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Abstract

   The objective of this study is to investigate whether brainstem Speech Evoked 

Potentials (SpEPs), contain information that can be used to distinguish different 

speech stimuli. We used the five English language synthetic vowels as stimuli, and 

investigated the difference between their SpEPs by looking at the features contained 

in two types of responses: 1) the transient response which reflects the response to 

the onset of the stimulus, and 2) the sustained response which follows the acoustical 

features of the periodic speech stimulus. These features include the pitch, which is 

reflected in the Envelope Following Response (EFR), and the formants, which are 

reflected in the Frequency Following Response (FFR). We performed linear 

discriminant analysis and obtained classification accuracies of 38.33% for transient 

response features and 80.33% for sustained response features. This result 

demonstrates that brainstem neural responses in the region of onset, F0, and F1 

contain valuable information for discriminating vowels. 
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1 Introduction 

1.1 Motivation 

   Over the past few decades, there has been a strong interest in analyzing brain 

signals in response to various stimuli, particularly images and sounds. The ultimate 

goal is to understand such brain processing in order to be able to come up with 

better clinical tools for both the diagnosis and treatment of sensory and cognitive 

impairments. For instance, a possible clinical application would be to create a 

thought-reading system for individuals with communication disabilities to help them 

to communicate with outside world. A use-case for this system would be to recognize 

a segment of speech that those individuals intend to say and turn it into audio signal 

or text. 

   As part of the effort to achieve the aforementioned goal, a recent study on the 

brain’s visual processing demonstrated that it is possible to partially reconstruct a 

short natural movie from the blood flow patterns of participants’ brain (Nishimoto et 

al., 2011). A similar study was performed to model auditory neural processing using 

speech stimuli. It has shown that different English words and sentences being 

presented to 15 subjects can be reconstructed with an accuracy of up to about 50% 

from intracranial recordings (i.e. direct recordings from the surface of the auditory 

cortex) (Pasley et al., 2012). Although these studies have made significant 

contributions towards modeling brain’s neural processing, there still remains a long 

way to understanding it fully. The focus of this thesis is to provide a better 

understanding of auditory neural processing of speech by identifying distinctive 

features of the brainstem signals non-invasively recorded in human subjects using 

surface electrodes. The result of this study can help to improve the existing models 

for the brain’s auditory processing. 
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   The auditory system is a complex sensory system and there has been a lot of 

effort to understand how it works in order to be able to diagnose and treat auditory 

related disorders such as hearing impairments and language learning problems that 

result from central auditory processing impairment (Møller, 2006a). In the 1967, it 

was found that Auditory Brainstem Responses (ABRs) can be measured from the 

scalp using surface electrodes. ABRs are generated from the synchronous electrical 

activity of auditory neural system at the brainstem in response to sounds. Analyzing 

ABRs to simple short duration stimuli (i.e. clicks and tone bursts) revealed that ABRs 

reflect auditory neural activity along the ascending auditory pathway. 

   When the stimulus signal is more complex comprising a periodic or quasi-periodic 

component, such as a pure vowel or a consonant-vowel, the ABR can be divided into 

a transient response and a sustained steady-state response (Jewett et al., 1970; 

Jewett and Williston, 1971). The transient response refers to the initial non-periodic 

component of the ABR (usually up to 20 ms) after the onset of the stimulus. The 

sustained response is an additional response that is formed after the transient 

response. Further research on ABRs has shown that hearing thresholds and some 

auditory neural malfunctions can be determined from the peak amplitudes and inter-

peak latencies, particularly in the transient response (Hecox and Galambos, 1974; 

Starr and Anchor, 1975). As a result, the use of ABRs to clicks and tone bursts has 

become a key tool for clinicians and researchers for diagnosing hearing impairments 

and understanding the human auditory neural system (Burkard et. al., 2007).  

