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Abstract 

This thesis reports on the development and evaluation of a pool-based active 

learning approach to create support vector machine (SVM) classifiers for the 

prediction of asparagine/aspartate (N/D) hydroxylation sites on human proteins. 

The verification of hydroxylation sites on human proteins in wetlab experiments is 

very costly and sometimes time-consuming to achieve. The active learning 

procedure could therefore be used to choose which putative hydroxylation sites 

should be selected for future wetlab experimental validation and verification in 

order to gain maximal information. Using a dataset of N/D sites with known 

hydroxylation status, we here demonstrate through simulations that active learning 

query strategies can achieve higher classification performance with fewer labelled 

training instances for hydroxylation site prediction, compared to traditional passive 

learning. The active learning query strategies (uncertainty, density-uncertainty, 

certainty) are shown to identify the most informative unlabelled instances for 

annotation by an Oracle at each learning cycle. Furthermore, our experimental 

results also show that active learning strategies are highly robust in the presence of 

class imbalance in the available training data.  

Considering that simulations clearly demonstrated the advantage of active learning 

for this application, certainty-based and uncertainty-based strategies were therefore 

applied to select the most informative 20 putative N/D hydroxylation sites from the 1.3 

million putative N/D hydroxylation sites in the entire human proteome. Only two of these 
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proteins were successfully isolated, quantified, and overexpressed in mammalian 

cells in an in vitro experiment, due to experimental limitations. The biological 

activity of these proteins was verified using Western blotting, immunoprecipitation, 

and Coomassie stain analysis based on the protein expression identified on an SDS-

PAGE gel. The successful identification of these proteins’ overexpression on the gel 

lays the foundations for the determination of the true annotation of these putative 

N/D hydroxylation sites via mass spectrometry. Following the active learning 

algorithm, ultimately, the classification of these new N/D sites will be used to further 

increase the prediction accuracy of the SVM-based classification model. 
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1 INTRODUCTION  

1.1 Introduction  

Many proteins undergo some form of post-translational modification (PTM) or degradation after 

translation. Both reversible and non-reversible modifications are essential to a variety of 

biological processes in humans including signal transduction and enzyme activation/inactivation 

and may also lead to pathological changes and undesirable diseases (Lee, et al., 2006; Basu and 

Plewczynski 2010). Hydroxylation is an important example of oxygen-dependent protein post-

translational modification. During the physiochemical process of hydroxylation, a protein amino 

acid side chain is modified by the attachment of at least one hydroxyl group (OH) (Hu et al., 

2010) in a reaction catalyzed by enzymes known as hydroxylases. It is a reaction that is also 

dependent upon iron, ascorbic acid (vitamin C) and α-ketoglutarate. Hydroxylation is important 

for oxygen sensing in cells, and lack of hydroxylation signals low oxygen (hypoxic) conditions 

within the cells. A number of amino acids may be hydroxylated, including proline, lysine, 

tyrosine, tryptophan, phenylalanine, asparagine and aspartate, but this thesis will focus on the 

hydroxylation of asparagine/aspartate (N/D). The best studied protein which undergoes this type 

of PTM is the hypoxia-inducible factor (HIF) protein, a transcription factor that acts as major 

regulator in the detection and response to low oxygen in the human tissues (Peet & Linke 2006). 

Asparagine hydroxylation occurs adjacent to the carboxyl-terminal transcriptional activation 

domain (CAD) of HIF, repressing transactivation activity of HIF by blocking the interaction of 

the HIF CAD with the transcriptional coactivators protein p300 (i.e., the required protein for p53 

gene expression) and preventing the activation of transcription. The asparagine hydroxylase in 

this case is Factor Inhibiting Hypoxia-inducible factor (FIH), an enzyme that has also been 
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known to catalyze the hydroxylation of highly conserved asparagine residues within the 

ubiquitous ankyrin repeat domain (ARD) of other proteins. For example, the hydroxylation of 

aspartate residues also occurs in the ARD of ankyrinR and is catalyzed by FIH (Peet et al., 2004; 

Cockman et al., 2009). Therefore, an accurate prediction model will help gain useful insights and 

understanding of the complex physiochemical mechanism of asparagine/aspartate hydroxylation 

sites. 

 

Experimental identification of N/D hydroxylation sites is commonly performed by mass 

spectrometry (Cockman et al., 2009) which is resource-intensive, expensive, and time-

consuming. This method can also suffer from high rates of false positive results; hence, 

supervised machine learning has been adopted to design a classifier to predict the hydroxylation 

sites, trained from a small set of previously annotated protein samples. Currently, there is only 

one supervised machine learning model for the prediction of N/D hydroxylation sites (Liu, 2009; 

a former student of Drs. Willmore and Green), who trained support vector machine (SVM) 

classifiers with a leave-one-out cross-validation test method and achieved a recall of 92.73% and 

the precision rate of 61.45% over a dataset of 55 confirmed positive N/D hydroxylation sites, and 

1758 negative sites. Another supervised prediction model for the hydroxylation sites of proline 

and lysine utilized a nearest neighbour approach and was evaluated by jackknife cross-validation 

(Hu et al., 2010). Performance in terms of sensitivity, specificity and Matthew’s correlation 

coefficient were 64.8%, 81.6%, and 0.461 respectively when evaluated on hydroxyproline 

dataset, and 70.4%, 88.0%, 0.592 respectively with a hydroxylysine dataset. Such PTM 

prediction models must often be trained on hundreds (even thousands) of annotated protein 

samples (instances) to achieve useful performance levels. However, gathering a dataset where all 
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instances are labelled as positive or negative can be very costly. Active learning addresses this 

intrinsic bottleneck, by allowing the active learner to iteratively and intelligently select which 

data points should be labelled for building the training dataset to learn the predictive model.  

 

Active learning is an iterative approach to train the best classifier possible with the currently 

available labelled training data, and then using that classifier to select which instances should be 

labelled and added to the dataset to ultimately create a more accurate classifier. This careful way 

of choosing data points to be added to the training set will enable the learner to reach high 

performance using as few labelled data points as possible. 

 

Procedure:  Pool-Based Active Learning Process  

Input:          Randomly pick an initial small training set L, and a pool of unlabelled data set U 

         Use L to train the initial classifier C. 

Repeat 

 Use  sampling strategies to select ―most informative‖ unlabelled  instances from the 

unlabelled pool U, and  query Oracle for labelling 

 Add newly  labelled instance to L, and remove it from U 

 Use L to retrain the current classifier C and evaluate the classifier’s performance  on an 

independent test set 

 Use current classifier C to label all unlabelled points in U 

Until the predefined stopping criteria is reached or all unlabelled instances have been selected 

 

Figure 1.1. Generic Pool-Based Active Learning with Query Strategy 
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Pool-based active learning is illustrated above in Figure 1.1. and below in Figure 1.2. In an active 

learning cycle, a classifier C is trained on an initially small training set of labelled instances L. 

Then n new instances are chosen from pool of unlabelled instances U, according to the current 

classifier and querying strategy Q criterion. Thus, these queried instances are given to the Oracle 

for labelling. The Oracle is able to label or annotate any instance with its correct class label for a 

fixed cost. In our case, the Oracle will ultimately be a wetlab experimentalist who can determine 

whether an N/D site on a protein is a hydroxylation site or not. Once labelled, instances are then 

added to the training set L and removed from U. The process is repeated until the classifier 

converges, the pool of unlabelled is exhausted, and/or a predefined stopping criterion is reached.  

 

In this thesis, we propose and evaluate a number of pool-based active learning selection 

strategies to design an SVM classifier for N/D hydroxylation site prediction. These active 

learning query strategies include the certainty-based query which picks unlabelled instances 

most likely to be a positive class, the uncertainty-based query strategy which selects unlabelled 

instances closest to the classifier decision boundary (i.e. most uncertain or most informative), 

and the density-uncertainty-based query which adds careful selection of the initial training set 

using instances that are most representative. 
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Figure 1.2.  The pool-based active learning cycle (reproduced from (Settles, 2010)). 

 

These active learning strategies are shown to effectively select, from a pool of unlabelled N/D 

sites, the most informative instances to be labelled by wetlab experiments in order to maximize 

classifier learning while requiring fewer labelled training data. The benefit of this strategy is to 

drastically reduce the amount of manual labour required to annotate (i.e. label) protein instances, 

thereby requiring fewer wetlab experiments to achieve the desired level of classifier 

performance. 

 

The proposed approaches are compared with the traditional approach of passive learning, where 

labelled training data is collected by randomly selecting unlabelled points for manual annotation 

through wetlab experiments. In passive learning, the classifier works through this pool of 

unlabelled data, thereby risking inclusion of redundant instances, which may fail to increase the 

quality of the model for the prediction of N/D hydroxylation sites. 
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Finally, wetlab experimental validation of a number of putative N/D sites identified by the active 

learning query strategy has been conducted as part of this thesis. The proteins of interest have 

been isolated, quantified and over-expressed in order to determine the true annotation of these 

putative N/D hydroxylation sites.  

1.2 Motivation 

Protein hydroxylation site identification is often successfully tackled by machine learning 

methods that can automatically categorize new N/D hydroxylated sites. Prediction systems are 

normally sequence-based, since solved protein structures are only available for a small number 

of proteins. However, supervised machine learning algorithms require labelled N/D training data, 

from which the predictive classification model is learned. This process involves extensive wetlab 

experiments and is a costly procedure. Therefore, this annotation effort can be reduced 

significantly when data points to be annotated are carefully chosen through active learning 

strategies. Hence, in the current thesis, we have proposed a pool-based active learning to meet 

this particular requirement. As such, the most useful and relevant instances are intelligently 

selected from the pool of unlabelled N/D data points to be labelled through wetlab experiments, 

and subsequently added to the training data to learn an improved predictive model. 

Consequently, the same level of performance can be achieved while requiring fewer instances 

than with the traditional machine learning process (passive learning). 

1.3 Problem Statement 

The thesis explores key aspects of active learning for the prediction of N/D hydroxylation sites 

on human proteins. Specifically, we seek to: 
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i. Develop a pool-based active learning query strategy that considers classification scores 

among the unlabelled protein data set to determine how ―informative‖ each unlabelled 

instance (i.e. N/D site) is to the learner. In this way, the most informative unlabelled points 

can be labelled as positive or negative via wetlab experiments in order to maximally increase 

the learning of the prediction system.  

ii. Implement active learning algorithms that can intelligently identify putative N/D 

hydroxylation sites that have the highest probability of successful experimental verification 

and validation through wetlab experiments. This strategy is most appropriate when an 

experimenter is more interested in identifying novel hydroxylation sites rather than 

maximally improving the prediction system itself. 

iii. In some cases, there is no initial labelled training set. In this case, an active learning strategy 

can be applied that also considers the representativeness of each instance to create the initial 

training set. By selectively querying the most representative and most informative instances, 

we can further reduce annotation effort with improved performance. 

iv. Considering the interdisciplinary nature of the Masters in Biomedical Engineering Program, 

this thesis goes beyond strict simulation of active learning to also encompass wetlab 

validation of a number of putative N/D hydroxylation sites selected via active learning. This 

includes the bioinformatics analysis required to account for wetlab experimental 

considerations when selecting which proteins should be annotated through experiments, and 

also participating in the actual wetlab experiments including protein expression, isolation, 

quantification, and characterization through mass spectrometry. 
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1.4 Contributions 

The contributions of this thesis are as follows: 

Phase I: Simulation of active learning 

A comprehensive comparison was performed between uncertainty-based query, density-

uncertainty-based query and certainty-based query strategies in terms of prediction recall, 

precision, Matthews’ correlation coefficient, area under the receiver operating characteristics 

curve, and number of labelled positive and negative instances with growing training set size. We 

considered the default passive learning approach as the benchmark throughout this thesis. An 

extensive performance comparison of these methods relative to the N/D dataset is provided. We 

have clearly demonstrated that the active learning cycle can drastically reduce the amount of 

annotation efforts required to obtain a given level of classification performance for the prediction 

of hydroxylation sites. To the best of our knowledge, a comprehensive comparison between 

various active learning query strategies for the prediction of a protein post-translational 

modification has not been reported in previous literature. Our results from the simulation of 

active learning query strategies for the prediction of N/D hydroxylation sites on human proteins 

have been accepted for publication in the proceedings of the International Conference on 

Computational Intelligence and Bioinformatics (CIB 2011), Nov 7-9 2011 in Pittsburgh PA. 

 

 



 9 

Phase II: Wetlab experimental validation 

Unlike other studies that only simulated the active learning process (e.g.  Mohamed  et al., 

2010; Liu, 2004), in this thesis wetlab experimental validation/verification of putative N/D 

hydroxylation sites identified for labelling by applying active learning query strategies is 

considered and performed. Instead of validating all 1.3 million putative hydroxylation sites 

identified by Liu's (2009) predictive tool, we have used active learning to identify the 20 top-

ranked N/D hydroxylation sites by both uncertainty-based and certainty-based sampling 

methods. Wetlab experimental requirements and considerations were then taken into account, 

through the application of bioinformatics analysis, to ultimately select the top 3 proteins 

identified by certainty-based sampling and 2 proteins by uncertainty-based sampling that 

were most suitable for wetlab validation. Our choice was influenced by the availability of the 

protein plasmids and antibodies, the suitability of the tryptic fragments containing the 

putative sites for analysis via mass spectrometry, and the associated cost of materials used in 

the wetlab validation. Wetlab experimental validation of 2 putative proteins identified by the 

active learning query strategy have been isolated, quantified, and over expressed as protein of 

interest in mammalian cells, human embryonic cell 293 (HEK293) that is most likely to 

ionize in mass spectrometry (MS) for the determination of the true annotation of these 

putative N/D hydroxylation sites. 

1.5 Overview of Results 

The overview of results can be discussed in two-stage phases: 
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Phase I: Simulation of Active Learning 

We have successfully developed a pool-based active learning with different query strategies that 

considered only the most informative unlabelled instances from a pool of unlabelled data points 

based on the predefined classification scores.  

 

We analyzed the viability of active learning and implemented various active learning query 

strategies, uncertainty-based, density-uncertainty-based, and certainty-based sampling techniques 

with SVM. These query techniques intelligently and successfully proved to be suitable for 

purpose of the research goals, exemplified by the empirical results expressed in terms of recall 

(sensitivity), predictive positive value (PPV) or precision rate, Correlation Coefficient (CC) and 

Area under the receiver operating characteristic (ROC) curve (AUC). After 50 iterations of 

active learning, the uncertainty-based sampling technique achieved a recall value of 96% ± 0.03, 

98% ± 0.04 PPV, 0.87 ±0.03 MCC and 0.98 ±0.00AUC values; density-uncertainty-based 

sampling achieved a 97% ± 0.02 recall, 100% ± 0.00 PPV, 0.89 ± 0.02 MCC, and 0.98 ± 0.00 

AUC; certainty-based sampling achieved a recall value of 100% ± 0.00, 80% ± 0.02 PPV, 0.83 ± 

0.20 MCC and 0.98 ± 0.00 AUC; and passive learning can recall 90% ±0.03, 97% ± 0.05 PPV, 

0.83 ± 0.04 MCC and AUC value of 0.96 ± 0.03 for 50 queries or iterations. Out of 35 positive 

instances available to query strategies, certainty-based identified all 35 instances, while both 

uncertainty-based and density-uncertainty-based techniques identified 21 and 22 instances 

respectively and passive learning identified only 4 instances. Lastly, our empirical results have 

shown that the uncertainty-based active learning strategy is an effective way to handle class 

imbalance among the available unlabelled data. 



 11 

Phase II: Wetlab Experimental Validation  

We have utilized uncertainty-based and certainty-based active learning query strategy to 

intelligently identify 20 potential N/D hydroxylated sites from 1.3 million putative hydroxylation 

sites that are most likely to improve classification accuracy.  

 

We successfully obtained all 20 protein sequences from NCBI database to examine and detect 

the suitability of the tryptic fragments (polypeptides) containing the putative sites for analysis 

through mass spectrometry (MS) for the determination of the true annotation of these 

putative N/D hydroxylation sites.   

 

Five (5) out of the 20 proteins were chosen for wetlab experimental validation; after 

bioinformatics evaluations on the availability of genes encoding these target proteins, the 

availability of specific antibodies for extracting the target proteins, and a simulation of the 

trypsin digestion process were employed to unveil N/D hydroxylated sites.  

 

Four (4) of the target genes (TP53BP2, PPP1R13L, AP2M1 and CCBE1) were successfully 

isolated from the plasmid vectors of type pCMV-SPORT6 and expressed as proteins in 

mammalian cell lines i.e. human embryonic kidney cells 293 (HEK 293). The fifth target gene, 

LTBP2 was successfully subcloned from pBlueSCriptR into pCMV-SPORT6.  
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TP53BP2 and AP2M1 proteins were successfully isolated, quantified, over-expressed in HEK 

293 cells in an in vitro under normoxic and hypoxic experiment. These proteins biological 

activity was verified using Western blotting, immunoprecipitation and Coomassie stain analysis 

based on the proteins expression identified on an SDS-PAGE gel. These specific bands were 

excised from the gel, transferred to Eppendorf tubes and stored at -80oC.  The successful 

identification of these proteins’ expression on the gel lays the foundations for the determination 

of the true annotation of these putative N/D hydroxylation sites via mass spectrometry. Once 

validated to be positive or negative, these new results will be added to the training set and the 

performance will be evaluated on an independent test set to complete the active learning cycle. 

This final stage of analysis is left to future work. However, the vast majority of wetlab 

experiments have been completed for these two target proteins. 

1.6 Organisation of Thesis 

The remainder of this thesis is organized as follows:  

Chapter two presents detailed background information on protein synthesis, biology of 

hydroxylation, pattern classification, active learning algorithms, different active learning 

methods, query strategy frameworks, active learning specifically with SVM, passive learning 

strategy, and an active learning stopping criteria.  

 

Chapter three describes dataset collection, feature selection, data pre-processing, and the splitting 

of the dataset into the initial training set, the test set, and the unlabelled data. It further discusses 

a SVM pool-based active learning strategy for binary classification, measures of an instance’s 

informativeness, and proposes an active learning pool-based framework. Specific active learning 
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strategies to be evaluated in this thesis are defined, along with performance evaluation metrics. 

Experimental results achieved for each active learning system, and a comparison of the different 

active learning querying strategies with respect to passive (baseline) learning strategy are 

included. Finally, an active learning stopping criterion was looked at. 

 

Chapter four describes a detailed implementation of active learning on a real life dataset 

including an experimental demonstration of active learning in a wetlab scenario. Wetlab 

experimental protocols and results are described for the validation and verification of a number 

of putative hydroxylation sites on five proteins. The bioinformatics analysis conducted to select 

the 5 putative hydroxylation sites among those sites highly ranked by active learning is also 

described. 

 

Chapter five provides a brief summary of contributions and recommendations for future work. 
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2 CHAPTER: LITERATURE REVIEW 

In this chapter, the literature is reviewed to provide the reader with the necessary background and 

context for this thesis. The review begins with protein biosynthesis describing transcription, 

translation and the biology of hydroxylation involving asparagines and aspartate amino acids. It 

then continues with the concept of pattern classification, different types of supervised and 

unsupervised learning methods and related work on the prediction of hydroxylation sites on 

proteins. Support vector machines are described, as this is the main machine learning technique 

to be used with active learning in this thesis. Active learning with different query strategies is 

then discussed. Lastly, a stopping criterion for active learning with SVM classifiers is described. 

2.1 Biology of Protein Hydroxylation 

2.1.1 Protein Biosynthesis (Synthesis) 

Protein synthesis is the process where cells build proteins, beginning with transcription and 

ending with folding and post-translation modification. 

 

Transcription 

Transcription is the synthesis of RNA (ribonucleic acid) from a template (noncoding) strand of 

the DNA (deoxyribonucleic acid) double helix. Transcription involves three phase-processes: 

initiation, elongation and termination. 
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Initiation phase of transcription 

Here, an RNA (Ribonucleic acid) polymerase, an enzyme, binds to a specific region on the DNA 

that designates the starting point of transcription, called promoter. As the RNA polymerase binds 

on to the promoter, the DNA strands begin to unwind. 

