
CONVERTING CODE CLONES TO ASPECTS
USING ALGORITHMIC APPROACH

by

Angad Singh Gakhar, B.Tech., Guru Gobind Singh
Indraprastha University, 2009

A thesis submitted to the Faculty of Graduate and
Postdoctoral Affairs in partial fulfillment of the requirements

for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Ottawa-Carleton Institute of Electrical and Computer
Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

©Copyright 2012, Angad Singh Gakhar

ii

The undersigned recommend to

the Faculty of Graduate and Postdoctoral Affairs

acceptance of the thesis

CONVERTING CODE CLONES TO ASPECTS
USING ALGORITHMIC APPROACH

submitted by

Angad Singh Gakhar, B.Tech., Guru Gobind Singh
Indraprastha University, 2009

in partial fulfillment of the requirements for

the degree of Master of Applied Science in Electrical and Computer Engineering

__

Chair, Howard Schwartz, Department of Systems and Computer Engineering

Thesis Supervisor, Professor Samuel Ajila, Department of Systems and

Computer Engineering

Carleton University

April 2012

iii

Abstract

The techniques of duplicating code are not only considered bad practices,

they are also considered to be threats towards software maintenance.

Nevertheless code clones have been found to be a common occurrence. While,

there are tools that can detect code clones, the big question is what do we do

with the clones? We can remove them manually – which is cumbersome and

may not be effective because the clones may be needed for the software to

function properly. A better solution is to apply the principle of modularity by using

aspect oriented approach. In this work we present an algorithmic approach for

converting code clones to aspects, and do aspect composition. We also carried

out a performance analysis of the composed code. Our results show that the

composed code performs as well as the original code (with clones) and even

better.

iv

Acknowledgements

I would like to thank my supervisor Professor Samuel A. Ajila, for providing

me with great support, wise guidance, patience and funding during the course of

my studies and research. I would also like to thank the Faculty of Graduate and

Postdoctoral affairs, and the Department of Systems and Computer Engineering

for their funding during the course of my studies. I would like to thank Cistel Inc.,

Ottawa, Ontario for their support and the use of their source code to test the

prototype and NSERC for financial support through the NSERC Engage grant

number EGP 401451-10.

I would also like to thank my mother, my father, and my brother for their

unconditional love, support and sacrifice without which this work would not have

been completed.

I would also like to thank all my friends for their help and support.

v

Table of Contents

Abstract .. iii

Acknowledgements ... iv

Table of Contents ... v

List of Figures ... viii

List of Tables .. x

List of Appendices ... xi

Chapter 1: Introduction ... 1

1.1 Introduction .. 1

1.2 Thesis Motivation and Objectives .. 2

1.3 Contributions of the Thesis .. 4

1.4 Thesis Outline.. 4

Chapter 2: Literature Review .. 6

2.1 Code Clones .. 6

2.1.1 Code Fragment ... 8

2.1.2 Clone Pair / Group .. 8

2.1.3 Types of Code Clones .. 8

2.2 Clone Detection ... 14

vi

2.2.1 Textual Approaches .. 14

2.2.2 Lexical Approaches ... 14

2.2.3 Syntactic Approaches ... 15

2.2.4 Semantic Approaches ... 16

2.2.5 Clone Detection Process... 16

2.3 Aspect Oriented Programming (AOP) ... 19

2.3.1 Join Point Model ... 22

2.3.2 Aspect Oriented Programming Model ... 23

Chapter 3: Code Clone to Aspect ... 24

3.1 File Loading Algorithm ... 25

3.2 Aspect Import and Package Algorithm .. 27

3.3 Aspect Composition Algorithm... 29

3.4 File Composition Algorithm .. 32

3.5 Conclusion ... 34

Chapter 4: Design and Implementation .. 35

4.1 Eclipse ... 35

4.2 AspectJ .. 36

4.2.1 Join points ... 36

4.2.2 Pointcuts ... 37

4.2.3 Advice ... 39

vii

4.2.4 Aspect ... 39

4.3 CCFinderX ... 39

4.4 CC2ASPECT Software Implementation .. 41

4.4.1 Architecture of the Design ... 41

4.4.2 Prototype Design .. 44

4.5 Experimentation and Analysis ... 54

4.5.1 Experiment Settings .. 54

4.5.2 Performance Measurements ... 56

4.5.3 Experiment Setup ... 56

4.5.4 SWEF.. 58

4.5.5 PENTRIS .. 61

4.5.6 Experimentation Results ... 64

Chapter 5: Conclusions and Future Work ... 70

5.1 Conclusion ... 70

5.2 Limitations and Future Work .. 71

References ... 73

Appendix A ... 78

Appendix B ... 82

viii

List of Figures

Figure 1: Code Clone.. 7

Figure 2: Type 1 Code Clones (Adapted from [Roy et al. 2009]) 10

Figure 3: Type 2 Code Clones (Adapted from [Roy et al. 2009]) 11

Figure 4: Type 3 Code Clones (Adapted from [Roy et al. 2009]) 12

Figure 5: Type 4 Code Clones (Adapted from [Roy et al. 2009]) 13

Figure 6: A Generic Clone Detection Process [Roy 2007] 17

Figure 7: Debugging Results for the “Ease of Debugging” experiment by Walker

et.al [Walker 1999] .. 22

Figure 8: Bird‟s Eye view of the research work ... 25

Figure 9: A snapshot showing CCFinderX [CCFinderX] 40

Figure 10: Architecture of the prototype design .. 42

Figure 11: CC2ASPECT Graphical User Interface ... 45

Figure 12: CC2ASPECT Load Files ... 46

Figure 13: CC2ASPECT Convert Clones ... 49

Figure 14: CC2ASPECT Save Files ... 52

Figure 15: CPU Specification .. 54

Figure 16: Memory Specification .. 55

Figure 17: Cache Specification ... 55

Figure 18: Calculation of performance Impact [Liu 2011] 56

Figure 19: Image describing code used to find program execution time 57

Figure 20: Image showing the execution time of the program 58

ix

Figure 21: Code Clone in software SWEF before removal 59

Figure 22: Code Clone in software SWEF after removal 60

Figure 23: Code Clone in software SWEF as an aspect 61

Figure 24: Code Clones in the software PENTRIS ... 62

Figure 25: Code Clones in software PENTRIS after removal 63

Figure 26: Code Clones in software PENTRIS as Aspects 64

Figure 27: Graph describing the Average Execution Time (in Milliseconds) of the

SWEF Software versions in Experiment Round 1 .. 66

Figure 28: Graph describing the Average Execution Time (in Milliseconds) of the

SWEF Software versions in Experiment Round 2 .. 67

Figure 29: Graph describing the Average Execution Time (in Milliseconds) of the

PENTRIS Software versions in Experiment Round 1 ... 68

Figure 30: Graph describing the Average Execution Time (in Milliseconds) of the

PENTRIS Software versions in Experiment Round 2 ... 69

Figure 31: Flowchart describing the File Loading Algorithm 78

Figure 32: Flowchart Describing the Aspects Import and Package Algorithm 79

Figure 33: Flowchart describing the Aspect Composition Algorithm 80

Figure 34: Flowchart describing the File Composition Algorithm 81

x

List of Tables

Table 1: Some dynamic join points present in AspectJ [Kiczales 2001] 37

Table 2: Some primitive Pointcut designators [Kiczales 2001] 38

Table 3: SWEF Software System Results .. 65

Table 4: PENTRIS Software System Results ... 67

Table 5: Execution times of SWEF software system in both experiment rounds 82

Table 6: Execution times of PENTRIS software system in both experiment rounds

 ... 85

xi

List of Appendices

Appendix A: Algorithm Flowcharts........……………………………………………. 78

Appendix B: Experimentation Results...……………………………………………. 82

1

Chapter 1: Introduction

1.1 Introduction

Software engineers for a long time have handled the development of

complex software systems by utilizing the principles of Separation of Concerns.

While care is taken to separate the software system into smaller modules with

minimal amount of overlapping functionalities between them, the complexity of

the software systems is now increasing and so are the concerns/functionalities

that span over multiple modules of the software system. These overlapping

concerns are known as cross-cutting concerns, and have been found to have

detrimental effects on software systems. With cross-cutting concerns, the code of

a particular functionality is usually spread over multiple modules. This leads to

problems in software maintainability, as well as making software comprehension

more difficult.

The Aspect Oriented Programming (AOP) methodology explicitly provides

the language support to modularize the design decisions that originally would

have cross-cutting effects across a functionally decomposed program

[Walker 1999]. It provides programmers the ability of expressing the design

decision as a single coherent piece of code, instead of spreading it across

multiple modules.

Code clones are duplicated code fragments, and are created using either

exact replication, or a replication with certain modifications. These clones are

harmful to the software systems as they not only cause code bloating, but also

2

increase the maintenance costs of the software system. They also increase the

risk of making inconsistent changes to the code, thereby increasing the risks of

faults in the software system. Code clones can be divided into four distinct types,

with types 1-3 based on the textual similarity, while type 4 code clones are based

on their similarity being functional in nature. Type 1 code clones are basically

identical code fragments with a few variations in whitespaces, or comments etc.,

Type 2 code clones are structurally / syntactically identical code fragments, Type

3 code clones are duplicated modified fragments and are much more complex

than Type 1 and Type 2 clones, while Type 4 code clones perform the same

functionality but are syntactic variants of each other. Further description of code

clones is provided in section 2.1 of this report. The approach we describe in

chapter 3 of this report, as well as the implementation described in section 4.4 is

able to handle all four code clone types as long as certain limitations / restrictions

are followed. These limitations are described in section 5.2 of this report.

1.2 Thesis Motivation and Objectives

Code Fragments (CF‟s) are considered as clones of each other if there

exists some kind of similarity between them [Roy 2009]. The process of

duplicating and modifying code is known as Code Cloning [Krinke 2007]. These

techniques of duplicating code are not only considered bad practices, they are

also considered to be threats towards software maintenance. Nevertheless code

clones have been found to be a common occurrence. Studies have shown that

around 7% to 23% of the source code in a software system contains code clones

3

[Schulze 2010]. It is evident that there are tools that can detect code clones but

the big question is what do we do with the clones after detection? We can

remove them manually – which is cumbersome and may not be effective

because the clones may be needed for the software to function properly. In

addition, there is no way of removing all the clones especially those that are not

method type clones. So, what can we do? We can apply the principle of

modularity by using aspect oriented approach and thereby improving the

maintainability as well as reusability of the code.

