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Abstract 

Protein-protein interactions are an important aspect of cell structure because they 

are one of the primary mechanisms by which proteins carry out their functions in the cell. 

Organism-wide protein-protein interaction screens can provide a tremendous amount of 

information on protein function and cell structure, but experimental techniques become 

costly and error-prone at this scale. Computational prediction of protein-protein 

interactions can overcome some of these limitations, provided that the predictor is 

computationally efficient and sufficiently accurate. 

In this thesis, we contribute two improvements to the leading sequence-based 

interaction predictor: First, using improved data structures and a space-time trade-off, we 

optimized several often-executed fragments of the algorithm. This results in speedups 

ranging from 8.1 to 14.5 on sets of protein pairs from S. cerevisiae and H. sapiens, 

allowing exhaustive probing of all interactions in H. sapiens in 20 days on a 28-core 

cluster. Second, we modified the predictor to take into account annotations of sequence 

regions which re-occur in the proteome but are unlikely to be involved in protein-protein 

interactions, such as signal peptides and transmembrane regions. This increased 

sensitivity from 2.17% to 2.25% in S. cerevisiae and from 1.26% to 4.23% in H. sapiens. 

However, an extension of this idea, which uses only the protein sequences to measure the 

re-occurrence of sequence windows and adjust their score accordingly, achieved larger 

gains in classification performance, improving classifier sensitivity from 2.17% to 3.05%  

in S. cerevisiae and from 1.26% to 16.19% in H. sapiens. 
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1 Introduction 

1.1 Background 

Proteins are biopolymers of amino acids which have been implicated in virtually 

every process in the cell, and whose amino acid sequences are encoded by the 

corresponding genes of a given organism: In DNA transcription and translation, proteins 

selectively activate certain genes depending on the cell state and also convert the chosen 

genes into new proteins from raw material (individual amino acids). In energy 

conversion, they form the machinery which converts proton gradients between the 

interior and exterior of the cell into chemical energy which can be used by other cell 

components. In signal transduction, proteins are the membrane receptors which activate 

interior messengers (also proteins) when the exterior of the cell is stimulated with 

specific ligands. Finally, in waste processing, proteins decompose other proteins when 

they are no longer needed by the cell, recycling amino acids for the construction of new 

proteins during DNA translation. 

Due to their central and diverse role in the cell, proteins have also been found at 

the core of many diseases. For example, Alzheimer’s and Huntington’s are 

neurodegenerative diseases in which misfolded proteins accumulate in the brain [1], 

reducing the supply of the native, functional form of the protein. The HIV virus (which 

itself is contained inside a protein coat) targets host cells and gains access to them 

through proteins embedded in the host cell’s membrane [2]. On the other hand, some 

antiviral drugs are specific inhibitors of viral proteins known to be required for viral 

activity [3]. Therefore, the study of protein function is essential for understanding the 
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functioning of the cell in general, and is especially relevant for rational, targeted 

treatment for a vast number of conditions. 

The sequence of amino acids of a protein is encoded by a gene from that 

organism’s genome, so it is intuitive to suspect that the number of genes is the main 

determining factor in an organism’s biological complexity, and that this complete set of 

protein products should be the primary target when studying an organism as a whole. 

However, when we consider that humans have between 20,000 and 25,000 genes [4], the 

worm Caenorhabditis elegans has approximately 19,000 genes [5], and rice has between 

32,000 and 50,000 genes [6], it becomes clear that this number cannot be the only factor. 

Recently, it has been suggested that the number of interactions between proteins better 

accounts for organism complexity (though other factors such as alternative splicing and 

non-coding RNA also contribute), and this is reflected by estimated numbers of 

interactions which are more than 3 times greater in H. sapiens than in C. elegans [7]. 

This suggests that the study of protein-protein interactions is critical when 

seeking a comprehensive understanding of the functioning of a biological organism. 

Experimental “wet lab” techniques for testing protein-protein interactions are capable of 

testing two individual proteins for interaction. However, this is a time-consuming and 

costly process, especially when attempted at a large scale. Some methods are fraught with 

erroneous results due to intrinsic limitations of the experimental method, and may be 

particularly weak on specific types of proteins (e.g. membrane proteins). High-

throughput methods produce results for batches of protein-protein interaction 

experiments faster than sequences of individual experiments, and have resulted in data 

sets of observed interactions for entire organisms [8]. However, the overlap between 
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independent experiments has historically been low, calling the reliability of the results 

into question [9]. 

Computational protein-protein interaction assays promise more efficient and 

flexible probing of protein-protein interactions, but have their own associated caveats. 

Computational methods can be largely grouped into two categories, according to the level 

of protein structure used to represent the input proteins, which also determines the type of 

protein data required. In protein docking, the three-dimensional structures of the two 

query proteins are tested for surface complementarity and electrostatic interactions using 

molecular dynamics techniques. This requires that the structures for both proteins are 

known, however this data is difficult to obtain. As of May 2011, there are only 1,102 

structures of H. sapiens proteins in the largest protein structure database PDB [10] 

(compare to the estimated 20,000 genes in H. sapiens). Additionally, molecular dynamics 

simulations are very computationally-intensive, requiring many months of processing on 

large distributed clusters. Protein docking is not a practical tool for probing protein-

protein interactions on a large scale. 

On the other hand, protein-protein interactions can be predicted from protein 

sequence alone [11]. With the advent of whole-genome sequencing, datasets of organism 

proteomes are easier to obtain, independently confirmed by more researchers, and 

therefore increasingly reliable. The human genome has been completely sequenced since 

2001 [12] [13], and as of 2009 the genomes of more than 1000 other organisms have 

been sequenced [14]. Sequence-based methods also usually require experimental data on 

protein-protein interactions as training data, but interaction data are more abundant than 

structure data. Data sets on the order of 35,000 interactions for H. sapiens are not 
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uncommon and, while representing a very small fraction of the total estimated 

interactions, are sufficient to train a machine learning model for protein-protein 

interaction prediction. Given a well-trained model, sequence-based computational 

methods represent a cost-effective method of exploring protein-protein interaction 

networks, using data which is available today. They also open the door to exhaustive 

probing of interactions between all pairs of proteins within an organism’s proteome. 

However, the set of all potential interactions (all pairs of proteins) is orders of magnitude 

larger than the sets of interactions used by most authors to test their methods. This 

suggests that the computational performance of their methods may be a bottleneck in 

their methods’ applicability to all-to-all screens. Computational methods do however 

scale seamlessly with available computational resources, which are steadily increasing 

per unit of cost. 

In machine learning terms, protein-protein interaction (PPI) predictors are binary 

classifiers. The model takes as input two protein pairs and outputs a binary decision for 

the interaction between the proteins. The input proteins are represented by their amino 

acid sequences, but the classifier may also require additional auxiliary data, such as 

sequence annotations. In this context, the performance of the classifier on a given test set 

is measured in terms of specificity and sensitivity, which are related to the rates of false 

positive and false negative errors the model makes. For a protein-protein interaction 

predictor to be applicable to whole-organism interaction screens (“all-to-all” screens), it 

is crucial for the model to make very few false positive errors (specificity above 99%) 

because the ratio of true interactions to all possible pairs of proteins is estimated to be 

very low. Based on estimates of true interactions [7], the ratio is approximately 1:370 in 
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H. sapiens. For example, a classifier with an apparently good performance of 90% 

specificity and 90% sensitivity, applied to a sample of human protein pairs, would result 

in a precision of only 2.4%. (Details on how this is calculated are given in section 2.1.) 

This means that, on average, only 2.4% of protein pairs predicted to interact by the model 

do in fact interact, while the rest are false positives. 

Recently, an independent survey of sequence-based protein-protein interaction 

prediction methods [15] tested 4 interaction methods, including a method developed by 

the bioinformatics group at Carleton University. The author tested the methods on two 

test sets, with ratios of positive to negative interactions of 1:10 and 1:100, and found that 

the classifiers achieved a higher precision on the 1:10 set with no change to the model, 

highlighting the need for test sets with more realistic ratios (closer to the ratios expected 

in the cell). The method developed at Carleton University, the Protein-protein Interaction 

Prediction Engine (PIPE) [16] [17], consistently outperformed the other 3 methods for 

interactions in both S. cerevisiae and H. sapiens and on both test sets. The author 

comments that applying the methods to test sets with even higher ratios became 

computationally prohibitive. Additionally, the author’s consensus method was able to 

slightly outperform PIPE. 

1.2 Statement of the Problem 

Park’s review of protein-protein interaction prediction methods [15] provides 

evidence that PIPE is currently the leading single sequence-based PPI predictor in its 

field. However, the method still has weaknesses which should be addressed. 

First, the consensus combination of 4 methods slightly outperformed PIPE in both 

S. cerevisiae and H. sapiens. This suggests that while the PIPE model is strong for the 
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majority of protein-protein interactions, it still makes erroneous predictions for some 

fraction of protein pairs. Thus, the sources of error should be investigated and, whenever 

possible, the model should be adjusted to account for them. Because of the importance of 

operating at high specificity, priority should be given to reducing false positive errors. 

Second, Park comments that testing on data sets with larger ratios of negatives to 

positives, which better represent the ratio expected in the cell, would be computationally 

prohibitive. This suggests that the problem of computational performance of protein-

protein prediction methods has not yet been addressed. At the same time, model design 

and optimization requires many iterations of model training and testing, and large all-to-

all interaction screens must process numbers of pairs which are orders of magnitude 

larger than the size of a typical test set. Therefore, improvements in computational 

performance are crucial for thorough model design, fair model testing, and for 

applicability to large-scale interaction screens. 

1.3 Contributions 

1.3.1 Computational Performance 

We analyzed the computational performance of the current implementation of 

PIPE, with consideration to organism-specific proteome parameters which may affect 

algorithm performance. Because PIPE primarily consists of memory accesses to its input 

data, rather than arithmetic operations, we suspected that its performance is limited by 

how efficiently it uses the memory subsystem of the processor. We hypothesized that 

data structures which reduce the cost and number of memory accesses to the input data 

can speed up the algorithm. To verify this hypothesis, we constructed an algorithm which 

uses a more CPU cache-efficient data structure for some of the inputs, and which applies 
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a time-space trade-off to reduce the number of memory accesses required to compute the 

same result, in a particular fragment of the algorithm. These modifications achieved a 

8.9-fold speedup on total runtime on a S. cerevisiae test set, and a 14.5-fold speedup on 

total runtimeon a H. sapiens test set (up to 80-fold for individual pairs). 

1.3.2 Classification Performance 

We explored potential sources of errors in the PIPE model from protein regions 

which re-occur in the proteome but are unlikely to participate in PPIs. We first 

considered two specific types of re-occurring protein regions for which sequence 

annotations are widely available: signal peptides and transmembrane regions. Then, we 

extended this idea to the re-occurrence of arbitrary sequence windows from the query 

proteins. 

First, we hypothesized that signal peptides and transmembrane regions do not 

overlap with PPI-mediating protein regions. We considered both experimental and 

predicted protein regions and compared them to reference binding sites from two 

experimental databases. Specifically, we hypothesized that for any given amino acid in a 

protein, the events “amino acid is in a signal peptide/transmembrane region” and “amino 

acid is in a binding site” are negatively correlated, for any combination of 

experimental/predicted signal peptide/transmembrane region and using binding sites from 

either database. We tested each of these hypotheses using a left-tailed Fisher’s exact test. 

The null hypotheses of independence between the two events were rejected in each case 

with a P-value of at most 8.2 × 10
-3

. Therefore, we found that signal peptides and 

transmembrane regions are negatively correlated with binding sites. 
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We suspected that signal peptides and transmembrane regions contribute to noise 

in the PIPE matrix, because they re-occur but do not mediate PPIs, therefore increasing 

the PPI prediction false positive rate. We hypothesized that masking these regions prior 

to classification would reduce the false positive rate of PIPE (or equivalently, increase the 

sensitivity at the same specificity, see section 2.1). We constructed models which 

perform this masking using several different sequence annotation sets 

(experimental/predicted, signal peptides/transmembrane regions) and measured their 

classification performance on S. cerevisiae and H. sapiens test sets. At 99.95% 

specificity, the sensitivity of the classifier in S. cerevisiae increased from 2.17% to at 

most 2.25% (experimental transmembrane annotations). The sensitivity of the classifier 

in H. sapiens increased from 1.26% to at most 4.23% (experimental signal peptides). 

We generalized this idea to arbitrary sequence windows from the query proteins, 

suspecting that any frequently re-occurring sequence window may contribute noise to the 

corresponding area of the PIPE output matrix, thereby increasing the false positive rate. 

We hypothesized that by normalizing the output score according to the uniqueness of the 

query sequence windows we can reduce this noise and improve classification 

performance of PIPE. We constructed a modified model which takes sequence window 

uniqueness into account, and tested this model on the same S. cerevisiae and H. sapiens 

test sets as in the previous tests. At 99.95% specificity, the sensitivity of the classifier in 

S. cerevisiae increased from 2.17% to 3.05% and in H. sapiens from 1.26% to 16.19%. 

1.4 Organization of Thesis 

Chapter 2 briefly introduces pattern recognition as it applies to protein-protein 

interaction prediction and describes several existing predictors, including a detailed 
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description of the PIPE method. Chapter 3 analyzes the computational performance of the 

current PIPE algorithm, proposes modifications and reports performance measurements 

for the new algorithm. Chapter 4 similarly describes three sources of error in the PIPE 

model, proposes modifications to the model and measures the classification performance 

of the new model. Finally, Chapter 5 summarizes the work presented in this thesis, and 

provides avenues for investigation for further improvement of PIPE. 
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2 Previous Work 

2.1 Introduction to Pattern Classification 

A protein-protein interaction predictor is a classifier which, given a pair of 

proteins, outputs a score indicating the likelihood of an interaction between those two 

proteins. A threshold can be applied to this score to obtain a single binary decision for a 

given protein pair. For a given threshold, a predictor classifies each pair of proteins as 

either interacting (positive prediction) or non-interacting (negative prediction). 

Training and testing the model requires a set of protein pairs of known class, 

including both interacting and non-interacting pairs. Some classifiers, such as PIPE, use 

only positive pairs for training, but both types of pairs for testing. During training, the 

model learns which features are informative with respect to the class of each training 

instance. During testing, the classifier is applied to a test instance and the threshold is 

applied to result in a single binary output which represents the predicted class of the test 

instance. The instance’s true class is then compared to the prediction made by the 

classifier. If we apply this procedure on the entire test set for a given score threshold, 

there are four possible cases (Figure 1): 

• True positive: positive instance which was above the threshold (correctly 

predicted) 

• False positive: negative instance which was above the threshold (incorrectly 

predicted as positive, or type I error) 

• False negative: positive instance which fell below the threshold (incorrectly 

predicted as negative, or type II error) 
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• True negative: negative instance which fell below the threshold (correctly 

predicted) 

By varying the score threshold, we can control a trade-off between false positive 

errors and false negative errors. 

 

Figure 1: The four categories of test instances by classifier output score 

The test set contains a total of P positive and N negative. The total counts of true 

positives (TP), false positives (FP), false negatives (FN) and true negatives (TN) for a 

given score threshold allow us to quantify the number and type of errors the classifier 

makes. In particular, errors on the positive set are measured using the true positive rate 

(TPR = TP / P), while errors on the negative set are measured using the false positive rate 

(FPR = FP / N). These are estimates of the probability that the classifier will correctly 

classify an arbitrary unseen positive instance, or to incorrectly classifier an arbitrary 

unseen negative instance, respectively. 

From true positive rate (TPR) and false positive rate (FPR) we can derive several 

other measures of classifier performance. Sensitivity (also known as recall) (1) and 

specificity (2) are directly related to TPR and FPR and measure the performance on the 

positive and negative set, respectively. For protein-protein interactions, high specificity, 

or low false positive rate, is very important due to the high ratio of negatives to positives 

since most protein pairs would not be expected to physically interact. 

increasing scores 
Positive instances 

Negative instances TN 
FN 

FP 

TP 

score threshold 

Classified as negative Classified as positive 
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To quantify classifier performance on the test set as a whole, there are other 

measures such as accuracy (3) and precision (4). 
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Accuracy is simply the ratio of correct predictions to the total number of 

instances. Precision is the ratio of correctly predicted instances to the total number of 

positive predictions made by the classifier. Note that accuracy and precision can be 

rewritten in terms of sensitivity, specificity, and the ratios of positives to negatives in the 

test set. While they can be very useful intuitive tools for measuring classifier 

performance, they are biased by the class ratio chosen by the experimenter for their test 

set. This is emphasized when the true ratio is expected to favour one class (such as in PPI 

where the ratio of all protein pairs to positive pairs in the cell is on the order of 350 

negatives to 1 positive), but the test set is balanced (1:1). In the PPI example, if the test 

set is balanced, then specificity (Sp) and sensitivity (Sn) have equal contribution to the 

expected accuracy (3) because they are weighted by 
�

�	�
�

�

�	�
�

�

"
 . However, because 

the true N:P ratio is much greater, the accuracy on a random sample of protein pairs from 

the set of all pairs will be dominated by the specificity (Sp) term, and this effect will be 

exacerbated by greater N:P ratios. A classifier with good sensitivity and mediocre 

specificity will appear to have good accuracy on the balanced test set, but will have much 

worse accuracy when it is used on a random sample of pairs. Thus, accuracy is biased by 
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the N:P ratio in the test set, leading to overestimation of expected performance and the 

inability to directly compare accuracy values between different studies. Ideally, one 

would use a test set with the same ratio as the ratio found in the cell, but the true value of 

this ratio is not known. In practice, classifier performance is often reported by researchers 

in terms of accuracy, precision and recall, but on test sets with non-standardized 

(sometimes unspecified) negative to positive ratios, leading to measured performance 

which cannot be directly compared with other studies. When possible (i.e. when the class 

ratio was specified by the experimenter), we attempt to derive equivalent sensitivity and 

specificity values for quantitatively comparing different methods of PPI prediction. 

