknowledge this requires the application of surface electrodes and electrical stimuli. � 

Procedures 

I may be asked some questions to ascertain some additional data, which may include: 

1. age 
2. sex 
3. height 
4. weight 
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5. native language 
6. birth place 
7. whether they have any known neuromuscular disorders 

 

I have been fully informed of the study that I am participating in: YES � 

 

I have been informed in advance that the study session for the data collections will be: 

 

� approximately one hour 

� up to three hours 

 

I may be asked to return for additional sessions, and will be informed of this at the end of 

the study session. I am in no way obligated to participate in these additional sessions. 

 

Should the experimenter note any unusual readings during the course of the 

experiment the study will be stopped immediately. The experimenter is not a 

physician and cannot make a medical diagnosis. I will be asked to contact my 

family physician. The researcher will contact my physician in writing explaining 

why the experiment was stopped. I may not return to the study or undertake any 

further experiments without the written consent of my physician. 

Benefits 

There are no direct benefits or remuneration for my participation in this study. 

Confidentiality 

My identity will be kept strictly confidential unless otherwise discussed with the researcher. 

Any scientific report, presentation, or publication of the data will refer to me using a subject 

number. Information on my gender, age, and the presence of known neuromuscular 

disorders may be used. 
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I understand that the data from this research will be used in scientific reports, 

presentations, and publications and my identity will remain confidential. Data will be kept 

electronically and my consent forms and information will be kept as a hardcopy. Access to 

the data will be restricted to the researcher investigators. Data may be shared with research 

associates at other academic institutions. Data may be kept for an indefinite period of time. 

Ethical review 

This study has been reviewed and received ethics clearance though the Carleton University 

Research Ethics Committee in accordance to the Tri-Council Policy Statement for Ethical 

Conduct for Research Involving Humans. Should I have any concerns or questions about my 

involvement in this study I may contact the committee chair: 

 

Professor Antonio Gualtieri, Chair 
Carleton University Research Ethics Committee 
Office of Research Services 
Carleton University 
1125 Colonel By Drive 
Ottawa, Ontario  K1S 5B6 
Tel: 613-520-2517 
E-mail: ethics@carleton.ca 
 

Withdrawal 

Participation in this study is strictly voluntary. I am free to withdraw from the experiment at 

any time and without any consequences. I will also declare if the researcher can/cannot use 

the data I have provided should I decide to withdraw from the study. 

Consent for Participation in the Study 

I hereby agree to participate in this study and consent to the use of this research data in 

scientific reports, presentations, and publications with the understanding that my identity 

will remain confidential. I have read and understand the above explanation of the research 
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procedure and all my questions have been answered to my satisfaction. I understand that I 

am free to withdraw from this research at any time and without any consequence. 

 

Participant  Signature  

Experimenter  Signature  

Date  

 

 
Biological Signals Research 

Consent for Photographs   
Dr. Adrian D.C. Chan 

Associate Professor 

Dept Systems & Computer Engineering 

1125 Colonel By Drive 

Ottawa ON  K1S 5B6 

 

I understand that photographs (conventional/digital) may be required to document portions 

of the study. I have the option to consent or decline the usage of photographs during the 

study. Usage of these photographs will be restricted to scientific reports, presentations, or 

publications. I understand that my confidentiality will be maintained as best as possible; 

however, the usage of photographs may compromise my confidentiality.  

 

Photographs will be required in this study: YES  �   NO � 

 

If YES photographs will be: CONVENTIONAL  �   DIGITAL � 

 

 

I, _________________________ hereby consent to having photographs taken. 
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Participant  Signature  

Experimenter  Signature  

Date  
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