Apart from Aspect Oriented programming the process of code refactoring

was also looked at. Code refactoring is the technique of restructuring an existing

code by altering its internal structure without changing its external behavior. This

is done by applying a series of tiny changes or “refactorings” in the source code

while making sure not to modify the functional requirements of the code in

question. Now while using Code Refactoring does improve the readability of the

program code in question it does not work on the core problems being caused by

code clones, namely issues like code bloating and increased risks of bugs and

inconsistent behavior of the software system due to inconsistent changes made

to code clones. Aspect Oriented Programming on the other hand provides us

with the ability of handling those problems, as well as provides advantages like

modularity in the source code, ease of maintainability of the software system,

and an improvement in the performance of the software system.

The objective of this work then is to convert code clones to aspects,

compose the aspect with the original code, and carry out a performance analysis

4

of the composed code. We undertook the following four steps to achieve our

goal: Firstly, we use an existing code-clone detection tool to identify code clones

in a source code. Secondly, we design algorithms to convert the code clones into

aspects and do aspect composition with the original code. Thirdly, we implement

a prototype that converts selected methods-type code clones to aspects and

performs aspect composition. Fourthly, we carry out a performance analysis in

order to make sure that the aspect composed code performs as well as the

original code (with clones) and even better.

1.3 Contributions of the Thesis

The main contributions of this work are summarized as follows:

1 Design of four algorithms (File Loading, Aspects Import and

Package, Aspect Composition, and File Composition) used for

converting code clones present in Java source files to Aspects (see

chapter 3 of this report).

2 Design and implementation of a prototype (CC2ASPECT) based on

the four algorithms (see section 4.4 of this report).

3 A performance analysis (see section 4.5.3 of this report).

1.4 Thesis Outline

The rest of this document is structured as follows. Chapter 2 introduces

Code Clones, the different types of Code Clones, Aspect Oriented Programming,

5

as well as topics related to code clone detection. Chapter 3 presents the four

algorithms: File Loading, Aspect Import and Package, Aspect Composition, and

File Composition used for converting code clones to aspects. Chapter 4 deals

with an approach towards designing and implementation of the algorithms. It first

introduces the Eclipse environment, the AspectJ language, as well as the

CCFinderX code clone detection tool. The chapter then describes the

architecture of our implementation, followed by the actual implementation. This

chapter also describes the software‟s used to test the prototype, as well as the

testing procedure and the results obtained after the testing. Chapter 5

summarizes the work done in this thesis, and presents the future work.

6

Chapter 2: Literature Review

 This chapter discusses code clones, types of code clones, aspect

oriented programming, join points, aspect oriented models, code clone detection

techniques, and steps involved in the code clone detection process.

2.1 Code Clones

According to J. Krinke, “code cloning is defined as the process of

duplicating and modifying code, or creating replication of code fragments in the

source code. The duplicate code in question is known as a code clone, while

groups of code clones are known as clone groups. Clone groups generally

consist of code clones that are also clones of each other” [Krinke 2007]. Figure 1

below shows a representation of code clones present in source text. The three

parallel lines represent different source files in the project, while the box

represents the duplicated code fragments. These techniques of duplicating code

though considered bad practice, also known as threats towards software

maintenance, are a common occurrence. Studies have shown that the

occurrence of code clones is between 7 to 23% of the source code

[Schulze 2010].

7

Figure 1: Code Clone

The creation of code clones, is considered harmful to the system because,

it creates unnecessary duplicates, increases both the code size (code bloating),

and the maintenance costs of the system in question. Although these duplicate

clones themselves might not directly cause the faults, the inconsistent changes

to the created clones often do cause faults in the code, thereby leading to

inconsistent and incorrect behavior by the software [Juergens 2009]. Hence if a

bug is detected in a code fragment, then all clones of that fragment need to be

checked for the presence of the bug [Roy et al. 2009]. With code cloning, there is

also a risk of bug propagation, i.e., if a code fragment contains a bug, and that

fragment is cloned, then the new location might also contain the bug [Roy 2007].

C. K. Roy in his PhD thesis [Roy 2009] defined several terms that are

frequently used while dealing with code clones. A few of them are given below.

8

2.1.1 Code Fragment

A Code Fragment (CF) is basically a sequence of code lines, and can

have any granularity. It can be identified by the starting and the ending line

numbers of that fragment, along with the file name in which the code fragment is

present [Roy 2009].

2.1.2 Clone Pair / Group

 Code Fragments (CF‟s) are considered clones of each other if there are

similarities between them. This similarity is of two types, and will be explained

later in section 2.1.3. When two Code Fragments are clones of each other, they

are termed as a Clone Pair (CP). When multiple Code Fragments (CF‟s) are

found to be clones of each other, they are termed as a Clone Group [Roy 2009].

 2.1.3 Types of Code Clones

Code clones, based on similarity, can broadly be divided into two

categories. In this case, some clones are similar to each other due to the textual

similarity of their program code, while some other clones are similar to each other

based on the similarity in their functionality [Roy et al. 2009].

Clones can further be subdivided into 4 Types, i.e., Type 1 through to

Type 4. Clone Types 1 – 3, are clones whose similarity is of a textual type, while

Type-4 clones are those that have similarity based on a functional type.

[Roy et al. 2009],[Koschke 2007], and [Roy 2007].

Type 1 clones are identical code fragments, i.e. they are exact

copies, except for variations in whitespaces, comments, and textual

9

layout. Figure 2 below shows the different forms of Type 1 code clone.

Figure 2(A) is the original code fragment. Figure 2(B) shows variations in

whitespaces, i.e. an extra horizontal-tab space has been added to each

line of code. Figure 2(C) shows variations in comments. Certain

comments present in the original code fragment have been removed.

Figure 2(D) shows the variations in the formatting of the code fragment.

Here the opening brace has been moved from line „s3‟ to line „s4‟. On

removal of the whitespaces and comments in Figure 2(B) and Figure 2(C),

we receive code fragments which are similar to that present in Figure 2(A).

While Figure 2(D) is not similar to Figure 2(A) on a line-by-line basis due

to the repositioning of the “{“, and considering the internal working of the

method as a whole, it is similar to the original code fragment.

10

Figure 2: Type 1 Code Clones (Adapted from [Roy et al. 2009])

Type 2 clones are structurally/syntactically identical code

fragments. These clones have variations in identifiers, literals and type, in

addition to variations in layout, whitespaces and comments. The keywords

present in the code statements of these clones are usually the same in

both fragments. Figure 3 below shows the different forms of Type 2 code

clone. Figure 3(A) shows the original code fragment. Figure 3(B) shows

the code fragment with its identifier names changed. In it, the method

name “sumProd” was modified to “addTimes”, and the variable names

“sum” and “product” were modified to “add” and “times” respectively.

Similarly the Figure 3(C) shows the code fragment with variations in data

11

types and literals. The type “int” is modified to type “double”.

Correspondingly, the values for variable “sum” is changed from “0” to

“0.0”, and for the variable “product” from “1” to “1.0”. While the identifiers

and/or the data types and literals may have been changed, the essential

structure of the code fragment is similar to the original one due to

placement of keywords, syntax etc.

Figure 3: Type 2 Code Clones (Adapted from [Roy et al. 2009])

Type 3 clones are code fragments containing further modifications

than those present in Type 1 and Type 2 clones. Here code statements

could have been changed, modified or removed, in addition to changes in

whitespaces, layout, comments, types, identifiers and literals. Figure 4

below shows the different forms of Type 3 code clone. Figure 4(A) shows

12

the original code fragment. Figure 4(B) shows the code fragment with one

of its lines modified. With this modification, the code (statement s4 has

been modified) would only be executed for even values of the variable “i”.

Figure 4(C) shows the code fragment with the addition of a new line

(statement s3b has been added), while the Figure 4(D) shows the code

fragment with a line deleted (statement s5 has been deleted).

Figure 4: Type 3 Code Clones (Adapted from [Roy et al. 2009])

Type 4 clones are code fragments which though perform the same

functionality / computation, are implemented using different syntactic

variants. Hence it can be said that there is a semantic similarity in these

clones. Figure 5 below shows the different forms of Type 4 code clone.

13

Figure 5(A) shows the original code fragment. Figure 5(B) shows the code

fragment with its statements reordered. The positions of statements „s2‟

and „s1‟ are exchanged. Figure 5(C) shows the code fragment with its

control statements changed. It now contains a „while‟ loop instead of the

„for‟ loop in the original code fragment. From a semantic point of view,

both code fragments of Figure 5(B) and Figure 5(C) are similar in

functionalities to the code fragment at Figure 5(A).

Figure 5: Type 4 Code Clones (Adapted from [Roy et al. 2009])

With Type 1 being the easiest, and Type 4 being the hardest, this

particular division of clones into Types 1-4, is not only an indicator of an

increasing level of complexity and sophistication of the clone, but is also an

14

indicator of the level of difficulty to identify and detect a particular clone

[Roy 2007].

2.2 Clone Detection

Mayrand et.al [Mayrand 1996] defines Clone Detection as a “technique

that finds functions which are exact copies or mutant copies of another function

in the software system.” Roy et.al [Roy 2007] classified the different clone

detection techniques into four main categories based on the different levels of

analysis of the source code. These techniques are: textual, lexical, syntactic, and

semantic.

2.2.1 Textual Approaches

These techniques, also known as text-based techniques use little to no

transformation on the source code before the comparison process. Usually they

use the source code in its original form. This approach first hashed the code

fragments of a fixed number of lines. Then a sliding window technique is used in

combination with an incremental hash function to identify sequences having

similar hash values [Johnson 1993] [Johnson 1994].

2.2.2 Lexical Approaches

These techniques are also known as token-based approaches. First, the

source code is transformed into a sequence of lexical tokens. The sequence is

then scanned for the presence of duplicated sub sequences. Once found, the

original source code of the of the corresponding sub sequences is returned.

15

Efficient token-based detection was pioneered by Brenda Baker in her detection

tool called Dup [Baker 1992] [Baker 1995]. In it, a lexical analyzer is used to

divide source code lines into tokens. These tokens are then divided into

parameter and non-parameter tokens. A “hashing functor” is used to summarize

the non-parameter tokens of a line, while parameter-tokens are encoded using a

position index. A suffix tree is used to represent the prefixes of the resulting

sequence of symbols. The idea behind this was that if two suffixes have a

common prefix, then it can be considered that the prefix occurs more than once

and hence can be considered a clone. This could be used to identify Type-1 and

Type-2 clones, while Type-3 clones could be found by concatenating Type-1 and

the Type-2 clones.