   Although ABRs to simple artificial stimuli have been widely used to study auditory 

neural processing, they provide a poor understanding about the processing of 

complex stimuli such as speech sounds. This is due to the fact that acoustical 

information of complex sounds is mainly encoded in the sustained part of ABRs 

(Skoe and Kraus, 2010). Greenberg used speech as stimuli and showed that auditory 

neural responses to speech formants are present in the ABRs (Greenberg, 1980). 
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Additional studies have demonstrated that speech-evoked ABRs (referred to in this 

thesis as Speech Evoked Potentials or SpEPs) provide additional information 

regarding the state of the central auditory neural system, which can be used to help 

children with language and learning problems and potentially in other populations 

with central processing disorders (Russo et al., 2007; Johnson et al., 2008). 

   Previous studies on SpEPs have focused on understanding the underlying auditory 

neural activity during speech processing, the origin of SpEPs, and new techniques for 

diagnosis of hearing impairment (Kraus and Nicol, 2005; Martin et al., 2008). A 

possible clinical application of these studies would be in the assessment of infants 

suspected of hearing impairment. Currently hearing assessment is limited by 

diagnostic tests, which usually employ artificial signals like tones or clicks (i.e. simple 

stimuli) that do not allow a clear assessment of auditory function for speech 

communication. While there are tests of speech perception that rely on subjective 

responses, these are of no value for assessing the hearing of infants and 

uncooperative individuals. SpEPs could thus fill the need to objectively assess 

auditory performance in these cases. Another clinical application would be to 

optimize technologies used in hearing aids and cochlear implants. The fitting of 

existing technologies is often based on aforementioned diagnostic tests, using simple 

stimuli, which do not allow for selective acoustic treatments (Johnson et. al., 2005). 

Currently, however, there is limited understanding of SpEPs and how they relate to 

processing of different speech sounds. 

1.2 Thesis Objectives 

   The objective of the research in this thesis is to assess the acoustical information 

contained in SpEPs in order to better understand speech encoding in the auditory 

system. We have performed this assessment by applying a basic classification 

method on two different SpEP feature sets: 1) temporal features of the transient 
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response, 2) spectral features of the sustained response. We provided a quantitative 

measure for discriminating SpEPs using transient and sustained response features. 

Moreover, we investigated the relation between different speech stimuli and their 

corresponding SpEPs. To the best of our knowledge, this work is the first attempt in 

speech recognition using SpEPs. The next section provides more details about 

contributions made in this thesis.  

1.3 Contributions 

   The major contributions towards understanding the auditory neural processing 

from this thesis research are: 

1. Demonstrated that SpEPs from five English vowels carry sufficient 

spectral and temporal information for classifying the SpEPs 

   We were able to classify SpEPs from five English vowels with a good 

accuracy using spectral and temporal features of SpEPs separately. This result 

indicates that SpEPs contain useful speech encoding information which can be 

used to better understand the functionality of the auditory system. Also, the 

classification result provides a quantitative measure on how much speech-

specific information is available in both spectral and temporal features. To the 

best of our knowledge, this is the first attempt in speech recognition using 

SpEPs measured using surface electrodes.    

2. Demonstrated that the brainstem response to both speech envelope 

and speech formants can be used to classify SpEPs from five English 

vowels

   From the sustained steady-state response we chose two amplitude spectral 

feature sets corresponding to brainstem responses to source and filter 
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characteristics of speech (i.e. speech envelope and speech formants). The 

classification results showed that both feature sets provided high classification 

accuracy; however, the source-related features provide higher accuracy than 

the filter-related features. This is a novel finding because it is generally 

thought that the filter characteristics of speech make the main contribution to 

perceptual discrimination of different vowels (Peterson and Barney; 1952).  

3. Demonstrated that the transient response features can be used to 

classify SpEPs from five English vowels

   We were able to classify SpEPs of five English vowels using temporal 

features of the transient response. We found that the latency and amplitude 

of significant peaks carry speech-specific information. This is a potentially 

important finding because the transient response to a vowel has been thought 

to carry general sound onset information and not vowel-specific information. 