 

Elongation phase of transcription 

RNA polymerase continues to travel along the template (noncoding) strand, synthesizing a 

ribonucleotide polymer. The RNA polymerase uses the DNA from the noncoding strand as a 

template to copy the coding strand. 

 

Termination phase of transcription 

As the polymerase reaches the termination, modifications are required for the newly transcribed 

messenger RNA or mRNA to be able to travel to the other parts of the cell.  A 5’ cap is added to 

the mRNA to protect it from degradation. A poly-A tail is added to the 3’ end for protection and 

as a template for further processing. 

 

Translation 

During translation mRNA, previously transcribed from DNA, is decoded by ribosomes to make 

proteins. The ribosome has sites which allow other specialized transfer RNA (tRNA) to bind to 

the mRNA at the start codon (AUG); here the codon means the coding of the mRNA sequence as 

a unit of three nucleotides. The binding of the correct tRNA to the mRNA on the ribosome is 

accomplished by an ―anticodon‖ that is part of the tRNA and a "codon" on the mRNA. This 
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correct tRNA is chemically linked to a specific amino acid, which is then directed to the 

ribosome to be added to the growing polypeptide (Voet et al., 2009; Lodish et al., 2008). 

 

As the ribosome travels down the mRNA, one codon at a time, another tRNA comes into a second 

ribosome site. A peptide bond is formed between the two amino acids and the ribosome moves 

one codon "down" the mRNA. The first tRNA is released, then, the amino acid and its attached 

tRNA moves to the second site in the ribosome, freeing up the first to accommodate another 

incoming amino acid-tRNA. This process continues, until a stop codon on the mRNA is reached 

and a long chain of amino acids (protein) is produced. At this point in time, the ribosome falls 

apart and the newly formed protein is released, indicating the termination point of the 

transcription-translation process. During and after protein synthesis, events such as post-

translation modification and protein folding occur (Voet et al., 2009). Various steps involved in 

the protein synthesis are shown in Figures 2.1, 2.2 and the Appendix for a detailed explanation. 

In this thesis, we focus mainly on the post-translational modification of proteins, which is 

described in the following subsections. 

 

 



 17 

 
  

  

Figure 2.1.  Diagrammatic representation of protein synthesis                                                   

(source: http://www.ncbi.nlm.nih.gov/About/primer/genetics_cell.html). 

The transcription-translation process begins at the cell’s nucleus, where genes (DNA) 

are transcribed into RNA. Then, post-transcriptional modification processes modify 

the RNA into mature mRNA which is transported into the cytoplasm from the 

nucleus. During translation, the mRNA becomes translated by the ribosomes by 

matching the three nucleotides (i.e. codons) of the mRNA to the appropriate three 

nucleotides of the tRNA. Optionally, post-translational processes binding the newly 

synthesised protein to an effector molecule to become fully active protein. An 

effector molecule is a small molecule, which could be a sugar, amino acid or 



 18 

nucleotide that binds to protein regulator, and therefore changes its ability to interact 

with operator. 

 

5’ T A T A G C G T T C A T 3’ Noncoding strand of DNA 

3’ A T A T C G C A A G T A 5’ Coding strand of DNA 

3’ A U A U C G C A A G U A 5’ Transcription of noncoding strand (mRNA) 

 

5’ A U G A A C G C U A U A 3’ mRNA 

  Translational of mRNA 

 

    Met – Asn – Ala - Ile -  Peptide 

 

Figure 2.2.  Sequence representation of protein synthesis.  

DNA transfers information to mRNA in the form of a code defined by a sequence of 

nucleotides bases. During protein synthesis, ribosomes move along the mRNA 

molecule and "read" its sequence three nucleotides at a time (codon) from the 5' end 

to the 3' end. Each amino acid is specified by the mRNA's codon and pairs with a 

sequence of three complementary nucleotides carried by a particular tRNA 

(anticodon). Then, after translation of mRNA an individual polypeptide is produced 

and can be folded and modified further by post-translational modifications. See 

Appendix A.2 for more details. 

2.1.2 Post-translational Modifications of Proteins 

Many proteins undergo some form of post-translational modification (PTM) after translation. 

PTM of proteins involves the attachment of biochemical functional groups, such as hydroxyl      

(OH), acetate, phosphate, various lipids, carbohydrates, etc., to the amino acid side chains of 
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proteins. Reversible modifications (e.g., phosphorylation) are involved in a variety of biological 

processes in humans including signal transduction and enzyme activation/inactivation; while 

non-reversible modifications may consequently lead to protein degradation, pathological changes 

and undesirable diseases (Lee, et al., 2006; Basu and Plewczynski 2010). Most commonly 

observed PTMs are hydroxylation, phosphorylation, and glycosylation, but this thesis focuses 

hydroxylation. 

 

Hydroxylation is an important, oxygen-dependent protein post-translational modification. During 

the physiochemical process of hydroxylation, a protein amino acid side chain is modified by the 

attachment of at least one hydroxyl group (OH) (Hu et al., 2010) in a reaction catalyzed by 

enzymes known as hydroxylases. Hydroxylation is a reaction that is also dependent upon iron, 

ascorbic acid (vitamin C) and α-ketoglutarate. Hydroxylation is important for oxygen sensing in 

cells, and lack of protein hydroxylation signals low oxygen (hypoxic) conditions within the cells. 

Therefore, it is important to analyze protein hydroxylation and its relationship to human diseases 

(such heart diseases, cancer and diabetes) that are known to be associated with low oxygen.  

2.1.3 Hypoxia 

Hypoxia literally means ―deficient in oxygen‖. Hypoxia is a reduction of oxygen (O2) supply to a 

tissue below the ambient levels found in the body. Our Earth's atmosphere is composed of 21% 

oxygen and levels below this are considered hypoxic. Hypoxia elicits in a wide range of adaptive 

responses a) at the systemic level, b) at the tissue level and c) at the cellular level. Responses at 

the systemic level increases the alveolar ventilation thereby promoting survival by maintaining 

the arterial blood hemoglobin saturation and systemic O2 transport. At the tissue level, hypoxia 
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stimulates the production of various growth factors including vascular endothelial growth factor 

(VEGF), which promotes capillary growth and sustain local tissue O2 delivery. At the cellular 

level, hypoxia elicits an increase in the expression and secretion of the hormone erythropoietin, 

which increases systemic O2 supply by amplifying the rate of erythrocyte formation. Most of the 

genes that are activated during hypoxia are regulated by a single transcription factor known as 

the hypoxia inducible factor (HIF), (Schumacker 2002; Giaccia et al., 2004). 

2.1.4 Relationship between Hypoxia Inducible Factor (HIF) and Hydroxylation 

Hypoxia is the physiologic trigger that activates hypoxia-inducible factor (HIF). HIF is a 

transcriptional factor that acts as a major regulator in the detection and responses to hypoxia (i.e., 

low oxygen level) in the human tissues (Peet & Linke 2008). The HIFs (HIF-1 and HIF-2) are 

key transcription factors regulating the expression of most, but not all, hypoxia-inducible genes. 

The HIF is a heterodimeric protein comprised of an alpha subunit and a beta subunit. Under 

normal oxygen conditions (normoxia), the alpha subunit of HIF is hydroxylated on two proline 

residues (Pro402 and Pro564 of the human protein) by the prolyl hydroxylase domain (PHD)-

containing hydroxylases (Lando et al., 2002). Hydroxylated HIF alpha is recognized and bound 

by the von Hippel Lindau (vHL) protein; a protein that, when mutated, leads to a clear cell 

carcinoma that develops in renal cells. The vHL protein is also part of a much bigger complex of 

proteins that form an E3 ubiquitin ligase. The E3 ubiquitin ligase subsequently links ubiquitin, a 

short polypeptide that signals protein degradation, to the alpha subunit of HIF. Ubiquitin is 

attached in long chains and this signals the cells to degrade the ubiquitinated protein. 

Ubiquitinated proteins are degraded by a large protease known as the proteasome. There is a 

cytosolic and a nuclear proteasome that degrade cytosolic and nuclear ubiquitinated proteins 
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respectively. Degradation of HIF alpha, from hydroxylation to proteolytic degradation, occurs 

with a half life of 5 minutes. Thus, it is one of the more rapidly turned over proteins known. In 

the absence of oxygen (hypoxia, anoxia), HIF alpha is not hydroxylated, not ubiquitinated and 

not degraded by the proteasome, and thus can travel to the nucleus of the cell (through the use of 

a nuclear localization sequence of amino acids present within the protein), bind to its partner 

protein (HIF beta) and bind to a DNA sequence known as the hypoxia response element (HRE) 

found in close proximity to most (but not all) hypoxia-inducible genes. 

 

HIF alpha is also hydroxylated on an asparagine residue within the C-terminal transactivation 

domain of the protein (Asn-803) by an asparagines/aspartate hydroxylase known as Factor 

Inhibiting HIF (FIH) as shown in Figure 2.3. Oxygen-dependent hydroxylation of this residue 

prevents protein-protein interaction between HIF alpha and its coactivator of transcription, the 

CREB binding protein (CBP) or p300. Thus the presence of oxygen not only causes HIF alpha to 

be rapidly degraded, but it also disrupts the transactivation of hypoxia-inducible gene expression 

by the protein. FIH  has also been shown to catalyze the hydroxylation of highly conserved 

asparagines (N-OH) residues within the ubiquitous ankyrin repeat domain (ARD)-containing 

proteins (Peet & Linke 2008; Peet et al., 2004; Cockman et al., 2009). The effects of 

hydroxylation appear to be predominantly localized to the target asparagine and proximal 

residues, at least in the consensus ARD-containing proteins (Hardy et al., 2009). 
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Figure 2.3.  The crystal structure of factor-inhibiting hypoxia-inducible factor (FIH) reveals 

the mechanism of hydroxylation of HIF-1 alpha (Elkins et al., 2003).  

FIH (in red), asparagine (Asn-803) in green, Fe
(II)

 and 2-oxoglutarate are show as 

ball-and-stick representation in grey and alpha helix in cyan. The FIH is an 

asparaginyl β-hydroxylase and is a member of 2-oxoglutarate and Fe
 (II)

 –dependent 

dioxygenases which catalyze the hydroxylation of Asn-803 of HIF (Lancaster et al., 

2004).  

2.2 Pattern Classification 

2.2.1 Introductory Concept of Pattern Classification 

Classification tasks occur in a wide range of human activity. Classification that involves devising 

a decision rule to be applied repeatedly in order to classify data points into one of a set of pre-

defined classes based on features is termed pattern classification. In supervised learning, a 
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training dataset with known associated class labels is used to determine a function or decision 

rule (i.e., set of decision boundary) that accurately maps the features to the true class labels. The 

mapping function can be expressed explicitly in the models (classifiers) or implicitly in the data 

(Duda et al., 2001). A typical pattern classification problem is illustrated in Figure 2.4, where the 

goal would be to determine a rule that would differentiate blue points from green points. 

Generally, the learning methods used for pattern classification problems fall into two categories: 

supervised learning and unsupervised learning methods. 

 

                                                                    

Figure 2.4.  Example of classification pattern in a 2D input space.  

Class labels are indicated by point colouring. 

2.2.2 Related Terminology 

(i) Instances:  An instance x represents a specific object. The instance is usually represented 

by a d-dimensional feature vector                 
 , where  the length of the feature 

vector, d,  is known as the dimensionality of the feature vector. The x represents the whole 

instance, and xd denotes the d
th

   feature of x. In this thesis, each N/D site is an instance and 

is represented by a feature vector of length 360. 
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(ii) Label:  A label y is the desired prediction on an instance x.  Labels form finite set of 

values; these distinct values are called classes, usually represented by integer numbers                  

{-1, 1} for a binary classification problem, thus           . This is regarded as binary 

class labels, and the two classes are generically called the negative class (non-hydroxylated 

site) and positive class (hydroxylated site) respectively.  

(iii) Training Sample: A training data set is a collection of instances {   
 

   
          ,                                                              

which acts as the input to the active learning process. In a supervised learning, the training 

sample consists of pairs, each containing an instance x and a label             
 

   
   Thus, y 

is a label for x provided by a teacher or supervisor, hence the name supervised learning.  

Therefore, such (instance (x), label(y)) pairs are called labelled data, while instances 

without labels are called unlabelled data. 

2.2.3 Supervised Learning Algorithm 

Supervised machine learning model is a branch of pattern classification, which automatically 

induces a predictive model from labelled data. Thus, given a collection of data points, a 

supervised learning model predicts the label associated with any new data point based on a set of 

observable features that describes it. In general, supervised learning classification can be 

characterized as follows. The learner is provided with a labelled set of training instances, L = 

{(x,y)1,…,(x,y)n}, with which to induce a model. A model means a formal representation with an 

interpretation, under which instance inputs are mapped to label outputs. The model defines a 

classification function f on the instances: y = f (x). Therefore, the main objective of the training 

procedure is to find the ―best‖ or optimal model according to some objective function for a given 

problem within the defined model space (or hypothesis space) (Settles, 2008; Duda et al., 2001). 
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2.2.4 Types of Supervised Learning Methods   

Some of the supervised learning methods for pattern classification are briefly described below to 

attest for the choice of our current model. The supervised learning methods include support 

vector machines, decision trees, K-nearest neighbour, artificial neural networks and Naïve 

Bayes. 

Support Vector Machines  

Support vector machines (SVMs) are a form of supervised machine learning based on statistical 

learning theory (Vapnik, 1999) for solving classification problems and have achieved excellent 

performance on a wide variety of bioinformatics classification tasks. SVMs can implicitly map 

data from the original low-dimensional space into a high-dimensional space through application 

of kernel functions and learns a decision boundary (i.e., hyperplane) which eventually separates 

the training data points into two different classes (Burges, 1999). The hyperplane in the higher–

dimensional space is selected based on the maximal margin between the two classes. The goal is 

to produce a classifier that will generalize well on unseen data points. SVM are equipped with 

structural risk minimization which enable SVM to generalize well (Vapnik, 1999), which 

differentiated it from other supervised machine learning approaches for many pattern 

classification problems. SVMs are used throughout this thesis and are described in detail in 

section 2.3. 

Decision Trees Induction 

A decision tree is a non-probabilistic supervised learning approach, which relies on classification 

rules and uses the tree structure to classify instances. The decision tree classification starts from 
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the root of the tree, and one or more feature(s) of the instance is compared to a specified function 

to determine the branch to follow. Another feature will be compared to a new specified function 

in the next internal round.  Therefore, the comparison continues until the said instance reaches a 

leaf node, and associated class label is assigned to the instance. The decision tree learning system 

can often produce performance values considerably inferior to other supervised learning models 

due to algorithm instability and class-overlap problem (Quinlan, 1993). 

 Naïve Bayes Model 

Naïve Bayes is a probability-based method. It models the joint probability P(x, y) of the labelled 

training instances, and uses Bayes’ rule to predict label probabilities (Hand & Yu., 2010). Naïve 

Bayes classifiers work under the assumption of conditional independence which states that 

features are independent from each other given knowledge of the output class. Additionally, 

naïve Bayes is a generative model for which training relies on the estimation of the likelihood 

p(x | y) from the training data (Friedman et al., 1997). This estimation is inaccurate in the case of 

active learning since the training data are not randomly collected (Nguyen & Smeulders, 2004; 

Guoliang, 2009).  

K-Nearest Neighbour 

Neighbour K-nearest neighbour (KNN) classification model maintains no model parameters but 

assigns labels to an instance based on similarity of instances in the training set. The mapping 

function from features to the class labels is implicitly expressed in the training set (Aha, et al., 

1991). A KNN learning system prediction time could be longer as it searches for similarity 

between the previous instances and each new instance before it makes a prediction. 
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Artificial Neural Network Model 

Artificial neural network is a method inspired by a biological neural system which consists of 

many neurons. The neurons in artificial neural network are interconnected and work together to 

realize a mapping function. The links between neurons can be trained with a data to strengthen 

the particular patterns. The representative training method for artificial neural networks is back-

propagation. A neural network can approximate any functions accurately, provided the number 

of the neurons, connection function, and weights of the connections are properly selected. 

Traditional neural network approaches often have generalization, and data overfit problem as a 

result of the optimization algorithms used for the parameter selection (Guoliang, 2009; Bishop, 

1995). 

2.2.5 Unsupervised Learning Method 

In an unsupervised learning algorithm, there is no supervision of how individual instances should 

be handled. One of the common tasks of unsupervised learning is clustering, where the main 

objective is to separate the n instances into clusters; similar instances are placed in the same 

cluster/group, and instances in different clusters are dissimilar. One of the common clustering 

algorithms under this setting is the K-means clustering algorithm. The K-means is also used in 

density-uncertainty-based query strategy to create an initial training set in this thesis, and 

therefore the principle and functionality of the K-means algorithm is discussed with illustrative 

flowchart representation below. 

 

The K-means clustering algorithm uses an iterative refinement technique to partition the 

instances into K clusters, where K is a user-defined number of clusters. The algorithm begins by 
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randomly determining initial cluster centroids (centres) of each K clusters (i.e., randomly picks 

data points from the dataset to create initial cluster centres). A centroid is an artificial point in the 

input space of the instance which represents an average location of the particular cluster. Then 

the distance between each instance and its cluster centroid is calculated to reconstruct a new 

partition by associating each instance to its closest centroid. Subsequently, the centroid of every 

newly created cluster is recalculated; and the algorithm is repeated until the instances no longer 

switch clusters or the centroids no longer change (Duan & Babu, 2008). Optionally, once the K-

means algorithm converges to the final clusters, a representative instance may be selected from 

each cluster to represent the final clusters. It is assumed in all clustering algorithms that distances 

between instances are representative i.e. instances close to each other in feature space are also 

similar to each other in reality. A diagrammatic representation of K-means is depicted in Figure 

2.5. 

2.2.6 Related Work on Hydroxylation predictions 

(Liu, 2009) demonstrated the prediction of hydroxylation sites based on dataset taken from 

experimentally verified and validated N/D hydroxylation sites of 40 proteins known to have at 

least one N/D hydroxylation sites. The input features consisted of surface accessibility, 

secondary structure, and Position-Specific Scoring Matrix (PSSM) data and detail information of 

these features is discussed in Section 3.2. All feature vectors make up the dataset  containing 

1813 non-identical data samples, with 55 positive and 1758 negative data points, were used to 

induce SVM-based  prediction model.  
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Figure 2.5.  Flowchart representation of K-means algorithms (reproduced from Khan and 

Mohamudally, 2010).  

This illustrates the two basic steps involved in the implementation of K-means 

algorithm. The first step is the assignment step where instances are placed in the 

closest cluster. The second step is the re-assignment step where the cluster centroids 

are recalculated from the instances within each cluster. 
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This class imbalance could undermine the useful information provided by the positive class; as 

such, the prediction model would be biased towards the dominant negative class. This is a typical 

characteristic of all traditional supervised learning algorithms when faced with large class 

imbalance in the training data. Nevertheless, Liu addressed this class imbalance by random 

undersampling without replacement using a subset of the negative (dominant) class to train the 

SVM-based classifier. The effectiveness of the random undersampling approach was measured 

by training the classifier on the ratio of positive/negative data points as 1:1, 1:2, 1:3, etc and 1:1, 

2:1, 3:1, 4:1, and validated by leave-one-out test method.  Utilizing this approach a recall of 

92.73%, 74.3% Matthew’s correlation coefficient (CC) and positive predictive value (precision 

rate) of 61.45% was achieved, using a positive: negative training ratio of 1:3. Furthermore, this 

study revealed that all positive N/D hydroxylation sites are located on the protein surface and 

occurred in non-regular or beta-strand secondary structures. This study also identified 1,288,896 

potential N/D hydroxylation sites among all human proteins. 