Sensitivity and specificity values, when taken together, are unbiased by the N:P ratio of 

the test set, and thus provide a fair comparison between studies. 

The score threshold provides a trade-off between errors on the positive set (false 

negatives) and errors on the negative set (false positives). As we increase the threshold, 

fewer negative instances are misclassified as positive, but there is also an accompanying 

increase in positive instances misclassified as negative, and vice-versa. Thus, by varying 

the score threshold, it is possible to achieve arbitrary values of either sensitivity or 

specificity. Better models are those which can achieve increased sensitivity at the same 

given sensitivity, or, equivalently, increased sensitivity at the same given specificity. 

The receiver operating characteristics (ROC) curve [18] allows us to visualize the 

trade-off between sensitivity and specificity. While varying the score threshold, from the 

highest instance score (reject all test instances) to the lowest score (accept all instances), 

specificity is plotted on the X axis and sensitivity on the Y axis. Some examples of ROC 

curves are shown in Figure 2, with the full range of specificity (left) and a zoom of the 
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region of specificity ≥ 90% (right). Curve (a) represents a good classifier because of the 

high initial slope of the curve. This means that a small compromise in specificity 

provides a large improvement in sensitivity. Curve (b) requires a larger reduction in 

specificity to achieve the same improvement in sensitivity. For curve (c), the loss in 

specificity is exactly equal to the improvement in sensitivity (slope of the curve is 1). 

This represents a classifier which outputs a random classification and is the worst ROC 

curve. 

Precision-recall curves can also be used to visualize this trade-off, but as 

previously shown, precision is biased by the class imbalance in the test set. Ideally, one 

would calculate precision-recall curves tailored to the specific ratio of negatives to 

positives expected to be observed in the target application of the method. In our case, the 

ratio of negative to positive interactions in the cell is not known with certainty and is also 

likely to vary by organism, making sensitivity-specificity curves a less biased method of 

reporting classifier performance than precision-recall curves. 
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Figure 2: Sample receiver operating characteristics (ROC) curves. The left plot 

shows ROC curve across the full range of specificity and sensitivity (1.0 ≥ Sp ≥ 0.0). The 

right plot shows detail of the same ROC curve at high specificity (1.0 ≥ Sp ≥ 0.9 and 

0.0 ≤ Sn ≤ 0.5). 

To be useful at a proteome scale, PPI classifiers must operate at very high 

specificity and must be evaluated in that region (far left side of the ROC curve graphs). In 

H. sapiens, there are approximately 22,000 known proteins, giving a total of 

approximately 242 million (unordered) pairs. Compare this to estimates placing the 

number of true interactions around 650,000 [7]. Even to achieve a precision of 50%, 

admitting half of positive predictions as errors (TP = FP = P), would require a false 
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= 100%, or TP / P = TPR = Sn = 1.0); this is of course not usually the case. If the 

sensitivity is too low, the number of predicted true positives will be overwhelmed by the 

number of false positives (even though the false positive rate is very small), making the 

classifier outputs not very useful. Therefore, at the proteome-scale, the classifier must 

operate at very high specificity, and have reasonable sensitivity in that range. 
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2.2 Protein-Protein Interaction Prediction from Structure 

Protein-protein interactions were initially studied using 3-D structures of proteins 

in complex. In 1996, Jones and Thornton [19] published an in-depth analysis of trends in 

structural features of 59 solved 3-D structures of several types of protein complexes. 

They found that certain features, in particular residue accessible surface area and residue 

propensities, were statistically biased in interface residues compared to non-interface 

surface residues. This was later used, along with other features, to predict protein 

interfaces from structure [20] [21] [22]. These methods are useful for guiding 

experimental assays on a specific pair of proteins. For example, the experimenter may 

focus their deletion or mutation experiments on the protein regions predicted from 

structure to be the protein interface. This increases the odds of a successful experiment 

compared to probing protein regions at random. However, for a single given protein, 

these methods do not identify all interaction partners from the pool of proteins present in 

the organism and thus are not useful for exploration of protein interaction networks. 

By integrating structure information for two proteins simultaneously, existing 

methods have shown the ability to predict free energy on binding of certain known 

complexes (a measure of the affinity of the complex) [23], to predict novel protein 

complexes in S. cerevisiae [24], and to augment existing sequence-based predictions [25]. 

However, these methods depend on the availability of structure data for the proteins 

under consideration, while this data may be scarce. As of May 2011, there are only 1,102 

structures for H. sapiens in the largest protein structure database, PDB [10], compared to 

the estimated 20,000 proteins in the organism. On the other hand, binary interaction data 

indicating only whether two given proteins were found to interact, which can be used to 
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identify complexes, is easier to obtain and therefore more abundant than protein structure 

data. In fact, it is common to find sets of 40,000 known interacting H. sapiens proteins. 

2.3 Protein-Protein Interaction Prediction from Sequence 

The protein structure availability problem can be overcome by developing models 

of protein interfaces from sequence data, which is much more widely available. This 

abundance has also given rise to a variety of derived data, such as orthologies between 

genes in different organisms, protein domains with known function [26] [27], and other 

sequence annotations [28].  The many possible combinations of sequence features, data 

pre-processing and machine learning models give rise to many types of sequence-based 

PPI prediction methods. 

Initial attempts at interface prediction from sequence relied on simple 

observations such as overrepresentation of proline residues near interaction sites [29] and 

only determined which residues are likely to interact, without identifying the interaction 

partner protein. Subsequently, physicochemical properties of residues which can be 

inferred from sequence alone, such as hydrophobicity and charge, were used to predict 

linear stretches of sequence which are protein interfaces [30] [31] [32] [33]. While these 

methods cannot predict specific partners of the interfaces, they can be used to guide 

experimental assays into specific pairs of interacting proteins, and the types of sequence 

features introduced in this context have persisted in more complex methods of protein-

protein interface prediction. 

Proteins also exhibit conserved sequence regions which are sometimes referred to 

as protein domains. These are sequence patterns which occur in many proteins and across 

different organisms, and which have been determined to have a particular function. There 
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are well-established machine learning models (e.g. hidden Markov models) which are 

capable of detecting protein domains and other sequence features on newly-sequenced 

proteins, and databases which aggregate sequence annotations from many sources [27]. 

In practice, these sequence annotations have already been determined at the proteome 

scale for a number of well-studied organisms such as S. cerevisiae and H. sapiens. 

Sprinzak and Margalit [34] termed these sequence patterns “sequence-signatures” 

and measured overrepresentation of sequence-signatures in protein pairs experimentally 

known to interact. This could be applied to interaction prediction between new protein 

pairs by considering the over or under-representation of pairs of sequence-signatures 

present in the new proteins. They found that some pairs of sequence signatures had a log-

odds value as high as 12.16 compared to random occurrence, and the most frequent 

signature pair had a log-odds value of 2.52. In a leave-one-out validation of their method 

as applied to PPI prediction, they report sensitivity as high as 97%, but they defer 

estimation of specificity until an experimental assay can confirm their predictions. In 

particular, they mention that the availability of protein domain annotations in the InterPro 

database (3052 signatures as of June 2000) was a limiting factor, as only 50% of 

interacting proteins had sequence annotations. This may have reflected the 

incompleteness of the database, but may also suggest that protein sequences could have 

conserved linear regions of different types which are not identified by InterPro but which 

may still participate in mediating protein-protein interactions. 

Bock and Gough [11] developed a method which represents proteins by the 

physicochemical properties (charge, hydrophobicity and others) of each individual 

residue and trains a machine learning model (support vector machine or SVM) to learn 



19 

 

the features which can predict interactions. Their training set is composed of a positive 

set of known true interactions and a negative set of randomized protein sequences which 

are unlikely to interact. Since most machine learning models, including SVM, require a 

fixed number of input features, one challenge when applying these methods to interaction 

prediction is mapping the widely-varying lengths of proteins into a fixed number of 

features. Bock and Gough make a point of showing the wide variety of sequence lengths 

in their data set, but few details are provided on their solution to the crucial fixed feature 

length problem. Also, the final number of SVM features is not specified. Nevertheless, 

they claim good performance (80% accuracy) on a test set of approximately 2,200 

positives and 2,200 negatives. Assuming the error is evenly distributed between positive 

and negative instances, this corresponds to a sensitivity of 90% and a specificity of 90%. 

Even a relatively high specificity of 90%, as mentioned above, is not sufficient for all-to-

all screens and would incur a large number of false positive errors. 

Martin et al. [35] drew from Sprinzak’s and Bock’s works to create a method 

based on co-occurence of a type of sequence signatures in interacting pairs, but used an 

SVM model to learn the sets of signatures which are most informative for interaction 

prediction, rather than just counting occurrences. They represent each variable-length 

protein as a set of signatures which accounts for the global sequence composition of the 

protein and also for the compositions of the neighbourhoods of each residue along the 

protein, a representation inspired by the signature descriptor, which has been successful 

in various chemical informatics applications. Because the set of amino acids is finite, the 

set of possible amino acids and neighbours is also finite, leading to a fixed length feature 

vector for each protein sequence. Using this representation, they construct a kernel which 
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allows the SVM to compare pairs of signatures found in the query proteins to pairs of 

signatures found in training instances. They evaluate their classifier separately on several 

previously published data sets, by performing 10-fold cross-validation on each data set 

separately, claiming improved performance in direct comparisons to previous methods on 

the same data sets, including those of Sprinzak and Bock. However, basic information 

such as the numbers of positive and negatives instances in their data sets is omitted, and 

their performance measurements of other methods do not correspond with the reports in 

the various authors’ original publications (for example, Sprinzak reports 97% sensitivity 

for their own work, while Martin reports 50% on the same data set). From a theoretical 

standpoint, their approach to modelling protein sequences is intriguing, because it is 

purely sequence-based: it does not rely on sequence annotations of any kind (such as 

domains), nor does it require mapping through amino acid physicochemical property 

scales. It also provides a straightforward and reusable approach to representing variable-

length amino acid sequences in a fixed-dimensional space suitable for input to any other 

machine learning technique. 

Shen et al. [36] adopt a similar approach for sequence representation by first 

grouping amino acid types by physical characteristics into 7 groups, then encoding a 

protein sequence as the frequency of occurrence in sequence of the 7 × 7 × 7 = 343 

possible 3-tuples of these residue types. This is similar to Martin’s signature molecular 

descriptor, but also takes into account neighbour ordering. Pairs of interacting proteins 

are represented by concatenating their individual feature vectors, and they define a 

symmetric exponential SVM kernel for the distance between two pairs of proteins. The 

symmetric kernel makes their method insensitive to protein pair ordering. Their training 
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sets consist of 32,486 protein pairs (equal numbers of positives and negatives) and their 

test sets contain 400 protein pairs (the authors do not specify but seem to imply that their 

test set is also balanced). On these sets, they claim approximately 85% sensitivity and 

84% precision. Given that their test set contains equal numbers of positives and 

negatives, this is equivalent to 81% specificity, which would result in a very large 

number of false positives in an all-to-all screen. In fact, when they validate their method 

by predicting previously documented protein networks, they only probe protein pairs 

among the list of proteins already known to be involved in the network. This increases 

the expected probability of interaction of those protein pairs and is not representative of 

the overall expected rate of interaction between all possible pairs. Nevertheless, their 

method further confirms that the SVM as a machine learning tool performs well in 

interaction prediction, and suggests that physicochemical properties of residues are a 

strong candidate features for PPI predictors because reducing the residue types into 

groups of similar physicochemical characteristics preserved classifier performance. 

Guo at al. [37] encode residues using 7 physicochemical properties, but then take 

the auto covariance of these values at lags of up to 30 positions, to use as SVM features. 

Auto covariance and cross covariance features have previously been used successfully as 

features for DNA sequences [38] and in time series analysis [39]. They report 5-fold 

cross-validated results on 2,378 positives and 2,378 negatives. They explored several 

methods for generating the negative set: (a) pairs of proteins which are not co-localized, 

(b) pairs of proteins taken randomly from the positive set, except those known to interact, 

and (c) pairs of artificial protein sequences, mimicking distributions of single residues, 

tuples or triplets of residues from the real proteome. As expected, and as previously 
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suggested by Ben-Hur et al. [40], performance estimates for the non-co-localized 

negatives were biased toward better performance, because the classifier tends to learn to 

distinguish co-localized from non co-localized pairs rather than learning PPI prediction. 

Performance was also quite high for the residue shuffling sets, but these do not account 

for the complex characteristics of true protein sequences, such as protein domains or the 

3D structure determined by true sequences, thereby again introducing unintentional 

differences between the positive and negative set. Their lowest performance was on the 

data set of pairs chosen from the set of proteins with some known interactions, where 

they report 58% accuracy while Shen has previously achieved 84% accuracy for that set. 

Guo’s classifier achieves 42% sensitivity and 63% precision (equivalent 75% specificity) 

in this case, which are again insufficient for proteome-wide assays. 

The method of Pitre et al. (S Pitre et al., 2008), the Protein-protein Interaction 

Prediction Engine (PIPE), is based on the early ideas in sequence-based PPI prediction of 

Sprinzak & Margalit, the co-occurrence of interacting regions in protein pairs known to 

interact. However, they extend the definition of “interacting regions” to arbitrary 

sequence windows and measure similarity between two sequence windows using the 

PAM similarity matrix [41]. By counting the number of known interacting pairs with 

similar windows in both query proteins, this method generates a landscape of window co-

occurrence for each pair of windows, one window from each query protein (further 

explained in section 2.3.1). This landscape is reduced to a single score through an 

aggregation function such as median, mean, or maximum and a threshold is applied to 

generate a binary prediction. In their latest publication [17], they achieve a specificity of 

99.95% and a sensitivity of 14.6% on a data set of 1,274 positive and 100,000 negative 
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interactions in S. cerevisiae, and by varying the threshold can achieve a specificity of 

90% with 55% sensitivity. They apply their 99.95% specificity method to an all-to-all 

interaction screen in S. cerevisiae, identify 14,000 novel interactions, and experimentally 

validate some of their predictions. Despite promising results in terms of very high 

specificity, PIPE still only achieves 14.6% sensitivity, which is not sufficient to 

substantially enrich the global interaction network of S. cerevisiae already obtained by 

experimental methods. The authors conclude that improvements to PIPE are possible, 

perhaps by considering additional protein data such as localization or sequence 

annotations. 

Park undertook an objective comparative analysis of the methods of Martin et al., 

Shen et al., Pitre et al., and Guo et al. [15]. He re-implemented the methods and applied 

them to the same datasets of ~5,800 S. cerevisiae and 34,862 H. sapiens protein pairs in 

4-fold cross-validation testing. He found that the method by Pitre was the single best 

method, both in terms of precision at 20% recall (33% precision for PIPE, compared to 

11%, 4% and 5% for Martin, Shen and Guo, respectively) and in terms of the methods’ 

sensitivity at high specificity, as seen in the classifiers’ ROC curves (see Figure 1 in 

Park’s publication). Park carried out his experiment on test sets with 10:1 negative to 

positive ratio and 100:1 negative to positive ratio, confirming that lower negative to 

positive ratio artificially increases estimates of precision, while the ROC curves (in terms 

of sensitivity and specificity remain unchanged with respect to the ratio. Park also 

constructed a consensus classifier between the 4 methods, which slightly outperformed 

PIPE. This suggests that while PIPE is the strongest individual classifier, the other 

methods were still able to contribute improved predictions in certain cases, motivating 
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further work into improving PIPE. Park also comments that tests with higher ratios of 

negative to positives would have resulted in computationally prohibitive test sets sizes, 

which suggests that the issue of computational performance in protein-protein prediction 

has not yet been addressed, considering that proteome-wide screens consist of orders of 

magnitude more pairs than Park processed during his tests. 

The methods reviewed in this section are summarized in Table 1. PIPE surfaces as 

the leader in this field and, while its performance is very good and has been verified 

independently, there are still improvements to be made in terms of sensitivity and perhaps 

computational efficiency to increase its usefulness as a tool for exploring organism-wide 

protein interaction networks. The next section provides a detailed description of PIPE, 

which enables a more detailed analysis of its performance and proposals for 

improvements in Chapters 3 and 4. 
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Method Protein representation 

Machine 

learning 

model Performance 

Reviewed by 

Park 

Sprinzak & 

Margalit, 

2001 

Sequence-signatures from 

InterPro domain database 

Log-odds of 

signature pair 

occurrence 

compared to 

random  

97% sensitivity, 

unknown 

specificity 

 

Bock & 

Gough, 

2001 

Residue physicochemical 

properties, with unspecified 

mapping to fixed-length 

feature vectors 

SVM 80% accuracy 

(equivalent 90% 

sensitivity, 90% 

specificity) 

 

Martin, 

2005 

Signature molecular 

descriptor (frequency of 

occurrence of residue and its 

neighbours) 

SVM 70-80% 

accuracy (90% 

sensitivity, 90% 

specificity) 

Yes (rank 2) 

Shen, 2007 Conjoint triad (frequency of 

occurrence of 3-tuples of 

residue groups) 

SVM 85% sensitivity, 

82% precision 

(81% 

specificity) 

Yes (rank 3)  

Guo, 2008 Auto-covariance of 

physicochemical residue 

properties at lags of up to 30 

positions 

SVM 42% sensitivity, 

75% specificity 

Yes (rank 4) 

Pitre, 2008 

(PIPE) 

Sequence windows compared 

using the PAM similarity 

matrix 

Co-

occurrence of 

window pairs 

in known 

interacting 

pairs 

14.6% 

sensitivity at 

99.95% 

specificity, or 

55% sensitivity 

at 90% 

specificity 

Yes (rank 1) 

Park, 2009 Varies Consensus of 

previous 4 

methods 

60% sensitivity 

at 90% 

specificity 

N/A 

Table 1: Summary of six leading protein-protein prediction methods 

2.3.1 Protein-Protein Interaction Prediction Engine (PIPE) 

The Protein-protein Interaction Prediction Engine (PIPE) is a method developed 

at Carleton University by the bioinformatics research group, as a collaboration between 

faculty and graduate students from Computer Science, Biology and Engineering. Dr. 

