

Techniques for Hosting Mobile Web

Services on Resource Constrained Devices

by

Muhammad Asif, M.A.Sc (ECE), B.Sc. (EE)

A thesis submitted to the Faculty of Graduate and Postdoctoral

Affairs in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Carleton University

Ottawa, Ontario

© 2012

Muhammad Asif

ii

Abstract

This thesis concerns hosting web services (WSs) on mobile devices. A number of

challenges need to be addressed for hosting web services on such resource constrained

devices. These include handling the diversity in the hardware configurations and

operating systems for these devices, the execution of resource demanding web service

applications and complex WS standards. A multi-dimensional approach has been

proposed in this dissertation to address these challenges.

A web service execution environment (WSEE) that uses lightweight components is

devised for hosting web services on mobile devices. The hosted web services can be

accessed by multiple WS clients and can support a basic set of WS standards such as

SOAP and XML Signature. To support more computationally complex and resource

demanding WS standards such as the standards for security and transaction

management, a partitioned WSEE is proposed.

Design time and runtime WS partitioning techniques are proposed to handle

complex and resource demanding WS applications. The design time techniques use

two graph-based algorithms for WS partitioning: Maximum Offloading Minimum

Cost (MOMC) and Cluster based Application Partitioning (CAP). For the runtime WS

partitioning technique, multiple execution plans, each of which corresponds to a

specific partitioning of the system are determined first and then an appropriate

execution plan is selected at runtime by using information on the current system load.

The effectiveness of these proposed techniques is investigated through a system

prototype (using sample web services) as well as simulation (using randomly

generated application graphs). The experimental results demonstrate that the

iii

partitioned systems achieved with the proposed techniques outperform the un-

partitioned systems and the partitioned systems using the existing techniques. For

fixed load scenarios, the design time WS partitioning techniques are observed to

perform the best for a large number of WS clients. Among the design time techniques,

MOMC shows the best performance for small to medium size applications whereas

CAP exhibits its effectiveness for large sized applications. For systems with a large

variability in the number of active WS clients and the workload parameters

investigated, the run time partitioning technique outperforms the other techniques.

iv

Acknowledgements

First and foremost, I would like to express my sincere thanks to my thesis advisor

Prof. Shikharesh Majumdar for his continuous support, encouragement and help

throughout the thesis. I fully appreciate your consistent enthusiasm and patience. I am

thankful to Alcatel-Lucent, Natural Sciences and Engineering Research Council of

Canada, Government of Ontario and Carleton University for providing financial

support for this research. I am grateful to all reviewers whose comments helped me to

shape this thesis.

I am thankful to my wife, Saima Arooj, who has always been understanding and

supportive. Thanks for always being there for me and pushing me to reach this

milestone. Thanks to my two daughters, Sana and Sara, my joy and my source of

strength. Finally, I am close to finish my school and you two are the only one in my

family who will go to school for next few years.

I dedicate this thesis to my father (who always encouraged me to go for the highest

degree) and my mother who prayed for my thesis till she left for another world. I am

forever indebted to my father and my mother for their support and prayers. I am also

thankful to my sister who always asked for my progress and always wished me a good

luck. In the end, I would to thank my colleague and friend Imran Ahmad who

encouraged me in writing this thesis by setting milestones for every month in 2011.

That really helped me in completing this document.

v

Table of Contents

Abstract ... ii

Acknowledgements .. iv

Table of Contents .. v

List of Tables ... ix

List of Figures ... x

List of Appendices .. xvii

List of Symbols ... xviii

List of Abbreviations and Acronyms ... xix

Chapter 1: Introduction .. 1

1.1 Overview ... 1

1.2 Motivations and Challenges .. 2

1.2.1 Applications ... 2

1.2.2 Challenges .. 4

1.3 Thesis Objectives ... 6

1.4 Thesis Contributions .. 7

1.5 Thesis Scope .. 9

1.6 Publications ... 9

1.7 Thesis Outline .. 11

Chapter 2: Background and Related Work .. 12

2.1 Mobile Web Services... 12

2.1.1 Accessing Web Services on Mobile Devices (As a WS Client) 12

2.1.2 Providing Web Services from Mobile Devices (As a WS Provider) . 16

2.1.3 Offloading the Entire WS Application to a Peer/Remote Node 19

2.2 Application Partitioning .. 21

2.2.1 Types of Application Partitioning .. 22

2.2.2 Application Partitioning Frameworks .. 29

2.2.3 Graph Theory based Approaches for Application Partitioning 30

2.3 Design Time versus Runtime WS Application Partitioning 33

Chapter 3: WS Execution Environments ... 36

3.1 Overview ... 36

3.2 Lightweight WSEE .. 37

3.2.1 Transport Layer .. 38

3.2.2 Service Layer .. 42

3.2.3 WS Standards Layer ... 48

vi

3.3 Distributed SOAP Engine Based Partitioned WSEE 49

3.3.1 Motivation for the Proposed WSEE Partitioning Technique 50

3.3.2 Configurable Partitioning Scheme for Execution of WSManager

Tasks 51

3.3.3 System Overview and Design .. 54

3.4 Experimental Analysis ... 58

3.4.1 Sample Web Services ... 58

3.4.2 Workload and System Parameters .. 61

3.4.3 Performance Metrics .. 61

3.4.4 Setup ... 62

3.4.5 Experimental Results.. 63

3.5 Summary .. 75

Chapter 4: WS Partitioning Frameworks ... 77

4.1 Overview ... 77

4.2 Mobile WS Partitioning Frameworks .. 80

4.2.1 Intermediate Node based Framework .. 80

4.2.2 Backend Node based Framework ... 82

4.2.3 Forwarding Node based Framework .. 84

4.3 System Design and Prototype Implementation ... 85

4.3.1 Web Service Execution Environment .. 87

4.3.2 Partition Coordination Subsystem .. 87

4.4 Sample Web Services and Experimental Setup ... 89

4.4.1 Sample Web Services ... 89

4.5 Experimental Setup.. 92

4.5.1 Workload and System Parameters .. 93

4.5.2 Performance Metrics .. 94

4.6 Experimental Results ... 94

4.6.1 Performance Comparison of the Three Frameworks using Image WS

 95

4.6.2 Performance Comparison of the Three Frameworks using Tracking

WS 98

4.6.3 Performance Comparison of the Three Frameworks using

NavigateMe WS ... 99

4.6.4 Performance Comparison of the Three Frameworks using π

Calculator WS... 101

4.7 Summary .. 119

Chapter 5: Design Time WS Partitioning .. 122

vii

5.1 Overview ... 122

5.2 Design Time WS Application Partitioning Guidelines 124

5.3 Graph Terminologies ... 125

5.3.1 Graph .. 126

5.3.2 Edge Weight (WE): ... 126

5.3.3 Vertex Weight (WV): .. 127

5.3.4 Source Vertex ... 127

5.3.5 Vertex Distance .. 127

5.3.6 Graph Size (Dmax) ... 127

5.3.7 Edge Cut ... 128

5.3.8 Degree of Benefit (β).. 128

5.3.9 Beneficial Cut ... 128

5.4 Maximum Offloading Minimum Cost (MOMC) Algorithm 128

5.4.1 Assumptions ... 129

5.4.2 Objective Function ... 129

5.4.3 Algorithm Steps .. 130

5.5 Clustering based Application Partitioning (CAP) 134

5.5.1 Objective Function ... 135

5.5.2 Assumptions ... 135

5.5.3 Algorithm Steps .. 136

5.6 Using Remote Computing Node Information ... 141

5.7 Experimental Analysis using a System Prototype 142

5.7.1 Partitioning Techniques Used .. 142

5.7.2 Sample WS Application – Tracking WS .. 143

5.7.1 Workload and System Parameters .. 149

5.7.2 Performance Metrics .. 150

5.7.3 Experimental Setup .. 150

5.7.4 Performance Results ... 151

5.8 Experimental Analysis using a simulator .. 161

5.8.1 Random Graph Generator (RGG) .. 162

5.8.2 Simulator .. 167

5.8.3 Workload and system Parameters .. 170

5.8.4 Performance Metrics .. 171

5.8.5 Experimental Results.. 171

5.9 Summary .. 183

Chapter 6: Run Time WS Partitioning ... 186

viii

6.1 Overview ... 186

6.2 Generating Execution Plans for a WS ... 188

6.2.1 Input Parameters ... 190

6.2.2 Upper Bound for Remote Partition of an Execution Plan 190

6.2.3 Objective Function ... 191

6.2.4 Algorithm Steps .. 193

6.3 Runtime Middleware for WS Partitioning... 195

6.3.1 Web Service Execution Environment .. 196

6.3.2 Runtime WS Partitioning Engine (Runtime Engine) 198

6.3.3 Relationship between System Load Information and Execution Plans

 199

6.3.4 Selecting an Execution Plan ... 200

6.3.5 Components of Runtime Partitioning Engine 202

6.3.6 Runtime Engine .. 202

6.3.7 Partition Manager ... 202

6.3.8 Load Monitor.. 202

6.3.9 Device Profile ... 203

6.4 Approach used for Performance analysis .. 203

6.4.1 Simulator .. 203

6.5 Performance Analysis .. 204

6.5.1 Input Parameters ... 204

6.5.2 Performance Metrics .. 205

6.5.3 Experimental Results.. 206

6.6 Summary .. 216

Chapter 7: Conclusions .. 218

7.1 Summary .. 218

7.1.1 Lightweight and Partitioned Web Service Execution Environments

 218

7.1.2 WS Partitioning Frameworks ... 219

7.1.3 Design Time WS Partitioning Techniques 220

7.1.4 Runtime WS Partitioning Technique ... 221

7.2 Directions for Future Research .. 222

References ... 224

ix

List of Tables

Table 3-1: Variation of Sample web service .. 64

Table 4-1: Workload and system parameters for performance comparison of the three

frameworks using Image WS ... 96

Table 4-2: Workload and system parameters for performance comparison of the three

frameworks using π Calculator WS ... 102

Table 4-3: Mean response time (msec) for requests and the mean CPU time (msec) for

overheads ... 104

Table 5-1: Mean values/Value Range and default mean values used for workload and

system parameters .. 171

Table 6-1: Input Parameters and their default value .. 205

x

List of Figures

Figure 2-1: Software components of Shopper-Kiosk application example [Mcf03] ... 18

Figure 2-2: Application partitioning architecture proposed by Chandra et al. [Cha02]

.. 28

Figure 3-1: Proposed Architecture for Lightweight WSEE ... 39

Figure 3-2: Sequence diagram capturing interactions between WSManager and the

components in the service layer and components of other layers 43

Figure 3-3: XML grammar for defining WS Mapping .. 47

Figure 3-4: Tasks of a SOAP engine (a) performed as a single SOAP engine (b)

performed as a distributed SOAP engine ... 51

Figure 3-5: A sample partitioning scheme ... 53

Figure 3-6: A partitioned WSEE based on a distributed SOAP engine 55

Figure 3-7: Effect of the number of concurrent clients (C) on the response time (R)

using different sample web services for lightweight WSEE 65

Figure 3-8: Effect of the number of concurrent clients (C) on the response time (R)

using different sample web services for partitioned WSEE .. 66

Figure 3-9: Performance comparison of the lightweight WSEE and the partitioned

WSEE using Image WS with average image size of 100 K, Tracking WS and π

Calculator WS using complexity level of 50K .. 67

Figure 3-10: Scalability of partitioned WSEE when HTTP is used as a transport

mechanism for exchanging SOAP messages between the intermediate node and the

mobile node .. 69

xi

Figure 3-11: Scalability of partitioned WSEE when TCP socket is used as a transport

mechanism for exchanging SOAP messages between the intermediate node and the

mobile node .. 70

Figure 3-12: Effect of using additional WS standards when Tracking WS is invoked

using the two versions of WSEE ... 72

Figure 3-13: Effect of device processor speed on performance of Image WS with the

lightweight WSEE and the partitioned WSEE ... 73

Figure 3-14: Effect of device processor speed on performance of Tracking WS with

the lightweight WSEE and the partitioned WSEE ... 74

Figure 3-15: Effect of device processor speed on performance of π Calculator WS

with the lightweight WSEE and the partitioned WSEE ... 74

Figure 4-1: The intermediate framework for WS partitioning 81

Figure 4-2: The backend framework for WS partitioning ... 83

Figure 4-3: The forwarding framework for WS partitioning 85

Figure 4-4: High level architecture of the system for hosting of partitioned mobile

web services ... 86

Figure 4-5: Internal details of the Partition Coordinating Subsystem 88

Figure 4-6: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and (a) image size = 800x600 (b) image size =

640x480.. 97

Figure 4-7: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and Tracking WS is invoked 98

xii

Figure 4-8: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and NavigateMe WS is invoked for (a) a 20x20

grid map (b) a 40x40 grid map .. 100

Figure 4-9: Response time for invoking the sample π Calculator WS with mobile

device operated at 624 MHz and using an intermediate framework 106

Figure 4-10: Response time for invoking the sample π Calculator WS with mobile

device operated at 624 MHz and using a backend framework 107

Figure 4-11: Response time for invoking the sample π Calculator WS with mobile

device operated at 624 MHz and using a forwarding framework 107

Figure 4-12: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and the sample π calculator WS (with N =

100000) is invoked by one WS client. ... 109

Figure 4-13: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and the sample π Calculator WS (with N =

1000) is invoked by a) six concurrent WS clients b) twelve concurrent WS clients . 111

Figure 4-14: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and the sample π WS (with N = 100000) is

invoked by a) six concurrent WS clients b) twelve concurrent WS clients 113

Figure 4-15: The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample π Calculator WS with O =

50% is invoked by twelve concurrent WS clients (a) with N = 1000 (b) with N =

100000.. 114

Figure 4-16: Effect of using WS security standard on the relative performance of the

three partitioning frameworks when the mobile device is operated at 624 MHz and the

xiii

sample π Calculator WS with O = 50% is invoked by twelve concurrent WS clients

.. 116

Figure 4-17: Effect of CPU speed of the mobile device on relative performance of the

three partitioning frameworks when the π Calculator WS (with N = 1000000) is

invoked by a) one WS client b) twelve WS clients ... 118

Figure 5-1: The MOMC algorithm for mobile WS partitioning 131

Figure 5-2: The CAP algorithm for mobile application partitioning 137

Figure 5-3: Algorithm for computing a vertex with the maximum degree of benefit

from a set of vertices .. 138

Figure 5-4: Partitioning of Tracking WS1 achieved with the three techniques: OEA,

MinCut, MOMC and CAP ... 146

Figure 5-5: Partitioning of Tracking WS2 achieved with the three techniques: OEA,

MinCut, MOMC and CAP ... 147

Figure 5-6: Partitioning of Tracking WS3 achieved with the four techniques: OEA,

MinCut, MOMC and CAP ... 149

Figure 5-7: Performance of the partitioned systems achieved using different

techniques (NPC, OEA, MinCut, MOMC and CAP) for Tracking WS1 153

Figure 5-8: Performance of the partitioned systems using different techniques (NPC,

OEA, MinCut, MOMC and CAP) for Tracking WS2 ... 155

Figure 5-9: Performance of the partitioned systems achieved using different

techniques (NPC, OEA, MinCut, MOMC and CAP) Tracking WS3 155

Figure 5-10: Performance comparison of the partitioned systems achieved with NPC,

OEA, MinCut and MOMC and invoked by multiple WS clients for Tracking WS1 157

xiv

Figure 5-11: Performance comparison of the partitioned systems achieved with NPC,

OEA, MinCut and MOMC and invoked by multiple WS clients for Tracking WS2 157

Figure 5-12: Performance comparison of the partitioned systems achieved with NPC,

OEA, MinCut and MOMC and invoked by multiple WS clients for Tracking WS3 158

Figure 5-13: Performance of the partitioned systems achieved with NPC, OEA,

MinCut and MOMC for Tracking WS1 when mobile device is operated at CPU speed

of (a) 624 MHz (b) 208 MHz ... 160

Figure 5-14: Sample directed graphs based on (a) Linear Template (b) Binary

Template (c) Binary Meshed Template ... 163

Figure 5-15: Internal details of graph generating tool ... 166

Figure 5-16: Execution of application (a) on a single machine (b) on two machines169

Figure 5-17: Comparison of effectiveness of MOMC and CAP for different graph

sizes .. 174

Figure 5-18: Comparison of MOMC and CAP with OEA and NP (no partitioning) 176

Figure 5-19: Comparison of efficacy of different partitioning techniques with the

MinCut algorithm... 177

Figure 5-20: Effect of the mean vertex weight on the mean execution time of the un-

partitioned system and partitioned systems using the MOMC algorithm and the CAP

algorithm .. 178

Figure 5-21: Effect of the mean edge weight on the mean execution time of the un-

partitioned system and partitioned systems using the MOMC algorithm and the CAP

algorithm .. 180

xv

Figure 5-22: Effect of the mean variability factor on the mean execution time of the

un-partitioned system and partitioned systems using the MOMC algorithm and the

CAP algorithm ... 181

Figure 5-23: Effect of the speed up factor on the mean execution time of the un-

partitioned system and partitioned systems using the MOMC algorithm and the CAP

algorithm .. 182

Figure 5-24: Effect of using remote node information in computing partitions with the

MOMC algorithm and the CAP algorithm .. 183

Figure 6-1: A set of sample execution plans .. 189

Figure 6-2: The runtime partitioning algorithm for achieving multiple partition plans

.. 194

Figure 6-3: Architecture of the proposed middleware for runtime WS partitioning . 197

Figure 6-4: Comparison of performance of partitioned systems for various execution

plans, C and for a graph size = 4 .. 207

Figure 6-5: Comparison of performance of partitioned system when one execution

plan is used at a time for graph size = 8 ... 208

Figure 6-6: Comparison of performance of partitioned system when one execution

plan is used at a time for graph size = 12 ... 209

Figure 6-7: Performance comparison of the partitioned systems achieved with the

three techniques using a fixed number of clients with a zero think time 210

Figure 6-8: Performance comparison of the partitioned systems achieved with the

three techniques using fixed number of clients with mean think time = 1000 time units

.. 212

xvi

Figure 6-9: Performance comparison of the three WS partitioning techniques with

varying mean client think time and a) C = 10 and b) C = 20 213

Figure 6-10: Performance comparison of the three techniques using variable number

of clients. .. 215

xvii

List of Appendices

Appendix A: WS Partitioning Frameworks ……………………………….. 235

Appendix B: Profiling Output of a Few Sample Applications ……………. 239

Appendix C: Real Time Profiling for Device Profile Index ………………..241

xviii

List of Symbols

G Graph

V Set of vertices of a graph

E Set of edges of a graph

WE Edge weight

WV vertex weight

s Source vertex

S Speed up factor

D Vertex distance

Dmax Maximum vertex distance (graph size)

C Number of active WS clients

Cmax Number of maximum active WS clients

R Mean response time

τ Mean execution time

Ƥ Percentage improvement in execution time

ξ Scalability metric of WSEE

β Degree of benefit of a partiton

ω Device speed

∆ Variability factor

ρ system load

χ device profile index

NE Number of execution plans

xix

List of Abbreviations and Acronyms

AMD Advanced Micro Devices

API Application Programming Interface

ARM Advanced RISC Machine

CAP Clustering Application Partitioning

CDC Connected Device Configuration

CF (.NET) Compact Framework

CLDC Connected Limited Device Configuration

COM Component Object Model

CPU Central Processing Unit

DHCP Dynamic Host Control Protocol

DOM Document Object Model

GB Giga (2
30

 = 1073741824) Bytes

GHz Giga (10
9
) Hertz

GPS Global Positioning System

HTTP Hyper Text Transfer Protocol

IAPPGA Internet Accessible Program Packet for Graph Algorithms

J2ME Java 2 Micro Edition

JCP Java Community Process

JSR Java Specification Request

JVM Java Virtual Machine

KB Kilo (2
10

 =1024) Bytes

xx

MB Mega (2
20

 = 1048576) Bytes

MHz Mega (10
6
) Hertz

MIDP Mobile Information Device Profile

MinCut Minimum Cut

MIPS Microprocessor without Interlocked Pipeline Stages

MLRB MultiLevel Recursive Bisection

MOMC Maximum Offloading Minimum Cost

MSB Multilevel Spectral Bisection

NP/NPC No Partitoning / No Partitioning Case

OEA Offloading Entire Application

OS Operating System

PDA Personal Digital Assistant

RAM Random Access Memory

ROM Read Only Memory

RPC Remote Procedure Call

SH SuperH

SMS Short Message Service

SOAP Simple Object Access Protocol

TCP Transport Control Protocol

UDDI Universal Description, Discovery, Integration

WML Wirless Markup Language

WSA Web Service APIs

xxi

WSDL Web Service Description Language

WSEE Web Service Execution Environment

WML Wireless Markup Language

WNP Wireless Network Provider

XML eXtensible Markup Language

1

Chapter 1: Introduction

This chapter presents an overview of hosting web services on resource constrained

handheld devices. It describes the motivations behind hosting of web services on

handheld devices and enumerates different challenges that are encountered while

hosting such services. Later, the scope and goals of this thesis are presented. At the

end of this chapter, summary of the proposed contributions is presented.

1.1 Overview

A web service (WS) is a software component that can be accessed over the internet

using standard protocols and well defined interfaces [Ws04]. Web services are

accessed using the Simple Object Access Protocol (SOAP) [Soa08] and the Hyper

Text Transfer Protocol (HTTP). WS interfaces are described in a well-defined format

using the Web Service Description Language (WSDL) [Wsd01]. Normally, service

providers publish their web services to a registry such as the Universal Description,

Discovery, Integration (UDDI) registry [Udd05]. WS clients can search for web

services by querying the UDDI registry. A WS requester or client is defined as an

entity that consumes the WS. A WS provider is defined as an entity that provides

access to software applications as web services.

There are a number of WS execution environments (WSEE) available for providing

access to web services by hosting them on desktop machines that are connected to

2

wired networks. Mobile devices such as smart phones, tablets, netbooks and Global

Positioning System (GPS) based devices have resource constraints that make it

difficult to host web services on them. This thesis discusses and investigates different

techniques for hosting web services on such devices.

1.2 Motivations and Challenges

Web services are getting popular in the domain of business to business electronic

commerce and in automating information exchange between business processes

because of the interoperability they provide in a distributed heterogeneous

environment. Most existing systems use web services that are hosted in fixed

infrastructures. Hosting of web services on wireless handheld mobile devices is a

relatively new concept. Researchers have discussed many interesting applications of

hosting services on mobile devices.

1.2.1 Applications

There are many interesting applications where hosting of web services on handheld

mobile devices is useful. A few examples of such applications are described next.

• A shipping company can provide tracking of the shipping items in a real time.

The tracking is possible if the vehicle carrying the shipping items is equipped

with a mobile device, a GPS receiver and a tracking WS hosted on the mobile

device. The universal resource identifier of the hosted WS can be provided to

the customer. The customer can directly access the hosted WS and track the

shipping items in real time and estimate their delivery time.

• A supply chain management system is a network of different companies or

departments for producing, handling and/or distributing a specific product to

3

the consumer. A person running a small business and using a tablet device

(such as iPad or Galaxy Tab) or a netbook in the field can be a part of a supply

chain system. The services offered by such a person in the field can be

available through web services hosted on his/her device. The reason for

hosting web services on his/her device is that the data to be used in a WS

needs to be the most recent. Since s/he is always updating the data while

working in the field, it makes sense to host web services on his/her device.

• Tracking skilled persons such as doctors in an emergency situation is another

example. For such application, a WS is assumed to be hosted on his/her smart

phone equipped with a tracking sensor (e.g. a GPS receiver). The WS can be

invoked at a nursing station in the hospital and the exact location of the doctor

can be determined.

• A smart GPS based device in a vehicle can host a traffic information service

for peer GPS based devices in other vehicles to access. Any peer GPS based

device in another vehicle can access such a service (on multiple devices) to

collect information about traffic congestion, road blocks or accidents. Based

on the collected information, the GPS based device can compute an alternate

route for the driver.

• Use of mobile web services for study of animals’ life from remote sites is

another interesting application. In Australia, a biodefence project has been

initiated to study the health of animals, their migration habits and the effect of

environmental changes on their life. Mobile web services hosted on mobile

devices that are either attached or inserted into an animal body can be used by

researchers all across the world for studying the life in remote forests.

4

• Another interesting application is a mobile web service that is based on a

mobile device and wireless sensors attached to a patient’s body. Such a service

can combine results of different sensors and perform computations on the

mobile host to aggregate results into a summary before sending the response

back to the requester. The WS requester can be a hospital or an independent

agency that may be hired to monitor a person’s health in real time. Such

application scenarios are investigated in [Luq08] and [Aij10].

• Publically available wireless devices are often resource constrained as the

mobile devices discussed earlier. For example, a company can provide live

contents (e.g. text and/or images) as mobile web services from public places

using such wireless devices. These web services can be accessed by news

agencies or security persons. This type of web services can help in reducing

cost of sending resources (e.g. camera, vehicle and persons) to a place where

an event of public interest is happening.

• In pervasive computing, interaction among different devices can be managed

conveniently if devices are offering services using WS technologies. The use

of WS technology for interaction of devices is useful to integrate devices from

different manufacturers even if they are using different platforms and different

programming languages.

There are a number of challenges in hosting web services on mobile devices. These

challenges are discussed next.

1.2.2 Challenges

The key challenges of hosting web services on resource constrained devices include

limited resources on such devices, diversity in hardware and operating systems used

5

on mobile devices, non-availability of WS toolkits and weak wireless signals. Each of

these is discussed in the following subsections.

1.2.2.1 Limited Resources

The WS application may require complex algorithms to achieve its goals; complex

cryptographic algorithms are executed, for example, if the WS application requires an

end to end security at the message level. In many cases, intensive data processing is

required to provide the desired functionality. For example, image format conversion

requires a significant amount of resources. Moreover, accessing or providing a WS

always incurs the overhead of SOAP/XML processing. The required resources for WS

applications include CPU power, memory, battery and bandwidth. Unfortunately,

handheld devices are limited in terms of each of these resources and this represents a

big challenge for hosting WS applications that are typically resource demanding on

handheld mobile devices.

1.2.2.2 Diversity

Another challenge in the domain of handheld devices is the diversity in hardware

architectures such as Advanced RISC Machine (ARM) developed by ARM Holdings,

Microprocessor without Interlocked Pipeline Stages (MIPS) developed by MIPS

Computer Systems and SuperH (SH) developed by Hitachi. There is also diversity in

the available operating systems (OSs) for mobile devices. These include Windows

Mobile, iPhone OS, Symbian, Android OS and Blackberry OS.

1.2.2.3 Non Availability of WS Toolkits

There is a number of WS toolkits and execution environments available for desktop

nodes. The most popular are the Apache Axis2 [Apa08], Glassfish Project [Gla09] for

a Java runtime environment and AlchemySOAP [Alc07] for C/C++ runtime

6

environment. However, these toolkits are not suitable for mobile devices because of

the following reasons. First, these toolkits are too large and resource demanding for

handheld devices. Second, these toolkits are developed for such runtime environments

which are not optimized or not available for mobile devices. For example, Apache

Axis2 requires a Java run time environment 1.4 or higher that is only available for

desktop machines. Third, limited CPU power, communication bandwidth, battery and

memory that characterize handheld mobile devices are often inadequate for using

such heavy weight WSEEs. The mobile devices need a light weight environment for

hosting web services so that devices can have enough free resources to perform the

other core functions such as making or receiving phone calls.

1.2.2.4 Weak Signals

A challenge inherited from the wireless domain is the handling of weak wireless

signals that can cause connections drops and loss of packets.

It can be argued that a solution developed in the native code of the device will be the

most efficient. However, writing optimized programs in low level native codes for a

large variety of handheld devices is an expensive solution because of the diversity of

available handheld devices. Using a WS is attractive because WS technology provides

interoperability in a heterogeneous environment in which the WS client and the WS

provider may be implemented using different languages and may run on diverse

platforms.

1.3 Thesis Objectives

This thesis concerns a number of research problems, and thus has multiple

objectives. One of the objectives is to investigate techniques and frameworks for

hosting web services on resource constrained handheld devices. Another objective is

7

to investigate application partitioning algorithms for web service applications so that

parts of WS applications can be executed on remote computing nodes for lowering the

resource demand on the handheld device. WS partitioning is expected to improve the

overall system performance by facilitating WS provisioning with a reduced response

time in comparison to the case in which the entire WS applications are run on the

handheld device. The partitioned web services also aim to provide system scalability

to handle multiple clients.

1.4 Thesis Contributions

The contributions of this thesis are summarized next.

• A lightweight WSEE that can handle a set of basic WS standards for hosting WS

on handheld devices is devised.

• Investigating and devising a configurable partitioned WSEE based on a distributed

model of a SOAP engine that uses a WS specific configurable partitioning scheme

for offloading the execution of certain tasks (related to the conformation with WS

standards/specifications) to a more powerful intermediate node.

o This novel concept of partitioned WSEE is very useful for conforming to

the data and the resource intensive WS standards such as WS-Security and

WS-AtomicTransaction. Such resource demanding WS standards are very

hard to apply for web services hosted on handheld devices because of their

limited resources.

• Analyzing performance of three application partitioning frameworks (Intermediate

framework, Backend framework and Forwarding framework) for hosting of web

services on handheld devices. The intermediate and backend frameworks were

proposed in the literature for mobile and conventional applications. This thesis

8

analyzes their feasibility for hosting web services on handheld devices and also

proposes a new framework (the forwarding framework). Details of the three

frameworks are available in chapter 4.

• Investigating and devising two design time WS partitioning algorithms: Maximum

Offloading Minimum Cost (MOMC) Algorithm and Clustering Based Application

Partitioning (CAP) Algorithm. The majority of the algorithms available in the

literature have different objectives and they usually target large scale scientific

applications. These algorithms are either very complex or based on objectives of

either only minimizing the communication cost between application components

or dividing the application into partitions of similar sizes so that the partitions can

be run in parallel efficiently. The algorithms proposed in this thesis focus

primarily on offloading part or parts of an application from a handheld mobile

device to a remote computing node. The proposed algorithms can also use the

characteristics (such as the processing speed) of a remote computing node when

this information is available. The details of the design time WS partitioning

algorithms with performance analysis are discussed in Chapter 5.

• Devising a hybrid technique for runtime WS application partitioning: The design

time WS partitioning is easy to use and is observed to be effective for a wide

range of application scenarios, but the partitioned systems achieved with the

design time approaches are generally insensitive to the variation in system load.

The proposed technique for runtime WS application partitioning combines

advantages of both the design time and the runtime application partitioning. The

runtime technique first applies a graph based algorithm for achieving multiple

execution plans for a WS application at design time. The technique then uses a

9

runtime middleware system which can select an appropriate execution plan based

on the system load information and then uses that execution plan for executing the

application partition.

1.5 Thesis Scope

For this research, both data-intensive and compute intensive applications are

considered as web services. Applications involving streaming data such as multimedia

applications are not considered because web services are not typically designed for

such applications.

The WS partitioning techniques proposed in this thesis focus primarily on

partitioning of mobile WS applications but these techniques can be applied to

partition other types of mobile applications as well. However, the proposed

partitioning techniques are not devised for data partitioning or partitioning of large

scientific applications.

1.6 Publications

A number of experiments have been performed for detailed analysis of the

performance of the proposed techniques of hosting web services on resource

constrained devices. Based on the analysis and the results of experimentation, a

number of research papers have been published which are listed next.

1. M. Asif and S. Majumdar, “A Runtime Partitioning Technique for Mobile Web

Services”, In the Proceedings of the International Workshop on Applications of

Wireless Ad hoc and Sensor Networks (AWASN'11), Taipei, Taiwan, Sep 13-16,

2011.

10

2. M. Asif and S. Majumdar, “Partitioning frameworks for mobile web services

provisioning”, International Journal of Parallel, Emergent and Distributed

Systems, 1744-5760, Taylor & Francis, 2011.

3. M. Asif and S. Majumdar, “Hosting Web Services on Mobile Devices”, Book

Chapter in Mobile Web 2.0: Developing and Delivering Services to Mobile

Phones, Taylor & Francis Group, 2010.

4. M. Asif and S. Majumdar, “A Graph-based Algorithm for Partitioning of Mobile

Web Services”, In the proceeding of 17th Annual Meeting of the IEEE/ACM

International Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS 2009), London, UK, September 2009.

5. M. Asif and S. Majumdar, “Performance Analysis of Mobile Web Service

Partitioning Frameworks”, In the Proceedings of the 16th International

Conference on Advanced Computing and Communications (ADCOM 2008),

Chennai, India. December 2008.

6. M. Asif, S. Majumdar, R. Dragnea, “Partitioning the WS Execution Environment

for Hosting Mobile Web Services”, In the Proceedings of the 2008 IEEE

International Conference on Services Computing (SCC 2008), Honolulu, HI, 8-11

July 2008.

7. M. Asif, S. Majumdar, R. Dragnea, “Application Partitioning for Enhancing

System Performance for Services Hosted On Wireless Devices”, In the

Proceedings of the Workshop on Service Oriented Engineering and Optimization

2007, Goa, India, December 2007.

8. M. Asif, S. Majumdar, R. Dragnea, “Hosting web services on resource

constrained devices”, In the Proceedings of the 2007 IEEE International

conference on web services, Salt Lake City, UT, July 9-13 2007.

11

1.7 Thesis Outline

The outline of this thesis document is presented. Chapter 2 discusses the background

of this research and the related work in the area of mobile web services, in application

partitioning. Chapter 3 discusses the lightweight WSEE and the distributed SOAP

engine based partitioned WSEE for hosting of web services. Chapter 4 presents an

analysis of different partitioning frameworks for hosting of partitioned web services.

Chapter 5 discusses design time WS application partitioning techniques and a detailed

performance analysis of the techniques using application prototypes as well as

simulation models. Chapter 6 introduces run time WS application partitioning

technique. Chapter 7 concludes the thesis and enumerates direction for future

research.

12

Chapter 2: Background and Related Work

This chapter covers the existing work on hosting web services on resource

constrained devices, application partitioning in general and WS partitioning in

particular, application partitioning frameworks and graph based algorithms for WS

application partitioning.

2.1 Mobile Web Services

The term ‘mobile web service’ is used both for web services that are accessed from

handheld mobile devices and for web services that are provided from handheld mobile

devices. In the first case, mobile WS clients are run on mobile devices to create

requests (SOAP messages) for accessing web services. The web services may be

hosted on other mobile devices or on more powerful computers in a fixed

infrastructure. The term ‘mobile web service’ is used only when a web service is

hosted on mobile devices. In the next subsections, a critical analysis of the related

work in the area of accessing web services from a mobile device and providing web

services from a mobile device is presented.

2.1.1 Accessing Web Services on Mobile Devices (As a WS Client)

There is a substantial amount of work done in the area of accessing web services

from a mobile device. The web services may be hosted in a fixed infrastructure or on

other mobile devices. Since this is not directly related to the research work presented

13

in this thesis, so only a high level summary of the key papers is presented. The

approaches proposed in the literature can be grouped into three categories. Each

category is discussed in a separate subsection.

2.1.1.1 Accessing WSs Directly on Mobile Devices

In the first category of approaches, web services are accessed directly on mobile

devices. Schall et al. provide an analysis of several toolkits that are proposed for

accessing web services from mobile devices [Sch06]. These include gSOAP, kSOAP,

JSR 172 (WSA) and support of web services in the .NET compact framework. A brief

summary of these toolkits is presented next.

gSOAP is a C/C++ toolkit for web services [Eng03]. The toolkit includes a Web

Service Description Language (WSDL) parser that creates header files for

stub/skeleton based on the WSDL of a WS. The run-time library (stdsoap2) can be

used to serialize outgoing WS requests and to de-serialize incoming WS responses.

eSOAP is another toolkit available for C++ programmers to access web services from

embedded systems [Eso04]. A limitation of these toolkits is that it is not easy to find a

C++ compiler for all the different types of mobile devices.

kSOAP [Kso03] and JSR-172 [Wsa04] are proposed for the Java Micro Edition

(Java ME) platform [Jme06]. Java ME is a set of standard Java APIs defined through

the Java Community Process (JCP). Java ME has two configurations, the Connected

Device Configuration (CDC) and the Connected Limited Device Configuration

(CLDC). CDC is a subset of Java Standard Edition (Java SE) and is designed for

products with resource constraints, typically 2 MB of RAM and 2.5 MB of ROM for

the Java application environment [CDC05]. In contrast to CDC, CLDC is designed for

products with very limited resources; typically 128 KB to 512 KB of RAM [CLD05].

14

CLDC provides libraries such as the Connection Framework which are suitable for

devices with a small memory footprint (not part of J2SE). CLDC has a profile, Mobile

Information Device Profile (MIDP), specifically designed for cell phones to provide

the user interface, network connectivity, local data storage, and application

management needed by these devices.

kSOAP is an open source SOAP library for devices with Java ME support. It

provides a lightweight way to access SOAP based web services. However, kSOAP

cannot generate client side stubs from the WSDL of a WS. JSR-172 (WSA) is a set of

web services APIs (WSA) for Java ME available in Sun’s wireless tool kit (WTK). In

comparison to kSOAP, client side stubs can be generated from WSDL of a WS using

WSA. This accelerates the development process of WS clients. WSA for J2ME has

similar capabilities (e.g., a stub generator) as gSOAP’s client runtime. However, it is

important to note that all these toolkits are only suitable for consumption of web

services on mobile devices. These toolkits do not provide APIs that can be used for

hosting web services on mobile devices [Eng03, Kso03].

.NET Compact Framework (CF) [Net05] is a subset of Microsoft’s .NET

framework. With .NET CF, web services can be accessed in a synchronous or

asynchronous manner. The steps of invoking web services using .NET CF and

standard .NET framework are similar.

Rendon et al. discuss the use of a J2ME Web Services API (WSA) for devices with

Java ME support and Short Message Service (SMS) for devises without the support of

Java ME. The SMS based approach has very limited applications because it requires

an intermediate node to translate text messages to SOAP requests for WS invocation

and to convert WS response to an SMS text message for a mobile device. This

15

approach is also not user friendly because a strict format needs to be followed for

sending text messages from mobile devices.

2.1.1.2 Accessing WSs using Mobile Agents

In the second category, web services are accessed using mobile agents. A mobile

agent is an autonomous entity that gathers information or accomplishes tasks without

human interaction and can also self-migrate in a heterogeneous network [Bra05].

Cheng et al. propose a framework in which web services are accessed by using

mobile agents [Che02]. The proposed framework requires different mobile agents for

different categories of web services that make it unattractive from an

implementation’s point of view. Another framework based on mobile agents is

proposed by Adacal et al. [Ada06]. In this framework, mobile web service (MWS)

agents reside in the system of the wireless network provider (WNP). WNP creates a

mobile WS agent as soon a new WS request is received from a mobile client. The

newly created mobile WS agent is responsible for the complete invocation process for

the WS. The invocation process of a WS includes discovery of web services,

invocation of a work flow engine to execute web services according to a work flow

document and in the end translating a WS response according to the device

configuration. The proposed solution uses mobile WS agents that reside in a WNP

environment.

2.1.1.3 Accessing WSs using Proxy Nodes

In the third category, web services are accessed through proxy nodes. A number of

architectures and frameworks based on the use of a proxy node have been proposed.

Park et al. propose a middleware (running on a proxy node) that converts the response

of a web service to a wireless markup language (WML) or other formats that are

16

suitable for mobile devices [Par06]. Similarly, a WS request sent in WML or a device

specific format is converted to a SOAP message as required by the WS. The

middleware serves merely as a translator. Steele et al. has gone a step ahead and

suggest a new architecture for discovery and invocation of web services [Ste05]. The

proposed architecture has a component available on a proxy node that uses WSDL to

automatically generate a user interface (UI) for the access of a WS. The user interface

is created on the fly based on the requirements of a WS and configuration of the

mobile device. The frameworks proposed earlier are not more than intelligent

translators. Lee et al. propose to use proxy or intermediary nodes for more than

service discovery and XML processing [Lee06]. They also suggest providing

authentication, auditing and management of clients in addition to XML processing

and service discovery at the proxy. MacDonald and Mitchell have a different view for

authentication and auditing of web services [Mac05]. They propose to use the WNP

(which is a trusted third party) for authentication and handling of payment for the

usage of web services. According to them, WNPs are the best choice because they

already have trust relationships with mobile clients. They can ensure security between

mobile clients and the service provider. Enhancing network providers for such tasks

are expected to minimize service latency as well.

2.1.2 Providing Web Services from Mobile Devices (As a WS Provider)

Hosting of web services on mobile devices has started receiving attention recently.

There are two types of approaches used in the literature for providing web services

from mobile devices and are described in the following subsections.

17

2.1.2.1 Hosting Entire WS on a Mobile Device

A representative set of works that has been proposed for hosting web services on a

handheld mobile device is discussed next.

The earliest research is done at IBM [Mcf03]. They develop a prototype for a

shopper-kiosk application where a shopper comes to a store with his/her handheld

device, purchases a few things and uses its wallet services to pay bills. On arriving at

the store, the user’s device connects to the store’s network, determines the services

offered by the store, presents its services to the store, securely uses and executes the

services, and deregisters its services and itself from the store when the user leaves the

store. The main components of the example application are shown in Figure 2-1.

These include a mobile device, a wireless access point and a Dynamic Host Control

Protocol (DHCP) server, a Universal Description, Discovery, Integration (UDDI)

repository (registry), a servlet engine and a kiosk station. The access point provides

connectivity to the mobile device and helps the mobile device to locate the store’s

services and the UDDI repository.

The servlet engine generates web pages to drive the interaction between the kiosk

and the user. More details can be found in [Mcf03]. This research has successfully

addressed a number of key issues in the context of hosting web services on mobile

devices. For example, it addresses discovery of services by using the local UDDI

registry in the shop. The shopper has to register its wallet service as soon he/she walks

in the shop. Upon user’s entry into the shop, his/her device is issued a unique IP

address and is assigned an easy-to-remember name. This name is used to identify the

user’s device at the time of payment without entering the IP or the MAC address of

the device. This demo application is tested with a personal digital assistant (PDA)

equipped with a 100 MHz CPU and a Bluetooth wristwatch that is equipped with an

18MHz CPU. Secu

by using X509 security certificates. The shop system has to present its valid security

certificate to the wallet service (on the device) before fetching the financial

information of the use

the mobile device and the shop system. Use of Bluetooth makes its application very

limited because of the short range of Bluetooth connection. Apart from the Bluetooth

communication limitations,

applications of hosting of WSs on mobile devices. For example, a doctor or a

specialist can expose his/her special skills as a WS and can register it while boarding

a flight/ship or entering a restaurant

can be located through their exposed WS very easily.