It would be resource-intensive and time-consuming to experimentally verify all 1.3 million 

potential asparagine and aspartate hydroxylation sites obtained by Liu’s (2009) predictive model, 

hence the motivation for the current study. Therefore, this study aimed at developing a 

supervised active learning computational model to determine which putative hydroxylation sites 

should be selected for characterization via wetlab experimental validation and verification. By 

further improving the accuracy of the prediction model, we will help gain useful insights and 

understanding of the complex physiochemical mechanism of hydroxylation of N/D on human 

proteins.  
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In another study, Hu et al. (2010) developed a prediction tool to identify sites of proline and 

lysine hydroxylation. They established that there is a relationship between the three kinds of  

amino acid features for protein hydroxylation sites : i) amino acid indices (AAindex), represents 

the physiological and biochemical properties  of the amino acids, ii) Position-Specific Scoring 

Matrix (PSSM) which represents evolution information of amino acids, and iii) structural 

disorder of  amino acids. This supervised prediction model for identifying proline and lysine 

hydroxylation sites utilized a nearest neighbour approach. Evaluation through jackknife cross-

validation obtained empirical results for sensitivity, specificity and Matthew’s correlation 

coefficient of 64.8%, 81.6%, and 0.461 respectively utilizing hydroxyproline dataset, and 70.4%, 

88.0%, and 0.592 respectively with hydroxylysine datasets. They observed that the 

physiochemical, biochemical, and evolution information play significant roles in the 

identification of protein hydroxylation sites, while structural disorder had a less significant role 

in the hydroxylation of proteins. 

2.3 SVM Formulations 

The SVM formulation, let data points {x1,…,xn} be  the vectors in the feature space        with 

associated labels            . The hyperplane is given by (        ,       , b   R. Given 

a linearly separable case, the SVM classifier is able to generate an optimal separating hyperplane 

with maximum generalization ability (i.e., it uses vector w and parameter b to minimize ||w||
2
) 

such that each instance is classified as positive or negative i.e.,           , if      ;                     

           , if       . This can be rewritten as                for all      1. 

This is the quadratic program (Zhan & Shen, 2004; Byvatov, 2011).  The w is a weight vector 
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Outside margin of separation 

Inside margin of separation 

Outside margin of separation 

normal to the hyperplane; |b|/||w|| is the perpendicular distance from the hyperplane to the origin 

(Liu 2004).   

                   

              (a)                                                         (b)       

                                   

                     (c)   

 

Figure 2.6.  (a) Schematic representation of three possible separating hyperplanes.                                 

(b) Schematic representation of an optimal separating hyperplane. (c) An optimal 

separating hyperplane with unlabelled test points inside the margin. Figure 2.6(b) 

and (c) shows the separating hyperplane (solid lines), margins (dashed lines) and the 

support vectors of the SVM (black circles). The positive and negative training 
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instances are indicated by purple circles and green circles and unlabelled test points 

represented by open circles.  

 

The margin is the distance between the two boundary lines parallel to the hyperplane. All 

training instances lying on the margins are called support vectors indicated as the black circles 

shown in Figure 2.7 (b) and others laying within the margin as shown in Figure 2.7 (c). This idea 

introduces us to the concept of hard-margin and soft-margin SVM classifiers. In the hard-margin 

SVM classifier, there is no support vectors permitted to lay within the margin and the SVM is 

trained to maximize the margin (i.e., the distance between the separating hyperplane and nearest 

training instance) (Liu, 2004). Whereas in the soft-margin SVM classifier (Tax et al., 1997), a 

trade off is introduced between maximizing the margin and minimizing number of observed 

training errors. Here, some of the support vectors lying within the margin may be classified 

incorrectly by the separating hyperplane, which is regarded as the trade off between having a 

maximized (large) margin and a minimized number of errors on the training set. This trade off is 

introduced by C parameter, which must be optimized to achieve maximum classification 

accuracy (Cortes & Vapnik, 1995; Byvatov, 2011).  

 

For training instances that cannot be linearly separated in the original input feature space, the 

SVM makes a non-linear transformation of the original input vectors into a potentially higher 

dimensional feature space, where an optimal separating hyperplane can be found. The margin is 

maximized within this feature space to enhance the generalization ability of the classifier (Gunn, 

1998). The unique solution can be achieved by using kernel functions that satisfy Mercer’s 

condition such as polynomial, linear, radial basis function (RBF), and sigmoid (Burges, 1998).   



 34 

 

The basic idea of the Mercer’s condition is that vectors x in a finite dimension space (i.e., input 

space) can be mapped to a higher dimensional Hilbert space H provided with a dot product 

through a nonlinear transformation     .  Most of the transformations       are unknown, but the 

dot product of the corresponding spaces can be expressed as a function of the vectors: 

 

                  =                                                   (2.1)  

These spaces are called Reproducing Kernel Hilbert Spaces (RKHS), and their dot products 

         are called the Mercer kernels. The Mercer theorem gives the condition that a kernel 

         must satisfy in order to be the dot of a Hilbert space. Assuming that there exists a 

kernel function        and a dot product          =              (Martinez-Ramon & 

Christodoulou, 2006; Christianini & Shawe-Taylor, 2000) then the kernel function leads to the 

reformulation of SVM classifier into 

                             .                                                         (2.2) 

 

The kernel function is very significant, because it removes the complex computation involved in 

the feature space, then training the SVM classifier only requires inner products between support 

vectors and the vectors (data points) of the feature space. This becomes the SVM decision 

boundary, where    and b are parameters determined by the SVM’s learning algorithm, while the 

sign of        gives the predicted label of instance x (Xu et al., 2003; Zhan et al., 2005; Cui et 

al., 2009). 
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Sometimes, the training set may not be linearly separable even though it has been projected into 

a higher dimensional space with the application of kernel function. For such scenario, the slack 

penalty coefficient C is introduced to allow data points to exist on the wrong side of the 

separating hyperplane (i.e., concept of soft-margin discussed above). Since the value of C can 

vary significantly depending on the dataset, a parameter sweep using cross-validation over the 

training dataset may be applied to identify the best C value. The identification process will 

enhance the SVM classifier’s generalization ability for unknown data point and controls the 

misclassification error during the testing phase of the classification process (Gold & Sollich, 

2002; Chapelle & Vapnik, 2000). If a large value is used for C, misclassification is suppressed, 

and if small values are set, training instances are permitted to be misclassified.  

2.4 Active Learning 

Active learning is a machine learning strategy which reduces the need for manual annotation of 

instances for the training of supervised classifiers to attain a given performance level. For any 

typical supervised learning algorithm to achieve the expected performance level, it must often be 

trained on large number of labelled instances which represents a large investment in annotation 

efforts, particularly when annotation of an instance requires wetlab experiments. Furthermore, 

one risks inclusion of redundant training instances thereby wasting annotation effort without 

improving prediction performance. However, active learning aims to label the most useful or 

informative instances to maximize the performance of the classifier while minimizing the 

annotation effort of the Oracle (i.e. the wetlab experimentalist in our case). There are several 

active learning scenarios, and query strategies used to determine most useful (informative) 

instances for the active learning process. Although, this thesis focuses on pool-based active 
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learning to construct querying functions, there are other interesting active learning scenarios 

including stream-based and membership query which are briefly discuss in subsequent sections. 

2.4.1 Active Learning Scenarios 

 There are three main settings of active learning scenarios, i) pool-based sampling,  ii) 

membership query synthesis, and iii) stream-based sampling considered in literature in which 

active learners may pose queries to an Oracle (Baram et al., 2004; Freun et al., 1997; Cohn et al., 

1994). The most common learning scenarios are pool-based sampling and stream-based 

sampling. This thesis focuses on the pool-based sampling learning scenario because of its 

applicability to the current problem. We devised techniques for querying or selecting the most 

informative instances from the unlabelled instances and examined if newly acquired labelled 

instance improves the classifier’s prediction ability for the protein dataset.   

2.4.2 Pool-based sampling 

Pool-based active learning follows a two-stage procedure. During the initialization stage, a small 

number of labelled training instances, L, and a large number of unlabelled instances, U are 

collected, and the initial classifier is trained. The procedure then enters the iterative query stage 

(i.e., sampling phase) where the most informative samples are identified, labelled by the Oracle, 

then the classifier is retrained. Since queries of instances from the pool U are performed in a 

greedy fashion, an informative measure is used to evaluate all instances within the pool (Shen et 

al. 2004).  Therefore, the most daunting task in this pool-based active learning is how to 

determine the ―most informative” instances for Oracle annotation at each active learning cycle.  

For this task, we adopted uncertainty-based query strategies active learning (Lewis & Gale, 

1994; Lewis & Catlett, 1994; Zhu et al., 2009; Xu et al., 2009; Cui et al., 2009). Here, an 
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unlabelled instance U with maximum uncertainty is viewed as the most informative instance; 

because it is the closest to the decision boundary and the current classifier (i.e., learner) is least 

confident about the true annotation of this unlabelled instance (Mohamed et al., 2010). Unlike 

the strategies discussed above, the certainty-based query strategy selects unlabelled instances 

farthest from the decision boundary on the positive side for annotation by the Oracle.  

 

Liu (2004) applied active learning uncertainty-based query strategy with SVM to sample from 

gene expression profiles of colon, lung and prostate cancers. The empirical results showed active 

learning significantly reduced annotation by 82% and attained area under the receiver operating 

characteristics curves (AUC) values of 0.81 compared to 0.5 AUC value achieved by passive 

learning, given the same number of labelled instances.  

 

Doyle et al. (2009) presented and analyzed the class balanced active learning (CBAL) framework 

that accurately detects cancerous regions on prostate histopathology data samples. This query 

strategy uniquely chooses equal numbers of instances from both classes (i.e., cancer and non-

cancer) to induce the active learner. The empirical results showed remarkable improvement in 

terms of accuracy and AUC (i.e. sensitivity and specificity) when compared with passive 

learning and other methods that did not specifically address the class imbalance. The CBAL 

required only 50 instances to achieve comparable accuracy to the full training set of 12,000 

image regions used by the other methods. 
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2.4.3 Other Active learning Scenarios 

Stream-based active learning 

 In this learning scenario, the learner is provided with a stream of unlabelled instances. At each 

iteration, a new unlabelled instance is selected and given to the Oracle, which has to decide 

whether to request its label or not (Baram et al., 2004; Freund et al., 1997). The distinctive 

difference between stream-based and pool-based active learning is that the stream-based scenario 

scans through the data samples sequentially and makes query decision individually, while the 

pool-based scenario evaluates and ranks the entire set of unlabelled data points, U, at each 

iteration to choose the most informative query. 

Membership Query Synthesis active learning 

In this active learning scenario, the active learner could query any unlabelled instance in the 

input space, including queries that the learner generates de novo, rather than being restricted to 

the set of unlabelled instances, U, drawn from underlying natural distribution (Angluin, 2001). 

Membership query synthesis has been successfully employed through ―robot scientist‖ (King et 

al., 2004) to execute series of autonomous biological experiments to discover metabolic 

pathways in the yeast Saccharomyces cerevisiae. In this case, an instance is a mixture of 

chemical solutions that constitute a growth medium, and particular yeast mutant.  Then, a label is 

determined by the yeast mutant thriving in the growth medium or not. These particular 

experiments were autonomously synthesized using active learning strategy based on logic 

programming, and physical laboratory robot.  Performance achieved indicates active learning has 

led to three-fold decrease in the cost of experimental materials (King et al., 2009). However, if 



 39 

the labelling is done by a human Oracle, the membership query synthesis may result in an 

unexpected problem. For example, when Lang and Baum (1992) trained a neural network to 

classify handwritten characters using membership query, many of the query images generated by 

the learner were unrecognizable symbols (Settles, 2010).  

2.5 Active Learning Query Strategies 

The effectiveness of an active learning procedure depends on the query strategy’s ability to 

identify the most informative instances for annotation at each learning cycle. We considered 

uncertainty based sampling (Lewis & Gale, 1994; Tong & Kong, 2001) and density-uncertainty-

based (Mohamed et al., 2010; Xu et al., 2007) query strategies with SVM to query the most 

uncertain unlabelled instance     for annotation by the Oracle at each learning cycle. We also 

considered the certainty-based query strategy which selects the unlabelled instance     farthest 

from the hyperplane on the positive side for annotation by the Oracle at each learning cycle. This 

latter approach mimics a typical experimenter’s tendency to only perform follow-up experiments 

on the most certain predictions (i.e., those predictions which are most likely to lead to the 

validation of a novel hydroxylation site). In the following sections, we will provide an overview 

of the active learning query strategies considered in the present study. 

2.5.1 Uncertainty Query Strategy 

In uncertainty based sampling, instance selection is based on the uncertainty of the current 

classifier in its prediction. Uncertainty based sampling is model-independent and can be 

combined with any classifier that returns confidence or probability estimates for its predictions 

(Tomanek, 2010). 
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At each learning step, uncertainty-based query strategy interactively queries the most uncertain 

instance from the unlabelled pool for annotation by the Oracle.  It has been previously suggested 

that the classifier would be most improved when selecting an instance with maximum 

uncertainty (i.e., the instance, for which classifier is least confident about its true classification); 

since this is the most informative instance (Lewis and Catlett, 1994; Mohamed et al., 2010). 

When using the uncertainty-based query strategy with SVM, the most uncertain instance is the 

instance that falls closest to the optimal separating hyperplane. Furthermore, labelling and adding 

such an instance to the training set is most likely to alter the SVM decision boundary (Xu et al., 

2009).  If these instances are selected for the next active learning cycle, this strategy has been 

shown to improve classifier performance (Cohn et al., 1995; Tong & Koller, 2001; Schohn & 

Cohn, 2000; Campbell et al., 2000).  

 

In Tong and Koller (2001) active learning with SVM used an active learning querying strategy 

with the notion of version space. The version space is the set of all hypotheses (i.e. set of all 

hyperplanes) consistent with the training set (Mitchell, 1982; Baram et al., 2004). They 

suggested that using querying function to select unlabelled instance closest to the optimal 

separating hyperplane (decision boundary) will enhance the reduction of the version space. This 

querying function is called ―Simple Margin‖. To overcome the inherent problem in the 

aforementioned querying function, they used refined methods called ―MaxMin Margin‖. In the 

MaxMin query algorithm, the authors estimated the relative size of the version space ν
-
  and ν

+
 

by labelling an unlabelled instance as -1 and 1, then compute  margins (m
-
 and m

+
) of the 

resulting SVM as  the approximation of  the area of  the version space.  Then, choose to query 
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the unlabelled instance for which the quantity min (m
-
 , m

+
) is greatest. In this way, the version 

space is minimized and reduced for every unlabelled instances selected for labelling. This 

approach minimizes the error on the training set which ultimately contributed to better 

classification performance and reduction in the number of labels required for annotation.  

 

The work of Campbell et al. (2000) was motivated by the SVM characteristic of constructing the 

decision boundary (hyperplane) using only those points which are support vectors (see Section 

2.3 above). They suggested using active learning to select only those unlabelled points that will 

become support vectors and ignore non-support vectors, especially if one knew which instances 

were support vectors (Campbell et al., 2000). They opted for active learning query strategy that 

selects data points closest to the decision boundary. In their active learning empirical study, they 

achieved the best results with sparse data sets. These are data sets which require only few 

support vectors. By contrast, dense data sets require a relative large number of support vectors to 

accurately represent the hypothesis. 

 

Schohn and Cohn (2000) applied active learning to choose a subset of the unlabelled data, and 

suggested that choosing a small subset serves to maximize the classification accuracy. The 

authors used active learning selective sampling based on SVM to select unlabelled instances that 

lie closest to the hyperplane, thereby maximizing the SVM margin. The empirical results showed 

that SVM-based active learning trained on a small subset provided a better generalization 

performance and required fewer data points than passive learner trained on all available datasets.  
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2.5.2 Representative Sampling Strategy 

Representative sampling strategy queries instances that are representative of the data distribution 

of the unlabelled pool; because instances with highest representativeness will add more 

information to the training set. Here, the unlabelled instances are clustered into K groups by a 

clustering algorithm, and one selects the instances closest to the K centroids from the unlabelled 

data as the most representative and most informative instances for labelling. 

 

Xu et al. (2003) applied representative sampling strategy for active learning with SVM, where 

unlabelled instances within the SVM margin are first clustered in order to identify the 

representative instances. These instances are taken to be the most representative and most 

important instances for labelling. The empirical results showed that representative sampling 

outperformed SVM active learning (uncertainty sampling) and random sampling during early 

iterations of the active learning process, however, as the training progresses its performance 

decreases at the end of the active learning cycles. The authors argued its poor performance could 

be ascribed to the poor clustering structure and high complexity of the unlabelled data within the 

margin. 

2.5.3 Density-uncertainty Query Strategy 

The density-uncertainty-based query strategy is an extension of the strategy described above, 

where formation of the initial labelled starting pool L is also guided by active learning. 

Specifically, representative sampling is used to select the instances used to create the initial 

training set (Hu et al., 2010; Xu et al., 2007). The density-uncertainty query strategy with SVM 

begins by training on this small initial training set to learn the initial classifier (Nguyen & 
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Smeulders, 2004) and thereafter follows the uncertainty-based sampling query strategy outlined 

above. A better initial training set that reflects the distribution of the data samples can improve 

active learning performance (Yuan et al., 2011; Hu et al., 2010; Zhu, 2008; Zhu et al., 2008; 

Kang et al., 2004). 

 

Mohamed at al. (2010) demonstrated the usefulness of uncertainty sampling strategies with 

random and density seed active learning algorithms in the selection of protein-protein 

interactions to induce random forest classifiers. The data points with maximum confusion, 

maximum disagreement amongst decision trees in the forest, and most representative are 

considered as the most informative and most representative instances to train random forest 

classifiers for all active learning algorithms. The confusion measure was obtained as the sum of 

relative entropy between the average prediction values and the individual classifier predictions, 

among all the decision trees in the forest. They observed that all active learning algorithms used 

to train random forests actually achieved higher accuracy (as measured by F-score  which is the 

harmonic mean of precision and sensitivity/recall) while requiring fewer labelled protein-protein 

interaction training data than passive learning strategy. In other words, they achieved 15% 

increase in the F-score of predicted protein-protein interactions with active learning algorithms in 

comparison to random selection of training data. 

 

Hu et al.’s (2010) work reaffirmed the usefulness of the clustering algorithm to populate the 

initial training set to improve the performance of the active learning process. They further 

emphasized that using deterministic clustering algorithms, such as agglomerative hierarchical 

clustering (AHC) and affinity propagation clustering (APC), showed a comparable labelling 
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accuracy to that achieved using the best non-deterministic clustering (k-means, k-medoid). 

Lastly, they showed that the learning curves for active learning techniques that employed 

clustering techniques to create the initial training set tend to be superior to those achieved when 

the initial training set is selected randomly. 

 

Nguyen and Smeulders (2004) proposed a formal model for incorporation clustering into the 

active learning process. They used the k-medoids algorithm to select the most representative 

examples to create the initial training set for their active learning model (linear logistic 

regression). As above, their empirical results showed that the active learning process seeded with 

an initial training set populated with the clustering technique outperformed other active learning 

algorithms such as close-to-boundary (uncertainty) and representative sampling with a randomly 

seeded initial training set.  

2.5.4 Certainty-based Query Strategy  

In this active learning query technique, the active learner queries unlabelled instances that are 

most likely to have positive class membership for annotation by the Oracle (Warmuth et al., 

2002; Forman, 2002). In the context of SVM classifiers, at each learning step in  Figure 1.1 

above, this strategy selects the instance whose probability is closest to 1.0. The underlying idea 

of certainty-based query with SVM is that it selects unlabelled instances strongly predicted to be 

positive. This is a reasonable strategy when the experimenter is most interested in identifying 

novel positive instances rather than increasing the effectiveness of the final classifier produced 

(Lewis & Gale, 1994). It also emulates the experimenter’s tendency to select those predictions 

for wetlab validation that are most likely to lead to novel positive discoveries. In this way, it 
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serves as a second benchmark (in addition to the passive approach) with which to compare the 

uncertainty-based approaches. 

 

Forman (2002) discussed the use of supervised machine learning to predict the organic 

compound most likely to be active in a given binding site in order to help guide chemists’ wetlab 

experiments to reduce cost and improve their yield. He used selection strategy termed 

―incremental retrain and prediction‖, where an instance strongly predicted to be positive is 

obtained from the unlabelled samples, and added to the training set of the classification process 

on an incremental basis to further improve the classifier’s precision before the next best 

predicted instance (organic compound) is selected. 

2.5.5 Other Active Learning Query Strategy: Query-by-Committee 

In the Query-by-Committee (QBC) active learning query strategy, a diverse committee of 

classifiers is created from a small number of instances. Next, each committee member attempts 

to label additional instances, and is allowed to vote on the labelling of the instance. The instance 

whose annotation results in most disagreement amongst the committee members is deemed to be 

the most informative and is selected for annotation prior to retraining the classifier (Seung et al., 

1992). 