Sylvain Pitre is the primary author of the method and wrote the initial implementation of 

the method [16], but the model and implementation have since been revised to improve 

classification and computational performance [17]. The work described here was done in 
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collaboration with the Carleton University bioinformatics research group, and the latest 

source code of PIPE was obtained directly from the main author, Sylvain Pitre. 

Modifications which improved the performance of PIPE were contributed back to the 

bioinformatics research group. 

PIPE predicts protein interactions from protein sequence alone [16] [17]. Given 

two protein sequences and a database of protein pairs known to interact, PIPE outputs a 

pair score for the potential interaction between the two query proteins. PIPE is thus a 

binary classifier where the input space is unordered pairs of proteins, the training data are 

the known interactions (in the same sense as a nearest neighbour classifier uses training 

instances), and the output is a score which can be used to rank predictions or, given a 

threshold, to make a binary decision. A high-level system overview is shown in Figure 3. 

 
Figure 3: PIPE high-level system overview 

The core hypothesis of PIPE is that if query protein A has sequence homology 

with protein A’, query protein B has sequence homology with protein B’, and proteins 

A’ and B’ have been shown to interact experimentally, then we can expect that A and B 

would also interact in a similar way. This resembles a nearest neighbour classifier in the 

space of protein pairs. The PIPE hypothesis is based on the nature of protein structure. A 

protein’s amino acid sequence determines its three-dimensional structure, while the 

physical and chemical properties of the amino acids at the surface of the protein 

PIPE 
Pair of query 

protein sequences 

(A, B) 

(input) 

Known interactions, 

sequences 

(training data) 

Interaction score 

(output) 
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determine its interactions with other proteins. Thus, pairs of amino acid sequences which 

are often found in interacting protein pairs known are likely to represent complementary 

three-dimensional structures. When present in a new pair of proteins for which only the 

sequences are known, the re-occurring sequence pairs suggest an interaction between the 

two new proteins. This is similar to Sprinzak and Margalit’s argument [34], but extended 

so that the unit of re-occurrence is arbitrary sequences rather than only protein domains. 

PIPE finds homology between proteins by comparing 20-amino acid windows 

using the PAM amino acid similarity matrix [41]. Dayhoff derived this matrix from the 

likelihoods of amino acid mutations observed in a set of evolutionarily-related proteins 

which were thought to have similar function. This matrix provides a similarity score for 

each pair of amino acids. The computation of the PAM matrix and the assumptions of the 

underlying statistical model of evolution are discussed in detail by Dayhoff [41]. The 

similarity of two amino acid windows of length 20 is measured as the sum of the PAM 

scores  (specifically, PAM120 scores) of amino acids at corresponding positions in the 

windows. Windows which have a large degree of similarity achieve higher PAM scores 

and are more likely to be structurally and functionally related. The score threshold is 

chosen by finding the threshold which achieves a very low probability (10
-6

) of accepting 

a match between two random windows. PIPE uses a threshold of 35 for S. cerevisiae and 

40 for H. sapiens and M. musculus. 

One implicit assumption when using sequence windows is that protein regions 

which mediate interaction are contiguous in the amino acid sequence of the protein. This 

ignores long-range effects where amino acids distant in the sequence of the protein 

become physically clustered when the protein assumes its folded three-dimensional 
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structure. It is hard to estimate how many PPIs are mediated by these long-range effects 

rather than local interactions between short linear stretches of amino acids. Nevertheless, 

linear peptides have been previously shown to mediate some PPIs [42], and PIPE itself 

has been shown to achieve good performance compared to other sequence-based PPI 

predictors (section 2.3). 

For each window of amino acids in query protein A, PIPE finds proteins within 

the database of known interactions which have at least one window which is similar to 

the query window. The same is done for each window in query protein B. Pairs of 

proteins with a high degree of sequence similarity to each of A and B which are also 

found in the list of known interacting pairs provide evidence for interaction of the two 

original query windows. The number of co-occurrences of such homologous windows is 

the number of “hits” for the pair of windows from the query proteins. This is calculated 

for all pairs of query windows, resulting in a matrix of values (also referred to as a PIPE 

landscape) which represents the local likelihood of interaction between each pair of 

regions from the two query proteins (Figure 4). In the example shown, the region around 

YPL240C amino acid 220 appears to interact with large portions of YAL005C, but in 

particular with the region around amino acid 500. Higher overall matrix values suggest an 

interaction between the two proteins as a whole. 
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Figure 4: Internal block diagram of PIPE  

The PIPE matrix exhibits several important features. First, some matrices contain 

long, thin ridges which are thought to represent false hits since it is unlikely that one 

protein window interacts with an entire partner protein (Figure 5a). PIPE applies a 3x3 

median filter to remove these regions. For computational efficiency, this filter is 

implemented by simply counting non-zero cell values among the 9 values within the 

filter’s coverage, so height information is effectively discarded. PIPE matrices also have 

compact regions of high matrix values which are thought to represent the binding sites 

between the two proteins (Figure 5b). On the other hand, some matrices have only 

background noise and these represent a lack of interaction between the two proteins 

(Figure 5c). To reduce the matrix to a single value, PIPE calculates the mean of the 

matrix values. 
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(a) 

 

(b) 

 

(c) 

Figure 5: Sample PIPE matrices showing some common matrix features. (a) a thin 

long ridge (false hits) (b) a compact region of high matrix values (binding sites) and (c) 

background noise (no interaction) 

When applying PIPE to a query pair which is also included in the list of known 

interactions, the PIPE matrix automatically assumes a baseline value of 1, because each 

query protein has homology with itself, and the query pair is a known interaction. 

Because of this, PIPE is inherently biased toward higher scores for pairs which appear in 

the known interactions list, which biases performance estimates on the training set. 

Therefore, it is particularly important to apply some form of cross-validation to reliably 

estimate the model’s performance on unseen protein pairs. In particular, leave-one-out 

cross-validation (LOOCV) is well-suited for this purpose because excluding one known 

pair from the PIPE algorithm is computationally inexpensive, and it provides a large 

sample of instances for estimating the classifier’s performance, which allows for very 

accurate estimates. For PIPE in particular, there are several ways of excluding training 

data for each test pair, with varying levels of stringency: 

1. Exclude only the test pair (A, B) from the known interactions. This is the 

traditional interpretation of “leave-one-out” and the least stringent as it excludes 

only one known interaction from the training data, thus not very strongly 

affecting PIPE matrices. 
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2. Exclude all protein pairs of the form (A, *) or (*, A). This is a more stringent 

approach, as it excludes all of A’s known interactions from the training data. 

PIPE must rely on homology between A and other proteins to establish evidence 

for interactions with A. 

3. Exclude all protein pairs of the form (A, *), (*, A), (B, *) or (*, B). This is the 

most stringent LOOCV case, because PIPE does not directly benefit from any of 

A’s or B’s interactions. Both A and B must have homology with known 

interactors, other than themselves. 

All test results presented in this thesis were obtained using the last, most stringent 

method. This provides the most confidence that the method and modifications presented 

here are not simply over-fitting to the training data and that LOOCV performance is a 

reliable estimate of performance on unseen data. 
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3 Computational Acceleration of PIPE using Improved Data 

Structures and a Space-Time Trade-off 

Many different types of protein-protein interaction predictors have been proposed 

based on different protein sequence representations or machine learning models (see 

section 2.3). Authors frequently report their method’s classification performance, 

suggesting that they trained and tested their models on actual data sets of protein pairs. 

An implicit assumption is that the training and testing algorithms were computationally 

efficient enough to execute in a reasonable amounts of time. The abundance of methods 

suggests that developing and validating PPI classifiers at the scales suggested in existing 

publications is achievable using widely-available computer hardware. On the other hand, 

this issue of computational performance of PPI classifiers has never been addressed 

explicitly. 

At precisely what scale does this assumption of reasonable training and testing 

times remain valid? For most machine learning methods, the training and testing times 

increase with the number of instances. Studies commonly cite application of their 

methods on databases of known interactions of 10,000 protein pairs in S. cerevisiae [37] 

and 16,000 protein pairs in H. sapiens [36]. However, real PPI datasets are substantially 

larger than this. For example, HPRD, a large repository of H. sapiens protein-protein 

interactions, contained 39,167 protein pairs in its 2009 update [43]. Furthermore, these 

sizes are expected to increase as more interactions are experimentally discovered. Also, 

larger numbers of protein pairs known to interact means more labelled training and test 

instances. Larger training sets enable better training of existing models (lower model 
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variance) and training of higher-order models with less danger of overfitting, while larger 

test sets increase the accuracy of classifier performance estimates. In H. sapiens, the 

estimated total number of interactions is 650,000 [7]. Therefore, databases of known 

interactions in H. sapiens can be expected to increase in size by at least one order of 

magnitude. 

Classifier testing also puts pressure on the computational performance of PPI 

classifier implementations. In order to measure the predictive performance of a classifier, 

we must execute the classifier implementation for every test instance. This means that the 

testing time also increases with the number of test instances. Furthermore, because we 

wish to achieve very high specificity (above 99.9%, as discussed in section 2.1), it is 

necessary to have a very large pool of negative test instances (on the order of 100,000) in 

order to obtain accurate estimates of specificity. Existing methods often side-step this 

issue and perform model testing on sets deficient in negative instances (as discussed in 

sections 2.1 and 2.2, and by Park [15]), resulting in potentially biased classification 

performance estimates depending on the performance measures which the authors chose 

to report (precision and accuracy are biased, as explained in section 2.1). Ideally, one 

would use a test set with a ratio of positives to negatives that approximates the ratio 

expected to be found in the cell (1:370 in H. sapiens). If one was to use the current data 

sets of known positive interactions and add to those a number of negative protein pairs in 

the correct ratio, the total test set size would be more than two orders of magnitude larger 

than current test sets, and testing time would increase accordingly. Even with optimized 

classification algorithms, some authors are unable to process data sets more strongly 

biased towards negatives than a positive to negative ratio of 1:15 [44]. Tweaking the 
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model and performing multiple iterations of training and testing, which usually results in 

better models, simply becomes intractable. 

Finally, one of the main goals of PPI classifier design is the application of the 

trained models to organism-wide interaction screens, directly addressing the need of 

systems biologists for whole-organism protein interaction networks. This interaction 

network can be obtained from an all-to-all screen, which applies the classifier to all 

(unordered) pairs of proteins in an organism, including self-interactions, and which 

would need to consider 
�01�23456�78	�01�23456�7

"
 protein pairs. Assuming 6,000 proteins 

in S. cerevisiae and 20,000 in H. sapiens, the classifier would have to be applied to 

approximately 18 million and 400 million protein pairs, respectively. This number of 

protein pairs is larger than the size of test sets in previously published methods by 3 

orders of magnitude in S. cerevisiae and 4 orders of magnitude in H. sapiens. Note also 

that this number increases quadratically with the number of proteins in the organism. 

Only the PIPE method has attempted an all-to-all screen in S. cerevisiae, and it required 

1,000 hours of continuous computation on a large computational cluster [16]. This was 

later reduced in an improved implementation of the algorithm to 48 hours of computation 

on 76 processors [17]. An all-to-all screen in H. sapiens required a month of continuous 

computation on two clusters (unpublished results; at the time, one of the clusters was 

ranked in the top 5 on the Top500 list of supercomputers [45]). In all three cases, the 

screens were out of reach for researchers without access to large computational clusters. 

In the following sections we describe the most up to date implementation of the 

PIPE algorithm [17], obtained as C source code from Sylvain Pitre. This is the only 

available implementation of PIPE and is maintained by the bioinformatics research group 
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at Carleton University. We describe PIPE in detail and discuss the algorithmic 

complexity and practical runtimes of different parts of the algorithm depending on the 

characteristics of the proteome on which the algorithm is being used. We identify several 

aspects of the implementation of the algorithm which could be improved and propose 

modified algorithms with our improvements. This new implementation achieves up to 80 

times speedup (14.5 on average) compared to the original implementation for classifier 

test runs. This facilitated the development and validation of the classification model 

improvements described in the following chapter (Chapter 4). We estimate that an all-to-

all screen in H. sapiens would complete approximately 14.5 times faster, making it 

possible to attempt such a screen in less time and using less computational resources than 

before. 

The analysis and changes proposed in this section sometimes refer to the 

algorithm, and sometimes to the implementation, of PIPE. Algorithm changes primarily 

consist in alternate ways of computing the same result, but in a way which trades reduced 

time complexity for another computational resource such as memory utilization. 

Implementation changes primarily modify the memory layout and data representation 

used, without significantly changing the sequence of operations or data processing 

involved. This is sometimes accompanied by small changes in the algorithm, such as 

additional initialization required at different points, different methods of iterating over a 

list, or a constraint on the applicable algorithms for a particular operation. In some cases, 

the distinction between algorithm and implementation changes is blurred. However, both 

types of changes contribute improvements in execution speed, and together can improve 

the overall speed of PIPE and its utility as a PPI predictor. 
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3.1 PIPE Algorithm 

When processing a given protein pair, PIPE examines each sequence window in 

query protein A for similarity to other proteins A’ in the organism’s proteome (refer to 

Figure 4). When a match for the current window in query protein A is found in another 

protein A’, PIPE looks at each known interaction partner of A’ for a potential protein B’ 

which contains a window matching the current window in the second query protein B. 

This process is repeated for each pair of window sequences from the query proteins A and 

B. The result is a matrix of co-occurrence of pairs of sequence windows from A and B, 

among proteins which are known to interact. 

In the initial implementation of PIPE [16], the sequence window comparisons 

were performed on the fly. For each sequence window in A and each sequence window in 

B, PIPE compared these windows to every other window in the proteome. This was the 

most computationally intensive part of the algorithm. Because both query proteins and 

proteins in the known interactions list both originate from the known proteome, these 

sequence comparisons were always performed between two sequence windows from the 

proteome and in practice the same window comparisons were often re-computed. In the 

revised implementation [17], PIPE first precomputes all window comparisons and stores 

the results on disk, which accelerates the execution of the main algorithm. For every 

sequence position i in every protein A in the proteome, the precomputation step 

compares the reference window Ai to all proteins in the database and outputs the list of 

proteins which contain a window which is similar to Ai. These similarity lists are 

grouped and written to disk sequentially, one file for each protein A. This optimization 

enables the outer loop of PIPE (iteration over every sequence window in protein A) to 
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only require reading the similarity lists from disk and iterating over them, rather than 

comparing the sequence windows to all other sequence windows in the proteome on the 

fly. 

A pseudocode representation of the PIPE algorithm is shown in Figure 6. The 

algorithm takes as inputs the query protein pair A and B, the precomputed sequence 

window comparisons described previously and a mapping from each protein to its list of 

known interaction partners. Proteins are represented as unsigned 16-bit integers, which 

are the indices of the proteins in the list of protein sequences. This places a limit of 

65,536 on the total number of proteins, but this has not been an issue in practice. The list 

of known interacting pair is converted to a mapping by grouping the list by the first 

protein in each pair. Thus, the key of the mapping is any given protein in the proteome, 

and the value of the mapping is a list of proteins which are the key protein’s partners. 

Pairs in the known interactions list are taken as symmetric, that is, if (A, B) is present in 

the original list, then B is in A’s known partners list, and A is in B’s known partners list. 

The “mapping” representation ensures constant-time access to the list of known 

interactions for any arbitrary protein X. 
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Inputs: i) query protein pair (A, B), 

        ii) precomputed sequence window comparisons for every 

            protein: 

          Protein x: 

            Window i -> (list of proteins with similar windows) 

        iii) known interacting pairs, indexed by one of the 

             proteins: 

          Protein x -> (list of known interaction partners) 

Outputs: matrix of co-occurrence H, 

           dimensions (length(A), length(B)) 

 

fill output matrix H (dimensions length(A) by length(B)) with 0 

 

for each sequence window Ai in A 

  {A’} = list of proteins with windows similar to 

         protein A’s window Ai 

 

  for each A’ in {A’} 

    // A’ is a protein similar to A 

    {B*} = list of proteins known to interact with A’ 

 

    for each B* in {B*} 

      // B* is known to interact with a protein similar to A, 

      // but we must also check for similarity to B’. 

      for each sequence window Bj in B 

        {B’} = list of proteins with windows similar to 

               protein B’s window Bj 

 

        for each B’ in {B’} 

          if B’ == B* 

            // Window Ai is similar to a window in A’, which 

            // interacts with B*. B* is the same protein as B’, 

            // which contains a window similar to Bj. Therefore, 

            // it’s possible that windows Ai and Bj interact. 

            // Refer to Figure 4. 

 

            // Increment the matrix cell corresponding to the  

            // current window in A (i) and the current window in B 

            // (j). 