4. Collected SpEPs in response to five English vowels 

   We collected SpEPS of five English vowels (\a\,\ae\,\e\,\i\,\u\) from 8 

subjects with the specifications which are explained in section 3.3. These data 

can be used in future studies of SpEPs. 

Portions of the research have been disseminated in the following publication: 

Sadeghian A, Dajani HR, Chan ADC, "Classification of English vowels using speech 
evoked potentials", Proceedings of the 32nd Annual International Conference of the 
IEEE-EMBS, Boston MA, USA, pp. 5000-5003, 2011. 

1.4 Organization of Thesis 

This thesis consists of six chapters. The remaining five chapters are organized as 

follows, 

In Chapter 2, we provide an overview of the human auditory system, the 

structure of SpEPs. We also provide a discussion of related works, and outline 
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the main differences between previous work and our work. This chapter 

provides fundamental background information to help understand the 

following chapters. 

In Chapter 3, we describe methodologies used in various parts of this work. 

We explain techniques used for generating stimuli and we provide details on 

experimental procedure. Moreover, we discuss data analysis approaches, 

including features extraction and classification methods.  

In Chapter 4, we present the results of the SpEP classification. In addition, we 

provide additional data analysis that supports the results. 

In Chapter 5, we discuss the results presented in Chapter4 and explain our 

novel findings. In addition, we provide explanations for misclassified samples.   

In Chapter 6, we conclude with a brief summary of the work presented in this 

thesis along with a discussion on possible enhancements in the future work. 
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2 Background & Literature Review 

2.1 Anatomy of the Auditory System 

2.1.1 The Structure of the Ear 

   The ear consists of three main structures: 1) the outer ear, 2) the middle ear, and 

3) the inner ear. Figure 2-1 shows the simplified anatomy of the human ear. The 

outer ear includes the Pinna which re-shapes a sound stimulus to provide additional 

information to help brain for sound localization and the external auditory canal that 

amplifies sounds within a frequency range between 3 and 12 kHz. The middle ear 

consists of three small bones (Malleus, Incus, and Stapes) that act as an impedance 

transformer from air to fluid. The middle ear is separated from the outer ear by the 

Tympanic membrane (Eardrum) which transmits acoustic energy from air to the 

three bones. The snail-shaped inner ear (the Cochlea) contains the organ of Corti in 

which hair cells transduce mechanical fluid waves into electrical nerve signals that 

travel through cochlear nerve (Møller, 2006a).

Outer Ear Middle Ear Inner Ear

Figure 2-1: Anatomy of the human ear consisting of three main parts, outer, middle, and inner ear (Adapted 

from the Wikimedia Commons file “Anatomy_of_the_Human_Ear.svg" 

http://upload.wikimedia.org/wikipedia/commons/d/d2/Anatomy_of_the_Human_Ear.svg). 
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2.1.2 The Auditory Nervous System 

   The central auditory nervous system connects the cochlear nucleus, which carries 

nerve signals from the cochlea in the inner ear, to the auditory cortex where the 

sound signal is processed. The central auditory neural system consists of two 

pathways: 1) the ascending auditory pathway and 2) the descending auditory 

pathway. The ascending pathway describes the auditory neural centres that link 

sensory information from the ear to higher centres in the brain, whereas the 

descending pathway provides feedback from higher neural centres to lower neural 

centres and eventually to the ear (Møller, 2006b). The following two subsections 

(2.1.2.1 and 2.1.2.2) describe each of the two pathways in further detail. 

2.1.2.1 The Ascending Auditory Pathways 

   The ascending auditory pathways consist of two neural systems, 1) the classical 

pathway and 2) the non-classical pathway. Both pathways have connections at 

different auditory neural levels up to the cortex but the classical pathway is thought 

to dominate auditory sensory processing and involves parallel and hierarchical 

organization (Møller, 2006b). On the other hand, the non-classical pathway has 

connections to the somatosensory system (e.g., touch and pain); however, its 

functionality in auditory processing is not well understood (Møller and Rollins, 2002). 