 

The basic idea about the QBC query strategy is to minimize errors on the training set, while 

maximizing the margin, which in turn translates to maximizing the generalization ability of the 

classifier. Since the goal of active learning is to select as few unlabelled instances for annotation 

as possible to achieve required accuracy, therefore QBC queries the controversial regions of the 

input space with a search that is as precise as possible. The implementation of QBC selection 
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algorithm requires construction of a committee of models that represents different regions of the 

classifier margin, and has some measure of disagreement among committee members (Settles, 

2010).   

2.6 Passive Learning Strategy 

In a traditional passive learning strategy, unlabelled instances are selected for annotation at 

random from the large pool of unlabelled instances, U. The annotator (learner) has to work 

through this pool sample by sample; thereby risking annotation of redundant samples, which may 

not be helpful for learning the model. Consequently, this random selection strategy could require 

a large number of annotated samples to produce a classifier that meets performance requirements 

and may miss relevant instances that would have increased the quality of the model further. The 

passive learning strategy will serve as a benchmark for performance comparisons with the three 

active learning strategies explored in this thesis. 

2.7 Stopping Criteria in Active Learning 

Active learning is an interactive learning process where the active learner always interacts with 

the Oracle. It makes no sense, however, to continue learning until all unlabelled instances have 

been labelled (Zhu et al., 2008). How then, does the process know when to stop labelling 

instances and learning? Clearly, to minimize resources spent on the labelling of data, we wish to 

stop the active learning process if the selection of most informative unlabelled instances no 

longer contributes effectively to increasing the performance of the classifier. Lewis and Gale 

(1994) suggested that active learning should be stopped when the classifier has reached its 

maximum effectiveness. It is difficult to measure classifier effectiveness, but performance over a 
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hold-out test could be used as an estimate. Chen et al. (2006) further suggested that active 

learning should be stopped when the training set has reached a desirable size. It is realistically 

impossible to predefine a desirable size of training set guaranteed to improve classifier’s 

performance effectively. Schohn and Cohn (2000) later suggested that an active learning process 

should be stopped when there are no unlabelled instances closer to the decision boundary within 

the classifier’s margin.  

 

Zhu et al. (2008) proposed a minimum expected error strategy. This stopping criteria strategy 

involves determining when the maximum effectiveness of the classifier is reached and the  

classifier’s expected errors on future unlabelled instance is minimum, then,  the active learner 

should be stopped querying  the Oracle for more data points. The intuitiveness of their statistical 

approach is that the classifier reaches maximum effectiveness when it results in the lowest 

expected error on the remaining unlabelled instances. 

 

Olsson and Tomanek (2009) used the notion of an intrinsic stopping criteria (ISC) measure of 

active learner stability. It involves stopping the annotation of unlabelled data when the active 

learner cannot learn (much) more from the data. Their concept of an intrinsic stopping criterion 

is based on the notion of selection agreement for query-by-committee active learning technique, 

similar to the approach of Seung et al. (1992) described above. The selection agreement is the 

agreement among the members of a decision committee regarding the classification of the most 

informative instance selected from the pool of unlabelled data in each round of active learning 

process. They suggested active learning process should be aborted when the members of the 



 48 

committee are in complete agreement on instances selected from the remaining set of unlabelled 

data, since it is no longer expected to contribute meaningfully to the overall learning process. 

 

Vlachos (2008) used classifier confidence estimation of unlabelled data samples to stop active 

learning. Specifically, active learning is stopped when the confidence estimation of the classifier 

follows a risk-peak-drop pattern on consecutive iterations using uncertainty-based sampling. 

This pattern was characterized by a rise at the beginning, then reaching its maximum value, after 

which it constantly drops. 

2.8 Summary   

In this chapter, we have described the biology of hydroxylation. We have also described various 

pattern classification techniques and methods on which this thesis is primarily built upon. 

Detailed discussion is provided of how active learning technique can reduce the amount of 

labelled training data required to train a classifier. A number of query functions for selecting the 

most informative instance to be labelled by an Oracle are described.  The support vector machine 

is discussed as one of the best machine learning methods due to its advantages over other 

machine learning techniques, especially its ability to produce probability estimates and decision 

values well-suited for the active learning process. We also discussed active learning stopping 

criteria, where the iterative learning process should be stopped when there are no more useful or 

informative instances remaining in the pool of unlabelled data. 
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3 CHAPTER: EXPERIMENTAL SETUP AND ACTIVE LEARNING 

SIMULATIONS 

3.1 Introduction 

To evaluate the potential for pool-based active learning strategies in the context of 

asparagine/aspartate hydroxylation site prediction in proteins, we implemented the various query 

strategies described in Chapter 2 and ran several simulations using labelled hydroxylation site 

data as detailed below. All experiments began by drawing a static test set, and initial training set 

from the labelled N/D hydroxylation site data. The remaining data were taken as the pool of 

unlabelled asparagine and aspartate data from which instances to be labelled are iteratively 

identified by the query strategies. To evaluate each query strategy, the initial training set was 

used to train a classifier, and then the particular query strategy was used to select the most 

informative points for labelling. While in an actual experiment, labelling of a selected point by 

the Oracle would require weeks of wetlab experiments, in our simulation labelling simply 

consisted of looking up the withheld previously known class of an instance. The chosen (i.e. 

newly labelled) instances were subsequently added to the training set, and removed from the 

unlabelled pool of asparagine and aspartate. The model was retrained with the new training set. 

The static test set was used as a holdout test to estimate the classification performance over time, 

as instances were labelled and added to the training set. A better active learning strategy will 

result in improved classification performance while requiring fewer labelled training data 

instances. This will be measured via performance curves as detailed in section 3.4. 
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In this chapter, we present the protein datasets collection, feature selection, generation of initial 

training data set, model selection, and the proposed pool-based active learning framework with 

SVM as it relates to binary classification problems. We present performance evaluation of the 

various active learning query strategies considered through learning curves. Finally, we explore 

how to determine when to stop active learning challenge. 

3.2 Datasets Collection, Model Selection and Generation of Initial Training Set 

The dataset used for the evaluation of active learning algorithms was taken from experimentally 

verified and validated N/D hydroxylation sites of 41 proteins known to have at least one N/D 

hydroxylation site. (Liu, 2009) extracted this dataset from the human protein entries in dbPTM, 

Swiss-Prot, PhosphoELM, and O-GLYCBASE. Following (Liu, 2009), feature vectors consisted 

of surface accessibility (SA), secondary structure (SS), and position-specific scoring matrix 

(PSSM) data. Here the surface accessibility features were generated by RVP-NET; a neural 

network computational model that predicts solvent accessibility value from sequence information 

of each protein target. Then, the secondary structure features were determined by parallel 

cascade identification (PCI-based) protein secondary structure prediction, which distinguishes 

between ά-helices, β-strands and non-regular structural  elements from primary sequence data 

(Liu, 2009; Green et al., 2009). The PSSM features were obtained using PSI-BLAST, which 

calculates position-specific scores from a multiple sequence alignment of the of target 

protein with sequence-similar proteins (Altschul et al, 1997). These scores capture sequence 

conservation at each amino acid position of the protein. All feature data was converted to 

numerical values for input to the SVM classifiers. The details regarding the computation and 

compilation of these feature vectors can be found in (Liu, 2009). 
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Taken together, these features capture both the  physiochemical and biochemical properties for 

SA and SS as well as sequence conservation information for the PSSM for the 15 amino acids 

surrounding each asparagine/aspartate site (i.e., window of ±7  amino acids (AAs), centred on 

the N/D was used). This resulted in feature vectors having 360 dimensions (surface accessibility 

= 15, secondary structure = 45, and PSSM = 300). It should be noted that the feature vectors are 

expected to be somewhat inaccurate since all input feature data (i.e. SS, SA, PSSM) are 

calculated by other tools which may have inherent errors. All identical feature vectors were 

removed from the dataset and the remaining 1813 non-identical data samples, with 55 positive 

and 1758 negative data points (numeric values), were used to induce SVM-based active learning 

simulation.  

 

The libSVM toolbox for MATLAB was used with the radial basis function (RBF) kernel 

function                      2
) in all active learning experiments as other functions 

considered did not show improved performance in comparison to RBF. 

 We performed model selection to tune the libSVM classification parameters (i.e., the slack 

penalty coefficient C, and the RBF kernel parameter (γ)) in order to control the trade-off between 

classifier complexity and the misclassification rate over the training samples (Gold & Sollich, 

2002;  Chapelle & Vapnik, 2000). The optimal parameters (C = 32768, γ = 0.0156) were 

obtained by performing a parameter sweep over the range C = (2
-5
,…, 2

15
) and γ = (2

-15
,…, 2

3
) 

using 10-fold cross-validation over all 1813 data points, as done in (Hsu et al., 2010). These 

parameters led to a cross-validation accuracy rate at 98%.  

 



 52 

For the dataset split, 100 (20 positive and 80 negative) instances were randomly drawn to create 

the test set for uncertainty-based, certainty-based, density-based and passive query strategies. An 

initial training set of 3 positive and 3 negative instances was drawn from the remaining data (i.e. 

35 positive and 1678 negative instances). For uncertainty-based, certainty-based and passive 

query strategies, the initial training set was drawn randomly, whereas for density-uncertainty-

based query strategy, the 3 most representative instances each from the 35 positive and 1678 

negative classes were selected by K-means clustering to form the initial training set. The 

remaining data (i.e. 32 positive and 1675 negative instances) formed the set of unlabelled 

instances used to induce the active learning process. The test data set used for the performance 

evaluation of the active learning was the same across all experiments for each of the query 

strategies considered. Therefore, the static test set was never used in the development process of 

the active learning cycle. Although, it would be desirable to have a truly independent test set to 

be used solely for evaluation of the final solution, the amount of data available was limited by 

the positive class. Such a true independent test set would be required to obtain an unbiased 

estimate of the true error rate of the final classifier. 

3.3 A Pool-Based Active Learning with SVM in Binary Classification 

In the active learning procedure, the active learner interactively queries instances for learning the 

predictive model. For a binary classification problem, we begin with a small initial training pool 

of labelled instances L=           and typically much larger pool               of 

unlabelled instances, where each instance    is a vector in some feature space   . 
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Each instance xi has an associated true class or label           , which is initially known to the 

classifier for points in L. In the pool-based active learning sampling,  the active learner, ℓ, 

consists of two components:        where   denotes the classifier (SVM) learning algorithm and 

  is the query function (i.e., the selection function) that determines the most informative 

unlabelled instance in U  (Lewis & Gale, 1994; Roy & McCallum, 2001) as previously indicated 

in Figure 2.6 (c) to be labelled by the Oracle. Active learning is an iterative process as shown in 

Figure 3.1. 

 

Procedure:   Active Learning with query strategy                  

Input:         Let   be initial small training set;   the pool of unlabelled data set  

Output:        Labelled training set  , final classifier C 

1. Use   to train the initial classifier C (SVM) 

2. Loop while adding new instances to   

 Use the current classifier C to predict label of all unlabelled instances in   

 Use  query strategies Q to select  most informative unlabelled   instances       

           from unlabelled  pool  , and query Oracle for true label     

 Add newly  labelled      to  , and remove  from   

 Use   to retrain the current classifier C  

 Evaluate the classifier C’s performance  on an independent test set after each    

          query 

3. Until the predefined stopping criteria is reached or all unlabelled data has been  

4. Return 

5. Report the average of the results of all tests   
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Figure 3.1.  Proposed Pool-Based Active Learning with Query Strategy. 

 

In each learning cycle, the classifier was trained on all available labelled training data, and then 

applied to the unlabelled data. The current classifier then applies Q (i.e., the selection or query 

function) to choose one unlabelled instance    from U considered to be most informative (Xu et 

al., 2009; Zhu et al., 2010) for annotation by the Oracle. The pair         is added to   and 

removed from  . The classifier is then retrained and the process is repeated until a predefined 

stopping criterion is reached or all unlabelled instances have been selected and labelled (Baram 

et al., 2004; Liu, 2004).  

 

Tong & Koller (2000) noted that the effectiveness of active learning is dependent on the query 

strategy’s ability to acquire the most useful instances at each iteration. We utilized the pool-

based active learning uncertainty query strategy (Lewis & Gale, 1994), density-uncertainty query 

(Mohamed et al., 2010; Xu et al., 2007), and certainty-based (Liu 2004; Warmuth et al., 2002) 

query strategies with libSVM for a binary classification problem. Then unlabelled instance 

closest to the separating hyperplane was selected by uncertainty and density-uncertainty query 

strategies according to the libSVM formulation, as described below.  

3.3.1 Uncertainty Measure of Unlabelled Instances 

To measure the uncertainty/certainty of an unlabelled instance for each query strategy, we use 

the probability estimate available from the libSVM toolbox (Chang & Lin, 2011). Here, a 

probability of 1.0 indicates the maximum probability of being a positive instance, while a 
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Instance selected by 

certainty-based 

strategy 

Instance selected by uncertainty-based 

and density-uncertainty-based strategy 

probability of 0.0 indicates the maximum probability of being a negative instance. An unlabelled 

instance whose probability estimates falls closest to 0.5 is considered as the most informative 

instance (i.e., most uncertain) for the uncertainty-based and density-uncertainty-based query 

strategies. The probability estimate is closest 1.0 is selected by the certainty-based query strategy 

for annotation. An intuitive illustration of this representation is shown in Figure 3.2. 

 

 

Figure 3.2.  Representation of informativeness measure (adapted from Tomanek (2010)). 

 The most uncertain instance (A) is an ideal candidate instance for the uncertainty-

based and density-uncertainty-based query strategies compared to the highly 

representative, but less informative, instance (B). For certainty-based, the most 

informative instance will be (C) (i.e., far from decision boundary on the positive 

side). The dashed line represents the current decision boundary. The small white 

circles are unlabelled instances, while the purple and green circles are labelled 

training instances.  
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3.4 Proposed Active Learning Pool-Based Framework 

The Figure 3.3 emphasizes the input space visualization of the active learning process. The 

flowchart in Figure 3.4 illustrates the idea of selective sampling process in SVM pool-based 

active learning algorithm for the current study. Each experiment begins with splitting the data, 

i.e., the set of all labelled N/D sites, into the initial training set, a static test set, and the pool of 

unlabelled instances. We build a model using the initial labelled training set. Then, using the 

appropriate query function strategy, we select an unlabelled instance from the pool and asked the 

Oracle for the true annotation of the queried unlabelled instance. The chosen instance is 

subsequently added to the training set, then, the model is retrained with the new training set. At 

each iteration, the model’s classification performance is evaluated using the static test set. The 

process is repeated until a predefined stopping criterion is reached or all unlabelled instances are 

exhausted.  

3.4.1 Learning Curves 

The relationship between the number of labelled instances and a model’s performance can be 

visualized by learning curves that show the classification performance as a function of 

annotation effort. At each iteration of active learning, the model’s performance is evaluated 

using a hold-out static test set. More complex resampling-based evaluation techniques such as 

cross-validation, leave-one-out, or bootstrap cannot be used to estimate the performance of an 

active learner directly from the pool of labelled instances chosen by the learner. The reason being 

that instances selected for labelling by a good active learner tend to be heavily biased towards 

'hard' instances that do not reflect the true underlying distribution of the entire dataset (Tomanek 

2010; Kang et al., 2004). 
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Figure 3.3.  Active Learning Input Space Visualization (reproduced from Singh, 2008).  

The framework in Figure 3.3 uses the following steps to accomplish the selective 

sampling process.  Here, the classifier is trained with small labelled training set, L. 

Then, the query strategy selects the most informative instances and asks the Oracle 

for its label. Finally, the training data is augmented with newly labelled instance. 
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Figure 3.4.  Framework of sample selection for a pool-based active learning. 
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3.4.2 Performance Evaluation Measures (Metrics) 

Performance evaluation metrics play an important role in the assessment of active learning 

performance. A variety of common metrics are defined based on the confusion matrix (also 

called contingency table), two-by-two confusion matrix shown in Figure 3.5.  

 

True class 

 Positive Negative 

Positive 
True Positives 

(TP) 

False Positives 

(FP) 

Negative 
False Negatives 

(FN) 

True Negatives 

(TN) 

 

Figure 3.5.  Confusion matrix for a binary classification.  

TP (True Positives) are the number of correctly predicted positive instances, TN (True 

Negatives) are the number of correctly predicted negative instances, FP (False 

Positives) are the number of instances incorrectly predicted to be positives and FN 

(False Negatives) are the number of instances incorrectly predicted to be negative.  

 

In this thesis, the performance was measured using sensitivity (recall), positive predictive value 

(PPV), Matthews’ correlation coefficient (CC), and area under the receiver operating 

characteristic curve (AUC) as defined below. Other relevant evaluation metrics used to check the 

distribution of selected instances are the number of selected positives, the number of selected 

negatives, the number of selected decision values, the number of support vectors and the distance 

of a selected point to the hyperplane. 

 

P
re

d
ic

te
d

 

cl
a
ss

 



 60 

Sensitivity (recall) is the percentage of true positive prediction that is correctly detected by the 

classifier.               

        
  

     
 

 

Precision of a classifier is the percentage of positive predictions made by the classifier that are 

correctly predicted. It is also called predictive positive value (PPV). 

                  
  

     
 

 

Matthews Correlation Coefficient (CC): The CC is used as a measure of quality for binary 

classifications and is relatively unaffected by class imbalance in the test set. The CC in essence is 

a correlation coefficient between the observed and predicted binary classification results; it 

returns a value between −1 and +1, where a coefficient of +1 represents a perfect prediction, 0 an 

average random prediction, and −1 an inverse prediction. 

 

     
              

                             
 

AUC: Area under the curve is a measure of classifier's discriminatory performance that shows 

how successfully and correctly a classifier separates the positive and negative observations in 

binary classification settings. Since the AUC metric evaluates the classifier across the entire 

range of decision thresholds, it gives a good overview of performance of the model across 

classes’ distribution (Seyda et al., 2007). We have used AUC to summarize the performance of a 

classifier into a single metric for each active learning query strategies and passive learning 
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technique considered. AUC values lie in the range [0, 1]; the closer AUC is to 1, the better the 

overall classification performance on an independent test set.   

3.4.3 Results and Discussion  

To verify the effectiveness of the active learning, we evaluated and compared the performance of 

the various active learning techniques with passive learning as a function of a growing labelled 

training set size, and visualize the performance as learning curves. All experiments were 

repeated 20 times (i.e. 20 runs) to account for the stochastic nature of the algorithms. 

 

Tables 3.1 and 3.2 show the results obtained by each strategy after 50 and 200 instances were 

added to the training set respectively. For each, the mean and standard deviation observed over 

the 20 runs is reported. Tables 3.1 and 3.2 clearly demonstrates the consistently better 

performance achieved by the density-uncertainty-based strategy in terms of recall, PPV, CC and 

AUC. In fact, all active learning strategies outperform passive learning on all measures except 

for PPV for the certainty-based strategy due to its bias towards positive predictions as discussed 

below.  

 

The results in Table 3.1 are similar or even better than that in Table 3.2.  This indicates that 

adding 200 instances to the training set do not bring any significant improvements over 50 

instances under the same experimental settings. These observations showed that active learner 

trained on fewer instances could attained the same or even higher performance than one trained 

on the whole dataset (Schohn and Cohn 2000; Ertekin et al., 2007; Vlachos, 2008).  
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Table 3.1. Average performance results of different active learning query strategies after 50 queries measured over 20 runs (± 

standard deviation of the average). 

 

Table 3.2. Average performance results of different active learning query strategies after 200 queries measured over 20 runs (± 

standard deviation of the average).  