            Hi,j += 1 

 

          end if 

        end for 

      end for 

    end for 

  end for 

end for 

 

return H 

Figure 6: PIPE algorithm from Pitre et al. 2008 [17] 

Each of the nested loops in Figure 6 directly corresponds to the steps of the PIPE 

algorithm described at the beginning of this section. The if statement (line 10 in Figure 

6) is executed a number of times which depends directly on the number of iterations of 
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the enclosing loops, and this statement is taken as the unit of execution. The cost of the 

increment operation inside the if statement is weighted by the probability of the branch 

being taken, so we consider it negligible. When a section of code is contained within a 

loop, we calculate the total cost of the loop as the cost of the loop body multiplied by the 

average expected number of iterations. Here, the expected number of iterations for a 

given loop is a function of the proteome from which the query proteins and input 

databases are derived, as described below. This multiplication does not give an exact 

result because the numbers of iterations in different loop levels are somewhat correlated, 

which means that the result is a biased estimate of the total number of iterations. 

Nevertheless, this is sufficient for a cursory analysis of the algorithm. The effect of this 

correlation is discussed in detail later, at the end of section 3.3. 

The parameters of the proteome which influence algorithm runtime and memory 

requirements are listed in Table 2 for three organisms: S. cerevisiae, M. musculus, and H. 

sapiens. The average values are used for calculating average time complexity, while 

maximum values are used for calculating the worst-case space complexity (memory 

requirements). For the time complexity of the algorithm, we can associate each nested 

loop with one of these parameters (Table 3). The total time complexity of the entire 

algorithm, for a particular protein pair (A, B), is O(lengthA × avgSimHits × lengthB × 

avgNeighbours × avgSimHits) operations. The algorithm does not use any additional 

memory aside from the identifiers of the input proteins, the protein similarity database, 

the interaction pair database and the output matrix. 
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Parameter Symbol Value in 

S. cerevisiae 

Value in 

M. musculus 

Value in 

H. sapiens 

Length of a protein (number of amino acids) 

For a particular 

protein 

lengthA, lengthB    

Over all proteins     

Minimum minLength 16 5 30 

Average avgLength 449.7 555.6 543.2 

Maximum maxLength 4,910 35,213 34,350 

Number of proteins 

Entire proteome numProteins 6,716 16,354 22,513 

Number of amino acids (proteome size) 

All organism proteins proteomeSize 3.0 × 10
6
 9.1 × 10

6
 12.2 × 10

6
 

Number of known interactions 

 knownPairs 43,591 3,580 41,678 

Number of pairs in an all-to-all screen, including self-interactions = 
9:;<=>?@A9BC	9:;<=>?@A9B

C
  

 allPairs 22.6 × 10
6
 133.7 × 10

6
 253.4 × 10

6
 

For a given sequence window, number of proteins containing a window similar to the given 

window (similarity hits) 

For a particular 

sequence window 

simHitsAi, 

simHitsBj 

   

Over all sequence 

windows 

    

Minimum minSimHits 0 0 0 

Average avgSimHits 7.9 8.4 21.3 

Maximum maxSimHits 550 1,187 1,680 

For a given proteins, number of its known interaction partners 

For a particular 

protein 

neighboursA’    

Over all proteins     

Minimum minNeighbours 0 0 0 

Average avgNeighbours 12.83 0.43 3.60 

Maximum maxNeighbours 334 257 264 

Table 2: Characteristics of the protein sequences and protein interactions in S. 

cerevisiae, M. musculus and H. sapiens 
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Line number 

in Figure 6 

Loop description Approximate number 

of iterations 

2 Every sequence window in A lengthA 

4 Every protein with a window similar to Ai avgSimHits 

6 Every protein known to interact with A’ avgNeighbours 

7 Every sequence window in B lengthB 

9 Every protein with a window similar to Bj avgSimHits 

Table 3: Nested loops in the PIPE algorithm and their associated approximate 

numbers of iterations 

Because PIPE mainly iterates over lists of integers, with very little arithmetic or 

logic operations, the algorithm’s performance is heavily constrained by how efficiently it 

uses the memory subsystem of the hardware on which it is executing. The on-disk and in-

memory representation of the inputs to the algorithm can have a large impact on its 

memory access patterns, and therefore on its performance. In particular, the cost of 

accessing main memory is the dominant factor and the data structures chosen must be 

amenable to caching inside the CPU. In general, storing more frequently-used data in 

cache leads to better cache efficiency, higher cache hit rate, and better amortizes the cost 

of performing an external memory access to main memory. 

3.2 Input Data Representation 

3.2.1 Similarity Lists of Protein A 

As described in section 3.1, the window comparison precomputation generates a 

file for each protein in the organism. Each file contains unsigned 16-bit integers which 

encode the results of the sequence window comparisons (Figure 7). Each of the integers 

is stored as its raw 16-bit binary representation. For protein A, the results are stored in a 

file named “A” which contains: the number of amino acids in A (lengthA) and, for each 

sequence window Ai, the number of proteins which contain a window similar to Ai and 
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the actual list of protein identifiers. This naturally leads to the loops on lines 2 and 3 in 

Figure 6 as simply sequentially reading and parsing integers from this file. 

 

Figure 7: On-disk format of the precomputed similarity files 

The current implementation uses the C library function “fread” to read from the 

similarity files. This function is called for every integer to be read from the similarity file, 

which means that it is called on average avgLength × avgSimHits times for reading the 

similarity file of protein A for every protein pair. Function calls have associated overhead 

and minimizing the number of function calls, particularly in a very commonly-used area 

of a program, is likely to lead to performance improvements. Therefore, we propose that 

the entire similarity file be read into an in-memory array at once (a single call to fread), 

and that this retrieval of the protein lists be implemented as a pointer sliding along the 

array. The loop on line 2 is then implemented as a pointer dereference (much less 

expensive than a function call), and the set {A’} is also accessed by indexing into an in-

memory array of protein identifiers. The similarity files are at most 186 kilobytes in S. 

cerevisiae and 1.2 megabytes in H. sapiens, which is well within the range of typical 

memory capacities, and can even fit in the CPU caches of many modern processors. 

lengthA simCnt1 (2) proteinID 

simCnt2 (3) proteinID 

proteinID 

simCnt3 (0) 

proteinID proteinID 

. 

. 

.  Unsigned 16-bit integer 
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An alternative method of accessing the similarity files would be to memory-map 

these files into the virtual address space of the PIPE process. Like the in-memory buffer, 

this saves one function call per element access compared to the original implementation. 

However, unlike the in-memory buffer which keeps a private copy of the similarity data 

for each PIPE instance, the memory mapping method keeps only one copy of the 

similarity data in physical memory (in the operating system cache), and all PIPE 

instances access the same physical memory, reducing the overall memory usage for 

multiple instances of PIPE. This would also have the advantage of more efficiently using 

the CPU cache, by not duplicating data in physical memory, thus not caching duplicate 

data in the CPU. However, these may not be relevant factors because the implementation 

is not bound by available memory, and the likelihood of two PIPE instances processing 

the same proteins simultaneously and benefiting from the cache sharing is fairly low, 

especially as the total number of pairs grows. While we have not attempted to use 

memory-mapping for similarity files, we expect that the practical performance gains may 

not be noticeable. 

3.2.2 Similarity Lists of Protein B 

The reading and processing of the similarity data for protein B is also a potential 

bottleneck in the algorithm. Because the iteration over all sequence windows in B is 

nested much deeper in the algorithm, it is executed many more times. On average, the 

loop over all proteins in Bj’s similarity list (line 9) is executed avgLength × avgSimHits 

× avgNeighbours × avgLength times. 

The current implementation reads the similarity file of B only once, at the 

beginning of the algorithm, using the same “fread” function call, and pre-processes all 
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similarity lists of B into an array of singly linked lists (Figure 8). The loop over all 

sequence windows Bj (line 7) is implemented by indexing into this array, and the loop 

over each protein in Bj’s similarity list (line 9) is implemented by following the node 

pointers in the linked list data structure (Figure 8). 

 

Figure 8: In-memory representation of the protein B similarity lists 

This pre-processing step of the similarity lists of B is not necessary. In fact, this 

representation has 75% overhead because only 25% (16 out of 64 bits) of the node 

structures contain the actual protein identifiers which are useful to the algorithm’s 

processing. This means that only 25% of the CPU cache space occupied by this data 

structure contains useful data. Furthermore, the node structures are allocated dynamically 

using “malloc”, which makes no guarantee about the spatial locality of the returned 

memory regions. Ensuring spatial locality of the node structures would speed up 

sequential iteration of the nodes by taking advantage of prefeteching logic in the CPU 

cache, which would fetch multiple nodes from main memory at once. 

We propose that the similarity file be read entirely into memory, as proposed in 

section 3.2.1 for protein A. The loops over each window in protein B (line 7) and each 

protein in the similarity list for Bj (line 9) are implemented as a pointer sliding along the 

. 

. 

. 

Window 1 

Window 2 

Window 3 

Window 4 
Protein ID (16 bits) + padding (16 bits) 

Pointer to next node (32 bits) 

Protein B 
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array, referencing the appropriate sub-sequence of integers when the set {B’} is 

required. This representation has very good spatial locality because it iterates sequentially 

over adjacent locations in memory. When the first element of the similarity set {B’} is 

accessed and brought into CPU cache from main memory, subsequent elements are also 

prefetched and ready for the next iteration of the loop without accessing main memory 

again. Furthermore, the CPU cache is used very efficiently, because by storing the protein 

IDs sequentially and using the minimum number of bits (16-bits for proteomes of less 

than 65,536 proteins), all of the CPU cache is filled with useful data, allowing 4 times 

more protein identifiers to be stored in cache than the original implementation, for the 

same physical cache size. 

3.2.3 Known Interactions Lists 

On line 5, the algorithm retrieves a list of proteins {B*} known to interact with 

A’. The same linked list representation was also used for the storage of the lists of known 

partners for each protein. The loop over each partner (line 6) is implemented by 

following the “next” pointer of each linked list node. The same CPU cache efficiency 

argument applies as in the case of the similarity lists of protein B (section 3.2.2) and this 

loop would also benefit from the plain array representation of the protein identifier list. 

However, for the known interactions list, we must be careful to preserve constant 

time random access of the known interactions list for any arbitrary protein. This is used 

on line 5 to access the known interactions of A’, where A’ is not known ahead of time 

and is not iterated sequentially. To preserve constant time lookup, we still store the 

known interactions lists contiguously in memory, but we pad each list to the maximum 

length (334 in the worst case for S. cerevisiae, so this is not memory prohibitive). 
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Accessing the known interactions list for an arbitrary protein k then consists of 

computing the offset of the list, k × maxNeighbours. This has some main memory 

overhead due to the unused slots in lists of proteins with few known interactions. 

However, more importantly, this does not pollute the CPU cache, because those memory 

locations are never accessed, and preserves near 100% efficiency of the cache as in 

section 3.2.2. 

3.2.4 Reloading of Protein B Similarity Data 

Furthermore, because the algorithm is often used to process a large number of 

protein pairs, it is worth preserving in memory as much data as possible from one pair to 

another. In particular, the original implementation reloaded the protein B similarity file 

for every protein pair. We propose that a check be added that avoids reloading the 

similarity file when protein B doesn’t change from one protein pair to another. The 

benefit of this optimization can be maximized, when performing all-vs-all experiments, 

by first ensuring that the protein list given to the PIPE algorithm is sorted by protein B 

before executing PIPE. This pre-sorting does not affect the results of the algorithm but 

provides an advantage in total runtime for all input protein pairs. Additionally, because 

subsequent optimizations, described in section 3.3 below, will require some 

precomputation on the protein B similarity file, this optimization will become more 

beneficial as the results of the precomputation can be saved in memory for the next 

protein pair. 
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3.3 Space-Time Tradeoff 

We now re-arrange the algorithm to facilitate further analysis. Notice that the list 

of sequence windows B (the set being iterated over in line 7 of Figure 6) is independent 

of the current B* (the current element of the iteration on line 6), which is a protein known 

to interact with A’. Therefore, changing the order of iteration of these two loops has no 

effect on the behaviour of the algorithm. By making this change, we can highlight a pair 

of nested loops which can be optimized. An equivalent, modified algorithm with these 

two loops swapped is shown in Figure 9. 
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Inputs: i) query protein pair (A, B), 

        ii) precomputed sequence window comparisons for every 

            protein: 

          Protein x: 

            Window i -> (list of proteins with similar windows) 

        iii) known interacting pairs, indexed by one of the 

             proteins: 

          Protein x -> (list of known interaction partners) 

Outputs: matrix of co-occurrence H, 

           dimensions (length(A), length(B)) 

 

fill output matrix H with 0 

 

for each sequence window Ai in A 

  {A’} = list of proteins with windows similar to 

         protein A’s window Ai 

 

  for each A’ in {A’} 

    // A’ is a protein similar to A 

    {B*} = list of proteins known to interact with A’ 

 

    for each sequence window Bj in B 

      {B’} = list of proteins with windows similar to 

             protein B’s window Bj 

 

      // {B*} is a list of partners of A’ (similar to Ai). 

      // {B’} is a list of proteins similar to Bj. 

      for each B* in {B*} 

        for each B’ in {B’} 

          if B’ == B* 

            // Window Ai is similar to a window in A’, which 

            // interacts with B*. B* is the same protein as B’, 

            // which contains a window similar to Bj. Therefore, 

            // it’s possible that windows Ai and Bj interact. 

            // Refer to Figure 4. 

 

            // Increment the matrix cell corresponding to the 

            // current window in A (i) and the current window in B 

            // (j). 

            Hi,j += 1 

 

          end if 

        end for 

      end for 

    end for 

  end for 

end for 

 

return H 

 Figure 9: PIPE algorithm with rearranged inner loops 

Notice that the two innermost loops (lines 8 through 14) compute the number of 

proteins which are both partners of A’ (in {B*}) and similar to Bj (in {B’}). This is 

effectively the size of the set intersection |EFGH I EFJH|. The same method is used in the 
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original implementation from Figure 6 , where the loops are on lines 6 and 9. This nested 

loop method of calculating the set intersection requires on the order of avgNeighbours × 

avgSimHits iterations, and is a relatively inefficient method of calculating this 

intersection. By improving the implementation of this operation, we can dramatically 

improve the performance of the algorithm as a whole, particularly since this is in the 

innermost loops and is executed a large number of times (lengthA × avgSimHits × 

lengthB on average). 

There are many potential approaches for computing set intersection efficiently 

[46] [47], with different time and space complexity, different requirements on the 

representation of the input sets, and with different practical runtimes depending on the 

relative sizes of the two sets. 

Let the first set be X with m elements and the second set be Y with n elements. 

Currently, the outer loop iterates over each element of X and the inner loop is a set 

membership query in the Y set. The naive implementation is a linear search through the 

array, which requires O(n) steps. This is the current algorithm with overall complexity 

O(mn). However, if we sort the Y array ahead of time, then binary search can find an 

arbitrary element x in the Y array in O(log n) time. Thus, the set membership query in the 

Y set can be optimized from the linear search with O(n) complexity to binary search with 

O(log n) complexity. There are still m set membership queries, resulting in an overall set 

intersection with time complexity O(m log n), without any additional memory 

requirements (O(1) space complexity). This is already better than the original O(mn) 

complexity, particularly if we can select Y to be the larger of the two sets (n > m). This 

choice is arbitrary and does not change the results of the algorithm because set 
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intersection is a symmetric operation. Additionally, it should be noted that the {B*} and 

{B’} arrays are already sorted as a side-effect of the precomputation phase, so there is 

no additional penalty for ensuring this precondition is true. 

We can use even more optimized algorithms if we impose additional restrictions 

on the input data. If we assume that both X and Y are sorted before the algorithm is 

executed, the set intersection can be computed using a binary merge algorithm. This is 

similar to the merge step in merge sort [48], where two sorted lists are merged by 

walking the two lists simultaneously. Instead of generating the combined output list as in 

merge sort, we simply keep a running count of the number of equal elements in each list. 

This method visits each list element once, so the time complexity of the set intersection is 

O(m + n), while the space complexity is still O(1). This is even better than O(m log n), 

and most likely could achieve several times speedup in practice compared to the original 

O(mn) algorithm. 

If we tolerate an increase in space complexity, we can achieve O(m) time 

complexity. By precomputing an alternative representation of one of the sets, we can 

perform set membership queries in O(1) time. Specifically, we preprocess the Y set into a 

bit vector representation. This is a contiguous block of memory in which each bit 

represents whether a particular element from the universe is a member of the set: if the bit 

is 1, the element is in the set, otherwise, it is not. In this case, the universe is the set of all 

proteins of the organism under consideration. Until now, the sets have been represented 

as arrays of protein identifiers and the space complexity of the sets was O(n) where n was 

the size of the set. The bit vector representation has O(numProteins) space complexity 

because it requires a bit for each protein in the proteome. However, this representation 



51 

 

allows O(1) membership queries, by performing a single memory access to the correct 

location in the bit vector. The O(1) membership query is contained in a loop over all the 

elements of the X set, so in total we perform m membership queries. The overall time 

complexity of the set intersection is now O(m), which is a improvement from the original 

O(mn) complexity by a factor of n. However, the space complexity is O(|U|), where U is 

the universe of the Y set, which may be prohibitive depending on the size of the proteome 

and available hardware resources. 

Table 4 summarizes the possible implementations of the set intersection and their 

characteristics. 

Algorithm Input requirements Time complexity Space complexity 

Linear search None O(mn) O(1) 

Binary search Y is sorted O(m log n) O(1) 

Merge X and Y are sorted O(m + n) O(1) 

Bit vector Y is represented as a bit vector O(m) O(|U|) 

Table 4: Properties of four set intersection algorithms. These are candidates for the set 

intersection computed by the two inner loops of the original PIPE algorithm. 