As such, it is assumed that it plays a less important role in auditory sensory 

processing. Therefore, for the purposes of this study, we will focus on the classical 

ascending auditory pathway and in particular the known neural connections between 

the inner ear and the brainstem (Møller, 2006b).

   The classical ascending auditory pathway for both ears can be viewed as two partly 

independent systems that have neural connections at different brains levels via 

several nuclei. As sound information travels from the inner ear to the cortex, it 

passes through intermediate nuclei where various types of auditory processing occur. 
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Not all auditory neural fibres go through every nucleus; however, all auditory neural 

fibres get interrupted by three of the nuclei in ascending order namely, 1) the 

cochlear nucleus (CN), 2) the central nucleus of the contralateral inferior colliculus 

(ICC) in the upper brainstem, and 3) the medial geniculate body (MGB). Figure 2-2 

shows the simplified schematic of the classical ascending auditory pathways in which 

the main auditory neural connections are shown at different brain levels.  

Auditory Cortex

Medial Geniculate 

Body (MGB)

Superior Olivary 

Complex

Cochlear Nucleus

Cochlear NerveCochlea

Inferior 

Colliculus (ICC)

Superior Olivary 

Complex (SOC)

Cochlear Nucleus 

(CN)

Inferior Colliculus (ICC)

Figure 2-2: Simplified schematic of the classical ascending auditory pathways (Adapted from the 

Wikimedia Commons file "Anatomy_of_the_Human_Ear.svg" 

 http://upload.wikimedia.org/wikipedia/commons/d/d2/Anatomy_of_the_Human_Ear.svg). 

2.1.2.2 The Descending Auditory Pathways 

  The descending auditory pathway can be viewed as a parallel counterpart to the 

ascending pathway. It consists of two separate systems known as the corticofugal 

system and the olivocochlear system. The corticofugal system originates in the 

primary auditory cerebral cortex and reaches the inferior colliculus. The olivocochlear 

system starts from the superior oilvary complex (located in the pons) and end at the 

hair cells of the cochlea (Møller, 2003). Studies show that the descending pathway 
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may help in speech decoding or in musical perception. Moreover, these pathways can 

be effective in enhancing particular acoustic features such as the extracted pitch. 

2.2 Acoustics of Vowels 

   Speech generation by the human vocal apparatus can be described by the source-

filter model (Kraus and Nicol, 2005). According to this model, the sound source 

refers to the vibration of the vocal folds reacting to airflow that is generated by the 

lungs whereas the filter refers to the transfer function of the vocal cavity and organs 

such as the tongue, lips, and jaw, which shape the spectrum of speech. The sound 

source determines the fundamental frequency of speech and consequently the pitch 

of speech. In English and other non-tonal languages, the source mainly characterizes 

nonlinguistic information relating to speaker identity and prosody. On the other 

hand, the filter determines the formant frequencies (i.e. resonant peaks of the filter) 

and so is believed to determine the linguistic content of speech (Johnson et al., 

2005; Kraus and Nicol, 2005). In general, the fundamental frequency (F0) depends 

on the gender, age, and emotion of the speaker, and ranges from about 75 to 175Hz 

for males and about 175 to 300Hz for females (Greenberg and Ainsworth, 2004). 