In another effort, Srirama

services for Sony Ericsson P800 smart phone [Sri06]. The sample WS prototype

accesses a Bluetooth Global Positioning System (GPS) receiver and a file system. A

WS handler is d

Figure 2-

equipped with a 100 MHz CPU and a Bluetooth wristwatch that is equipped with an

18MHz CPU. Security and trust between the shopper and shop system are established

by using X509 security certificates. The shop system has to present its valid security

certificate to the wallet service (on the device) before fetching the financial

information of the use

the mobile device and the shop system. Use of Bluetooth makes its application very

limited because of the short range of Bluetooth connection. Apart from the Bluetooth

communication limitations,

applications of hosting of WSs on mobile devices. For example, a doctor or a

specialist can expose his/her special skills as a WS and can register it while boarding

a flight/ship or entering a restaurant

can be located through their exposed WS very easily.

In another effort, Srirama

services for Sony Ericsson P800 smart phone [Sri06]. The sample WS prototype

accesses a Bluetooth Global Positioning System (GPS) receiver and a file system. A

WS handler is developed on top of a web server to handle WS requests. The authors

-1: Software components of Shopper

equipped with a 100 MHz CPU and a Bluetooth wristwatch that is equipped with an

rity and trust between the shopper and shop system are established

by using X509 security certificates. The shop system has to present its valid security

certificate to the wallet service (on the device) before fetching the financial

information of the user. The system uses Bluetooth as a communication link between

the mobile device and the shop system. Use of Bluetooth makes its application very

limited because of the short range of Bluetooth connection. Apart from the Bluetooth

communication limitations, this research has opened doors for other interesting

applications of hosting of WSs on mobile devices. For example, a doctor or a

specialist can expose his/her special skills as a WS and can register it while boarding

a flight/ship or entering a restaurant

can be located through their exposed WS very easily.

In another effort, Srirama et al.

services for Sony Ericsson P800 smart phone [Sri06]. The sample WS prototype

accesses a Bluetooth Global Positioning System (GPS) receiver and a file system. A

eveloped on top of a web server to handle WS requests. The authors

: Software components of Shopper

18

equipped with a 100 MHz CPU and a Bluetooth wristwatch that is equipped with an

rity and trust between the shopper and shop system are established

by using X509 security certificates. The shop system has to present its valid security

certificate to the wallet service (on the device) before fetching the financial

r. The system uses Bluetooth as a communication link between

the mobile device and the shop system. Use of Bluetooth makes its application very

limited because of the short range of Bluetooth connection. Apart from the Bluetooth

this research has opened doors for other interesting

applications of hosting of WSs on mobile devices. For example, a doctor or a

specialist can expose his/her special skills as a WS and can register it while boarding

a flight/ship or entering a restaurant. In a situation of need or emergency, such persons

can be located through their exposed WS very easily.

et al. has implemented a prototype for hosting of web

services for Sony Ericsson P800 smart phone [Sri06]. The sample WS prototype

accesses a Bluetooth Global Positioning System (GPS) receiver and a file system. A

eveloped on top of a web server to handle WS requests. The authors

: Software components of Shopper

18

equipped with a 100 MHz CPU and a Bluetooth wristwatch that is equipped with an

rity and trust between the shopper and shop system are established

by using X509 security certificates. The shop system has to present its valid security

certificate to the wallet service (on the device) before fetching the financial

r. The system uses Bluetooth as a communication link between

the mobile device and the shop system. Use of Bluetooth makes its application very

limited because of the short range of Bluetooth connection. Apart from the Bluetooth

this research has opened doors for other interesting

applications of hosting of WSs on mobile devices. For example, a doctor or a

specialist can expose his/her special skills as a WS and can register it while boarding

. In a situation of need or emergency, such persons

can be located through their exposed WS very easily.

has implemented a prototype for hosting of web

services for Sony Ericsson P800 smart phone [Sri06]. The sample WS prototype

accesses a Bluetooth Global Positioning System (GPS) receiver and a file system. A

eveloped on top of a web server to handle WS requests. The authors

: Software components of Shopper-Kiosk application example [Mcf03]

equipped with a 100 MHz CPU and a Bluetooth wristwatch that is equipped with an

rity and trust between the shopper and shop system are established

by using X509 security certificates. The shop system has to present its valid security

certificate to the wallet service (on the device) before fetching the financial

r. The system uses Bluetooth as a communication link between

the mobile device and the shop system. Use of Bluetooth makes its application very

limited because of the short range of Bluetooth connection. Apart from the Bluetooth

this research has opened doors for other interesting

applications of hosting of WSs on mobile devices. For example, a doctor or a

specialist can expose his/her special skills as a WS and can register it while boarding

. In a situation of need or emergency, such persons

has implemented a prototype for hosting of web

services for Sony Ericsson P800 smart phone [Sri06]. The sample WS prototype

accesses a Bluetooth Global Positioning System (GPS) receiver and a file system. A

eveloped on top of a web server to handle WS requests. The authors

Kiosk application example [Mcf03]

equipped with a 100 MHz CPU and a Bluetooth wristwatch that is equipped with an

rity and trust between the shopper and shop system are established

by using X509 security certificates. The shop system has to present its valid security

certificate to the wallet service (on the device) before fetching the financial

r. The system uses Bluetooth as a communication link between

the mobile device and the shop system. Use of Bluetooth makes its application very

limited because of the short range of Bluetooth connection. Apart from the Bluetooth

this research has opened doors for other interesting

applications of hosting of WSs on mobile devices. For example, a doctor or a

specialist can expose his/her special skills as a WS and can register it while boarding

. In a situation of need or emergency, such persons

has implemented a prototype for hosting of web

services for Sony Ericsson P800 smart phone [Sri06]. The sample WS prototype

accesses a Bluetooth Global Positioning System (GPS) receiver and a file system. A

eveloped on top of a web server to handle WS requests. The authors

Kiosk application example [Mcf03]

equipped with a 100 MHz CPU and a Bluetooth wristwatch that is equipped with an

rity and trust between the shopper and shop system are established

by using X509 security certificates. The shop system has to present its valid security

certificate to the wallet service (on the device) before fetching the financial

r. The system uses Bluetooth as a communication link between

the mobile device and the shop system. Use of Bluetooth makes its application very

limited because of the short range of Bluetooth connection. Apart from the Bluetooth

this research has opened doors for other interesting

applications of hosting of WSs on mobile devices. For example, a doctor or a

specialist can expose his/her special skills as a WS and can register it while boarding

. In a situation of need or emergency, such persons

has implemented a prototype for hosting of web

services for Sony Ericsson P800 smart phone [Sri06]. The sample WS prototype

accesses a Bluetooth Global Positioning System (GPS) receiver and a file system. A

eveloped on top of a web server to handle WS requests. The authors

Kiosk application example [Mcf03]

19

use PersonalJava instead of J2ME because of the availability of a richer application

environment and better interaction with the Sony Ericson P800 smart phone. Note that

PersonalJava is a Java software environment to execute Java applications on handheld

and mobile devices. PersonalJava has been superseded by the J2ME CDC [CDC05]

and CLDC [CLD05]. kSOAP [Kso03] is used for XML processing because of its

effective memory footprint. This work is extended in two different domains:

1. Providing a secure communication and an access control for the mobile WS

provisioning domain ([Sri07-1] and [Sri07-2]).

2. Supporting mobile web service provisioning through cloud computing is

considered [Sri11]. Web service provisioning through cloud computing is

based on a mediation framework that is proposed in [Sri10].

Pham et al. [Pha05] propose a lightweight SOAP server architecture for mobile

devices and provide an implementation for the micro edition of Java (J2ME). The

proposed SOAP server is useful to provide the access to web services via HTTP.

The approaches discussed earlier focus mainly on hosting of relatively simple WS

applications. A few researchers have explored the usability of mobile web services in

a peer to peer environment ([Aij08] and [Geh05]). Some researchers have also

proposed migration of the entire WS application to a remote node. In the domain of

pervasive and mobile computing, researchers have also proposed partitioning of

applications and executing part or parts of them on remote computing nodes. The

work in these two categories is presented next.

2.1.3 Offloading the Entire WS Application to a Peer/Remote Node

Researchers have proposed techniques for migration of WS code entirely from one

node to another. The main focus of these works is the selection of the appropriate

20

target node either using context information [Hem05, Riv07] or using information of

the target node [Yea05].

Yeon et al. present a lightweight framework for hosting web services on mobile

devices [Yea05] that focuses on the processing of the SOAP messages, the execution

and migration of services, the management of context and the service directory, and

the publishing and discovery of services. SOAP processing is achieved by using

PocketSOAP toolkit [Fel04] which is available for only windows family of operating

systems. The key feature of this work is the migration of services in case of low

battery power on the mobile device or weak signal strength. In such cases, the service

(code) is migrated to another node. The target node is selected using a criterion that

takes into account the context of the node and its capabilities such as CPU speed and

available memory. The proposed framework is tested using real devices connected by

Bluetooth.

Hemmati et al. propose a framework, which supports the migration of application

codes and its execution states [Hem05]. The target node is selected based on context

information for the framework, which is collected by a context manager from the

other nodes. Riva et al. [Riv07] go a step further by proposing a mobile service

framework that continuously monitors dynamic context changes in an ad-hoc wireless

network. For example, the context of a service requester is used to transfer a mobile

service to a node closer to the service requester. However, the proposed framework is

required to monitor the context of the WS requester as well as the context of the

framework.

In addition to these works on offloading WS code to a remote computing node for

execution, existing work also addresses migration of general application code from

21

mobile devices to remote computing nodes. For example, Chen et al. propose an

offloading framework for a Java-based environment that dynamically decides whether

to execute the code locally or remotely, based on the cost of Javacode compilation,

computational complexity and communication channel conditions [Che04]. The

Coign project proposes a system to use a MinCut algorithm to statically partition

binary applications built from Microsoft’s Component Object Model (COM)

components [Hun99]. Li et al. suggest to construct a static cost graph and to apply a

partitioning scheme to statically divide an application’s tasks into client and server

subtasks during application design [Li01].

2.2 Application Partitioning

Application partitioning (AP) is defined as the separation of an application into

different components that can be executed on different nodes. Performance

improvement with application partitioning can be achieved by executing the partitions

on one or more remote computing nodes. The partitions can be deployed on remote

computing nodes at design time or moved to remote computing nodes at run time. The

process of moving or deploying the partitions on remote computing nodes is termed

offloading. Offloading a part or parts of an application from a local node to a remote

computing node can have two different objectives. Based on these objectives, the

offloading is classified into two types: adaptive offloading and beneficial offloading.

In case of adaptive offloading, the resources on the local node are not sufficient to

execute the complete application, so a part or parts of the application are migrated to a

remote computing node. Adaptive offloading may lead to degradation in overall

system performance because of communication overheads that accrue when the

partitions are executed on remote nodes. Beneficial offloading is the migration of a

22

part or parts of the application from a local node to a remote computing node if this

migration leads to an improvement in overall system performance. For beneficial

offloading, the additional overheads of executing parts of an application on a remote

computing node must be less than the performance improvement expected from such

offloading.

There are a number of factors that can affect application partitioning. The most

commonly used partitioning criteria include processing time of the application,

available memory on the local node, bandwidth requirements for data exchange with a

remote application and the frequency of executions of different application

components [Chu04, Til02]. If the processing speed or the available memory on a

device is not sufficient to execute an application, then a part of an application can be

offloaded to a nearby node. Sometimes, it is beneficial to execute a part of the

application closer to the data source if a great deal of data needs to be exchanged on a

wireless link. Offloading such components of an application to a node which is closer

to the data source is an example of adaptive offloading. In a typical application, a few

components are executed more frequently than others. Moving such components to a

node with more powerful processors can potentially lead to better performance of the

application. Frequency of interactions between different components is another

important factor for deciding which components to move to which partition.

Components that inter-communicate heavily with one another should be kept in one

partition or in partitions that execute on nodes with faster communication links.

2.2.1 Types of Application Partitioning

Application partitioning can be achieved at different levels. The existing research on

application partitioning can be grouped into two main classes: static and dynamic.

23

Static application partitioning is a separation of application components at design

time. Dynamic application partitioning is further categorized into two subclasses: one

deals with application partitioning at compile time and the other focuses on

partitioning at execution time. Details of the research work in these three classes of

application partitioning are presented in the following subsections.

2.2.1.1 Design Time Application Partitioning

In design time partitioning of applications, which part of the application is executed

on which node is decided during application design. Typical examples of this type of

partitioning are client server applications. These types of applications are partitioned

into clients and servers to achieve better performance by executing the application

across multiple nodes in a distributed manner [Sil04, Tan02]. Clients are lightweight

programs that can be executed on users’ nodes. The server usually constitutes a major

part of the application and is executed on a powerful node. Intelligent design of

partitioning can also reduce network traffic. This criterion is used as a key objective

by many researchers in the area of mobile computing. A representative set of existing

works is presented next.

Watson [Wat95] proposes to partition the data and the functionality of an application

into hyperobjects. The hyperobjects are linked hierarchical objects. The objective of

hyperobjects is to utilize the bandwidth efficiently by using caching, pre-fetching and

data reduction techniques.

Schill et al. [Sch99] also propose an approach for data optimization on wireless links

but they use mobile agents to achieve their goals. The application partitioning model

is based on two components. One of the components runs on the mobile device and

the other on a proxy node. The component placed on the proxy node represents a

24

mobile device and all communications from the mobile device are mediated by it. The

application specific components use mobile agents for performing different tasks of

the application. These mobile agents migrate independently to servers (for example an

email server) and communicate with servers locally. Application specific components

collect data from one or more mobile agents and optimize the data according to the

configuration of the device. Use of mobile agents is not very beneficial in this work

except that it provides local communication with the server. The disadvantage is the

requirement of mobile platforms on the remote servers. In the real world, it is not a

common practice to provide support for hosting mobile agents on general

environments such as web servers, email servers and WS providers.

2.2.1.2 Compile Time Application Partitioning

In the second type of partitioning, applications are partitioned at compile time.

Researchers use two types of approaches. The first approach is for existing

applications which are already developed without any considerations for partitioning.

The second approach is proposed for such applications that use annotations or some

other marking schemes in the code to guide a partitioning tool. With both approaches,

applications are partitioned into multiple parts based on an input configuration

provided by a user. Input configuration is usually provided through an input file

[Jam05] or from a user interface [Til02]. Different approaches have used different

configuration parameters such as the number of partitions, partitioning criteria and

association between different objects. A summary of existing research based on the

two approaches discussed earlier is presented next.

Researchers have developed tools for automatic partitioning that relieve

programmers from considering application partitioning at the time of application

25

development. Popular tools include J-Orchestra [Til02, Lio04] and Protium [You01].

J-Orchestra is a GUI-based tool that takes a regular Java program as an input along

with partitioning configuration parameters. The partitioning configuration parameters

provide information such as how many partitions are required and what are the

constraints and rules that need to be followed. The tool then rewrites the bytecode of

the input Java program based on the partitioning configuration. J-Orchestra is an

elegant tool but it has a number of limitations. For example, it needs a fair amount of

guidance from the user. Moreover, it is not possible to partition complex applications

without having knowledge of the internal structure of the program. J-Orchestra can

only partition applications that are written in Java.

Protium [You01] is another application partitioning tool that is developed to

partition desktop applications for remote access. Any desktop application can be

partitioned into three entities such that it can be accessed and executed from a remote

machine. The three partitioned entities are Viewers, Services and Application Specific

Protocols. Viewers are run on a machine or on a device near the user. Services are run

on a managed environment and are accessed through the network. Services are server

programs running on a remote server machine. Application Specific Protocols are

used for communication between Viewers and Services.

In addition to these tools, there are some approaches that use annotations for

partitioning of applications. For example, Jamwal and Iyer introduce the idea of

breakable objects (BoBs) for application partitioning in Java [Jam05]. BoBs are the

entities in a program that can be split easily. Java applications can be written using

BoBs. At compile time, a BoB partitioning tool uses a detailed configuration file to

split the program into the desired number of partitions. However, use of BoBs has a

26

number of limitations. Programmers have to follow strict rules for developments of

applications using BoBs.

Chu et al. [Chu04] also propose an architecture that divides an application’s

components into local and remote groups. The components identified as local are

executed on the mobile device and those marked as remote are executed on the server

side. The architecture requires a complex algorithm to be executed to identify local

and remote components. The details of the algorithm can be found in [Chu04].

2.2.1.3 Run Time Application Partitioning

In run time application partitioning, programs are partitioned at execution time.

Partitioning may be triggered when a device has limited resources and the resources

are in use by other applications running on the device. This type of partitioning is

more challenging than the previous two types because there can be a number of

factors that can affect partitioning decisions. In the literature, there are two types of

approaches that have been adopted to handle application partitioning at run time. First

is the enhancement of the execution environment so that the execution environment

itself can decide to transfer an application or part of it to a nearby node. The

partitioning of applications is done by the execution environment according to the

execution needs and availability of resources [Mes02]. The second approach deals

with migration of one object or a complete package to a nearby computing resource

by the application itself. At run time, if resources on a handheld device become

limited, then the application can decide to partition itself based on the resource

availability [Cha02]. The partitioning criterion in both types of approaches is dynamic

and is thus more challenging. Both types of approaches have their strengths and

pitfalls. Extending an execution environment for application partitioning is a more

27

generic and a better solution. Sometimes it is not possible, however, to enhance the

execution environment if it is a proprietary product. The advantage of partitioning of

an application by itself is that the programmer can have more control on the

partitioning criteria but it demands a subsystem for partitioning with every application

and thus requires additional efforts from a programmer.

Messer et al. propose a heuristic approach for application partitioning through the

execution environment by enhancing the execution environment itself [Mes02]. Their

partitioning algorithm is based on the execution history of the application. From this

execution history, frequency of interactions between different components is

determined. The partitioning algorithm uses the MinCut algorithm that is proposed by

Stoer and Wanger [Sto97] for separating different components of the application into

partitions. Chandra et al. [Cha02] propose to utilize the execution environment for an

application in a different manner. The proposed architecture (see Figure 2-2) is based

on two guidelines which are presented next.

• A proxy server is proposed to be present between a remote server and a mobile

device as shown in Figure 2-2. If an application code is sent (for execution) to a

mobile device, the proxy server intercepts this code and converts it into low-

level native code of the device according to the device configuration. The native

code runs faster on the device. In this way, the compilation process that is

performed on a proxy server is separated from the execution process that runs

the native code on the mobile device. The computation intensive compilation

and optimization of the application is done at the proxy server. The mobile

device only executes the generated native code that it receives from the proxy

server.

• Partitioning of

itself. It is suggested that applications running on mobile devices partition

themselves at object boundaries. Partitioning granularity depends on application

type and it can vary from one objec

partitioning criterion that is used includes processing time, memory requirements

and the frequency of execution of the different methods.

In another effort, Ou

provides runtime offloading services for resource constrained mobile devices. The

middleware considers multiple constraints (i.e. memory, CPU and bandwidth) while

applying the proposed (K+1) application partitioning algorithm.

Alshahwan

mobile web services

mobile web services

WSEE for

The results of this evaluation

on mobile devices exhibits a better performance

mobile web

Figure 2-2

Partitioning of an application is proposed to be performed by the application

itself. It is suggested that applications running on mobile devices partition

themselves at object boundaries. Partitioning granularity depends on application

type and it can vary from one objec

partitioning criterion that is used includes processing time, memory requirements

and the frequency of execution of the different methods.

In another effort, Ou

ovides runtime offloading services for resource constrained mobile devices. The

middleware considers multiple constraints (i.e. memory, CPU and bandwidth) while

applying the proposed (K+1) application partitioning algorithm.

Alshahwan et al. [Als11

mobile web services in this dissertation (

web services. The authors have

WSEE for SOAP based

The results of this evaluation

on mobile devices exhibits a better performance

mobile web services [Als11

2: Application partitioning architecture proposed by Chandra

an application is proposed to be performed by the application

itself. It is suggested that applications running on mobile devices partition

themselves at object boundaries. Partitioning granularity depends on application

type and it can vary from one objec

partitioning criterion that is used includes processing time, memory requirements

and the frequency of execution of the different methods.

In another effort, Ou et al. [Ou07] propose an offloading middleware which

ovides runtime offloading services for resource constrained mobile devices. The

middleware considers multiple constraints (i.e. memory, CPU and bandwidth) while

applying the proposed (K+1) application partitioning algorithm.

[Als11-1] exte

in this dissertation (

The authors have

SOAP based mobile web

The results of this evaluation demonstrate that the hosting of RESTful

on mobile devices exhibits a better performance

[Als11-2]. Note that

: Application partitioning architecture proposed by Chandra

28

an application is proposed to be performed by the application

itself. It is suggested that applications running on mobile devices partition

themselves at object boundaries. Partitioning granularity depends on application

type and it can vary from one object to a complete package of classes. The

partitioning criterion that is used includes processing time, memory requirements

and the frequency of execution of the different methods.

[Ou07] propose an offloading middleware which

ovides runtime offloading services for resource constrained mobile devices. The

middleware considers multiple constraints (i.e. memory, CPU and bandwidth) while

applying the proposed (K+1) application partitioning algorithm.

1] extend the partitioned WSEE proposed

in this dissertation (described in

The authors have also performed an

mobile web services and

demonstrate that the hosting of RESTful

on mobile devices exhibits a better performance

Note that the RESTful services

: Application partitioning architecture proposed by Chandra

28

an application is proposed to be performed by the application

itself. It is suggested that applications running on mobile devices partition

themselves at object boundaries. Partitioning granularity depends on application

t to a complete package of classes. The

partitioning criterion that is used includes processing time, memory requirements

and the frequency of execution of the different methods.

[Ou07] propose an offloading middleware which

ovides runtime offloading services for resource constrained mobile devices. The

middleware considers multiple constraints (i.e. memory, CPU and bandwidth) while

applying the proposed (K+1) application partitioning algorithm.

nd the partitioned WSEE proposed

described in Chapter 3) for RESTful

performed an

ces and for REST

demonstrate that the hosting of RESTful

on mobile devices exhibits a better performance in comparison to the SOAP based

the RESTful services

: Application partitioning architecture proposed by Chandra

an application is proposed to be performed by the application

itself. It is suggested that applications running on mobile devices partition

themselves at object boundaries. Partitioning granularity depends on application

t to a complete package of classes. The

partitioning criterion that is used includes processing time, memory requirements

and the frequency of execution of the different methods.

[Ou07] propose an offloading middleware which

ovides runtime offloading services for resource constrained mobile devices. The

middleware considers multiple constraints (i.e. memory, CPU and bandwidth) while

applying the proposed (K+1) application partitioning algorithm.

nd the partitioned WSEE proposed

Chapter 3) for RESTful

performed an evaluation of

RESTful mobile web

demonstrate that the hosting of RESTful

in comparison to the SOAP based

the RESTful services do not support

: Application partitioning architecture proposed by Chandra

an application is proposed to be performed by the application

itself. It is suggested that applications running on mobile devices partition

themselves at object boundaries. Partitioning granularity depends on application

t to a complete package of classes. The

partitioning criterion that is used includes processing time, memory requirements

[Ou07] propose an offloading middleware which

ovides runtime offloading services for resource constrained mobile devices. The

middleware considers multiple constraints (i.e. memory, CPU and bandwidth) while

nd the partitioned WSEE proposed for hosting of

Chapter 3) for RESTful

evaluation of the partitioned

ful mobile web service

demonstrate that the hosting of RESTful web

in comparison to the SOAP based

do not support

: Application partitioning architecture proposed by Chandra et al. [Cha0

an application is proposed to be performed by the application

itself. It is suggested that applications running on mobile devices partition

themselves at object boundaries. Partitioning granularity depends on application

t to a complete package of classes. The

partitioning criterion that is used includes processing time, memory requirements

[Ou07] propose an offloading middleware which

ovides runtime offloading services for resource constrained mobile devices. The

middleware considers multiple constraints (i.e. memory, CPU and bandwidth) while

for hosting of

Chapter 3) for RESTful [Fie00]

the partitioned

services.

web services

in comparison to the SOAP based

do not support WS

[Cha02]

29

standards such as WS-Security which is critical when such services are used for

enterprise applications.

2.2.2 Application Partitioning Frameworks

In addition to research on migration of WS code entirely to a remote computing

node for execution or offloading part or parts of an application through some

framework, there is a fair amount of work available in the literature that uses

algorithms based on graph theory for application partitioning. A representative set of

works in the area of graph partitioning is presented next.

Existing research has used two different types of partitioning frameworks for

offloading partitions of an application to remote nodes. A few researchers propose to

use an intermediate node for providing a mobile WS ([Cha02] and [Sri06]). The

backend node based partitioning framework, first used by Messer et al. [Mes02], has

never been used in the context of web services. However, it is used by a number of

researchers for offloading a part or parts of mobile applications [Ou07] and also for

applications in the area of pervasive computing [Mes02]. As already mentioned, Ou et

al. [Ou07] propose an offloading middleware for mobile applications and WS clients.

The backend node based framework is a popular choice for migration of WS code

from one node to the other. For example, Hemmati et al. [Hem05] propose a

framework, which supports the migration of application codes and its execution

states. Riva et al. [Riv07] go a step further by proposing a mobile service framework

that continuously monitors dynamic context changes in an ad-hoc network. Kim et al.

[Kim07] have proposed a lightweight framework for hosting web services that has a

capability to migrate the web service code to peer mobile devices in case of low

30

battery or weak signal strength. The authors propose a cost based algorithm for

selecting the target node for WS code migration.

Han et al. [Han06] discuss interesting design paradigms for mobile computing.

These includes downloading code on demand, remotely accessing resources,

migrating a task to a remote environment through mobile agents and accessing mobile

components remotely. But the approach discussed is not supported by any

performance evaluation and it is thus hard to say which design paradigm is the best in

terms of performance.

This thesis uses the intermediate node based framework and the backend node based

framework for the execution of partitioned web services. Note that these two

frameworks have never been used for WS application partitioning. This thesis also

proposes a new WS partitioning framework that is based on a forwarding node. These

three frameworks are compared by evaluating their performance by using a

prototyping and measurement approach.

2.2.3 Graph Theory based Approaches for Application Partitioning

For graph theory based application partitioning, the application to be partitioned is

modeled as a graph. A graph is represented by a set of vertices V and a set of edges E

that connect the vertices of the graph. Graph partitioning is an NP-complete problem

[Kur99]. A large variety of algorithms has been proposed for graph partitioning. The

graph partitioning problem addresses the partitioning of the vertices of a graph in p

roughly equal partitions such that the number of edges connecting the vertices in

different partitions is minimized. Different types of algorithms have been proposed

for graph partitioning. In this section, a representative set of graph-based algorithms

that have been used for application partitioning is presented.

31

Although the Ford-Fulkerson algorithm [Ful56] is proposed for maximum flow

problems, it is used by many researchers as a basic tool for finding the minimum cut

(MinCut) to divide a graph into two partitions such that the network flow can be

maximized. The Ford-Fulkerson algorithm is not easy to implement and it only

partitions a graph into two parts. Recently, simpler algorithms have been proposed

for finding a MinCut in a graph [Sto97]. A summary of the work based on the

minimum cut algorithm is presented next.

The Coign [Hen99] project proposes a system that uses the MinCut algorithm to

statically partition binary applications built from Microsoft’s Component Object

Model (COM) components. As already mentioned, Messer et al. [Mes02] also use the

simple MinCut algorithm [Sto97] for partitioning of an application graph. This

partitioning approach presented by Messer et al. is for run time partitioning and it has

the limitation that it requires a modified Java execution environment instead of a

standard Java Virtual Machine (JVM).

A number of algorithms are proposed to divide a graph into k partitions (also known

as k-way partitioning). These include Spectral methods [Hen93], Multilevel Spectral

Bisection (MSB) methods [Bar93] and Geometric methods ([Nou86] and [Mil93]).

These algorithms are characterized either by very high computational complexity (the

Spectral methods and the MSB methods) or poor output partitions (the Geometric

methods) [Mil03]. Another popular approach of achieving k-way partitioning is

recursive bisection. In recursive bisection, a 2-way partitioning of graph G is obtained

first, and then a 2-way partitioning of each resulting partition is obtained recursively.

After log2 k phases, the graph G is partitioned into k partitions. Thus, the problem of

32

performing a k-way partitioning is reduced to that of performing a sequence of

bisections.

Researchers improve the recursive bisection algorithms by introducing coarsening

and un-coarsening phases [Hen93, Kar99]. These are called multilevel recursive

bisection (MLRB) algorithms that are characterized by moderate computational

complexity and provide graph partitions that meet the partitioning objectives. The

basic structure of a multilevel bisection algorithm is quite simple. A graph G is first

coarsened down to a small number of vertices, a bisection of this much smaller graph

is computed, and then this partitioning is projected back to the original graph by

periodically refining the partitioning. Since the finer graph has more degrees of

freedom, such refinements decrease weight of the edge cut. The edge cut is a set of

edges that separate a graph into two parts. The complexity of the MLRB for

producing a k-way partitioning of a graph G = (V, E), is O(|E| log k) [Kar99]. The

experiments presented in [Kar99] show that MLRB produces partitions that are

significantly better and is an order of magnitude faster in execution in comparison to

the partitions achieved with the state-of-the-art implementation of the well-known

spectral bisection [Bar93]. A number of approaches are available for matching the

vertices for the coarsening phase. These include random matching (selecting the two

vertices randomly), heavy edge matching (selecting the two vertices that are

connected through the edges with maximum weights) and light vertex matching

(selecting the two vertices that are the lightest in weight).

Ou et al. propose an offloading middleware for mobile applications and WS clients

[Ou07]. The middleware considers multiple constraints (i.e. memory, CPU and

bandwidth) while applying the proposed (k+1) graph theory based application

33

partitioning algorithm. The (k+1) partitioning algorithm is based on the algorithms

previously proposed [Kur99] but uses a heavy edge and light vertex matching

approach to divide the application into k balanced partitions in addition to a special

partition that is constrained to execute on the local device.

The graph partitioning algorithms discussed earlier are very complex and based on

an objective of either minimizing the communication cost between different

application components or achieving partitions of the same size so that the partitions

can be run in parallel. Moreover, these algorithms require a lot of computing

resources and are characterized by large execution times for achieving partitions.

Hence, these algorithms are not suitable especially for run time partitioning. Although

the general application partitioning problem has been studied by many researchers,

comparatively little work exists in the domain of WS application partitioning that has

different constraints. For example, achieving partitions of the same size is not a key

requirement in case of mobile WS applications. The size of the offloaded partition(s)

is as important as the communication cost among different partitions. The algorithms

proposed in this thesis consider such factors while devising that are important in WS

application partitioning.

2.3 Design Time versus Runtime WS Application Partitioning

Application partitioning is generally performed either at design time or at run time.

As discussed in Section 2.2, the algorithms proposed in the literature are mostly based

on design time partitioning. This is because design time partitioning is easy to use and

implement. Since the algorithms are executed in advance, the complexity of

partitioning algorithms does not contribute to overall performance of the partitioned

system. The main drawbacks of design time partitioning are 1) the partitioned system

34

achieved may not be an optimal solution for various devices on which the system may

get deployed and 2) the partitioned system is generally insensitive to the variation in

system load. Performing an application partitioning at runtime is an attractive solution

for such scenarios because it can use system load information and device

characteristics for achieving an effective partitioned system. Achieving a partitioned

system with runtime partitioning approach has a few limitations as well. For example,

deciding when to run the application partitioning algorithm is an important question.

Should it be run for every request arrival or run only when the system load changes

significantly? In both cases, there may be a substantial overhead affecting the

application response time. The benefit that accrues from running the application on a

partitioned system must be able to offset this overhead. There are, however, many

situations when it makes sense to use a runtime partitioning approach. A few

examples of such situations are described next. The device may be running multiple

applications at a time and these applications are sharing the device resources such as

CPU and memory. The device may be receiving a large number of WS requests for

the hosted web services. The device may be close to running out of battery power.

In such situations, using a runtime application partitioning is expected to be

effective because the size of the partition to be executed on a remote computing node

can be varied based on the situation. For example, in a situation when a device is

running out of battery power, a substantial amount of application can be offloaded to

preserve the device’s battery power. If a large number of WS requests are waiting to

be executed, running a large part of an application on a remote computing node can

improve system response time. If a device is not experiencing any of these problems,

35

it may be beneficial to execute a little part of an application (or even no part of an

application) on a remote computing node.

This thesis investigates both the design time and the run time techniques for WS

application partitioning. The design time WS partitioning algorithms are graph based.

The proposed runtime WS partitioning combines advantages of both design time and

the runtime application partitioning by achieving multiple execution plans each

corresponding to a specific partitioning of the WS application in advance and then

using a runtime middleware to select an appropriate execution plan based on the

system load information.

A comprehensive simulation-based analysis is performed to analyze the

performance of the proposed design time and run time WS partitioning techniques.

36

Chapter 3: WS Execution Environments

This chapter presents details of the system design for the lightweight WSEE and the

configurable partitioned WSEE. The two different WS execution environments are

proposed to provide toolkits for hosting web services on resource constrained devices

(lightweight WSEE) and to provide support for conformation with a wide range of

computationally demanding WS standards (partitioned WSEE). This chapter also

presents a detailed performance analysis of the two proposed WSEEs using different

sample web services hosted on mobile devices using wireless local area network

environment.

3.1 Overview

As already mentioned in Chapter 1, hosting web services on resources constrained

devices is challenging because of their resource constraints. A number of challenges

need to be addressed for hosting web services on such devices. Diversity of device

hardware/operating systems, execution of resource demanding web services,

conformation to computationally demanding web services standards (such as WS-

Security and WS-Policy), supporting multiple WS concurrent clients and providing

reasonable response times are a few examples of such challenges. This chapter is

focused on investigating the web service execution environment for hosting web

37

services on resource constrained devices. The proposed web service execution

environments are expected to fulfill the following objectives:

• Reducing the resource demand of the mobile device.

• Achieving a reasonable end-to-end response time when WS clients invoke web

services provided from mobile devices.

• Facilitating the access to the hosted web service to a dozen or more concurrent

WS clients.

• Supporting a large number of WS standards for the web services hosted on the

mobile device.

3.2 Lightweight WSEE

The primary motivation for proposing the lightweight WSEE is to provide an

environment for hosting web services for small handheld devices such as smart

phones, pagers and personal digital assistants. The existing environments or toolkits

for web service hosting (Apache Axis and Oracle (Formerly Sun Systems) JAX-WS,

for example) cannot be used for resource constrained devices because these

environments require a Java run time environment 1.4 or higher that is only available

for desktop machines. The lightweight WSEE provides lightweight components to

facilitate hosting of web services with a basic set of WS standards such as SOAP,

XML Signature [W3c02-1] and XML Encryption [W3c02-1].

A WSEE essentially requires a set of software components that facilitate hosting of

web services. The required software components include a transport component for

data exchange with WS clients, a SOAP engine component for processing

XML/SOAP messages and an application invocation engine that can execute

requested WS applications on behalf of WS clients.

38

As already mentioned, the Java ME environment is selected for implementation of

the lightweight WSEE prototype because of its ability to be operable on diverse

platforms for mobile devices such as Windows Mobile OS, Android, Symbian OS and

Blackberry OS. Java ME has two configurations: the Connected Device Configuration

(CDC) (JSR 218) [CDC05] and the Connected Limited Device Configuration (CLDC)

(JSR 139) [CLD05]. The lightweight WSEE prototype is capable of running under

both the CDC and the CLDC configurations. For resource constrained devices, a

lightweight version of each of these components is devised.

Architecture of the proposed lightweight WSEE is based on four layers: a transport

layer, a service layer, a WS standards layer and a WS applications layer. A high level

architectural overview of the proposed lightweight WSEE is shown in Figure 3-1.

The transport layer is responsible for receiving and sending SOAP messages to WS

clients. The service layer de-serializes incoming SOAP messages, conforms to WS

standards if required, executes the request WS application and serializes the outgoing

WS response messages. The WS standard layer is a collection of the modules that are

implemented for conformation to the WS standards. The WS application layer

represents the deployed WS applications. The details of these layers and their key

components are discussed next.

3.2.1 Transport Layer

In the lightweight WSEE, the transport layer is capable of exchanging SOAP

messages using HTTP or TCP protocols. Note that there is no specific transport

protocol associated with exchange of SOAP messages. SOAP messages can be

exchanged between nodes using any transport mechanism. This allows WS

39

applications to select any appropriate transport mechanism according to the

availability of resources and the quality of service requirements.

3.2.1.1 Initial Setup

As the lightweight WSEE application starts, the transport listener (Listener in Figure

3-1), which is a main program, performs the following steps for the initial setup of the

WSEE:

• Load WSEE environment variables from a java property file

(‘wsee_config.properties’). These environment variables include

Figure 3-1: Proposed Architecture for Lightweight WSEE

40

o Number of minimum (Nmin) and number of maximum (Nmax) threads of

WSManager (explained in the next subsection).

o Transport mode: HTTP or TCP.

o Port number at which the transport listener is listening.

o Timeout after which the transport listener disconnects from a non-

responsive client.

o Root directory name for the deployed web service applications.

• Create a thread (Request Handler in Figure 3-1) for handling WS requests.

• Create a thread (Response Handler in Figure 3-1) for handling outgoing WS

response messages.

• Create WSManager threads the number of which is provided through

environment variable Nmin.

• Initialize the Web Service Mapping (WS-Mapping) component. During the

initialization stage, details of all the deployed web services are loaded in

memory. The details of WS mapping component are described in the next

section.

• Create a server socket and start listening at a port specified in the properties

file.

On receiving an incoming request from a WS client, the listener creates an object of

Java Socket class. This newly created object is put in the Qin queue and the request

handler is notified. The listener starts listening again at the specified port.

3.2.1.2 Request Handler

The request handler thread is either in a wait state or in a run state. The request

handler is in the wait state when there is no Socket object in Qin (see Figure 3-1). On

41

arrival of a new Socket object in Qin, the request handler is notified by the listener. On

receiving the notification, the request handler goes into the run state. The request

handler remains in the run state when it is in the process of handling the new request.

At the completion of processing of the request, the request handler checks Qin. If Qin

is empty, the request handler goes into the wait state and waits for a new request. If

Qin is not empty, the request handler selects the next request (Socket object) waiting

in the queue and starts its processing. The key objective of the request handler is to

separate out the SOAP message from the request.

Once the SOAP message is extracted, an object of SoapRequest class is created. The

SoapRequest is an application data object that holds information about the SOAP

request message. The SoapRequest object is put into Qsrv_in (see Figure 3-1) queue.

After this, the request handler fetches a new request from Qin (if Qin is not empty) or

goes into the wait state (if Qin is empty).

3.2.1.3 Response Handler

Once the WS request is processed by the service layer, the response SOAP message

(if any) is placed in a separate queue, Qsrv_out (see Figure 3-1). The response handler

works in a similar manner as the request handler. The response handler thread is in a

wait state when there is no response message in Qsrv_out (see Figure 3-1). On arrival of

a new response message in Qsrv_out, the response handler is notified by the service

layer. On receiving such a notification, it fetches the response message from Qsrv_out

and starts its processing. The response message contains the response SOAP message

and information about the WS client. A WSEE application class, WSResponse, is

used to represent the response message.

42

The WS client’s address and the port number at which the client is expecting to

receive the response is stored in WSResponse object by WSManager. An attribute

‘response’ contains the response SOAP message. There are two attributes (isFault and

FAULT) for indication of any fault that occurs while invoking the requested WS.

After fetching the WSResponse object from Qsrv_out, the response handler opens a

socket connection with the WS client and sends the response SOAP message. Once

the response message is sent, the response handler fetches a new response SOAP

message from Qsrv_out (if it is not empty) or enters into the wait state.

3.2.2 Service Layer

This is a core layer of the lightweight WSEE. The primary responsibilities of this

layer are the parsing of the incoming SOAP messages, executing the WS application

and then wrapping the results of the WS application into a response SOAP message.

Currently, the service layer is using a Remote Procedure Call (RPC) style as a

WSDL binding. The WSDL binding describes how a WS is bound to a messaging

protocol. The document style binding is another popular style of the binding and can

be added in future versions. The reason for using RPC style of binding is that it is

easy to implement and the WSDL generated using the RPC style binding is straight

forward and easy to understand. Note that RPC style and document style bindings are

not programming models. These bindings only help to translate a WSDL to a SOAP

message. The subcomponents of the service manager are described next.

Figure 3--2: Sequence diagram capturing interactions between WSManager and the

components in the service layer and components of other layers

: Sequence diagram capturing interactions between WSManager and the

components in the service layer and components of other layers

43

: Sequence diagram capturing interactions between WSManager and the

components in the service layer and components of other layers

43

: Sequence diagram capturing interactions between WSManager and the

components in the service layer and components of other layers

: Sequence diagram capturing interactions between WSManager and the

components in the service layer and components of other layers

: Sequence diagram capturing interactions between WSManager and the

components in the service layer and components of other layers

: Sequence diagram capturing interactions between WSManager and the

44

WSManager (shown in Figure 3-1) is a main controller of the service layer. Multiple

threads of WSManager are available in a thread pool. These threads are used to

process WS requests waiting in Qsrv_in. The maximum number of threads that can be

created for WSManager is provided as an input parameter in a

‘wsee_config.properties’ file. The WSManager uses different components such as

XML Wrapper, SOAP Wrapper, a service loader, WS-Mapping and interacts with the

components of the WS standards layers for conforming to different WS standards.

The interactions of WSManager with other components are captured in a UML

sequence diagram presented in Figure 3-2. Different operations shown in the sequence

diagram (see Figure 3-2) are explained next.

Whenever there is a new request waiting in queue (Qsrv_in), WSManager starts by

getting a waiting request object (WSRequest) from Qsrv_in (see getRequestMsg

operation in Figure 3-2). After getting the WSRequest object, WSManager creates an

object of SoapSerializationEnvelope class (see KSOAP documentation [Kso03] for

more details) and is shown as createSOAPEnvelope operation in Figure 3-2.

WSManager interacts with SOAPWrapper for this operation. SOAPWrapper uses an

open source KSOAP2 library to create a SoapSerializationEnvelope object.

SoapSerializationEnvelope is a comprehensive object that can hold the SOAP request

header, the SOAP request body, the SOAP response header and the SOAP response

body separately.

After creating the SoapSerializationEnvelope object, WSManager uses

XMLWrapper (see parseSOAPRequest operation in Figure 3-2) which in turn uses an

open source kXML library to parse the SOAP request message. After parsing the

SOAP message, WSManager interacts with the WS Standards layer and is shown as

45

validateWSStandards operation in Figure 3-2. For the lightweight WSEE, this

operation performs the tasks that are required for the verification of XML Signature

(WS-Security) of WS clients and signing of response SOAP messages. After

performing the tasks that are required for the conformation with the given WS

standard(s), if any, WSManager interacts with the service loader for invoking a

particular method of the requested WS class (see invokeWS operation in Figure 3-2).