Because set intersection is a symmetric operation, we can choose which set 

({B*} or {B’}) to assign to X and Y. There are two potentially competing goals: we 

wish to assign the largest set to Y, because that provides the best improvement of time 

complexity from the original implementation, by a factor of n, where n is the size of the Y 

set. On the other hand, for a complete execution of the algorithm for a given protein pair, 

the set intersection operates on several different {B*} and {B’} sets, depending on the 

current A’ or the current Bj, respectively. The total space requirement will depend on 

how many bit vectors must be precomputed and stored, so that reducing time complexity 

may drive an increase in practical memory requirements of the algorithm. 
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If we take Y = {B*}, the set of known interaction partners of A’, then there is a 

set for each choice of A’ (each protein in the proteome), for a total of numProteins sets. 

Each set requires numProteins bits so that the total memory requirement is numProteins
2
 

bits, or 5.6 megabytes in S. cerevisiae, 33.4 megabytes in M. musculus and 63.4 

megabytes in H. sapiens. This choice of Y would result in a theoretical asymptotic 

speedup of avgNeighbours = 12.83 in S. cerevisiae, 0.43 in M. musculus and 3.60 in H. 

sapiens. In M. musculus, the bit vector algorithm can sometimes perform worse the linear 

search (original) algorithm: if Y = ∅, the bit vector algorithm always makes one memory 

access to probe the set for membership of the current x protein. The linear search 

algorithm need not probe the protein identifiers array after finding that the array is empty 

(Y = ∅). 

On the other hand, if we choose Y = {B’}, the set of proteins with a window 

similar to Bj, there are lengthB such sets, one for each sequence window in B, and the 

total space requirement is lengthB × numProteins, for a given choice of B. Because 

lengthB varies widely, we must account for the worst case space requirements. For the 

case where B is the longest protein in the proteome, the space required is 4.1 megabytes 

in S. cerevisiae, 72.0 megabytes in M. musculus and 96.7 megabytes in H. sapiens. In the 

average case, however, the memory requirements are 377 kilobytes in S. cerevisiae, 1.1 

megabytes in M. musculus and 1.5 megabytes in H. sapiens. The asymptotic speedup for 

this choice of Y would be avgSimHits = 7.9 in S. cerevisiae, 8.4 in M. musculus and 21.3 

in H. sapiens. 

Luckily, for these particular organisms, neither choice of Y is prohibitive in terms 

of space complexity, even in the worst case. Even when used in a multi-user computing 
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cluster environment, it’s likely that each user process will be allowed to allocate at least 

100 megabytes of memory. Therefore, our choice of the Y set is guided by optimization 

of the time complexity. For S. cerevisiae, it seem as though Y = {B*} offers the best 

speedup (12.83), while for M. musculus and H. sapiens, Y = {B’} is better, with 

speedups of 8.4 and 21.3, respectively. 

We chose to set Y = {B’}, which favours M. musculus and H. sapiens. First, 

all-to-all screens in M. musculus and H. sapiens (133.7 and 253.4 million pairs) contain 

many more protein pairs than in S. cerevisiae (22.6 million pairs). This means that in 

terms of the time required for a full all-to-all screen, the greatest impact can be achieved 

when optimizing for these two cases. Additionally, M. musculus and H. sapiens are of 

more practical interest because results on these organisms are closer to potential 

biomedical applications. Furthermore, the fact that avgNeighbors > avgSimHits in S. 

cerevisiae is most likely the result of intense interest in studying the organism, driving up 

the number of known interactions and therefore avgNeighbours. We expect that most 

other organisms are much less studied than S. cerevisiae, and have much lower numbers 

of known interactions, and therefore low avgNeighbours values suggesting that our 

choice of Y is more widely-applicable. 

One remaining concern is the scaling of the space complexity when applied to 

organisms with larger proteomes. For Y = {B*}, the space requirements reach 1 

gigabyte only when processing more than 92,000 proteins. For Y = {B’}, the space 

requirements depend on both the number of proteins and the size of the largest protein. 

Assuming that the longest protein is still approximately 35,000 amino acids in length, the 
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proteome would have to contain ~229,000 proteins (or approximately 10x human) before 

the space requirements exceeded 1 gigabyte. 

The estimates of total numbers of loop iterations in the algorithm were based on 

average parameters of the proteome. This would produce exact estimates if the numbers 

of iterations of each loop were uncorrelated, but this is not the case in reality. Consider a 

query protein pair which is in fact a positive pair (known to interact). We would expect 

that the windows of amino acids on protein A which mediate the interaction are more 

conserved throughout the proteome and thus have a higher number of similarity hits 

(simHitsAi) than windows chosen at random. At the same time, proteins which contain 

that motif are predisposed for interaction with the partner motif and have higher numbers 

of known partners (neighboursA’). On the other hand, for a negative protein pair, we 

cannot say much about simHitsAi, but we would not expect both simHitsAi and 

neighboursA’ to be high at the same time, since that would suggest an interaction in the 

protein pair, while we are under the assumption that the protein in known to be negative 

for interaction. Because of this relationship between simHitsAi and neighboursA’, the 

true number of iterations will be higher than avgSimHits × avgNeighbours for positive 

pairs (and positive pairs will be more computationally intensive on average), while for 

negative pairs, the true number of iterations will be lower than avgSimHits × 

avgNeighbours. This is reflected experimentally by the fact that positive pairs are more 

time-consuming than negative pairs (section 3.5). This difference between positive and 

negative pairs suggests that the algorithm modifications might impact the two types of 

inputs differently, and that we should measure performance improvements on them 

separately. 
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3.4 Benchmarking Procedure and Goals 

The input data for our performance benchmarks consist of two large sets of 

protein pairs of 43,591 positive and 100,000 negative pairs in S. cerevisiae and 41,678 

positive and 100,000 negative pairs in H. sapiens. These are the same sets of pairs later 

used for measuring the classification performance of PIPE. Thus, this workload is 

precisely the workload we will use when modifying the predictive model and re-

validating the classification performance of the new model. Speed improvements on this 

workload directly relate to our ability to improve PIPE as a classifier. 

The PIPE algorithm was executed for each pair of the validation set and for each 

pair its runtime was taken as the wall time elapsed between the beginning of the 

computation for the pair and the production of an output pair score. The computation was 

performed in parallel on a homogenous 28-core computational cluster, distributed 

between 7 machines, each equipped with 8 GB of RAM and a 4-core Intel Core 2 Quad 

Q6600 2.4 GHz processor with 8 MB of cache. The operating system-reported memory 

usage of each PIPE instance was approximately 300 MB, so all data was in main memory 

and thus RAM capacity should not have a major impact as long as it is greater than 

approximately 4 × 300 MB = 1.2 GB per machine. On the other hand, all data would not 

fit in the CPU cache. We would expect an increase in performance with a larger CPU 

cache, up to a saturation point where all data is contained in the CPU cache. Some parts 

of our proposed algorithms improve cache efficiency, so at cache sizes before this 

saturation point, we expect to observe a speedup. On the other hand, some of the data 

structure changes result in less CPU operations needed to carry out the same 
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computations, so we expect to see a benefit from these changes regardless of CPU cache 

size. 

On this parallel cluster, up to 28 pairs were executing simultaneously. The “total 

runtime” we report for a given experiment is the sum of all individual pair runtimes, not 

the actual parallel runtime on our cluster. The reported total runtime represents the time 

that the experiment would take if it were executed serially on one core of a Q6600 

processor, and can be used to estimate the parallel runtime on any cluster by dividing it 

by the number of cores (assuming the cluster has processing cores similar in performance 

to the Q6600). 

Pair runtimes vary widely depending on the source organism and the type of pair 

(positive or negative). As shown in Table 3 above, the difference by organism can be 

explained by the different protein lengths (avgLength), average number of similarity hits 

(avgSimHits), and average number of known interaction partners (avgNeighbours), 

which themselves vary considerably by organism (see Table 2). The type of pair (positive 

or negative) affects the runtime for similar reasons, as discussed in section 3.3. Because 

of these different classes of input data, we are interested in how the modified algorithms 

affect the performance of each of these types of protein pairs. To this end, we measured 

runtimes separately each of 4 sets of protein pairs: S. cerevisiae positives, S. cerevisiae 

negatives, H. sapiens positives and H. sapiens negatives. 

For each set of protein pairs, we ran both the original and proposed algorithms on 

all pairs and recorded runtime per pair in each case. Even when the set of protein pairs is 

restricted to a single organism and a single type of pair, because individual protein 

lengths and characteristics vary, pair runtimes also vary widely over several orders of 
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magnitude within one set. To illustrate the overall tendencies of pair runtimes, we plot the 

cumulative distribution of the runtime for both algorithms on the same axes. Speedups 

are represented as a general trend of the distribution towards the left of the plot (i.e. 

towards lower runtimes). The total runtimes for a complete run of the validation set are 

reported as annotations for each of the cumulative distribution plots. From these, we can 

calculate a single numerical speedup by taking the ratio of the total runtime of the 

original algorithm to the total runtime of the proposed algorithm. 

From the same set of runtimes measured during the full runs, we also inspect the 

effect of the proposed algorithm on individual protein pairs. This provides very concrete 

evidence that, at least for the given pairs, the proposed algorithm does provide a 

performance benefit. We selected 5 protein pairs at 5 percentile points along the runtime 

distribution with the original algorithm (10%, 25%, 50%, 90%, 99%). These are meant to 

demonstrate the effect of the algorithm on pairs of widely-varying difficulty. The last two 

percentiles explore the performance of the algorithm in the long tail of the distribution 

(very long-running pairs). We first report the runtimes of the 5 pairs with the original 

algorithm, and then report the runtime of the same 5 pairs with each proposed modified 

algorithm. 

Care must be taken that our method of selecting pairs of a particular difficulty 

does indeed achieve that goal. In particular, because the measured runtime is 

contaminated by measurement noise, it is possible that our selection process did not in 

fact control the difficulty of the pairs. The 5 pairs in each set could be equally difficult 

and the variation in observed runtimes could be due to measurement noise only. Then, if 

we were to re-run the original algorithm on the selected “difficult” (long-running) pairs, 
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we would expect to observe lower runtimes, due to random variation in the measurement 

noise. This effect is referred to as regression towards the mean [49]. If we were to run the 

proposed algorithm on the same 5 pairs, we would still observe lower runtimes, and the 

difference would be emphasized for the more “difficult” pairs, leading us to an incorrect 

conclusion about the algorithm. In fact, the experiment is flawed because we assumed 

that controlling for the original runtime also controls for the difficulty of the problem. 

Note that our results, when presented for the full sets of proteins (runtime distributions 

and total runtimes), are not vulnerable to regression towards the mean because they do 

not attempt to control the difficulty of the pairs – they report aggregate information for all 

pairs. If measurement noise happens to dominate, we will conclude that the proposed 

algorithm has no effect, but we will never wrongly conclude that the proposed algorithm 

is better than it truly is. 

The danger of regression towards the mean in practice depends on the magnitude 

of the measurement noise. The smaller the measurement noise component, the more 

reliably we can control the difficulty of the test problems by using their runtimes. In our 

case, measurement noise can stem from insufficient resolution of the timing mechanism 

(MPI_Wtime, resolution reported by the runtime is 1 µs), or from other processes running 

on the system which also use the processor. No computational jobs were run on the 

cluster at the same time as these benchmarking runs. However, there are always a number 

of background system processes which are usually idle, but which can preempt the 

processor and slightly inflate the measured runtimes. Empirically, the measurement noise 

appears to be quite low. We repeatedly ran the same H. sapiens pair 17 times and 

measured its runtime in the same way that runtime is measured for our other experiments. 
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The runtime had a mean of 17.5 seconds and a variance of 0.2 milliseconds. This is 

smaller than the smallest runtime of all H. sapiens pairs (0.7 ms), while most H. sapiens 

pairs have a runtime in the hundreds of milliseconds (3 orders of magnitude greater than 

the variance of the measurement). 

3.5 Results 

We first compare runtimes with the original algorithm between positive and 

negative pairs. As predicted, in both S. cerevisiae (Figure 10 (a)) and H. sapiens (Figure 

10 (b)), positive pairs have higher runtimes on average than negative pairs. This is due to 

positive pairs executing on average a higher number of iterations of the inner loops, a 

result of simultaneously high simHitsAi and neighboursA’ values. Additionally, H. 

sapiens pairs have higher runtimes in general than S. cerevisiae pairs, because of the 

much higher value of avgSimHits. The H. sapiens pairs took the longest to execute in 

total (38.8 h and 75.5 h for positive and negative H. sapiens pairs, respectively, compared 

to 16.1 h and 17.0 h for S. cerevisiae pairs). Note that due to the long tail of the 

distribution, we have only plotted the distribution between 0 and 1 second. Depending on 

the set, some proportion of pairs took longer than 1 second to complete, and this can be 

calculated from the last data point at 1 second. For example, approximately 40% of H. 

sapiens positives have a runtime greater than 1 second. In subsequent plots of runtimes 

with the proposed algorithm, due to the speedup, a much smaller proportion of pairs 

(typically < 10%) are outside the range of the x-axis. 
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Figure 10: Distributions of pair runtimes for the original algorithm. (a) 43,591 

positive and 100,000 negative S. cerevisiae protein pairs and (b) 41,678 positive and 

100,000 negative H. sapiens protein pairs 

We now focus on 5 positive and 5 negative protein pairs in each of S. cerevisiae 

and H. sapiens. These pairs were chosen to have runtimes in various percentiles of the 

original runtime distributions (10, 25, 50, 90, 99), so that they are representative of the 

overall set of runtimes. The 50
th

 percentile runtimes are the median runtimes for each set. 

Because the runtime distributions are long-tailed, the last two pairs were chosen in the 

very high percentiles (90
th

 and 99
th

) so that we can analyze the behaviour of the algorithm 

changes in this region of very slow pairs. This allows us to ensure that the performance 

gains are observed for the entire range of protein pairs. Furthermore, the PIPE authors 

have reported that long-running pairs have impaired the ability of a computational cluster 

to load-balance PIPE jobs, extending the total runtime. Easier pairs would complete very 

quickly, leaving only one processor to execute a very difficult pair. The narrower the 

range of runtimes, the less time is likely to be spent at the end of a large batch of pairs 

waiting for a longer-running pair to finish. Thus, speedups in the long tail of runtimes 
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have an added practical benefit of facilitating load-balancing of PIPE jobs on 

computational clusters and reducing overall runtime. 

Table 5 lists the chosen protein pairs in each set, and their runtimes with the 

original algorithm. These pairs represent a wide range of runtimes, spanning several 

orders of magnitude from 9 ms for a very fast H. sapiens negative (P06865 Q13323) to 

38 seconds for a very slow H. sapiens negative (Q92793 Q96JA1). The trends observed 

in the complete runtime distributions are still present: for the same percentiles, positive 

pairs tend to execute more slowly than negative pairs, with H. sapiens pairs tending to 

have longer runtimes than S. cerevisiae pairs.  

Type of protein pair Runtime 

percentile 

Protein A Protein B Runtime 

(original 

algorithm) 

S. cerevisiae Positive 10% YHR085W YMR242C 41 ms 

25% YJL203W YNR053C 118 ms 

50% YAR007C YPR175W 392 ms 

90% YCR077C YPL240C 3259 ms 

99% YDL153C YHR135C 13152 ms 

S. cerevisiae 

Negative 

10% YIL012W YMR183C 12 ms 

25% YDR380W YGL260W 37 ms 

50% YJR155W YNL073W 130 ms 

90% YIL146C YIL172C 1229 ms 

99% YGL227W YOR178C 7220 ms 

H. sapiens Positive 10% P52565 Q11206 26 ms 

25% O00590 Q99616 101 ms 

50% P27797 P61769 495 ms 

90% O00303 P23443 7102 ms 

99% P12931 P48023 35882 ms 

H. sapiens Negative 10% P06865 Q13323 9 ms 

25% A6NFN9 P02771 24 ms 

50% Q309B1 Q6QNK2 90 ms 

90% A0MZ66 P18803 1883 ms 

99% Q92793 Q96JA1 38071 ms 

Table 5: Runtimes for 5 representative pairs from each test set. The test sets 

considered were S. cerevisiae positives, S. cerevisiae negatives, H. sapiens positives and 

H. sapiens negatives. 



62 

 

We now turn our attention to the first proposed changes to the algorithm, the 

changes in input data representation of the similarity lists and known interaction lists, 

described in detail in section 3.2. We expect that this first set of changes will impact all 

pairs almost equally, because the optimizations are based on more efficient memory 

access patterns which would apply to the computations for any types of pairs. 

At the beginning of this section, we compared positive and negative pair runtimes 

in the same axes, with a separate plot for each of S. cerevisiae and H. sapiens. Here, to 

evaluate the effect of the modified algorithm, we show the original and proposed 

algorithm distributions in the same plot, for a given set of protein pairs. We show a 

separate plot for each of S. cerevisiae positive pairs (Figure 11 (a)), S. cerevisiae negative 

pairs (Figure 11 (b)), H. sapiens positive pairs (Figure 12 (a)) and H. sapiens negative 

pairs (Figure 12 (b)). As in the original distribution plots, the red traces represent positive 

pairs, while the blue traces represent negative pairs. Note that the modified algorithm 

shifts the distribution above and to the left, indicating a trend toward lower pair runtimes. 

The speedup on total runtime is 2.9, 3.3, 3.6 and 8.3, for each of the protein pair sets, 

respectively, relative to the total runtimes with the original algorithm. With the exception 

of H. sapiens negative pairs (the last set of pairs), the speedup is approximately the same. 