2.2.3 Syntactic Approaches

In these approaches, a parser is used to convert the source code into

either Abstract Syntax Trees (ASTs), or Parse Trees. Clones are then found

using either tree-matching or structural metrics.

 2.2.3.1 Tree-matching Approach:

These approaches find clones by identifying similar sub trees. Baxter et.al

pioneered tree-matching clone detection techniques in his tool called CloneDr

[Baxter 1998].

 2.2.3.2 Metrics-based Approach:

These approaches gather numerous metrics of code fragments, and then

compare the metric vectors and not the Abstract Syntax Trees or code. One of

16

the techniques uses “fingerprinting functions” [Roy 2007]. Here the metrics

calculated for syntactic units like classes, methods, etc., are compared to find the

clones. Usually, the code is first parsed to generate an Abstract Syntax Tree

(AST) or a Control Flow Graph (CFG), then the metrics are calculated [Roy

2007].

2.2.4 Semantic Approaches

In Semantic Approaches, the source code is represented as a Program

Dependency Graph (PDG) [Roy 2007]. The edges of the graph represent control

and data dependencies, while the nodes represent the statements and

expressions. Clones are then found by searching for isomorphic sub graphs.

2.2.5 Clone Detection Process

Roy et.al [Roy 2007] provides a summary of the basic steps that a clone

detector may have (see Figure 6 below).

 2.2.5.1 Preprocessing

 In this stage, the source code is partitioned and the domain of the

comparison is determined. Next, all the uninteresting source code is removed.

Next, the remaining source code is divided into source units, which are basically

sets of disjoint fragments. These units can have any level of granularity, e.g.

classes, files, etc. In addition, depending on the comparison technique being

used, some source units might need further partitioning into lines or tokens.

These partitioning are known as comparison units.

17

Code Base

Preprocessing

Remove uninteresting code,
determine source and comparison

units/granularities

Preprocessed Code

Transformation

One or more extraction and/or
transformation techniques are

applied to the preprocessed code to
obtain an intermediate

representation of the code

Transformed Code

Match Detection

Transformed comparison units
(and/or metrics calculated for those
units) are compared to find similar

source units in the transformed
code

Clones on Transformed
Code

Formatting

Clone pair/class locations of the
transformed code are mapped to

the original code base by line
numbers and file locations

Mapped to the OriginalGet the Original Code

Clone Pairs/Classes

Post-Processing: Filtering

In this post-processing phase,
clones are extended from the

source, visualized with tools and
manually analyzed to filter out false

positives

Filtered Clone Pairs/
Classes

Aggregation

In order to reduce the amount of
data or for ease of analysis, clone
pairs (if not already clone classes)

are aggregated to form clone
classes or families

Filtered Clone Classes

Figure 6: A Generic Clone Detection Process [Roy 2007]

18

2.2.5.2 Transformation

 Once the comparison units have been found, if the comparison technique

is not textual, then extraction is done to the comparison units, i.e. their source

codes are transformed to an intermediate representation for comparison. Some

tools also require additional normalization after the extraction process to detect

clones.

Normalization is basically an optional step, used to eliminate any

superficial differences between clones. It basically includes the removal of

whitespace, removal of comments, identifier normalization, structural

transformations of the code, and pretty-printing of the source code.

 2.2.5.3 Match Detection

 In this stage, the transformed code from the previous stage is fed to a

comparison algorithm. Here the different comparison units are compared with

each other. Many times, adjacent comparison units are joined to form larger

comparison units. The output of this step is a list of matches in the transformed

code, which is then aggregated to form candidate clone pairs.

2.2.5.4 Formatting

 Here, the transformed code clone pair list formed in the previous step is

converted to its corresponding original source code list. The clone pair

coordinates that were found in the previous step are also mapped to the original

source code files.

19

 2.2.5.5 Post-processing: Filtering

 In this stage, clones are filtered and ranked using either manual analysis

or automated heuristics. In the case of manual analysis, clones are subjected to

manual analysis, where false positive clones are removed. In case of automated

heuristics, the heuristics can be based on characteristics like length, frequency,

etc.

 2.2.5.6 Aggregation

 This stage is used to reduce the amount of data received, or for ease of

analysis of the data, the clone pairs are often aggregated to create clone classes.

2.3 Aspect Oriented Programming (AOP)

According to Walker et.al, “Aspect Oriented Programming (AOP) is a new

programming technique that takes another step towards increasing the kinds of

design concerns which can be captured cleanly within the source code”

[Walker 1999]. Software engineers have since managed the process of

developing complex software systems using the principle of Separation of

Concerns (SOC). SOC is the process of separating software into distinct

features, with as little overlapping in functionality as possible, i.e., each piece of

functionality is implemented in its own distinct module. Aspect Oriented

Programming explicitly provides the language support to modularize the design

decisions that originally would have been cross-cutting a functionally

decomposed program [Walker 1999].

20

Due to the increase in the complexity of software systems, certain

concerns (functionalities) span over multiple modules in the software system

architecture. Cross-cutting concerns, therefore, are defined as those concerns

which affect multiple system functions and features [Albunni 2008] [Eaddy 2007].

These cross-cutting concerns can have detrimental effects on software systems,

like, 1) make software comprehension more difficult, since the programmer would

have to keep multiple concerns in mind while inspecting certain sections of code,

and 2) make software maintainability more difficult, since the code of a particular

functionality would be spread in multiple places [Albunni 2008]. For example,

when a concern needs to be modified, a developer usually has to localize the

code that implements the functionality. With a cross-cutting concern, this would

require the developer to inspect multiple modules, as the code might be

scattered across a number of modules. [Eaddy 2008]

Aspect Oriented Programming gives programmers the ability to express a

decision in a separate and coherent piece of code, rather than spreading the

code for that decision through multiple modules. For example, if required that a

particular set of operations did not occur concurrently, a programmer would have

to spread the code of those operations through different source files, but, an

aspect-oriented approach would allow the synchronization constraint to be

specified in a separate piece of code. The aspect code would then later be

combined with the primary program code by an Aspect Weaver [Walker 1999].

An aspect-oriented approach makes reasoning about, developing and

maintaining certain kinds of code possible, where it was earlier difficult to cleanly

21

capture design decisions to actual code, easier [Walker 1999] [Kiczales 1997].

Walker et.al performed experiments to test the above mentioned claim, using

AspectJ. The first experiment was to measure the ease of debugging between

programming in Java and AspectJ. The intention was to investigate whether

programmers would find and fix faults in multithreaded programs while working

with Aspect Oriented Programming. They paired programmers into groups, and

three synchronization errors were introduced to a digital library code. In each

pair, one programmer had control of the system with the problem, while the other

had access to the reports describing the symptoms and other online

documentation. The participants were told to fix the faults in sequential order,

though the faults themselves were cascading, and each fault hid the symptoms

of the next one. It was found that the AspectJ teams fixed the first faults faster

than the Java teams, while the difference was less in the case of the second and

third faults. It was also found that AspectJ pairs used fewer switches between the

files they were examining, and that both AspectJ, and Java pairs spent equal

time to weave and execute their programs, i.e. the additional weaving time was

negligible. These results are graphically shown in Figure 7 below. Figure 7A

shows the time taken by the groups to correct each fault. Figure 7B shows the

number of times each group switched between the different files of the code.

Figure 7C shows the number of instances of semantic analysis by each group.

22

Figure 7: Debugging Results for the “Ease of Debugging” experiment by

Walker et.al [Walker 1999]

2.3.1 Join Point Model

“Underlying any aspect-oriented approach is something called a join-point

model. This defines a series of events (Join Points), visible to an aspect during

the program execution. Aspects specify which of these events they are interested

in through a Pointcut” [EclipseAspectJ]. There are three components to any

aspect – Join Point, Pointcut, and the Advice. When a program is executed,

certain events occur. These events are what would be considered as Join Points.

Pointcuts are rules used to select Join Points. During program execution,

pointcuts are used as filters to identify and separate those Join Points that the

developer is interested in. The Advice section of the aspect is where the

developer specifies what action is to be taken at the Join Point selected by a

particular Pointcut. Further description of Join Point‟s, Pointcut‟s and Advice is

provided in Section 4.2 of this report.

23

2.3.2 Aspect Oriented Programming Model

Wand et.al [Wand 2004], described a conceptual model of aspect-oriented

programming which contained dynamic Join Points. In this model, the system

contained a base program, along with pieces of Advice. The program would be

executed using an interpreter. During the execution when the interpreter reaches

certain Join Points, the aspect weaver is invoked. Each piece of Advice contains

what is called a Point Cut Designator (PCD). The Point Cut Designator is

basically a formula which specifies the set of Join Points to which a piece of

Advice is applicable, along with a body containing the actions it intends to

perform at that Join Point. It is the job of the aspect weaver to distribute the Join

Point under consideration, to its proper Advice, and then execute the body of that

Advice using the interpreter [Wand 2004]. Further description of Join Point‟s,

Point Cut Designator‟s and Advice is provided in Section 4.2 of this report.

24

Chapter 3: Code Clone to Aspect

The aim of this research work is to remove code clones from source files,

convert these code clones to aspects, and then compose the aspects, back into

the source code using an algorithmic approach. The target was achieved using

four main algorithms which are presented in this chapter.

These algorithms work under the assumption that the clones being

submitted for conversion are java methods. These methods either should be self-

contained, or if they are using any variables/methods from a different class, then

the object of that class must have been declared inside this method. The final

output received after the execution of these algorithms will not work if the method

is referring to any variables declared outside of its body.

Figure 8 describes our work in a bird‟s eye view. The target source code is

run through the code clone detection software to obtain the line numbers of the

code clones in the source code. Both the target source code and the line

numbers of the clones are sent as input to the CC2ASPECT software (see

section 4.4). The CC2ASPECT applies the implementation of our algorithms to

the input and produces a target source code, whose code clones have been

removed by commenting them out, and a file which contains those clones in the

form of aspects.