The service loader interacts with WS-Mapping to locate the Java class of the

requested WS (shown as getSrvObject operation in Figure 3-2). Once the Java class of

the requested WS is identified, the service loader first uses this operation either to

create an instance of the class or to locate an already created instance from application

context and then invokes the requested method of the Java class. This operation is

shown as callWSOperation in Figure 3-2. Next, WSManager serializes the response

of the requested WS application into a SOAP message. For this step, WSManager

uses XMLWrapper and SOAPWrapper for serialization and is shown as

serializeWSResponse operation in Figure 3-2. WSManager interacts with the WS

standard layer again to perform the actions required to conform to a given WS

standard if required (see conformWSStandards operation in Figure 3-2. For example,

the response SOAP message may be required to be encrypted (using XML

encryption). Signing the response SOAP message is another example of performing

an action to conform to a WS standard before sending it to the WS client. In the

lightweight WS standard, this operation is used to sign the response SOAP message

using XML Signature specifications. The last operation (putResponseMsg) performed

by WSManager is to store the final response SOAP message in Qsrv_out and to notify

the response handler (transport layer) that the response is ready to be send to the WS

client.

46

In the next subsections, different components of the service layer are described.

3.2.2.1 XML Wrapper

For XML parsing and serialization, a lightweight XML parser, KXML [Kxm03], is

used. The KXML parser is based on a pull parsing technique and is an

implementation of the XMLPULL parser API [Xml02]. XML Pull Parsing is a

process of parsing XML as a stream rather than building a Data Object Model (DOM)

tree or push parsing in which events are pushed out to a client code. The pull XML

parsers are fast and more memory efficient in comparison to the parsers that are based

on DOM. To access this third party library, a wrapper component (KXMLWrapper) is

introduced in the service layer. The XML Wrapper provides an interface to

WSManager for accessing XML parsing methods.

3.2.2.2 SOAP Wrapper

For SOAP processing, a KSOAP [Kso03] library is used. KSOAP is an open source

library for WS clients to access web services. To use it on the server side for

processing of SOAP messages, the open source library is extended in this research.

The extension is introduced for the invocation of web services using the remote

procedure call (RPC) style binding. For accessing core methods of the KSOAP library

and its extension (devised for the lightweight WSEE), a wrapper (the SOAP Wrapper)

is introduced.

3.2.2.3 Service Loader

This component is used for invocation of the requested web services. WSManager

supplies the SOAP Action parameter and the parsed SOAP request message to the

service loader. The service loader interacts with WS-Mapping to get the Java class

name (with path) based on the value of the SOAP Action.

47

3.2.2.4 WS-Mapping

WS-Mapping is a static component that manages an in-memory list of deployed web

services. The light WSEE assumes that all deployed web services are available in

directory whose path is provided in the ‘wsee_config.properties’ file. Individual web

services are assumed to be available in subfolders of the web services root directory.

A WS is required to provide a Java implementation of the WS application and a

‘ws.xml’ file in a folder under the root directory of web services. The ws.xml file is

required to follow the following XML grammar.

In this XML format shown in Figure 3-3, the <webservice> tag is the root node of

‘ws.xml’ document. <ws-uri> represents the SOAP Action that is used as a key for

identification of the web service. Value inside the <ws-uri> node is required to be

unique. <ws-class> node refers to the name of the Java class of the WS application.

<ws-standards> node can contain multiple child nodes. Each child node corresponds

to the actions that need to be performed to conform to a specific WS standard. The

support for the custom data types as WS parameters is planned for a future version.

The current version of the lightweight WSEE supports primitive data types and

collections as WS parameters. At the time of initialization, WS-Mapping reads

‘ws.xml’ files for all deployed web services and loads the relevant data of the

deployed WSs in memory.

Figure 3-3: XML grammar for defining WS Mapping

<webservice>

<ws-uri> … </ws-uri>

<ws-class> … </ws-class>

<ws-standards> … </ws-standards>

</webservice>

48

After invoking the requested WS application, WSManager serializes the results into

a response SOAP message. If the requested WS requires conformation with additional

WS standards such as the one that requires the verification of a XML Signature,

WSManager interacts with the component that provides the verification of the XML

Signature.

3.2.3 WS Standards Layer

To support additional WS standards, another layer is introduced in the lightweight

WSEE system. This layer comprises the components that perform actions that are

required to conform to different WS standards. For testing purposes and as a proof of

concept, support for verification of the XML Signature of incoming SOAP messages

and signing of the outgoing SOAP messages are provided in the lightweight WSEE.

For verification and signing of XML Signatures, a lightweight version of a third party

cryptography library (Bouncy Castle) is used. A brief overview of the steps involved

in verification of the XML Signature and signing of SOAP messages are discussed

next.

3.2.3.1 XML Signature Verification

The process of verifying the XML Signature is based on the specifications of XML

Signature standard [W3c02-2].The first step of verification of the XML Signature is

the extraction of the digest, the signature and the public key elements form the SOAP

header. Note that the digest, the signature and the public key elements are placed in

the SOAP header by WS clients. The digest of a message is a unique number which is

created by using a hashing algorithm for representing the message. If the message is

changed, the digest value will also be changed. The signature is an encrypted form of

a message that is obtained by using the private key of a user and the message itself. In

49

the second step, the digest of the message is computed and compared with the digest

value already extracted from the SOAP header. In the third step, the signature

extracted in the first step is verified by using the public key information. Note that this

key information is also extracted in the first step. If the computed digest does not

match the digest value extracted in the first step or the signature is not verified by

using the public key, the XML Signature verification is said to have failed and a

SOAP fault is sent back to the WS client. A SOAP fault is an optional part of a SOAP

envelope (in addition to the header and the body) used for reporting errors.

3.2.3.2 XML Signature Signing

Signing a SOAP message is also a three step process. First, the digest for the

contents to be signed (the body or any element of a SOAP message) is computed. In

the second step, the signature of the contents to be signed is calculated using the

private key of a user. In the last step, the digest, the signature and the public key

information are inserted in the SOAP header. The XML Signature specifications

describe structure of elements that can be used to insert the digest, the signature and

the public key information in the SOAP header.

3.3 Distributed SOAP Engine Based Partitioned WSEE

In the lightweight WSEE, only the verification and the signing of the XML

Signature are supported as a proof of concept. Other WS standards are proposed by

the WS community for security, reliability and transactions. A WSEE that supports a

large number of WS standards is difficult to deploy on mobile devices with limited

resources. For such resource demanding requirements, it is proposed to partition the

execution environment and deploy the two partitions on two different nodes (an

intermediate node and the mobile device node). The intermediate node is a node that

50

acts as a proxy for the hosted WS on a mobile computing node and it provides the

partial functionality of the WSEE. The proposed technique of WSEE partitioning is

based on the splitting of the SOAP engine (WSManager in Figure 3-6) functionality.

The functionality of WSManager is divided into two partitions only: one for the

intermediate node and the other for the mobile device. The intermediate node is the

one that receives the WS requests from WS clients on behalf of the mobile device.

3.3.1 Motivation for the Proposed WSEE Partitioning Technique

WSManager performs a series of tasks for invoking a WS. The sequence of tasks

related to the invocation of a WS that are performed by the distributed WSManager, is

described. The typical tasks performed by a WSManager thread are decryption of

incoming SOAP message (T1), verification of the identity of the WS client (T2),

verification of the integrity of the message (T3), invocation of the WS (T4), signing

the response message with the service provider’s certificate (T5) and encryption of the

response message (T6) before sending it back to the WS client. The sequence of tasks

as they are performed by a WSManager thread is captured in Figure 3-4-a. The dotted

lines with an arrow head in Figure 3-4 represent the order of execution of tasks. The

order of execution implies that T1 is required to be performed before T2 and T2 is

required to be performed before T3 and so on.

As already mentioned, the functionality of WSManager is divided into two

partitions: one of the partitions is handled by an intermediate WSManager and the

other by a mobile WSManager. Note that both the nodes (intermediate as well the

mobile device node) uses the same implementation of WSManager. But WSManager

on the intermediate node does not need to interact with the service loader and the WS-

Mapping components. The objective of having the same implementation of

51

WSManager on the two nodes is to make the partitioning of WSManager tasks

configurable. The two WSManager differ only in their executions. One WSManager

executes one set of tasks and the other executes another set of tasks. The intermediate

WSManager can be assigned such tasks that demand more resources. The mobile

WSManager is responsible for processing the tasks that require local resources on the

mobile device or use confidential information available on it. For example, if

encrypting or signing a response message requires a security certificate of the device’s

owner, then it is not a good practice to delegate such tasks to an intermediate node.

With a distribution of tasks shown in Figure 3-4-b, the intermediate WSManager

decrypts the incoming message (T1), verifies the identity of the WS client (T2) and

the integrity of the message (T3). The mobile WSManager executes the task for

invoking the requested WS (T4) and the task for signing the response message (T5).

In the end, the intermediate node performs the task for encrypting the response

message (T6).

3.3.2 Configurable Partitioning Scheme for Execution of WSManager Tasks

To make it possible to allocate different sets of tasks for execution to the

intermediate WSManager and the mobile WSManager for a given WS, a configurable

Figure 3-4: Tasks of a SOAP engine (a) performed as a single SOAP engine (b)

performed as a distributed SOAP engine

52

partitioning scheme is introduced. The partitioning scheme can be defined as an

agreement between the two distributed components of WSManager. This partitioning

scheme helps the two components to identify which tasks need to be executed by

which component. The partitioning scheme is required to be submitted at the time of

deployment of a new WS. The submitted partitioning scheme is available to both

components of WSManager (the intermediate WSManager and the mobile

WSManager) at the time of execution. A sample partitioning scheme for execution of

WSManager tasks is presented in Figure 3-5. Note that this arrangement has the

flexibility of using different partitioning schemes for different web services hosted on

the mobile device.

This scheme uses an XML schema that defines the XML elements with attributes for

each WSManager task. The scheme shown in Figure 3-5 is designed in such a way

that the most of the tasks related to security are processed by the intermediate

WSManager running on an intermediate node. In this scheme, the intermediate

WSManager is assigned the following tasks

1- Decrypting of the incoming SOAP message.

2- Verifying of identity of the WS client (IDENTITY).

3- Validating the integrity of the message (INTEGRITY) and

4- Encrypting the response message (ENCRYPTION).

The mobile WSManager is assigned the following tasks.

1- Invocation of the requested WS application (WEBSERVICE).

2- Signing the response message.

53

The sequence of tasks performed by the two components of WSManager follows the

same order as specified in the partitioning scheme. In Figure 3-5, there are two

‘intermediate’ and one ‘mobile’ XML blocks of elements. An ‘intermediate’ block

includes a list of tasks that are assigned to the intermediate WSManager. A ‘mobile’

block represents a set of tasks for the mobile WSManager. The ‘intermediate’ block

that comes after the ‘mobile’ block contains a list of tasks that have to be performed

on the intermediate node after the execution of tasks by the mobile WSManager.

The partitioning scheme is made configurable because the partitioning of tasks

depends on both the nature of a WS and the resource availability on the mobile device

and on the intermediate node. If the device is not capable of performing a task such as

Figure 3-5: A sample partitioning scheme

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!-- A sample partitioning scheme to split task execution between an

intermediate node and a mobile node

-->

<webservice uri= ‘http://www.carleton.ca/sce/mobileweb/sample1’>

<!-- tasks assigned to static SOAP engine -->

<intermediate>

<DECRYPTION required="false">

<IDENTITY required="true"/>

<INTEGRITY required="true"/>

</intermediate>

<!-- tasks assigned to mobile SOAP engine -->

<mobile>

<WS_OPERATION class-name=""/>

<SIGNATURE required="true"/>

</mobile>

<intermediate>

<ENCRYPTION required="false">

</intermediate>

</webservice>

54

verification of XML Signature of WS clients due to limited resources, the partitioning

scheme can be configured in such a way that such tasks are performed by the

intermediate node. In another case, if the owner of a more powerful mobile device

requires performing these security-related tasks on the device to avoid any security

risks or because of business requirements, a different partitioning scheme can be used.

3.3.3 System Overview and Design

The lightweight WSEE (discussed earlier) is enhanced to achieve the partitioned

WSEE. The execution of different WSManager tasks is achieved through a chain of

handlers. Each handler is represented by an XML element (under ‘intermediate’ or

‘mobile’ blocks of elements in Figure 3-5) in the partitioning scheme. Each handler

contains a set of operations for performing one particular WSManager task. After

performing the assigned task, the handler passes the control of execution to the next

handler in the chain. If the XML element attribute ‘required’ is set to ‘false’ for a

handler in the partitioning scheme, then the control of execution is passed to the next

handler without executing any code for that handler.

After processing part of the incoming SOAP message, the intermediate WSManager

delivers the rest of the message to the mobile WSManager. Note that the parts of a

SOAP message that have been processed and not required by mobile WSManager

tasks can be eliminated from the message before forwarding it to the mobile

WSManager. This will add processing overheads but can potentially save bandwidth.

The partitioned WSEE forwards a complete SOAP message to the mobile

WSManager.

The internal details of the partitioned WSEE based on two components of

WSManager are shown in Figure 3-6. The functional details of the components for the

transport layer, the WS stand

discussed for the lightweight WSEE in Section

description is p

the service layer is discussed in more detail.

Figure

transport layer, the WS stand

discussed for the lightweight WSEE in Section

description is provided for these layers. In this section, the role and functionality of

the service layer is discussed in more detail.

Figure 3-6: A partitioned WSEE based on a distributed SOAP engine

transport layer, the WS standards layer and the WS applications layer are the same as

discussed for the lightweight WSEE in Section

rovided for these layers. In this section, the role and functionality of

the service layer is discussed in more detail.

: A partitioned WSEE based on a distributed SOAP engine

55

ards layer and the WS applications layer are the same as

discussed for the lightweight WSEE in Section

rovided for these layers. In this section, the role and functionality of

the service layer is discussed in more detail.

: A partitioned WSEE based on a distributed SOAP engine

55

ards layer and the WS applications layer are the same as

discussed for the lightweight WSEE in Section 3.2

rovided for these layers. In this section, the role and functionality of

: A partitioned WSEE based on a distributed SOAP engine

ards layer and the WS applications layer are the same as

3.2. Thus, only a high level

rovided for these layers. In this section, the role and functionality of

: A partitioned WSEE based on a distributed SOAP engine

ards layer and the WS applications layer are the same as

. Thus, only a high level

rovided for these layers. In this section, the role and functionality of

: A partitioned WSEE based on a distributed SOAP engine

ards layer and the WS applications layer are the same as

. Thus, only a high level

rovided for these layers. In this section, the role and functionality of

56

On receiving a new WS request, the transport listener of the WSEE deployed on an

intermediate node puts the incoming WS requests in a queue shown as Qin in Figure

3-6. The Request Handler thread parses the SOAP message from the incoming WS

requests and puts the parsed message in another queue (shown as Qsrv_in in Figure 3-6)

which is an input queue for the intermediate WSManager.

The intermediate WSManager applies a series of operations (similar to the one

shown in Figure 3-5). Note that the intermediate WS Manager performs only those

operations that are assigned to it based on the partitioning scheme. For application of

these operations, the intermediate WS Manager interacts with the components in its

own layer such as XML Wrapper, SOAP Wrapper and also with components of the

WS standards layer. These components may use third party libraries for providing the

required functionality. The typical tasks assigned to the intermediate WSManager are

the actions that are required for conformation to different WS standards.

It is important to mention that there are WS standards such as WS-Security that

requires execution of resource demanding algorithms. Even if a mobile device is

capable of executing such resource demanding algorithms, the repeated invocations of

such algorithms will not only hinder the device to perform its core functions (such as

voice calls) but it will also consume its battery power significantly.

Note that the service layer deployed on the intermediate node does not include WS-

Mapping and the service loader components. These components are required for the

invocation of requested web services. The service layer of the WSEE deployed on the

intermediate node is mainly responsible for performing actions that are required for

conformation to resource demanding WS standards.

57

In the next step, the intermediate WSManager forwards the SOAP message to the

part of the WSEE deployed on the mobile device node. On receiving the SOAP

message from the intermediate node, the transport layer of WSEE deployed on the

mobile node passes it to its service layer using the Qin queue, the Request Handler

thread and the Qsrv_in queue in the same manner as discussed in Section 3.2. The

mobile WSManager only executes those tasks that are assigned to it by the

partitioning scheme. An example partitioning scheme was presented in Figure 3-5.

The mobile WS Manager interacts with the sibling components (XML Wrapper,

SOAP Wrapper) and with components of the WS standards layer and also with the

deployed WS layer. Note that the service layer of the WSEE deployed on the mobile

node includes WS-Mapping and the service loader. After performing the actions

required for conformation to WS standards (if required), the mobile WSManager uses

the service loader for invocation of the requested WS. The steps of executing the WS

were already explained in the discussion of the lightweight WSEE in Section 3.2.2.

The results of executing the requested WS are serialized into a SOAP message

(response SOAP message) by the mobile WSManager. The response SOAP message

is returned to the intermediate WSManager. On receiving the response SOAP

message, the intermediate WSManager can execute rest of the task(s) (if any)

assigned to it. In the last step, the WSEE hosted on the intermediate node sends the

final response message to the original WS client.

Note that the WS clients only communicate with the intermediate node. The

communication between the intermediate WSManager (intermediate node) and the

mobile WSManager (mobile node) is transparent to the WS clients. Thus, the use of a

wireless environment friendly transport mechanism for exchanging SOAP messages

58

between the two components of WSManager is expected to improve system

performance.

3.4 Experimental Analysis

The feasibility and the performance of the two proposed WSEEs are analyzed for a

number of scenarios. A list of sample web services that are used for a detailed

performance analysis of the two proposed WSEEs is presented next.

3.4.1 Sample Web Services

Three sample web services are used: Image service, Tracking service and π

Calculator service. Image WS is a data intensive service that is used to fetch an image

data from a mobile device. Tracking WS is a lightweight service that can be used to

fetch the location information of the device. π Calculator WS is a computationally

intensive service that computes the value of π.

3.4.1.1 Image WS

This service is designed for fetching image data from a mobile device based on three

input parameters: location, keyword and the desired image size. At the time of saving

an image that was captured by a built-in camera on the device, the user or the device

is saving location information, one to three keywords, and a textual description of the

image. The image that matches the most number of input parameters is selected. In

case, there are multiple images which match the same number of input parameters, the

image is selected randomly from that list of images. If an appropriate match is not

found, a null response is returned.

This service can also return a resized image based on the input parameter. This

additional feature contributes to more computation on the mobile device.The WS has

59

three main components: SearchImage, ResizeImage and PackData. The SearchImage

component queries a local database to look for the path of an image file based on the

location parameter. The ResizeImage component is responsible for resizing the image

according the value of the image size parameter. For resizing the image, a bilinear

interpolation algorithm is used. Bilinear interpolation considers the closest 2x2

neighborhood of known pixel values for calculation of the interpolated

value. PackData serializes the resized image data and the time information when the

image was captured in a response SOAP message.

For the experiments presented in Section 3.4.5, three different sets of images of

different sizes are retrieved. The three different sets used have sizes in the range 10

KB, 100 KB and 500 KB. In a single experiment, only one set of images is used.

3.4.1.2 Tracking WS

This WS runs on the mobile device of an emergency responder such as a doctor and

provides the address, elevation and time zone of the location. The WS has three main

components: GetCoordinate, GetLocDetail and PackData. The GetCoordinate

component fetches the actual Global Positioning System (GPS) coordinates from a

GPS receiver. For this experiment, the step of getting GPS coordinates is emulated by

fetching a random set of coordinates from a local file containing more than a thousand

locations. The GetLocDetail component queries a database of locations to find the

details of a location that is closest to the GPS coordinates. The location database is

downloaded from a well-known geographical organization (GeoNames [Geo08])

serializes the location information as a response message and sends it back to the WS

requester.

60

Currently, there is a large variety of mobile phones from Apple, Blackberry and

Nokia that come with a built-in GPS receiver. Since the device used (Dell Axim) in

the performance experiments involving Tracking WS does not come with a built-in

GPS receiver, the step of obtaining GPS coordinates is replaced with a random

selection of a database record from a city database (available from GeoNames

[Geo08]). In this synthetic application, a database record is selected randomly for

every new request and every record has the same probability of being selected. This

WS is designed to be a lightweight application and is less data intensive as compared

to the image WS.

3.4.1.3 π Calculator WS

Calculation of π is not a typical candidate for a sample WS, but it is chosen because

its computational intensity can be varied conveniently for performance analysis. It has

been used by other researchers for a similar analysis [Ou07]. For this WS, the classic

technique of calculating the value of π using the Gregory-Leibniz Series [Wel86] is

deployed. According to the Gregory-Leibniz series, a value of π can be calculated by

the following series

� = 4 ∗�(−1)
��
2� − 1

�

��

The accuracy of π depends on the number of terms used in the summation of the

series. More the number of terms used, the more accurate is the value of π. The

number of terms (N) used to calculate π is made an input parameter for this WS and is

used to compute the CPU time consumed. For the experiments presented in Section

3.4.5, the values of N used are 10 K, 50K and 100K.

61

3.4.2 Workload and System Parameters

To analyze the performance of the two WSEEs, following workload and system

parameters are varied.

3.4.2.1 WS Complexity:

Performance of the partitioned WSEE is observed by invoking different sample WSs

that were discussed earlier. Note that the sample WSs are characterized by different

levels of computational complexity. In addition to that, each sample WS is invoked

using different values of parameters that are required to access them. For example, the

π calculator service can be invoked using different values of number of terms (N) to

be used for calculation of π.

3.4.2.2 Number of Concurrent WS Clients (C):

The number of WS clients (C) invoking a sample web service at the same time is

varied to investigate the scalability of the system. C is varied from 1 to 20.

3.4.2.3 Mobile Device Speed (ω):

The experiments are run on real handheld devices of different processing speeds.

The Dell Axim PDA device used in our experiments can be run with different

processing speed (208 MHz and 624 MHz). The default speed of the device used is

624 MHz.

3.4.3 Performance Metrics

The performance of the system is analyzed by measuring the end to end response

time (R). Response time is defined as the difference between the time when a WS

response is received by the WS client and the time when the WS client sends the

corresponding SOAP message request to a WS provider.

62

Scalability metric for WSEE (ξ) is measured by measuring the number of WS

clients that can be serviced concurrently with a reasonable response time that is

assumed to be approximately 30 seconds. The value of 30 seconds is chosen based on

the most commonly used value of the timeout used by http servers. The value can be

different for different applications.

3.4.4 Setup

Separate prototypes for the lightweight WSEE and the partitioned WSEE are

implemented in Java ME. The WS client programs are run on a machine that is

equipped with a 2.4 GHz Pentium 4 processor and a memory of 2 GB. The client node

is running under Windows XP Professional operating system. The intermediate node

is a desktop computer equipped with a Pentium 4 processor that is running under the

Ubuntu Linux operating system. Its CPU speed is 3 GHz and 3 GB of RAM is

available on this node. The lightweight WSEE with sample web services is deployed

on the Dell Axim x51v PDA without using any intermediate node. In case of the

partitioned WSEE, the WSEE package is installed both on the intermediate node and

on the mobile device (Dell Axim x51v PDA). Note that the sample web services are

only available on the mobile device. The PDA used as the mobile device has an Intel

XScale ARM processor (PXA270) that can be run at multiple speeds (208 MHz, 520

MHz and 624 MHz). The default processor speed used is 624 MHz in all experiments.

The PDA used is equipped with a RAM of 64 MB and is running the Windows

Mobile 5.0 operating system. The Java ME environment (J9) available on the PDA is

a JVM provided by IBM for Java ME CDC devices [Ren09]. The installed J9 (JVM)

is based on the specification of CDC 1.1 [CDC05]. The client machines and the

intermediate node communicate with the PDA hosting the sample WSs using a

63

wireless local area network (IEEE 802.11b standard). The measurements were made

on a dedicated network where the experiments ran without any interference from

other applications.

A closed system model is used for experimentation. Each client (a Java thread)

operates cyclically and sends one request at a time. As soon as the response is

received, the client repeats the cycle. The system is stressed by increasing the number

of concurrent WS clients. For a single experiment, each client generates 10000

requests. So for an experiment with 10 WS clients, for example, the response time is

calculated by taking the average of response times of 100,000 requests. Each

experiment is repeated 15-25 times to obtain sufficiently small confidence intervals

for the average values. For the experiments presented next, confidence intervals of

±5% (or less) for mean response time were obtained at a confidence level of 95%.

3.4.5 Experimental Results

Results of experiments carried out to investigate the performance of the lightweight

WSEE and the partitioned WSEE are presented. In the first experiment, the

performance of the lightweight WSEE is compared with the performance of the

partitioned WSEE. In the second experiment, scalability and the effect of the transport

mechanism on the performance of partitioned WSEE is investigated. The impact of

using additional WS standards on the lightweight WSEE and the partitioned WSEE is

analyzed in the third experiment. In the fourth experiment, the impact of the speed of

the processor of the mobile device on performance is investigated. In all experiments,

only one a specific sample web service is accessed at a time.

64

3.4.5.1 Lightweight WSEE versus Partitioned WSEE

This experiment is carried out using the three sample web services. The input

parameters for Image WS and π Calculator WS are summarized in Table 3-1. The

average image sizes used for Image WS are 10KB, 100 KB and 500 KB. The average

values of N used for π Calculator WS are 10K, 50K and 100K.

In this experiment, first the three sample web services are accessed through the

lightweight WSEE (see Figure 3-7) and then the partitioned WSEE (see Figure 3-8) is

used. The number of WS clients accessing a sample WS is varied from 1 to 20. It was

not possible to experiment with more than 20 WS clients using the lightweight WSEE

because of the Window Mobile operating system limitations on the Dell Axim PDA.

Window Mobile operating system has a limit of accepting that many requests (socket

connections).

Table 3-1: Variation of Sample web service

Sample WS Variation 1 Variation 2 Variation 3

Image WS ImageSize =10 KB ImageSize=100 KB ImageSize = 500 KB

π Calculator WS N = 10 K N = 50 K N= 100 K

Tracking WS - - -

HTTP is used to exchange SOAP messages between the two partitions of the SOAP

engine in case of the partitioned WSEE. For the two WSEEs, the response time is

measured for different values of the concurrent clients (varied from 1 to 20) and is

plotted in Figure 3-7 and Figure 3-8. A comparison of the mean response times for the

two versions of the WSEE is shown in Figure 3-9 for different sample web services.

65

Note that the graphs presented in Figure 3-7, Figure 3-8 and Figure 3-9 are plotted

using a log10 scale for the response time (Y-axis).

In Figure 3-7, as the number of concurrent clients is increased, the response time

increases as well. The mean response time observed for Tracking WS is the smallest

in comparison to other sample WS because Tracking WS uses less computing

resources and requires a very small amount of data to transfer. Image WS with three

different sets of images (10K, 100K and 500K) is observed to show high values of the

mean response time because of the network delays. As the complexity level of π

Calculator WS is increased, the mean response time is observed to increase as well for

both versions of WSEE.

Figure 3-7: Effect of the number of concurrent clients (C) on the response time (R)

using different sample web services for lightweight WSEE

400

4000

40000

1 4 8 12 16 20

R
 (

m
se

c)

C

Lightweight WSEE

Image WS (10K) Image WS (100K) Image WS (500K)

π Calculator WS (10 K) π Calculator WS (50 K) π Calculator WS (100 K)

Tracking WS

66

For both the WSEE versions, Figure 3-9 shows that the contention for resources

increases with an increase in the number of concurrent clients and results in the

increased mean response time.

The results presented in Figure 3-9 show an interesting pattern. For a higher number

of concurrent clients (C > 4) the mean response time for the partitioned WSEE is

significantly lower than the mean response time for the lightweight WSEE. For a

lower number of concurrent clients (1 and 4, for example) the mean response time

observed for the sample web services is observed to be lower for the lightweight

WSEE. When a lower number of concurrent clients is used, the resource contention is

not very significant. Since the lightweight WSEE uses a single direct connection with

the clients, the network delays are expected to be lower in comparison to the

Figure 3-8: Effect of the number of concurrent clients (C) on the response time (R)

using different sample web services for partitioned WSEE

400

4000

40000

1 4 8 12 16 20

R
 (

m
se

c
)

C

Partitioned WSEE

Image WS (10K) Image WS (100K) Image WS (500K)

π Calculator WS (10 K) π Calculator WS (50 K) π Calculator WS (100 K)
Tracking WS

67

partitioned WSEE and thus results in a relatively better performance. Another

interesting behavior is observed when the number of concurrent clients is increased

for both the WSEE versions. For the lightweight WSEE, the contention for resources

on the mobile device increases significantly. This results in a large increase in the

mean response time when the sample WSs are invoked with the lightweight WSEE in

comparison to the partitioned WSEE

3.4.5.1 Scalability and Effect of Transport Mechanism between Intermediate

Node and Mobile node

Scalability of the partitioned WSEE is an important feature because the lightweight

WSEE can support a limited number of WS clients due to resource constraints and

Figure 3-9: Performance comparison of the lightweight WSEE and the partitioned

WSEE using Image WS with average image size of 100 K, Tracking WS and π

Calculator WS using complexity level of 50K

400

4000

40000

1 4 8 12 16 20

R
 (

m
se

c
)

C

Lightweight WSEE verses Partitioned WSEE

Image WS -100K (LW-WSEE) Image WS -100K (P-WSEE)

Tracking WS (LW-WSEE) Tracking WS (P-WSEE)

π Calculator WS - 50K (LW-WSEE) π Calculator WS - 50K (P-WSEE)

68

limitations of the operating system (OS) used on the mobile device. The partitioned

WSEE is designed with a feature that queues up excessive requests on part of the

WSEE deployed on the intermediate node. The number of concurrent clients is varied

between 1 and 50. For mobile applications, 50 concurrent clients are considered a

large number and can load the system significantly.

For this experiment, an additional experiment is performed to study the effect of the

transport mechanism used between the part of the partitioned WSEE deployed on the

intermediate node and the part of the partitioned WSEE deployed on the mobile node.

The communication between the intermediate node and the mobile node is based on

SOAP messages but this communication is not visible to external world. This

provides an opportunity of using a transport mechanism between the intermediate

node and the mobile node that gives rise to a lower overhead in comparison to that

achieved by using HTTP.

The transport mechanisms used between the intermediate node and the mobile node

are HTTP and TCP (Sockets). Note that the transport mechanism used between WS

clients and the intermediate node was HTTP. The experiments are performed using

sample web services as described in Table 3-1. The results reported in Figure 3-10

and Figure 3-11 are only for Image WS with an image set of size 100K, Tracking WS

and π Calculator WS with N= 50K. Again, the graphs presented in Figure 3-10 and

Figure 3-11 are plotted using a log10 scale for the mean response time (Y-axis).

As indicated in Figure 3-10 and Figure 3-11, the mean response time of the

partitioned WSEE (using TCP and HTTP) scales effectively with an increase in the

number of clients. The performance of Image WS is inferior to the other two WSs

(Tracking WS and π Calculator WS) because of the increased transport delay due to

69

exchange of the large size of data. For Tracking WS and π Calculator WS, as the

number of clients increases, the response time increases sub-linearly. Partitioned

WSEE with TCP sockets is observed to be more scalable with the number of

concurrent clients in comparison to the partitioned WSEE with HTTP.

As already mentioned the scalability of the lightweight WSEE is limited, thus the

use of partitioned WSEE not only helps the scalability issue but it also exhibits a

better performance in comparison to the lightweight WSEE.

This experiment also demonstrates that a heavy weight protocol such as HTTP may

not be suitable for use on systems with resource constraints and having a short

response time requirements. Modified versions of TCP for wireless environments are

Figure 3-10: Scalability of partitioned WSEE when HTTP is used as a transport

mechanism for exchanging SOAP messages between the intermediate node and the

mobile node

400

4000

40000

400000

1 10 20 30 40 50

R
 (

m
se

c)

C

Partitioned WSEE (using HTTP)

Image WS (100K) π Calculator WS (50 K) Tracking WS

70

discussed in the literature [Ava02] and can also be used as a transport mechanism for

exchanging SOAP messages between the intermediate node and the mobile node for

further improvements of the mean response time.

3.4.5.2 Effect of Number of WS Standards Used

One of the motivations for proposing the partitioned WSEE is to provide support for

multiple WS standards especially those that require significant computing resources to

achieve their goals. In this experiment, the sample WSs with two additional WS

standards (verification of XML Signature and Signing of WS response message) are

used and the performances of the lightweight WSEE and the partitioned WSEE are

compared. The detailed steps of these two WS standards are discussed in Section

3.2.3. In the first part of this experiment, WSEE is required to verify the XML

signatures only. The XML Signature is sent as a part of the WS request. In the second

Figure 3-11: Scalability of partitioned WSEE when TCP socket is used as a transport

mechanism for exchanging SOAP messages between the intermediate node and the

mobile node

200

2000

20000

1 10 20 30 40 50

R
 (

m
se

c)

C

Partitioned WSEE (using TCP)

Image WS (100K) π Calculator WS (50 K) Tracking WS

71

part of the experiment, the WSEEs are also responsible for signing the response

message before sending it to the WS client. In case of the partitioned WSEE, the two

WS standards are applied by the part of WSEE deployed on the intermediate node.

This experiment is repeated using all the variations of sample web services mentioned

in Table 3-1. The number of concurrent WS clients used are 1, 10 and 20. The results

reported in Figure 3-12 only shows the effect of the additional WS on the response

time for Tracking WS using the two versions of WSEE. A similar trend has been

observed for the other sample web services.

In Figure 3-12, the first three bars in each set of results are representing the response

time of invoking Tracking WS using the lightweight WSEE with no WS standard,

with one WS standard (verification of XML Signature) and with two WS standard

(verification of XML Signature and signing of WS response) respectively. For the

lightweight WSEE, when one or more WS standards are used, the mean response time

is observed to increase significantly with an increase in the number of concurrent

clients. This is because the steps of verifying an XML Signature and signing a

response message require execution of complex algorithms. Such algorithms need a

lot of computing resources and thus results in an increased response time.

The last three bars in each set of results presented in Figure 3-12 are representing the

response time of accessing Tracking WS using partitioned WSEE with no WS

standard, with one WS standard (verification of XML Signature) and with two WS

standards (verification of XML Signature and signing of WS response) respectively.

The effect of using the two WS standards is not significant on the mean response of

accessing Tracking WS when partitioned WSEE is used. The mean response with

partitioned WSEE is observed to be significantly lower in comparison to the

72

lightweight WSEE. The execution of the complex algorithms on a powerful

intermediate node seems to give rise to a significant improvement in performance.

3.4.5.3 Effect of the Speed of the Processing Resources (ω)

In this experiment, the CPU speed for the Dell Axim PDA is changed from 624

MHz to 208 MHz. Smart devices usually come with an option of operating at multiple

processors speeds to conserve the battery power. This feature is utilized to emulate

devices with different processing speeds. This experiment is performed using the

sample web services (as mentioned in Table 3-1) deployed on the same device but

operating the mobile device at two different processing speeds. As expected, the

response time for the sample web services is increased when the processor speed of

208 MHz is used. The percentage increase in the response time is measured for Image

Figure 3-12: Effect of using additional WS standards when Tracking WS is invoked

using the two versions of WSEE

0

10000

20000

1 10 20

R
 (

m
se

c)

C

Comparison of performance using multiple WS standards

Tracking WS (LW-WSEE) Tracking WS (P-WSEE)

Tracking WS (LW-WSEE with 1 WS Standard) Tracking WS (P-WSEE with 1 WS Standard)

Tracking WS (LW-WSEE with 2 WS standards) Tracking WS (P-WSEE with 2 WS standards)

73

WS with an image set of size 100 K (Figure 3-13), Tracking WS (Figure 3-14) and π

Calculator WS with N = 50K (Figure 3-15).

The increase in the response time for the lightweight WSEE is of the order of 70-

80% for a single WS client (see first bar in all three graphs), 80-85 % for 10 WS

clients (see third bar in all three graphs) and 90-105% for 20 WS clients (see 5
th

 bar in

all three graphs). The increase in the mean response time for the partitioned WSEE is

in the range of 30% to 60% for the three sample web services using 1, 10 and 20 WS

clients as indicated by the 2
nd

, 4
th

 and 6
th

 bars in all three graphs. This increase in the

mean response time is small in comparison to the decrease in the processing speed by

a factor of 3 (changed from 624 MHz to 208 MHz).

Figure 3-13: Effect of device processor speed on performance of Image WS with the

lightweight WSEE and the partitioned WSEE

0

20

40

60

80

100

1 10 20

%
a
g

e
In

cr
ea

se

in

 R

C

Comparison of Performance using Image WS for different CPU

Speeds

Image WS -100K (LW-WSEE) Image WS -100K (P-WSEE)

74

Figure 3-14: Effect of device processor speed on performance of Tracking WS with

the lightweight WSEE and the partitioned WSEE

0

20

40

60

80

100

1 10 20

%
a

g
e

In
cr

ea
se

in

 R

C

Comparison of Performance using Tracking WS for different CPU

Speeds

Tracking WS (LW-WSEE) Tracking WS (P-WSEE)

Figure 3-15: Effect of device processor speed on performance of π Calculator WS

with the lightweight WSEE and the partitioned WSEE

0

20

40

60

80

100

1 10 20

%
a

g
e

In
cr

ea
se

in

 R

C

Comparison of Performance using π Calculator for different CPU

Speeds

π Calculator WS - 50K (LW-WSEE) π Calculator WS - 50K (P-WSEE)

75

The increase in the mean response time for the lightweight WSEE is large in

comparison to the increase in the mean response time when the partitioned WSEE is

used (see Figure 3-13, Figure 3-14 and Figure 3-15). In case of the lightweight

WSEE, as the CPU is operated at a lower speed, the resource contention is significant

because the execution of both the WSEE and the sample WSs is performed on the

device. When the partitioned WSEE is used, CPU demanding tasks are executed on

the intermediate node thus lowering the demand on resources of the mobile node and

results in only a small increase in the mean response time.

3.5 Summary

Key characteristics of the lightweight WSEE and the partitioned WSEE are

observed based on the implementation and detailed experimental analysis and are

summarized next.

• The lightweight WSEE has a very small memory footprint that is less than 100K.

• For a lower number of concurrent clients and a basic set of WS standards, the

lightweight WSEE is observed to be demonstrating better performance in

comparison to the partitioned WSEE.

• For a larger number of concurrent clients or when additional WS standards are

required, the partitioned WSEE exhibits a better performance in comparison to the

lightweight WSEE.

• For mobile devices with very limited resources such as pagers and conventional

mobile phones, the performance for partitioned WSEE is observed to be less

sensitive with an increase in the number of clients in comparison to the

lightweight WSEE.

76

• The partitioned WSEE is observed to be scalable with the number of concurrent

clients. In comparison to using HTTP as a transport mechanism between the

intermediate node and the mobile node, TCP seems to be showing a superior

performance in terms of mean response time and scalability.

77

Chapter 4: WS Partitioning Frameworks

This chapter discusses three different frameworks for WS partitioning. Two of the

three frameworks, the intermediate node based framework and the backend node

based framework, have been used by researchers for deployment of partitioned

systems involving mobile and conventional applications. This thesis investigates these

two frameworks for mobile web services for the first time. This thesis also introduces

a third partitioning framework based on a forwarding node. A performance

comparison for the three partitioning frameworks is performed using system

prototyping.

4.1 Overview

The complexity of a WS can vary depending on its goals. Some applications such as

checking the availability of resources in a resource pool require only a few lines of

programming. However in certain applications, such as image format conversion used

in image processing applications, a WS can be a complex business process that may

involve a number of software components and execute complex algorithms to achieve

its goals. Invoking such a service for a number of times by multiple concurrent clients

can lead to temporarily stopping the mobile device from performing its core

functionalities such as voice services. The repeated invocation of a complex service

also increases the probability of the device going out of battery power more quickly.

78

Hosting of such complex WS applications on mobile devices is facilitated by using

WS partitioning. WS Partitioning is performed to divide a WS application into

multiple components so that execution of computationally complex components can

be offloaded to a remote computing node.

Hosting web services requires a WS execution environment (WSEE). If the CPU

time required by a WSEE is denoted by T����, the CPU time required by a WS

application itself by T�� and the network and queuing delay by TND, then the overall

response time R can be computed by the following equation

� ≅ 	����� 	+ 	�� + TND 4-1

T���� includes the CPU time spent on sending and receiving SOAP messages and

executing WS protocols. If a WS application can be partitioned into ‘n’ components

where TP1, TP2, TP3 ...TPn are the CPU times required by each component, then the

total CPU time required by the WS application will be

�� =	� � +	� ! +	� " +	… .+	� % =	∑ � '%'�� 	 4-2

Equation 4-2 only considers CPU time of a WS application while running all

partitions sequentially on a single node. If we group WS partitions into two sets: one

set for partitions that are to be executed on a mobile device and the other set for

offloaded partitions that are to be executed on a remote node, then equation 4-2 can be

written

�� =	∑ � '('�� +	∑ �′ *%*�(�� 	 4-3

where i = 1, 2… m are partitions executed locally on a mobile node and j= m+1,

m+2,…n are the partitions that are to be executed remotely. Running mobile WS

partitions on multiple nodes adds two overheads: the overhead corresponding to the

CPU time required for coordination of different WS partitions and the overhead

79

corresponding to the CPU time required for exchange of application data between the

different WS partitions. If we denote the two overheads by δ,--./ and δ,-00

respectively, then equation 4-3 can be rewritten as

�� =	1233
4 +	123((+	∑ � '('�� +	∑ �′ *%*�(�� 4-4

The overall response time of a WS application can be computed by combining

equations (4-1) and (4-4)

� ≅ ����� + �56 + 	1233
4 + 123((+ ∑ � '('�� + ∑ �7 *%*�(�� 4-5

Equation (4-5) gives an estimation of the time required to execute a WS that is

partitioned across two sets. Note that in this research, the executions of partitions on a

mobile node and on a remote node are not concurrent.

In this chapter, an analysis of deploying of the offloaded WS partitions using three

types of partitioning frameworks is presented. The first framework uses an

intermediate node to intercept the requests (from a WS client to a mobile device) and

processes it partly before forwarding it to the WS provider running on the mobile

device. The second framework is based on a backend node for execution of offloaded

parts of an application. The backend node is used to execute offloaded partitions of an

application on request for the WS provider (mobile node) and send the result back to

the WS provider that uses it to satisfy the client request. These two frameworks have

been used by different researchers (see [Cha02], [Mes02], [Ou07], [Sri07-1] and

[Sri07-2] for example) for offloading partitions of conventional applications to

additional nodes but none of the existing research has investigated their effectiveness

in the context of mobile WSs. The third framework uses a forwarding node. The

forwarding node is used to execute offloaded partitions of an application, aggregate

overall results and forward the response to the WS client instead of sending the result

80

back the mobile device. The implementation of the prototypes for each of the

framework is based on Java Standard Edition (Java SE) and Java Micro Edition (Java

ME). A detailed description is provided in the next section.