This is expected since the algorithm modifications only improve time complexity by a 

constant factor, which is independent of the characteristics of the input data. 

The variability of speedup across test sets, especially the high speedup on total 

runtime of H. sapiens negative pairs, may be explained by the very long tails of the 

original runtime distributions. When we removed from each set the 1% of pairs with the 

longest original runtime, the speedup on total runtime for the remaining pairs was 2.4, 
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2.3, 2.5 and 2.6 for each set, respectively (compare to 2.9, 3.3, 3.6 and 8.3 for the full 

sets), which is in better agreement with the constant speedup hypothesis. The distribution 

of original runtimes for H. sapiens negative pairs is particularly long-tailed (as shown by 

the 99
th

 percentile value of 38,071 ms in Table 5, the largest of all test sets). However, 

this means that our analysis does not properly account for the effect of the modifications 

on pairs in the top 1% of original runtimes, and suggests that the effect of the changes 

could be characterized in more detail. A future study could examine the effect of control 

variables other than original runtime, such as protein length or other characteristics of the 

protein pairs, which may be correlated with speedup. Since the negative set is generated 

by randomly sampling the set of all pairs, it is possible that some of the negative pairs are 

in fact previously unreported  positive pairs, explaining their longer runtime and their 

deviation from the behaviour observed in the lower runtime percentiles of mostly 

negative pairs. The predicted interaction score of each protein pair may therefore also be 

a useful control variable for predicting speedup. 

 

Figure 11: Effect of algorithm changes proposed in section 3.2 on runtime 

distribution of positive and negative S. cerevisiae protein pairs 
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Figure 12: Effect of algorithm changes proposed in section 3.2 on runtime 

distribution of positive and negative H. sapiens protein pairs 
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for the increase in runtime, a small increase for these short-running pairs would not 

greatly affect the total runtime for the test set. Second, the speedup of the 99
th

 percentile 

pair does not follow the pattern of increasing speedups for larger original runtimes. Since 

this anomaly is limited to the highest percentile, this again points to additional factors 

impacting speedup for protein pairs in the long tail of original runtime (as discussed 

above).. 

Type of protein 

pair 

Runtime 

Percentile 

Runtime 

(original 

algorithm) 

Runtime 

(changes 

proposed in §3.2) 

Speedup 

S. cerevisiae 

Positive 

10% 41 ms 24.1 ms 1.7 

25% 118 ms 71.3 ms 1.7 

50% 392 ms 248.8 ms 1.6 

90% 3259 ms 876.2 ms 3.7 

99% 13152 ms 2946.8 ms 4.5 

S. cerevisiae 

Negative 

10% 12 ms 4.6 ms 2.7 

25% 37 ms 18.2 ms 2.0 

50% 130 ms 52.5 ms 2.5 

90% 1229 ms 332.4 ms 3.7 

99% 7220 ms 2127.2 ms 3.4 

H. sapiens Positive 10% 26 ms 24.8 ms 1.0 

25% 101 ms 51.7 ms 2.0 

50% 495 ms 145.0 ms 3.4 

90% 7102 ms 1526.4 ms 4.7 

99% 35882 ms 7985.5 ms 4.5 

H. sapiens Negative 10% 9 ms 10.0 ms 0.9 

25% 24 ms 17.0 ms 1.4 

50% 90 ms 42.8 ms 2.1 

90% 1883 ms 369.3 ms 5.1 

99% 38071 ms 15327.2 ms 2.5 

Table 6: Effect of algorithm changes proposed in section 3.2 on runtimes of the 5 

representative. The protein pairs used for each measurement are given explicitly in 

Table 5. 

By combining the input data representation changes proposed in section 3.2 and 

the space-time trade-off proposed in section 3.3, we can achieve even better speedups. In 

S. cerevisiae, using the combined changes, we observed an average speedup of 8.1 for 

positive pairs (Figure 13 (a)) and 8.9 for negative pairs (Figure 13 (b)). In H. sapiens, the 
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average speedup was 4.0 for positive pairs (Figure 14 (a)) and 14.5 for negative pairs 

(Figure 14 (b)). In both cases, the speedup is relative to the total runtime with the original 

algorithm. In almost all cases, more than 99% of the pairs in each set completed in less 

than 1 second. This thinner tail of the distribution further reduces the time spent waiting 

for a very long pair to finish at the end of a large batch of protein pairs, facilitating load-

balancing of PIPE jobs on parallel clusters. 

 

Figure 13: Effect of all proposed algorithm changes (sections 3.2 and 3.3) on 

runtime distribution of positive and negative S. cerevisiae protein pairs 
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Figure 14: Effect of all proposed algorithm changes (sections 3.2 and 3.3) on 

runtime distribution of positive and negative H. sapiens protein pairs 
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total pairs: 41678

average time/pair: 0.828 s
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H. sapiens Original Algorithm

total time: 75.5 h

total pairs: 100000

average time/pair: 2.719 s

H. sapiens Proposed Algorithm (§3.2 and §3.3)

total time: 5.2 h

total pairs: 100000

average time/pair: 0.186 s
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Type of protein 

pair 

Runtime 

Percentile 

Runtime 

(original 

algorithm) 

Runtime 

(all changes, 

§3.2 and §3.3) 

Speedup 

S. cerevisiae 

Positive 

10% 41 ms 10.8 ms 3.8 

25% 118 ms 33.2 ms 3.6 

50% 392 ms 100.4 ms 3.9 

90% 3259 ms 249.9 ms 13.0 

99% 13152 ms 399.6 ms 32.9 

S. cerevisiae 

Negative 

10% 12 ms 5.8 ms 2.1 

25% 37 ms 6.6 ms 5.6 

50% 130 ms 25.9 ms 5.0 

90% 1229 ms 106.9 ms 11.5 

99% 7220 ms 821.0 ms 8.8 

H. sapiens Positive 10% 26 ms 13.9 ms 1.8 

25% 101 ms 15.4 ms 6.6 

50% 495 ms 42.0 ms 11.8 

90% 7102 ms 254.8 ms 27.9 

99% 35882 ms 447.7 ms 80.1 

H. sapiens Negative 10% 9 ms 6.3 ms 1.5 

25% 24 ms 13.8 ms 1.8 

50% 90 ms 46.9 ms 1.9 

90% 1883 ms 38.5 ms 49.0 

99% 38071 ms 8893.4 ms 4.3 

Table 7: Effect of all proposed algorithm changes (sections 3.2 and 3.3) on runtimes 

of the 5 representative pairs. 

Nevertheless, these results demonstrate that the proposed algorithm changes 

reduce total runtime of test sets in both S. cerevisiae and H. sapiens, for positive and 

negative pairs. In S. cerevisiae, the speedup is consistent for pairs of varying difficulty 

(original runtime), while in H. sapiens it appears that very long-running pairs are 

responsible for the bulk of the speedup on total runtime. The total single-core runtimes 

for 143,591 validation S. cerevisiae pairs was reduced from 33.1 hours to 3.9 hours, 

while the time to run the 141,678 validation H. sapiens pairs was reduced from 114.3 

hours to 14.8 hours. On our 28-core cluster, these runs now each complete in less than an 

hour. This greatly facilitates modifications to the classification model of PIPE because 
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validation runs, which provide crucial feedback to the experimenter, can be performed 

much more quickly. 

The total runtime was reduced the most for negative pairs. This is particularly 

useful for all-to-all interaction screens, where we expect the vast majority of pairs tested 

to be negative pairs. In particular, if we assume that the runtime distributions of positive 

and negative pairs are representative of the true distributions for all positive and negative 

pairs, we can use the average per-pair times to estimate the total expected time before and 

after the proposed modifications. For example, in H. sapiens, the number of positive pairs 

is taken as Stumpf’s estimate (650,000) and the total number of negative pairs is 

calculated as the total number of pairs (
"",%�/8	"",%�/

"
) minus the 650,000 positive pairs, 

which is approximately 253 million pairs. Table 8 shows that an all-to-all screen would 

complete 14.5 times faster with the proposed changes than with the original algorithm. 

Not surprisingly, the overall speedup is almost equal to the speedup on negative pairs, 

because the set of all possible pairs is, in fact, dominated by negative pairs. While the 550 

days required with a single core means all-to-all screens remain out of reach for the 

bioinformatician with only their office computer at their disposal, on a 28-core (7-

machine) cluster this time was reduced to 20 days. It is likely that, at least for the 

exhaustive all-to-all screen in H. sapiens, the in silico experiment using PIPE is much 

less costly than a wet lab experiment, in terms of both time and physical resources. 
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Type of pairs Number of 

pairs 

Average runtime per 

pair 

Total time 

Original Algorithm 

Positives 650,000 3.353 s 605 h 

Negatives 253,000,000 2.719 s 190,874 h 

  Total time (single core): 7,978 days 

  On a 28-core cluster: 284 days 

Proposed Algorithm 

Positives 650,000 0.828 s 150 h 

Negatives 253,000,000 0.186 s 13,072 h 

  Total time (single core): 550 days 

  On a 28-core cluster: 20 days 

Table 8: Estimated times for an all-to-all interaction screen in H. sapiens for the 

original and proposed algorithms 
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4 Improved Classification Performance of PIPE using 

Sequence Annotations 

4.1 Introduction 

In Park’s review of sequence-based protein-protein interaction predictors [15], 

PIPE was shown to have the best classification performance out of all four tested 

classifiers, on both S. cerevisiae and H. sapiens test sets. However, Park’s consensus 

method which combined all four classifiers outperformed PIPE, suggesting that there are 

still improvements to be made in PIPE’s prediction model. 

There are many potential sources of errors in PIPE predictions. As discussed in 

sections 1.1 and 1.2, we will mainly focus on sources of false positive errors since 

reducing the false positive rate (FPR) directly increases specificity, which is crucial for 

organism-wide protein-protein interaction prediction. Errors can be reduced either by 

introducing additional model features (additional input data) or by refining the model’s 

use of existing data (protein sequences). When modifying the model to require additional 

data, it will be important to consider the availability of this data across the organisms of 

interest (S. cerevisiae and H. sapiens). Availability of data becomes a greater issue when 

applying PIPE to less-studied organisms with scarce proteomic data (such as M. 

musculus), which are precisely the organisms for which PIPE can provide the most 

interesting results. 

4.1.1 Protein Functional Annotations 

Protein sequences exhibit re-occurring patterns which have specific functional 

roles. Sometimes, the role of these regions is to enable interaction of the protein with 
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other proteins. For example, certain protein domains (such as SH3 [50]) are known to 

mediate protein-protein interactions (PPIs). More often, sequence regions have specific 

functional roles, but are not associated with PPIs, or their properties suggest the absence 

of PPIs within that region of the protein. Two examples of such well characterized 

sequence motifs are signal peptides and transmembrane regions. Signal peptides are 

removed from the protein upon maturation, so they cannot be involved in the PPIs of the 

mature protein. Transmembrane regions are bound in cell membranes and are physically 

isolated from other proteins, making it unlikely that they mediate PPIs. Thus, because the 

presence of these features in a particular protein region may bias the likelihood of a PPI 

in that region, annotations of these two types of protein regions could be useful as an 

additional sequence feature to improve PIPE predictions. Signal peptides and 

transmembrane regions serve as a pilot study of the applicability of sequence annotations 

for improving PIPE predictions – other types of sequence regions, such as DNA-binding 

motifs, may also be informative with respect to PPIs. 

Signal peptides are short linear regions of amino acids (20-25 amino acids) 

located at the N-terminal of the protein (beginning of the sequence) which control the 

physical targeting of proteins within the cell or to the exterior of the cell [51]. There are 

several protein translocation pathways, controlling export across the plasma membrane, 

endoplasmic reticulum membrane, import into the mitochondria and other cellular 

compartments. After directing the protein to the appropriate pathway, signal peptides are 

cleaved from the beginning of the amino acid chain by pathway-specific mechanisms. 

Because signal peptides are no longer present in the mature protein, they most likely do 
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not participate in the functional interactions of the protein once it has been translocated, 

and are unlikely to mediate protein-protein interactions. 

Transmembrane regions are also short linear regions of amino acids, which are 

found in proteins which become embedded in organelle or cell membranes upon 

maturation (integral membrane proteins). These linear sequence regions are composed of 

hydrophobic amino acids, which favour interaction with the hydrophobic membrane lipid 

bilayer [52]. Some examples of integral membrane proteins are transporters and ion 

channels. In single-pass transmembrane proteins, the protein passes through the 

membrane only once and is composed of an intracellular region, the transmembrane 

region, and an extracellular region. Multi-pass transmembrane proteins penetrate the 

membrane at multiple positions along the amino acid chain and have several 

transmembrane regions, bounded by regions which alternate between the intracellular and 

extracellular space. In both cases, the transmembrane regions are tightly packed either 

against membrane phospholipids or against other transmembrane regions of the same 

protein. Because of this, these regions are physically isolated from any proteins inside or 

outside the cell, and are unlikely to be the mediators of the membrane proteins’ 

interactions. 

PIPE’s scoring of a particular protein region for interaction is partially based the 

re-occurrence of its amino acid sequence in the proteome of the organism (see section 

2.3.1). Because these sequence features re-occur in the proteome (for example, multiple 

proteins may bear the same signal peptide because they are tagged for translocation to the 

same organelle), PIPE finds a large number of similarity hits for these regions, increasing 

the number of hits in the PIPE matrix (or “landscape”) for these non-interacting regions. 
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This increases the overall PIPE score, suggesting an interaction, but is in fact contributing 

to false positives because these protein regions may not in fact mediate interaction. 

Experimental assays can detect these protein regions and published results are 

curated and collected in large protein databases such as Uniprot [28]. According to 

current experimental data in Uniprot, these two types of regions are present across both 

prokaryotes and eukaryotes, and are relatively abundant across proteomes. 

Approximately 5% of S. cerevisiae proteins and 17% of H. sapiens proteins have 

experimentally-confirmed signal peptides, while 20% of S. cerevisiae proteins and 23% 

of H. sapiens proteins have experimentally-confirmed transmembrane regions. 

4.1.2 Prediction of Functional Annotations 

For less-studied organisms (other than S. cerevisiae and H. sapiens), sequence 

annotations for signal peptides and transmembrane regions may be scarce. There are 

specific computational prediction tools (per type of sequence features) which can be 

applied to proteins for which experimental data is not yet available. However, the results 

of these prediction tools must be interpreted with care because the underlying models are 

themselves trained from the scarce proteomic data. Errors in the experimental data, or 

shortcomings of the prediction model, lead to errors in the predicted sequence 

annotations, which can adversely affect the performance of PIPE if it integrates these 

erroneous predictions. 

For signal peptides, SignalP [53] is commonly cited as a strong prediction tool for 

signal peptides [54]. This tool comes in two variants: SignalP-NN, which is based on a 

neural network applied to a sliding window of amino acids, and SignalP-HMM, which 

fits a hidden Markov model to the full sequences. Emanuelsson et al. [54] recommend 
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using SignalP-NN, and show that this variant has slightly higher sensitivity (99.4%) 

compared to SignalP-HMM (98.4%) for the same false positive rate (~3%). We applied 

SignalP-NN to our database of 6,716 S. cerevisiae proteins and found 722 proteins with 

predicted signal peptides (compare to 310 proteins with signal peptide annotations in 

Uniprot).  In H. sapiens, SignalP-NN reported signal peptides in 5,716 out of 22,513 

proteins (compared to 3,427 in Uniprot). 

A group from the same university has also published a tool for transmembrane 

region prediction, called TMHMM [55].  This tool is based exclusively on a hidden 

Markov model whose architecture mimics the topology of transmembrane proteins. In 

particular, this method has been previously applied to whole-genome data sets in a large 

set of organisms [56], including S. cerevisiae. We applied the tool on our own set of 

6,716 S. cerevisiae proteins and obtained transmembrane annotations for 1,477 proteins 

(compared to 1,407 in Uniprot). In H. sapiens, TMHMM reported transmembrane 

regions in 6,258 out of 22,513 proteins (5,484 in Uniprot). 

4.1.3 Validation of Functional Annotations Using Binding Site Data 

We hypothesize that signal peptides and transmembrane regions can be used to 

improve PIPE predictions because these protein regions are less likely to be involved in 

PPIs. Specifically, we hypothesize that signal peptides and transmembrane regions do not 

overlap with those regions of proteins which mediate PPIs (binding sites). Before 

working this assumption into the PIPE model, we wish to validate our hypothesis based 

on experimentally-determined binding sites. We use two sources of binding site data for 

this purpose, and validate our assumptions on signal peptides and transmembrane regions 

against both of these databases of binding sites. 
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DOMINO [57] is a database of protein-peptide interactions which includes the 

specific linear regions of each protein which are involved in the interaction. The data is 

collected from literature and represents a wide variety of experimental techniques, but a 

large proportion of the data originates from deletion experiments. In some cases where 

the experimental method finds interactions partners of a peptide, the reported results were 

expanded to include all proteins containing that peptide, and the binding site was taken to 

be that peptide’s sequence position within the protein. This database was previously used 

to validate the use of PIPE as a binding site prediction tool [58]. The latest version of the 

DOMINO database (2009/10/22) contains a total of 14,539 binary interaction records 

between 3,048 proteins across 79 organisms. In some cases, DOMINO references 

proteins which are unreviewed (unconfirmed) in Uniprot, contains data for only one side 

of the interaction (i.e. only one of the proteins in the interaction are annotated with 

binding region information), or references a particular protein domain without specifying 

the exact amino acid indices of the interacting region. We filtered out these incomplete 

records, and merged binding site information by protein, which resulted in binding sites 

for 225 S. cerevisiae and 649 H. sapiens proteins. 