25

Target Source Code
Code Clone Line

Numbers

Passed through
Clone Detection Software

CC2ASPECT
Software

Input to Input to

Modified Target Source code
+

AspectJ file containing clones as
aspects

After Conversion

Software to convert
Code Clones to Aspects

Figure 8: Bird’s Eye view of the research work

3.1 File Loading Algorithm

This section describes the File Loading Algorithm. The file names and the

line numbers of the clones have to be entered by the user.

The different variables used in this algorithm are:-

 „n‟  variable denoting the total number of clones to be removed

 „name[]‟  Array to store the file paths entered by the user.

„full_File[][]‟  A 2-dimensional array to store the code present in the

distinct files.

26

„startNo_Clonei‟  Variable to store the starting line number of clone i,

i={1,..,n}.

„endNo_Clonei‟  Variable to store the ending line number of clone i,

i={1,..,n}

„fileLength[]‟  Array to store the file lengths of distinct files.

„finalName[]‟  Array to store the file paths of the distinct files.

Algorithm-1 File Loading Algorithm

1)Begin

2) //Get all filenames

3) Initialization: name[i]:= file path of clonei, i={1,..,n}

4) Initialization: finalName[i]:=”abcdTestFile”, i={1,..,n}

5) Initialization: i:=1

6) while(i<=n)

7) copy code clone to corresponding text area

8) i++

9) end while

10) Initialization: cloneNumber:=1

11) while(cloneNumber<=n)

12) if(filename is distinct) then

14) copy entire file to array full_File[cloneNumber][]

15) copy file path to array finalName[cloneNumber]

16) copy file length to array finalLength[cloneNumber]

17) end if

18) cloneNumber++

19) end while

20)end begin

The algorithm begins by initializing the array name[], with the file paths of

the files containing the code clones, in line 3 of the pseudo code. It then pre

initializes the array finalName[] with the string “abcdTestFile” in line 4. This array

is used to store the file paths of all the distinct files which have been entered by

27

the user, and the assumption taken here is that no file will be named

“abcdTestFile”. Later this is used to identify the storage locations of the data of

the distinct files, so that the algorithm can know where to make changes.

Each clone has its own text area so that the user is able to visually verify

that the correct line numbers had been entered. Lines 6-9 of the pseudo code

load the code clone lines to their respective text areas. The algorithm next, in

lines 10-19, starts to save the information about the distinct files that had been

entered by the user. It first checks if the file in question is distinct or not. This is

done by comparing the file paths. If filei was found to be distinct, then the data in

that file is stored in the array full_File[i][], then its file path and its length are

stored in the arrays finalName[i] and finalLength[i], i={1,..,n}. This was done so

that we would be able to identify the storage locations of the data of a particular

file, by comparing its file path with those stored in the array finalName[].

The complexity of this algorithm is found to be 2n (i.e. lines 6 to 9 is n, and

lines 11 to 19 is n). Therefore the algorithm is linear O(n).

3.2 Aspect Import and Package Algorithm

We are dealing with Java source files. These files for ease of execution

import other files and packages. This section describes the algorithm that adds

the required lines of code, which import other files and packages, to the aspect.

The different variables used in this algorithm are:-

28

 „n‟  variable denoting the total number of clones to be removed

„finalName[]‟  Array to store the file paths of the distinct files.

„full_File[][]‟  A 2-dimensional array to store the code present in the

distinct files.

 „line‟  variable denoting the line number under consideration

Algorithm-2 Aspects Import and Package Algorithm

1)Begin

2) Initialization: i:=1

3) while(i<=n)

4) if(finalName[i]!=”abcdTestFile”) then

5) Initialization: line:=1

6) while(line<=30)

7) if((full_File[i][line] contains “package”)||

(full_File[i][line] contains “import”)) then

8) copy line to aspectJ text area

9) end if

10) line++

11) end while

13) end if

14) i++

15) end while

16)end begin

 Firstly, in line 4, the algorithm tries to identify the storage locations of the

distinct files. This is done by checking whether the string stored in any particular

location of the array finalName[], equals the text “abcdTestFile” or not. Since all

locations of the array finalName[] were pre-initialized with the text

“abcdTestFile”, then if the string at any location does not match “abcdTestFile”, it

means that that location was modified in the File Loading algorithm, to contain

29

the file path to a distinct file, and that its corresponding location in the array

full_File[][] contains the data of that distinct file.

Once the file storage location in the array full_File[][] is found, then the

top 30 lines of that file are read. This number of 30 lines was chosen after going

through the sample projects available to us and was found to be more than

sufficient for the number of lines code importing files and packages in our sample

projects source files. If the line under consideration contains keywords like

“package” or “import”, then that particular line is copied to the aspect text area.

This text area is where the aspect file is being created. This occurs between lines

4-13 of the algorithm.

Due to the presence of a nested while loop in line 6 of the algorithm, the

complexity of the Aspects Import and Package Algorithm was found to be n2.

Therefore the algorithm is quadratic O(n2).

3.3 Aspect Composition Algorithm

This section contains the algorithm that actually creates the pointcuts, and

the advice bodies that are required by the aspect file. It also removes the code

clones from the original file.

The different variables used in this algorithm are:-

 „n‟  variable denoting the total number of clones to be removed

30

„full_File[][]‟  A 2-dimensional array to store the code present in the

distinct files.

„startNo_Clonei‟  Variable to store the starting line number of clone i,

i={1,..,n}.

„endNo_Clonei‟  Variable to store the ending line number of clone i,

i={1,..,n}

 „line‟  variable denoting the line number under consideration

Algorithm-3 Aspect Composition Algorithm

1)Begin

2) Initialization: i:=1

3) while(i<=n)

4) if(clonei is distinct from any previously processed clone) then

5) if(startNo_Clonei has method parameters) then

6) compose advice specification with parameter binding

7) else

8) compose advice specification without parameter

binding

9) end if

10) //create advice body

11) Initialization: line:= startNo_Clonei + 1

12) while(line<= endNo_Clonei)

13) copy line to Aspect text area

14) line++

15) end while

16) end if

17) i++

18) end while

19) //comment out clones

20) Initialization: i=1

21) while(i<=n)

22) comment out clonei from array full_File[][]

23) i++

24) end while

31

25)end begin

In this algorithm firstly, with the aid of the while loop starting in line 3, the

algorithm checks whether the code clone under consideration is distinct from any

previously processed clones. This is done to try and prevent duplicate aspects

from being created.

If the clone was not distinct, then nothing is done to it, and the processing

is moved to the next clone. But if the clone was found to be distinct, then its

advice declaration containing an anonymous pointcut, and corresponding advice

body is created. Upon finding a distinct clone, a check is done in line 5 of the

algorithm, to identify if the clone starting line has any method parameters or not.

This is done so that the algorithm can decide whether it needs to create advice

with parameter binding or not. In AspectJ, if we create an advice specification for

a method, and if that method in the original code has method parameters, then

those original method parameters have to be bound to the aspect parameters for

use.

If the method header in the clone starting line has method parameters,

then line 6 of the algorithm composes the advice specification with proper

parameter binding. If the method header does not contain any method

parameters, then line 8 of the algorithm composes the advice specification

without any parameter binding. Lines 11-15 are then used to create the body of

the advice by copying the required lines from the code clone to the aspect text

area.

32

Once all the advice specifications and their corresponding advice bodies

are created, lines 20-24 are used to comment out all the code clones. Since the

complete original code is stored in the array full_File[][], all code clone sections

are commented out in this array. Later the entire contents of the original file

would be overwritten with the now modified contents present in the array

full_File[][]. This commenting out of the original code clone is done so as to

reduce the number of lines of code which would now be read by the interpreter.

Due to the presence of a nested while loops in line 12 of the algorithm, the

complexity of the Aspect Composition Algorithm was found to be n2. Therefore

the algorithm is quadratic O(n2), (i.e. n2+n).

3.4 File Composition Algorithm

This section contains the algorithm that saves the newly created aspect

file as well as the modifications done on the original source code. It begins by

making the user select the destination file in which to store the aspect. This is

done in line 2 of the algorithm. While the user does have the option of selecting

any type of file (example a notepad file), and not necessarily only aspect files

(*.aj), it would be beneficial to the user to select an AspectJ file because the

running environment (eclipse) can go towards execution of the new aspect

without it having to be later copied into an AspectJ file for execution.

33

Algorithm-4 File Composition Algorithm

1)Begin

2) choose target file using JFileChooser

3) //copy text from Aspect text area to selected file

4) open target file

5) copy text in Aspect text area to target file

6) close target file

7) //Save modifications to original files containing the clones

8) Initialization: i:=1

9) while(i<=n)

10) //find location of modified file data

11) if(finalName[i]!=”abcdTestFile”) then

12) open file whose file path is stored in finalName[i]

13) overwrite original code at file location of file path stored in

finalName[i] with modified code at full_File[i][]

14) close file whose file path is stored in finalName[i]

15) end if

16) i++

17) end while

18)end begin

 Once this is done, in lines 4-6 the target file is opened, then the

composed aspect file in the aspect text area is copied to it, and finally the file is

closed, thereby saving the aspect in the target file.

Next in lines 8-17 of the algorithm, the locations of the distinct filenames

are found, and then those files are overwritten by a modified copy stored in the

array full_File[][]. The actual identification is done in line 11 of the algorithm. The

array finalNane[] was pre-initialized with the text string “acdTestFile” earlier in

the File Loading Algorithm. Now after the File Loading Algorithm, any location in

the array finalName[] not containing this text string will contain the file path of a

distinct file. Also, the corresponding location in the array full_File[][] contains the

modified code (code with the code clones commented out), for this particular file

34

path. Once the file location of the distinct file has been found, lines 12-14 of the

pseudo code open the file whose file path was stored in the location of the array

finalName[], and overwrite the original code of that file with the modified code

stored in corresponding locations in the array full_File[][], and finally close that

file, thereby saving the modifications.

The time complexity of the File Composition Algorithm was found to be

linear, i.e. O(n).

3.5 Conclusion

This chapter describes in detail the four algorithms created to convert

code clones into Aspects. The implementation of these algorithms in our

CC2ASPECT prototype is described later in section 4.4 of this report. The

flowcharts for these algorithms are provided in Appendix A of this report.

35

Chapter 4: Design and Implementation

This chapter starts by describing our implementation environments (i.e.

Eclipse, AspectJ, and CCFinderX). Then we present the architecture of our

prototype based on the algorithms in Chapter 3. We also describe the user

interface, verification and validation of the prototype, and some performance

analysis.