4.2 Mobile WS Partitioning Frameworks

WS partitioning can be achieved with a backend or an intermediate node. An

important objective of application partitioning is that the partitioning of the WS

should be transparent to the WS client and the execution of the partitioned application

is experienced as if it were running on a single node. In this section, a brief discussion

of the three proposed partitioning frameworks for mobile web services is presented. It

is important to note that for all the frameworks discussed next, the same WSEE is

deployed on all types of nodes (mobile node or the intermediate or the backend node).

Different partitions of sample web services are executed on different nodes.

The proposed frameworks can handle both wireless and wired WS clients. Only

wired devices are used in the experiments reported in Section 4.6. Since the delay

between the client and a framework is expected to be the same for all the three

frameworks, the performance ranking of the different frameworks on systems with

wireless clients is expected to remain the same as that reported in this thesis.

4.2.1 Intermediate Node based Framework

For an intermediate node based framework (referred to as intermediate framework),

an intermediate node on a wired network works both as a service proxy and as a

surrogate node. In the context of the work presented in this thesis, a surrogate node is

the one that performs execution of code on behalf of another node. For the client, a

service seems to be hosted on the intermediate node. A high level overview of this

framework is shown in

WS clients send their requests to the intermediate node. On receiving the WS

requests, the intermediate node parses the parameters (if any) and executes one or

more partition

the application to a mobile node through a wireless network. The execution of a part

or parts of a WS application locally or on a mobile device is based on a partitioning

plan. A wor

[BPE03] can be used to define the order of execution of the different partitions.

In addition to coordinating the execution of the different partitions of a WS

application, the intermediate

response) and sending it to the WS client. The total number of messages exchanged

among the three nodes (the WS client, the intermediate node and the WS provider) is

four (see Figure

With this framework, majority of the WSEE

intermediate node. By analyzing equation (

service seems to be hosted on the intermediate node. A high level overview of this

framework is shown in

WS clients send their requests to the intermediate node. On receiving the WS

requests, the intermediate node parses the parameters (if any) and executes one or

more partitions of a WS application locally and offload execution of the other parts of

the application to a mobile node through a wireless network. The execution of a part

or parts of a WS application locally or on a mobile device is based on a partitioning

plan. A workflow language such as

can be used to define the order of execution of the different partitions.

In addition to coordinating the execution of the different partitions of a WS

application, the intermediate

response) and sending it to the WS client. The total number of messages exchanged

among the three nodes (the WS client, the intermediate node and the WS provider) is

Figure 4-1).

With this framework, majority of the WSEE

intermediate node. By analyzing equation (

Figure 4-1

service seems to be hosted on the intermediate node. A high level overview of this

framework is shown in Figure 4-1

WS clients send their requests to the intermediate node. On receiving the WS

requests, the intermediate node parses the parameters (if any) and executes one or

s of a WS application locally and offload execution of the other parts of

the application to a mobile node through a wireless network. The execution of a part

or parts of a WS application locally or on a mobile device is based on a partitioning

kflow language such as

can be used to define the order of execution of the different partitions.

In addition to coordinating the execution of the different partitions of a WS

application, the intermediate node is also responsible for aggregating results (a final

response) and sending it to the WS client. The total number of messages exchanged

among the three nodes (the WS client, the intermediate node and the WS provider) is

With this framework, majority of the WSEE

intermediate node. By analyzing equation (

1: The intermediate framework for WS partitioning

81

service seems to be hosted on the intermediate node. A high level overview of this

1.

WS clients send their requests to the intermediate node. On receiving the WS

requests, the intermediate node parses the parameters (if any) and executes one or

s of a WS application locally and offload execution of the other parts of

the application to a mobile node through a wireless network. The execution of a part

or parts of a WS application locally or on a mobile device is based on a partitioning

kflow language such as Business Process Execution Language (BPEL)

can be used to define the order of execution of the different partitions.

In addition to coordinating the execution of the different partitions of a WS

node is also responsible for aggregating results (a final

response) and sending it to the WS client. The total number of messages exchanged

among the three nodes (the WS client, the intermediate node and the WS provider) is

With this framework, majority of the WSEE

intermediate node. By analyzing equation (4

: The intermediate framework for WS partitioning

81

service seems to be hosted on the intermediate node. A high level overview of this

WS clients send their requests to the intermediate node. On receiving the WS

requests, the intermediate node parses the parameters (if any) and executes one or

s of a WS application locally and offload execution of the other parts of

the application to a mobile node through a wireless network. The execution of a part

or parts of a WS application locally or on a mobile device is based on a partitioning

Business Process Execution Language (BPEL)

can be used to define the order of execution of the different partitions.

In addition to coordinating the execution of the different partitions of a WS

node is also responsible for aggregating results (a final

response) and sending it to the WS client. The total number of messages exchanged

among the three nodes (the WS client, the intermediate node and the WS provider) is

With this framework, majority of the WSEE components can be run on a powerful

4-5) in reference to this framework,

: The intermediate framework for WS partitioning

service seems to be hosted on the intermediate node. A high level overview of this

WS clients send their requests to the intermediate node. On receiving the WS

requests, the intermediate node parses the parameters (if any) and executes one or

s of a WS application locally and offload execution of the other parts of

the application to a mobile node through a wireless network. The execution of a part

or parts of a WS application locally or on a mobile device is based on a partitioning

Business Process Execution Language (BPEL)

can be used to define the order of execution of the different partitions.

In addition to coordinating the execution of the different partitions of a WS

node is also responsible for aggregating results (a final

response) and sending it to the WS client. The total number of messages exchanged

among the three nodes (the WS client, the intermediate node and the WS provider) is

components can be run on a powerful

5) in reference to this framework,

: The intermediate framework for WS partitioning

service seems to be hosted on the intermediate node. A high level overview of this

WS clients send their requests to the intermediate node. On receiving the WS

requests, the intermediate node parses the parameters (if any) and executes one or

s of a WS application locally and offload execution of the other parts of

the application to a mobile node through a wireless network. The execution of a part

or parts of a WS application locally or on a mobile device is based on a partitioning

Business Process Execution Language (BPEL)

can be used to define the order of execution of the different partitions.

In addition to coordinating the execution of the different partitions of a WS

node is also responsible for aggregating results (a final

response) and sending it to the WS client. The total number of messages exchanged

among the three nodes (the WS client, the intermediate node and the WS provider) is

components can be run on a powerful

5) in reference to this framework,

: The intermediate framework for WS partitioning

service seems to be hosted on the intermediate node. A high level overview of this

WS clients send their requests to the intermediate node. On receiving the WS

requests, the intermediate node parses the parameters (if any) and executes one or

s of a WS application locally and offload execution of the other parts of

the application to a mobile node through a wireless network. The execution of a part

or parts of a WS application locally or on a mobile device is based on a partitioning

Business Process Execution Language (BPEL)

can be used to define the order of execution of the different partitions.

In addition to coordinating the execution of the different partitions of a WS

node is also responsible for aggregating results (a final

response) and sending it to the WS client. The total number of messages exchanged

among the three nodes (the WS client, the intermediate node and the WS provider) is

components can be run on a powerful

5) in reference to this framework,	�����

82

is expected to be lower in comparison to a situation in which the WS is fully hosted

on a resource constrained mobile node. Since the coordination of the different

partitions of the WS application is also performed on the intermediate node, 1233
4 is

expected to be lower in comparison to a situation in which the coordination is

performed on a mobile node.

The use of an intermediate node as a service proxy ensures availability of the service

all the time in comparison to hosting the service directly on a mobile device. This is

because mobile devices occasionally drop connections or may not be accessible when

they are operating in an area with non-existent or weak wireless signals. The

processing of SOAP/XML to support different complex WS standards can be

performed on the intermediate node, thus reducing the resource requirements of the

mobile device. This framework is suitable for design time application partitioning

strategies. This is because WS requests are received directly by the intermediate node

and the responsibilities of the intermediate node need to be determined in advance. In

this framework, the control of the execution flow for the WS application is delegated

to the intermediate node. The mobile device owner, however, has to trust the

intermediate node for the exchange of the application data. The applications that

involve exchange of personal data or require access to local resources of the mobile

devices more often are not good candidates for using this partitioning framework.

4.2.2 Backend Node based Framework

A backend node based framework (referred to as a backend framework) does not

involve any intermediate node between a WS client and a WS provider. Instead, a WS

client request is directly received by a resource constrained mobile device. The

interactions of the different components in this framework are shown in Figure 4-2.

On receiving a WS request, a WS application on the mobile device runs a set of the

partitions of the requested WS locally as determined by the execution plan and then

offloads the execution of

shown in Figure

from the remote WS partitions running on the backend node, aggregate the results and

send the final response back to the WS client. As shown in

number of messages exchanged between the three nodes is four.

The mobile devices typically come with CPUs that have a very limited processing

power. Since the mobile device itself is responsible for receiving the WS requests

directly, executing a number of the WSEE components locally, coordinating the

executing of the d

different WS partitions, the values of

higher for this framework in comparison to the intermediate framework. The factor

that can contribute to improve the performance of this framework is the

∑ �8'%'�� −	

On receiving a WS request, a WS application on the mobile device runs a set of the

partitions of the requested WS locally as determined by the execution plan and then

offloads the execution of

Figure 4-2, it is the responsibility of the mobile device to collect the results

from the remote WS partitions running on the backend node, aggregate the results and

send the final response back to the WS client. As shown in

number of messages exchanged between the three nodes is four.

Figure 4

mobile devices typically come with CPUs that have a very limited processing

power. Since the mobile device itself is responsible for receiving the WS requests

directly, executing a number of the WSEE components locally, coordinating the

executing of the different WS partitions and supporting the exchange of data among

different WS partitions, the values of

higher for this framework in comparison to the intermediate framework. The factor

ontribute to improve the performance of this framework is the

	 (∑ �8'('�� +

On receiving a WS request, a WS application on the mobile device runs a set of the

partitions of the requested WS locally as determined by the execution plan and then

offloads the execution of the rest of the WS application to the backend node. As

, it is the responsibility of the mobile device to collect the results

from the remote WS partitions running on the backend node, aggregate the results and

send the final response back to the WS client. As shown in

number of messages exchanged between the three nodes is four.

4-2: The backend framework for WS partitioning

mobile devices typically come with CPUs that have a very limited processing

power. Since the mobile device itself is responsible for receiving the WS requests

directly, executing a number of the WSEE components locally, coordinating the

ifferent WS partitions and supporting the exchange of data among

different WS partitions, the values of

higher for this framework in comparison to the intermediate framework. The factor

ontribute to improve the performance of this framework is the

+	∑ �%*�(��

83

On receiving a WS request, a WS application on the mobile device runs a set of the

partitions of the requested WS locally as determined by the execution plan and then

the rest of the WS application to the backend node. As

, it is the responsibility of the mobile device to collect the results

from the remote WS partitions running on the backend node, aggregate the results and

send the final response back to the WS client. As shown in

number of messages exchanged between the three nodes is four.

: The backend framework for WS partitioning

mobile devices typically come with CPUs that have a very limited processing

power. Since the mobile device itself is responsible for receiving the WS requests

directly, executing a number of the WSEE components locally, coordinating the

ifferent WS partitions and supporting the exchange of data among

different WS partitions, the values of �����

higher for this framework in comparison to the intermediate framework. The factor

ontribute to improve the performance of this framework is the

�78*). It can be achieved either by using a powerful

83

On receiving a WS request, a WS application on the mobile device runs a set of the

partitions of the requested WS locally as determined by the execution plan and then

the rest of the WS application to the backend node. As

, it is the responsibility of the mobile device to collect the results

from the remote WS partitions running on the backend node, aggregate the results and

send the final response back to the WS client. As shown in

number of messages exchanged between the three nodes is four.

: The backend framework for WS partitioning

mobile devices typically come with CPUs that have a very limited processing

power. Since the mobile device itself is responsible for receiving the WS requests

directly, executing a number of the WSEE components locally, coordinating the

ifferent WS partitions and supporting the exchange of data among

����, 1233
4	and

higher for this framework in comparison to the intermediate framework. The factor

ontribute to improve the performance of this framework is the

. It can be achieved either by using a powerful

On receiving a WS request, a WS application on the mobile device runs a set of the

partitions of the requested WS locally as determined by the execution plan and then

the rest of the WS application to the backend node. As

, it is the responsibility of the mobile device to collect the results

from the remote WS partitions running on the backend node, aggregate the results and

send the final response back to the WS client. As shown in Figure

number of messages exchanged between the three nodes is four.

: The backend framework for WS partitioning

mobile devices typically come with CPUs that have a very limited processing

power. Since the mobile device itself is responsible for receiving the WS requests

directly, executing a number of the WSEE components locally, coordinating the

ifferent WS partitions and supporting the exchange of data among

and 123((
higher for this framework in comparison to the intermediate framework. The factor

ontribute to improve the performance of this framework is the

. It can be achieved either by using a powerful

On receiving a WS request, a WS application on the mobile device runs a set of the

partitions of the requested WS locally as determined by the execution plan and then

the rest of the WS application to the backend node. As

, it is the responsibility of the mobile device to collect the results

from the remote WS partitions running on the backend node, aggregate the results and

Figure 4-2, the total

: The backend framework for WS partitioning

mobile devices typically come with CPUs that have a very limited processing

power. Since the mobile device itself is responsible for receiving the WS requests

directly, executing a number of the WSEE components locally, coordinating the

ifferent WS partitions and supporting the exchange of data among

 are expected to be

higher for this framework in comparison to the intermediate framework. The factor

ontribute to improve the performance of this framework is the large

. It can be achieved either by using a powerful

On receiving a WS request, a WS application on the mobile device runs a set of the

partitions of the requested WS locally as determined by the execution plan and then

the rest of the WS application to the backend node. As

, it is the responsibility of the mobile device to collect the results

from the remote WS partitions running on the backend node, aggregate the results and

, the total

mobile devices typically come with CPUs that have a very limited processing

power. Since the mobile device itself is responsible for receiving the WS requests

directly, executing a number of the WSEE components locally, coordinating the

ifferent WS partitions and supporting the exchange of data among

are expected to be

higher for this framework in comparison to the intermediate framework. The factor

 value of

. It can be achieved either by using a powerful

84

backend node (that will lower the value of ∑ �78*%*�(��) or when more parts of the

WS application can be offloaded to the backend node.

Regardless of its performance, this framework is suitable for WS applications that

require the control of the application to be on the mobile device. Since the WS

requests are received directly by the mobile device, this framework can be used either

with a design time partitioning or with a runtime application partitioning approach.

4.2.3 Forwarding Node based Framework

The objective of this framework is to alleviate the drawbacks of obtaining the results

from the backend node and then forwarding them (after combining the results of a

local execution if any) to the WS client. In this forwarding node based framework

(referred to as the forwarding framework), local partitions are executed on the mobile

device first and then the results are forwarded to a backend surrogate node that

executes the remaining partitions. The responsibility of sending the final WS response

to a WS client is delegated to the forwarding node as well. A high level description of

the interaction of the different components of this framework is presented in Figure

4-3.

In comparison to the backend framework, this framework is expected to experience

a lower overhead corresponding to the coordination of the execution of different WS

partitions (1233
4) and the exchange and processing of the data between the mobile

node and the backend node (123((). It is because the task of collecting the results

from the backend node is eliminated and a lower number of messages are exchanged

between the three nodes.

A major difference between this framework and the previously discussed

frameworks is that the total number of messages exchanged between the three nodes

is only three. The forwarding framework allows applications to keep the control of

application flow on the mobile device and reduces overheads by

aggregating results and sending the consolidated response back to the WS client to the

backend node.

partition on the mobile device is to be executed first.

A prototype of each of the three frameworks is implemented and an in

analysis of their performances is performed. The design and implementation of the

prototypes are presented in Section

covered in the following sections. Note that in case of the forwar

mobile device (WS provider) also forwards the IP address and the TCP port number

on which the WS client is waiting for a response from the forwarding backend node.

4.3 System Design and Prototype Implementation

To analyze the performance of

previous section, a prototype of each of the frameworks using a

is only three. The forwarding framework allows applications to keep the control of

application flow on the mobile device and reduces overheads by

aggregating results and sending the consolidated response back to the WS client to the

backend node. This framework is suitable only for such applications in which WS

partition on the mobile device is to be executed first.

Figure 4-

A prototype of each of the three frameworks is implemented and an in

analysis of their performances is performed. The design and implementation of the

ototypes are presented in Section

covered in the following sections. Note that in case of the forwar

mobile device (WS provider) also forwards the IP address and the TCP port number

on which the WS client is waiting for a response from the forwarding backend node.

System Design and Prototype Implementation

To analyze the performance of

previous section, a prototype of each of the frameworks using a

is only three. The forwarding framework allows applications to keep the control of

application flow on the mobile device and reduces overheads by

aggregating results and sending the consolidated response back to the WS client to the

This framework is suitable only for such applications in which WS

partition on the mobile device is to be executed first.

-3: The forwarding framework for WS partitioning

A prototype of each of the three frameworks is implemented and an in

analysis of their performances is performed. The design and implementation of the

ototypes are presented in Section

covered in the following sections. Note that in case of the forwar

mobile device (WS provider) also forwards the IP address and the TCP port number

on which the WS client is waiting for a response from the forwarding backend node.

System Design and Prototype Implementation

To analyze the performance of

previous section, a prototype of each of the frameworks using a

85

is only three. The forwarding framework allows applications to keep the control of

application flow on the mobile device and reduces overheads by

aggregating results and sending the consolidated response back to the WS client to the

This framework is suitable only for such applications in which WS

partition on the mobile device is to be executed first.

: The forwarding framework for WS partitioning

A prototype of each of the three frameworks is implemented and an in

analysis of their performances is performed. The design and implementation of the

ototypes are presented in Section 4.3 while a discussion of their performance is

covered in the following sections. Note that in case of the forwar

mobile device (WS provider) also forwards the IP address and the TCP port number

on which the WS client is waiting for a response from the forwarding backend node.

System Design and Prototype Implementation

To analyze the performance of the three partitioning frameworks discussed in the

previous section, a prototype of each of the frameworks using a

85

is only three. The forwarding framework allows applications to keep the control of

application flow on the mobile device and reduces overheads by

aggregating results and sending the consolidated response back to the WS client to the

This framework is suitable only for such applications in which WS

partition on the mobile device is to be executed first.

: The forwarding framework for WS partitioning

A prototype of each of the three frameworks is implemented and an in

analysis of their performances is performed. The design and implementation of the

while a discussion of their performance is

covered in the following sections. Note that in case of the forwar

mobile device (WS provider) also forwards the IP address and the TCP port number

on which the WS client is waiting for a response from the forwarding backend node.

System Design and Prototype Implementation

the three partitioning frameworks discussed in the

previous section, a prototype of each of the frameworks using a

is only three. The forwarding framework allows applications to keep the control of

application flow on the mobile device and reduces overheads by delegating the task of

aggregating results and sending the consolidated response back to the WS client to the

This framework is suitable only for such applications in which WS

: The forwarding framework for WS partitioning

A prototype of each of the three frameworks is implemented and an in

analysis of their performances is performed. The design and implementation of the

while a discussion of their performance is

covered in the following sections. Note that in case of the forwarding framework, the

mobile device (WS provider) also forwards the IP address and the TCP port number

on which the WS client is waiting for a response from the forwarding backend node.

System Design and Prototype Implementation

the three partitioning frameworks discussed in the

previous section, a prototype of each of the frameworks using a

is only three. The forwarding framework allows applications to keep the control of

delegating the task of

aggregating results and sending the consolidated response back to the WS client to the

This framework is suitable only for such applications in which WS

: The forwarding framework for WS partitioning

A prototype of each of the three frameworks is implemented and an in

analysis of their performances is performed. The design and implementation of the

while a discussion of their performance is

ding framework, the

mobile device (WS provider) also forwards the IP address and the TCP port number

on which the WS client is waiting for a response from the forwarding backend node.

the three partitioning frameworks discussed in the

previous section, a prototype of each of the frameworks using a lightweight

is only three. The forwarding framework allows applications to keep the control of

delegating the task of

aggregating results and sending the consolidated response back to the WS client to the

This framework is suitable only for such applications in which WS

A prototype of each of the three frameworks is implemented and an in-depth

analysis of their performances is performed. The design and implementation of the

while a discussion of their performance is

ding framework, the

mobile device (WS provider) also forwards the IP address and the TCP port number

on which the WS client is waiting for a response from the forwarding backend node.

the three partitioning frameworks discussed in the

lightweight WS

86

execution environment for hosting the different partitions of a WS application is built.

To coordinate the execution of the different partitions of the WS application that are

to be executed on multiple nodes, a partition coordination subsystem is introduced. A

high level overview of the system that includes a WSEE and a partition coordination

subsystem is captured in Figure 4-4. The different components of Figure 4-4 are

discussed next.

Figure 4-4: High level architecture of the system for hosting of partitioned mobile

web services

87

4.3.1 Web Service Execution Environment

Since this work is focused on the investigation of WS partitioning, the lightweight

WSEE is used for handling of WS requests and WS responses. The same lightweight

WSEE is used on the intermediate/backend node and on the mobile node for the three

partitioning frameworks described in the last section. The functional details of the

components of the lightweight WSEE were presented in Section 3.2. The partitioned

coordination systems subsystem is described next.

4.3.2 Partition Coordination Subsystem

The partition coordination subsystem is responsible for coordinating the execution

of the different partitions of a WS application. For a performance analysis of the three

partitioning frameworks, a design time WS application partitioning strategy is used.

The design time partitioning strategy is simple to implement for all the three

partitioning frameworks and is useful for studying the effect of different workload and

system parameters on the overall system performance. In the design time partitioning

strategy, the partitioning plan that describes which partitions to run locally on a

mobile device and which partitions to execute remotely is provided through an XML

document for every deployed WS. At the time of starting the WSEE, the partitioning

plan for every deployed WS is loaded into the system memory of each node. For each

implementation of the three frameworks, the partition coordination subsystem is

deployed on the intermediate node (for the intermediate framework) or on the mobile

device node (for the backend and the forwarding frameworks). The WS partitions on

remote nodes are deployed as child web services. The WS partitions deployed on a

local node are invoked directly. The different components of the partitioning

coordination subsystem are shown in Figure 4-5.

88

Figure 4-5: Internal details of the Partition Coordinating Subsystem

The WS partition manager is a key component of the partition coordination

subsystem. It is an entry point for a WS and it facilitates the execution of the local

partition(s) and the remote partition(s) according to the WS partitioning plan. The

remote partition handler is responsible for communicating with the remote node (the

mobile node in case of the intermediate framework or the backend node in case of the

backend and the forwarding frameworks) for execution of the offloaded WS

partitions.

A WS can also be partitioned into more than two components. This type of

partitioning is only useful when offloaded partitions are targeted to run on multiple

remote computing nodes. Since the partitioning frameworks discussed in Section 4.2

use only one remote computing node, only two partitions are considered: P1 and P2

(P1 running on a mobile device and P2 running on a surrogate node (the intermediate

node or the backend node). For a system with two partitions, equation (4-5) reduces to

� ≅ 	�9:;; 	+ 	�56 +	1233
4 +	123((+	� � +	� !7 4-6

89

4.4 Sample Web Services and Experimental Setup

For experimental analysis, prototypes for the three partitioning frameworks are

implemented. The WSEE used (the lightweight WSEE) for all the three frameworks is

the same. The sample web services used are described next.

4.4.1 Sample Web Services

The four web services experimented with are Image WS, Tracking WS, NavigateMe

WS, and π Calculator WS. The details of these web services are presented next.

4.4.1.1 Image WS

Image WS involves search to a local database of images, a resource demanding

algorithm for resizing of a selected image and exchange of a large volume of data

across the three nodes. This service fetches image data (may be resized) from a

mobile device based on a set of input parameters: location and image size. A detailed

description of this service is presented in Section 3.4.1.1.

4.4.1.2 Tracking WS

Tracking WS involves access to a local hardware resource for retrieval of GPS

coordinates and querying of a database of considerable size. Tracking WS does not

involve a large data exchange across the three nodes. A detailed description of this

service is presented in Section 3.4.1.2.

4.4.1.3 NavigateMe WS

This WS is very similar to Tracking WS and provides directions for reaching the

mobile device owner to the WS client. Such a WS is useful for WS clients with no

GPS facility and hence no maps are available on their devices. The WS client can

provide its location in terms of a nearby point of interest (POI) as an input parameter.

90

For the evaluation of this WS, grid maps of two different sizes (20x20 and 40x40) are

used. For an AxA grid map, A
2
 points of interest (POIs) are connected in a grid form.

Such a grid map can model a neighborhood of interest in a city. Although a simple

model is used, the lack of details is not expected to affect the relative performance of

partitioning frameworks. This WS is chosen because, unlike Tracking WS, it can give

rise to different execution times and different volumes of output data in multiple

invocations.

The distances between the connected POIs are assigned using a uniform random

number generator. The lower and upper bounds used for the uniform random number

are 20 units and 100 units respectively. Note that the relative performances of the

partitioning frameworks are not expected to be dependent on the specific values of the

upper and lower bounds and the type of unit used.

This WS has four key components: GetSrcCoordinates, GetDestCoordinates,

FindDirections and PackData. GetSrcCoordinates is used to get the input parameter

and translate it to a closest point of interest on the grid map. GetDestCoordinate

fetches the GPS coordinates of the destination device and maps them to the nearest

POI on the grid map. FindDirections applies Dijkstra’s algorithm for finding the

shortest path from the source POI to the destination POI. The Dijkstra algorithm is

chosen for this experimentation because of its wide use in the determination of the

shortest path between two nodes. Once the shortest path is determined, the directions

to reach the destination are serialized by PackData in a response message which is

sent to the WS client. Since the WS is invoked with different input parameters,

different execution times and different volumes of output data are produced in each

invocation.

91

4.4.1.4 π Calculator WS

A brief discussion of π Calculator WS is presented in Section 3.4.1.3. The

calculation of π is used for a detailed analysis of the three partitioning frameworks

because its computation is easy to partition and its computational intensity can be

varied conveniently for performance analysis. This is appropriate for the nature of the

research presented in this chapter that focuses on the relative performances of the

three partitioning frameworks.

The value of π is calculated using Gregory-Leibniz series [Wel86]

� = 4 ∗�(−1)
��
2� − 1

�

��

The accuracy of π depends on the number of terms used in the summation of the

series. More the number of terms used, the more accurate is the value of π. The two

input parameters of this WS that are varied to study the performance of the three

partitioning frameworks are described next.

Computational Intensity (N):

The number of terms (N) used to calculate π represents computational intensity. The

mean value of N is varied from 10, 100, 1000, 10000 and 100000.

Different values of N in experiments are used to vary the computational intensity of

this sample WS. A random number of terms is used in the computation of π in a

single experiment. The Gaussian random number is generated using the value of N as

a mean value and 0.1*N as its standard deviation. Using a Gaussian distribution

instead of a fixed value of N introduces randomness in the computation intensity used

in the experiments. The nature of the distribution used is not expected to change the

relative performance of the frameworks presented in this chapter. The partitioning of

92

π Calculator WS is achieved by splitting the calculation of term {(-1)
r+1

 /(2r-1)}

across two or more nodes.

Offloaded Partition Size (Ο):

It represents the part of the WS application (in terms of the number of terms used for

calculation of π) that is offloaded from a mobile device to a remote surrogate

(intermediate or backend) node for execution. For example, if the total number of

terms to be used for calculation of π is N and the value of offloaded partition size (O)

is X, then the computation of N *X/100 terms is offloaded to a remote surrogate node

and the computation of remaining (N - N *X/100) terms is performed on the mobile

device. This parameter is varied from 0% (no partitioning), 5%, 25%, 50%, 75% and

95%.

In addition to these two parameters, the size of the data exchanged between the two

partitions of this sample WS is also varied. The impact of operating the mobile device

at two different processing speeds (208 MHz and 624 MHz) is also investigated.

4.5 Experimental Setup

The WS client programs used to invoke the sample web services are written in

standard Java. The WS clients are run on a desktop machine (running Windows XP)

equipped with 1 GB of RAM and an Intel Core 2 processor with a speed of 2.4 GHz.

The intermediate/ backend node is a desktop computer equipped with a Quad Core 2

processor that is running under Ubuntu 7.1 (Linux) operating system. Its CPU speed

is 2.4 GHz and 2GB of RAM is available on this node. A Dell Axim x51v PDA is

used as the mobile device. The PDA used as the mobile device has an Intel XScale

ARM processor (PXA270) that can be run at multiple speeds (208 MHz, 520 MHz

and 624 MHz). The PDA used is equipped with a RAM of 64 MB and is running

93

under Windows Mobile 5.0 operating system. The Java ME environment (J9)

available on the PDA is a Java Virtual Machine (JVM) provided by IBM for Java ME

CDC devices. The client machine and the intermediate/backend node communicate

with the mobile node (PDA) using a wireless local area network. The Axim PDA is

equipped with wireless adaptors that use the IEEE 802.11-b standard.

4.5.1 Workload and System Parameters

To analyze the performance of the three WS partitioning frameworks, the following

workload and system parameters are varied.

4.5.1.1 WS Complexity:

Performance of the partitioned WSEE is observed by invoking different sample WSs

that are discusses earlier. Note that the sample WSs are characterized by different

levels of computational complexity. In addition to that, each sample WS is invoked

using different values of input parameters that vary the computational complexity of

the sample WSs. For example, the π calculator service can be invoked using different

values of number of terms (N) (for calculation of π).

4.5.1.2 Concurrent WS Clients (C):

The number of WS clients invoking the sample web services at the same time can be

varied to investigate the scalability of the system.

4.5.1.3 Mobile Device Speed (ω):

The experiments are run on real handheld devices of different processing speeds.

The Dell Axim PDA device used in our experiments can be run with different

processing speeds.

94

4.5.2 Performance Metrics

The main performance metric of interest is the mean response time (R). Response

time is defined as the difference between the time when a WS response is received by

the WS client and the time when the WS client sends the corresponding SOAP

message request to a WS provider.

4.6 Experimental Results

A number of experiments are carried out to investigate the performance of the three

partitioning frameworks. These are listed next.

• In the first set of experiment, Image WS is used as a sample WS for performance

comparison of the three partitioning frameworks.

• In the second set of experiments, Tracking WS is used.

• A performance analysis of an algorithm for finding the shortest path between

two points of interest is presented in the third set of experiments. In the third set

of experiments, NaviageMe WS is used as a sample WS.

• A more detailed performance analysis of the three partitioning frameworks is

performed using π Calculator WS. π Calculator WS is used for a detailed

analysis of the three partitioning frameworks because of the flexibility it

provides for varying its computational intensity. Such a WS providing the

facility for varying CPU execution time, an important parameter in our

experiments, is appropriate for the nature of the research presented in this

chapter.

The performance results are presented in the form of graphs. One parameter is

changed at a time and is shown on the horizontal axis of each graph. The fixed factors

95

of each experiment are shown in the caption of each figure. In all the experiments,

only one type of a WS partitioning plan is used at a time. A closed system model is

used for all the experiments. Each client operates cyclically and sends one request at a

time. As soon as the response is received, the client repeats the cycle.

For the results presented in this chapter, each client generates 10000 requests. So,

for an experiment with 12 concurrent WS clients, for example, the response time is

calculated by taking the mean of response times of 120,000 requests. Each experiment

is repeated 15-30 times to obtain sufficiently small confidence intervals for the mean

values. For the experimental results presented next, confidence intervals of ±5% (or

less) for mean response time were obtained at a confidence level of 95%.

4.6.1 Performance Comparison of the Three Frameworks using Image WS

For this experiment, Image WS is partitioned into two partitions using the design

time application partitioning. The SearchImage component is executed on the mobile

node while the executions of the other two components (ResizeImage and PackData)

are offloaded to a remote surrogate node (the intermediate or the backend node). The

rationale for this design time partitioning is to keep the execution of components that

have dependencies on local resources on the mobile device and offload the execution

of components that have significant resource requirements to a remote surrogate node.

The workload and system parameters for this set of experiments are presented in

Table 4-1. For this experiment, 100 images of size 1600x1200 (in pixels) are stored

on the mobile device. The values used for the image size parameter of Image WS are

800x600 and 640x480. The mean response time is measured by invoking the WS with

one, six and twelve WS clients. The results are shown in Figure 4-6 and the bars in

the set of bars for each value of C are presented in the following sequence. The first

96

bar corresponds to no partitioning case, the second bar to the intermediate framework,

the third bar to the backend framework and the fourth bar to the forwarding

framework. The image to be processed is selected randomly using a uniform

distribution. A similar trend in relative performances of the three partitioning

frameworks is observed for the two values of the image size parameter.

Table 4-1: Workload and system parameters for performance comparison of the three

frameworks using Image WS

Parameter Range of Values

Number of WS clients 1, 6, 12

Image Sizes 800x600 and 640x480

Number of Images used 100

Mobile Device Speed 624 MHz

The forwarding framework exhibits a slightly better performance in comparison to

the intermediate framework especially when six and twelve WS clients are used. Note

that the performance of the forwarding and the intermediate node frameworks is

observed to be superior to the performance of the backend framework. The

performance of the backend framework is observed to be marginally better than the

no partitioning case when Image WS is invoked with only one WS client. But it is

interesting to note that its relative performance improves considerably when Image

WS is invoked for more than one WS client (six and twelve WS clients in this

experiment). This is because the increase in mobile resource contention for higher

number of concurrent clients offsets the large overheads of executing a partition on a

backend node.

97

 (a)

 (b)

Figure 4-6: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and (a) image size = 800x600 (b) image size =

640x480

0

4000

8000

12000

16000

1 6 12

R
 (

m
se

c)

C

 No Partitioning Intermediate Framework

 Backend Framework Forwardng Framework

0

4000

8000

12000

16000

1 6 12

R
 (

m
se

c)

C

 No Partitioning Intermediate Framework

 Backend Framework Forwardng Framework

98

4.6.2 Performance Comparison of the Three Frameworks using Tracking WS

Image WS involves a significant amount of data exchange. The forwarding

framework uses the lowest number of messages (three) exchanged between the three

nodes, thus resulting in small network delays in comparison to the intermediate

framework which leads to four message exchanges between the three nodes.

For this experiment, Tracking WS is partitioned into two partitions. The components

(GetCoordinate, for example) with dependencies on local resources of a mobile

device are put in one partition. The rest of the components (GetLocDetail and

PackData) are grouped in another partition and are executed on a remote surrogate

node (the intermediate or the backend node). The mean response time is measured by

invoking the WS with one, six and twelve WS clients. The results are shown in Figure

4-7 and the bars in the set of bars for each value of C are presented in the following

sequence.

Figure 4-7: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and Tracking WS is invoked

0

1000

2000

3000

4000

5000

1 6 12

R
 (

m
se

c)

C

 No Partitioning Intermediate Framework

 Backend Framework Forwardng Framework

99

It is interesting to note that the relative performance of the three partitioning

frameworks is the same as observed for Image WS. Once again, the performance of

the forwarding and the intermediate node framework is significantly superior to the

performance of the backend framework. The performance of the backend framework

is observed to be slightly better than the no partitioning case when Tracking WS is

invoked by six and twelve WS clients. As discussed in Section 4.2.2, the mobile node

in the backend framework is responsible for handing the message exchanges with WS

clients and also coordinating execution of the different components of a partition.

This results in a poor performance exhibited by the backend framework in comparison

to the other partitioning frameworks. When a higher number of WS clients is used, the

overheads accrued due to handing of message exchanges and the coordination of WS

partitions are compensated by the offloading executions of more partitions and thus

resulting in a slightly better performance than the no partitioning case.

4.6.3 Performance Comparison of the Three Frameworks using NavigateMe

WS

For this set of experiment, NavigateMe WS is partitioned into two partitions. The

components (GetSrcCoordinates and GetDestCoordinates, for example) with

dependencies on local resources of a mobile device are put in one partition. Rests of

the components (FindDirections and PackData) are grouped into another partition

that is executed on a remote surrogate node (the intermediate or the backend node).

The map data is assumed to be available on all nodes except the WS client device.

The mean response time is measured using grid maps of sizes 20x20 and 40x40. The

number of concurrent WS clients used is one, six and twelve. The results are shown in

Figure 4-8.

100

The relative performance of the three partitioning frameworks for this WS

application is similar to that observed for Tracking WS. The performance of the

intermediate and forwarding frameworks is superior to the backend framework. The

(a)

(b)

Figure 4-8: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and NavigateMe WS is invoked for (a) a 20x20

grid map (b) a 40x40 grid map

0

4000

8000

12000

16000

1 6 12

R
 (

m
se

c)

C

 No Partitioning Intermediate Framework

 Backend Framework Forwardng Framework

0

5000

10000

15000

20000

1 6 12

R
 (

m
se

c)

C

 No Partitioning Intermediate Framework

 Backend Framework Forwardng Framework

101

intermediate framework is observed to demonstrate the best performance because a

powerful computing node (the intermediate node) is responsible for execution of the

resource demanding components and coordination of the WS partitions. The backend

framework is observed to perform better than the no partitioning case.

The experimental results presented in Figure 4-7 and Figure 4-8 show that for WSs

that require a large exchange of data such as Image WS, the forwarding framework

exhibits a better performance over the other frameworks (see Figure 4-6). For the

other sample WSs that demand minimal data exchange, the intermediate framework

exhibits the best performance (see Figure 4-7 and Figure 4-8).

4.6.4 Performance Comparison of the Three Frameworks using π Calculator

WS

For a detailed analysis of system performance, the π Calculator WS is used. A

number of experiments are performed with π Calculator WS and are described next.

In the first experiment, different overheads are measured for the three partitioning

frameworks. In the second experiment, the performances of the three partitioning

frameworks are compared for different values of computational intensity (N) of the

sample WS using a single WS client at a time. In the third experiment, the scalability

of the three partitioning frameworks is analyzed by increasing the number of

concurrent WS clients (C) for different values of N. In the fourth experiment, the

effect of data size on the performance of the three partitioning frameworks is

investigated. Note that the artificial data used in the fourth experiment, in addition to

the name and parameters of the method in a WS partition, do not have any semantic

value but are used to increase the size of the data exchanged. In all the other

experiments, the artificial data is not required. In the fifth experiment, the effect of the

102

overheads of the WSEE is investigated by using an additional WS security standard

for verifying and signing the body of the SOAP messages. In the sixth experiment, the

mobile device is operated at multiple speeds to evaluate the significance of

partitioning frameworks for devices with limited processing speeds. In any

experiment, only one parameter is varied at a time. The workload and system

parameters that are varied are presented in Table 4-2.

Table 4-2: Workload and system parameters for performance comparison of the three

frameworks using π Calculator WS

Parameter Range of Values Default Value

Number of WS clients 1, 6, 12 1

Computational Intensity (N) 10 - 1000000 1000, 100000

Offloaded Partition Size (O) 0-95% 50%

Mobile Device Speed 208 MHz, 624 MHz 624 MHz

In one experiment, only one of the parameters is varied at one time. All other

parameters used in the experiment are set to their default values. The number of

clients (C) is varied from one to twelve. The computational intensity for π Calculator

WS is varied from 10 to 1000000. Two default values are listed in Table 4-2 because

two sets of experiments, one with N = 1000 and the other with N = 100000, are

performed. The offloaded partition size (O) is varied from 0 to 95% with a default

value of 50%. The mobile device is operated at two processing speeds: 208 MHz and

624 MHz. 624 MHz is used as a default speed.

103

4.6.4.1 Overheads of the Partitioning Frameworks

In this experiment, the three partitioning frameworks are analyzed by measuring the

processing time of the two components of the sample WS (� �	and	� !7), execution

times of the WSEE (�����) and the CPU times corresponding to the overheads

1233
4	and 123((. For this experiment, two values of computational intensity (N =

1000 and N = 100000) are used. The offloaded partition size of the sample WS, O, is

set to 50%. The experiment is carried out using a single WS client and the

experimental results are summarized in Table 4-3.

The results are observed to be in accordance with equation (4-5) and (4-6). Note that

the mean response time observed is approximately equal to the sum of 	
� �, � !′ , ����� , 1233
4	and 123((. 1233
4	and 123((are observed to be higher for

the backend framework in comparison to the other two frameworks. It is because the

resource constrained mobile device itself is responsible for receiving the WS requests,

executing a number of the WSEE components locally, coordinating the execution of

the different WS partitions and supporting the exchange of data among different WS

partitions. As a result, the mean response time for the backend framework is

substantially higher than the two other frameworks. It is also interesting to note that

123((is the smallest for the forwarding framework. This may be because of the

lower number of messages exchanged between different nodes for this framework.

The mean response times for the intermediate and the forwarding framework are

close to each other. The execution times of the partitioned applications (P1 and P2) are

nearly the same (see Table 1) because for each framework the two partitions are run

on the same mobile node and the same surrogate node (the intermediate or the

forwarding node). The overheads due to WSEE (T����) is observed to be lower for

104

the intermediate framework. This is because most of the SOAP/XML processing is

performed on a powerful intermediate node. The overhead corresponding to data

exchange (δ,-00) is observed to be lower for the forwarding framework because

only three messages are exchanged for each invocation in comparison to the four

messages exchanged for the intermediate framework. The benefit of a lower

T����overhead for the intermediate framework seems to be compensated by a higher

communication overhead (δ,-00). Overall, the performance of the intermediate

framework turns out to be slightly superior to that of the forwarding framework.

4.6.4.2 Performance of Partitioning Frameworks with a Single WS Client

For this experiment, a single WS client is used to generate WS requests. N is varied

from 10 to 100000. Values of O are varied from 0 to 95%. Various combinations of

these two parameters for the three partitioning frameworks were experimented with

and the results are presented in Figure 4-9 (using the intermediate framework), Figure

4-10 (using the backend framework) and Figure 4-11 (using the forwarding

framework). The five vertical bars in Figure 4-9 to Figure 4-11correspond to different

values of O (shown as legends at bottom of each graph). In all the graphs of Figure

Table 4-3: Mean response time (msec) for requests and the mean CPU time (msec) for

overheads

 Response

Time

		@AB @AC7 @DEFF GHIIJK GHILL

Intermediate Framework 346.7 54.4 18.3 101.3 29.1 138.9

Backend Framework 854.1 89.3 21.1 219.4 104.5 405.8

Forwarding Framework 359.2 52.1 17.4 153.2 42.3 86.5

105

4-9 to Figure 4-11, the first set of bars (O = 0%) represents the no partitioning case

and all the computation is done on the mobile device. The bars in the set of bars for

each value of N are presented in the following sequence. The first bar corresponds to

O = 0%, the second bar to O = 10%, the third bar to O = 25%, the fourth bar to O =

50%, fifth bar to O = 75% and sixth bar to O = 95%.