 

 

Query Strategies 

Average measures + standard deviation 

Recall PPV CC 
AUC Num_Pos Num_Neg 

Uncertainty-based 96%   ±  0.03          98%   ±  0.04 0.87 ±  0.03  0.98  ±  0.00 22.4  ±  0.28 32.5  ±  0.30 

Certainty-based 100% ±  0.00 80%   ±  0.02 0.83 ±  0.20 0.98  ±  0.00 35.0  ±  0.00 20.0  ±  0.14 

Density-uncertainty based 97%   ±  0.02 100% ±  0.00 0.90 ±  0.02 0.98  ±  0.00 21.5  ±  0.28 33.6  ±  0.28 

Passive-based 90%   ±  0.03 97%   ±  0.05 0.81 ±  0.04 0.95  ±  0.03 4.1    ±  0.14 50.6  ±  0.14 

 

Query Strategies 

Average measures + standard deviation 

Recall PPV CC 
AUC Num_Pos Num_Neg 

Uncertainty-based 98%   ± 0.00          100%  ±  0.00 0.89  ±  0.01 0.98  ±  0.00 34.0  ±  0.14 171.0  ± 0.07 

Certainty-based 100% ± 0.00 88%    ±  0.01 0.87  ±  0.10 0.97  ±  0.01 34.0  ±  0.35 170.9  ± 0.35 

Density-uncertainty-based 96%   ± 0.01 100%  ±  0.00 0.90  ±  0.01 0.99  ±  0.00 35.0  ±  0.07 168.8  ± 0.07 

Passive-based 84%   ± 0.02 100%  ±  0.03 0.77  ±  0.02 0.96  ±  0.01 6.3    ±  0.14 198.6  ± 0.14 
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This behaviour may be due to the limited amount of positive data available, as there are only 55 

positive points overall, 3 of them are selected for the initial training set, and an additional 20 are 

selected for the static test set leaving only 32 positive points in the unlabelled set L. By the 50
th

 

iteration of active learning, all the positive points have likely already been added to the training 

data. This is particularly true for the certainty-based approach which favours positive instances. 

Therefore, between 50 and 200 only negative points are likely to be added to the labelled training 

set. The performance evaluation learning curves for the following metrics will only be plotted up 

to 50 iterations (queries): recall, PPV, CC, AUC, number of positives and negatives. Later in the 

chapter, 200 iterations will be shown for the distribution of unlabelled instances, number of 

support vectors, and distance of an instance to hyperplane within SVM margin.  

 

 

 

Figure 3.6.  Learning curves for evaluation of recall.  

The X-axis is the number of labelled instances in the training set and the Y-axis 

represents the recall values for active and passive learning strategies. 
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Figure 3.6  shows the performance results in terms of sensitivity (or recall) for the three active 

learning strategies and the baseline passive learning strategy as the size of the training set 

increases at each learning cycle (i.e., iteration). As expected, the certainty-based strategy quickly 

attains 98% ± 0.00 recall at only 30 labelled instances since it adds primarily positive instances 

to the training data, biasing the entire classifier towards positive prediction. The density-

uncertainty-based and uncertainty-based query strategies were remarkably good and achieved 

recall values of 97% ± 0.02 and 96% ± 0.03 after the 50 labelled instances. The density-based 

query was slightly higher than uncertainty-based due to a better initial training set as chosen by 

K-means clustering . The passive learning approach achieves relatively poor recall and grows 

slowly with training set size. This is due to the predominance of negative data points in the 

unlabelled set due to the overall class imbalance observed in the total dataset. Therefore, the 

passive approach is most likely to select negative instances at each iteration, biasing the classifier 

towards negative predictions. The active learning strategies clearly address this class balance, 

leading to excellent classification performance (Ertekin et al., 2007). In terms of recall, all active 

learning query strategies outperformed passive learning. 

 

Figure 3.7 shows PPV for all algorithms. The PPV rates for density-uncertainty and uncertainty-

based strategies follow a similar pattern of rapid growth in the first 10 instances followed by 

relatively slow growth to 100% ± 0.00 and 98% ± 0.04 completions respectively. The strong 

PPV is due to the effectiveness of the active learning query strategies at correctly identifying the 

most informative hydroxylated sites for annotation in each iteration. The certainty-based strategy 

shows rapid growth in the first 4-5 labelled instances, but then grows more slowly than both 

uncertainty-based strategies. This mirrors the recall curve show in Figure 3.5 above, where the 
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classifier performance over positive test instances initially improves with more positive instances 

added to the training set, but quickly saturates. The trade-off between recall and PPV is clearly 

observable with certainty-based having lesser PPV value but a higher recall than the passive 

learning strategy. In terms of PPV, both density-uncertainty and uncertainty-based strategies 

were consistently superior to the passive learning (random selection).  

 

 

 

Figure 3.7.  Learning curves for evaluation of PPV. 

 The X-axis is the number of labelled training set and the Y-axis represents the PPV 

values for active and passive learning. 
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Figure 3.8.  Learning curves for Matthews’ CC evaluation.  

The X-axis is the number of labelled instances in the training set and the Y-axis 

represents the CC values for active and passive learning. 

 

Figure 3.8 shows the performance correlation coefficient values for the three active learning 

strategies and the passive learning strategy. All active learning strategies outperform passive 

learning in terms of Matthews’ CC, which combines both sensitivity and PPV into a single 

measure. Although the certainty-based strategy appeared to be superior when performance was 

measured solely in terms of recall, it is now clear that this is, in fact, a sub-optimal strategy when 

false positives are also considered. Both uncertainty-based strategies perform very well here, 

however the initial advantage of the density-uncertainty strategy is clearly evident. For example, 

to reach a CC of 0.5 requires only 7 labelled instances for density-uncertainty and 13 labelled 

instances for uncertainty-based, however this performance level is only obtained after 22 

instances for the passive query strategy. 
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Figure 3.9. Learning curves for AUC evaluation.  

The X-axis is the number of labelled instances in the training set and the Y-axis 

represents the AUC values for active and passive learning. 

 

The learning curves in Figure 3.9 show the performance evaluation results of the various 

strategies in terms of AUC. Like PPV and Matthews’ CC, AUC is a combination of both 

sensitivity and specificity. Therefore, it demonstrates much the same trends, with the density-

uncertainty-based approach showing an early lead over all methods rising quickly to attain 

AUC=0.96±0.00 with only 4 queries, however beyond this point there was no significant 

improvement. Uncertainty-based query strategy reaches 0.82 ± 0.02 AUC values at the same 4 

queries, while certainty-based query attained only 0.57 ± 0.01 AUC at the same iteration. In 

contrast with the active learning strategies, at 4 labelled instances, the passive learning strategy 

had just achieved only 0.36 ± 0.03 AUC value, but it does achieve the remarkable AUC value of 

0.96 at the end of the learning cycle.  This also demonstrated again that all active learning 

performs better than passive learning. It is interesting to note that the uncertainty-based strategy 
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appears to outperform the certainty-based strategy in the first 5 iterations. This would indicate 

that the classifier is able to differentiate between positive and negative sites, however the 

decision threshold is admitting too many false positive predictions (i.e. a more stringent 

threshold may lead to lower false positive rates while only sacrificing a small degree of recall). 

 

 

 

Figure 3.10.  Learning curves for number of selected positive instances.  

The X-axis is the total number of labelled instances in the training set and the Y-axis 

represents the number of positive instances selected for labelling for active and 

passive learning. 
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Figure 3.11.  Learning curves for number of selected negative instances. 

 The X-axis is the total number of labelled instances in the training set and the Y-

axis represents the number of selected negative instances for active and passive 

learning. 

 

Figure 3.10 shows the number of positives selected by each strategy at every round of the 

learning process, while Figure 3.11 illustrates the number of negative instances selected for 

annotation. As expected, the certainty-based sampling chooses purely positives at the beginning, 

yielding a 45  slope until all positives in the unlabelled instances pool, U, were exhausted. This 

is similar to the behaviour observed by Forman (2002) with active learning to incrementally 

select only the strongest positive prediction from unlabelled instances with SVM.  

 

Subsequently, the classifier begins selecting negative instances for labelling, and the curve 

quickly flattens out. In both uncertainty-based and density-uncertainty-based active learning 

query functions, the number of positives grew linearly, but with a lesser slope than certainty-
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based learning. This indicates a more balanced selection of points as sometimes the most 

informative point is a positive instance, and sometimes it is a negative instance. In the passive 

learning technique however, the learning curve differs significantly. Since instances were 

randomly selected from an unlabelled pool that was, in fact, overwhelmingly biased towards 

negative instances (1675 negative points vs. 32 positive points), the passive learner naturally 

selected negative instances almost exclusively. With no guidance on which instance was most 

informative, the passive learning algorithm is unable to deal with the large class imbalance for 

this application, selecting only 4.1 ± 0.14 positive instances at the end of the learning process. In 

contrast, after 50 iterations, certainty-based sampling identified all 35.0 ± 0.00 positives, 

uncertainty-based sampling identified 22.4 ± 0.28 positives, and density-uncertainty based 

sampling identified 21.3 ± 0.28 positives from the unlabelled data points.  

 

When all the performance metrics are taken together, the results strongly demonstrate the 

usefulness of active learning over passive learning. In other words, active learning query 

strategies outperformed passive learning primarily due to careful selection of instances for 

labelling. The ability of active learning to identify positive training instances among the pool of 

unlabelled instances in the face of a severe class imbalance is also a strength of active learning. 

This is explored in greater detail in the next section. 

3.5 SVM Performance Evaluation within the Margin 

In the SVM-based classification problem, the ultimate goal is to find an optimal separating 

hyperplane that maximizes the distance between the hyperplane and the closest training instances 
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(i.e. the decision margin); thereby minimizing the number of errors over the training instances 

and promoting generalization to new future test data (Rosset et al., 2003).  

 

In this section, we examine the ability to overcome class imbalance in the unlabelled dataset by 

selecting instances for labelling from within the SVM margin surrounding the decision 

hyperplane. The uncertainty-based and density-uncertainty-based active learning approaches 

both select instances for labelling that fall close to the decision hyperplane, and therefore, these 

methods are likely to sample instances from within the margin. Furthermore, we also looked at 

the influence of the most informative instances on support vectors and estimation of the distance 

of a point to the hyperplane in order to reemphasize the significance of margin in active learning. 

Experiments in previous works have shown that margin-maximization usually leads to a 

reasonable prediction model (Breiman, 1999; Grove & Schurumans, 1998).  

 

Our experimental results above have clearly demonstrated that the uncertainty-based active 

learning techniques achieve a better performance over the passive learning even with the class 

distribution imbalance of the unlabelled dataset. These performance results reaffirmed the 

usefulness of the selection strategy that focuses on the most informative unabelled instances 

within the margin. Since, in an SVM, the hyperplane is placed equidistant from the positive and 

negative classes, the unlabelled instances that fall within the margin will tend to have a more 

balanced class distribution than that of the entire dataset. Hence, instance selection within the 

margin can address the data class label imbalance issues during the active learning process.  
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Figure 3.12. Instances within the margin are less imbalanced than the entire dataset 

(reproduced from (Ertekin et al., 2007)). The lower region of the margin-hyperplane 

diagram is filled with unlabelled instances within the margin. Dashed lines indicate 

the margin, and the solid is the separating hyperplane. 

 

Suppose that the class distribution of an imbalanced dataset is given in Figure 3.12 (Ertekin et 

al., 2007). The class imbalance ratio within the margins is much lesser than the entire dataset 

imbalance ratio. As mentioned above, in the presence of a strong class imbalance (in this case 

towards the negative class), the passive approach will tend towards selecting only instances for 

labelling that come from the dominant class. Then, using active learning to select the most 

informative instances within the margin accounts for the better performance by active learning 

than passive learning where instances to be labelled were randomly selected from the entire data 

pool.  
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3.5.1 Support Vectors Evaluation  

SVM usually has large number of support vectors, especially when the feature value distributions 

of the positive and negative training instances are highly overlapped (Zhan & Shen, 2005). 

However, if the classes do not overlap too much in the feature space, the number of support 

vectors will be small with respect to the training set size (Osuna & Girosi, 1998).   

 

In Figure 3.13, we investigated how the number of support vectors changes with each iteration of 

active or passive learning in our experiments. The learning curves for uncertainty-based and 

density-uncertainty-based active learning algorithms are drastically different from certainty-

based and random-based sampling techniques. This is because; both uncertainty-based and 

density-uncertainty-based query functions intelligently picked unlabelled instances closest to the 

hyperplane within the margin of the SVM-based classifier. The annotation of these instances 

enriched the SVM-based classifier by providing new support vectors required to maximize the 

margin. Support vectors within the margin directly influence the shape of the hyperplane (Tong 

& Koller, 2001). Instances which are correctly predicted but lie outside the decision margin (i.e. 

instances which are not likely to become support vectors) do not contribute to constructing the 

optimal separating hyperplane; even if their position is changed, the hyperplane and margin will 

remain the same.  

 

 As correctly depicted in Figure 3.13, there is an increase in number of support vectors used by 

both active learning query strategies with a corresponding increase in the number of training set. 

This learning curve illustrates that a greater number of newly labelled instances are being 

leveraged to optimize the decision boundary (i.e. more newly labelled instances are found to be 
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support vectors) for the uncertainty-based strategies when compared with passive and certainty-

based strategies.  

 

 

 

Figure 3.13. Learning curves for selected support vectors.  

The X-axis is the number of labelled instances in the training set and the Y-axis 

represents the number of support vectors used by the trained model at that iteration.  

 

Support vectors learning curves for uncertainty-based and density-uncertainty-based query 

functions are roughly with unit slope until approximately 70 and 110 support vectors have been 

selected. Beyond this point, very few support vectors are added. However, the certainty-based 

sampling does not exhibit such behaviour because it is only interested in unlabelled instances 

farther from the hyperplane. Being further from the hyperplane, these newly labelled instances 

are far less likely to become support vectors and influence the shape of the hyperplane. Since 

only instances which are support vectors are actually used to define the decision boundary 

hyperplane, expending resources labelling instances (via wetlab experiments) is wasteful if they 
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are not going to influence or modify the definition of the decision boundary hyperplane. 

Likewise, the passive learning strategy adds support vectors at a similar rate since instances are 

chosen at random for labelling, rather than focussing on those points that are likely to become 

support vectors.  

3.5.2 Distance of a point to hyperplane evaluation 

Here, we discuss the relationship between the average distance of a point to the current 

hyperplane and increasing number of labelled instances. Further, we examine how the selection 

of unlabelled instances closest to the hyperplane leads to improved performance. As the learning 

continues the margin becomes larger, which ultimately leads to a better generalization ability of 

the classifier and prevents overfitting (Bennett & Demiriz, 1999). This implies that the most 

informative unlabelled instances are found within the margin. LibSVM software was retuned in 

consultation with the LibSVM developers (Chang & Lin, 2011) to be able to calculate the 

distance of a point to the hyperplane, as this was not previously provided by the original libSVM 

outputs. 

 

However, as the learning cycle continues with a corresponding increase in the training set, it 

becomes difficult for the classifier to find instances within the margin most likely because the 

unlabelled instances closest to the hyperplane are now outside the margin band. This could 

apparently leads to an empty margin band, which indeed appears to be a potential stopping 

criterion for active learning in order to avoid labelling less informative unlabelled instances or 

outliers (Campbell et al., 2000). Intuitively, we could assume that an SVM-based classifier could 
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be transformed from soft-margin into hard-margin, where  no  support vectors are allowed within 

separating margin as the SVM classifier maximized the separating margin. 

  

Figure 3.14 shows a direct relationship between the average distance of the unlabelled instance 

selected for labelling to the current hyperplane versus the number of labelled instances. With the 

density-uncertainty query strategy, the learning curve initially increases with a corresponding 

increase in the number of the training sets. This query strategy quickly selects all the instances 

that fall within the final classifier margin and then the average distance suddenly drops, followed 

by a more gradual decrease as the learning continues. This is referred to as the ―rise-peak-drop 

flattening pattern (Vlachos, 2008). It rises at the beginning; then reaches its maximum after 

which it gradually drops and finally flattens out for the reasons discussed above.  

 

 

 

Figure 3.14.  Learning curves for selected unlabelled instances distance from the hyperplane.  
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The X-axis is the number of labelled instances in the training set and the Y-axis 

represents the average distance of the instance selected for labelling to the separating 

hyperplane for active and passive learning.  

 

This is because the distance of the SVM hyperplane from the nearest instance on either side is 

maximized as the most informative instances within the SVM margin are being labelled. That is, 

those instances closest to the margin are quickly selected for labelling, and are removed from the 

unlabelled set, thereby increasing the distance to the nearest unlabelled instance. The initial 

improvement could be attributed to the increasing distance of the instances from the hyperplane 

as the SVM classifier maximizes the margin (Ratsch & Warmuth, 2003) as discussed above. The 

learning curve indicates the closest unlabelled instances to the hyperplane are outside the margin 

band after 50 labelled instances (queries) for both uncertainty-based query strategies and 

certainty-based query because of a similar ―rise-peak-drop” flattening pattern, but to a lesser 

extent. Passive query on the other hand, does not seem to portray such behaviour as instances are 

randomly selected for labelling. 

3.5.3 Selected unlabelled decision values within the margin 

We further explored the behaviour of the decision value of those unlabelled instances selected 

for labelling during each round of the learning cycle to further examine the behaviour of active 

learning with respect to the SVM margin. Decision values are output from the SVM for each 

instance, where a value of 1.0 indicates that the instance is most likely to be positive ideal for 

certainty-based query, while a decision value of 0 indicates that it is most likely negative. Then, 
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a value of 0.5 indicates that the classifier is completely uncertain of the class membership for this 

instance, most useful for uncertainty-based queries.  

 

 

 

Figure 3.15. Learning curves illustrating the SVM decision values. X-axis is the size of the 

labelled training set. The Y-axis represents the selected unlabelled decision values 

during each learning step (iteration) for active and passive learning. 

 

Figure 3.15 shows a direct relationship between selected unlabelled instance decision values and 

growing training set size. It is observed in Figure 3.15 that both density-uncertainty and 

uncertainty query strategies quickly identify all the most informative instances (i.e. those 

instances with decision values close to 0.5) within the margin. After 50 labelled instances or 

queries, both strategies began to select less informative instances and consequently led to a 

gradual drop in the curves and a flattening out. There is strong connection between the selected 

unlabelled instance decision values and the average distance of the selected unlabelled instances 
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closest to the hyperplane for uncertainty-based queries in Figure 3.13. The certainty-based 

strategy exhibited a steep drop as it selects all points believed to be positive in descending order 

of certainty (i.e. from 1.0 down).  

 

The behaviours shown by all three query strategies indicated that these classifiers became highly 

saturated at some point, and adding more instances will not contribute to finding a unique 

optimal decision boundary. On the other hand, passive sampling only selected instances at 

random. Therefore, the decision values of these randomly selected instances are not expected to 

show a trend over time. This consistent behaviour shown by both query strategies could be used 

to deduce a stopping criterion for active learning, as the idea is similar in concept with the 

stopping criterion discussed in Schohn and Cohn’s (2000) of stopping annotation when there are 

no instances within the SVM margin closest to the separating hyperplane. 

3.6 Summary  

In this chapter, we presented results of the active learning experiments based on the proposed 

active learning framework and the baseline passive learning strategy. The performance results 

achieved by the various query strategies and passive learning were expressed as learning curves. 

We have also observed how training with fewer but more carefully selected instances achieved a 

similar or even higher performance than those trained on a larger asparagine/aspartate dataset as 

shown in Table 3.1 and 3.2. The experimental results showed how density-uncertainty-based 

strategy has consistently outperformed other active and passive learning strategies. We also 

presented and demonstrated that selecting unlabelled instance within the classifier’s margin leads 

to improved classifier performance. Therefore, a stopping criterion could be deduced from such 
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behaviour exhibited by uncertainty-based active learner, as it explicitly became evident that 

viable unlabelled instances ceased to exist once all the most informative or useful instances 

within  the margin have  been selected for labelling. 

3.7 Conclusion  

We have evaluated various active learning query strategies, which intelligently select the most 

informative unlabelled instances for annotation by the Oracle, and compared them to a baseline 

passive learning strategy. We proposed and integrated these active learning query strategies with 

an SVM classifier for the prediction of N/D hydroxylation site on proteins. We demonstrated 

through our various empirical performance results that these approaches can achieve improved 

performance with fewer labelled training instances compared to passive learning, which leads to 

a savings in annotation efforts for hydroxylation site prediction.  

 

The experimental results also showed that among the active learning strategies, the density-

uncertainty-based query strategy, seeded by representative initial training set, showed the 

greatest performance. This was due to the initial selection of the most representative labelled 

instances followed by the most informative unlabelled instances for annotation at each iteration. 