4.1 Eclipse

“Eclipse is an open source software development platform that provides

users with the necessary functionality to develop a wide range of applications”.

[EclipseAspectJ]

The Eclipse project basically has 3 components – the Eclipse platform, the

JDT (Java Development Kit), and the PDE (Plug-in Development Environment).

Both the JDT and the PDE are plug-in‟s to the eclipse platform itself. Taken

together, these three components create the Eclipse SDK (Software

Development Kit), which basically is “a complete development environment for

eclipse based tools and for the development of eclipse itself.” [Eclipse.org].

“The Eclipse platform itself is a sort of universal tool platform – it is an IDE

for anything and nothing in particular” [Eclipse.org]. The platform can handle all

types of files, for example, Java files, C files, etc. on its own, the platform does

not have the necessary knowledge of how to work with the different file types. It

36

is the different eclipse plug-in‟s that inform the platform about what can be done

regarding a particular file type.

4.2 AspectJ

AspectJ is basically a language that extends the principles of Aspect

Oriented Programming (AOP) to Java [AspectJ]. Kiczales et. al. [Kiczales 2001],

describes AspectJ as a general purpose language which was designed to be a

compatible extension to Java, so as to aid the current Java practitioners.

Kiczales stated that this compatibility was of 4 types – Upward compatibility,

Platform compatibility, Tool compatibility, and Programmer Compatibility.

AspectJ supports two different kinds of crosscutting concerns – Dynamic

Crosscutting, and Static Crosscutting. Dynamic Crosscutting defines additional

implementation/behavior to run at certain well defined points of the program code

execution. Static Crosscutting modifies the static structure of the program, i.e.

add new methods, modify class hierarchy, implement new interfaces, etc.

[Rodriguez 2004] [Kiczales 2001]. Using our conversion algorithms (described in

chapter 3), we modify the target software such that it implements Dynamic

Crosscutting concerns at runtime.

 4.2.1 Join points – Adrian Colyer in his book [EclipseAspectJ] defines

Join Points as events in the control flow of a program. Kiczales defines join

points as well defined points of execution in the program [Kiczales 2001]

[EclipseAspectJ] [Kiczales G 2001] [Lopez-Herrejon 2006] [AspectJGuide].

37

Table 1 describes the different dynamic Join Points provided by AspectJ

[Kiczales 2001].

Table 1: Some dynamic join points present in AspectJ [Kiczales 2001]

 4.2.2 Pointcuts – Kiczales et.al. [Kiczales 2001] describes Pointcuts as

a set of Join Points, or as a means of referring to collections of Join Points.

AspectJ contains within it a number of primitive Pointcut designators, which are

then used to match the required Join Points at runtime. A simplified way to think

of a Pointcut would be in the case of a filter, one which filters through only Join

Points containing certain required features out of all the Join Points in the code

[Kiczales G 2001] [Lopez-Herrejon 2006] [AspectJGuide].

38

Pointcuts could be both primitive as well as user defined in nature. The

Table 2 below shows some of the primitive Pointcut designators contained within

AspectJ [Kiczales 2001].

Table 2: Some primitive Pointcut designators [Kiczales 2001]

39

 4.2.3 Advice – Kiczales et.al. [Kiczales 2001] [Kiczales G 2001] [Lopez-

Herrejon 2006] [AspectJGuide] defines Advice as a method-like mechanism,

which is used to identify the code to be executed at the Join Point selected by the

Pointcut. Advice is primarily of 3 types – Before advice, After advice, and Around

Advice. After advice further contains two special cases – After Returning advice,

and After Throwing advice.

Before advice as the name suggests runs before the Join Point is

executed. After advice similarly runs just after the execution of the Join Point in

question. Around advice runs when the Join point is reached. It has the power to

decide whether or not to actually execute the Join Point or not.

 4.2.4 Aspect – Kiczales et.al. [Kiczales 2001] [Kiczales G 2001] defines

Aspects as “modular units of crosscutting implementation”. They are declared

using the keyword “aspect”, similar to how a class is declared using the keyword

“class” in Java. They contain within them Pointcut declarations, Advice

declarations, method declarations, variable declarations, etc. [Avgustinov 2005]

[AspectJGuide]

4.3 CCFinderX

CCFinderX is a code clone detection tool designed by Toshihiro Kamiya.

CCFinderX software license revision of 15th October 2006, allows us to freely use

the product without modification for the purpose of research, education,

evaluation and/or in-house use.

40

CCFinderX can be used to detect code clones from source files written in

Java, C/C++, COBOL, VB and C#. Kamiya et.al had earlier designed another

code clone detection tool named CCFinder [Kamiya 2002]. CCFinderX is a re-

designed version of the tool CCFinder. This is aimed at improving the

performance of the tool, as well as to provide the users with an interactive

analysis based on certain metrics [CCFinderX]. A snapshot of the tool is provided

below in Figure 9.

Figure 9: A snapshot showing CCFinderX [CCFinderX]

41

 4.4 CC2ASPECT Software Implementation

This section describes the CC2ASPECT software prototype developed by

us to test the algorithms described in chapter 3 created to convert the code

clones to aspects.

4.4.1 Architecture of the Design

Figure 10 below shows the architecture we followed in designing our

implementation of all the algorithms in chapter 3, which culminated in the

CC2ASPECT software prototype.

The first stage of the work requires the identification of the code clones.

For this, CCFinderX is used. The original source code of the Java project is used

as an input to this CCFinderX process, and the locations of the identified code

clones inside the Java project are produced as output. While there are numerous

code clone detection tools identified from different research papers, e.g. CP-

Miner, CloneDr, Deckard, CPDetector, RTF, Asta, NICAD, CCFinderX, Duplo,

Simian, etc, some could not be found, while others were not freeware. Of the

detection tools that were found freely available, like Duplo, CCFinderX, and

Simian, we found that CCFinderX had the best GUI. With CCFinderX we have

the line numbers of the matching code fragments, as well as visually see the

exact lines of code, and how they were similar to each other.

42

CCFinderX

Clones

Identifies

File Loading

Clone Visualization

Produces

User

File Data Arrays

Produces

Import

Aspect Text

Produces

Aspect Composition

Inputs

Modified File Data
Arrays

Produces

File Composition

Inputs

Composed Aspect
Project

Produces

Inputs

Original Code

Inputs

Inputs

Modified Clone
Visualization

Appended Aspect
Text

Produces

User

Inputs

Produces

User

Figure 10: Architecture of the prototype design

43

The identified code clone locations, along with the original source code

are used as inputs to the File Loading process. This process produces two

outputs. The first output is the visualization of the code clones, so that the user

can verify the accuracy of the code clone line numbers entered earlier. Secondly

this process also converts the files containing the code clones into distinct two-

dimensional data arrays, so that modifications can be done on the data contained

within those files, while maintaining the integrity of the original data till the last

step.

The File Data Arrays, which were created as outputs by the File Loading

process, are used as inputs to the Import process. This process starts the

creation of the Aspect text as its output. The process goes through the first 30

lines of each file array submitted to it. Upon finding lines of code where packages

or files are being imported for the code to work, the process copies that line to

the new Aspect text.

The File Data Arrays earlier produced by the File Loading process, and

the identified code clone locations produced by the CCFinderX process are both

used as inputs to the Aspect Composition process. It is the job of this process to

compose the code clones present in the data arrays, into the required pointcuts

and advice, and then comment out the code clone from the data array.

This creates a new modified data array as an output. The newly formed

pointcuts and advice are then appended to the Aspect text which had been

previously received as the output from the Import process. This process finally

44

produces visualization of both the commented and modified code clones, as well

as the appended Aspect text for the user.

Both the Modified File Data Arrays and the appended Aspect text, which

were created as outputs of the Aspect Composition process are taken as inputs

to the final File Composition process. This process has two tasks. First it is used

to write the Aspect text into an AspectJ file, and then save it. Secondly the

process is used to overwrite the original source code files containing the code

clones, with their respective modified file data arrays, in which the code clones

had been commented out. These files are then saved.

Taken together at the end of the four processes, the code clones in the

source code have been commented out and converted to Aspects.

4.4.2 Prototype Design

The Graphical User Interface (GUI) shown in Figure 11 below, was

created for our prototype, and can take up to 4 clones at a time. For each clone

we provide a text field to enter the file path of the file containing the code clone,

two text fields to enter the starting and ending line numbers of the code clone

segment, and a text area to display the code clone. At the bottom of the GUI, we

have three control buttons to initiate the Loading, the Aspects Import and

Package, the Aspect Composition, and the File Composition algorithms. To the

right of these control buttons, is a text area to store the aspect text as it is being

created. This is the text that is copied to the AspectJ file during the File

Composition process.

45

Figure 11: CC2ASPECT Graphical User Interface

4.4.2.1 Load Files

Figure 12 below shows the output received after loading the file. In it, the

file paths of the files containing the clones were added to the text fields by the

46

Figure 12: CC2ASPECT Load Files

47

user, along with their corresponding clone starting and ending line numbers.

Clicking the “Load Files” button in the GUI initiates the Java method that

implements the File Loading Algorithm. This method first retrieves the four file

paths entered by the user in the four text fields, and stores them in a string array

name[]. A check is done to verify that the user has actually entered all four file

paths or not. To accomplish this, all four text fields were pre-initialized with the

text “Enter Path/Filenamei”. Now if the text present in the array location name[i]

matches this string, it is taken that the user has not entered any data at that

location, and an error message describing the same is shown to the user.

Once it has been verified that the user had entered all the fields, a second

method is called to copy the code clone text to their respective text areas. This is

done to provide visualization of the code clones to the user. Variables containing

the file path, destination text areas, clone starting and ending line numbers are

passed on as parameters to this method. This method is called four times, once

for each code clone entered.

After loading all code clones to their respective text areas, the method

containing the File Loading Algorithm, copies the entire file present at the

destination file path for clone1 to the array full_File[1][], the file path itself is

copied to the array finalName[1] and the total number of lines in the file

containing the code clone to the array fileLength[1]. When dealing with second,

third, and the fourth code clones, the method compares the file path of the clone

under consideration with all previously processed file paths. For example, for

code clone number 3, the method compares the file paths stored at array location

48

name[3] with those stored in locations name[2] and name[1]. Only if the file path

at name[3] was found to be distinct, the method stores the complete file in array

full_File[3][], its file path to the array finalName[3], and the number of lines in the

file to array fileLength[3].