Figure 4-9 shows the mean response time for different values of O and N for the

intermediate framework. As the value of O is increased, the mean response time is

reduced. As more components of the sample WS application are offloaded to an

intermediate node, a lower time is required to process the WS request resulting in a

reduced response time. As the value of N is increased, the mean response time for

invoking the WS is increased. This is because higher values of N imply more

computation. It is important to note that for higher values of N, the mean response

time decreases significantly as the value of O is increased beyond 25% (see set of bars

for N = 10000 and N = 100000 in Figure 4-9). Note that performance of the

intermediate framework using partitioning is degraded in comparison to the no

partitioning case when the value of O = 5% and N ≤100. This is because a very small

part of the WS application is offloaded to an intermediate node and the overheads of

executing the partitioned WS application seems to be significant in comparison to the

benefit achieved with partitioning.

Figure 4-10 shows that the performance of the backend framework is poor in

comparison to the no partitioning situation for lower values of N (N < 1000) and

when the offloaded partition size is less than 50% (O < 50%). This is because the size

of the offloaded partition is not large enough to offset the overheads that accrued

because of handling of exchange of WS messages and coordination of WS partitions

106

on the mobile node. For π Calculator WS with value of N greater than 1000 (N =

10000 and N = 100000 in Figure 4-10), the backend framework with partitioning

exhibits a better performance in comparison to the no partitioning situation when the

value of O is increased to 50% or more.

The forwarding framework (see Figure 4-11) exhibits a performance degradation in

comparison to the no partitioning case when O ≤ 25% and N < 1000. This is again

because a small part of the WS is executed on a backend node and the performance

benefit due to offloading a part of the WS is not high enough to offset the overheads

of partitioning. But as O is increased beyond 25%, the mean response time is

decreased significantly and a performance improvement over the no partitioning

situation is observed.

Figure 4-9: Response time for invoking the sample π Calculator WS with mobile

device operated at 624 MHz and using an intermediate framework

100

150

200

250

300

350

400

450

500

550

600

N=10 N=100 N=1000 N=10000 N=100000

R
 (

m
se

c)

O = 0% O = 5% O = 25% O = 50% O = 75% O = 95%

107

Figure 4-10: Response time for invoking the sample π Calculator WS with mobile

device operated at 624 MHz and using a backend framework

Figure 4-11: Response time for invoking the sample π Calculator WS with mobile

device operated at 624 MHz and using a forwarding framework

400

500

600

700

800

900

1000

1100

N=10 N=100 N=1000 N=10000 N=100000

R
 (

m
se

c)

O = 0% O = 5% O = 25% O = 50% O = 75% O = 95%

400

500

600

700

800

900

1000

1100

N=10 N=100 N=1000 N=10000 N=100000

R
 (

m
se

c)

O = 0% O = 5% O = 25% O = 50% O = 75% O = 95%

108

In general, for lower values of computational intensity (10 and 100), there is hardly

any improvement observed in performance for π Calculator WS unless a very large

size of partition (O > 75%) is offloaded for execution. But for higher values of

computation intensity (N > 1000), a significant performance improvement is observed

especially when O ≥ 25%. This shows that WS partitioning is most effective for web

services with a substantial execution time and when a significant part of the WS is

offloaded to an intermediate or backend node.

Figure 4-12 presents a performance comparison of the three partitioning frameworks

for the sample WS with computational intensity of N = 100000. Figure 4-12 displays

a high performance degradation for the backend framework in comparison to the no

partitioning situation when O ≤ 25%. The two other frameworks exhibit a much

superior performance in comparison to the backend framework. The intermediate

framework is the winner especially for lower values of O. The forwarding framework

exhibits comparable performance with the intermediate framework for higher values

of O (see the last set of bars in Figure 4-12).

4.6.4.3 Performance of Partitioning Frameworks with Multiple WS Clients

In this experiment π calculator WS is invoked by 6 and 12 concurrent clients. The

value of O is varied from 0% to 95%. The experiment is repeated for N = 1000 and

N= 100000. The results are presented in Figure 4-13 for N = 1000 and in Figure 4-14

for N = 100,000. The results are discussed with reference to the value of N and C. In

all the graphs of Figure 4-13 and Figure 4-14, the bars in the set of bars for each value

of O are presented in the following sequence. The first bar corresponds to the

intermediate framework, the second bar to the backend framework and the third bar to

the forwarding framework.

109

4.6.4.3.1 For N = 1000 and C = 6 (see Figure 4-13-a)

Figure 4-13-a shows that there is hardly any improvement in performance observed

for the three partitioning frameworks in comparison to the no partitioning case when

N = 1000 and the value of O ≤ 50%. In fact the performance of the backend

framework is inferior to that of no partitioning case for O ≤ 50%. When the value of

O is increased higher than 50%, the backend framework exhibits marginally better

performance in comparison to the no partitioning case. The overheads associated with

the backend framework are higher, thus it requires a significant part of application to

be offloaded to a backend node to offset the overheads. The intermediate framework

is the winner among the three frameworks followed by the forwarding framework.

Figure 4-12: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and the sample π calculator WS (with N =

100000) is invoked by one WS client.

0

200

400

600

800

1000

1200

0% 5% 25% 50% 75% 95%

R
 (

m
se

c)

O

Intermediate Framework Backend Framework Forwarding Framework

110

4.6.4.3.2 For N = 1000 and C = 12 (see Figure 4-13-b)

The relative performance of the three partitioning frameworks is observed to be the

same when twelve WS clients are used. Performance of the forwarding framework is

close to the intermediate framework when O ≥ 75%. The backend framework

demonstrates a better performance in comparison to the no partitioning case when the

value of O is used greater than 5%. The resource contention is expected to be high on

the mobile node when a large number of WS clients is invoking the sample WS.

Because of this increased resource contentions, the benefit of offloading a partition

using the forwarding framework and the backend framework is large enough in

comparison to the overheads associated with these frameworks. This results in

improved performance of these two frameworks when such a large number (twelve

clients in this case) of WS clients is used.

4.6.4.3.3 For N = 100,000 and C = 6 (see Figure 4-14-a)

For higher values of computational intensity (such as N = 100000) and with O ˃

25%, a significant improvement is observed in performance for all the partitioning

frameworks in comparison to the no partitioning case. For O ≤ 25%, the performance

of the backend framework is inferior to that of the no partitioning case. The

performance of the backend framework is never close to the performances of the other

two partitioning frameworks that demonstrate a significantly higher performance for

O ≥ 25%. The higher overheads contribute to the inferior performance of the backend

framework in which the mobile node has to perform most of the WSEE processing,

coordination of the different WS partitions and the exchange of data with remote WS

partitions.

111

(a)

(b)

Figure 4-13: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and the sample π Calculator WS (with N =

1000) is invoked by a) six concurrent WS clients b) twelve concurrent WS clients

0

200

400

600

800

1000

1200

1400

1600

1800

0% 5% 25% 50% 75% 95%

R
 (

m
se

c)

O

Intermediate Framework Backend Framework Forwarding Framework

0

1000

2000

3000

4000

5000

6000

7000

0% 5% 25% 50% 75% 95%

R
 (

m
se

c)

O

Intermediate Framework Backend Framework Forwarding Framework

112

4.6.4.3.4 For N = 100,000 and C = 12 (see Figure 4-14-b)

A similar trend is observed in relative performance of the three partitioning

frameworks with twelve WS clients. For O ≥ 75%, the performance of the forwarding

framework is observed to be marginally better than that of the intermediate

framework. The performance of the backend framework is inferior in comparison to

the other two frameworks.

It is interesting to note that the performances of the intermediate framework and the

forwarding framework are very close to each other when O ≥ 50% even when

multiple concurrent clients are active in the system. The rationale of this behavior is

similar to that provided in Section 4.6.4.2.

4.6.4.4 Effect of the Size of Data Exchanged between WS Partitions

The effect of the size of data exchanged on the relative performance of the three

partitioning frameworks is investigated by sending dummy data of different sizes

between the two partitions. The size of artificial data used in this experiment is varied

from 1 Kbyte to 100KBytes (1KBytes, 5KBytes, 10KBytes, 25 Kbyte, 50Kbytes and

100 Kbytes). Such a range of data size is appropriate in the context of mobile web

services that this thesis focuses on. For this experiment, two values of computational

intensity (N = 1000 and N = 100000) are used. The offloaded partition size (O) of the

sample WS is set to 50%. The experiment is carried out using one, six and twelve

concurrent WS clients. The experimental results with twelve concurrent WS clients

are shown in Figure 4-15 (see Appendix A.1 and Appendix A.2 for experimental

results achieved with one and six WS clients respectively).

113

(a)

(b)

Figure 4-14: Performance comparison of the three partitioning frameworks when the

mobile device is operated at 624 MHz and the sample π WS (with N = 100000) is

invoked by a) six concurrent WS clients b) twelve concurrent WS clients

0

500

1000

1500

2000

2500

3000

3500

4000

0% 5% 25% 50% 75% 95%

R
 (

m
se

c)

O

Intermediate Framework Backend Framework Forwarding Framework

0

2000

4000

6000

8000

10000

12000

14000

0% 5% 25% 50% 75% 95%

R
 (

m
se

c)

O

Intermediate Framework Backend Framework Forwarding Framework

114

(a)

(b)

Figure 4-15: The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample π Calculator WS with O =

50% is invoked by twelve concurrent WS clients (a) with N = 1000 (b) with N =

100000

0

1000

2000

3000

4000

5000

6000

7000

1k 5k 10k 25K 50K 100K

R
 (

m
se

c
)

Size of Data Exchanged (Bytes)

Intermediate Framework Backend Framework Forwarding Framework

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1k 5k 10k 25K 50K 100K

R
 (

m
se

c)

Size of Data Exchanged (Bytes)

Intermediate Framework Backend Framework Forwarding Framework

115

The size of the data exchanged between the WS partitions does not seem to affect

the relative performance of the three partitioning frameworks (see Figure 4-15). The

mean response time for any given framework seems to vary sub-linearly with increase

in size of the data exchanged between the WS partitions. The performance of the

forwarding framework is superior to the intermediate framework for all the data sizes.

It is because of the lower number of messages (three) exchanged between the three

nodes. Once again, the backend framework displayed an inferior performance in

comparison to the two other partitioning frameworks. A similar relative performance

of the three frameworks is observed with one and six WS clients.

4.6.4.5 Effect of Using a WS Security Standard

To investigate the effect of a higher WSEE overhead on the performance of the

different partitioning frameworks, an experiment is performed with a WSEE that

supports a WS security standard as well. The WS security standard is used to verify

the integrity of incoming SOAP messages using XML Signatures and also to sign the

final WS response. As a result of these additional requirements, the WSEE overheads

increase significantly.

For this experiment two values of computational intensity (N = 1000 and N =

100000) are used. The value of O is set to 50%. The experiment is carried out using

one, six and twelve concurrent WS clients, but only the experimental results achieved

with twelve concurrent WS clients are shown in Figure 4-16. A similar trend in

response time has been observed for one and six concurrent WS clients (see Appendix

A.3). In case of the forwarding framework, the integrity of the incoming request

message is verified at the mobile node whereas the task of signing the outgoing WS

response is performed at the forwarding node. It has been observed that the

116

performance of the backend framework (second set of bars in Figure 4-16) is

significantly inferior to that achieved with the other partitioning frameworks. For N =

100,000, for example, the mean response time of the backend framework is 1.33 times

that achieved with the intermediate framework and 1.4 times that achieved with the

forwarding framework. It is because the entire code required for handling the WS

security standard is executed on the mobile device. Thus, it consumes more resources

of the mobile device and leads to a high response time.

In case of the intermediate framework, the entire code for handling the security WS

standard is executed on a powerful intermediate node. The intermediate framework

exhibits the best performance because the powerful intermediate node is responsible

Figure 4-16: Effect of using WS security standard on the relative performance of the

three partitioning frameworks when the mobile device is operated at 624 MHz and the

sample π Calculator WS with O = 50% is invoked by twelve concurrent WS clients

0

3000

6000

9000

12000

Intermediate

Framework

Backend Framework Forwarding

Framework

R
 (

m
se

c)

Different Partitioning Frameworks

N=1000 N=100000

117

for executing the entire code for handling the security WS standard, for handling all

message exchanges with WS clients and for coordinating WS partitions. The

performance of the forwarding framework is slightly inferior to the performance of

the intermediate framework because the resource constrained mobile node is

responsible for handling incoming messages from WS clients and partial coordination

of partitions. Also, note that the forwarding framework executes only 50% of the code

on the backend node for handling WS security in comparison to the intermediate

framework that executes the entire code on the intermediate node for WS security.

4.6.4.6 Effect of the Speed of the Processing Resource

In this experiment, the Dell Axim PDA (mobile node) is operated at two different

processor speeds: 624 MHz and 208 MHz. The experiment is performed with one, six

and twelve WS clients and using different values of N (10 to 1000000). The

experiment is repeated for different values of O (25%, 50% and 75%). As expected,

with a CPU speed of 208 MHz, the mean response times for all the frameworks are

increased. A similar trend is observed in the relative performance of the three

frameworks as the value of O is increased, but it has been observed that there is very

little or no improvement in performance when the sample WS with a lower

computational requirements (for N < 10000) is invoked. Figure 4-17 displays the

results achieved with N = 100000 and using one and twelve WS clients. A similar

trend in relative performances of the three frameworks has been observed when six

WS clients are used (see Appendix A.4).

118

(a)

(b)

Figure 4-17: Effect of CPU speed of the mobile device on relative performance of the

three partitioning frameworks when the π Calculator WS (with N = 1000000) is

invoked by a) one WS client b) twelve WS clients

0

400

800

1200

1600

2000

25% (624

MHz)

50% (624

MHz)

75% (624

MHz)

25% (208

MHz)

50% (208

MHz)

75% (208

MHz)

R
 (

m
se

c)

O (CPU Speed)

Intermediate Framework Backend Framework Forwarding Framework

0

4000

8000

12000

16000

20000

25% (624

MHz)

50% (624

MHz)

75% (624

MHz)

25% (208

MHz)

50% (208

MHz)

75% (208

MHz)

R
 (

m
se

c
)

O (CPU Speed)

Intermediate Framework Backend Framework Forwarding Framework

119

Figure 4-17 captures the mean response time improvement when the offloaded part

of the WS is varied from 25% to 75%. Once again, the results presented in Figure

4-17 show that the intermediate framework and the forwarding framework are

superior in comparison to the backend framework. In case of slower processor speeds

(208 MHz), another important observation is that the performance improvement,

when O is increased from 25% to 50% and 50% to 75%, is far better in comparison to

the performance improvement that is observed when O is varied from 25% to 50%

and 50% to 75% using a processor speed of 624 MHz. This implies that although

application partitioning can lead to a significant benefit for all devices, its importance

is even higher for devices with lower speed processers.

4.7 Summary

In this chapter a forwarding framework for mobile WS partitioning is proposed and

is compared with the two existing application partitioning frameworks. Based on

prototyping and measurement, an in-depth analysis is performed to investigate the

performance of the three partitioning frameworks for hosting web services on

resource constrained mobile devices. Some of the WS partitions are run on the mobile

device while the others are run on a more powerful computing node. The insights

gained in to system behavior and performance are summarized.

• The intermediate and the forwarding frameworks lead to a significant

performance improvement over an un-partitioned system. The performance

improvement produced for the two frameworks is significant when

o Used for compute intensive (resource demanding) applications

120

o A reasonable size of the application (O = 25% or higher in case of

experiments with π Calculator WS) is offloaded to a remote computing

node.

• In most cases when one WS client is used, the performance of the backend

framework is observed to be either very close to (for Image WS and Tracking

WS) or inferior (for π Calculator WS) to that of an un-partitioned system for

most values of O. It seems that the overheads of this framework often offset the

performance gain achieved by offloading a part of the application to a backend

node. This framework demonstrates a better performance than the no

partitioning case when a very high value of O is used (O ≥ 75).

• Both the forwarding and the intermediate frameworks have shown performance

close to each other. The intermediate framework seems to be a better choice for

web services that require the WSEE to support extra WS standards such as the

security standard. The rationale behind such a behavior is the execution of a

larger component of the WSEE on the intermediate node.

• The forwarding framework also showed a good performance in most cases. The

experimental results presented in Section 4.6.1 and Section 4.6.4.4 show that for

high sizes of data exchanged, this framework performs the best producing a

lower response time in comparison to the intermediate framework. This seems to

be an effect of the lower number of messages exchanged in the forwarding

framework, the impact of which becomes significant for higher sizes of data

exchanged. The forwarding framework achieved a comparable performance to

the intermediate framework without delegating the application control to the

intermediate node.

121

• The performance improvement that accrues from WS partitioning is observed to

be higher for devices with lower speed CPUs. This implies that WS partitioning

is expected to be even more important with resource constrained inexpensive

mobile devices with slower CPUs.

122

Chapter 5: Design Time WS Partitioning

Different techniques for hosting web services on a mobile device were discussed in

Chapter 3 and Chapter 4. The main focus of these earlier chapters was to facilitate

hosting of mobile web services and devising distributed web service execution

environments. The remainder of this thesis focuses on devising algorithms for

partitioning WS applications. This chapter presents an analysis of graph-partitioning

based design time WS partitioning algorithms.

5.1 Overview

Hosting web services on wireless mobile devices can be simple or complex

depending on the goals of a WS application. Some applications such as checking the

availability of resources in a resource pool require only a few lines of programming.

However in certain applications, such as image format conversion used in image

processing applications (discussed in Section 4.4.1.1), a WS can be a complex process

that can involve a number of software components and execute complex algorithms to

achieve its goals. Invoking such a service for a number of times by multiple clients

can lead to temporarily stopping the mobile device from performing its core

functionalities such as voice services. The repeated invocation of such a resource

demanding (WS) application increases the probability of the device going out of

battery power more quickly.

123

To facilitate execution of such resource demanding applications on mobile devices,

this thesis proposes to apply application partitioning for hosting WS applications

effectively on mobile devices. WS application partitioning is performed to divide a

WS application into multiple components so that computationally complex

components can be offloaded to remote computing nodes. As already mentioned in

Chapter 2, the existing application partitioning algorithms available in the literature

are designed to partition large scientific applications into multiple partitions of similar

size so that the partitions can be run in parallel. Little work has been done for

partitioning of WS applications that have different constraints and objectives. For

example, achieving partitions of the same size is not a key requirement in case of

mobile WS applications. The objectives for WS partitioning include achieving a

considerable size for the offloaded partitions with smaller communication costs.

For mobile WS application partitioning, two types of approaches have been

investigated in the past. Some researchers have suggested the offloading of the entire

application code ([Hem05], [Kim07], [Riv07]) to a remote computing node in a fixed

infrastructure. Another approach available in the literature proposes to use the

minimum cut (also known as MinCut) algorithm for partitioning the application if the

application can be modelled as a graph ([Hun99], [Mes02]). A key concern in

applying the MinCut algorithm for application partitioning is that it tends to partition

the application in such a way that the communication costs between the application

components are minimized. This may not always lead to an improvement in overall

performance in a mobile device based system where reducing the resource demands

on the mobile device that includes the lowering of its CPU load is a key concern.

124

In this thesis, two new design time graph-based partitioning algorithms are

proposed: Maximum Offloading Minimum Cost (MOMC) and Cluster based

Application Partitioning (CAP). The proposed algorithms can be used for mobile WS

applications as well as for traditional mobile applications. The MOMC algorithm uses

a global maxima approach for achieving the partitions for offloading while the CAP

algorithm uses a local maxima approach for obtaining the partitions for offloading.

The effectiveness of the proposed algorithms is analysed by comparing the

performance of the partitioned systems achieved with the two proposed algorithms

with the un-partitioned system and the partitioned systems achieved with the MinCut

algorithm and the offloading entire application approach.

The intermediate framework and the forwarding framework exhibits the best

performance among the three partitioning frameworks discussed in Chapter 4. For the

WS partitioning analysis, however the backend framework is used because of the

limitations of the intermediate framework and the backward framework. The

intermediate framework is virtually same as hosting web service on an intermediate

node. The forwarding framework is useful only when the mobile node completes its

execution first and then forward execution of the rest of the application to the

forwarding node. Moreover, the relative performance of the proposed WS partitioning

techniques is not expected to be affected by the partitioning framework used.

5.2 Design Time WS Application Partitioning Guidelines

Before presenting algorithms for WS partitioning, it is important to describe the

different factors that should be considered in devising these algorithms. These factors

are presented next:

• Number of partitions a WS application can be divided into (n).

125

• Dependency of the WS application on the local resources.

• Frequency of communication between different components of a WS application.

• Resource limitations of handheld devices.

• Resource capabilities of remote computing node (S).

Based on these factors, a set of guidelines are proposed for partitioning of WS

applications and are devised from basic principles underlying distributed computing.

These guidelines are described next.

Web services hosted on handheld devices are expected to use local resources.

Services can make local systems calls to achieve their goals. The first guideline

suggests identifying the components of the application that make local system calls.

The identified components can be put in a partition that is to be deployed on the

handheld device. The part of the application that does not have dependency on local

resources can be put in one or more partitions that can be deployed on one or more

remote computing nodes.

For improving system performance, the communication between different partitions

of a WS application should be minimized. The different partitions of a WS must be

designed to reduce inter-partition communication. The second guideline suggests

moving a component of a WS to a partition that is to be deployed on a remote

computing node only if it does not demand a large amount of data transfer between

the remote computing node and the mobile node.

5.3 Graph Terminologies

To understand the algorithms presented in Section 5.4 and Section 5.5, the necessary

graph related terminology is introduced.

126

5.3.1 Graph

A graph is characterized by two finite sets V and E.

 G = (V, E)

Where

 V = {V1, V2, V3, …..Vi}

E = {E1, E2, E3, ….. Ej}

Note that i and j represents the total number of vertices and edges respectively.

The elements of V are called Vertices (or nodes) and the elements of E are called

Edges [Gro06]. For this research, a WS application is assumed to be modeled as a

directed graph G = (V, E) in which the vertices correspond to the different

components of the WS application and the edges represent communication between

the different WS application components. A number of techniques for constructing a

graph model of an application is discussed in [Ou07] and [Wan08]. Further discussion

of constructing a graph model of an application is beyond the scope of this thesis.

5.3.2 Edge Weight (WE):

The edge weight (WE) represents the communication cost between the two

components (vertices connected by the edge) when they are executed on different

computing nodes. In the context of the research presented in this thesis, the

communication cost is the time (in time units) consumed to exchange data between

one component of the application and another if they are being executed on different

computing nodes. The communication cost between the two components deployed on

the same computing node is negligible and is assumed to be zero in our analysis

because the data is exchanged through a shared memory. When the components of an

127

application run on different computing nodes, a cost due to network delays is incurred

during communication across two partitions running on different nodes.

5.3.3 Vertex Weight (WV):

Weight of a vertex can be used to represent requirement of resources such as CPU

time and memory by an application component. The prototype WS applications used

for the experimental analysis do not require a great deal of memory. Thus, the

memory requirements are not considered as a critical constraint in this thesis. For the

analysis presented in this thesis, the weight of a vertex represents only the CPU time

(in time units) required for execution of an application component. The effect of

memory constraint on partitioning of large applications forms an interesting direction

for future research.

5.3.4 Source Vertex

A source vertex s ∈ V represents the entry point for an application. The weight of

the source vertex (s) is set to zero and is not considered for offloading while applying

the partitioning algorithms.

5.3.5 Vertex Distance

A vertex distance (D) is the least distance of a vertex v ∈ V from the source vertex s.

D is measured as the least number of edges that need to be traversed to reach a vertex

v from the source vertex.

5.3.6 Graph Size (Dmax)

 Graph size is the maximum value of D for any vertex, v ∈ V.

128

5.3.7 Edge Cut

An edge cut is defined as a set of edges the removal of which leads to two disjoint

graphs. In the context of this research, the “edge cut” represents partitioning of a

graph into two sub-graphs. An edge cut weight is defined as the sum of the weights of

all the edges in the edge cut.

5.3.8 Degree of Benefit (β)

The degree of benefit is a term introduced in this thesis. It is defined as the

difference of the sum of the weights of vertices in set X and the sum of weights of

edges that separate vertices in set X from rest of the graph. For vertices in set X, the

degree of benefit can be computed using the following relation:

 β (X) = ∑NOP	 − 	∑N�P	

where ∑NOP	 represents the sum of the weights of vertices in set X and

∑N�P	represents the sum of weights of edges that separate vertices in set X from rest

of the graph.

5.3.9 Beneficial Cut

This is another term introduced in this thesis. It is defined as the edge cut for which

the degree of benefit is the maximum.

5.4 Maximum Offloading Minimum Cost (MOMC) Algorithm

The MOMC algorithm uses a heuristic approach for selecting a set of vertices from

the graph for being offloaded for execution on a remote computing node. The selected

set of vertices attempts to maximize the difference between the sum of the weights of

vertices in the set and the weight of the edge cut that separates the set from rest of the

129

graph. This approach is used to achieve a maximum degree of benefit. The algorithm

focuses on computing the beneficial cut using a global maxima approach.

The MOMC algorithm selects a starting vertex and iterates through the graph to find

the beneficial cut. Once a starting vertex is selected, the next vertex is selected from a

set of neighbor vertices. The vertex selected produces the maximum degree of benefit

in comparison to other neighbor vertices.

5.4.1 Assumptions

Input for the algorithm is an application modeled as a directed graph G = (V, E)

where V is a set of vertices representing the application components and E is a set of

edges. An edge is placed between a vertex A and a vertex B when component B is

invoked by component A. The weights of vertices and edges are input parameters for

the algorithm. It is assumed that resource contention on the remote computing node is

not a concern and delay caused by other applications running on that node is

negligibly small.

5.4.2 Objective Function

The objective function of MOMC is to divide a graph, G = (V, E), into two

partitions, P1 and P2, such that

Condition 1: P1 ∩ P2 = Φ P1 and P2 are two disjoint sets of vertices

Condition 2: P1 U P2 = V

Condition 3: βmax (P2) = Max (∑ NO'	%'�� −	∑ N�*(*��)

Where

- P1 and P2 are disjoint sets of vertices and P1 ∈ V and P2 ∈ V.

- ∑ NO'	%'�� is the sum of weights of vertices in partition P2.

130

- ∑ N�*(*�� is the sum of weights of the edges that separate the vertices of

set P2 from set P1.

Condition 1 and Condition 2 define the basic constraints. Condition 1 states that the

two sets of vertices P1 and P2 are disjointed sets. Condition 2 requires the union of the

sets (P1 and P2) equal to all vertices in graph G, which is set V.

Condition 3 defines a beneficial cut for partition P2. Partition P2 is the one that is

assumed to be offloaded to a remote computing node. This condition ensures

computing of the edge cut (beneficial cut) in such a way that the degree of benefit for

partition P2 is maximized.

5.4.3 Algorithm Steps

The algorithm uses temporary variables that include different sets of vertices (B, Χ,

Q, N and Υ), variables (ԝ, ε and β) for calculation of the degree of benefit and a table

T for storing candidate partitions. ԝ and, ε are used for storing the sum of the weights

of vertices of X (WVX) and the weight of the edge cut that separates vertices in set X

from rest of the graph (WEX) β is used for storing the degree of benefit for set X. The

set Q contains all vertices of set V except s (initialized in step 1 of the algorithm).

Note that ‘\’ is a set operation of taking relative complement. If A and B are two sets,

then the relative complement of B in A, also known as the difference of A and B, is

the set of elements that are in A, but not in B. Rest of the variables are explained in

line with explanation of individual steps of the algorithm presented in Figure 5-1.

The main steps of the algorithm (the pseudo code is presented in Figure 5-1) are

explained next. The basic steps such as steps 1 and step 5 of Figure 5-1 that involve

initializations of different variables are not included in this discussion.

131

Figure 5-1: The MOMC algorithm for mobile WS partitioning

//V is a set of vertices of graph G and Q is a set of vertices that are considered for

//partitioning. s is the source vertex and i is an index variable for the number of

//partitions computed. X and Y are temporary sets of vertices. β is the degree of

//benefit. T[β,Y] is a table to hold partitions and D is the vertex distance.

01: Q = V \ s, i = 0, T [β, Y] = Φ;

02: Β = Set of vertices in Q with maximum D; (Boundary Vertices)

03: ɦ = Number of vertices in Β;

04: do { //Outer Loop Start

05: Χ = Φ, Υ = Φ, β = 0;

06: ν = Β[i]; // ν is a variable to hold a selected vertex from B

07: do { //Inner Loop Start

08: Χ = Χ U ν;

//w and ε are temporary variables storing sum of the weights of vertices and the

//edge cut weight respectively

09: ԝ = Sum of weights of vertices in X;

10: ε = Edge cut weight of set Χ;

11: If (ԝ - ε) > β

12: Υ = Χ, β = ԝ – ε;

13: Ν = Set of vertices in Q that are directly connected to vertices of Χ;

14: ν = Vertex in N with maximum degree of benefit;

15: } while (Q \ Χ != Φ) //Inner Loop End

16: i++;

17: Add (β, Υ) to T;

18: } while (i != ɦ) //Outer Loop End

19: PMOMC = select Υ from T with maximum β; (PMOMC is a final partition)

Note: A\B = {x ∈ A, x ∉ B} (relative complement)

132

• Find boundary vertices (B) from set Q (line 2 in Figure 5-1)

o In context of the algorithms presented in this thesis, the boundary vertices

are those with maximum value of D. It has been observed during

preliminary research that by using different vertices of set Q, when one of

the vertices that exist far away from the source vertex ‘s’ is used as a

starting vertex, more beneficial partitions are achieved in comparison to

partitions that are achieved by selecting a starting vertex randomly or by

selecting vertices close to ‘s’.

• Select one boundary vertex (v) at a time as a starting vertex (line 6 in Figure 5-1)

o This step is only executed when a new vertex is to be selected from B.

• Add selected vertex ‘v’ to a temporary set (X) (line 8 in Figure 5-1)

o Χ is a set of vertices that represents a candidate partition for offloading.

• Calculate ԝ and ε (line 9 and line 10 in Figure 5-1).

o ԝ is the sum of the weight of the vertices in Χ and ε is the weight of the

edge cut that separates the vertices in set X from the rest of the graph.

• Update β (lines 11-12 in Figure 5-1).

o β is used to hold the maximum value of the difference between ԝ and ε for

any iteration in Inner Loop. It is initialized to zero at the start of every

iteration of Outer Loop. The value of β is the degree of benefit in

offloading the partition that is comprised of vertices in set X. The objective

of this algorithm is to find set X with the maximum value of β (degree of

benefit). If the difference between ԝ and ε is more than the current value

of β, the vertices in Χ are assigned to Υ and the value of β is updated to the

current difference between ԝ and ε. The set Υ is a set used for temporarily

133

storing the vertices of X for which the difference between ԝ and ε is the

maximum.

• Select an appropriate neighbor vertex (lines 13-14 in Figure 5-1).

o For the rest of the iterations of Inner Loop, vertex ‘v’ is selected from a set

of neighbor vertices of Χ. The set of neighbor vertices, Ν, (where Ν is a

subset of {Q \ Χ}) represents those vertices of {Q \ Χ} that are connected to

any vertex of Χ. A vertex in N that results in the maximum degree of

benefit is selected.

• Repeat steps in lines 8-14 for all vertices of set Q.

o Once all vertices of set Q are considered, the current value of set Y will

contain a set of vertices that gives rise to the maximum value of β (βmax).

• Add current value of β and Y to table T (line 17 in Figure 5-1) that holds the

maximum value of β and the corresponding set of Y.

• Select a new boundary vertex for the next iteration of Outer Loop (line 6 in Figure

5-1) and repeat step 7-18.

o The steps of finding βmax are repeated by using one of the boundary

vertices at a time. The value of βmax and set Y achieved using one boundary

vertex are stored in table T as a one row.

• Select final partition (as PMOMC) from table T (step 19 in Figure 5-1) for which the

value of βmax is the largest.

o This step is performed when all vertices of boundary set B are evaluated.

The set of vertices stored in PMOMC represents the partition for offloading to a remote

computing node. Rest of the vertices ({Q \ PMOMC}) belongs to a partition to be

executed locally on the mobile device.

134

Table T used in the algorithm can be replaced with two variables to hold the

maximum value of β and the corresponding set Υ that is achieved through different

iterations of Outer Loop. The advantage of using a table is to provide an opportunity

to apply additional criteria other than the maximum value of β for selecting Y. For

example, if multiple iterations achieve the same value of β, then the set Υ can be

selected based on the overall weight of vertices of set Υ.

To obtain more partitions, the algorithm can be applied iteratively on the partitions

PMOMC and Q \ PMOMC separately. For example, PMOMC can be partitioned further into

two partitions if PMOMC is too large for a single remote computing node. By dividing

PMOMC into two partitions, each partition can be executed on two remote computing

nodes. Note that the MOMC algorithm focuses on achieving two partitions in a single

iteration. The algorithm that focuses on computing multiple partitions in a single

iteration is discussed next.

5.5 Clustering based Application Partitioning (CAP)

This algorithm uses a clustering approach for selecting a set of vertices from a graph

to form a partition. The CAP algorithm is different from the MOMC algorithm in

selecting a new vertex from a set of neighbor vertices. In the CAP algorithm, a new

vertex is selected only if its inclusion results in an improvement in the degree of

benefit of the selected set of vertices. If no such vertex is found from a set of neighbor

vertices, the algorithm marks the already selected vertices as one partition and starts

looking for another partition using a different starting vertex from the rest of the

vertices of the application graph. In the MOMC algorithm, a new vertex is always

selected from a set of neighbor vertices.

135

5.5.1 Objective Function

The objective of this algorithm is for partitioning a WS application into ‘n’ number

of partitions (P1, P2 …. Pn) of a graph G = (V, E) such that

Condition 1: ∪ (S�	, S!, S"…S%)	 = V

Condition 2: ∩ (S�	, S!, S"…S%)	 = Φ

Condition 3: For any partition Pk,

Βmax (Pk) = Max (∑ NO'	%U'�� −	∑ N�*(U*��)

Where

- ∑ NO'	%U'�� is the sum of weights of vertices in partition Pk.

- ∑ N�*(U*�� is the sum of weights of edges that separate the vertices of set Pk

from rest of the graph.

- S�	, S!, S"	VW	S% are disjoint sets of vertices of set V.

Condition 1 and Condition 2 define the basic constraints. Condition 1 states that all

partitions (sets of vertices) are mutually exclusive. Condition 2 requires the union of

the partition sets equal to all vertices in graph G, which is set V.

Condition 3 defines a beneficial cut for any partition ‘k’. The partition Pk can be any

partition that is a candidate partition for offloading to a remote computing node. This

condition requires computing the beneficial cut to be complied in such a way that the

degree of benefit for partition Pk is maximized.

5.5.2 Assumptions

Input for the algorithm is an application modeled as a directed graph G = (V, E) and

the weights of all edges and vertices are provided as an input to the algorithm. The

required number of partitions can be provided as ‘n’. The algorithm will stop when

136

the required number of partitions (n) is achieved. The algorithm steps are presented in

Figure 5-2 and are explained next.

5.5.3 Algorithm Steps

To explain the working of the algorithm steps, temporary variables are introduced.

These temporary variables include sets of vertices (B, Χ, N and Q), numeric variables

(ԝ, ε and β) for calculation of the degree of benefit and a table T for storing partitions

achieved by the algorithm. The set Q contains all vertices of set V except s. ԝ and, ε

are used for storing the sum of the weights of vertices of X (WVX) and the weight of

the edge cut that separates vertices in set X from rest of the graph (WEX) β is used for

storing the degree of benefit for set X. The remainders of the variables are explained

in line with explanation of individual steps of the algorithm (see in Figure 5-2). The

main steps of the CAP algorithm (presented in Figure 5-2) are explained next. Note

that the steps involving initialization of different variables are not included in this

discussion.

• Find set of neighbor vertices ‘N’ (line 4 and line 15 in Figure 5-2).

o In the first iteration when set ‘X’ is empty, a set of boundary vertices is

determined and assigned to set variable N (line 4 in Figure 5-2). In

following steps, a set of neighbor vertices of set X are determined and

assigned to set N (line 14 in Figure 5-2). The boundary vertices for set Q

are those with maximum value of D. The neighbor vertices (a subset of {Q

\ Χ}) are those vertices of {Q \ Χ} that are connected to any vertex of set Χ.

137

Figure 5-2: The CAP algorithm for mobile application partitioning

//V is a set of vertices of graph G and Q is a set of vertices that are considered for

//partitioning. s is the source vertex and i is a variable for keeping track of the

//number of partitions computed. X and Y are temporary sets of vertices. β is the

//degree of benefit. C is a loop control variable, T[β, X] is a table to hold partitions.

//D is the vertex distance and n is the required number of partitions.

01: Q = V \ s; T [β, X] = Φ; C = false; i = 0;

02: do { //Outer Loop Start

03: X= Φ;

04: N = Set of vertices in Q with maximum D; (Boundary Vertices)

05: β = 0, ν = null; // ν is a temporary variable for a selected vertex

06: do { //Inner Loop Start

07: ν = Vertex in N with maximum degree of benefit;

//see algorithm in Figure 5-3

08: If ν exists {

09: Χ = Χ U ν;

//w and ε are temporary variables storing sum of the weights of vertices and the edge

//cut weight respectively

10: ԝ = Sum of weights of vertices in X;

11: ε = Edge cut weight of set Χ;

12: If (ԝ - ε) > β {

13: β = ԝ – ε; C = true;

14: Ν = Set of vertices in Q that are directly connected to vertices of Χ;

15: }

16: else { 17: X = X – ν; C = false; }

17: }

18: } while (C == true) //Inner Loop End

19: if β > 0 {

20: add (β, Χ) as one candidate partition into table T;

21: i++; Q = Q – Χ;

22: }

23: } while (i != n and β > 0 and Q != Φ) //Outer Loop End

24: Table T contains partitions for graph G

138

Figure 5-3: Algorithm for computing a vertex with the maximum degree of benefit

from a set of vertices

• Select a starting vertex (v) from set N that produces the maximum degree of

benefit (line 7 in Figure 5-2).

o For this selection, all vertices in set N are analyzed and the vertex which

produces a maximum degree of benefit when added to set X is selected.

The details of the steps used for determining this vertex that produces the

maximum degree of benefit are captured in the algorithm shown in Figure

5-3. Note that u, the value returned by this algorithm, is assigned to v (line

7 in Figure 5-2).

// X and N are sets of vertices that are described in Figure 5-2. u is a temporary

//variable for storing the vertex with the maximum degree of benefit. Z is a

//temporary variable for holding vertices of set X. κ is a temporary variable for

//holding a selected vertex from set N and γ is the degree of benefit for set Z.

01: u = null; γ = 0;

02: Z = X;

03: for (κ in Ν) { // select one vertex at a time

04: Z = Z U κ;

// ԝ' and ε' are temporary variables storing sum of the weights of vertices and

//the edge cut weight respectively

05: ԝ' = Sum of weights of vertices in set Z;

06: ε' = Edge cut weight of set Z;

07: If (ԝ' – ε') > γ {

u = κ;

γ = ԝ' – ε';

 }

08: Z = Z – κ;

09: }

10: return u;

139

• If a vertex v is found, evaluate the selected vertex (lines 9-18 in Figure 5-2) by

performing the following actions:

o If vertex ν is not found based on the evaluation performed in lines 9-18 of

Figure 5-2, skip all the actions and go to line 21 directly.

o Add selected vertex ‘v’ to a set X (line 9 in Figure 5-2). Χ is a set of

vertices that represents a candidate partition for offloading.

o Calculate ԝ and ε (line 10 and line 11 in Figure 5-2). As already

discussed, ԝ is the sum of the weight of vertices in Χ and ε is the weight of

the edge cut that separates the vertices in set X from the rest of the graph

{Q\ Χ}.

o Compare current value of β with the difference between ԝ and ε (lines 12-

22 in Figure 5-2). Note that β is initialized to zero in line 5 of Figure 5-2.

� If the difference between ԝ and ε is greater than or equal to the

current value β, then update the current value of β (to the difference

of ԝ and ε), set C equal to true and select a new set of neighbor

vertices (line 14 in Figure 5-2). Note that the value of β represents

the degree of benefit in offloading the partition represented by

vertices of set X.

� If the difference between ԝ and ε is less than the current value β,

the selected vertex is removed from set X as it is not improving the

overall degree of benefit (β) for set X. As already explained, the

CAP algorithm only selects a new vertex when the selected vertex

results in an improvement in the degree of benefit of the selected

partition (X).

140

• Repeat steps in lines 7-16 as long as it is possible to select a new vertex that

results in improving degree of benefit (β) of set X.

• Store partition X in Table T (lines 20-21 in Figure 5-2) if the degree of benefit for

set X is greater than zero (line 19 in Figure 5-2). When it is not possible to find a

vertex in Q that can improve the degree of benefit (β) of set X (as evaluated in line

12 of Figure 5-2), then store the current set X as a partition in table T if βmax(X) is

greater than zero (line 19 of Figure 5-2). Note that table T contains the partition

set and the value of the maximum degree of benefit associated with it. For the next

iteration, set Q is updated by removing vertices that are selected as a partition in

set X (line 20 of Figure 5-2). This updated set Q is used to find the next partition.

o Once a partition is stored in table T, the partition count variable (i) is

incremented (line 21 of Figure 5-2) and set Q is updated by removing the

vertices of set X from it (line 21 of Figure 5-2).

• Repeat steps in lines 2-23 of Figure 5-2 to find another partition using an updated

set Q. The steps in lines 2-23 are repeated as long as following conditions are true.

o required number of partitions is not achieved (i != n condition in line 23 of

Figure 5-2)

o set Q is not empty (Q != Φ condition in line 23 of Figure 5-2)

o it is possible to find a vertex ‘v’ in set Q that can give rise a positive value

of the degree of benefit (β > 0 condition in line 23 of Figure 5-2).

Once the algorithm completes its execution, rows in table T represent partitions with

corresponding degrees of benefit.

141

5.6 Using Remote Computing Node Information

The proposed (MOMC and CAP) algorithms can also use information of remote

computing nodes that includes their processing speed while determining partitions of

an application. For example, the processing speed up factor (S) for the remote

computing node can be used to estimate a more accurate degree of benefit (ԝ - ε). The

speed up factor is the ratio of the CPU speed of a remote computing node and the

CPU speed of the mobile device. When such information is available and is required

to be used, the operation used for the computation of ω in both algorithms (line 9 in

MOMC and line 16 in CAP) will be replaced by the following operation:

 ԝ = ∑ (WVj) / S where Vj ϵ Χ (1)

Dividing ∑ (WVj) by S results in reducing the degree of benefit (ԝ - ε). Thus, it is

expected that both algorithms may offload partitions of smaller sizes when remote

node information is used. But the partitions achieved with MOMC by using the

remote node information are expected to exhibit better performance than no

partitioning.

The use of the MOMC and the CAP algorithms without using remote information is

also useful because both algorithms attempt to offload a substantial part of an

application from a mobile device to a remote computing node leading to an

improvement in system performance. This can minimize the use of the resources on

the handheld mobile device (such as the power, CPU and memory). The improvement

in overall response time of an application using the partitioned systems achieved with

MOMC and CAP is occurring because the remote computing node is more powerful

than the handheld mobile device.