As expected, the certainty-based approach, which selects the unlabelled instances most likely to 

represent true positive hydroxylation sites, achieved the best performance over the positive test 

set, but suffered from poor performance on the negative set due to a paucity of negative instances 

in its training data. 
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Furthermore, our results indicate the uncertainty-based active learning strategy is an effective 

way to handle class imbalance among the available unlabelled data. By focusing the learning on 

unlabelled instances near the decision boundary (hyperplane), more balanced class distributions 

were provided to the learner in each step of the learning process, resulting in an optimal 

separating hyperplane. Now that simulations have demonstrated the advantage of uncertainty-

based active learning strategy for N/D hydroxylation site prediction, we have now passed all 

unlabelled asparagine/aspartate instances from all human proteins into the hydroxylation site 

prediction system. As detailed in Chapter 4, we are now following the active learning procedure 

and a number of unlabelled instances have been selected for labelling and are currently being 

validated and verified in wetlab experiments. Once the wetlab experiment (i.e., the Oracle) 

validations are complete, the data will be added to the training set to rebuild the model and the 

active learning cycle will continue.  
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4 CHAPTER: SELECTION OF PUTATIVE N/D HYDROXYLATION 

SITES FOR WETLAB VALIDATION 

Unlike other studies that only simulate active learning, the present chapter provides the results of 

actually applying one active learning cycle to our problem of developing a prediction system for 

protein asparagine/aspartate (N/D) hydroxylation. Active learning is an iterative process that first 

trains the best possible classifier using available training data, then, applies the classifier to all 

unlabelled data in terms of how informative each data point would be if it were to be labelled and 

added to the training data. At this stage of the active learning iterative cycle, the user must select 

which points to validate and actually perform the validation. This requires lab-based 

experimentation and the production of recombinant proteins to determine if hydroxylation occurs 

at the predicted sites. Certain wetlab experimental limitations must be considered prior to 

undertaking protein validation and these are outlined in the thesis. Furthermore, several 

bioinformatics analyses required to select the subset of proteins that were putatively 

hydroxylated for the wetlab validation would be described. In this chapter, we briefly describe 

the actual stage involved in wetlab validation of a putative hydroxylation site on a protein and 

the results from individual stages of the wetlab validation process are presented. 

4.1 Unlabeled dataset collection and data preprocessing 

(Liu, 2009) made the 1,288,896 potential N/D hydroxylation sites available. For the  dataset,  the 

first 6 columns of Table 4.1 was given but 7
th

 column was computed as detailed in section 4.1.1, 

where  first column is the serial number (S/N);  the second column contains protein Accession ID 

Number, Version Number and Site Location of the asparagine or aspartate on each protein, 
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column 3 designates whether the site is an N or a  D, column 4 contains the labels positive (+1) 

or negative (-1), column 5 is the hydroxylation status of the proteins written as either ―YES‖ 

(equivalent to hydroxylated) or ―NO‖ (meaning non-hydroxylated), column 6 is the confidence 

values of the prediction expressed as a percentage (%), and column 7 is the decision values as 

shown in Table 4.1. We performed data preprocessing to remove all experimentally verified 

protein data (1813) from the 1,288,896 and the remaining 1,285,299 N/D sites were taken as the 

unique unlabelled N/D dataset (i.e., true label of these data points are unknown) used for the 

active learning cycle. 

4.1.1 Preprocessing SVM prediction score data 

The trained SVM classifier provided only a binary prediction (Yes/No) and a confidence value 

(0-100%), however a decision value (score) was required to apply the various active learning 

query strategies described previously. Algorithm 4.1 was used to compute the decision values 

and column 7 of Table 4.1 illustrates some sample output. 

 

Table 4.1. Source of unlabeled N/D dataset used for active learning 

 

 

S/N 
Accession_ID N/D Prediction Status 

Confidence 
(%) 

Dec_values 

1 NP_112234.2_569 N -1 NO 99.92 0.000395 
2 NP_077719.2_2004 D  1 YES 80.49 0.902465 
3 NP_004059.2_415 D -1 NO 0.009 0.499957 
4 NP_115823.3_2143 N  1 YES 58.38 0.791915 
5 NP_115823.3_2173 N -1 NO 99.95 0.000234 
             

1288896 NP_055572.1_414 N -1 NO 99.84 0.000780 
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  if (Yes) 

dec_values = 0.5 + confidence values (%)*(0.5) 

else 

 dec_values = 0.5 - confidence values (%)*(0.5) 

end 

 

Figure 4.1.  A simple formulation to obtain decision values from a binary classification and a 

prediction confidence value. 

4.1.2 Active Learning query strategies 

The SVM pool-based active learning algorithm discussed in Section 3.2 and Algorithm 3.1 were 

used to assess the informativeness of each of the 1,285,299 putative asparagine/aspartate 

hydroxylation sites. Active learning was induced with the unannotated asparagine/aspartate 

hydroxylation sites, using two active learning query strategies: uncertainty-based sampling and 

certainty-based sampling. 

 

Although the density-uncertainty query strategy outperformed other active and passive learning 

strategies, it was not considered in the implementation of the active learning prediction for the 

real unannotated N/D hydroxylation sites since the initial training set was available from a 

previous study (Liu 2009). Furthermore, it also uses the same query technique as uncertainty-

based query; therefore, it is most likely to produce the same result as uncertainty-based strategy. 

In uncertainty-based query strategy, the active learner selects unannotated hydroxylation sites 
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considered most informative or most uncertain (i.e. maximum uncertainty) for annotation for the 

wetlab experimental validation. The selection of such unannotated N/D hydroxylation sites (i.e. 

site the classifier is least confidence on how to classify) is most likely to influence the decision 

boundary in the next active learning cycle when added to the training set. 

 

The certainty-based strategy selects those unannotated N/D hydroxylation sites with the strongest 

confidence of most likely to be annotated via wetlab validation (i.e. the Oracle). This strategy 

was chosen since we are equally interested in improving the future classification performance 

and also in confirming novel N/D hydroxylation sites.  

 

During the active learning process, uncertainty-based and certainty-based query strategies were 

implemented using all labelled data points (1,813) as the initial training sets, and all remaining 

N/D locations (i.e. 1,285,299 minus 1,813 sites) were used as the pool of unannotated N/D 

hydroxylation sites. Then, the uncertainty-based active learning query strategy queried the most 

informative unannotated hydroxylation sites, while the certainty-based active learning query 

strategy chose unannotated hydroxylation sites with the strongest confidence of being true 

hydroxylation sites. Both active learning query strategies (certainty-based and uncertainty-based) 

were used to select the top 20 putative hydroxylation sites on human proteins in terms of 

desirability to validate its hydroxylation status via wetlab experiments. Once the Oracle 

validation identifies the true label of the selected putative N/D hydroxylation sites, the newly 

labelled instances will be added to the training set to rebuild the SVM model and the active 

learning cycles will continue. 
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4.1.3 Generation of active learning ranked list of sites 

We successfully obtained all 20 protein sequences from the National Centre for Biotechnology 

Information (NCBI) database to examine and detect the suitability of the tryptic fragments 

(polypeptides) containing the putative sites for analysis through mass spectrometry (MS) for the 

determination of the true annotation of these putative N/D hydroxylation sites.  As detailed 

below, five out of the 20 proteins were chosen for wetlab experimental validation after 

bioinformatics evaluation of the availability of genes with these target proteins, availability of 

specific antibodies, and the results of simulated tryptic digestion to unveil the tryptic fragments 

containing the putative N/D hydroxylated sites.  

4.2 Wetlab considerations 

4.2.1 Availability of gene clones 

The selection of top ranked proteins containing putative N/D hydroxylation sites for wetlab 

validation was based on the genes for the proteins of interest being previously cloned into 

mammalian expression vectors that can allow the protein to be expressed in mammalian cell 

lines. Protein overexpression allows for easier recovery of the protein of interest through a 

single-step purification method known as immunoprecipitation. Overexpression of the protein of 

interest in human cell lines ensures that all post-translational modifications of the protein will be 

similar to that found within human cells. The overexpression of recombinant proteins in 

mammalian cell lines other than human cells (rat, mouse, monkey) cannot guarantee that such 

modifications will be the same as that found in humans. The cell line of choice is the human 

embryonic kidney cell 293 (HEK) cell line and this cell line was utilized for validation of 

hydroxylation in this thesis. 
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4.2.2 Availability of antibodies 

We required antibodies that could detect and bind specifically to the protein of interest with 

sufficient affinity, a necessary determinant for a successful immunoprecipitation of these target 

proteins. By searching for the availability of a suitable antibody for each potential protein of 

interest, we were able to reduce the list of candidate proteins significantly. Between 10 and 20 

amino acids is the length of peptide commonly used for the production of antibody (Open 

BioSystems, 2011).  

4.2.3 Suitability of peptides for characterization via mass spectrometry 

Peptides longer than 100 amino acids (residues) cannot be directly sequenced using mass 

spectrometry (MS) (Voet et al., 2008) and must therefore first be cleaved (cut), typically using 

the protease trypsin (a protein that cuts other proteins), into smaller fragments amenable to MS 

analysis. We considered the length of the polypeptide fragments, produced by tryptic digestion, 

surrounding each of the top-ranked N/D amino acids identified by the active learning strategies. 

Specifically, we examined the tryptic fragment containing the putative N/D hydroxylation site to 

ensure our final choice of proteins selected for wetlab validation will have adequate length of at 

least 10 amino acids such that they will ionize favourably and be amenable to characterization 

via mass spectrometry.  

 

To examine the tryptic fragments surrounding each highly ranked putative N/D hydroxylation 

site, it was necessary to simulate tryptic digestion of the proteins. In biological systems, trypsin 

cleaves peptide chains mainly at the carboxyl side of the amino acids lysine (K) or arginine (R), 

except when either is followed by a proline (P). The widely accepted rule for a trypsin cleavage 



 88 

(cut) site is [RK]   [^P]. In this notation, [RK] denotes ―either R or K‖ and [^P] denotes ―any 

amino acid other than P‖. These filtering rules are used in the leading polypeptide analysis tool 

peptideCutter provided by ExPASy (Expert Protein Analysis System) (Rodriguez et al., 2008). 

However, when the peptideCutter tool was applied, we noticed that the ―after R or K unless 

followed by P‖ rule was occasionally violated. Therefore, a simple python script 

(trypsin_digest_script) was written to properly simulate the tryptic digestion. Figure 4.2 

illustrates a case where peptideCutter fails to properly simulate tryptic digestion (missing third 

cleavage site) whereas trypsin_digest_script adheres to the rules. See Appendix A.6 for the 

detailed description of this script. A typical example of how a tryptic digest cleaves a 

polypeptide, using the trypsin specificity rules, is shown in Figure 4.3. Note that the last putative 

hydroxylation site (i.e. the N in the last row) falls within a very short tryptic fragment. This site 

would therefore not be a good candidate for wetlab validation since its tryptic fragment may not 

be amenable to analysis via mass spectrometry. 

 

        LEMIFAK  FDEVQSSGGMILSVCKDK      peptideCutter 
   LEMIFAK  FDEVQSSGGMILSVCK  DK     trypsin_digest_script 

Figure 4.2.  Example of peptide fragments by peptideCutter and trypsin_digest_script.  

 

KXFLVQFGVNVNAADSDGWTPLHCAASCNNVQVCKXF 

RXLAGGSGLPGSVDVDECSEGTDDCHIDAICQNAPKXS 

KXFVLGQCIPEDYDVCAEAPCEQQCTDNFGRXV 

KXSFDDEESVDGNRPSSAASAFKXV 

RXANALKXK 

 

Figure 4.3.  Examples of peptide identification by tryptic digestion rule.  
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The cleavage site location is marked with an ―X‖ and the potentially hydroxylated 

amino acid is the ―bold‖ N or D. The amino acids underlined ―RP‖ represents a site 

that trypsin will not cut. Then, the peptides shorter than 10 amino acids may not 

ionize in mass spectrometry for the reason given in section 4.2.2. 

4.3 Final list of proteins selected for wetlab 

Below is a brief description of the N/D proteins chosen, along with their crystal structures and 

hydroxylation sites identified by the active learning algorithms. 

4.3.1 Gene: TP53BP2 (apoptosis-stimulating protein of p53 isoform 1 or ASPP2) 

TP53BP2 also known as ASPP2 (apoptosis-stimulating of p53 protein 2), is a tumour-

suppressing p53-binding protein (Naumovski and Cleary 1996). ASPP2 is one of the three 

members of ASPP family (along with ASPP1 and iASPP) with the most known protein-binding 

partners, as shown in Figure 4.4. The N-terminus of ASPP2 has the structure of a β-grasp 

ubiquitin-like fold (Tidow et al. 2007) while the C-terminal part contains four ankyrin repeats 

and an SH3 domain involved in protein-protein interaction (Gorina and Pavletich 1996). It is 

found in the perinuclear region of the cytoplasm, and regulates apoptosis and cell growth, 

through interactions with other regulatory molecules including members of the p53 family of 

proteins (Nakagawa et al. 2000; Samuels-Lev et al. 2001). Apoptosis, or programmed cell death, 

is a major control mechanism by which cells undergo death to control cell proliferation (Lowe 

and Lin 2000). ASPP1 activates p53, which in turn, causes apoptosis to occur. This is 

particularly important in the demise of cancer cells which undergo uncontrolled proliferation. 

Thus p53 is known as an oncogene (a gene that has the potential to cause cancer). The 



 90 

hydroxylation site identified by certainty-based query strategy on this protein is asparagine (N-

985), as shown in Figure 4.5.      

                                                             ASPP family 

      

ASPP1, ASPP2         iASPP 
          (activator of p53)        (inhibitor of p53) 

                p53       p53 
           
          
 
                                                     Apoptosis     Apoptosis 
 

Figure 4.4.  ASPP members are apoptotic specific regulators of p53.  

The apoptotic function of p53 is stimulated by ASPP1 and ASPP2 and is inhibited 

by iASPP (Ze-Jun et al., 2005). 

4.3.2 Gene: PPP1R13L (RelA-associated inhibitor) 

The RelA-associated inhibitor, also known as iASPP, is a protein that is encoded in humans by 

the gene iASPP. iASPP is the third member of the p53-regulating ASPP family of proteins, the 

most evolutionarily conserved inhibitors of p53. The C-terminal part of iASPP also contains four 

ankyrin repeats and an SH3 involved in protein-protein interaction. 

 

The contribution of ankyrin repeat residues, and those of the SH3 domain, generates distinctive 

architecture at the p53-binding site, suitable for inhibition with small molecules (Robinson et al. 

2008). iASPP can block ASPP1 and ASPP2 from binding to p53 and stimulating apoptosis. 
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Figure 4.5.  The crystal structure of ASPP2 (cyan) bound to p53 (green) from Protein Data 

Bank (PDB) ID 1YCS (Gorina and Pavletich 1996). The putative hydroxylation site 

(N-985) on ASPP2 is shown in red. N-985 was identified by the certainty-based 

query strategy.  

 

Thus, the competition between negative regulation by iASPP and positive regulation by other 

members of the ASPP family could determine the apoptotic status of p53 and, ultimately, cell 

fate (Bergamaschi et al., 2003). The PPP1R13L gene is over-expressed in different cancers and 

its expression in the p53 wild-type background is sufficient to promote tumour growth in vivo. In 
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an un-transformed (non-cancerous) cell, it acts as a tumour suppressor. However, the modulatory 

effect of the RelA-associated inhibitor protein on the ability of p53 to cause cellular apoptosis 

has important implications in cancer and presents new therapeutic possibilities (Laska, et al., 

2010). The hydroxylation site on this protein, identified by certainty-based query strategy, is 

asparagine (N-687), as shown in Figure 4.6. 

 

Figure 4.6.  The PPP1R13L crystal structure from PDB ID 2VGE (Robinson et al., 2008).  

The PPP1R13L is predicted to be hydroxylated on the alpha helix N-687 residue 

(red) identified by the certainty-based query strategy. 

4.3.3 Gene: AP2M1 (AP2 complex, subunit MU, isoform B) 

This gene encodes a subunit of the heterotetrameric coat assembly protein complex 2 (AP2), 

which belongs to the adaptor complex's medium family of subunits (Druck et al., 1996). The 
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encoded protein is required for the activity of a vacuolar ATPase, which is responsible for proton 

pumping occurring in the acidification of endosomes and lysosomes. The encoded protein may 

also play an important role in regulating the intracellular trafficking and function of CTLA-4 

(cytotoxin T-lymphocyte Antigen 4). Two transcript variants, encoding different isoforms, have 

been found for this gene. The hydroxylation site identified by uncertainty-based query strategy 

on this protein is aspartate (D-413) shown in Figure 4.7. 

 

 

 

Figure 4.7.  The AP2M1 crystal structure from PDB ID 2VGE (Kittler et al., 2008).      

AP2M1 is predicted to be hydroxylated at D-413 (red) identified by the uncertainty-

based query strategy. 

4.3.4 Gene: CCBE1 (collagen- and calcium-binding EGF domain containing protein 1               

precursor) 

This gene is thought to function in extracellular matrix remodelling and migration. It is mainly 

expressed in the ovary; but is down-regulated in ovarian cancer cell lines and primary 

carcinomas, suggesting its role as a tumour suppressor (Barton et al., 2010; Alders et al., 2009). 
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Mutations in this gene have been associated with Hennekam lymphangiectasia-lymphedema 

syndrome, a generalized lymphatic dysplasia in humans (Hennekam et al., 1989). A certainty-

based query strategy identified a potential hydroxylation site on the protein at D-104. 

Unfortunately, there is no crystal structure for CCBE1 to date. 

4.3.5 Gene: LTBP3 (latent-transforming growth factor b-binding protein, variant 2, or 

LTBP3) 

The protein encoded by this gene forms a complex with transforming growth factor beta 

(TGF-beta) proteins and may be involved in their subcellular localization. Activation of this 

complex requires removal of the encoded binding protein. This protein may also play a 

structural role in the extracellular matrix. Three transcript variants, encoding different 

isoforms, have been found for this gene. LTBP3 was predicted to be hydroxylated at D-505 

by the uncertainty-based query strategy. Unfortunately, no crystal structure is currently 

available for LTBP3. 

4.4 Wetlab experimental validation (Oracle) 

Wetlab experimental validation of the aforementioned putative N/D sites, identified by the active 

learning query strategy, was undertaken. The wetlab experimental validation serves as the Oracle 

in the second phase of the active learning cycle, which aims to determine the true annotation of 

the five putative N/D hydroxylation sites considered. Sometimes, the Oracle may not be able to 

label some N/D data points, therefore, the experimenter would move to the next best point. An 

overview of the individual steps of the wetlab experimental validation is given in Figure 4.8. 

These hydroxylation sites, once validated to be positive or negative, would be added to the 
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training set and the performance of the active learning will be evaluated on an independent test 

set to complete the active learning cycle. 

4.4.1 Amplification and isolation of plasmid DNA 

A plasmid is a small double-stranded, circular DNA molecule that replicates independently of 

the chromosome in bacteria cells. Plasmids are used to carry one or more genes, and must 

contain an origin of replication, promoters, antibodies resistance genes, a gene of interest to be 

expressed and a polylinker region. A polylinker (also referred to as a multiple cloning site or 

MCS) is a region of DNA within a cloning vector that contains various recognition sites for a 

wide variety of restriction enzymes. Usually the gene of interest is cloned into the plasmid within 

the polylinker region. 

 

 

 

Figure 4.8.  Wetlab Experimental Validation Workflow. 
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The plasmid vector, containing the genes to be expressed as proteins in mammalian cell lines, is 

known as pCMV-SPORT6 (Figure 4.9). The target genes cloned into their vector included 

TP53BP2, PPP1R13L, AP2M1 and CCBE1. The fifth target gene, LTBP3, was cloned into a 

pBluescriptR vector (Figure 4.10) which is not constructed for expression of the target gene in 

mammalian cells. LTBP3 was therefore subcloned from pBluescriptR into pCMV-SPORT6. 

Each of these plasmids contains a T7 promoter and sites where restriction enzymes cut, including 

NotI, EcoRV, SalI, BamHI and XhoI. 

 

 

Figure 4.9.  The vector map of pCMV-SPORT6 (Dong et al., 2004). 