The final output of this entire process is the visualization of the code

clones to the user, as well as the identification and storage of all distinct files and

their corresponding data for [later] ease of access and retrieval.

4.4.2.2 Convert Clones

Figure 13 below describes the output received after converting the code

clones to aspects. Clicking the “Convert Files” button in the GUI initiates the Java

methods that contain the Aspects Import and Package algorithm, as well as the

Aspect Composition algorithm. The method has to first copy all the lines of code

which import files or packages to the Aspect text.

The array finalName[], from the File Loading process, now contains the

file paths of the distinct filenames. This array was pre-initialized with the text

string “abcdTestFile”.

The method then cycles through all four positions of the array

finalName[]. Upon finding the path of a distinct file, the method opens that file,

checks the first 30 lines of code present in that file, for the presence of keywords

like “import” or “package”. If any of the required keywords is found, then the line

in question is copied to the Aspect text area, and the method moves to the new

49

Figure 13: CC2ASPECT Convert Clones

50

 line. If not, then the method moves on to the next line and tries again. This

process continues till the top 30 lines of the file in question have been checked.

The conversion method now starts the process to actually convert the

code clones into their corresponding Advice. The method next creates the advice

specification and its corresponding advice body for the first code clone. It breaks

down the method header using the Java method split(<delimiter>), and attempts

to check whether the header has any method parameters or not. This is done

due to the fact that method parameters need to be bound to those of the pointcut

(Parameter Binding). So depending on whether or not the parameters are found,

our conversion method creates the proper corresponding “Around” advice header

by appending the chunks of code received from splitting the code clone method

header, into the proper sequence required by the Around advice. The body of the

advice is created by copying and appending the body of the code clone method.

To handle the second, third and the fourth code clones, the conversion

method iteratively matches the clone text of the code clone under consideration

with all the code clones processed before it. Only if the code clone text was

found to be distinct, would its advice declaration and corresponding advice body

be created.

Once all processing for the code has been done, the conversion method

calls the method tasked with the commenting out of the code clones from the

data array full_File[][]. The file path of the file which contains the code clone in

question, along with the code clone starting and ending line numbers, as well as

51

the text area where the particular code clone was displayed to the user are

passed as arguments to this method.

The process of commenting out the code clone lines continues till the last

5 lines of the clone. After this, it iterates from the last line up. If the method

header contained a return type, its body must contain a “return” statement of a

similar type. If such a statement is not present, the compiler will issue an

exception against it. We have taken the assumption that the “return” statement, if

present, would be the last statement of the code clone. Hence we, while reverse

iterating these last lines, check if the code statement contains the keyword

“return”. If found all lines except it are commented out. Lastly, our method

overwrites the old code clone in its text area with the new commented version.

4.4.2.3 Save Files

Clicking the “Save Files” button, initiates the method tasked with the

saving and finalizing of the Aspect text, as well as all the modifications done in

previous conversion process. Figure 14 below shows a snapshot of this process.

Up to this step, the user has the ability to abort the conversion operation without

there being any changes or modifications to the original source files.

The File Composition method, with the aid of a JFileChooser, inputs the

user‟s selection of the target file where he/she wants the newly created Aspect

code to be stored. While there is no restriction on the type of file where the

52

Figure 14: CC2ASPECT Save Files

53

aspect is to be saved, it is advisable to have an AspectJ (.aj) file ready to accept

and store the newly created aspect code.

The method overwrites the target file with the aspect text from the Aspect

Text area. This gives the users the ability to look through the aspect text and

make any changes / modifications they desire, if they were not satisfied with the

results previously obtained. For example, the user might not be satisfied with the

indentation of the aspect text, and might want to change it according to their

preferences. However these changes must be done prior to clicking the “Save

Files” button. Once the Aspect text is overwritten, the file is saved and then

closed.

The File Composition method then begins the process of overwriting the

original code clones, with the modified data contained in the array full_File[][]

where the code clones have been commented out. To do this, the method must

first find the locations where the modified file data has been stored. This it does

by checking the text strings stored in the array finalName[]. At the end of the File

Loading process, the locations of this array would either hold the file paths of the

distinct files, or contain the text “abcdTestFile”. Hence going through the array

locations iteratively, if the method finds that the value at that location does not

match the above mentioned text, then the corresponding location in the array

full_File[][] would contain the modified data of that particular file. The method

then opens the file pointed to by the file path stored, and overwrites it with the

modified content of the array full_File[][]. It then saves and closes the file.

54

4.5 Experimentation and Analysis

In this section we outline the experiments conducted and present the

results obtained. The experiments were conducted to verify that the conversion

process did not have any adverse effects on the execution time of the software

systems.

4.5.1 Experiment Settings

Figure 15, Figure 16 and Figure 17 below present snapshots of the

hardware specifications of the machine where we performed our

experimentation. These were obtained from the software CPU-Z [CPU-Z]. The

machine is composed of a 2.4GHz Intel Core 2 Quad CPU with 3GB DDR2 RAM.

The machine hosts a 64bit Windows 7 operating system.

Figure 15: CPU Specification

55

Figure 16: Memory Specification

Figure 17: Cache Specification

56

4.5.2 Performance Measurements

This section presents different measurements being considered in this

experiment.

1. Average Execution Time: This is the average execution time of multiple

runs of the software system. It is found for each testing round and is in

milliseconds.

2. Performance Impact of Aspect program: This is a measurement of

the performance overhead of the program containing the code clones as

Aspect‟s, compared to the original non-Aspect based program containing

code clones. This is calculated as shown below in Figure 18.

Figure 18: Calculation of performance Impact [Liu 2011]

This value can either be positive or negative. A positive value indicates

that the modified code containing code clones as Aspect‟s runs faster than

the original version, and vice versa.

4.5.3 Experiment Setup

Experimentation was performed by comparing the output produced by

both the original version and the modified versions of the software systems, and

tabulating their execution times. At the end of the experimentation round, the

Average Execution Time, and the Performance Impact of the Aspect program

57

were calculated. This was done to check if converting the clones to aspects had

any adverse effects on the performance of the software [Liu 2011] [Ajila 2010].

The system time was found using the method currentTimeMillis(). This is a

method of type long, and a part of the java class System. This method returns

the current time, measured in milliseconds. It does this by returning the

difference between the current time and January 1st, 1970 UTC. The method

main() is where the compilation and execution of a java program starts. So we

store the system time received from the method currentTimeMillis(), both at

starting time in variable startTime, and at ending time in variable endTime. The

actual execution time is found by finding the difference between the two

variables. It is assumed that the time taken for this calculation is miniscule

compared to the execution time for the rest of the system code, and that the

compiler exits immediately after displaying the execution time. The Figure 19

below describes the code used to find the execution time in the software

PENTRIS and Figure 20 shows the output.

Figure 19: Image describing code used to find program execution time

58

Figure 20: Image showing the execution time of the program

Two rounds of experimentation were performed each having 50

executions of both the original and the modified versions of the software

systems. While it is not considered that the actual number of executions has a

bearing on the Performance Impact of the software system, having two rounds of

equal number of executions providing similar results provides a better indication

of the results.

Two Software systems (SWEF and PENTRIS) were used in

experimentation to find the Performance Impact of the Aspect Composed code.

They are described in more detail in section 4.5.4 and section 4.5.5 below.

4.5.4 SWEF

The first software system is called the Software Engineering Framework

(SWEF), designed and created by Cistel Technology Inc., an Ottawa based

company providing technology and management consulting services.

The SWEF software

 Allows the user to open a project with its source code or design

documents.

59

 Project metrics can be extracted from the source code and/or its design

documents.

 Project metrics can be derived and analyzed for more useful information

about the software system.

 Is suitable for large scale software development and understanding of

legacy and/or third-party code.

While the clone detection software identified numerous code clones in the

software, an example of a code clone is shown below in Figure 21. This clone

belongs to the category of Type 1 code clones. The clones are present in

different files of the source code.

Figure 21: Code Clone in software SWEF before removal

60

Figure 22: Code Clone in software SWEF after removal

61

After executing CC2ASPECT on SWEF, the code clone is commented out

(cf. Figure 22) and the code clone is converted to aspect (cf. Figure 23).

Figure 23: Code Clone in software SWEF as an aspect

4.5.5 PENTRIS

The second test software system is PENTRIS. PENTRIS is a gaming

software developed by Wonjohn Choi of the Global Youth Game (Software)

Developers. It is a variation of the Tetris game, but instead of the normal shapes,

he used pentominoes (polyomino composed of 5 blocks). The link to the software

website is http://gygd.wordpress.com/ .

Here also the clone detection software identified numerous code clones,

and examples of viable and acceptable code clones present are given in

http://gygd.wordpress.com/

62

Figure 24 below. The clones belong to the category of Type 3 code clones as

there have been modifications to the code statements of these clones.

Figure 24: Code Clones in the software PENTRIS

The clone locations and their line numbers were found using the

CCFinderX clone detection software. These were used as input to the

CC2ASPECT conversion software. The output of that software removes the

clones from the original files by commenting them out (cf. Figure 25). It also

63

converts those clones to aspects (cf. Figure 26), and saves them in a user

selected file.

Figure 25: Code Clones in software PENTRIS after removal

64

Figure 26: Code Clones in software PENTRIS as Aspects

4.5.6 Experimentation Results

 Two rounds of experimentation were performed. In each round, both the

SWEF and the PENTRIS software systems were executed 50 times, first in their

original versions with the code clones present, and then with the modified

versions where the code clones had been converted to aspects via the

CC2ASPECT software prototype. In each execution, the execution time of the

software was calculated and tabulated. The tables showing the exact values of

65

the execution times found in both rounds are provided in Appendix B of this

report. At the end of the round of experimentation, we calculated the Average

Execution Time of both the original and the modified versions of the software

system, and then calculated the Performance Impact of the Aspect Program.

These results are tabulated and shown in Table 3 and Table 4 below. Table 3

provides the results for the SWEF software system, while Table 4 shows the

results for the PENTRIS software systems.