142

A detailed analysis of the proposed algorithms is performed by using a system

prototype and a simulator. These are discussed in the next two sections.

5.7 Experimental Analysis using a System Prototype

System performances achieved by the MOMC algorithm and the CAP algorithm are

compared with the system performance achieved with other partitioning techniques

that are discussed in the literature. The other partitioning techniques are described

next.

5.7.1 Partitioning Techniques Used

Effectiveness of the two proposed algorithms is compared with a no partitioning

technique, an offloading entire application technique and the technique that uses the

MinCut algorithm.

5.7.1.1 No Partitioning Technique

 In this case, no partitioning is performed and the entire WS application is run on a

resource constrained mobile device. The results of executing the WS application

entirely on a mobile device helps in understanding the performance difference

resulting from the partitioned systems achieved by the various partitioning techniques

experimented with.

5.7.1.2 Offloading Entire Application (OEA) Technique

Previous techniques ([Hem05], [Kim07] and [Riv07]) suggest that the execution of

the entire WS application on a more powerful computing node in the fixed

infrastructure. These techniques are based on migrating the entire application from

one node to the other without considering any dependency on local resources.

143

5.7.1.3 Partitioning using MinCut Algorithm (MinCut)

There is a number of algorithms proposed in the literature for determining the

minimum cut in a graph. For the performance comparison of the partitioned systems,

a tool available online, Internet Accessible Program Packet for Graph Algorithms

(IAPPGA), [Wu05] is used. The tool provides different graph based algorithms

including the Edmonds-Karp Max-Flow MinCut algorithm [Edm72]. There may be

other algorithms available for achieving MinCut of a graph such as the simple MinCut

algorithm [Sto97]. Note that the execution time or complexity of the MinCut

algorithm does not concern the relative performance of the partitioned systems

presented in this chapter because the partitioning is not performed at runtime.

Algorithms based on recursive bisection are not considered because of their

complexity. Such algorithms are suitable for large scale scientific applications and are

not considered in the context of mobile web services that are expected to be of much

lower complexity.

5.7.2 Sample WS Application – Tracking WS

For this analysis, three different versions of a Tracking WS application are used.

These versions are of different complexity. Prototypes of the Tracking WS application

are invoked in a wireless environment using a mobile device. The details of the

experimental environment are discussed in Section 5.7.4. The Tracking WS hosted on

a mobile device can be invoked to get the location of a person carrying the mobile

device. Such an application can be used in medical emergency situation, for example,

for locating a doctor [Mes02]. The Tracking WS application can also be used to locate

the current position of a shipment in a moving truck, the driver of which is carrying

the mobile device [Asi07-1]. The Tracking WS is chosen because it has one or more

144

components that need local resources of the mobile device and it is easy to vary its

complexity (by adding more components), which is important for the performance

analysis presented in this section.

The prototype of Tracking WS1 is implemented in Java ME. Three different

versions of Tracking WS are considered: Tracking WS1, Tracking WS2 and Tracking

WS3. Tracking WS1 provides basic location information such as the closest city

name, population etc. The Tracking WS2 and WS3 applications also provide a

rescaled and transcoded image of the location in addition to the basic location

information respectively. For Tracking WS2 and Tracking WS3, instead of rescaling

and transcoding the retrieved image, the CPU execution time is emulated on the

wireless mobile device by burning CPU cycles for processing costs of image

processing related component using a while loop. The communication costs are only

emulated if the components are to be executed on two different nodes.

The processing costs of the different components used in the three versions of

Tracking WS are estimated by executing the application on the mobile device (Dell

Axim PDA) a number of times (in the range of 10,000) and then taking the average of

the execution times for each component. The communication cost is estimated based

on the number of bytes transferred when the components are executed on different

computing nodes. Note that the number of bytes transferred includes the parameters

and the SOAP header.

The different versions of the Tracking WS application are described next.

5.7.2.1 Tracking WS 1

This is the simplest version that uses only three components to achieve its goal. The

components of Tracking WS1 include GetMyCoordinates (GMC), DetailExtractor

145

(DE) and Packing (PCK). On receiving a WS request, GMC uses a Global Positioning

System (GPS) receiver to get the GPS coordinates of the location. Since GMC uses a

local resource (GPS receiver emulator) it is not to be offloaded to a remote computing

node. Note that for this version of Tracking WS, the step of getting the GPS

coordinates is emulated by fetching a random set of coordinates from a local file

containing more than a thousand locations. This step is emulated because it was not

possible to use a real GPS receiver inside a lab environment. The GPS receivers work

when there is a direct line of sight with satellites. DE queries a database of locations

to find the details of a location that is closest to the GPS coordinates. The details of

the location include the closest city name, time zone, elevation and population. PCK

serializes the location information as a response message and sends it back to the WS

requester. The interaction of these three components is captured in a graph G (V, E)

presented in Figure 5-4.

Note that vertex ‘S’ represents the starting component of the WS application and is

tagged as ‘*’ in all versions of Tracking WS. A component is tagged with ‘*’ when it

must be executed locally on the mobile device because of its dependence on a local

resource (e.g. the local file on the mobile device in the Tracking WS). The solid

directed lines represent the edges between different components (vertices) of Tracking

WS1. The labels on every edge show communication cost (in msec) and the label on

every vertex indicates the processing cost (in msec). The edge cuts computed with

different partitioning techniques are shown in the table of Figure 5-4 (also shown by

two broken lines). For this version of Tracking WS, the partition {DE} is selected for

offloading by all the three algorithms: MinCut, MOMC and CAP (see Figure 5-4).

For the OEA technique, the partition {DE, PCK} is offloaded to the remote node.

146

5.7.2.2 Tracking WS 2

Tracking WS2 has two additional components. The components used in this version

are: GetMyCoordinates (GMC), DetailExtractor (DE), ResponseParser (RP),

ImageScaler (IS) and Packing (PCK). The functionalities of GMC and DE are the

same as described in the last subsection except that DE fetches the location

information from an external service such as Google Map Service [Goo08]. The CPU

cycles spent in fetching the location information from the external WS are emulated.

For this version of Tracking WS, it is assumed that location information also includes

the image of the location. The component RP parses the location information and

passes non-image data to the PCK component and the image data to the IS

Figure 5-4: Partitioning of Tracking WS1 achieved with the three techniques: OEA,

MinCut, MOMC and CAP

Partition for mobile device Partition for offloading

OEA {S, GMC} {DE, PCK}

MOMC/CAP/MinCut {S,GMC, PCK} {DE}

147

component. The IS component resizes the image according to the requirements of the

WS requester. The PCK component performs the serialization of the location

information and the resized image data into a response message and sends it back to

the WS requester. Tracking WS2 is captured as a graph G (V, E) that is shown in

Figure 5-5. Note that the labels on every edge show communication cost (in msec)

and the label on every vertex indicates the processing cost (in msec).

For this WS application, the typical sizes of the images (40-60 KB) available from

Google Map Services are estimated and then an average size of such images is used

for the estimation of communication costs among DE, RP, IS, PCK components. The

IS component is assumed to resize the retrieved image to half in size. The processing

Figure 5-5: Partitioning of Tracking WS2 achieved with the three techniques: OEA,

MinCut, MOMC and CAP

S*

GMC*

DE

PCK

189.4
1214.5

28

560

RP

IS

30

1030

1000

500

230

210

4700

Partition with OEA
Partition with MOMC and MinCut

Partition for mobile device Partition for offloading

OEA {S, GMC} {DE, RP, IS, PCK}

MOMC/MinCut {S, GMC, PCK} {DE, RP, IS}

CAP {S, GMC, PCK} {DE, RP},{ IS}

28

Partition 1with CAP

Partition 2 with CAP

148

cost of IS is estimated by executing a prototype of the Bicubic Interpolation algorithm

[Rus02] that is used for rescaling of the retrieved image on the mobile device.

The table in Figure 5-5 shows the two partitions (also shown by broken lines on

graph) that are selected by different partitioning techniques for offloading. The

partition {DE, RP, IS} is selected for offloading by MinCut and MOMC (see Figure

5-5). Two partitions {IS} and {DE, RP} are achieved for offloading with the CAP

algorithm based technique. For the OEA technique, the partition {DE, RP, IS, PCK}

is executed on the remote node.

5.7.2.3 Tracking WS 3

This version of Tracking WS has one additional component in comparison to

Tracking WS2. The components used in this version are: GetMyCoordinates (GMC),

DetailExtractor (DE), ResponseParser (RP), ImageScaler (IS), Image Format Changer

(IFC) and Packing (PCK).

For Tracking WS3, it is assumed that the retrieved image needs to be transcoded

before it can be displayed on the WS requester’s node (mobile device). The WS

requester may require the image in a particular encoding. For example, the retrieved

image may be in lossy Joint Photographic Experts Group (JPEG) format but the WS

requester is expecting the image in a lossless Portable Network Graphics (PNG)

format. So the role of IFC is to change the format of the fetched image in accordance

with the requirement of the WS requester. The processing cost of IFC is estimated by

executing the prototype of the Java ImageIO library [Jav04] API for transcoding the

JPG image into a PNG image. The functionalities of the rest of the components are

the same. The Tracking WS3 is captured as a graph G (V, E) is shown in Figure 5-6.

149

Note that the labels on every edge show communication cost (in msec) and the label

on every vertex indicates the processing cost (in msec).

The table in Figure 5-6 shows the different candidate partitions (indicated by broken

lines on graph as well) that are selected for offloading by using the different

partitioning techniques. The partition {DE, RP, IS} is selected for offloading by the

MinCut algorithm, the partition {DE, RP, IS, IFC} by the MOMC algorithm, the

partitions {IS, IFC} and {DE, RP} by the CAP algorithm and the partition {DE, RP,

IS, IFC, PCK} by the OEA technique. Note that for this WS application, the partitions

achieved with MOMC and MinCut are different. Workload and System Parameters

Figure 5-6: Partitioning of Tracking WS3 achieved with the four techniques: OEA,

MinCut, MOMC and CAP

Partition for mobile device Partition for offloading

OEA {S, GMC} {DE, RP, IS, IFC, PCK}

MinCut {S,GMC, IFC, PCK} {DE, RP, IS}

MOMC {S,GMC, PCK} {DE, RP, IS, IFC}

CAP {S, GMC, PCK} {IS, IFC}, {DE, RP}

150

The following workload and system parameters are varied during the

experimentation.

5.7.2.4 WS Complexity:

The proposed algorithms are analyzed by varying three different versions of

Tracking WS. The three Tracking WS versions vary in complexity as discussed in

Section 5.7.2.

5.7.2.5 Number of WS Clients (C):

The number of WS clients invoking one of the three versions of Tracking WS at a

time is varied to investigate the scalability of the system.

5.7.2.6 Mobile Device Speed (ω):

The experiments are run on a real handheld device using different processing speeds

configurations. The Dell Axim PDA device used in the experiments can be run with

different processing speed. The option of running a mobile device at different

processing speeds is provided to manage the battery power efficiently.

5.7.3 Performance Metrics

The performance of the system is analyzed by measuring the end to end response

time (R). Response time is defined as the difference between the time when a WS

response is received by the WS client and the time when the WS client sends the

corresponding SOAP message request to a WS provider.

5.7.4 Experimental Setup

For the system prototype based performance analysis, the WS client program that is

used to access different versions of Tracking WS is written using standard Java. The

WS clients are run on a laptop equipped with 2 GB of RAM and an AMD Turion 64

151

X2 processor with speed of 1.9 GHz. The remote computing node is a desktop

computer equipped with Intel Quad Core 2 processor that is running under Ubuntu

Linux operating system. Its CPU speed is 2.4 GHz and 3 GB of RAM is available on

this node. Various versions of the tracking WS application are deployed on a Dell

Axim x51v PDA. The PDA used as the mobile device has an Intel XScale ARM

processor (PXA270) that can be run at multiple speeds (208 MHz, 520 MHz and 624

MHz). The Dell Axim PDA used is equipped with a 64 MB of RAM and runs the

Windows Mobile 5.0 operating system. The Java ME environment (J9) available on

the PDA is a JVM (J9) provided by IBM [Ren09]. The installed JVM is based on the

specification of Connected Device Configuration (CDC) 1.1 [CDC05]. The client

machine and the remote computing node are on a fixed network and communicate

with the PDA using an IEEE 802.11compliant wireless local area network.

The partitions of sample WSs are hosted on the mobile device and the remote

computing node using a lightweight web service execution environment (WSEE)

described in Section 3.2. Note that the backend framework is used for investigation of

WS partitioning techniques presented in this thesis.

5.7.5 Performance Results

The effectiveness of the proposed algorithms is analyzed by comparing the

performance of partitioned Tracking WS applications achieved with MOMC, CAP

and the other partitioning techniques. In all the experiments, the mean response times

of the three versions of Tracking WS are measured when

• the application is deployed entirely on mobile device (no partitioning case –

NPC),

• the application is partitioned based on the OEA technique,

152

• the application is partitioned using the MinCut algorithm (MinCut),

• the application is partitioned using the proposed MOMC algorithm,

• The application is partitioned using the proposed CAP algorithm.

Only one version of Tracking WS is invoked at a time. In the first set of

experiments, the performance of partitioned systems for all three versions of Tracking

WS is investigated for the situation in which only one WS client is used. In the second

set of experiments, the sample Tracking WS applications are accessed using multiple

WS clients for accessing the Tracking WS applications. The third set of experiments

analyzes the effect of device speed. For this set of experiments, Tracking WS1 is

invoked by 1, 2, 3, 6 and 12 WS client at a time and the mobile device is operated at

two different CPU speeds.

For all the experiments, a closed system model is used for experimentation. Each

client (a Java thread) operates cyclically and sends one request at a time. As soon as

the response is received, the client repeats the cycle. The system is stressed by

increasing the number of concurrent WS clients. For a single experiment, each client

generates 10000 requests. So for an experiment with 10 WS clients, for example, the

response time is calculated by taking the average of response times of 100,000

requests. Each experiment is repeated 10-30 times to obtain sufficiently small

confidence intervals for the average values. For the experiments presented next,

confidence intervals of ±5% (or less) for mean response time were obtained at a

confidence level of 95%.

A Java system API that provides a milliseconds level accuracy was used in

measurement of time (System.currentTimeMillis()). Such a number of requests and

resolution of measurement for time were found to provide adequate measurement

153

accuracy required for analysing the relative performances of the partitioned Tracking

WS based on the system prototype.

5.7.5.1 Performance of the Tracking WS When Accessed by Single WS Client

In this experiment, the mean response times of all the three sample WS applications

are measured when invoked by a single WS client for both CPU speeds of the mobile

device using all partitioning techniques (NPC, OEA, MinCut, MOMC and CAP). The

mean response times observed for all three versions of Tracking WS when accessed

by a single WS client are shown in Figure 5-7, Figure 5-8 and Figure 5-9 respectively.

It is interesting to observe that the the performance of the Tracking WS2 application

and the Tracking WS 3 application, when partitioned using any of the partitioning

techniques, is superior to the no partitioning case. The results of individual version of

Tracking WS are discussed next.

The mean response times observed for Tracking WS1 when accessed by a single

WS client are shown in Figure 5-7. As discussed in Section 5.7.2.1, the same

 Figure 5-7: Performance of the partitioned systems achieved using different

techniques (NPC, OEA, MinCut, MOMC and CAP) for Tracking WS1

0

200

400

600

800

1000

NPC OEA MinCut MOMC CAP

R
 (

m
se

c)

Partitioning Approach/Algorithm

208 MHz 624 MHz

154

partitioned system is achieved with MinCut, MOMC and CAP techniques. The

performance of the partitioned system achieved with these three techniques and the

OEA approach is observed to be inferior in comparison to the one achieved with the

NPC technique. This is because Tracking WS1 has a small processing demand and the

communication overheads offset the benefit of offloading partitions.

Note that Tracking WS2 performs image processing, so it has significantly more

computations to perform in comparison to Tracking WS1. For Tracking WS2, MinCut

and MOMC gives rise to the same partition for offloading (see Figure 5-5). The CAP

algorithm achieves two partitions although when the two partitions are combined they

result in same partition as achieved with MinCut and MOMC. The partitioned

application achieved with MinCut and MOMC performs better than the partition

applications achieved with the OEA technique and the CAP algorithm for both CPU

speeds of the mobile device (see Figure 5-8). The partitioned application achieved

with CAP performs better than the one achieved with OEA. Although the OEA

technique results in offloading majority of the application components to a remote

computing node, it results in introducing significant communication overheads and

thus results in degraded performance. The performance of the partitioned application

achieved with the CAP algorithm based technique is marginally inferior to the

performance achieved with MinCut and MOMC because of the additional overheads

that accrue as a result of the coordination of multiple partitions achieved with the

CAP algorithm.

For Tracking WS3, the partitioned application obtained using MOMC gives rise to

the best performance. Surprisingly, the performance achieved with the MinCut

algorithm is inferior to that achieved with the OEA technique. This trend is observed

155

for both CPU speeds of the mobile device (see Figure 5-9). The performance of the

partitioned system achieved with the CAP algorithm is better than that for OEA and

the MinCut techniques but inferior to the performance of MOMC.

 Figure 5-8: Performance of the partitioned systems using different techniques (NPC,

OEA, MinCut, MOMC and CAP) for Tracking WS2

Figure 5-9: Performance of the partitioned systems achieved using different

techniques (NPC, OEA, MinCut, MOMC and CAP) Tracking WS3

0

200

400

600

800

1000

1200

1400

NPC OEA MinCut MOMC CAP

R
 (

m
se

c)

Partitioning Approach/Algorithm

208 MHz 624 MHz

0

300

600

900

1200

1500

1800

2100

2400

NPC OEA MinCut MOMC CAP

R
 (

m
se

c)

Partitioning Approach/Algorithm

208 MHz 624 MHz

156

5.7.5.2 Performance of Tracking WS When Accessed by Multiple WS Clients

In this experiment, all three versions of Tracking WS are invoked by multiple (1, 2,

3 and 6) WS clients. The experiments are performed with a mobile device at the CPU

speed of 624 MHz. It was not possible to run the experiments with more than six

concurrent WS clients and for the CPU speed of 208 MHZ. For both cases, the time

required for executing the entire application on the mobile device is inordinately

large. The large response times resulted in triggering timeouts for the transport

protocol that is used to exchange data between WS clients and the WS application.

The mean response times observed when the sample web services are accessed by

multiple WS client are shown in Figure 5-10 (for Tracking WS1), Figure 5-11 (for

Tracking WS2) and Figure 5-12 (for Tracking WS3). Note that these graphs presented

in Figure 5-10, Figure 5-11 and Figure 5-12 are plotted using a log10 scale for the

response time (Y-axis).

The relative performance achieved with the partitioning algorithms does not change

significantly as the number of WS clients is increased (see Figure 5-10, Figure 5-11

and Figure 5-12). However, the performance improvement produced by a partitioned

system over an un-partitioned system is observed to increase with multiple clients. As

the number of concurrent clients is increased, the mean response times of the

Tracking WS applications also increase linearly when one of the partitioning

techniques is used. For Tracking WS2 and Tracking WS3 (see Figure 5-11 and Figure

5-12), the applications take inordinately large amounts of time when they are

executed entirely on the mobile device and invoked by more than 1 WS clients at a

time. Such performances are not acceptable and illustrate the importance of WS

partitioning.

157

Figure 5-10: Performance comparison of the partitioned systems achieved with NPC,

OEA, MinCut and MOMC and invoked by multiple WS clients for Tracking WS1

Figure 5-11: Performance comparison of the partitioned systems achieved with NPC,

OEA, MinCut and MOMC and invoked by multiple WS clients for Tracking WS2

100

1000

10000

NP OEA Mincut MOMC CAP

R
 (

m
se

c)

Partitioning Approach/Algorithm

WS Clients = 1 WS Clients = 2 WS Clients = 3 WS Clients = 6

100

1000

10000

100000

1000000

NP OEA Mincut MOMC CAP

R
 (

m
se

c)

Partitioning Approach/Algorithm

WS Clients = 1 WS Clients = 2 WS Clients = 3 WS Clients = 6

158

For all three versions of Tracking WS, the partitioned system achieved with the

MOMC technique exhibit the best performance. The performance improvement

observed for the partitioned system using MOMC over other partitioning algorithms

is higher when:

- a higher number of WS clients are active (see bar 3 and 4 in Figure 5-10,

Figure 5-11 and Figure 5-12).

- a complex WS application is accessed (see Figure 5-12).

The performance of the partitioned system using the CAP algorithm is observed to

be marginally better than the system using OEA. The additional overheads that accrue

as a result of the coordination of multiple partitions achieved with the CAP algorithm

are the main cause of its inferior performance in comparison to the OEA and the

MOMC based techniques.

Figure 5-12: Performance comparison of the partitioned systems achieved with NPC,

OEA, MinCut and MOMC and invoked by multiple WS clients for Tracking WS3

100

1000

10000

100000

1000000

NP OEA Mincut MOMC CAP

R
 (

m
se

c)

Partitioning Approach/Algorithm

WS Clients = 1 WS Clients = 2 WS Clients = 3 WS Clients = 6

159

The performance achieved with the MinCut algorithm is again inferior to that

achieved with the OEA technique. The results of experiments presented in this section

shows that the partitioning based on the knowledge of edge weights only (MinCut)

can lead to an inferior performance for mobile web services in comparison to the

other partitioning techniques.

5.7.5.3 Effect of the Speed of the Processing Resources (ω)

In this set of experiments, a detailed analysis of the partitioned system for Tracking

WS1 is performed using single and multiple WS clients and two different processing

speeds (208MHz and 624 MHz) for the mobile device. Operating the mobile device at

two different CPU speeds enables the investigation of the impact of applying

application partitioning on different types of mobile devices. The number of WS

clients is varied from 1 to 12. The performance results are captured in Figure 5-13.

Figure 5-13 shows the mean response time achieved with Tracking WS1 when

multiple WS clients are active. When invoked by one WS client for both CPU speeds

of the mobile device, the performance of a partitioned system achieved by using any

of the partitioning techniques is inferior to that of an un-partitioned system. This trend

is also observed when the service is invoked by 2 WS clients for 624 MHz CPU speed

of the mobile device. This is because Tracking WS1 has a small processing demand

and the communication overheads offset the benefit of offloading partitions. Note that

for this application, MinCut, MOMC and CAP give rise to the same partitions for

offloading; that is why their mean response times are the same in Figure 5-13.

160

As soon the number of concurrent WS clients is increased, the performance of

partitioned Tracking WS1 achieved by using any of the partitioning techniques

(a)

(b)

Figure 5-13: Performance of the partitioned systems achieved with NPC, OEA,

MinCut and MOMC for Tracking WS1 when mobile device is operated at CPU speed

of (a) 624 MHz (b) 208 MHz

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 6 12

R
 (

m
se

c)

C

NP OEA Mincut/MOMC/CAP

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 6 12

R
 (

m
se

c)

C

NP OEA Mincut/MOMC/CAP

161

(especially with MOMC/MinCut/CAP) is superior to that of an un-partitioned system.

This trend has been observed for both CPU speeds of the mobile device (see Figure

5-13-a and Figure 5-13-b). However, the performance improvement produced by a

partitioned system with MOMC/MinCut/CAP over the OEA technique is observed to

increase more significantly. Also, the MOMC/MinCut/CAP based partitioned systems

showed a significantly better performance in comparison to the un-partitioned system

and the partitioned system achieved with OEA for slower CPU speed of the mobile

device (see Figure 5-13) when it is invoked by more than 2 WS clients.

For the CPU speed of 624 MHz, the OEA technique is observed to show inferior

performance (see Figure 5-13-a) in comparison to the un-partitioned system for any

number of WS clients except 12. For 12 WS clients, the communication overheads for

a system achieved with the OEA technique appear to be lower than the benefit of

offloading partitions and thus results in marginally better performance in comparison

to the no offloading case.

5.8 Experimental Analysis using a simulator

The experiments performed with the prototype produces limited insights into the

behavior of the system. As discussed in the last section, it was not possible to

experiment with a very large number of WS clients. The complexity of sample web

services is also limited. For a detailed investigation, simulation based

experimentation is performed. The WS partitioning techniques based on the proposed

algorithms are compared with no partitioning, the offloading entire application based

technique and the MinCut algorithm based technique. These techniques are already

described in Section 5.7.1.

162

Before discussing the experimental setup and the results of the simulation based

experiments, it is important to discuss the tool for generating random graphs and the

simulator used for experimentation. To apply the proposed algorithms to a large

variety of graphs, a random graph generating tool, Random Graph Generator (RGG),

is devised. The RGG tool is described in Section 5.8.1. The performance of the

resulting partitioned systems is measured by using a simulator that is developed for

this purpose. The simulator is described in Section 5.8.2. The RGG tool and the

simulator are implemented using the standard Java edition. The simulator and the

RGG tool used for this thesis are designed for the requirements of this thesis analysis.

5.8.1 Random Graph Generator (RGG)

Generating a random graph requires a careful consideration. The graphs generated

without following the WS applications requirements can result in misleading analysis

and conclusions. Before discussing the internal details of the graph generating tool, a

brief discussion of the templates supported by the tool is presented.

5.8.1.1 Templates

To study the nature of graphs for different applications, the eclipse TPTP profiling

tool [Pop10] is used. The profiling tool is used to study Call Tree graphs of a few

sample applications (see Appendix B). The results of the profiling tool have been used

to determine the templates used in the simulation analysis. Based on this analysis,

three types of templates are selected to generate graphs: Linear, Binary and Binary

Meshed. These templates are shown in Figure 5-14. The linear template is observed

for very simple applications in which a component A invokes another component B

that in turn invokes another component C (see Figure 5-14-a). Note that a component

163

can be an application module, a library, a method of a class or even a block of

statements.

The binary template is applicable to applications in which every component is

invoking two more components to achieve its goals. From the analysis performed

with the profiling tool on a few applications as discussed earlier, only small parts of

applications are observed to be using this template. A sample graph based on this

template is shown in Figure 5-14-b. This is because the template does not represent

reusable components and the applications use reusable components very often in

modern programming languages. The reusable components are the ones that are being

invoked multiple times by different components.

To represent reusable components on a graph, a binary meshed template is

introduced. A number of components of applications that are analyzed with the

profiling tool are observed to be characterized by the mesh template. In the binary

Figure 5-14: Sample directed graphs based on (a) Linear Template (b) Binary

Template (c) Binary Meshed Template

164

meshed template, every component uses one private component and one shared

component representing a reusable component such as a third party library

component. A sample graph based on this template with a graph size equal to 3 is

presented in Figure 5-14-c. The shared components are shown as shaded vertices in

Figure 5-14-c. Note that the binary meshed template converges to the binary template

if there is no reusable component.

The graph generating tool uses a number of input parameters which are described

next.

5.8.1.2 Input Parameters

The input parameters for the RGG tool are presented next.

Graph Template:

The type of graph template to use for generating graphs needs to be provided as an

input to the tool. Currently, the tool accepts one of the three types of templates

described in the last subsection.

Graph size (Dmax):

Larger the value of this parameter, larger is the graph. Its values can vary from 2 to

any finite number.

Mean Vertex Weight (WMV):

It is the mean weight of the vertices in a graph. It is generated using the uniform

distribution that ranges from LVW to UVW.

Mean Edge Weight (WME):

It is the mean weight of the edges in a graph. It is generated using the uniform

distribution that ranges from LEW to UEW.

165

Variability Factor (∆):

The variability factor indicates the breadth or spread of the uniform distributions:

∆ = WMV – LVW;

In the simulation results presented in Section 5.8, the same value of ∆ is used for

generating the vertex and edge weights.

Certain edges are assigned high edge weights in the graph. Such edges (called salted

edges) represent dependency of a component on local resources and offloading them

to a remote node can lead to additional communication costs. For a binary meshed

template, from a set of vertices leading to the same value of D, one edge is randomly

selected as a salted edge. The edge weight of a salted edge (WSE) is computed based

on how far it is from the source vertex. The salted edges close to the source vertex are

assumed to have high communication costs in comparison to the ones that are away

from the source vertex. This assumption is based on the fact that the vertex

representing the local dependencies are more likely to be close to the source vertex as

local information is collected first and then actions are performed to accomplish

objectives of a WS application. An empirical formula (decaying exponential function)

is introduced to compute varying weights for salted edges. The formula also uses the

graph size (Dmax) and the mean edge weight as input parameters:

N�� = 	NY� ∗ 	Z(6([\]6)

Note that D is a vertex distance for the target vertex of the edge and it represents

how far the edge is from the source vertex. Also, in all simulation based experiments

discussed in this thesis, the time is measured in simulation time units.

166

5.8.1.3 Components

Different components of the graph generating tool are presented in Figure 5-15 and

are explained next.

Graph Controller is a key component of the tool that takes input parameters and

interacts with other components (described next) to generate a graph. Init takes input

parameters and initializes the tool for generating a graph. Edge Factory is used to

generate an edge. This component is repeatedly used by the graph controller

whenever a new edge is to be created. Vertex Factory either provides an already

created vertex for sharing or creates a new vertex. RN Generator is a random number

(RN) generator which is used to compute randomly distributed values for edge

weights and vertex weights.

Graphs are normally represented by an adjacency matrix. To save a generated graph

in an output file, Adjacency Matrix Writer is used to generate the adjacency matrix

along with a list of vertices and their weights. The output file can be used to analyze

Figure 5-15: Internal details of graph generating tool

Init Graph Controller

Adjacency Matrix

Writer

RN Generator

Vertex Factory

Edge Factory

Output

File

Input Parameters

167

the graph using third party tools. In this analysis, the output is used for computing the

MinCut of the generated graph.

RGG works as an independent tool as well as a plug-in. As an independent tool, it

generates a graph in an adjacency matrix format and saves it in an output file. As a

plug-in tool, it outputs the graph as a Java object which can be directly provided to a

partitioning tool (for MOMC and CAP algorithms) and the simulator.

5.8.2 Simulator

The simulator can work as an independent tool and as a plug-in. The simulator takes

a graph and the value of the speed up factor (S) as input parameters. As an

independent application, the simulator takes an input graph in an adjacency matrix

format, builds an in-memory graph object from the adjacency matrix and then

simulates execution of the application represented by the graph. When it is used as a

plug-in with the RGG tool, it takes an in-memory graph as a Java object from the

RGG tool and then simulates the execution of the application (graph).

The speed up factor is provided as an input as well. The speed up factor is used to

compute the execution time of an application component when it is to be executed on

a remote computing node (see Section 5.6). The default value of the speed up factor is

4 but an analysis is performed to investigate its impact on overall performance of

partitions when it is varied from 2 to 8 which is close to the speed up of the real

devices available in the market.

Working of the simulator is explained with the help of two sample graphs which are

presented in Figure 5-16. Note that the simulator can simulate an application with a

graph of any size. The technique used for computing the execution time of different

components using the graph model of an application is explained next.

168

Figure 5-16-a shows the execution of a sample application when it is not partitioned

and is executed on a single computing node. Different components of this sample

application are shown as A, B, C, D, E and Vs vertices. The numbers in the shaded

balloons attached with the vertices shown in Figure 5-16-a indicate the order of

execution of application components when simulated by the simulator. The order of

execution is determined by the simulator as it traverses through the application graph.

The execution starts with vertex ‘Vs’. Since there are two outgoing edges from ‘Vs’,

the control moves to a vertex connected to one of the outgoing edges of vertex Vs. Let

us assume the simulator picks vertex A (as it connects to the edge that comes first in

the list of outgoing edges). From vertex A, there are two edges going out to vertex B

and vertex D. If the simulator picks the edge going towards vertex B, then control

moves to vertex B. Since there is no outgoing edge from vertex B, the weight of

vertex B is added to the execution time. Once the weight of vertex B is added to the

execution time, control comes back to vertex A. From vertex A, control moves to

vertex D through the second outgoing edge. Since there is no outgoing edge from

vertex D, the weight of vertex D is added to the execution time and the control comes

back again to vertex A. After navigating vertices B and D, vertex A has no more

outgoing edge left, the weight of vertex A is now added to the execution time. Since

all vertices accessible from vertex A are navigated, control comes back to vertex Vs.

From vertex ‘Vs’, control goes to C, D and E to add their weights to the execution

time in a similar fashion as described for A, B and D. Because vertex D is connected

to vertex A and vertex C (an example of reusable component), its weight is added

twice to the execution time. Since the application graph shown in Figure 5-16-a is not

partitioned (running on a single machine), weights of edges are not considered. This is

169

because all components are assumed to be interacting through a shared memory and

the communications costs (edge weights) are negligible.

Figure 5-16-b shows an application graph which is partitioned across two computing

nodes. In the sample graph, the vertices that are to be executed on a remote computing

node with a speed up factor of ‘S’ are marked by a flag (for simulator engine) and are

shown with horizontal lines in Figure 5-16-b. Note that the weight of the edges linked

to such vertices will be used in computing the execution time and that is why they are

indicated in Figure 5-16-b. As an example consider the edge between vertex A and

vertex D. The component represented by vertex D is marked (by horizontal lines) as

part of the remote partition and the component represented by vertex A is to run

locally on a mobile node. Since two vertices are running on different nodes, the

commination costs (edge weight) between them need to be considered. Thus, weights

of such edges are shown in Figure 5-16-b. The simulator adds weights of such edges

to the execution time.

Figure 5-16: Execution of application (a) on a single machine (b) on two machines

Vs = 0

C=7

A=5

E=8

D=5

B=10

1

2

3

4

56

Vs = 0

C=7

A=5

E=8

B=10

1

2

4

5

79

10

15

20

3

6

8

(a)

(b)

D=5/S

E=8/S

170

As discussed for Figure 5-16-a, the execution of an application starts from vertex

‘Vs’ and it walks to vertex A and then to vertex B. Simulator adds the weight of

vertex B to the execution time as there is no edge going out from vertex B. When the

control goes to vertex D as par the order of execution, the simulator identifies vertex

D as a component that is to be executed on a remote computing node. For such a

vertex (vertex D), the simulator performs following actions:

- Add the weight of the edge between vertex A and vertex D (communication

cost) to the execution time. Whenever there is a communication cost involved,

the simulator also adds a randomly generated network delay to the execution

time. Network delays are modeled by using an exponential distribution [Suk10].

In all the experiments reported in this section, the mean value of the network

delay used is 10 time units.

- Add the result of the weight of vertex D divided by the speed up factor to the

execution time. The speed up factor represents the ratio of the processing speed

of the remote computing node and the processing speed of the mobile node. Note

that the weights assigned to each vertex (by the RGG tool) are based on a

uniform distribution.

The simulator adds weights of the rest of the vertices and the edges (if they are

connecting vertices in different partitions) to the execution time in a same manner as

explained for vertex B and vertex D.

5.8.3 Workload and system Parameters

In all the experiments, performance of partitioned systems is measured by varying

various system and workload parameters. The workload and system parameters that

are varied are presented in Table 5-1. These parameters were defined in Section 5.8.1.

171

The majority of the parameters are for varying the characteristics of randomly

generated graphs. In one experiment, only one of the parameters is varied at one time.

All other parameters used in the experiment are set to their default values.

5.8.4 Performance Metrics

The key performance metric is the mean execution time (τ). The execution time (in

time units) is the difference between the time when the simulator has finished

execution of an application and the time when the simulator receives a request for

execution of that application. The mean execution time is computed by taking an

average of the execution times measured for all randomly generated applications

(graphs) for each experiment. As mentioned in Section 5.8.1.2, the execution time is

measured in simulation time units.

Another performance metric used is percentage improvement (Ƥ). Percentage

improvement is the proportional reduction in the mean execution time of a partitioned

Table 5-1: Mean values/Value Range and default mean values used for workload and

system parameters

Parameter Mean Values / Value Range Default Value

Graph Template Linear, Binary, Binary Mesh Binary Mesh

Graph Size (Dmax) 2 to 24 8

Mean Vertex Weight (time units) 20 to 180 100

Mean Edge Weight (time units) 20 to 180 100

Variability Factor 0.05 to 0.2 0.1

Speed Up Factor 2 to 8 4

172

system achieved with one of the partitioning techniques from the mean execution time

of an un-partitioned system.

5.8.5 Experimental Results

Four different sets of experiments are performed. In the first set of experiments, the

performance of the partitioned systems that are achieved using the proposed

algorithms (discussed in Section 5.4 and Section 5.5) for different graph sizes are

compared with the performance of an un-partitioned system. In the second set of

experiments, the performance of the partitioned systems achieved with the proposed

algorithms is compared with the performance of partitioned systems achieved with

other partitioning techniques that are discussed in Section 5.7.1. In the third set of

experiments, the partitioned systems achieved with the proposed algorithms are

analyzed by varying different input parameters described in the last subsection. In the

fourth set of experiments, the effect of using the remote node information discussed in

Section 5.6 is investigated.

Experimental results reported in this section are obtained with 10,000 graphs. An

analysis is performed by experimenting with various numbers of graphs and the

accuracy resulting from the experiments with 10,000 graphs is found to be adequate

for analyzing the relative performance of the partitioned systems achieved with the

various partitioning algorithms discussed in this chapter. Each experiment is repeated

15-30 times to obtain sufficiently small confidence intervals for the average values.

For the experiments presented next, confidence intervals of ±5% (or less) for mean

response time were obtained at a confidence level of 95%.

The execution time for each non-partitioned application modeled by a graph is

determined using the simulator. Next, the graphs are partitioned using one of the

173

partitioning algorithms and execution times of the partitioned systems are determined

by the simulator as explained in Section 5.8.2. Results reported in the following

subsections are mean execution times and are presented in the form of bar graphs.

5.8.5.1 Analyzing MOMC and CAP Algorithms for Different Graph Sizes

In this set of experiments, performance of the partitioned systems achieved with the

MOMC and the CAP algorithms is compared with the performance of the un-

partitioned systems. The performance comparison is performed for different graph

sizes. The graph size (Dmax) is varied from 2 to 24. The results presented in Figure

5-17 show the percentage improvement observed in the mean execution time when

the MOMC and the CAP algorithms are used. Due to large execution times observed

for graphs with graph sizes greater than 10, it is not possible to show the actual mean

execution times for all graph sizes using a single scale. That is why Figure 5-17 shows

percentage improvement (defined in Section 5.8.4) for MOMC and CAP.

Figure 5-17 presents an interesting pattern in the results. For graph sizes less than

10, the MOMC algorithm is observed to produce partitions that exhibit better

performance than the one achieved with the CAP algorithm. For large graph sizes

(graph size > 10), however, the percentage improvement of the partitioned systems

achieved with the CAP algorithms are observed to be higher than the percentage

improvement of the partitioned systems that are achieved with the MOMC algorithm.

This is because of the difference in objectives of the two algorithms. MOMC

performs a complete walk through over the application graph and it attempts only

once to find the best suitable cut in the graph to obtain the two candidate partitions.

174

For small graphs, the algorithm has a high probability of finding a suitable cut in the

graph where one of the disjoint sub-graphs has the maximum difference between the

sum of the weights of its vertices and the edge cut weight that separates it from the

other sub-graph. For large graphs, the performance of the partitioned systems

achieved with MOMC is still significantly better than the performance of the un-

partitioned systems. For large graphs, the effectiveness of the CAP algorithm is more

significant. It is because it attempts multiple times to get different sets of vertices

from the graph to form the partitions. The CAP algorithm first selects a single set of

vertices based on the local maxima approach. Once a set of vertices is selected, the

algorithm walks through the rest of the graph to identify another set of vertices for

making another partition. This technique of selecting sets of vertices in multiple

attempts is observed to be effective in case of large graphs (see Figure 5-17).

Figure 5-17: Comparison of effectiveness of MOMC and CAP for different graph

sizes

0

20

40

60

2(6) 4(15) 6(28) 8(45) 10(66) 12(91) 16(153) 20(231) 24(325)

Ƥ

Dmax (No of Vertices)

Ƥ (MOMC) Ƥ (CAP)

175

5.8.5.2 Comparison with Other Partitioning Techniques

In this set of experiments, effectiveness of the proposed algorithms is analyzed by

comparing the performance of the partitioned systems achieved with the proposed

algorithms (MOMC and CAP) with the ones achieved with the OEA technique and

the MinCut algorithm based technique.

In the first experiment, analysis is performed using different graph sizes (2 ≤ Dmax ≤

10). The graphs are partitioned using the offloading entire application technique and

the two proposed algorithms (MOMC and CAP). The results are presented in Figure

5-18. The sequence of bars in Figure 5-18 is the same as the legends shown at the

bottom of the figure. Note that the graph presented in Figure 5-18 is plotted using a

log10 scale for the execution time τ (Y-axis).

Performance of partitioned systems achieved with the offloading entire application

technique is observed to be poor for majority of the cases (especially when the graph

size is greater than 2). MOMC is observed to exhibit the best efficacy because the

mean execution time of partitioned systems achieved with it is the lowest in

comparison to all other techniques.

For comparison with the MinCut algorithm, 10,000 graphs for each graph size of 4,

6 and 8 as maximum D are generated. To apply the MinCut algorithm, it is also

required to identify a source vertex and a sink vertex. A source vertex is a vertex

which has no incoming edges (start point) while vertices with no outgoing edges are

candidates for the sink vertex. Note that the proposed algorithms do not require a sink

vertex to be identified. The proposed algorithms select the sink vertex using a

heuristic as discussed in Section 5.4 and Section 5.5. For a comparison of MinCut

with MOMC and CAP, a list of boundary vertices for each graph along with their

176

adjacency matrix is generated. The boundary vertices used to select a sink vertex for

the MOMC and the CAP algorithms are also used for selecting a sink vertex for the

MinCut algorithm. One vertex from the set of boundary vertices is selected at a time

and is used as a sink vertex for achieving a partitioned system with the MinCut

algorithm. This is repeated for all boundary vertices. The execution times of all the

partitioned systems (achieved using the MinCut algorithm for every boundary vertex)

are determined using the simulator. The partitioned system with the minimum

execution time is used in this comparison.

For the same graphs, the execution times of the partitioned systems achieved with

MOMC, CAP and the offloading entire application technique are also determined. A

comparison of the execution times of the partitioned systems is presented in Figure

5-19 and the execution time (Y-axis) is plotted using a log10 scale.

Figure 5-18: Comparison of MOMC and CAP with OEA and NP (no partitioning)

100.00

1000.00

10000.00

100000.00

1000000.00

2 4 6 8 10

τ

Dmax

τ (NP) τ (OEA) τ (MOMC) τ (CAP)

177

For small graph sizes (graph size = 4 in Figure 5-19), the performances of the

partitioned systems achieved with all partitioning techniques are observed to be

comparable although the partitioned system achieved with MOMC demonstrates the

best performance. For graph sizes larger than 4, the performance of the partitioned

systems with OEA and MinCut is observed to be significantly inferior in comparison

to the performance of the partitioned systems achieved with MOMC and CAP. The

results of experiments presented in Figure 5-19 show that the partitioning based on

using no knowledge (OEA) or using the knowledge of edge weights only (MinCut)

can lead to an inferior performance especially in comparison to the MOMC and the

CAP algorithms.