Moreover, formant frequencies change with gender and age as well because the filter 

properties vary (Peterson and Barney, 1952). Previous studies show that generally, 

formants are lower in men than in women (Peterson and Barney, 1952). To illustrate 

the source-filter model of speech production, the following two figures show the time 

domain waveform and spectrum of a synthetically generated vowel \a\ as spoken by 

a male. Figure 2-3 shows the first 100 ms of the vowel \a\ with a sound source 

fundamental period of T0=10ms (Appendix A illustrates five English vowels in the 

time domain). Figure 2-4 shows the amplitude spectra of the vowel \a\ up to 2000Hz 

with sound source fundamental frequency of F0=100Hz (F0=1/T0). The first two 

formants, F1=700Hz and F2=1200Hz, are the resonance peaks of the filter. 
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Figure 2-3: Time domain representation of the synthetic vowel \a\ as spoken by a male with T0=10ms. 
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   Previous studies have shown that the first three formants (F1, F2, and F3) are the 

dominant formants in terms of intensity. In English, vowel identification is possible 

using only the first two formants (Peterson and Barney, 1951). Figure 2-5 shows the 

frequency plot of first formant versus second formant for five English vowels spoken 

by 76 speakers. Each point represents the average F1-F2 coordinate for a vowel and 

the boundary around it illustrates the distribution of that vowel where about 90% of 

F1-F2 values occurred. As can be seen, the vowels can be easily separated using the 

first two formants. 

100 200 300 400 500 600 700 800 900 1000
500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

F1 (Hz)

F
2

 (
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Figure 2-5: Frequency of first formant versus second formant for five English vowels. Each boundary 

illustrates about 90% distribution of a single vowel and the point inside the boundary is the average F1-F2 

coordinate for that vowel (based on Peterson and Barney, 1952). 
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\e\\u\

\i\ 
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2.3 Speech Encoding in the Auditory System 

   Two theories have been proposed to explain speech encoding in the auditory 

system: 1) place coding theory and 2) temporal coding theory. It is thought that a 

combination of these two mechanisms contribute to speech encoding as each of 

them alone has its own limitations (Møller, 2006b). The place coding theory states 

that different frequencies are perceived along a spatial array of neurons throughout 

the auditory system. This is due to the fact that the hair cells are arranged 

tonotopically along the basilar membrane in the cochlea (i.e. respond best to one 

frequency or a narrow range of frequencies), to generate neural action potentials. 

This arrangement is preserved in the auditory nuclei throughout the ascending 

auditory pathway (Aiken, 2008; Møller, 2006b). As is shown in Figure 2-6, the 

basilar membrane is more sensitive to low frequencies at the distal region (the 

thicker area) and it becomes more sensitive to higher frequencies towards the base 

region (the thinner area).  

20,000

7,000

5,000

4,000
3,000

2,000

1,500

1,000

800

600

400

200

Base 

(0.04 mm)

Apex 

(0.5 mm)

Figure 2-6: Basilar membrane with frequency selectivity in different regions (based on Møller, 2006b). 
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   Although the place coding theory can generally describe speech encoding in the 

auditory system, there are cases that cannot be explained by this theory. For 

instance, it does not explain why normal speech perception is possible when the 

pitch frequency is suppressed or when the speech is presented at a high level (above 

70 dB) that saturates the firing rate in auditory neurons.  The temporal coding 

theory addresses these limitations. 

   Temporal coding theory suggests that frequency discrimination is performed 

through phase-locking of auditory neural activity to frequency components of the 

stimulus signal,  which usually correspond to frequencies with highest spectral 

magnitude (Greenberg and Ainsworth, 2004; Møller, 2006b). Phase-locking means 

that neurons synchronously fire at a particular phase angle of the periodic 

components of the speech stimulus. Phase-locking is strong for frequencies below 1 

kHz and it starts degrading for higher frequencies up to about 4 kHz, where it 

becomes non-existent (Rhode and Greenberg, 1994; Assmann and Summerfield, 

2004; Greenberg and Ainsworth, 2004; Bear et al., 2007). For frequencies above 4 

kHz, speech encoding is thought to be achieved via place coding (Griffiths et al., 