Table 3: SWEF Software System Results

 Experiment Round 1 Experiment Round 2

Average Execution Time of SWEF

with clone (m s)

43.30 43.32

Average Execution Time of SWEF

with Aspect (m s)

38.32 38.66

Performance Impact of Aspect

program (%)

12.99 12.05

In the first round of experimentation, the original version of the SWEF software

containing code clones had an Average Execution Time of 43.30 milliseconds,

while the modified version with the code clones as aspect had an Average

Execution Time of 38.32 milliseconds. The Performance Impact of the Aspect

program in this round was found to be 12.99%. In the second round of

experimentation, the original version of the SWEF software containing code

66

clones had an Average Execution Time of 43.32 milliseconds, while the modified

version with the code clones as aspect had an Average Execution Time of 38.66

milliseconds. The Performance Impact of the Aspect program in this round was

found to be 12.05%. Graphs depicting the Average Execution Times for the

SWEF software system in both rounds of experimentation are shown in Figure 27

and Figure 28 below.

Figure 27: Graph describing the Average Execution Time (in Milliseconds)

of the SWEF Software versions in Experiment Round 1

34 36 38 40 42 44

Average Execution Time (in Milliseconds)

S
o

ft
w

a
re

 S
y
s
te

m
 V

e
rs

io
n

SWEF with Aspect

SWEF with Clone

67

Figure 28: Graph describing the Average Execution Time (in Milliseconds)

of the SWEF Software versions in Experiment Round 2

Table 4: PENTRIS Software System Results

 Experiment Round 1 Experiment Round 2

Average Execution Time of SWEF

with clone (m s)

769.52 740.76

Average Execution Time of SWEF

with Aspect (m s)

687.38 655.46

Performance Impact of Aspect

program (%)

11.95 13.01

As seen from the above Table 4, in the first round of experimentation, the original

version of the PENTRIS software containing code clones had an Average

36 38 40 42 44

Average Execution Time (in Milliseconds)

S
o

ft
w

a
re

 S
y
s
te

m
 V

e
rs

io
n

SWEF with Aspect

SWEF with Clone

68

Execution Time of 769.52 milliseconds, while the modified version with the code

clones as aspect had an Average Execution Time of 687.38 milliseconds. The

Performance Impact of the Aspect program in this round was found to be

11.95%. In the second round of experimentation, the original version of the

PENTRIS software containing code clones had an Average Execution Time of

740.76 milliseconds, while the modified version with the code clones as aspect

had an Average Execution Time of 655.46 milliseconds. The Performance Impact

of the Aspect program in this round was found to be 13.01%. Graphs describing

the Average Execution Times for the PENTRIS software system in both rounds

of experimentation are shown in Figure 29 and Figure 30 below.

Figure 29: Graph describing the Average Execution Time (in Milliseconds)

of the PENTRIS Software versions in Experiment Round 1

640 660 680 700 720 740 760 780

Average Execution Time (in Milliseconds)

S
o

ft
w

a
re

 S
y
s
te

m
 V

e
rs

io
n

PENTRIS with Aspect

PENTRIS with Clone

69

Figure 30: Graph describing the Average Execution Time (in Milliseconds)

of the PENTRIS Software versions in Experiment Round 2

Judging from the results obtained from both experimentation rounds of the two

software systems (Table 3 and Table 4), it is seen that the Average Execution

Times of the modified software systems containing Aspect is lower than that of

the original version containing code clones. We also see an improvement in the

performance of the modified software systems ranging from a Performance

Impact of 11.9% to 13.01%. This improvement in performance is contrary to the

belief that using of Aspect Oriented Programming would cause a performance

overhead due to the additional weaving time required. This behavior shown could

be due to the effects of the operating system and its cache/memory

management, however it cannot be confirmed without a detailed study into this

phenomenon [Liu 2011].

600 620 640 660 680 700 720 740 760

Average Execution Time (in Milliseconds)

S
o

ft
w

a
re

 S
y
s
te

m
 V

e
rs

io
n

PENTRIS with Aspect

PENTRIS with Clone

70

Chapter 5: Conclusions and Future Work

5.1 Conclusion

The main goal of this work is to convert code clones to aspects and

compose the aspects. Towards this end, we used an algorithmic approach. The

goal was achieved in four stages: The first was to use an existing code clone

detection tool to identify code clones in source code. The tool selected for this

purpose is CCFinderX (see section 4.3). The second was the designing of

algorithms to convert code clones to aspects, and perform aspect composition

with the original code. To fulfill this, we created four algorithms, namely the File

Loading Algorithm, the Aspect Import and Package Algorithm, the Aspect

Composition Algorithm, and the File Composition Algorithm (see chapter 3). The

third was to implement a prototype which converts code clones to aspects and

performs aspect composition. For this we created the software prototype

CC2Aspect. This implementation was discussed in section 4.4. The prototype

can only take 4 code clones at any given point of time because the GUI was

designed for 4 code clones. There is no upper bound on the number of clones

that our approach can remove. If we want to remove more than 4 code clones,

only the GUI would need to be modified. The algorithms created in chapter 3

would remain unchanged. If we do not want to modify the GUI, and we have

more than 4 code clones, we would first remove the first four code clones, and

then re-run the CC2ASPECT software prototype again with the location

information of the next batch of clones we want removed. Finally we carried out a

performance analysis to make sure that the aspect composed code performed as

71

well as the original code. For this we conduct two sets of testing for both

software‟s (SWEF and PENTRIS). In both cases it was found that the aspect

composed code performed as well as the original code. This was shown in

section 4.5.

5.2 Limitations and Future Work

We have identified two limitations with our algorithms. The first is that our

algorithms require code clones that are self defined methods. By self defined we

infer that every variable required for the proper execution of the method under

consideration should be either defined and declared within the method itself, or

should be passed as an argument to the method in the method header.

The second limitation is that in case of certain variants of clones,

especially in Type 2 and Type 3, it is possible that the modifications made to one

of the methods will produce a different result due to the underlying functionality in

the other method. If such a scenario arises, then there has to be a variation

between the two method headers. This is because the pointcuts being created by

the algorithms are using the method headers themselves. Without the difference

in their headers, the pointcuts would end up being the same, causing

unnecessary confusion between which pointcut and advice to follow. This

situation could arise because of modifications caused due to either, renaming of

identifiers, renaming of literals/data types, modifications of the source code lines,

addition and/or deletion of source code lines, reordering the source code

statements or replacing the control statements. For example, comparing the code

72

clone pairs in Figure 3(A) and Figure 3(C) we find that the former deals with

integer values, while the latter deals with floating point values. This causes a

difference in their final outputs. Similar situations can be seen while comparing

the code clones shown in Figure 4(A) and Figure 4(B), or Figure 4(A) and Figure

4(C), or Figure 4(A) and Figure 4(D). In all these situations we find that the final

result of the method would change due to the internal modifications.

Part of future work includes undoing the limitations discussed above.

Another part is integrating the environments together as a plug-in tool in eclipse,

i.e. integrate the code clone detection tool and the code clone removal tool

together to make it seamless. This would go a long way to remove user

intervention in the code clone removal process.

73

References

[Ajila 2010] S.A. Ajila, D. Petriu, P. Motshegwa, “Using Model

Transformation Semantics for Aspects Composition”, 2010

IEEE 4th International Conference on Semantic Computing

(IEEE-ICSC 2010), 22-24 September 2010, Page(s): 325-

332.

[AspectJ] Eclipse AspectJ project Website

http://www.eclipse.org/aspectj/ [Accessed: 24th April, 2012]

[AspectJGuide] AspectJ programming guide

 http://eclipse.org/aspectj/doc/released/progguide/language.html

[Accessed: 24th April, 2012]

[Albunni 2008] N. Albunni, M. Petridis, “Using UML for Modelling Cross-

Cutting Concerns in Aspect Oriented Software Engineering”,

3rd International Conference on Information and

Communication Technologies: From Theory to Applications,

2008, ICTTA 2008, 7-11 April 2008, Page(s): 1-6.

[Avgustinov 2005] P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins, J.

Lhotak, O. Lhotak, O.de. Moore, D. Sereni, G. Sittampalam,

J. Tibble, “Optimising AspectJ”, Proceedings of the 2005

ACM SIGPLAN conference on Programming Language

Design and Implementation (PLDI ‟05), ACM 2005, 12-15

June 2005, Page(s): 117-128.

[Baker 1992] B.S. Baker, "A program for identifying duplicated code",

Proceedings of Computing Science and Statistics, vol. 24,

Interface Foundation of North America, 1992, Page(s):

49-57.

[Baker 1995] B.S. Baker, "On finding duplication and near-duplication in

large software systems", Proceedings of the 2nd Working

Conference on Reverse Engineering, 14-16 Jul 1995,

Page(s): 86-95.

[Baxter 1998] I.D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, L. Bier,

"Clone detection using abstract syntax trees", Proceedings

of the 14th International Conference on Software

Maintenance, ICSM 1998, 1998, Page(s): 368-377.

http://www.eclipse.org/aspectj/
http://eclipse.org/aspectj/doc/released/progguide/language.html

74

[CCFinderX] CCFinderX Official Site

http://www.ccfinder.net/ccfinderx.html [Accessed: 24th April,

2012]

[CPU-Z] CPUID Technical Resources

 http://www.cpuid.com/softwares/cpu-z.html [Accessed: 27th

April, 2010]

[Eaddy 2007] M. Eaddy, A. Aho, G.C. Murphy, “Identifying, Assigning, and

Quantifying Crosscutting Concerns”, First International

Workshop on Assessment of Contemporary Modularization

Techniques 2007, ICSE Workshops ACoM ‟07, 20-26 May

2007.

[Eaddy 2008] M. Eaddy, T. Zimmermann, K.D. Sherwood, V. Garg,

G.C.Murphy, N. Nagappa, A.V. Aho, “Do Crosscutting

Concerns Cause Defects?”, IEEE Transactions on Software

Engineering, Vol. 34, Issue 4, 2008, Pages: 497-515.

[Eclipse.org] Eclipse website

http://eclipse.org/ [Accessed: 24th April, 2012]

[EclipseAspectJ] Adrian Colyer, Andy Clement, George Harley, Matthew

Webster, Eclipse AspectJ: Aspect-Oriented Programming

with AspectJ and the Eclipse AspectJ Development tools,

Addison-Wesley, ISBN 0-32-124587-3.

[Johnson 1993] J.H. Johnson, “Identifying redundancy in source code using

fingerprints”, Proceedings of the 1993 Conference of the

Centre for Advanced Studies on Collaborative Research,

CASCON 1993, 1993, Page(s): 171-183.