Figure 5-19: Comparison of efficacy of different partitioning techniques with the

MinCut algorithm

1000

10000

100000

1000000

4 6 8

τ

Dmax

τ (NP) τ (OEA) τ (Mincut) τ (MOMC) τ (CAP)

178

5.8.5.3 Effect of Varying Mean Vertex Weight

In this set of experiments, the effect of varying the mean vertex weight is

investigated. Note that a uniform distribution is used to generate a value for vertex

weights. The results reported in this section use a mean vertex weight that is varied

from 20 time units to 180 time units. The values used for the mean vertex weights are

not affecting the relative performance of the partitioning techniques. One value of the

mean vertex weight is used in one experiment and rests of the parameters are set to

their default values as listed in Table 5-1. The mean execution time of the un-

partitioned system is compared with that of the partitioned systems achieved with the

MOMC and the CAP algorithms. The results are presented in Figure 5-20

Relative performance of un-partitioned and partitioned systems is observed to be not

affected significantly with variation of the mean vertex weight. The mean execution

Figure 5-20: Effect of the mean vertex weight on the mean execution time of the un-

partitioned system and partitioned systems using the MOMC algorithm and the CAP

algorithm

0

25000

50000

75000

100000

20 40 60 80 100 120 140 160 180

τ

Mean Vertex Weight

τ (NP) τ (MOMC) τ (CAP)

179

time τ seems to increase linearly with the mean vertex weight. This is expected

behavior. As the mean vertex weight is increased, the mean execution time of a

partitioned or un-partitioned system is also expected to increase as the vertices

represent execution components of an application.

5.8.5.4 Effect of Varying Mean Edge Weight

In this set of experiments, the effect of varying the mean edge weight is analyzed by

varying the mean edge weight. Note that a uniform distribution is used to generate a

value for weight of edges. The mean value for edge weight is varied from 20 time

units to 180 time units. A specific mean value is used for one experiment. The default

values are used for rest of the parameters as mentioned in Table 5-1. The mean

execution times of the un-partitioned system and the partitioned systems achieved

with the MOMC and the CAP algorithms are measured. The results are presented in

Figure 5-21. Note that the execution time τ (Y-axis) is plotted using a log10 scale.

The mean execution times of un-partitioned and partitioned systems are observed to

be not affected much by the variation of the mean edge weight. The variation in the

mean execution times achieved with different mean edge weights for a given

partitioning technique presented in Figure 5-21 are observed to be within 1%. The

reason for this behavior is that the edge weight contributes to the execution time only

when the end point vertices of that edge are to be executed on different nodes (e.g.

one on the mobile node and the other on a remote computing node). Thus the effect of

varying the mean edge weight is not affecting the overall execution time of the

application.

180

5.8.5.5 Effect of Varying Variability Factor

In this set of experiments, un-partitioned system and the partitioned systems

achieved with the MOMC and the CAP algorithms are analyzed by varying the

variability factor (∆). Note that a uniform distribution is used to generate a value for

the variable factor for each graph. The experiments are repeated using four different

values ∆ (0.05, 0.1, 0.15 and 0.2). Values of rest of the parameters (listed in Table

4-2) are held at their default values. The mean execution times achieved for the un-

partitioned system and the partitioned systems are presented in Figure 5-22.

The mean execution times of un-partitioned and partitioned systems are observed to

be not affected significantly by the variation in the variability factor. The variability

factor is used in calculation of random weights of vertices and edges. The variation of

the variability factor seems to contribute evenly for weights of vertices and edges and

thus the overall performance of un-partitioned and partitioned systems is not affected

significantly.

Figure 5-21: Effect of the mean edge weight on the mean execution time of the un-

partitioned system and partitioned systems using the MOMC algorithm and the CAP

algorithm

30000

40000

50000

60000

20 40 60 80 100 120 140 160

τ

Mean Edge Weight

τ (NP) τ (MOMC) τ (CAP)

181

5.8.5.6 Effect of Varying Speed Up Factor

In this set of experiments, the effect of the speed up factor on the performance of the

un-partitioned system and the partitioned systems achieved with the MOMC and the

CAP algorithms is investigated. The speed up factor represents the ratio of the

processing speed of the remote computing node and the processing speed of the

mobile device. Four different values (2, 4, 6 and 8) of the speed up factor are used.

Values of rest of the parameters (listed in Table 5-1) are held at their default values.

The mean execution times achieved for the un-partitioned system and the partitioned

systems are presented in Figure 5-23.

The relative performance of the un-partitioned and partitioned systems is observed

to remain the same for the variation of the speed up factors. Note that the execution

time for the un-partitioned system is unchanged for all values of the speed up factor

because the speed up factor is only applied when one or more partitions are run on

Figure 5-22: Effect of the mean variability factor on the mean execution time of the

un-partitioned system and partitioned systems using the MOMC algorithm and the

CAP algorithm

30000

40000

50000

60000

0.05 0.1 0.15 0.2

τ

∆

τ (NP) τ (MOMC) τ (CAP)

182

one or more remote computing nodes. The partitioned system achieved with MOMC

is observed to exhibit the best performance for all values of the speed up factor. With

increase in the speed up factor, the mean execution times for the partitioned system

achieved with the MOMC algorithm and the CAP algorithm are reduced. This is

expected because the execution time of the partition when it is run on a more

powerful remote computing node is reduced with increase in the speed up factor. Note

that the speed up factor is the ratio of the processing speed of the remote computing

node and the processing speed of the mobile device.

5.8.5.7 Effect of Using Remote Node Information (RNI)

In this set of experiments, the effectiveness of using the knowledge of the processing

characteristics of the remote computing node at the time of computing the partitions is

analyzed. As discussed in Section 5.6, the MOMC and the CAP algorithm can use

Figure 5-23: Effect of the speed up factor on the mean execution time of the un-

partitioned system and partitioned systems using the MOMC algorithm and the CAP

algorithm

20000

30000

40000

50000

60000

2 4 6 8

τ

Speed up Factor

τ (NP) τ (MOMC) τ (CAP)

183

information of the remote node while computing the partitions. The partitioned

systems are achieved with the MOMC algorithm and the CAP algorithm using the

remote node information. Performances of these partitioned systems that use the

remote node information are compared with the performance of the un-partitioned

system. The results are captured in Figure 5-24.

The experiments show only a marginal improvement in the system performance

when a partitioned system achieved with the MOMC algorithm that uses the remote

node information in comparison to the partitioned system achieved with the MOMC

algorithm without using any remote node information (see 2
nd

 and 4
th

 bars in Figure

5-24).

Since the CAP algorithm already uses a strict policy for selecting vertices, the use of

additional remote node information results in either producing no partitioning or

partition with very small size and thus resulting in degraded performance in

Figure 5-24: Effect of using remote node information in computing partitions with the

MOMC algorithm and the CAP algorithm

0

10000

20000

30000

40000

50000

60000

4 6 8

τ

Dmax

τ (NP) τ (MOMC) using RNI τ (CAP) using RNI τ (MOMC) τ (CAP)

184

comparison to the system achieved with the CAP algorithm that uses no remote node

information (see bar 3
rd

 and 5
th

 in Figure 5-24).

5.9 Summary

In this chapter, two algorithms for mobile WS partitioning are proposed: Maximum

Offloading Minimum Cost and Cluster based Application Partitioning. The effectively

of the proposed algorithms is investigated through a system prototype as well as

simulation. For prototyping, real world sample web services are used. The sample

web services are partitioned using MOMC, CAP, MinCut and OEA. The un-

partitioned and partitioned systems achieved are hosted on a mobile device and are

accessed through a local area wireless network. For simulation, a graph generating

tool is devised for generation of random graphs of different sizes and different

characteristics. The randomly generated graphs are partitioned using MOMC, CAP

and the other partitioning techniques (MinCut and OEA). The performances of the

resulting partitioned systems are analyzed through a simulator.

The results achieved with the prototype and the simulations demonstrate that the

proposed algorithms outperform the existing algorithm for WS partitioning. The

experimental analysis shows that:

• The MOMC partitioning algorithm performs the best for small to medium size

applications.

• The effectiveness of the CAP algorithm is observed to be better for large scale

applications in comparison to MOMC and other partitioning techniques. For

smaller applications, the algorithm is inferior in comparison to MOMC but it

always performs better than the no partitioning case, the offloading entire

application technique and the MinCut algorithm based technique.

185

• The partitioned systems achieved with offloading entire application and

MinCut exhibit poor performances in general.

• The graphs generated by the RGG tool have randomly distributed edges with

significantly high weights. Such edges have more probability to exist closer to

the source vertex of the graph than to the sink vertex. For such graphs, OEA

and MinCut are observed to produce poor partitions. These two techniques

(OEA and MinCut) can however be expected to produce good partitions only

when the edges closer to the source vertex have significantly lower weights in

comparison to the rest of the edges. For such graphs, the proposed MOMC

algorithm also produce partitions similar to the ones achieved with the OEA

and the MinCut techniques. This is observed in Figure 5-4, Figure 5-5 and

Figure 5-6.

The OEA and the MinCut based WS partitioning techniques produce effective

partitions only for specific types of graphs whereas the MOMC algorithm and the

CAP algorithm based WS partitioning techniques are effective on a wide variety of

graphs. The type of knowledge to be used in devising a partitioning algorithm is an

important issue. MinCut that uses only the communication cost is found to lead to an

inferior performance of the partitioned system in comparison to that achieved with

MOMC that uses both communication and processing costs.

186

Chapter 6: Run Time WS Partitioning

Chapter 5 discussed design time WS partitioning algorithms to achieve one or more

partitions that can be offloaded to a remote computing node. This chapter proposes a

runtime WS partitioning technique with the objective of improving the overall system

performance. The proposed WS partitioning technique is devised to offload different

sizes of partition on a remote computing node based on the system load. Performance

of the proposed WS partitioning technique is analyzed by performing experiments on

a simulator.

6.1 Overview

As already discussed, WS application partitioning is a process of dividing a WS

application into multiple components so that computationally complex components

can be executed on powerful remote computing nodes. The objectives of WS

partitioning considered in this thesis include achieving a considerable size of the

offloaded partitions with least possible communication costs. In case of change in the

device system load or available battery power, a dynamic partitioning technique can

help to offload more considerable size of an application for execution on a remote

computing node.

The results presented in Chapter 5 show the two main drawbacks of design time

partitioning:

187

1. The partitioned system achieved with it may not be a best solution for

various devices on which the system may get deployed.

2. The partitioned system is generally insensitive to the variation in the system

load.

Performing an application partitioning at runtime can use system load information

and device characteristics for achieving an effective partitioned system. Achieving a

partitioned system with runtime partitioning approach has a few limitations as well.

For example, deciding when to run the application partitioning algorithm is an

important question. Should it be run for every request arrival or run only when the

system load changes significantly? In both cases, there will be a substantial overhead

affecting the application response time. The benefit that accrues from running the

application on a partitioned system must be able to offset the overheads. But there are

many situations when it makes sense to use a runtime partitioning approach. For

example, the device may be running multiple applications at a time sharing the device

resources such as CPU and memory or a large number of WS clients are sending

requests for hosted web services or the device has a limited battery power.

In such situations, using a runtime application partitioning is expected to be

effective because the size of the partition to be executed on a remote computing node

can be varied based on the situation. For example, in a situation when a device is

running out of battery power, then a substantial amount of application components

can be offloaded to preserve device’s battery power. If a large number of WS requests

are waiting to be executed, running large part of an application on a remote

computing node can improve system response time. If a device is not experiencing

188

any of the situations as mentioned earlier, it may be beneficial to execute a little part

of an application (or even no part of an application) on a remote computing node.

In this chapter, a hybrid technique for runtime application partitioning that combines

advantages of both the design time application partitioning and the runtime

application partitioning is proposed. The proposed hybrid technique for runtime

application partitioning first applies a graph based algorithm for achieving multiple

execution plans (discussed in the next section) for a WS application at design time.

The technique uses a runtime middleware system which selects an appropriate

execution plan based on the system load information and then uses that execution plan

for executing the application partition.

6.2 Generating Execution Plans for a WS

An execution plan is a scheme that determines what part or parts of an application is

to be executed on a local mobile node and what part or parts to be run on a remote

computing node (see Figure 6-1). A part of an application can be a method of a class

or a collection of methods of one or more classes. An execution plan also defines a

sequence of execution of different methods within a partition. For the work presented

in this thesis for runtime WS partitioning, the execution plan is a set of a maximum of

two partitions (PL and PR), each partition comprises of one or more methods. The two

partitions are shown as vertical grey line boxes (PL – to be executed on a local mobile

node) and horizontal grey line boxes (PR – to be run on a remote computing node) in

Figure 6-1.

The WS partitioning used for run time WS partitioning technique computes different

sized partitions for execution on a remote computing node for different range of

system load. For achieving this, a graph based algorithm is proposed for generating

189

multiple execution plans that are ordered based on the size of PR. A set of a few

sample execution plans is shown in Figure 6-1. Execution plan #1shown in Figure 6-1

suggests executing the whole application on a local mobile node. Execution plan #2

represents a plan that suggests running a small part (~25%) of the application on a

remote computing node. Execution plan #3 and Execution plan #4 suggest running a

major part of the application (~50% and ~75% respectively) on a remote computing

node. Execution plan #5 suggests executing the entire application on a remote

computing node.

The proposed algorithm for achieving multiple execution plans is based on

navigating a graph modeling the application to be partitioned iteratively.

Figure 6-1: A set of sample execution plans

Execution Plan #1

Execution Plan #2

Execution Plan #3

Execution Plan #4

Execution Plan #5

To be executed on a remote node

To be executed on a local mobile node

PL

PL

PL

PL

PL

PR

PR

PR

PR

190

6.2.1 Input Parameters

The graph based WS partitioning algorithm requires the following input parameters.

6.2.1.1 Application Graph

A graph model (G (V, E)) of a WS application is a key input parameter.

6.2.1.2 Number or Execution Plans (NE)

This is the number of execution plans to achieve. The value of NE can be between 1

and the number of vertices in a graph.

6.2.2 Upper Bound for Remote Partition of an Execution Plan

As already mentioned, an execution plan includes two partitions: one for running

locally (PL) and the other for running on a remote computing node (PR). The two

partitions are computed using a graph based algorithm proposed in the following

subsections. The size of the remote partition, PR, is the sum of the weights of vertices

(representing processing costs) in PR. Each execution plan is associated with an upper

bound on the size of PR. The approach used for the calculation of upper bound on the

size of PR for each execution plan is discussed next.

The upper bounds on the size of remote partitions for any two consecutive execution

plans are separated by a fixed size step. The fixed size step is the same for all

execution plans. The fixed size step is determined from the number of execution plans

(NE) and the total processing cost of the application which is a sum of the weights of

all vertices of an application graph. If the number of executions plans is NE, then the

fixed step size (PSS) between the upper bounds on the size of remote partitions for any

two consecutive executions plans is calculated by dividing the sum of the weights of

all vertices in the application graph by the number of executions plans

191

PSS = (∑ WVi) / NE where vi ∈ V 6-1

Now, the upper bound on the size of PR for any execution plan can be computed by

adding the fixed step size to the upper bound on the size of PR of the previous

execution plan. For example, for the first execution plan, the upper bound on the size

of the remote partition will be

LU-1 = 0 + PSS = PSS

Note that there is no previous execution plan for the first execution plan, thus zero is

added to PSS. Similarly for the second and third execution plans, the upper bounds on

the size of remote partitions will be

LU-2 = LU-1 + PSS = PSS + PSS = 2*PSS

LU-3 = LU-2 + PSS = 2*PSS + PSS = 3*PSS

Thus, an upper bound on the size of a remote partition for any k
th

 execution plan will

be

LU-k = k * PSS 6-2

where k = 1, 2, 3 …. NE

6.2.3 Objective Function

The proposed technique for run time WS partitioning is based on computing

multiple execution plans of different sizes in advance and then selecting an execution

plan based on the system load. The computation of ‘N’ execution plans is performed

in advance in order to eliminate the computation overheads during runtime. Each

execution plan is computed with an objective of selecting a beneficial partition such

that the difference between the processing cost of that partition and the

communication cost incurred by offloading the partition is the maximum. Each

computed execution plan is also characterized by the size of the partition that is

192

marked to be executed on a remote computing node. The run time component of the

proposed technique selects the execution plan based on the system load and executes

the WS application according to the execution plan.

The objective function for the graph based algorithm for generating execution plans

is to achieve a partitioned system of a graph G with NE execution plans such that for

every k
th

 execution plan, the following two conditions are satisfied

Condition 1: β (Pk) = Max [WV (Pk) – WEC (Pk)]

Condition 2: WV (Pk) < LU-k

Where

- WV (Pk) is the sum of the weights of vertices of a partition ‘Pk’ to be executed on a

remote computing node (processing cost).

- WEC (Pk) is the sum of the weights of edges that separates the vertices of a partition

‘Pk’ (communication cost).

- β (Pk) is a maximum difference of WV (Pk) – WEC (Pk)

The rationale behind condition 1 and 2 is presented next.

Condition 1 defines a ‘Beneficial Cut’, a term introduced in the last chapter (see

Section 5.3.9), that renders a graph into two disjoints sets such that the difference of

sum of the weights of vertices in a partition (WV (Pk)) and the sum of the weights of

edges (WEC(Pk)) that separates the graph is maximized.

Condition 2 concerns the size of a partition that can be executed on a remote

computing node. According to this condition, the maximum size of a partition (WV

(Pk)) for an execution plan cannot exceed the upper bound on the size of PR computed

for that execution plan.

193

6.2.4 Algorithm Steps

To explain the working of the algorithm steps, temporary variables are introduced.

These temporary variables include sets of vertices (B, Χ, N and Q), numeric variables

(ԝ, ε and β) for calculation of the degree of benefit a table T for storing candidate

execution plans. The set Q contains all vertices of set V except. ԝ and, ε are used for

storing the sum of the weights of vertices of X (WVX) and the weight of the edge cut

that separates vertices in set X from rest of the graph (WEX) β is used for storing the

degree of benefit for set X. Note that ‘\’ is a set operation of taking relative

complement. The rest of the variables are explained during the discussion of the

individual steps of the algorithm.

The main steps of the algorithm, the pseudo code for which is presented in Figure

6-2, are explained next. The steps that involve initializations of different variables

(such as lines 1-6 and lines 5-6 of Figure 6-2) are not included in this discussion.

• Find boundary vertices (B) from set Q (line 3 in Figure 6-2). As mentioned for

MOMC and CAP algorithms, the boundary vertices are those with the maximum

value of vertex distance (D). It has been observed that choosing the starting vertex

which is located far away from the source vertex ‘s’ results in more effective

partitioned systems in comparison to the partition systems that are achieved by

selecting a starting vertex randomly or by selecting a starting vertex closer to

source vertex ‘s’.

• Select a boundary vertex (v) with maximum weight as a starting vertex (line 5 in

Figure 6-2).

194

Figure 6-2: The runtime partitioning algorithm for achieving multiple partition plans

//V is a set of vertices of graph G, Q is a set of vertices that are considered for

//partitioning and s is the source vertex. X is a temporary set variable for vertices.

//β is the degree of benefit. T[X, β, w] is a table to hold partitions and NE is the

//required number of execution plans.

01: Q = V \ s;

02: T [set, number, number] = Φ;

03: Β = Set of vertices in Q with maximum D; (Boundary Vertices)

04: Χ = Φ, β = 0;

 05: ν = Vertex with maximum weight in set Β;

06: do {

07: Χ = Χ U ν;

//w and ε are temporary variables storing sum of the weights of vertices and

//the edge cut weight respectively

 08: ԝ = Sum of weights of vertices in X;

09: ε = Edge cut weight of set Χ;

10: β = ԝ – ε;

11: Add Χ, β and ԝ to table T;

12: Ν = Set of vertices that are directly connected to vertices of Χ;

13: ν = Vertex in N with maximum degree of benefit;

14: } while (ν != null)

15: for (k = 1 … NE) { //k is an index variable, LU-k is an upper bound on

 //the size of the remote partition for the kth

 // execution plan

16: Select a set of rows (T1) from table T for which ԝ < LU-k;

17: Select a row from T1 rows for which β is the maximum;

18: PR = X of the selected row; // PR is a remote partition

19: PL = V – PR; // PL is a local partition

20: }

195

• Add selected vertex ‘v’ to a temporary set X (line 7 in Figure 6-2). Χ is a set of

vertices that represents a candidate partition to be executed on a remote computing

node.

• Calculate β as follows (see line 8-10 in Figure 6-2).

β = ԝ – ε 6-3

where w is the sum of weights of vertices in set X (WV (X)) and ε is the sum of

weights of edges that separates vertices in set X from rest of the graph (WEC (X)).

Store values of X, β (X) and WV (X) in the partition table T (line 11 in Figure 6-2).

• Select vertex ‘v’ for the next iteration (lines 12-13 in Figure 6-2)

• The set of neighbor vertices, Ν, (where Ν is a subset of {Q \ Χ}) represents those

vertices of {Q \ Χ} that are connected to any vertex of Χ. Note that this step was

not executed in the first iteration when a new vertex was selected from the set of

boundary vertices. In this step, a vertex ‘v’ that has the maximum degree of

benefit is selected from a set of neighbor vertices of Χ.

• Repeat steps in lines 7-13 for all vertices of set Q. Once all vertices of set Q are

evaluated, the table T will contain a list of records that can be used to compute

execution plans.

• Compute execution plans by walking through all rows of table T. For the k
th

execution plan with upper bound LU-k on the size of a remote partition, the

execution plan can be computed by using following steps.

− Select all rows (T1) from table T for which value of WV (X) is less than or

equal to LU-k (condition 2 of the objective function).

− Select a row from T1 rows for which value of β (X) is the maximum

(Condition 1 of the objective function).

196

6.3 Runtime Middleware for WS Partitioning

In this section, a middleware for runtime partitioning of WS applications hosted on

mobile devices is proposed. The implementation of the proposed middleware uses

only one remote computing node for executing partition PR. Techniques for the

selection of a remote computing node from a set of available nodes or a cloud for

execution of a given partition can form an important direction for future research.

Various characteristics such as the system load can be used in mapping a partition to a

remote computing node. The proposed middleware will be an enhancement of the WS

execution environment proposed in Chapter 3. The middleware with WSEE is based

on three main components: a web service execution environment (WSEE), a runtime

WS partitioning engine and executions plans for web services applications that are to

be hosted on a mobile device. A high level architecture of the proposed middleware is

presented in Figure 6-3. The details of each of these components are described next.

6.3.1 Web Service Execution Environment

A WSEE is a platform that facilitates the execution of web services. In the context

of the proposed middleware, WSEE uses two key components: Transport Listener and

WS Manager. A brief overview of these two components is presented next. A more

detailed discussion is available in Section 3.2.

6.3.1.1 Transport Listener

Transport Listener is responsible for exchanging SOAP messages. SOAP messages

can be exchanged between nodes using any transport mechanism. Note that there is no

specific transport protocol associated with the exchange of SOAP messages. The

proposed Transport Listener uses standard transport protocols such as HTTP or TCP

for exchange of SOAP messages. On receiving a WS request, Transport Listener

197

extracts the SOAP message from the incoming request and puts in a queue ‘Qsrv_in’.

Transport listener is also responsible for sending a response back to a WS client. For

this, Transport Listener gets the response message (a SOAP message put by WS

Manager in ‘Qsrv_out’) from ‘Qsrv_out’ and sends the message to the WS client.

Figure 6-3: Architecture of the proposed middleware for runtime WS partitioning

198

6.3.1.1 WS Manager

The primary responsibilities of WS Manager are the parsing of the incoming SOAP

messages, executing the WS application, and then wrapping the results of the WS

application into a response SOAP message. Multiple threads of WS Manager are

available in a thread pool. These threads are used to process WS requests waiting in

‘Qsrv_in’. On receiving a new SOAP message, WS Manager parses the SOAP message

using standard SOAP/XML libraries available for mobile devices (such as KSOAP

[Kso03] and KXML [Kxm03]). The implementation discussed in this thesis uses both

KSOAP and KXML libraries. After parsing the request, WS Manager looks up the

appropriate WS application based on the WS request parameters. Once a WS

application is selected, WS Manager hands over the parsed input parameters and

name of the WS application to Runtime Engine for execution.

6.3.2 Runtime WS Partitioning Engine (Runtime Engine)

The execution plans for a WS application are computed using the graph based WS

partitioning algorithm described in Section 6.2. In the proposed runtime partitioning

technique, all partitions of web services are available on a remote computing node.

No code migration is performed at runtime; only the appropriate WS partition

identified by the execution plan is executed at runtime. Application partitioning can

be performed either at a class level (object oriented Java class) or at a class method

level. For the proposed runtime WS partitioning, a method level granularity is used.

This means each component partition would comprise one or more class methods.

Runtime Engine is responsible for selecting an appropriate plan based on the system

load. To establish a relationship between the system (load) information and available

199

execution plans for a WS application, a mechanism based on the real time profiling is

devised. This is discussed further in Section 6.3.4.

6.3.3 Relationship between System Load Information and Execution Plans

The system load is typically estimated by measuring CPU utilization due to other

applications or by measuring the number of requests waiting to be executed by a

system. This research focuses only on the system load based on the number of WS

requests arriving for a hosted WS. Therefore, number of WS requests waiting to be

processed (size of the queue) is used as an indicator for the system load.

The following terms are introduced before discussing the relationship: degree of

system load, device profile and device profile index. These are described next.

6.3.3.1 Degree of System Load (ρ)

The degree of system load can be different for different scenarios. For the work

presented in this thesis, the focus is to improve the overall response time. That is why

the degree of system load is the number of requests waiting to be executed. The

degree of system load is determined by computing an exponential moving average of

the number of WS requests waiting in Qsrv_in. The size of the window used for

computing the exponential moving average is 5. The exponential moving average

(EMA) is computed by using a simple moving average model described by Brown

[Bro04]:

EMA = αn * e + (αn-1 * (1 – e))

Where αn is a current value, αn-1 is a previously calculated value and e is an

exponential factor (2 / size of window)

200

6.3.3.2 Device Profile/ Device Profile Index (χ)

The device profile includes device processing power (for example CPU speed), total

memory, available memory for execution and number of applications running on the

device. Factors such as processing speed and the total available memory are available

from the device specifications. Factors such as memory in use and number of

applications running on a device depend on system state and are available at runtime

through an operating system’s application interfaces.

Device profile index is an indicator of device ability to accept new tasks for

execution. One or more factors (such as CPU speed, available memory, number of

applications running) can be used to determine the device profile index. The

technique used in this thesis for measurement of the device profile index is based on

real time profiling and it does not consider the device processing speed and its

memory. The objective of this technique is to use the device profile index as an

indicator of the number of WS requests that can be processed without degrading the

overall response time significantly. The real time profiling is performed by running an

experiment for a different number of WS clients for a graph application of sizes of

four, eight and twelve. The number of concurrent WS clients is varied from 1 to 100.

The results of this experiment are presented in Appendix C.

6.3.4 Selecting an Execution Plan

As already mentioned, the runtime partitioning engine is responsible for selecting an

appropriate execution plan for a partitioned system based on the system load. The

proposed algorithm for selecting an execution plan is presented next. The input to the

proposed algorithm is the set of execution plans for a partitioned system and the

device profile index (χ).

201

Step 1: Compute the degree of system load (ρ) using the number of waiting requests.

Step 2: Compute k (execution plan #) using the following relation:

k = 1 + f (ρ, χ / NE) 6-4

where

- ρ is the current system load (moving exponent average), χ is a device

profile index and NE is the number of execution plans

- Dividing the device profile index by the number of execution plans (χ /

NE) gives the range of the system load for each execution plan. For

example, if the device profile index is 20 and the number of execution

plans is 4, then the range of system load for each execution plan is 5 (20 /

4).

- f (ρ, χ / NE) is an integer division function of ρ and χ / NE. This function

divides the system load (ρ) by the range of the system load for an

execution plan which is given by χ / NE. The result of this integer division

identifies the execution plan # corresponding to the current system load.

For the example shown earlier, if the current system load is 12, then the

result of f (ρ, χ / NE) will be 2 (12 / 5). Note that the remainder is discarded

in integer division. ‘1’ is added to the result of f (ρ, χ / NE) to make the

execution plan (k) index starts from ‘1’instead of ‘0’.

Step 3: Select k
th

 execution plan from the available execution plans for a partitioned

system.

In the following subsection, different subcomponents of the runtime partitioning WS

engine are introduced.

202

6.3.5 Components of Runtime Partitioning Engine

The components of the proposed implementation of the runtime partitioning engine

are discussed next.

6.3.6 Runtime Engine

Runtime Engine is the main controller for executing a WS execution plan based on

the system load. On receiving a request for executing a WS application from WS

Manager, Runtime Engine communicates with Partition Manager (see Figure 6-3) to

determine a particular execution plan.

6.3.7 Partition Manager

Partition Manager is responsible for determining an execution plan based on the

system load and the device profile index. The degree of system load is computed by

Load Monitor (see Figure 6-3). Once the degree of system load is known, Partition

Manager selects an appropriate execution plan using the algorithm presented in the

previous subsection.

6.3.8 Load Monitor

For computation of the system load, Load Monitor interacts both with the operating

system of the mobile device and the input queue (see Qsrv_in Figure 6-3). Since

memory is not considered in the determination of the system load (as discussed in

Section 6.3.3.1), Load Monitor only measures the number of requests waiting to be

executed in Qsrv_in to compute an exponential moving average (EMA) of the number

of waiting requests using a window size of 5.

203

6.3.9 Device Profile

For the research presented in this chapter, the device profile indicates the number of

requests that can be run on the device simultaneously without affecting device

performance significantly as discussed in 6.3.1.1.

6.4 Approach used for Performance analysis

The approach used for analyzing the effectiveness of the proposed runtime WS

partitioning technique is based on analyzing system performance by using a variety of

application graphs. For this, a tool Random Graph Generator (RGG) described in

Section 5.8.1 is used. The performance of the proposed middleware system for

runtime WS partitioning is evaluated by using a simulator that is developed for this

purpose. The simulator is described briefly in the next subsection. Note that the RGG

tool and the simulator are implemented using the standard Java edition.

6.4.1 Simulator

The simulator used for performance analysis of the proposed middleware system is

an enhanced version of the simulator that is described in Section 5.8.2. For a given

size of the graph and the template, the simulator is provided a partitioned system with

multiple execution plans. The execution plans are achieved using the graph based WS

partitioning algorithm proposed in Section 6.2. The other input parameters are speed

up factor(S), number of WS request to simulate, the device profile index to use and

the number of execution plans. The speed up factor represents the ratio of the

processing speed of the remote computing node and the processing speed of the

mobile device. The default value of the speed up factor used is 4. The simulator

incorporates network delays when a remote computing node is involved. Network

204

delay is a component of WEC in equation 6-3. A more detailed discussion of

generating a random network delay is presented in Sukhov et al. [Suk10]. Network

delays are modeled by using an exponential distribution [Suk10]. In all the

experiments reported in this chapter, the mean value of the network delay used is 10

time units. The core of the simulator is the same as discussed in Section 5.8.2.

6.5 Performance Analysis

System performance achieved by using the proposed runtime WS partitioning

technique is analyzed by using the simulator described earlier. The different input

parameters that are varied to get insights into system behavior and performance are

described next.

6.5.1 Input Parameters

In all the experiments, the mean response times of application graphs (partitioned or

un-partitioned) are measured by varying a number of input parameters. In one

experiment, only one input parameter is varied while all other parameters are held at

their default values. The input parameters and their default values are presented in

Table 6-1. Note that the client think time used in experiments is generated by using an

exponential distribution. Similar distributions for clients think times have been used

by Rosen [Ros87].

Graph size is equal to the maximum value of the vertex distance (defined in Section

5.3.5). For graph generation, default values are used for the mean vertex weight, the

mean edge weight and the variability factor as discussed in Table 5-1. The number of

Execution Plans (NE) is the number of execution plans to be used for the runtime WS

partitioning. In a preliminary analysis, the number of execution plans equal to four is

205

observed to be appropriate for the application graphs used in the experimentation.

Number of WS clients (C) is the number of applications that are accessing the system

simultaneously. Each client sends a request, waits for the response, receives the

response, waits for a time interval equal to the mean think time and then sends the

request again. The mean think time is the mean time a client waits before sending the

next request.

Table 6-1: Input Parameters and their default value

Parameter Value Range Default Value

Graph Size 4, 8 and 12 8

Number of Execution Plans (NE): 4 4

Number of Clients (C) Varied from 1 to 40. 12

Mean Think Time (time units) Varied from 500 to 5000 1000

6.5.2 Performance Metrics

The key performance metric is the mean execution time (τ). The execution time (in

time units) is the difference between the time when the application has finished its

execution and the time when the application request is received by the simulator for

execution. The mean execution time is computed by taking an average of the

execution times measured for all randomly generated applications (graphs) for each

experiment. Energy of the mobile device consumed before and after web service

partitioning is an interesting performance parameter. Investigation of this performance

parameter forms an important direction for future work.

206

6.5.3 Experimental Results

Two different sets of experiments are performed. In the first set of experiments, the

mean execution time of a partitioned system using one of the execution plans at a time

is measured. The experiment is repeated for graph sizes of 4, 8 and 12. In the second

set of experiments, the performance of the partitioned system achieved with the

runtime WS partitioning technique is compared with a ‘no partitioning’ case and the

partitioned system achieved with the design time WS partitioning technique

(described in Chapter 5). The comparison is performed by varying number of clients

(C).

A closed system model is used for all the experiments. Each client operates

cyclically and sends one request at a time. As soon as the request is processed, the

client sends another request after a delay equal to the client think time. Each

experiment is performed by using a randomly generated graph. Random graphs are

generated using a Random Graph Generator tool discussed in Section 5.8.1. The result

of each experiment is obtained by using 10,000 randomly generated graphs. Each

experiment is repeated 15-30 times to obtain sufficiently small confidence intervals

for the average values of the execution times. For the experiments presented in this

chapter, confidence intervals of ±5% (or less) for mean response time were obtained

at a confidence level of 95%.

6.5.3.1 Performance Analysis using One Execution Plan at a Time

In this set of experiments, the effectiveness of the proposed runtime WS partitioning

technique is analyzed by measuring the mean execution time achieved with the

partitioned systems using one of the execution plans (preselected) at a time. The

number of WS clients is varied from 1 to 20. The performance comparison is

207

presented for different graph sizes (see Figure 6-4 for graph size = 4, Figure 6-5 for

graph size = 8 and Figure 6-6 for graph size = 12). The results observed for different

graph sizes appear to exhibit a similar trend in the performance. Each line shown in

the graphs of Figure 6-4, Figure 6-5 and Figure 6-6 displays the mean execution time

of the partitioned system when a preselected execution plan is used. The number of

execution plans used for this set of experiment is 4. Execution plan #1 represents an

un-partitioned system. Execution plan #2, #3 and #4 are achieved with the graph

based WS partitioning algorithm. Higher the execution plan number, higher is the size

of PR. Note that no runtime selection of an execution plan is performed for this

experiment.

Figure 6-4: Comparison of performance of partitioned systems for various execution

plans, C and for a graph size = 4

The results presented in Figure 6-4, Figure 6-5 and Figure 6-6 exhibit an interesting

pattern. For all graphs shown in Figure 6-4, Figure 6-5 and Figure 6-6, for a lower

number of clients, using an execution plan that runs a larger part of an application on

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4

τ

Execution Plan #

C = 1 C = 4 C = 8 C = 12 C = 16 C = 20

208

a remote computing node (such as execution plan #3 or #4) is resulting in a

degradation in the system performance. For such scenarios, using no partitioning

(execution plan #1) appears to be the most effective. This is because the overheads of

executing a partition on a remote computing node in comparison to executing it

locally are significant and thus results in a degradation of overall system performance

of the partitioned system (see bars for C = 1 and C = 4 in Figure 6-4, Figure 6-5 and

Figure 6-6).

Figure 6-5: Comparison of performance of partitioned system when one execution

plan is used at a time for graph size = 8

For C = 8, overall system performance is observed to be the best with execution plan

#3 for graphs of size 8 and 12. For a higher number of clients (e.g. 12, 16 and 20 in

Figure 6-4, Figure 6-5 and Figure 6-6), using execution plan #4 is observed to result

in the best performance. This set of experiments demonstrates that using an

appropriate execution plan based on the system load information (number of clients in

these experiments) is important. Using a different execution plan for different number

of clients accessing the system can result in achieving a high system performance.

0

20000

40000

60000

80000

100000

120000

1 2 3 4

τ

Execution Plan #

C = 1 C = 4 C = 8 C = 12 C = 16 C = 20

209

This set of experiments provides a motivation for devising a runtime technique of

selecting an execution plan based on the system load.

Figure 6-6: Comparison of performance of partitioned system when one execution

plan is used at a time for graph size = 12

6.5.3.2 Performance Comparison with No Partitioning Case and the Design

Time WS Partitioning Technique

For this set of experiments, the mean execution times are measured for an un-

partitioned system, a partitioned system achieved with a design time partitioning

technique and the partitioned system achieved with the proposed runtime WS

partitioning technique. For the design time partitioning technique, the MOMC

algorithm is used. The experimental analysis presented in Section 5.8 has

demonstrated that the MOMC algorithm gave the best performance in comparison to

the other design time partitioning techniques for small to medium sized application

graphs. For the simulator used for experimentation, the value of the profile index

measured is 20. As discussed in Section 6.3.3.2, the device profile index represents

the maximum number of requests handled by a device. The device profile index is

0

50000

100000

150000

200000

250000

300000

1 2 3 4

τ

Execution Plan #

C = 1 C = 4 C = 8 C = 12 C = 16 C = 20

210

measured by experimenting with different number of clients. The performance

comparison of the three techniques is done using three different ways of varying the

number of clients. These are presented in the following subsections.

For each set of bars shown in Figure 6-7, Figure 6-8 and Figure 6-9, the first bar

represents the mean execution time achieved for an un-partitioned system. The second

bar is for the mean execution time of a partitioned system achieved with the MOMC

algorithm based on the design time WS partitioning technique. The third bar

represents the mean execution time that is observed for a partitioned system achieved

with the proposed runtime WS partitioning technique.

Figure 6-7: Performance comparison of the partitioned systems achieved with the

three techniques using a fixed number of clients with a zero think time

0

20000

40000

60000

80000

100000

120000

1 5 10 15 20

τ

Number of Clients (C)

Un-partitioned System Partitioned System (MOMC) Partitioned System (Runtime Partitiong)

211

6.5.3.3 A System with a Fixed Number of Clients with No Client Think Time

In this set of experiments, the results are achieved on a system hosting a fixed

number of clients with a zero think time. The values of the number of clients used are

1, 5, 10, 15 and 20. The results are presented in Figure 6-7.

The graph presented in Figure 6-7 shows that the design time partitioning technique

seems to demonstrate the best performance for various number of clients (see the

third, fourth and fifth sets of bars in Figure 6-7). For a lower number of clients, an un-

partitioned system and the runtime partitioning technique seem to exhibit marginally

better performance (see the first and second sets of bars in Figure 6-7) in comparison

to the design time partitioning technique. The benefit of the design time WS

partitioning technique is significant only when the partitioned system is actively

accessed by a large number of clients. For a lower number of clients, the overheads of

executing a part of an application on a remote computing node seem to be offsetting

its benefits. The performance achieved with the runtime WS partitioning technique is

always superior to that achieved on a non-partitioned system because it uses a

different execution plan based on the number of clients. For example, for a lower

number of clients, the runtime WS partitioning technique uses an execution plan that

may demand to run the whole application locally or execute a small part of the

application on a remote computing node. For a higher number of clients, the runtime

WS partitioning technique is expected to use execution plans that require execution of

a major part of an application on a remote computing node. The performance

improvement over an un-partitioned system achieved by the runtime WS partitioning

technique is observed to increase with an increase in the number of clients.

212

6.5.3.4 A system with a Fixed Number of Clients with Non-Zero Think Times

For this set of experiments, the number of clients used is 10, 20 and 40. Experiments

are repeated with different values of the mean think time (500, 1000, 2000, 3000,

4000 and 5000 time units). The results presented in Figure 6-8 are obtained when with

mean think time equal to 1000 time units. When the number of clients used is 10, the

partitioned system achieved with the design time partitioning exhibits an inferior

performance in comparison to cases when no partitioning or the runtime WS

partitioning technique is used.

Figure 6-8: Performance comparison of the partitioned systems achieved with the

three techniques using fixed number of clients with mean think time = 1000 time units

When a large number of clients are used (see the second and third sets of bars in

Figure 6-8), the partitioned systems achieved with the design time partitioning and the

runtime partitioning are showing better performance in comparison to the case when

no partitioning is used. The performance of the partitioned system achieved with the

runtime WS partitioning technique is observed to be the best among the three

techniques. This experiment confirms the effectiveness of the runtime WS

0

40000

80000

120000

160000

200000

10 20 40

τ

Number of Clients (C)

Un-partitioned System Partitioned System (MOMC)

Partitioned System (Runtime Partitiong)

213

partitioning especially when the system is experiencing a variation in the number of

active clients accessing the partitioned system because of the different values of think

time.

 (a)

(b)

Figure 6-9: Performance comparison of the three WS partitioning techniques with

varying mean client think time and a) C = 10 and b) C = 20

30000

35000

40000

45000

50000

55000

5000 4000 3000 2000 1000 500

τ

Mean Think Time

Un-partitioned System Partitioned System (MOMC)

Partitioned System (Runtime Partitiong)

30000

50000

70000

90000

110000

130000

5000 4000 3000 2000 1000 500 100

τ

Mean Think Time

Un-partitioned System Partitioned System (MOMC)

Partitioned System (Runtime Partitiong)

214

The graphs presented in Figure 6-9 show the mean response time for the three WS

partitioning techniques for different values of the mean think time. When a lower

number of clients such as 10 is used, the proposed runtime WS partitioning technique

exhibits the best performance (see Figure 6-9-a) for all values of the mean think time.

But for a large number of clients such as 20, an interesting pattern is observed. The

design time WS partitioning technique is observed to be the winner for lower values

of the mean think time (see Figure 6-9-b) whereas the proposed runtime WS

partitioning technique displays the best performance for higher values of the mean

think time (see Figure 6-9-b).

6.5.3.5 Using Variable Number of Clients

In this set of experiments, the number of clients is varied at runtime between 1 and

the maximum number of clients (Cmax) which is an input for each experiment. Each

experiment starts with 1 client. A set of clients are added to the system after

processing a fixed number of requests. The value used for the fixed number of

requests for this experiment is 500. Once the maximum number of clients (Cmax) is

reached, a number of clients is set to 1 client again and then incremented after

processing every 500 requests and so on. The experiment is repeated using different

values of Cmax. The values used for Cmax are 5, 10, 15, 20 and 40. The results

observed for the partitioned systems achieved with the three WS partitioning

techniques are presented in Figure 6-10.