PiSite [59] uses 3D structures of protein complexes from the PDB protein 

structure database [10] to determine which amino acids in a protein are seen in physical 

proximity to amino acids from interaction partners. This provides an interaction index 

along a protein’s sequence which indicates whether a given amino acid has ever been 

observed to be physically involved in a protein-protein interaction. The version of PDB 

used by PiSite (July 2008) contains 49,175 structures, but only 25,220 are structures of 

protein complexes. In addition, these represent many different organisms, and often the 
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same protein is present in multiple complexes. For each protein, we combined the 

interacting amino acids from all complexes in which it is present, and constructed a set of 

binding sites for 370 S. cerevisiae and 1,648 H. sapiens proteins. 

4.1.4 Sequence Window Uniqueness 

The output value for a particular cell of the PIPE matrix is calculated from the 

two corresponding sequence windows of the query proteins, one from each protein (refer 

to 2.3.1). The two sequence windows are compared to the organism’s proteome, which 

results in two lists of proteins which contain similar sequence windows, one for each 

query protein. PIPE then searches every pair of proteins, one from each list, against the 

database of known interacting pairs. Each protein pair which is known to interact 

contributes evidence toward the hypothesis that the original two query windows 

participate in a PPI. PIPE increases the value of the output cell by 1 for each known pair. 

Higher output values more strongly suggest an interaction between the original two 

sequence windows, while low values suggest no interaction. 

Sometimes, proteins contain highly re-occurring sequence windows which do not 

participate in PPIs. Signal peptides (section 4.1.1) are one example of re-occurring 

sequence motifs which do not mediate interaction. If both query proteins have signal 

peptides, they will also have sequence similarity to all other proteins which have that 

same signal peptide. Many of these proteins will participate in interactions which are not, 

in fact, mediated by the signal peptides. This leads to an inflated number of PIPE hits for 

the areas of the PIPE matrix corresponding to the signal peptides, while it is very unlikely 

that the signal peptide regions themselves mediate an interaction between the query 

proteins. 
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Another type of sequence motif which is susceptible to the same effect is “low-

complexity regions”. These regions are usually long repetitions of the same amino acid 

(aspartic acid, “D” or asparaginine, “N”), pairs of similar amino acids (“DE”), or more 

generally regions where the composition of amino acids is heavily biased towards certain 

amino acids. Because these sequence regions are composed of a more restricted set of 

amino acids, they are highly self-similar, particularly when they are composed of a long 

string of the same amino acid. This leads to increased numbers of false PIPE hits in those 

regions, much like the re-occurring signal peptides lead to false hits in those regions of 

the PIPE matrix. 

One example of this is the S. cerevisiae protein pair YBR030W-YGL203C 

(Figure 15), where the sequence of YBR030W between positions 418 and 427 is biased 

towards glutamic acid (E) and the sequence of YGL203C between positions 481 and 600 

is biased towards aspartic and glutamic acid (D and E). This pair of low-complexity 

regions, often found throughout the proteome, causes a broad area of high PIPE hits in 

the matrix (400-1000 hits), but which does not truly mediate interaction. YBR030W is 

“Ribosomal N-lysine methyltransferase 3,” involved in ribosome assembly and localized 

to the nucleus, while YGL203C is “Carboxypeptidase KEX1,” a membrane-bound 

protein, involved in C-terminal protein processing in the trans-Golgi network 

(annotations from Uniprot entries for each protein) with active sites at amino acids 198, 

405 and 470. The protein regions with heightened PIPE hits are unlikely to interact (for 

YGL203C, the indicated region does not contain any of the active sites), and in fact the 

two proteins overall are unlikely to interact, because they participate in different cellular 

functions and are localized in different parts of the cell. 
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Figure 15: PIPE matrix for the S. cerevisiae protein pair YBR030W-YGL203C. 
Regions of low-complexity sequences (YBR030W[418-427] and YGL203C[481-600]) 

on each protein cause large numbers of spurious hits in the PIPE matrix. 

4.2 Methods 

4.2.1 Functional Annotation Hypothesis Testing 

We hypothesize that the presence of a particular type of annotation in a protein 

sequence region indicates that the region is unlikely to mediate interaction. To test this, 

we consider the events “amino acid is in a PPI binding site” and “amino acid is annotated 

with a particular sequence feature” for each individual amino acid of all proteins in our 

sequence database. Each event corresponds to a binary random value which indicates 

whether the given amino acid is or is not in a binding site, and is or is not annotated with 

a particular sequence feature, respectively. In this context, our hypothesis is that the 

binding site and sequence feature events are negatively correlated. If that is truly the case, 

one event can be used to predict the absence of the other. In our case, we are interested in 

using the sequence feature event to predict the absence of the binding site event. Our 

study is repeated for both types of sequence annotations of interest: signal peptides and 

transmembrane regions. 
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In practice, we count the numbers of amino acids which are involved in binding 

sites, which are annotated with a particular sequence feature, and which satisfy both 

conditions simultaneously.  If the number of amino acid which are both in binding sites 

and annotated with a particular sequence feature is lower than the number of such amino 

acids expected by chance, then we can conclude that there is a negative correlation 

between the two events. For example, if 1% of amino acids are observed to be in binding 

sites, and 0.5% of amino acids are observed to be in transmembrane regions, we would 

expect 1% × 0.5% = 0.005% of amino acids to participate in both, under the assumption 

that the two events are independent. However, if the empirical percentage is lower than 

0.005%, the data suggest that these events are negatively correlated. Clearly, the 

significance of this result depends on the size of the data set, and this will be taken into 

account in our experiments as part of the statistical hypothesis test.  

Furthermore, if we assume that the binding site events for each individual amino 

acid are pairwise independent and the sequence feature events for each individual amino 

acid are also pairwise independent, then the counting experiment is a series of Bernoulli 

trials and the amino acids counts are random variables which follow a binomial 

distribution. This allows us to perform a statistical hypothesis test and obtain a P-value 

for our conclusions [60]. Because the χ
2
 test for independence is not suitable when some 

event frequencies are very low (less than 5 counts), we perform the more 

computationally-intensive Fisher’s exact test for independence between two categorical 

variables. We use a left-tailed test where our null hypothesis is that the events are 

independent and our alternative hypothesis is that they are negatively correlated, and 

report the P-value of rejection of the null hypothesis. This is the probability of the events 
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being independent despite the observed amino acid counts. A lower value indicates a 

stronger assertion of the (negative) correlation between the two variables. 

4.2.2 Improved Classification using Functional Annotations 

Assuming our hypotheses are confirmed, we wish to reduce the number of PIPE 

hits originating from sequence regions which are unlikely to mediate PPIs. For each 

protein in the PIPE sequence database, we look up its entry in Uniprot and replace every 

amino acid which is annotated to be in a signal peptide or transmembrane region with the 

virtual “X” amino acid (Figure 16). In the PAM120 matrix, which is used by PIPE for 

sequence comparisons, “X” signifies a sequence position with an unknown amino acid. 

The PAM120 matrix row and column for “X” has very low similarity scores, resulting in 

a low overall PAM score for sequence windows containing “X” amino acids. Only a pre-

processing step of the sequence database is necessary for this modification of the model. 

No modifications to the PIPE algorithm are necessary, but the sequence comparison 

precomputation must be re-executed after constructing the modified sequence database. 

This pre-computation needs to be performed only once, after which any number of 

protein pairs may be tested using PIPE. 
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Figure 16: Example use of Uniprot annotations for masking protein sequences prior 

to PIPE prediction 

4.2.3 Improved Classification using Sequence Window Uniqueness 

Highly re-occurring sequence regions which do not mediate PPIs lead to false hits 

in the PIPE output matrix (see section 4.1.4). We wish to reduce the impact of these 

regions, by reducing the weight given to PIPE hits within regions which are highly re-

occurring in the proteome. This is a generalization of the method presented in section 

4.2.2, where we excluded specific re-occurring sequence regions (i.e. signal peptides and 

transmembrane regions) from contributing to the PPI hits in the corresponding areas of 

the PIPE matrix. Now, we use PIPE itself to measure re-occurrence of sequence windows 

and to weigh them accordingly. 

Recall that two factors contribute to the final number of PIPE hits in a particular 

cell of the output matrix: the degree of re-occurrence of the two corresponding sequence 

windows, and the number of hits in the known interactions database involving proteins 

which are sequence-similar to the query proteins. The higher the degree of re-occurrence 

of the query sequence windows, the longer the candidate list of possibly known 

interacting pairs, and the higher the likelihood of random hits in the known interactions 

database. This can lead to false positive predictions. We therefore propose to compensate 

Original sequence: 

Protein: YAR071W 

MLKSAVYSILAASLVNAGTIPLGKLSDIDKIGTQ... 

Signal peptide 

Masked sequence: XXXXXXXXXXXXXXXXXGTIPLGKLSDIDKIGTQ... 

Excerpt from Uniprot entry: 

FT   SIGNAL        1     17       By similarity. 

Sequence annotation: MLKSAVYSILAASLVNAGTIPLGKLSDIDKIGTQ... 



83 

 

for this effect using the length of the similarity lists for each sequence window. Longer 

similarity lists will require more hits in the database of known interactions to provide the 

same level of evidence for the interaction. Conversely, two relatively unique windows, 

with short similarity lists, will probe the known interactions database a small number of 

times, and the few resulting hits will be considered strong evidence for the interaction 

between the query windows. 

Specifically, when calculating the PIPE matrix, instead of assigning the total 

number of hits in the known interacting pairs database to each pair of input windows 

(Ai, Bj), we store the proportion of hits which were found in the database, relative to 

the total possible number of pairs between proteins similar to A and B. Figure 17 shows 

an example of this for a pair of windows in the case where (a) the windows are relatively 

unique (few similarity matches), and (b) the windows re-occur often throughout the 

proteome. While each case results in 6 hits in the known interacting pairs database, the 

first case represents strong evidence that Ai and Bj interact, because there are 

experimentally-validated interactions between almost all of the pairs of proteins which 

contain windows similar to Ai and Bj. On the other hand, this proportion of pairs in the 

second case is much lower, suggesting that Ai and Bj do not interact (e.g. perhaps the 

known interaction A’-B’ was caused by other regions in those proteins). Because both 

cases have the same number of known interacting pairs between the two similarity lists, 

PIPE would originally assign the same value (6) for the matrix cell corresponding to 

(i, j). To account for the sizes of each similarity list, we assign the ratio 

�01L52MNO�3P��Q627

�34QR�3776LR5O�3P��Q627
�

�01L52MNO�3P��Q627

S6T5MNS616RQ264UV674W - S6T5MNS616RQ264UV674X
 to matrix cell 

(i, j), which is numerically greater for more unique sequence windows. In the 



84 

 

example from Figure 15, we assign 0.50 to the cell in the first case and 0.14 in the second 

case, representing the much stronger evidence for interaction of the first case. When 

either similarity list is empty, this technically represents a lack of evidence in either 

direction (the denominator above is 0) – that is, we do not know anything at all about that 

particular sequence window. In that case, we default to assigning a value of “0.” This 

represents the low probability of two sequence windows chosen at random to interact, 

because the PAM120 score cut-off was chosen such that two random sequence windows 

would be highly unlikely to be considered as “similar” and appear in each others’ 

similarity lists. 
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Figure 17: Accounting for sequence window uniqueness when finding evidence of 

interaction between two sequence windows. The calculation of the strength of the 

evidence is shown for two windows Ai and Bj which are (a) relatively unique and (b) 

widely re-occurring 

4.2.4 Measurement of Classification Performance 

In order to measure changes in the classification performance of different variants 

of the PIPE model, we use the ROC curve, which is a well-known machine learning tool 

for comparing binary classifiers (see section 2.1). The ROC curve allows us to compare 

classifiers even when the class ratio is not known a priori, and allows us to visualize the 

trade-off between false positive and false negative errors across the full range of 

specificities and sensitivities. The goal is to obtain ROC curves which are further 

northwest in the plot than the reference ROC curves. These curves represent classifiers 
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which can obtain higher sensitivity at the same specificity (north) or higher specificity at 

the same sensitivity (west). 

To highlight the performance of the classifier at high specificity, we present each 

ROC curve as a pair of plots: one for the full range of specificities, and a zoomed-in 

version which focuses on the south-west quadrant of the plot (high specificity, generally 

between 100% and 90% specificity). Both plots are derived from the same experiment 

and the same pair scores. We are also interested, for comparison purposes, in a single 

numerical value which characterizes the classifier’s performance. For this purpose, we 

report for each classifier its sensitivity at 99.95% specificity. This is the proportion of all 

positive instances which are discovered by the classifier as positive, while allowing only 

0.05% of all negatives to be erroneously classified as positive. This provides a 

quantitative evaluation of the classifier as it might perform in an all-to-all screen, which 

requires very high specificity. 

The sensitivity and specificity data points are obtained using leave-one-out cross-

validation (LOOCV) to obtain unbiased estimates (see section 2.3.1). LOOCV is 

particular well-suited to the PIPE algorithm because excluding one pair from the training 

set is a relatively inexpensive operation. On the other hand, LOOCV allows us to use the 

entire training set as a sample for estimating classifier performance, producing very 

accurate estimates. As discussed in section 2.3.1, we use a variation on LOOCV specific 

to PIPE where, when testing a protein pair (A, B), we exclude all pairs involving A and 

all pairs involving B from the known interaction database. This represents the case where 

A and B are novel proteins with no known interactions, and is the most stringent form of 

LOOCV as it applies to PIPE. 
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For each classifier to be evaluated, we perform a LOOCV and plot an ROC curve 

for both S. cerevisiae and H. sapiens. The S. cerevisiae set contains 43,591 positive pairs 

and 100,000 negative pairs and the H. sapiens set contains 41,678 positive pairs and 

100,000 negative pairs. The positive pairs originate from BioGRID [61], which combines 

interactions from several other sources. Because negative protein interaction results are 

not typically reported, the negative pairs were generated randomly. We first chose a 

single protein at random, and then chose a partner at random (with replacement because 

self-interactions are valid). This pair was accepted in the negative set only if it wasn’t 

already present in the positive set, but no additional constraints were placed on the pair 

before accepting it. As discussed in section 2.3, imposing such a constraint, such as 

requiring that the proteins are non-co-localized, has been shown to bias classifier 

accuracy estimates because the classifier learns the negative sampling constraint rather 

than the underlying basis for protein-protein interactions [40]. 

4.3 Results 

4.3.1 Sequence Feature Hypotheses 

First, we tested whether signal peptides and transmembrane regions, both 

experimental and predicted, are negatively correlated with binding sites in S. cerevisiae, 

with binding site data taken from DOMINO (Table 9). There were, in total, 225 proteins 

considered, which contained 162,824 amino acids. 13,581 of these amino acids were 

involved in binding sites. For each sequence feature, the number of amino acids which 

are both contained within a binding site and annotated with the given sequence feature is 

much lower than the expected count, if binding sites and those sequence features were 

uncorrelated (i.e. under the null hypothesis). Each hypothesis test rejected the 
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uncorrelated (i.e. null) hypothesis with a P-value of at most 3.5 × 10
-4

. Our conclusion is 

that both signal peptide and transmembrane sequence features are negatively correlated 

with binding sites, and thus they are good predictors of the absence of a binding site in a 

particular protein region. 

We similarly performed hypothesis tests for S. cerevisiae binding sites from 

PiSite (Table 10). This database contained binding site data for 370 proteins, totalling 

163,567 amino acids. 19,638 of these were found to be involved in a binding site. We 

used the same 4 sources of sequence annotations as for the previous set of tests. Again, 

all independence hypotheses are rejected, at P-values of 8.2 × 10
-3 

or better. The 

experimental binding site data in PiSite is also well-predicted by both experimental and 

predicted signal peptide and transmembrane region features. 

All amino acids in proteins 

with known binding sites 

162,824 162,824 162,824 162,824 

Amino acids in binding sites 13,581 13,581 13,581 13,581 

Sequence feature Experimental 

signal peptides 

Predicted 

signal 

peptides 

Experimental 

transmembrane 

Predicted 

transmembrane 

Annotated amino acids 144 365 3,135 2,944 

Amino acids both in binding 

site and annotated 

2 2 5 3 

Expected if events were 

independent 

12 20 261 245 

Independence hypothesis Rejected Rejected Rejected Rejected 

P-value 3.5 × 10
-4

 8.8 × 10
-12

 2.8 × 10
-110

 1.3 × 10
-106

 

Table 9: Results of hypothesis tests for negative correlation between S. cerevisiae 

binding sites from DOMINO and experimental/predicted signal 

peptides/transmembrane regions. 
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All amino acids in proteins 

with known binding sites 

163,567 163,567 163,567 163,567 

Amino acids in binding sites 19,638 19,638 19,638 19,638 

Sequence feature Experimental 

signal peptides 

Predicted 

signal 

peptides 

Experimental 

transmembrane 

Predicted 

transmembrane 

Annotated amino acids 79 274 808 542 

Amino acids both in binding 

site and annotated 

0 13 75 25 

Expected if events were 

independent 

9 32 97 65 

Independence hypothesis Rejected Rejected Rejected Rejected 

P-value 4.1 × 10
-5

 3.1 × 10
-5

 8.2 × 10
-3

 2.2 × 10
-9

 

Table 10: Hypothesis tests for negative correlation between S. cerevisiae PiSite 

binding sites and sequence features. 