[Johnson 1994] J.H. Johnson, “Visualizing textual redundancy in legacy

source”, Proceedings of the 1994 Conference of the Centre

for Advanced Studies on Collaborative research, CASCON

1994

[Juergens 2009] E. Juergens, F. Deissenbocck, B. Hummel, S. Wagner, “Do

Code Clones Matter?”, IEEE 31st International Conference

on Software Engineering, 2009, (ICSE‟09), May 16-24, 2009,

Vancouver, Page(s): 485-495.

http://www.ccfinder.net/ccfinderx.html
http://www.cpuid.com/softwares/cpu-z.html
http://eclipse.org/

75

[Kamiya 2002] T. Kamiya, S. Kusumoto, K. Inoue, “CCFinder: A

Multilinguistic Token-Based Code Clone Detection System

for Large Scale Source Code”, IEEE Transactions on

Software Engineering, Volume 28, Issue 7, July 2002,

Page(s):654-670.

 [Kiczales 1997] G. Kiczales, J. Lamping, A. Mendhakar, C. Maeda, C.

Lopes, J.-M. Irwin, “Aspect-Oriented Programming”,

European conference on Object-Oriented Programming

(ECOOP), Finland, June 1997, Lecture Notes in Computer

Science (LNCS), 1997, Volume 1241/1997, Page(s):

220-242.

[Kiczales 2001] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

W.G. Griswold, “An Overview of AspectJ”, ECOOP 2001 –

Object-Oriented Programming, Lecture Notes in Computer

Science (LNCS), Volume 2072/2001, 2001, Page(s):

327-353.

[Kiczales G 2001] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

W.G. Griswold, “Getting started with ASPECTJ”,

Communications of the ACM, Volume 44, Issue 10, October

2001, Page(s):59-65.

[Koschke 2007] R. Koschke, “Survey of Research on Software Clones”, In

Proceedings, 06301-Duplication, Redundancy, and Similarity

in Software, 19th April 2007, URL:

http://drops.dagstuhl.de/opus/volltexte/2007/962/ [Accessed:

24th April, 2012]

[Krinke 2007] J. Krinke, “A Study of Consistent and Inconsistent Changes

to Code Clones”, 14th Working Conference on Reverse

Engineering 2007 (WCRE 2007), 28-31 October 2007,

Page(s): 170-178, Vancouver, BC.

[Liu 2011] W.L. Liu, C.H. Lung, S. Ajila, “Impact of Aspect-Oriented

Programming on Software Performance: A Case Study of

Leader/Followers and Half-Sync/Half-Async Architectures”,

2011 35th IEEE Annual Computer Software and Applications

Conference (COMPSAC), 18-22 July 2011, Page(s): 662-

667.

http://drops.dagstuhl.de/opus/volltexte/2007/962/

76

[Lopez-Herrejon 2006] R. Lopez-Herrejon, D. Batory, C. Lengauer, “A

Disciplined Approach to Aspect Composition”, Proceedings

of the 2006 ACM SIGPLAN symposium on Partial evaluation

and semantics-based program manipulation (PEPM ‟06),

9-10 January 2006, Page(s): 68-77.

[Mayrand 1996] J. Mayrand, C. Leblanc, E.M. Merlo, “Experiment on the

Automated Detection of Function Clones in a Software

System using Metrics”, Proceedings, International

Conference on Software Maintenance 1996, 4-8 Nov 1996,

Page(s): 244-253.

[Rodriguez 2004] L. Rodriguez, E. Tanter, J. Noye, "Supporting dynamic

crosscutting with partial behavioral reflection: a case study",

24th International Conference of the Chilean Computer

Science Society, 2004, SCCC 2004, 11-12 Nov. 2004,

Page(s): 48-58.

[Roy 2007] C.K. Roy, J.R. Cordy, “A Survey on Software Clone

Detection Research”, Technical Report No. 2007-541,

School of Computing, Queens University, Canada,

September 26, 2007.

[Roy 2009] C. K. Roy, “Detection and Analysis of Near-Miss Software

Clones”, Ph.D. Thesis, Queen‟s School of Computing,

Queens University, 2009-08-31, 14:05:30.233.

http://hdl.handle.net/1974/5104 [Accessed: 24th April, 2012].

[Roy et al. 2009] C.K. Roy, J.R. Cordy, R. Koschke, “Comparison and

Evaluation of Code Clone Detection Techniques and Tools:

A Qualitative Approach”, Science of Computer

Programming, Vol. 74, Issue 7, 1 May 2009, Page(s):

470-495.

[Schulze 2010] S. Schulze, S. Apel, C. Kästner, “Code Clones in Feature-

Oriented Software Product Lines”, Proceedings of the ninth

international conference on Generative Programming and

Component Engineering GPCE‟10, Oct. 10-13, 2010,

Page(s): 103-112, Eindhoven, The Netherlands.

 [Walker 1999] R.J. Walker, E.L.A. Baniassad, G.C. Murphy, “An Initial

Assessment of Aspect-Oriented Programming”, ICSE‟99

http://hdl.handle.net/1974/5104

77

Proceedings of the 21st international conference on Software

Engineering, May 1999, Page(s): 120-130.

 [Wand 2004] M. Wand, G. Kiczales, C. Dutchyn, “A Semantic for Advice

and Dynamic Join Points in Aspect-Oriented Programming”,

ACM Transactions on Programming Languages and

Systems, Vol. 26, No. 5, September 2004, Pages 890-910.

78

Appendix A

This appendex contains the flowcharts for the different algorithms which

were described in chapter 3.

Start

Get all filenames

and save to array

name[]

Pre-initialize array

finalName[] with

text “abcdTestFile”

i=1

while(i<=n)

Copy code clone i

to corresponding

Text Area i

True

i++

cloneNumber=1

False

while(cloneNumber<=n)

If(filename is distinct)

True

Copy entire file to array

full_File[cloneNumber][]

Copy file path to array

finalName[cloneNumber]

Save file length to array

finalLength[cloneNumber]

True

cloneNumber++
False

End

False

Figure 31: Flowchart describing the File Loading Algorithm

79

Start

i=1

If(finalName[i]!=

”abcdTestFile”)

True

line=1

True

i++
False

False

If((full_File[i][line] contains

“package”) OR (full_File[i][line]

contains “import”)) then

True

line++
False

Copy line to Aspect

area

True

End

False
while(i<=n)

while(line<=30)

Figure 32: Flowchart Describing the Aspects Import and Package Algorithm

80

Start

i =1

If (clonei is distinct)

True

i++
False

If(clonei start line has

method parameters)

True

Compose Advice

specification with

parameter binding

True

line=startNo_Clonei+1

Copy clone line to

Aspect text area

True

line++

Compose Advice

specification without

parameter binding

False

i++

False

i =1

False

Comment out clonei

from array full_File[][]

True

i++

End

False

while(i<=n)

while(line<=endNo_
Clonei)

while(i<=n)

Figure 33: Flowchart describing the Aspect Composition Algorithm

81

Start

Get target

file from

user

Open target file

Copy text from

Aspect text area to

target file

Close target file

i =1

If(finalName[i]!=”abcdTestFile”)

True

i++
False

Open file whose path was

stored in finalName[i]

True

Overwrite original code at

location of path stored in

finalName[i] with modified

code at full_File[i][]

Close file whose file path

was stored in finalName[i]

End

False
while (i<=n)

Figure 34: Flowchart describing the File Composition Algorithm

82

Appendix B

This appendix contains the testing results of both rounds of experiments.

Table 5 below provides the results for the SWEF software system. All execution

time values are in milliseconds.

Table 5: Execution times of SWEF software system in both experiment

rounds

Serial SWEF with Clone SWEF with Aspect

Number Round 1 Round 2 Round 1 Round 2

1 47 47 31 47

2 47 31 46 47

3 46 62 40 31

4 31 31 47 32

5 47 47 46 32

6 31 47 31 47

7 31 46 47 47

8 31 46 47 31

9 47 31 31 32

10 62 31 47 31

11 47 31 31 47

12 31 47 31 47

13 47 62 47 31

83

14 31 47 47 46

15 47 47 32 31

16 46 47 47 47

17 47 47 32 47

18 47 31 31 31

19 32 47 47 47

20 47 31 46 31

21 47 47 31 31

22 31 47 32 31

23 47 47 31 31

24 47 31 32 47

25 62 46 31 46

26 47 47 46 31

27 31 31 47 47

28 46 47 47 46

29 46 32 31 47

30 47 46 32 31

31 47 47 31 32

32 46 32 47 47

33 47 31 47 46

84

34 46 47 47 31

35 47 46 31 47

36 46 47 47 31

37 47 46 47 32

38 47 47 31 46

39 31 31 31 47

40 47 47 32 31

41 31 47 32 31

42 46 47 31 31

43 47 62 32 46

44 31 47 46 31

45 47 46 47 31

46 46 47 47 31

47 47 31 32 47

48 47 47 31 47

49 47 47 32 46

50 32 47 31 32

Table 6 below provides the results for the SWEF software system. All

execution time values are in milliseconds.

85

Table 6: Execution times of PENTRIS software system in both experiment

rounds

Serial PENTRIS with Clone PENTRIS with Aspect

Number Round 1 Round 2 Round 1 Round 2

1 983 686 765 670

2 749 671 577 592

3 734 874 733 515

4 905 780 624 655

5 827 874 639 499

6 796 921 624 733

7 733 437 919 593

8 749 873 655 765

9 718 733 640 733

10 452 717 702 546

11 499 749 827 624

12 546 748 562 530

13 796 748 577 530

14 795 718 734 702

15 998 889 639 765

16 718 686 670 686

86

17 749 452 655 780

18 796 780 780 796

19 780 920 812 717

20 889 499 780 780

21 889 514 639 639

22 811 671 686 687

23 682 749 671 671

24 702 935 593 608

25 795 733 607 640

26 889 702 655 655

27 962 702 608 656

28 961 702 702 671

29 733 624 702 515

30 765 701 609 499

31 780 670 858 812

32 858 639 640 562

33 700 686 827 655

34 842 608 656 640

35 749 779 842 702

36 795 686 640 639

87

37 671 874 562 811

38 655 717 718 624

39 499 873 718 671

40 764 874 577 468

41 718 796 624 686

42 780 920 687 919

43 796 795 765 624

44 750 857 608 656

45 717 904 640 655

46 740 827 812 764

47 796 858 718 655

48 780 593 780 671

49 811 686 671 546

50 874 608 640 561