For all values of the maximum number of clients (Cmax), the partitioned system

achieved with the runtime partitioning techniques exhibit the best performance. The

performance improvement of this partitioned system over the other two techniques

(no partitioning case and the design time WS partitioning technique (MOMC)) is

215

more significant for various values of maximum number of clients (Cmax). This means

that for systems with large variations in the system load, the runtime WS partitioning

techniques is expected to show a significant performance improvement

The partitioned system achieved with the design time WS partitioning technique

(MOMC) shows an inferior performance in comparison to the no partitioning case

when a lower value is used for Cmax. The partitioned system achieved with MOMC

shows an improvement in the mean execution time in comparison to the no

partitioning case only when Cmax is greater than 15. The design time WS partitioning

algorithm (MOMC) tries to compute a significant part of a WS application for

offloading and can result in increased overheads. When lower values are used for

Cmax, the overheads that accrue for the partitioned system achieved with MOMC

offset the advantages of executing a part of application on the remote computing

node.

 Figure 6-10: Performance comparison of the three techniques using variable number

of clients.

0

40000

80000

120000

160000

1-5 1-10 1-15 1-20 1-40

τ

Variable Number of Clients (C)

Un-partitioned System Partitioned System (MOMC) Partitioned System (Runtime Partitiong)

216

With the variable number of clients, the partitioned system achieved with the design

time partitioning technique (MOMC) seems to exhibit an inferior performance in

comparison to the un-partitioned system and the partitioned system achieved with the

runtime WS partitioning technique. The partitioned system achieved with the runtime

WS partitioning technique proposed in this chapter is observed to outperform the

other two techniques for all scenarios experimented with. The performance

improvement observed on the partitioned system achieved with the runtime WS

partitioning technique is higher when the variation in the number of clients is large.

6.6 Summary

This chapter introduced a runtime WS partitioning technique for mobile web

services. WS application partitioning is expected to improve system performance on

resource constrained mobile devices by executing a part of the application on a

remote computing node. The partitioned system with multiple execution plans is

determined first using the proposed graph based WS partitioning algorithm. The

runtime middleware is then used for selecting an appropriate execution plan based on

the system load information. The experimental analysis shows that

� For different system load scenarios, offloading a different size of partitions to be

executed on a remote computing node is important. For a lower system load,

executing a small part of an application on a remote computing node is beneficial.

For heavier loads, the system performance is observed to be better when a large

part of the application is executed on a remote computing node.

� For systems with a fixed number of clients and zero client think times the relative

performance of the three techniques, no partitioning, design time partitioning and

run time partitioning depends on the number of clients. If the number of clients is

217

lower than 10 then it is better to use run time partitioning (see graphs for C < 10 in

Figure 6-7 for example). Using design time partitioning for a higher number of

clients gives rise to the best system performance (see graph for C >10 in Figure

6-7 for example).

� For systems with a fixed number of clients but non-zero client think times the

relative performances of the three techniques depends on the number of clients.

For a smaller number of clients, the run time partitioning technique gives rise to

the best performance for all the think times experimented with (see Figure 6-9 (a)

for example). For a higher number of clients, 20 for example, the winner depends

on the value of the mean think time. For higher values of the mean think time, run

time partitioning displays the best performance (see Figure 6-9 (b)). As shown in

this figure, when the mean think time is lower than 2000, the deign time

partitioning technique exhibits the best performance but performance achieved

with the runtime WS partitioning technique is close to the design time partitioning

technique.

� For systems with a variable number of clients discussed in Section 6.5.3, the run

time partitioning technique always gives rise to the best performance for the

parameter values experimented with (see Figure 6-10).

The experimental results indicate that for low to medium load when the number of

clients is fixed, run time partitioning is to be used. For high load, design time WS

partitioning is a better choice. For systems characterized by a large variability in the

number of clients running at a time on the system the run time partitioning technique

gives rise to the best performance.

218

Chapter 7: Conclusions

Hosting web services on mobile devices is challenging because of the resource

constraints associated with such devices. A number of different techniques for

addressing these challenges are presented in this thesis. System performance is

investigated in detail in the context of each of these techniques. This chapter

summarizes the thesis contributions, conclusions and directions for future research.

7.1 Summary

Hosting web services on mobile devices is investigated in detail. The results of these

investigations are summarized next.

7.1.1 Lightweight and Partitioned Web Service Execution Environments

For hosting web services on mobile devices, two web service execution

environments (WSEE) are proposed: a lightweight WSEE (see Section 3.2) and a

partitioned WSEE (see Section 3.3). The lightweight WSEE is proposed for resource

constrained mobile devices to support a set of basic WS standards for hosting web

services. To conform to the data and the resource intensive WS standards such as WS-

Security and WS-AtomicTransaction, a configurable partitioned WSEE is proposed.

For a lower number of WS clients and a basic set of WS standards, the lightweight

WSEE demonstrates better performance over the partitioned WSEE. For a larger

number of WS clients or when additional resource demanding WS standards are

219

required to be supported, the partitioned WSEE exhibits a superior performance. For

mobile devices with very limited resources such as pagers and conventional mobile

phones, the performance of the partitioned WSEE is observed to be less sensitive to

the increase in the number of WS clients in comparison to the lightweight WSEE.

Also, the partitioned WSEE is observed to be scalable with the number of WS clients.

7.1.2 WS Partitioning Frameworks

The thesis also analyzes performance of three application partitioning frameworks

(Intermediate framework, Backend framework and Forwarding framework) for

hosting of web services on mobile devices. The intermediate and backend frameworks

were proposed in the literature for both mobile and conventional applications. This

thesis analyzes their feasibility for hosting web services on mobile devices. Note that

these two frameworks were never been analyzed for WS hosting. This thesis also

proposes a new framework called the forwarding framework (see Section 4.2.3).

Based on prototyping and measurement, an in-depth analysis is performed to

investigate the performance of the three partitioning frameworks for hosting web

services on resource constrained mobile devices. The analysis shows that the

intermediate and the forwarding frameworks lead to a significant performance

improvement over an un-partitioned system but the performance of the backend

framework is observed to be superior to an un-partitioned system only when a large

number of WS clients are active or a significantly large portion of an application is

executed on a backend computing node. For the experimental data presented in

Section 4.6, both the forwarding and the intermediate frameworks have shown a

superior performance in comparison to the backend framework. The intermediate

framework seems to be a better choice over the backend framework and the

220

forwarding framework for web services that require the WSEE to support extra WS

standards such as the security standard. The rationale behind such a behavior is the

execution of a larger component of the WSEE on the intermediate node. The

forwarding framework is observed to show a slightly better performance over the

intermediate framework when large volumes of data are exchanged among different

WS partitions. This seems to be an effect of the lower number of messages exchanged

in the forwarding framework, the impact of which becomes significant for higher

volumes of data exchanged. For most of other scenarios, the forwarding framework

achieved a comparable performance as the intermediate framework.

7.1.3 Design Time WS Partitioning Techniques

The thesis proposes two design time graph based algorithms for WS partitioning.

The proposed design time algorithms are Maximum Offloading Minimum Cost (see

Section 5.4) and Cluster based Application Partitioning (see Section 5.5). The

effectiveness of these proposed algorithms is investigated through a system prototype

(using sample web services) as well as simulation (using randomly generated

application graphs). The results achieved with the prototype and the simulations

demonstrate that the proposed algorithms outperform the existing techniques (OEA

and MinCut) for WS partitioning. The MOMC partitioning algorithm is observed to

perform the best for small to medium size applications whereas the CAP algorithm

exhibits its effectiveness for large applications. The OEA and the MinCut based WS

partitioning techniques produce effective partitions only for specific types of graphs

whereas the MOMC algorithm and the CAP algorithm based WS partitioning

techniques are effective on a wider variety of graphs. The type of knowledge to be

used in devising a partitioning algorithm is investigated. MinCut that uses only the

221

communication cost is found to lead to an inferior performance of the partitioned

system in comparison to those achieved with MOMC and CAP that use both

communication and processing costs.

7.1.4 Runtime WS Partitioning Technique

The thesis proposes a runtime WS partitioning technique for mobile web services

(see Section 6.2). For the runtime WS partitioning technique, the partitioned system

with multiple execution plans is determined first using the proposed graph based WS

partitioning algorithm. The runtime middleware is then used at runtime for selecting

an appropriate execution plan based on system load information. For different system

load scenarios, offloading a different size of partitions to be executed on a remote

computing node is observed to be important. For a lower system load, executing the

whole application locally or executing only a small part of the application on a remote

computing node is beneficial. For heavier loads, the system performance is observed

to give rise to a significant performance improvement over an un-partitioned system

when a large part of the application is executed on a remote computing node.

An analysis is performed to compare the performance of design time WS

partitioning techniques and the runtime WS partitioning technique. This comparison

produces interesting results (see Section 6.5.3.3, Section 6.5.3.4 and Section 6.5.3.5).

For low to medium load and when the number of clients is fixed, run time partitioning

seems to be a better choice. For high load, the design time WS partitioning is a better

choice.

A number of important insights into the system behavior and performance gained

through the performance analysis of the WS partitioning techniques is presented next.

For WS applications with a small number of components that are invoked by a single

222

WS client, using no WS partitioning is a better choice. For systems characterized by a

large variability in the number of clients running at a time on the system, the run time

partitioning technique gives rise to the best performance. For systems with a large

number of WS clients and characterized by a low variability in the number of clients

running at a time, the design time WS partitioning is a better choice. Among the

design time partitioning techniques, the MOMC based technique exhibits the best

performance for low to medium sized WS applications whereas the CAP based

technique is suitable for WS applications comprising a large number of components.

7.2 Directions for Future Research

A few directions for future research are presented next.

• The use of information on the battery life of a mobile device and the

available memory on a mobile device by the WS partitioning algorithms

forms another important direction of future work.

• For runtime WS partitioning techniques, the use of remaining battery life of

the mobile device for selection of an execution plan forms another direction

for future research.

• Generating partitions such that the bandwidth used is lower than a

predefined bandwidth budget warrants further investigation.

• The three nodes of the proposed WS partitioning frameworks can be

connected via switching nodes. Analyzing the effect of the number of such

switching nodes on the relative performance of the frameworks can be

another interesting direction for future research. The impact of the location

of WS clients and mobile devices on the relative performance of the

proposed frameworks warrants investigation. For example, if a WS client

223

and a WS provider (mobile device) exist in the same network, a system that

does not involve an intermediate, backend or forwarding node may result in

a better performance in comparison to the frameworks involving such

nodes.

• Investigation of a WS partitioning framework that uses caching techniques

for caching data from a mobile device on an intermediate node and access

the mobile device only whenever it is required forms another direction for

future research.

• Techniques for the selection of one or more remote computing nodes from a

set of available computing nodes for execution of one or more partitions

require further investigation.

• Getting one more remote computing nodes from a cloud on demand and

downloading the appropriate partitions for execution forms another

interesting direction for future research.

224

References

[Ada06] M. Adaçal and A. Bener, “Mobile Web Services: A New Agent-Based

Framework”, IEEE Internet Computing, Vol. 10, No. 3, pp. 58-65,

June 2006.

[Aij08] F. Aijaz, S. Adeli and B. Walke, “Middleware for Communication and

Deployment of Time Independent Mobile Web Services”, In the

Proceedings of the IEEE International Conference on Web Services

(ICWS’08), pp. 797-800, Hawaii, HI, U.S.A., July 2008.

[Aij10] F. Aijaz, M. Chaudhry and B. Walke, "Mobile Web Services in Health

Care and Sensor Networks", In the Proceedings of the Second

International Conference on Communication Software and Networks

(ICCSN’10), pp. 254-259, Singapore, February 2010.

[Alc07] Alchemy APIs, “AlchemySOAP 1.0.0: C++ Open Source SOAP-based

Web Services Framework”, 2007, available at http://sourceforge.net/

projects/alchemysoap/ [Accessed: March 03, 2012].

[Als11-1] F. Alshahwan, K. Moessner and F. Carrez, “Providing Light Weight

Distributed Web Services from Mobile Hosts”, In the Proceedings of

the 2011 IEEE International Conference on Web Services (ICWS’11),

pp. 652–659, Washington, DC, U.S.A., July 2011.

[Als11-2] F. Alshahwan, K. Moessner and F. Carrez, “Evaluation of Distributed

SOAP and RESTful Mobile Web Services”, International Journal on

Advances in Internet Technology, Vol. 3, No. 3 & 4, pp. 447 – 461,

April 2011.

225

[Apa08] Apache Software Foundation, “Apache Axis 2 User’s Guide”, 2008,

available at http://ws.apache.org/axis2/1_4/userguide.html [Accessed:

March 03, 2012].

[Asi07-1] M. Asif, S. Majumdar and R. Dragnea, “Hosting Web Services on

Resource Constrained Devices”, In the Proceedings of the 2007 IEEE

International Conference on Web Services (ICWS’07), pp. 583-590,

Salt Lake City, UT, U.S.A., July 2007.

[Asi07-2] M. Asif, S. Majumdar and R. Dragnea, “Application Partitioning for

Enhancing System Performance for Services Hosted On Wireless

Devices”, In the Proceedings of the First International Workshop on

Service Oriented Engineering and Optimization (SENOPT’07), pp. 1-

15, Goa, India, December 2007.

[Asi-08-1] M. Asif, S. Majumdar and R. Dragnea, “Partitioning the WS Execution

Environment for Hosting Mobile Web Services”, In the Proceedings of

the 2008 IEEE International Conference on Services Computing

(SCC’08), pp. 315-322, Honolulu, HI, U.S.A., July 2008.

[Asi-08-2] M. Asif and S. Majumdar, “Performance Analysis of Mobile Web

Service Partitioning Frameworks”, In the Proceedings of the Sixteenth

International Conference on Advanced Computing and

Communication, pp. 190-197, Chennai, India, December 2008.

[Ava02] S. Avancha, V. Korolev, A. Joshi and T. Finin, “On Experiments with

a Transport Protocol for Pervasive Computing Environments”, Journal

of Computer Networks, Vol. 4, No. 40, pp. 515-535, November 2002.

[Bar93] S. Barnard and H. Simon, “A Fast Multilevel Implementation of

Recursive Spectral Bisection for Partitioning Unstructured Problems”,

In the Proceedings of the Sixth SIAM Conference on Parallel

Processing for Scientific Computing, pp. 711–718, Norfolk, VA,

U.S.A., March 1993.

[BPE03] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems, “Business

Process Execution Language for Web Services version 1.1”, 2003,

226

available at http://download.boulder.ibm.com/ibmdl/pub/software/

dw/specs/ws-bpel/ws-bpel.pdf [Accessed: March 29, 2012].

[Bra05] P. Braun and W. Rossak, “Mobile Agents - Basic Concepts, Mobility

Models and the Tracy Toolkit”, Morgan Kaufmann Publishers Inc.,

San Francisco, CA, U.S.A., 2005.

[Bro04] R. Brown, “Smoothing Forecasting and Prediction of Discrete Time

Series”, Dover Publications, Mineola, NY, U.S.A., 2004.

[CDC05] Oracle Corporation, “Connected Device Configuration, JSR 218”,

2005, available at http://java.sun.com/products/cdc/ [Accessed: March

24, 2012].

[Cha02] D. Chandra, C. Fensch, W. Hong, L. Wang, E. Yardımci and M. Franz,

“Code Generation at the Proxy: An Infrastructure-based Approach to

Ubiquitous Mobile Code”, In the Proceedings of the Fifth ECOOP

Workshop on Object-Orientation and Operating Systems (ECOOP-

OOOSWS’02), pp. 123-130, Malaga, Spain, June 2002.

[Che04] G. Chen, B. Kang and M. Kandemir, “Studying Energy Trade-offs in

Offloading Computation/Compilation in Java-Enabled Mobile

Devices”, IEEE Transactions on Parallel and Distributed Systems,

Vol. 15, No. 9, pp. 795-809, September 2004.

[Che02] S. Cheng, J. Liu, J. Kao and C. Chen, “A New Framework for Mobile

Web Services”, In the Proceedings of the 2002 Symposium on

Applications and the Internet Workshops (SAINT’02), pp. 28-34, Nara

City, Japan, January- February 2002.

[Chu04] H. Chu, C. You and C. Teng, “Challenges: Wireless Web Services”, In

the Proceedings of the Tenth International Conference on Parallel and

Distributed Systems (ICPADS’04), pp. 657-662, Newport Beach, CA,

U.S.A., July 2004.

[CLD05] Oracle Corporation, “Connected Limited Device Configuration, JSR

139”, 2005, available at http://java.sun.com/products/cldc/ [Accessed:

May 2, 2012]

227

[Edm72] J. Edmonds and R. Karp, “Theoretical Improvements in Algorithmic

Efficiency for Network Flow Problems”, Journal of the ACM (JACM),

Vol. 19, No. 2, pp.248-264, April 1972.

[Eng03] R. Engelen, “gSOAP Project”, 2003, available at http://gsoap2.

sourceforge.net/ [Accessed: March 24, 2012].

[Eso04] Ultimodule Inc., “eSOAP Toolkit”, 2004, available at http://esoap.ulti

module.com/bin/esoap/templates/splash.asp?NC=1881X [Accessed:

June 24, 2011].

[Fel04] S. Fell, “PocketSOAP online documentation, Version 1.5”, 2004,

available at http://www.pocketsoap.com/pocketsoap/docs/default.htm

[Accessed: March 04, 2012].

[Fie00] R. Fielding, “Architectural Styles and the Design of Network-based

Software Architectures”, Ph.D. Thesis, University of California, Irvine,

CA, U.S.A., 2000.

[Ful56] D. R. Fulkerson, "Maximal Flow through a Network", Canadian

Journal of Mathematics, Vol. 8, No. 3, pp. 399-404, 1956.

[Gam95] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns:

Elements of Reusable Object-Oriented Software”, Addison-Wesley

Professional Computing Series, First Edition, Boston, MA, U.S.A.,

January 1995.

[Geh05] G. Gehlen and L. Pham, “Mobile Web Services for Peer-to-Peer

Applications”, In the Proceedings of the Second IEEE Consumer

Communications and Networking Conference (CCNC’05), pp. 427-

433, Las Vegas, NV, U.S.A., January 2005.

[Geo08] GeoNames, “Geographical Database System”, available at http://

www.geonames.org [Accessed: May 2, 2012].

[Goo08] Google Inc., “Google Maps Services”, 2008, available at http://code.

google.com/apis/maps/documentation/services.html [Accessed: April

08, 2011].

[Gro06] G. Gross and J. Yellen, “Graph Theory and its Applications”,

Chapman and Hall, Second Edition, New York, NY, U.S.A., 2006.

228

[Han05] R. Handorean, R. Sen, G. Hackmann and G. Roman, “Context Aware

Session Management for Services in Ad Hoc Networks”, In the

Proceedings of the 2005 IEEE International Conference on Services

Computing (SCC’05), pp. 113-120, Orlando, FL, U.S.A., July 2005.

[Hem05] H. Hemmati, A. Ranjbar, M. Niamanesh, and R. Jalili, “A Model to

Support Context-Aware Service Migration in Pervasive Computing

Environments”, In the Proceedings of the Ninth World Multi-

Conference on Systemics, Cybernetics and Informatics, pp. 223-225,

Orlando, FL, U.S.A., July 2005.

[Hen93] B. Hendrickson and R. Leland, “A Multilevel Algorithm for

Partitioning Graphs”, Technical Report, SAND93-1301, Sandia

National Laboratories, 1993.

[Hun99] G. Hunt and M. Scott, “The Coign Automatic Distributed Partitioning

System”, In the Proceedings of the Third USENIX Symposium on OS

Design and Implementation (OSDI’99), pp. 187-200, New Orleans,

LA, U.S.A., February 1999.

[Jam05] V. Jamwal and S. Iyer, “Automated Refactoring of Objects for

Application Partitioning”, In the Proceedings of the Twelfth Asia-

Pacific Software Engineering Conference (APSEC’05), pp. 671-678

Taipei, Taiwan, December 2005.

[Jav04] Oracle Corporations, “Java Image I/O API Specifications, JSP-015”,

available at http://java.sun.com/j2se/1.4.2/docs/guide/imageio/index.

html [Accessed: March 08, 2011].

[Jme06] Oracle Corporations, “Java Platform, Micro Edition (J2ME)”, 2006,

available at http://java.sun.com/javame/ [Accessed: March 24, 2012]

[Kar99] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel

Scheme for Partitioning Irregular Graphs”, SIAM Journal on Scientific

Computing, Vol. 20, No. 1, pp. 359-392, 1999.

[Kim07] Y. Kim and K. Lee, “A Light-weight Framework for Hosting Web

Services on Mobile Devices”, In the Proceedings of the Fifth

229

European Conference on Web Services (ECOWS’07), pp. 255 – 263,

Halle, Germany, November 2007.

[Kso03] kSOAP Project, 2003, available at http://ksoap.objectweb.org/

[Accessed: May 4, 2012]

[Kxm03] KXML2 Project, 2003, available at http://kxml.sourceforge.net/kxml2/

[Accessed April 21, 2012].

[Lee06] W. Lee, K. Lee and S. Lee, “Intermediary based Architecture for

Mobile Web Services”, In the Proceedings of the Eighth International

Conference on Advanced Communication Technology (ICACT’06), pp.

1973-1978, Phoenix Park, Korea, February 2006.

[Li01] Z. Li, C. Wang and R. Xu, “Computation Offloading to Save Energy

on Handheld Devices: A Partition Scheme”, In the Proceedings of the

International Conference on Compilers, Architectures and Synthesis

for Embedded Systems, pp. 238-246, Atlanta, GA, U.S.A.,

November 2001.

[Lio04] N. Liogkas, B. MacIntyre, E. Mynatt, Y. Smaragdakis, E. Tilevich and

S. Voida, “Automatic Partitioning: A Promising Approach to

Prototyping Ubiquitous Computing Applications”, IEEE Pervasive

Computing, Special Issue on Building and Evaluating Ubiquitous

System Software, Vol. 3, No. 3, pp. 40-47, July 2004.

[Luq08] L. Luqun, “An Integrated Web Service Framework for Mobile Device

Hosted Web Service and Its Performance Analysis”, In the

Proceedings of the Tenth IEEE International Conference on High

Performance Computing and Communications, (HPCC'08), pp. 659-

664, Dalian, China, September 2008.

[Mac05] J. MacDonald and C. Mitchell, “Using the GSM/UMTS SIM to Secure

Web Services”, In the Proceedings of the Second IEEE International

Workshop on Mobile Commerce and Services (WMCS’05), pp. 70-78,

Munchen, Germany, July 2005.

[Mcf03] S. McFaddin, C. Narayanaswami and M. Raghunath, “Web Services

on Mobile Devices – Implementation and Experience”, In the

230

Proceedings of the Fifth IEEE Workshop on Mobile Computing

Systems & Applications (WMCSA’03), pp. 100-109, Monterey, CA,

U.S.A., October 2003.

[Mes02] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T. Giuli

and X. Gu, “Towards a Distributed Platform for Resource-Constrained

Devices”, In the Proceedings of the International Conference on

Distributed Computing Systems (ICDCS’02), pp. 43-56, Vienna,

Austria, July 2002.

[Mil93] G. Miller, S. Teng, W. Thurston, and S. Vavasis, “Automatic Mesh

Partitioning”, Graph Theory and Sparse Matrix Computation, pp. 57-

84, Springer-Verlag, New York, NY, U.S.A., 1993.

[Nou86] B. Nour-Omid, A. Raefsky, and G. Lyzenga, “Solving Finite Element

Equations on Concurrent Computers”, In the Proceedings of the

Symposium on Parallel Computations and their Impact on Mechanics,

pp. 291-307, Boston, MA, U.S.A., December 1986.

[Net05] Microsoft Corporation, “.NET Compact Framework 2.0”, available at

http://msdn.microsoft.com/en-us/netframework/aa731542 [Accessed:

March 24, 2011].

[Ou07] S. Ou , K. Yang and J. Zhang, “An Effective Offloading Middleware

for Pervasive Services on Mobile Devices”, Elsevier Journal of

Pervasive and Mobile Computing, Vol. 3, No. 4, pp. 362-385, August

2007.

[Par06] G. Park, S. Kim, G. Bae, Y. Kim and B. Kang, “An Automated WSDL

Generation and Enhanced SOAP Message Processing System for

Mobile Web Services”, In the Proceedings of the Third International

Conference on Information Technology: New Generations (ITNG'06),

pp. 382-387, Las Vegas, NV, U.S.A., April 2006.

[Pha05] L. Pham and G. Gehlen, “Realization and Performance Analysis of a

SOAP Server for Mobile Devices,” In the Proceedings of the Eleventh

European Wireless Conference, Vol. 2, pp. 20-27, Nicosia, Cyprus,

April 2005.

231

[Pil03] T. Pilioura, A. Tsalgatidou and S. Hadjiefthymiades, “Scenarios of

using Web Services in M-Commerce”, ACM SIGecom Exchanges,

Vol. 3, No. 4, pp. 28-36, January 2003.

[Pop10] V. Popescu, “Java Application Profiling using TPTP”, 2010, available

at http://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/tptp

ProfilingArticle.html [Accessed: April 23 2012].

[Ren05] O. Rendon, F.Pabon, M. Gomez, Vargas and J. Guaca, “Architectures

for Web Services Access from Mobile Devices”, In the Proceedings of

the Third Latin American Web Congress (LA-WEB’05), pp.93-97,

Buenos Aires, Argentina, October-November 2005.

[Ren09] C. Renouf, “Pro (IBM) WebSphere Application Server 7 Internals”,

Apress, First Edition, New York, NY, U.S.A., 2009

[Riv07] O. Riva, T. Nadeem, C. Borcea, and L. Iftode, “Mobile Services:

Context-Aware Migratory Services in Ad Hoc Networks”, IEEE

Transactions on Mobile Computing, Vol. 6, No. 12, pp. 1313-1328,

December 2007.

[Ros02] J. Rosenberg, “SIP: Session Initiation Protocol. Request for Comments

(Standards Track) 3261”, Internet Engineering Task Force

(http://www.ietf.org/), June 2002.

[Ros87] S. Rosen, “Simulation”, Lectures on the Measurement and Evaluation

of the Performance of Computing Systems, Society for Industrial

Mathematics, February 1987.

[Rus02] J. Russ, “The Image Processing Handbook”, Fifth Edition, CRS Press,

Boca Raton, FL, U.S.A., 2002.

[Sch99] A. Schill, A. Held, T. Ziegert and T. Springer, “A Partitioning Model

for Applications in Mobile Environments”, In the Proceedings of the

Mobile Agents in the Context of Competition and Cooperation (MAC3)

Workshop at Autonomous Agents, pp. 34-41, Seattle, WA, U.S.A.,

May 1999.

232

[Sch06] D. Schall, M. Aiello and S. Dustdar, “Web Services on Embedded

Devices”, International Journal of Web Information Systems, Vol. 2

No. 1, pp.45-50, February 2006.

[She04] J. Shen, B. Han, M. Yuen and W. Jia, “End-to-End Wireless

Multimedia Transmission System”, In the Proceedings of the IEEE

Vehicular Technology Conference (VTC'04), pp. 2616-2620, Milan,

Italy, May 2004.

[Sil04] A. Silberschatz, G. Gagne and P. Galvin, “Operating Systems

Concepts”, Seventh Edition, John Wiley & Sons Inc., December 2004.

[Sri06] S. Srirama, M. Jarke and W. Prinz, “Mobile Web Service

Provisioning”, In the Proceedings of the Advanced International

Conference on Telecommunications and International Conference on

Internet and Web Applications and Services (AICT/ICIW 2006), pp.

120-128, Guadeloupe, French Caribbean, February 2006.

[Sri07-1] S. Srirama and A. Naumenko, “Secure Communication and Access

Control for Mobile Web Service Provisioning”, In the Proceedings of

the International Conference on Security of Information and Networks

(SIN’07), pp. 64-70, North Cyprus, Turkey, May 2007.

[Sri07-2] S. Srirama, M. Jarke and W. Prinz, “A Performance Evaluation of

Mobile Web Services Security”, In the Proceedings of the Third

International Conference on Web Information Systems and

Technologies (WEBIST’07), pp. 386-392, Barcelona, Spain, March

2007.

[Sri10] S. Srirama, M. Jarke, E. Vainikko and V. Sor, “Scalable Mobile Web

Services Mediation Framework”, In the Proceedings of the Fifth

International Conference on Internet and Web Applications and

Services, pp. 315–320, Barcelona, Spain, May 2010.

[Sri11] S. Srirama, M. Jarke, E. Vainikko and V. Sor, “Supporting Mobile

Web Service Provisioning with Cloud Computing”, International

Journal on Advances in Internet Technology, Vol. 3, No. 3 & 4, pp.

261-273, April 2011.

233

[Ste05] R. Steele, K. Khankan and T. Dillon, “Mobile Web Services Discovery

and Invocation through Auto-Generation of Abstract Multimodal

Interface”, In the Proceedings of the International Conference on

Information Technology: Coding and Computing (ITCC’05), pp. 35-

41, Las Vegas, NV, U.S.A., April 2005.

[Sto97] M. Stoer and F. Wagner, “A Simple Min-Cut Algorithm,” Journal of

the ACM, Vol. 44, No. 4, pp. 585-591, July 1997.

[Suk10] A. Sukhov, N. Kuznetsova, A. Pervitsky and A. Galtsev, “Generating

Function for Network Delay”, CoRR abs/1003.0190, February 2010.

[Til02] E. Tilevich and Y. Smaragdakis, “J-Orchestra: Automatic Java

Application Partitioning”, In the Proceedings of the Sixteenth

European Conference on Object-Oriented Programming, pp. 178-204,

Malaga, Spain, June 2002.

[Udd05] Universal Description, Discovery and Integration (UDDI) Version 3.0,

2005, available at http://www.uddi.org [Accessed: March 24, 2012]

[W3c02-1] World Wide Web Consortium (W3C), “XML Encryption: Syntax and

Processing”, 2002, available at http://www.w3.org/TR/xmlenc-core/

[Accessed: June 24, 2011]

[W3c02-2] World Wide Web Consortium (W3C), “XML Signature: Syntax and

Processing”, 2002, available at http://www.w3.org/TR/xmldsig-core/

[Accessed: April 24, 2012]

[Wan08] L. Wang and M. Franz, “Automatic Partitioning of Object-Oriented

Programs for Resource-Constrained Mobile Devices with Multiple

Distribution Objectives”, In the Proceedings of the Fourteenth IEEE

International Conference on Parallel and Distributed Systems

(ICPADS'08), pp. 369-376, Melbourne, Australia, December 2008.

[Wat95] T. Watson, “Effective Wireless Communication through Application

Partitioning”, In the Proceedings of the Fifth Workshop on Hot Topics

in Operating Systems, pp. 24-27, Orcas Island, WA, U.S.A., May

1995.

234

[Wel86] D. Wells, “The Penguin Dictionary of Curious and Interesting

Numbers”, Penguin Books, Middlesex, England, 1986.

[Wsa04] Oracle Corporations, “J2ME Web Services APIs (WSA), JSR 172”,

2004, available at http://java.sun.com/products/wsa/ [Accessed: June

24, 2011]

[Wsd01] Web Service Description Language (WSDL), 2001, available at

http://www.w3.org/tr/wsdl [Accessed: June 24, 2011].

[Wu05] M. Wu, “Teaching Graph Algorithms using Online Java Package,

IAPPGA”, ACM SIGCSE Bulletin, Vol. 37, No. 4, pp. 64-68,

December 2005.

[Xml02] XML PULL Parser API, available at http://www.xmlpull.org/

[Accessed: March 12, 2011].

[You01] C. Young, Y. Lakshman, T. Szymanski, J. Reppy, D. Presotto, R. Pike,

G. Narlikar, S. Mullender and F. Grosse, “Protium, an Infrastructure

for Partitioned Applications”, In the Proceedings of the Eighth

Workshop on Hot Topics in Operating Systems, pp.47–52,

Elmau/Oberbayern, Germany, May 2001.

[Zha11] J. Zhang, S. Chen, Y. Lu and D. Levy, “A Mobile Web Service

Middleware and its Performance Study”, Transactions on Large-Scale

Data and Knowledge-Centered Systems (TLDKS), Springer LNCS,

Vol. 6790, pp. 185-207, 2011.

Appendix A:

A.1 Effect of the Size of Data Exchanged between WS Partitions

one WS client

Figure A-

performance of the three frameworks when the sample

50% is invoked by one WS client (a) with N = 1000 (b) with N = 100000

Appendix A:

Effect of the Size of Data Exchanged between WS Partitions

one WS client

-1: The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample

50% is invoked by one WS client (a) with N = 1000 (b) with N = 100000

Appendix A: WS

Effect of the Size of Data Exchanged between WS Partitions

The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample

50% is invoked by one WS client (a) with N = 1000 (b) with N = 100000

235

WS Partit

Effect of the Size of Data Exchanged between WS Partitions

The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample

50% is invoked by one WS client (a) with N = 1000 (b) with N = 100000

235

Partitioning Frameworks

Effect of the Size of Data Exchanged between WS Partitions

The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample

50% is invoked by one WS client (a) with N = 1000 (b) with N = 100000

oning Frameworks

Effect of the Size of Data Exchanged between WS Partitions

The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample π Calculator

50% is invoked by one WS client (a) with N = 1000 (b) with N = 100000

oning Frameworks

Effect of the Size of Data Exchanged between WS Partitions using

The effect of the size of data exchanged between WS partitions on the

π Calculator WS with O =

50% is invoked by one WS client (a) with N = 1000 (b) with N = 100000

oning Frameworks

using

The effect of the size of data exchanged between WS partitions on the

WS with O =

50% is invoked by one WS client (a) with N = 1000 (b) with N = 100000

A.2 Effect of the Size of Data Exchanged be

six WS clients

 Figure A

performance of the three frameworks when the sample

50% is invoked by six concurrent WS clients (a) with

Effect of the Size of Data Exchanged be

WS clients

A-2: The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample

50% is invoked by six concurrent WS clients (a) with

Effect of the Size of Data Exchanged be

The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample

50% is invoked by six concurrent WS clients (a) with

236

Effect of the Size of Data Exchanged be

The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample

50% is invoked by six concurrent WS clients (a) with

236

Effect of the Size of Data Exchanged between WS Partitions

The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample

50% is invoked by six concurrent WS clients (a) with N = 1000 (b) with N = 100000

tween WS Partitions

The effect of the size of data exchanged between WS partitions on the

performance of the three frameworks when the sample π Calculator

N = 1000 (b) with N = 100000

tween WS Partitions using

The effect of the size of data exchanged between WS partitions on the

π Calculator WS with O =

N = 1000 (b) with N = 100000

using

The effect of the size of data exchanged between WS partitions on the

WS with O =

N = 1000 (b) with N = 100000

A.3 Effect of Using a WS

Figure A-

three partitioning frameworks when the mobile device is operated at 624

sample π Calculator WS with O = 50% is invoked by (a) one (b) six WS clients

Effect of Using a WS

-3: Effect of using WS security standard on the relative performance of the

three partitioning frameworks when the mobile device is operated at 624

sample π Calculator WS with O = 50% is invoked by (a) one (b) six WS clients

Effect of Using a WS Security Standard

Effect of using WS security standard on the relative performance of the

three partitioning frameworks when the mobile device is operated at 624

sample π Calculator WS with O = 50% is invoked by (a) one (b) six WS clients

237

Security Standard

Effect of using WS security standard on the relative performance of the

three partitioning frameworks when the mobile device is operated at 624

sample π Calculator WS with O = 50% is invoked by (a) one (b) six WS clients

237

Security Standard with O

Effect of using WS security standard on the relative performance of the

three partitioning frameworks when the mobile device is operated at 624

sample π Calculator WS with O = 50% is invoked by (a) one (b) six WS clients

with One and Six

Effect of using WS security standard on the relative performance of the

three partitioning frameworks when the mobile device is operated at 624

sample π Calculator WS with O = 50% is invoked by (a) one (b) six WS clients

and Six WS client

Effect of using WS security standard on the relative performance of the

three partitioning frameworks when the mobile device is operated at 624 MHz and the

sample π Calculator WS with O = 50% is invoked by (a) one (b) six WS clients

WS client

Effect of using WS security standard on the relative performance of the

MHz and the

sample π Calculator WS with O = 50% is invoked by (a) one (b) six WS clients

A.4 Effect of the Speed of the Processing Resource

Figure A-4

three partitioning frameworks when the sample WS (with N = 1000000) is invoked by

Effect of the Speed of the Processing Resource

4: Effect of CPU speed of the mobile device on relative performance of the

partitioning frameworks when the sample WS (with N = 1000000) is invoked by

Effect of the Speed of the Processing Resource

Effect of CPU speed of the mobile device on relative performance of the

partitioning frameworks when the sample WS (with N = 1000000) is invoked by

six concurrent WS clients

238

Effect of the Speed of the Processing Resource

Effect of CPU speed of the mobile device on relative performance of the

partitioning frameworks when the sample WS (with N = 1000000) is invoked by

six concurrent WS clients

238

Effect of the Speed of the Processing Resource

Effect of CPU speed of the mobile device on relative performance of the

partitioning frameworks when the sample WS (with N = 1000000) is invoked by

six concurrent WS clients

Effect of the Speed of the Processing Resource using six WS clients

Effect of CPU speed of the mobile device on relative performance of the

partitioning frameworks when the sample WS (with N = 1000000) is invoked by

six concurrent WS clients

using six WS clients

Effect of CPU speed of the mobile device on relative performance of the

partitioning frameworks when the sample WS (with N = 1000000) is invoked by

using six WS clients

Effect of CPU speed of the mobile device on relative performance of the

partitioning frameworks when the sample WS (with N = 1000000) is invoked by

Appendix B:

Sample

The profiling outputs of the sample applications presented in this Appendix are a

few of the application

B.1 Call Tree of a

Figure B

B.2 Call Tree of an Echo Application using Two Classes (Cat and Dog)

Figure B

Appendix B:

Sample Application

The profiling outputs of the sample applications presented in this Appendix are a

few of the applications which are investigated to study the

Call Tree of a

B-1: Call tree achieved using eclipse TPTP profiling tool for π Calculator

Call Tree of an Echo Application using Two Classes (Cat and Dog)

B-2: Call tree achieved using eclipse TPTP profiling tool for of an Echo

Appendix B: Profiling Output of a Few

Application

The profiling outputs of the sample applications presented in this Appendix are a

s which are investigated to study the

Call Tree of a π Calculator Application

: Call tree achieved using eclipse TPTP profiling tool for π Calculator

Call Tree of an Echo Application using Two Classes (Cat and Dog)

: Call tree achieved using eclipse TPTP profiling tool for of an Echo

application using two Classes

239

Profiling Output of a Few

Applications

The profiling outputs of the sample applications presented in this Appendix are a

s which are investigated to study the

Calculator Application

: Call tree achieved using eclipse TPTP profiling tool for π Calculator

Application

Call Tree of an Echo Application using Two Classes (Cat and Dog)

: Call tree achieved using eclipse TPTP profiling tool for of an Echo

application using two Classes

239

Profiling Output of a Few

The profiling outputs of the sample applications presented in this Appendix are a

s which are investigated to study the

Calculator Application

: Call tree achieved using eclipse TPTP profiling tool for π Calculator

Application

Call Tree of an Echo Application using Two Classes (Cat and Dog)

: Call tree achieved using eclipse TPTP profiling tool for of an Echo

application using two Classes

Profiling Output of a Few

The profiling outputs of the sample applications presented in this Appendix are a

s which are investigated to study the call graph.

: Call tree achieved using eclipse TPTP profiling tool for π Calculator

Call Tree of an Echo Application using Two Classes (Cat and Dog)

: Call tree achieved using eclipse TPTP profiling tool for of an Echo

application using two Classes

Profiling Output of a Few

The profiling outputs of the sample applications presented in this Appendix are a

graph.

: Call tree achieved using eclipse TPTP profiling tool for π Calculator

Call Tree of an Echo Application using Two Classes (Cat and Dog)

: Call tree achieved using eclipse TPTP profiling tool for of an Echo

The profiling outputs of the sample applications presented in this Appendix are a

: Call tree achieved using eclipse TPTP profiling tool for π Calculator

Call Tree of an Echo Application using Two Classes (Cat and Dog)

: Call tree achieved using eclipse TPTP profiling tool for of an Echo

B.3 Call Tree for a

Figure B

B.4 Call Tree for a 2D Points Arithmetic

Figure

Call Tree for a

B-3: Call tree achieved using eclipse TPTP profiling tool for a Factorial

Call Tree for a 2D Points Arithmetic

 B-4: Call tree achieved using eclipse TPTP profiling tool for 2D Points

Call Tree for a Factorial Calculator Application

: Call tree achieved using eclipse TPTP profiling tool for a Factorial

Calculator A

Call Tree for a 2D Points Arithmetic

: Call tree achieved using eclipse TPTP profiling tool for 2D Points

Arithmetic Application

240

Factorial Calculator Application

: Call tree achieved using eclipse TPTP profiling tool for a Factorial

Calculator A

Call Tree for a 2D Points Arithmetic

: Call tree achieved using eclipse TPTP profiling tool for 2D Points

Arithmetic Application

240

Factorial Calculator Application

: Call tree achieved using eclipse TPTP profiling tool for a Factorial

pplication

Call Tree for a 2D Points Arithmetic Application

: Call tree achieved using eclipse TPTP profiling tool for 2D Points

Arithmetic Application

Factorial Calculator Application

: Call tree achieved using eclipse TPTP profiling tool for a Factorial

Application

: Call tree achieved using eclipse TPTP profiling tool for 2D Points

: Call tree achieved using eclipse TPTP profiling tool for a Factorial

: Call tree achieved using eclipse TPTP profiling tool for 2D Points

: Call tree achieved using eclipse TPTP profiling tool for a Factorial

: Call tree achieved using eclipse TPTP profiling tool for 2D Points

241

Appendix C: Real Time Profiling for Device

Profile Index

C.1 Real Time Profiling for Device Profile Index with Graph Size = 4

Figure C-1: Mean execution time measure by varying number of WS clients for a

graph size = 4

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 10 20 30 40 50 60 70 80 90 100

τ

C

242

C.2 Real Time Profiling for Device Profile Index with Graph Size = 8

Figure C-2: Mean execution time measure by varying number of WS clients for a

graph size = 8

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 10 20 30 40 50 60 70 80

τ

C

243

C.3 Real Time Profiling for Device Profile Index with Graph Size = 12

Figure C-3: Mean execution time measure by varying number of WS clients for a

graph size = 12

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 10 20 30 40 50 60 70 80

τ

C