 

Plasmid DNA (10 ng) was mixed with competent bacterial cells (50 µL) and transformed by heat 

shocking the cells at 37°C for 45 seconds. Bacteria were then plated out on Luria Bertani (LB) 

agar plates containing 100 µg/mL ampicillin. Bacteria colonies containing these plasmids were 
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isolated and grown (which replicates the plasmid) in 100 mL of LB broth containing 100 µg/mL 

ampicillin (as the plasmids confer ampicillin resistance 

 

Figure 4.10. The vector map of pBluescriptR. (Dong et al., 2004). 

 

to the bacteria which contain them) overnight with vigorous shaking. Bacteria were harvested the 

next day by low-speed centrifugation and lysed to obtain plasmids. The five plasmids were 

purified using a Wizard® Plus Midiprep DNA purification system (Promega, Madison, 

Wisconsin). Successful plasmid purification was validated through restriction mapping and 

assessment by DNA agarose gel electrophoresis (see below). 
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4.5 Wetlab validation techniques and results 

4.5.1 Results 

Following plasmid isolation, the DNA concentrations were determined by UV 

spectrophotometry (CARY 100 Bio UV-Visible Spectrophotometer, Varian/Agilent 

Technologies, Santa Clara, California) using 5 µL of each purified DNA plasmid in 495    of 

Milli-Q water. We estimated the DNA concentration and purity with an absorbance wavelength 

scan between 230 and 320 nm. The concentration of each DNA sample was then calculated by 

an absorbance at 260nm (A260), the wavelength at which DNA absorbs light most strongly. The 

A260 was then used to calculate the concentration of DNA according to the following formula: 

 

One absorbance (A260) unit of double-stranded DNA equals 50 µg/mL. 

Dilution factor (DF) = total volume of DNA solution/DNA sample volume. 

Then, the concentrations         of the purified DNA samples were obtained as follows: 

             
                          

          
 

4.5.2 Restriction enzyme digestion and DNA gel electrophoresis 

Purified plasmid DNA was subjected to digestion by restriction enzymes to confirm successful 

isolation. Restriction digestion was performed using restriction enzymes BamHI, SalI, XhoI, 

NotI and EcoRV.  Digested DNA plasmids were further analyzed using agarose gel 

electrophoresis. An agarose gel electrophoresis is a technique used to separate DNA, or RNA 

molecules by size. The separation of the DNA molecules is achieved by subjecting the gel to an 

electric field where negatively charged DNA migrates through the agarose gel matrix toward 
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positively charged electrode at the bottom of the gel as shown in Figure 4.11. Agarose is a 

complex carbohydrate, a solid and porous matrix material. Smaller DNA molecules migrate 

faster in the gel matrix than larger size.  

 

 

Figure 4.11. The apparatus for agarose gel electrophoresis, (reproduced from 

http://www.kollewin.com/blog/tbe-gel-electrophoresis). The power supply generates 

the electric field enabling the DNA sample to move across the gel. The positive 

electrode (red) connects the power supply to the bottom of the gel apparatus, and the 

negative electrode (black) connects the power supply to the top of the gel apparatus. 

The negatively charged DNA sample migrates from the negative to the positive 

electrode, based on the size of the DNA fragment. 

Method 

A 1% agarose gel was run in an electrophoresis apparatus with power supply (Bio-Rad, 

Hercules, California) in TAE buffer (40 mM Tris HCl, 20 mM acetic acid and 1 mM 
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ethylenediaminetetraacetic acid, pH 8.0). An intercalating DNA dye (Red Safe, FroggaBio, 

Toronto, Canada) was added to the gel to visualize DNA and a 1 Kb DNA ladder (molecular 

weight standard) was used to determine the molecular weight of the resulting digestion bands. 

Samples of the purified DNA plasmids were loaded into wells of the agarose gel as shown in 

Figure 4.12 and exposed electric field for 30 minutes at 150 volts. The migration of the DNA 

through the gel is then visualized under UV illumination and the gel was imaged using an 

Alphaimager gel documentation system (ProteinSimple, Santa Clara, California). The size of the 

restriction fragments were estimated according to the DNA ladder. The gel electrophoresis 

procedure was performed according to Promega Protocols and Applications Guide (2011). 

 

 

 

Figure 4.12. Technique of loading DNA samples into a well (adapted from nwabr.org). 

 The pipette tip is placed just above the well before releasing the DNA sample into 

the well  

Results 

Restriction digestion of plasmid DNA confirmed successful isolation of the plasmid and the 

presence of the insert in the vector. Figure 4.13 shows the agarose gel where lanes 1 and 10 

correspond to the 1 Kb DNA ladder and lanes 2, 4, 6 and 8 show the undigested plasmids 
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(controls) of CCBE1, TP53BP2, AP2M1 and PPP1R13L respectively. Lane 3 corresponds to the 

CCBE1 plasmid digested with NotI and EcoRV restriction enzyme. Restriction digestion of 

TP53BP2 with NotI and SalI in Lane 5 resulted in a single band approximately 4,100 bp DNA 

fragment) of the correct molecular weight for the gene inserted into the plasmid (as the vector 

and insert were of the same size). Restriction digestion of AP2M1 with NotI and SalI, shown in 

Lane 7, also generated two bands (approximately 4,580 and 1,867 bp DNA fragments for vector 

and insert respectively), showing the correct molecular weight for DNA fragments. Restriction 

digestion of PPP1R13L with NotI and SalI, shown in Lane 9, did not show the correct banding 

pattern and thus this clone (gene) was not taken to further testing. 

 

 

Figure 4.13. DNA fragmentation of DNA plasmids (CCBE1, TP53BP2, AP2M1 and 

PPP1R13L) in a 1% agarose gel treated with restriction digestion enzymes (BamHI, 

SalI, XhoI, NotI and EcoRV).  
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Lanes 1 and 10, 1Kb DNA ladder; Lane 2, undigested CCBE1 control; Lane 3, 

CCBE1 digested with NotI+EcoRV, 4 undigested TP53BP2 control; Lane 5, 

TP53BP2 digested with NotI+SalI; Lane 6 undigested AP2M1 control; Lane 7, 

AP2M1 digested with NotI+SalI; Lane 8 undigested PPP1R13L control; Lane 9, 

PPP1R13L digested with NotI+SalI. 

 

Initial restriction digests of the plasmid containing LTBP2 did not reveal the expected banding 

pattern and was taken for further restriction digestion testing to determine presence of the insert 

and orientation of the insert in the vector. Figure 4.14 shows the 1 Kb DNA ladder in Lanes 1 

and 9 and the undigested plasmid (control) in Lane 2. The LTBP2 plasmid digested with 

different restriction enzymes (BamHI, SalI, and XhoI), shown in lanes 3 to 8, did not show the 

correct fragmentation pattern. The BamHI and SalI digests (lanes 3, 4 and 6) did not reveal the 

correct fragmentation pattern. Digestion with XhoI (Lane 5) cut the plasmid twice when only one 

cut was predicted (according to the DNA sequence). Lanes 7 and 8, which were the double 

(BamHI+XhoI) and triple digests BamHI+SalI+XhoI) respectively, did not show the predicted 

pattern of DNA fragmentation. Therefore, LTBP2 was abandoned as a potential candidate gene 

for further testing. 

4.5.3 An overview of transient transfection of plasmid DNA into HEK 293 cells using 

Lipofectamine™2000 

Transient transfection is a process of introducing  a purified plasmid DNA into mammalian cells, 

such as human embryonic kidney (293) cells, with an efficient cationic liposome-based reagent 

(Lipofectamine 2000) and resulting cationic liposome (or mixture) fuses with the negatively 

charged cell membrane and the DNA is released into the cell. 
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Figure 4.14. DNA fragmentation of plasmid (LTBP2) in a 1% agarose gel with restriction 

enzymes (BamHI, SalI, XhoI, NotI and EcoRV). 

Lanes 1 and 9, 1 Kb DNA ladder; Lane 2, undigested LTBP2 control; Lane 3, 

LTBP2 digested with BamHI; Lane 4, LTBP2 digested with SalI; Lane 5, LTBP2 

digested with XhoI; Lane 6, LTBP2 digested with BamHI+SalI; Lane 7, LTBP2 

digested with BamHI+XhoI; Lane 8, LTBP2 digested with BamHI+Sal1+Xho1. 

Method 

One day prior to transfection, cells were trypsinized and counted to ensure that cell density is 90-

95% confluent on the day of transfection. We used a liposome-based mediated transfection 

method (Lipofectamine 2000 reagent) to introduce the various DNA plasmids into cultured HEK 

293 cells. This transfection method involves mixing the DNA plasmid to be transfected with 
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Lipofectamine 2000 reagent. We followed the manufacturer’s protocols on transfection of 

HEK293 cells and a detailed step-by-step of the transfection method is shown in Figure 4.15. To 

optimize transfections, the amount of DNA added to the mixture was varied from 2 to 4 μg for 

each DNA plasmid, in order to determine the optimal concentration of DNA for protein 

expression in mammalian cells. 

 

Figure 4.15. Outline of the transient transfection procedure for plasmid DNA into HEK 293 

cells using Lipofectamine™ 2000 Reagent (Invitrogen, Carlsbad, California).  

In stage 1, 2 and 4 μg of each plasmid DNA was diluted in 250 μL of Opti-MEM I 

(Reduced Serum Medium); Stage 2, 10 μL of Lipofectamine 2000 was diluted in 240 

μL of Opti-MEM I (Reduced Serum Medium); Stage 3, the diluted DNA solution 

was combined with diluted Lipofectamine 2000 and incubated at room temperature 

for 20 minutes to allow DNA-Lipofectamine 2000 liposomes complexes to form; 

Stage 4, Lipofectamine 2000 and plasmid DNA complex mixtures were added to the 

HEK293 cells in 6-well plates and incubated 37°C for 24 hours. The relative surface 

area and working volume for the 6-well plates can be found in Appendix A.3. 
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Results 

After 48 hours of transfection, cells were harvested using cell lifters and placed in 15 mL Falcon 

tubes and centrifuged at 5,000 rpm for 2 minutes at 4°C in a Thermo IEC MultiRF centrifuge 

(Thermo Fisher Scientific, Waltham, Massachusetts). The supernatant removed, and the cells 

flash frozen in liquid nitrogen and stored at -80°C for future use. 

4.5.4 Lysis of transfected HEK 293 cells 

An optimized cell lysis was also performed for normoxic and hypoxic treated HEK293 cells, 

transfected with AP2M1 and TP53BP2. Cell lysis involved disrupting the cell membranes in 

order to release the protein of interest. Lysis action solubilizes the proteins in both the cell 

cytoplasm and nucleus so they can migrate through a separating polyacrylamide gel. Pelleted 

cells were removed from -80°C freezer, thawed and 1 mL of lysis buffer (20 mM HEPES, pH 

7.9, 420 mM NaCl, 0.2 mM EDTA, 25% glycerol, 1.5 mM MgCl2, Roche Complete Protease 

Inhibitor Tablet) was added to each tube containing transfected HEK 293 cells and incubated on 

ice for 20 minutes. Cells were then centrifuged for 15 minutes at 13,000 rpm at 4oC. The 

resulting supernatant was transferred to a new Eppendorf tube. 

4.5.5 Bio-Rad Assay Protein Concentration Determination 

The Bio-Rad Protein Assay Dye Reagent Concentrate is a colorimetric assay for determining 

protein concentrations of samples. A standard curve, utilizing bovine serum albumin as a 

standard protein, must be prepared every time the assay is performed. 
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The protein concentrations of cell lysates were determined using a Bio-Rad protein assay. A 

series of bovine serum albumin (BSA) standards were prepared with the following 

concentrations: 0, 0.05, 0.1, 0.2, 0.4, 0.5, 0.8, 1, 2, 3 μg of protein per well of a 96-well 

microplate. The Bio-Rad Protein Assay Dye Reagent Concentrate was diluted 1 part concentrate 

to 4 parts sterile water (i.e. 1:4 diluted Bio-Rad Dye Reagent). Cell lysates from normoxic and 

hypoxic transiently transfected (AP2M1 and TP53BP2) HEK293 were diluted to 1:10 and 1:20, 

and 20μl of each solution (cell lysate) and BSA standard curve were transferred into separate 

wells of a 96-well microplate (in duplicate). Subsequently, 180 μL of 1:4 diluted BioRad Dye 

Reagent was added, mixed thoroughly and incubated for 5 minutes at room temperature. The 

absorbance at 595 nm (Abs595) was determined using the Molecular Devices Spectramax 340
PC

 

microplate reader (Molecular Devices, Sunnyvale, California) and a standard curve was plotted 

of absorbance versus the concentrations of BSA. 

 

Using the standard curve, we then determined the protein concentration of each cell lysate from 

its absorbance values by interpolation (i.e. equation of the line,        ) given by the BSA 

standard curve, where   corresponds to the absorbance values at 595nm (      ),        , 

        and   corresponds to the initial protein concentration in   . 

 

                      ,        
            

     
    

[Protein concentration] (µg/ µl) =                              / volume of protein (µl) 

Resultant protein concentration gives an estimation of how much protein is needed to run 

western blotting or immunoprecipitation. 
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4.5.6 Overview of immunoprecipitation 

Immunoprecipitation (IP) is a biological extraction method of precipitating a protein of interest 

out of cell lysates solution using specific antibodies that specifically binds to that particular 

protein. 

Methods 

We prepared a 125 μg protein sample in a new Eppendorf tube from both normoxic and hypoxic 

supernatant (cell lysates). Two μg of polycolonal and monoclonal antibodies were then added to 

the cells lysates in each tube, and the cell lysates/antibodies mixture was incubated by gently 

rocking on an orbital shaker overnight at 4°C. We captured the immunocomplexes (samples) by 

adding 20 μL of protein A/G agarose bead slurry (Santa Cruz Biotechnologies, Santa Cruz, 

California). Samples were then centrifuged at 1,000 g for 5 minutes at 4°C to pellet the beads 

and supernatant was discarded. Pellets were washed four times in 1 mL of Phosphate Buffered 

Saline (PBS), the centrifugation repeated (1,000 g for 5 minutes at 4°C) and the supernatant 

discarded. The pellets were then resuspended in 25 μL of 2X Laemmli buffer and boiled for 3 

minutes at 95°C to dissociate the immunocomplexes from the beads and loaded immediately 

onto sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 

Results 

SDS-PAGE was performed and the resulting gel was either stained in Coomassie Blue G-250 or 

Western blotted onto polyvinyldifluoride (PVDF) membrane. 
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Figure 4.16. Immunoprecipitation workflow where protein complexes are bound to an 

antibody against a specific protein (reproduced from 

http://www.millipore.com/immunodetection/id3/immunoprecipitation). 

The antibody, in turn, is bound by the protein A/G beads and the entire complex is 

brought down by centrifugation  

4.5.7 Overview of Sodium Dodecyl Sulfate (SDS)-polyacrylamide Gel Electrophoresis 

(PAGE)  

The SDS-PAGE technique is used with reducing agent and detergent (SDS) to separate protein 

molecules according to their unique molecular weight/size in a porous gel (polyacrylamide) 

matrix under an electric field. The SDS binds and denatures the proteins to their constituent 

polypeptides and surrounds the polypeptides with negative charge, such that, migration through 

the gel is proportional to the molecular weight of the polypeptide. 
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Methods 

SDS-PAGE is composed of a 12% resolving gel and 4% stacking gel (Table A.2). Sixty μg of 

cell lysate protein was mixed 1:1 with and equal volume of 95% Laemmli buffer and 5% β-

mercaptoethanol and separated by SDS-PAGE, see Appendix A.4. 

Results 

SDS-PAGE gel with protein bands were separated according to their molecular size. 

4.5.8 Western blotting Technique 

Western blotting is a technique to detect target proteins with specific antibodies, after these 

proteins have been separated by an SDS-PAGE gel electrophoresis according to their molecular 

size. The gel is placed next to the PVDF membrane, and then application of electrical current 

enables the proteins transfer onto the membrane from the gel.  This membrane is an exact copy 

of the gel’s protein pattern.  

Method 

The whole cell lysates were separated by the SDS-PAGE was transferred to a membrane in 

20mL of transfer buffer, loaded into a Western blot apparatus for the Western blot process, and 

the detailed protocol of Western blot can be found in Appendix A.4 



 110 

 

Figure 4.17. A vertical electrophoresis apparatus for slab gel analysis (reproduced from bio-

rad.com) 
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Figure 4.18 Results from a Western blot.  

A whole cells lysate from HEK 293 cells transiently transfected with plasmids 

overexpressing 4μg or 2μg amount for AP2M1 (first panel) or TP53BP2 (second) or 

PPP1R13L (third panel) or untransfected control (C) treated in normoxic condition 

were run on SDS-PAGE. These lysates were run on Western Blot for the 

overexpression of the individual proteins showed as a bands based on their 

molecular weights. The western blot stained with Ponceau Red (fourth panel), each 
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overexpressed target proteins are marked with red squares and standard molecular 

marker (ladder, L).   

 

In Figure 4.18, the membrane blots of the whole cells lysate of the plasmids (AP2M1 or 

TP53PB2 or PPP1R13L) transiently transfected with HEK 293 cells and were probed with 

primary antibodies, anti-AP2M1 or anti-TP53BP2 or anti-iASPP at dilution 1:1000 and 

horseradish peroxidase (HRP)-conjugted goat anti-Rabbit secondary antibody at 1:2,000 dilution. 

The bands on the Western blot membranes showed various proteins overexpression 

(recombinant, from the plasmid) and endogenous protein within HEK 293 cells. Then, the bands 

observed at 124 kDa for TP53BP2 and 50 kDa for AP2M1 proteins are close and consistent with 

the expected  or observed bands at 126kDa and 50 kDa using both anti-AP2M1 or anti-TP53BP2 

antibodies (AbCam, Cambridge, Massachusetts) to identified protein  of interest. These proteins 

seemed to have a better overexpression at a lower amount of the plasmids transfected with the 

HEK 293 cells. On the other hand, the bands for PPP1R13L showed the PPP1R13L protein 

expression was not detected by the anti-iASPP and secondary antibody, perhaps due to 

oversaturated protein expression for the treatment with HEK 293 cells. 

4.5.9 Coomassie Brilliant Blue R-250 staining and destaining  

Coomassie Brilliant Blue staining is used to detect proteins in the range of 100 to 1000 ng in 

SDS-PAGE gels. Gels are fixed and then stained in Coomassie blue dye solution, where the dye 

molecules bind to the protein within the gel to form protein-dye complexes, held together by the 

combination of van der Waals forces and electrostatic interactions. Gels are then destained to 

visualize the protein bands on the gel. 
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Methods 

To further determine if AP2M1 (A) or TP53BP2 (T) plasmid can be overexpressed in HEK 293 

cells, the genes encoding for AP2M1 (A) or TP53BP2 (T) proteins were transiently transfected 

and expressed in HEK 293 cells under normoxic (N) or hypoxic (H) conditions. After 

transfection, cells were lysed in cell lysis buffer (20 mM HEPES (pH 7.9), 420 mM NaCl, 1.5 

mM MgCl2, 0.2 mM EDTA and 25% glycerol) and the lysate mixed with anti-AP2M1 (A) or 

anti-TP53BP2 (T) antibodies and protein A/G beads for immunoprecipitation. Cellular proteins 

were incubated with antibodies and beads for 30 minutes at 4°C with gentle rotation. 

Immunoprecipitation involved centrifuging beads at 1,000 x g for 5 minutes at 4°C and washing 

the beads with ice-cold lysis buffer four times with centrifugation in between. After the final 

wash, beads were resuspended in approximately 20 µL of cell lysis buffer and the entire sample 

was boiled and loaded onto a 12% SDS-PAGE gel. SDS-PAGE was run at 150V for one hour 

and the gel was removed, divided in two, and half was used for Western blotting while the other 

half was used for Coomassie blue staining.  Following electrophoresis, the gel was placed in a fix 

solution (10% acetic acid, 25% methanol). The gel was incubated overnight in the staining 

solution. The gel was destained in 10% acetic acid, 25% methanol until the background became 

transparent and the bands were visible. The Coomassie blue detailed protocol can be found in the 

Appendix A.5. 