We repeated the experiments to test whether signal peptides and transmembrane 

regions were also negatively correlated with binding sites in H. sapiens proteins. From 

DOMINO, we extracted binding site data for 649 proteins, totalling 560,877 amino acids, 

70,384 of which were in a binding site. We tested whether experimental and predicted 

signal peptides and transmembrane annotates predicted these binding site data (Table 11), 

and found that the independence hypotheses are again rejected for all types of sequence 

feature data. Sequence feature data also predicts binding sites derived from PiSite (Table 

12), where we examined 1,648 proteins totalling 874,331 amino acids, 76,775 of which 

were involved in a binding site. 

All amino acids in proteins 

with known binding sites 

560,877 560,877 560,877 560,877 

Amino acids in binding sites 70,384 70,384 70,384 70,384 

Sequence feature Experimental 

signal peptides 

Predicted 

signal 

peptides 

Experimental 

transmembrane 

Predicted 

transmembrane 

Annotated amino acids 2,970 3,270 9,378 9,346 

Amino acids both in binding 

site and annotated 

107 99 194 200 

Expected if events were 

independent 

372 410 1,176 1,172 

Independence hypothesis Rejected Rejected Rejected Rejected 

P-value 2.2 × 10
-35

 1.5 × 10
-83

 3.2 × 10
-305

 6.0 × 10
-109

 

Table 11: Hypothesis tests for negative correlation between H. sapiens DOMINO 

binding sites and sequence features. 



90 

 

All amino acids in proteins 

with known binding sites 

874,331 874,331 874,331 874,331 

Amino acids in binding sites 76,775 76,775 76,775 76,775 

Sequence feature Experimental 

signal peptides 

Predicted 

signal 

peptides 

Experimental 

transmembrane 

Predicted 

transmembrane 

Annotated amino acids 9,860 10,934 8,658 9,950 

Amino acids both in binding 

site and annotated 

20 92 145 153 

Expected if events were 

independent 

865 960 760 873 

Independence hypothesis Rejected Rejected Rejected Rejected 

P-value < 10
-308

 1.1 × 10
-303

 2.6 × 10
-176

 4.2 × 10
-213

 

Table 12: Hypothesis tests for negative correlation between H. sapiens PiSite 

binding sites and sequence features. 

4.3.2 Effect of Functional Annotations 

Having validated our hypotheses about signal peptides and transmembrane being 

negative predictors of binding sites, we integrated this additional data into the PIPE 

model (see section 4.2.2) and compared the classification performance between the 

original model and the model augmented with sequence feature data. We performed 

separate experiments for S. cerevisiae and H. sapiens and for each source of sequence 

annotations: experimental signal peptide data, predicted signal peptides, experimental 

transmembrane regions, and predicted transmembrane regions. For each organism, we 

also constructed a combined model in which both signal peptides and transmembrane 

regions are masked out, in order to draw on both sources of additional data. 

For brevity in the text, we compare classifiers only by the sensitivity at the 

99.95% specificity point in the ROC curve of each classifier. The full ROC curves are 

given in Appendix A, where the unmodified PIPE model is labeled “Original” and each 

modified model which integrates sequence annotation data is plotted alongside the first 

curve for comparison. There are in total 4 ROC curve comparison plots in S. cerevisiae 

(section 7.1) and 4 in H. sapiens (section 7.2). 
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The sensitivities at 99.95% specificity show that integrating sequence annotations 

into the model is only sometimes beneficial (Table 13). In S. cerevisiae, signal peptide 

data has no noticeable effect. This can be attributed to the fact that in this organism, 

signal peptides represent a very small percentage of the amino acids in a sample of 

proteins (Table 9) in both DOMINO and PiSite proteins (1.1% and 0.4%). It is 

particularly interesting that the larger sample of proteins (PiSite), has the smaller 

percentage of amino acids involved in signal peptides. On the other hand, in H. sapiens 

where signal peptides represent 4.2% of amino acids in DOMINO and 12.8% of amino 

acids in PiSite, incorporating signal peptide data provides a noticeable increase in 

classifier performance (1.26% to 4.23%). 

Experimental transmembrane data only slightly improves S. cerevisiae 

performance, while predicted transmembrane data in fact hinders classification 

performance. A comparable number of amino acids are annotated as transmembrane in 

both cases (3,135 experimental versus 2,944 predicted), so this reduced performance 

could be attributed to errors in the predicted location of the transmembrane regions, or 

insufficient representation of S. cerevisiae in the training set (only 160 proteins [56]). On 

the other hand, transmembrane data improves classification performance in H. sapiens, 

from 1.26% to ~3.6% sensitivity, regardless of the source of the transmembrane 

annotation. 

The performance of the combined models is dominated by the transmembrane 

region modifications, which cover the largest proportion of amino acids in each 

respective proteome. These cover approximately 23% of amino acids in S. cerevisiae and 

13% of amino acids in H. sapiens. This means that for S. cerevisiae the overall best 
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performances is achieved with the model which incorporates only transmembrane region 

data, while in H. sapiens the best performing model is the signal peptide-only model. 

Organism Model Sensitivity at 

99.95% Specificity 

S. cerevisiae Original 2.17% 

Using experimental signal peptides 2.17% 

Using predicted signal peptides 2.16% 

Using experimental transmembrane regions 2.25% 

Using predicted transmembrane regions 1.76% 

Combined experimental signal peptide and 

transmembrane data 

2.23% 

H. sapiens Original 1.26% 

Using experimental signal peptides 4.23% 

Using predicted signal peptides 4.18% 

Using experimental transmembrane regions 3.64% 

Using predicted transmembrane regions 3.61% 

Combined experimental signal peptide and 

transmembrane data 

3.65% 

Table 13: Performance of classifiers which incorporate sequence feature data in S. 

cerevisiae and H. sapiens  

4.3.3 Effect of Sequence Window Uniqueness 

We modified the PIPE algorithm to account for sequence window uniqueness, as 

described in section 4.2.3. For each cell of the output matrix, after counting the number 

of hits in the known interactions database, we additionally divide this value by the total 

possible number of interaction hits, which is the product of the number of similarity hits 

of the two query windows. When averaging the matrix to obtain an overall pair score, this 

reduces the score inflation due to highly re-occurring sequence regions, while enhancing 

the contribution of highly unique sequence windows. 

Both in S. cerevisiae and in H. sapiens, the modifications result in a noticeable 

improvement of the sensitivity at 99.95% specificity (Table 14). The sensitivity increases 

from 2.17% to 3.05% in S. cerevisiae and from 1.26% to 16.19% in H. sapiens. The ROC 

curves for the S. cerevisiae classifier (Figure 18) and the H. sapiens classifier (Figure 19) 

confirm that the improvement in sensitivity is observed across the entire operating range 
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of specificities, though the relative improvement decreases at lower specificities. This 

model exhibits the best performance out of all models evaluated here, including all 

variants of the sequence annotation models. This is particularly useful, since this model 

requires no additional data other than what is already available in the PIPE database, and 

thus is not bottlenecked by the availability of other protein sequence annotation data. 

Organism Model Sensitivity at 

99.95% Specificity 

S. cerevisiae Original 2.17% 

Using sequence window uniqueness 3.05% 

H. sapiens Original 1.26% 

Using sequence window uniqueness 16.19% 

Table 14: Performance of classifiers which incorporate sequence window 

uniqueness in S. cerevisiae and H. sapiens 

 

Figure 18: ROC curves of original model and model which incorporates sequence 

window uniqueness in S. cerevisiae 
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Figure 19: ROC curves of original model and model which incorporates sequence 

window uniqueness in H. sapiens 

We did not construct classifiers which combined signal peptide and 

transmembrane annotations with sequence window uniqueness. Since signal peptides and 

transmembrane regions re-occur throughout the proteome, we expect that they are already 

accounted for by sequence window uniqueness as non-unique regions, thus reducing their 

score contribution. Masking these sequence regions prior to classification by the model 

with sequence uniqueness would not have a large additional effect compared to sequence 

uniqueness alone. 

Accounting for sequence window uniqueness requires additional processing, 

which has the potential to impact the runtime of the algorithm. However, in practice, the 

additional time required for a validation run, compared to the original model, was on the 
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classification performance of PIPE is improved while preserving its computational 

performance. 

The increased computational speed of the algorithm opens the door to 

experimentation with more complex ways of computing the output score. For example, if 

we assume that interaction hits are independent random events, then the total number of 

hits follows a binomial distribution and the output score can be computed as a P-value of 

observing a particular number of hits. This may further improve the sensitivity of the 

classifier, though this has not been tested. A future study could explore this and other 

methods of calculating this output score. 

4.4 Conclusion 

We have proposed three modified PIPE models which either take into account 

additional protein sequence data, or which make better use of the existing data in the 

PIPE database. In general, all models attempt to account for highly re-occurring sequence 

regions which are not involved in PPIs. The last model performed best on both S. 

cerevisiae and H. sapiens validation sets. In a high-specificity all-to-all screen, we 

estimate that this new model would be able to detect 3.05% of the true interactions in the 

S. cerevisiae protein interaction network (41% more than the original model) and 16.19% 

of the true interactions in the H. sapiens protein interaction network (1,185% more than 

the original model). 
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5 Conclusion 

In Chapter 1, we introduced the field of protein-protein interaction (PPI) 

prediction and stated the goals of this thesis. Chapter 2 defined the pattern classification 

framework used to quantify the performance of PPI classifiers and compared several 

commonly-cited PPI predictors from literature, identifying one method which was the 

state of the art in its field (PIPE). In Chapters 3 and 4, we proposed changes to the 

implementation and model of PIPE which improve its computational and classification 

performance. Finally, in this chapter, we summarize our conclusions and provide avenues 

for further potential improvement of PIPE. 

5.1 Conclusions 

First, we compared 6 commonly-cited methods for PPI prediction [34] [11] [35] 

[36] [37] [17]. Wherever possible, we attempted to compensate for the biases of the 

authors’ chosen validation sets and performance metrics by converting their stated results 

into unbiased measured of classifier performance. The last method, the Protein-protein 

Interaction Prediction Engine (PIPE), was shown to achieve the highest specificity, which 

meant that it was applicable to organism-wide PPI screens, thus representing the state of 

the art in the field. The computational performance of the method was potentially a 

limiting factor, and the classification performance was shown to have room for 

improvement [15]. 

Our first contribution is the improvement of the computational performance of 

PIPE. By restructuring the input data to the algorithm, and by using a more efficient 

implementation in a commonly-executed fragment of the algorithm, we greatly reduced 
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the average execution time per protein pair. Our test sets of 43,591 S. cerevisiae positive 

pairs, 100,000 S. cerevisiae negative pairs, 41,678 H. sapiens positive pairs and 100,000 

H. sapiens negative pairs executed 8.1 , 8.9, 4.0 and 14.5 times faster, respectively, than 

the original algorithm. An interaction screen between all protein pairs in H. sapiens 

would now execute on a 28-core cluster in 20 days with the proposed changes, instead of 

9 months with the original implementation. 

Second, we improved the classification performance of PIPE. First, we showed 

that certain types of sequence features (signal peptides and transmembrane regions) are 

negatively correlated with protein regions involved in PPIs. Integrating this data into the 

PIPE model resulted in an improvement of sensitivity from 2.17% to 2.25% in 

S. cerevisiae protein pairs with experimental transmembrane data, and from 1.26% to 

4.23% in H. sapiens protein pairs with experimental signal peptide data. However, a 

generalization of this concept, which uses data from PIPE’s own sequence comparison 

database to reduce the weight given to highly re-occurring sequence regions, resulted in 

much larger gains in classification performance. At 99.95% specificity, which is suitable 

for organism-wide screens, the specificity in S. cerevisiae increased from 2.17% to 

3.06%; in H. sapiens, the sensitivity increased from 1.26% to 16.19%. If PIPE were to 

classify every protein pair in the human proteome, we estimate that only 0.05% of results 

would be false positive and 16.19% of the true interactions would be discovered. 

Previously published methods trade in lower specificity (typically 99% or less) for higher 

sensitivity, which makes them unusable for organism-wide screens. 

Together, these improvements greatly increase the utility of PIPE as a tool for the 

study of organism-wide protein interaction networks. Wet lab techniques provide the 
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much needed training data for PPI classifiers, but cannot keep up with the demand for 

ever-greater coverage of the proteome. Lastly, computational methods benefit from the 

continuous increase in performance and decrease in cost of new generations of computer 

hardware. 

5.2 Future Work 

Several aspects of the PIPE model and implementation remain to be studied in 

more detail, and could lead to further improved computational and/or classification 

performance. 

5.2.1 Computational Performance 

First, the results for algorithm runtime presented in section 3.5 were obtained 

using single measurements of runtime per protein pair. This is a shortcoming of the 

benchmarking methodology because, as discussed in section 3.4, noise from various 

sources could have interfered with the measurements. A future study could verify that the 

performance improvements are consistent across repeated measurements, which would 

reduce the impact of measurement noise. 

The original runtime for a given pair is not the only possible control variable to be 

considered when analyzing the effect of the algorithm and implementation modifications. 

Other protein and protein pair properties, such as protein length, or the number of known 

interactions for a given protein, could better account for the variability in speedups 

observed. The PIPE score given to a protein pair could also be a useful control variable. 

In particular, for H. sapiens protein pairs, original runtime seems to have been 

insufficient as the sole variable for very long-running pairs. By better predicting the 

impact of certain optimizations to specific protein pairs based on their properties, one can 



99 

 

selectively apply optimizations in order to maximize the benefit for specific classes of 

protein pairs. 

The neighbour list is a very frequently-accessed data structure of the PIPE 

algorithm. The storage format proposed in section 3.2.3 (arrays padded to the maximum 

length) makes much better use of the CPU cache than the previous format (linked lists), 

but may benefit from further optimization. In particular, very short protein ID arrays, 

which occupy less than one cache line, make inefficient use of the cache. A special case 

for these very short protein ID arrays may improve the performance of accesses into the 

neighbour list as a whole, depending on the distribution of the lengths of neighbour lists 

for the organism under consideration. Any attempted change to this storage format must 

be careful not to render the algorithm CPU-bound in exchange for a marginal 

improvement in cache hit rate, which would penalize the case where cache hit rate is 

already very high. 

In general, the broad-stroke optimizations presented here can be furthered by 

using a cache profiling tool (e.g. Valgrind’s sub-tool Cachegrind [62]) and quantitatively 

measuring cache hit rates for various parts of the algorithm, and for specific changes to 

the implementation. Care should be taken to quantify the effect of algorithm changes for 

a representative set of protein pairs. For this level of analysis, the separation of protein 

pairs into positive and negative pairs is most likely not sufficient to represent the wide 

variety of protein pairs, with different memory access patterns, encountered in an 

organism-wide screen. 
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5.2.2 Classification Performance 

Signal peptides and transmembrane regions were shown to be negatively 

correlated with PPI-mediating protein regions (section 4.2.1). DNA-binding motifs, and 

other well-annotated sequence features, may also be negatively correlated. A subsequent 

study might test analogous hypotheses for many different types of sequence features. 

Weighing the number of hits in the known interactions database based on the 

uniqueness of the sequence windows under consideration was shown to improve 

classification performance (section 4.2.3). We used three variables to generate the final 

score: the number of hits in the known interactions database (knownPairsHits), the 

number of similarity hits for the current sequence window from protein A (simHitsAi), 

and the number of similarity hits for the current sequence window from protein B 

(simHitsBj). The final score formula was: \6,] �
^�3P��Q62_647

761_647W`G761_647Xa
. This is only one of 

many possible functions \6,] � \bcdefd��g�\ghi, igj\ghi�6, igj\ghiF]k. For 

example, there may be a limiting level of similarity hits simHitsAi (or simHitsBj, by 

symmetry) past which knownPairHits should no longer be down-weighted. Another 

possibility is to substitute for H the statistical significance of finding a particular value of 

knownPairHits, given some hypothesized prior distribution for knownPairHits. 

Unfortunately, measuring the impact on classification performance of a trial H function is 

costly because it requires an entire leave-one-out experiment. This penalty has been 

slightly reduced as a result of our performance improvements presented in Chapter 3, but 

remains a significant barrier to model tweaking. 

Similarly, instead of aggregating the PIPE matrix (landscape) values by 

calculating the mean, there may be other aggregation functions which produce better-
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discriminating pair scores. One could also treat the PIPE matrix as a 2-D image and apply 

a filter before calculating the aggregate value. This approach was used in the second 

revision of PIPE [17], where it was found to improve classification performance. Care 

should be taken that the filter be computationally-efficient enough to be worth the 

improvement in classification performance. 

Finally, there may be additional information to be gained from the PAM scores 

used to compare sequence windows for similarity. Currently, a threshold is applied to the 

PAM score and the result is used as a binary feature – two sequence windows are either 

similar or not. There may be additional information to be gained by incorporating the 

degree of similarity between two amino acid windows into the calculation of the final 

pair score. Here too, computational efficiency must be carefully considered. 

Precomputing and storing the PAM scores of all pairs of sequence windows is space-

prohibitive, while computing these PAM scores on the fly is prohibitive in terms of 

computation time [16]. 
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7 Appendix A: ROC Curves for Classifiers Evaluated in Section 

4.3.2 

7.1 S. cerevisiae 

Model using experimental signal peptide data 

 

Model using predicted signal peptide data 
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Model using experimental transmembrane region data 

 

Model using predicted transmembrane region data 
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Model using both experimental signal peptide data and experimental 

transmembrane data 
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7.2 H. sapiens 

Model using experimental signal peptide data 

 

Model using predicted signal peptide data 

 

Model using experimental transmembrane region data 
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Model using predicted transmembrane region data 
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Model using experimental signal peptide and experimental transmembrane region 

data 
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