Results 

The results in Figure 4.19 show that AP2M1 protein was detected by the anti-AP2M1 antibody 

and that the protein was expressed endogenously in cells under both normoxic and hypoxic 

conditions and that overexpression of the protein resulted in slightly more protein expression.  
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Western blot analysis showed the molecular weight of the overexpressed AP2M1to be 50 kDa, 

although the binding of antibody to nonspecific proteins and/or other components was also 

observed. 

 

TP53BP2 protein expression was seen under both normoxic and hypoxic conditions without 

overexpression. An extra band was seen with TP53BP2 with the overexpression of AP2M1. This 

would suggest that overexpression of AP2M1 had an effect on the endogenous expression of 

TP53BP2. The expression of endogenous TP53BP2 was greater with hypoxia when AP2M1 was 

overexpressed but lower in hypoxia whereas overexpression of TP53BP2 was lower in hypoxia 

(without AP2M1 overexpression).The TP53BP2 protein occurred at the correct molecular weight 

of 124kDa. 

 

Ponceau red stained blots (Figure 4.19) showed two specific bands (show with asterisks) that 

came down with the beads. 
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Figure 4.19. Results from an immunoprecipitation on SDS-PAGE gels. 

Immunoprecipitations of whole cell lysates from HEK293 cells transfected with 

plasmids overexpressing either AP2M1 (A) or TB53BP2 (T) or untransfected 

controls (C) and treated with either normoxic (N) or hypoxic (H) conditions. Lysates 

were either immunoprecipitated with either anti-AP2M1 (A) or anti-TB53BP2 (T) or 

protein A/G agarose beads. The Western blots for AP2M1 (first panel) and 

TB53BP2 (second panel) were performed. Bands that appear in untransfected lanes 

represent the endogenous protein within HEK293 cells. The immunoprecipitates 

were run on SDS-PAGE and either Western blotted or stained with Coomassie Blue 
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(CB; fourth panel). Western blot membranes were stained with Ponceau Red (PR; 

third panel). Bands from immunoprecipitates that appeared on PR are shown with 

asterisks. Bands on CB that were taken for subsequent mass spectrometry are shown 

with arrows. 
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Figure 4.20. Densitometry of bands from Western blots of cell lysates from HEK293 cells. 

Here, cells have been transiently transfected with plasmids overexpressing either 

AP2M1 or TB53BP2 or untransfected control cells, and treated with either normoxic 

or hypoxic conditions. Lysates were either immunoprecipitated with either anti-

AP2M1 or anti-TB53BP2 and protein A/G agarose beads. 
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Figure 4.20 shows the densitometry results (i.e., the integrated density value (IDV)) of each band 

on the Western blot for AP2M1 or TP53BP2 or untransfected control cells with normoxic or 

hypoxic conditions; compared to each lane of the Ponceau Red (PR). Bands in Western blots 

were normalized to the density of a single band on the Coomassie stained gel that did not change 

with treatment. The highest expression of AP2M1 and TP53BP2 occurred under hypoxic 

conditions when only AP2M1 was overexpressed. Overexpression of AP2M1 may have 

stabilized TP53BP2, and this was seen to be enhanced by hypoxia. Overexpressed TP53BP2, 

however, was destabilized by hypoxia, even under the control of a strong mammalian promoter. 

The meaning of these changes in protein expression remain to be elucidated. 

 

Specific bands were excised from the gel (indicated by arrows on the Coomassie Blue stained 

gel), transferred to Eppendorf tubes and stored at -80
o
C for further mass spectrometry analysis. 

4.5.10 Summary  

We applied uncertainty-based and certainty-based active learning query strategy to intelligently 

identified 20 potential N/D hydroxylated sites from 1.3 million putative hydroxylation sites.  

Five out of the 20 proteins were chosen for wetlab experimental validation after bioinformatics 

careful analysis. Four (4) of the target genes (TP53BP2, PPP1R13L, AP2M1 and CCBE1) were 

successfully isolated from plasmid vector, pCMV-SPORT6 and expressed as proteins in 

mammalian cell lines, human embryonic cells 293 (HEK). The fifth target gene, LTBP2 was 

successfully subcloned from pBlueSCriptR into pCMV-SPORT6.  

 

All four plasmids were successfully transfected with HEK 293 cells, then, SDS-PAGE and 

Western blotting were performed to detect the overexpression levels of AP2M2, TP53BP2, and 
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PPP1R13L proteins in HEK 293 cells using anti-AP2M1, anti-TP53BP2 and anti-iASPP 

antibodies. The antibody for CCEB1 is not commercially available; as such no further test was 

conducted for this target protein. Results from Western blotting technique showed TP53BP2 and 

AP2M1 protein of interest were successfully detected and expressed in HEK 293. However, 

iASPP antibody could not detect this PPP1R13 protein most likely due to the oversaturated 

expression, and other reasons were not investigated.  

 

Furthermore, TP53BP2 and AP2M1 proteins were later overexpressed in mammalian cells in 

normoxic and hypoxic conditions. These proteins biological activity was verified using Western 

blotting, immunoprecipitation and Coomassie stain analysis based on the overexpression bands 

identified on an SDS-PAGE gel. These specific bands were excised from the gel, transferred to 

Eppendorf tubes and stored at -80oC.  The successful identification of these bands on the gel lays 

the foundations for the determination of the true annotation of these putative N/D hydroxylation 

sites via mass spectrometry.  
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5 CHAPTER: THESIS SUMMARY 

We have demonstrated, through simulations, the applicability of SVM-based active learning in 

the task of N/D hydroxylation sites prediction. We have also demonstrated that a pool-based 

active learning query strategy with SVM is able to reduce the effort of protein annotation based 

on the simulation results for a wetlab experimental validation. The classifier in active learning 

has the freedom to choose the most informative unlabelled instances and reduces the risk of 

annotating less useful data points. We successfully overcame class imbalance in the training 

dataset by selecting instances within the SVM margin surrounding the decision hyperplane. We 

conclusively reaffirmed the usefulness of margin-based active learning as it able to show when 

the less informative instances are outside the margin band. We have passed all unlabelled N/D 

sites dataset from all human proteins into the hydroxylation sites prediction system. Active 

learning has intelligently chosen the most informative 20 putative N/D hydroxylation sites from 

1.3 million putative N/D hydroxylation sites dataset. From this simulated result, we have 

demonstrated that active learning can indeed reduce annotation for wetlab experimental 

validation and the wetlab experimental validation component was performed for two proteins 

that will most likely be amenable to final analysis via mass spectrometry. 

 

It worth mentioning that; the evaluation performance results reported in thesis cannot be directly 

compared to earlier work by (Liu, 2009) in terms of evaluation metrics such sensitivity (recall), 

precision rate, Matthew’s CC; since we do not use the same learning methods or train/test splits, 

despite using the same N/D hydroxylation sites dataset. Interestingly, the active learning query 

strategies identified a number of EGF domain-containing and ankyrin repeat domain-containing 
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proteins when applied to a real-life N/D hydroxylation sites dataset; this was consistent with  

Liu’s observations (Liu, 2009). 

5.1 Summary of contributions 

In this thesis, a comprehensive comparison was performed between uncertainty query, density-

uncertainty-based query and certainty-based query strategies in terms of prediction recall, 

precision, MCC, and AUC with growing training set size. We considered the default passive 

learning approach as the benchmark throughout this thesis. An extensive performance 

comparison of these methods relative to the N/D protein hydroxylation dataset is provided. We 

have clearly demonstrated that active learning cycle can drastically reduce the amount of 

annotation efforts required to obtain a given level of precision and recall for the prediction of 

hydroxylation sites. Additionally, active learning query strategy handled class imbalance among 

the available unlabelled data effectively. To the best of our knowledge, a comprehensive 

comparison between various active learning query strategies for the prediction of a protein post-

translational modification has not been reported in previous literature. Our results from the 

simulation of active learning query strategies for the prediction of N/D hydroxylation sites on 

human proteins have been accepted for publication in the proceedings of the International 

Conference on Computational Intelligence and Bioinformatics (CIB 2011), Nov 7-9 2011 in 

Pittsburgh, PA. 

 

We successfully implemented an active learning query strategy (i.e., uncertainty-based and 

certainty-based) to intelligently identified the most informative 20 putative N/D hydroxylation 

sites from 1.3 million putative N/D hydroxylation sites of a real-life dataset. We have selectively 
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chosen 5 proteins identified by these strategies through the application of bioinformatics analysis 

to account for wetlab considerations. Two of these proteins were successfully isolated, 

quantified, over-expressed in mammalian HEK293 cells in an in vitro experiment. Then, these 

proteins’ biological activity was verified using Western blotting, immunoprecipitation and 

Coomassie stain analysis based on the bands identified on an SDS-PAGE gel. The successful 

identification of these bands on the gel lays the foundations for the determination of the true 

annotation of these putative N/D hydroxylation sites via mass spectrometry. 

5.2 Recommendations for future work 

The empirical and wetlab experimental validation component results of this thesis show several 

interesting future directions. First and foremost is to determine the true annotation of the two 

putative N/D hydroxylation sites via mass spectrometry. Once validated to be positive or 

negative, these newly labelled instances should be added to the training set and the performance 

will be evaluated on an independent test set to complete the active learning cycle. Pursuing the 

other 3 proteins for which genes have been purchased is also recommended in hopes of further 

increasing the size of the labelled training set. 

 

Other work we may consider in the future is to propose and implement an active learning 

stopping criterion that would be dependent on the variance of the classifier’s confidence score 

only for selected unlabelled instances at each iteration. The variance graph can be computed as a 

function of selected labelled or training set size. It is proposed that an ideal stopping criterion 

may be when the variance reaches maximum performance and then decreases after subsequent 
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iterations. Such an implementation could provide a quantitative criterion to determine when to 

stop learning without human supervision. 

 

Finally, we would like to implement and evaluate representative-based sampling that groups 

unlabelled instances within classifier’s margin and compute the entropy of each cluster. The 

unlabelled instance from centroid of the cluster with the highest entropy score (i.e., the densest 

region) could be considered to be most representative and most uncertain and therefore be 

selected for wetlab validation. This approach may be more effective than the other active 

learning approaches evaluated here since it considers the underlying distribution of the 

unlabelled data.   
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APPENDIX A: GENETIC CODE AND PROTEIN SEQUENCE  

A.1  Genetic Code 

The genetic code is the set of rules by which information encoded in genetic material (DNA or 

mRNA sequences) is translated into proteins (amino acid sequences). The codon AUG for 

methionine serves as an initiation site, i.e. the first AUG in an mRNA’s coding region is where 

translation into protein begins. A = adenine, G = guanine, C = cytosine, T = thymine, and U = 

uracil.  

 

 

 

Figure A. A.1. The genetic code table, adapted from Wikipedia. 
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A.2  Sequence Representation of Protein Synthesis 

The biological information necessary for labelling strands is the location of the 5’-phosphate 

group and 3’-hydroxyl group as these ends determine the direction of transcription and 

translation, i.e. translation proceeds in the 5’ to 3’ direction. 

 

5’… T A T A G C G T T C A T … 3’    {DNA template (noncoding) strand, used as a     

template for transcription} 

3’… A T A T C G C A A G T A … 5’   {DNA nontemplate (coding) strand. Complementary to the 

template strand} 

3’… A U A U C G C A A G U A … 5’   {RNA strand transcribed from DNA template, identical 
to DNA nontemplate strand, except all thymines now 
uracils (T  U), mRNA}                        

  
5’… A U G A A C G C U A U A … 3’   {exactly the same sequence as above, except, the AUG 

start codon, mRNA} 
Translational of mRNA 

 

          Met – Asn – Ala- Ile -     Peptide 

 

Transcription (DNA)                    Translation (RNA)                    Proteins 

 

A.3 Plasmid DNA Transfection efficiency using Lipofectamine 2000 Reagent 

Transfection efficiency using Lipofectamine is dependent on various factors such as plasmid 

DNA, cell line, cell confluency/viability, growth medium and relative surface area. This relative 

surface area is determined by counting cell relative to the cell well plates. We have used 6-cm 
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well plate and scaled up to 10-cm well plate for optimized transfection efficiency to achieve 

maximum protein expression (yield) based on the given Table A.2 (Invitrogen, 2005). 

 

Table A.1. Optimized transfection working Volume 

 

Culture 

vessel 

Surface area 

per well 

(cm
2
) 

Relative 

Surface Area                              

(vs. 24-well) 

Volume 

of plating 

medium 

DNA (µg) and 

Dilution Volume 

(µl) 

Lipofectamine™ 2000 

(µl) and Dilution Volume 

(µl) 

96-well 0.3 0.2 100 µl 0.2 µg   in   25   µl 0.5 µl   in  25   µl 

24-well 2 1 500 µl 0.8 µg   in   50   µl 2.0 µl   in  50   µl 

12-well 4 2 1     ml 1.6 µg   in  100  µl 4.0 µl   in  100 µl 

35-mm 10 5 2     ml 4.0 µg   in  250  µl 10  µl   in  250 µl 

6-well 10 5 2     ml 4.0 µg   in  250  µl 10  µl   in  250 µl 

60-mm 20 10 5     ml 8.0 µg   in  0.5   µl 20  µl   in  0.5  µl 

    10-cm 60 30 15   ml 24  µg   in  1.5   µl µl   in  1.5  µl 

 

A.4 Detailed Western blot protocol 

A.4.1 Buffer Preparation 

Components 

12% Resolving 

Volume (μl) 

4% Stacking 

Volume (μl) 

Protogel 3200 520 

Resolving Buffer 2080 0 

Stacking Buffer 0 960 

MilliQ Water 2632 2440 

30% APS 28 8 

TEMED 8 4 

 

Figure A.1. Composition of SDS-PAGE for 10% resolving and 4% stacking gel for 1.5mm 

spacer plate 
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Laemmli  2X buffer  

62.5 mM Tris-pH 6.8 

2% SDS (Sodium Dodecyl Sulfate)  

25% glycerol 

0.01% bromophenol blue 

50μl β-mercaptoethanol 

Tris-Buffered Saline Tween-20 (TBST)  

20 mM Tris-HCl, pH 7.6 

137 mM NaCl 

0.1% Tween 20 

Protein transfer buffer (PTB) 

20mM Tris-HCL, pH 8.0 

150mM Gycine 

20% Methanol 

 

Blocking Solution 

20 ml TBST buffer 

1g carnation non-fat dry milk 

Renaissance Western Blot Chemiluminescent substrate/reagent (NEN Life Science 

Products, Boston, MA) 

0.5ml of enhanced luminal reagent 

0.5ml oxidizing agent 

A.4.2 SDS-PAGE 

- Prepare SDS-PAGE gel (Table A1) 

- Place gel  in SDS-PAGE running apparatus and fill with  transfer buffer (PTB) 
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- Mix 1:1 with 50μL β-mercaptoethanol in 950 μL of Laemmli buffer  and add to protein 

sample 

- Heat cell lysate protein at 100˚C for 3 minutes 

- Load  2 – 5 μL of protein ladder i.e. molecular weight  marker 

- Run at 150V constant until the blue dye reaches the bottom of the gel electrophoresis 

apparatus. 

 

A.4.3 Western blotting (protein transfer) 

- Cut pieces of Whatman paper slightly smaller than the gel (blotting paper) and 

Immobilon-P transfer membrane (Millipore, Bedford, MA) of type PVDF. 

- Wet membrane in 100% methanol and subsequently submerged the membrane 

completely in MilliQ water. 

- Then, the gel and membrane are sandwiched between sponge and paper in the Western 

blot cassette as follows: sponge/paper/gel/membrane/paper/sponge, i.e., 2 x blotting 

sponges, 3 X whatmam paper, SDS-PAGE gel, PVDF membrane, 3 X whatman paper, 

and 2 X blotting sponges. This sandwiched arrangement must be prepared in 1X Tri-

glycine buffer solution also used for running the buffer. 

- Transfer Western blotting cassette into Western blot running apparatus and place bio-ice 

cooling unit with ice in the opposite side of the running apparatus, then, cover lid and 

connects black to cathode and red cables to the anode. 

- Fill Western blot running apparatus with PTB to the top and allows to overflow to the 2 

gel mark on the running apparatus. 

- Run overnight at 180mA at 4˚C  

A.4.4 Blocking, antibodies, washing, and incubation 

- Incubate membrane in blocking solution for 1 hr at room temperature. 

- Dilute the primary antibodies (anti-AP2M1 and anti-TP53BP2) in 1:1,000 dilutions and 

IgR horseradish peroxidase (HRP)-conjugate secondary antibody (goat anti-rabbit) 

dilution 1:2,000) in TBST. 
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- Incubate membrane with primary antibodies for 1hr, remove and store primary antibodies 

in a 4˚C, then wash blot with TBST with mild shaking, 4 X 30 minutes. 

- Incubate membrane with secondary antibody for 1hr, remove and store secondary 

antibody in a 4˚C, then wash blot with TBST with mild shaking, 4 X 30 minutes at room 

temperature. 

A.4.5 Protein bands detection or development method 

- Drain the remaining wash by dabbing the edge of the blot on a kimwipe until all is gone 

- Place  membrane in a Saran wrap  

- Pipette 1mL of the chemiluminescent substrates into the blot and incubate for one minute. 

- Cover blot with the Saran wrap and place in an autorad cassette 

- (Dark room) Expose membrane to film for 30 seconds, or longer as required to achieve 

best protein band signals on the film. 

- (Dark room) Develop film for 5 minutes in developing solution, wash film in water for 1 

minute and fix for 5 minutes in fixing solution. 

A.5  Coomassie stain/destain protocol 

A.5.1 Fix-gel and destain Composition 

10 % (v/v) acetic acid (10mL x 2) 

25% (v/v) methanol (25mL x 2) 

Adjust the total volume to 200mL with MilliQ water, i.e., final concentrations are 10mL 

methanol in water with 20mL acetic acid 

A.5.2 Coomassie blue stain Composition 

0.25% (w/v) Coomassie blue dye R-250 (Biorad, Hercules, California, USA) 

7.5 % (v/v) acetic acid (7.5mL) 

50% (v/v) methanol (50mL) 
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Add 50mL methanol in MilliQ water, i.e., adjust the final concentration to 100mL with 

50mL methanol, 7.5mL acetic acid and 0.25% Coomassie blue dye R-250.  

A.5.3 Coomassie Blue dye stain/destain procedure 

- Transfer electrophoresis gel onto 100mL of the fix-gel solution in approximately 25cm X 

40 cm plastic dishes and continue to fix the protein in the gel by incubating for 1 hour at 

room temperature with gentle shaking. After the incubation period, discard the solution. 

- Gently cover the gel with 100mL of the Coomassie stain solution and continue to stain 

the gel for 2 hours at room temperature. Remove and keep the Coomassie solution for 

future test. 

- Cover the gel with another 100mL of the destain solution, and continue to destain the gel 

until the protein bands become clear without background staining of the gel. 

- Cut required bands of the protein of interest and store gel in Eppendorf tube in -80˚C for   

mass spectrometry analysis.  

A.6  Trypsin_digest_script 

import sys, os,string,re 

''' 

The script produces a tryptic digestion of a given set of protein sequences. The input file contains 

only one letter code amino acid of the considered protein sequence.  The algorithm implements 

accepted "Keil rule" is that trypsin (enzyme) cleaves next to or after lysine (K) or arginine(R), 

unless they are followed by a P. Note: input file must be in FASTA format of the protein 

sequence saved as .txt 

''' 
# Open the file and read it line by line. 

myprotein = open(raw_input('Enter input filename: '),'r') 

my_protein = [] 

 

#check if the output file already exist 

if  os.path.exists("trypsin_digest.txt"): 

    os.remove("trypsin_digest.txt") 

outfile = open("trypsin_digest.txt",'w+') 

 

for protein in myprotein: 

 myprotein = protein.rstrip('\n') 

 my_protein.append(myprotein) 
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 my_pro = (''.join(my_protein)) 

 

#Keil rule, trypsin cleaves next to lysine(K) or 

#arginine(R),unless (K or R) is followed by a P. 

peptides = re.sub(r'(?<=[RK])(?=[^P])','\n', my_pro) 

outfile.write(peptides) 

print 'results written to:\n', os.getcwd() +'\ 

trypsin_digest.txt' 

 

 