2001; Bartlett and Wang, 2007; Krishnan and Gandour, 2009). Previous studies 

have shown that the main speech components, such as the fundamental frequency 

and low frequency formants, are reflected in the temporal patterns of auditory neural 

responses. For example, a few studies have shown that formant peaks are preserved 

in nerve fibre responses recorded invasively in animals at harmonics near the 

formant frequencies (Delgutte and Kiang, 1984; Sachs and Young, 1980), and in 

compound auditory brainstem responses recorded non-invasively in humans 

(Krishnan, 2002). 
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2.4 Speech Evoked Potentials (SpEPs) 

   Speech evoked potentials (i.e. SpEPs), and specifically the auditory brainstem 

response to vowel stimuli, consist of two parts: 1) transient response and 2) 

sustained response.  The transient response is short (< 20 ms) and is similar to the 

transient response to click stimuli. As such it may be thought to be an 

undifferentiated response to stimulus onset (Skoe and Kraus, 2010). However, it is 

also thought to depend on the "attack" characteristics of the stimulus (i.e. how 

sharply and suddenly it starts). The transient response can differ depending on the 

initial consonant, when the stimulus is consonant-vowel stimulus (Johnson et al, 

2008; Skoe and Kraus, 2010), but there has been no previous work on whether it is 

able to convey phonetic information when the stimulus is a pure vowel. The 

sustained response, on the other hand, reflects the periodic content of the vowel. 

The transient response is generated by any type of stimulus (speech and non-speech 

such clicks or tone bursts); however the sustained response is formed when periodic 

sound stimuli are used. 

2.4.1 Transient Response 

   The transient response refers to the initial part of the SpEP (typically less than 20 

ms) after the start of the stimulus and it reflects neural activiy of the ascending 

auditory pathway in response to the onset of the stimulus. The transient response 

usually contains five prominent peaks which signify activities of major nuclei along 

the ascending auditory pathway between the cochlear nerve and ICC in midbrain. 

Figure 2-7 illustrates those peaks, generated in response to a tone burst, and their 

corresponding points of origin along the auditory ascending pathway. The VA 

complex signifies auditory processing transition beyond the upper brainstem 

(Chandrasekaran and Kraus, 2010). 
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Figure 2-7: Five prominent peaks in transient response which correspond to neural activities of  five key 

points along auditory pathways in response to a tone burst (based on: Adapted from the Wikimedia 

Commons file "Anatomy_of_the_Human_Ear.svg"  

http://upload.wikimedia.org/wikipedia/commons/d/d2/Anatomy_of_the_Human_Ear.svg; J.W. Hall. 

(1992). ABR [Online]. Available: http://www.biosemi.com/abr.htm).

   Clinicians and researchers commonly use the transient response to clicks or short 

tone bursts for assessing the integrity of the auditory pathway (including as an 

objective hearing test for infants), and for studying people with learning problems 

and language impairments related to impairments of central auditory processing. 

These assessments are done by examining of the amplitude and latency of the five 

peaks and the VA complex. For instance, one study demonstrated that the VA 

duration is longer for people with language-based learning problems (Wible et al., 

2005). Also, other studies have shown that adding noise to stimuli prolongs the VA 

duration (Song et al., 2006; Wible et al., 2005; Laroche, 2010). Although there have 

many studies on the behaviour of the transient response under different conditions, 

none of them used this it for vowel identification purposes and generally the 

transient response has been thought to reflect an undifferentiated response to the 

sudden onset of a sound stimulus. In other words, it has been thought that the 

transient response may not contain phonetic information (Skoe and Kraus, 2010). In 
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this study we attempt to show that the transient response contains useful 

information for vowel identification. 

2.4.2 Sustained Response 

   The sustained response follows the transient response and it follows the acoustical 

features of the periodic speech stimulus including T0, F0, and formants.  In the case 

of vowel stimuli, the sustained response provides information about the neural 

encoding of the vowel whereas the transient response has been thought to a 

response to the onset of the sound stimulus. The sustained response can be viewed 

as two separate responses: 1) the Envelope Following Response (EFR) and 2) the 

Frequency Following response (FFR). The EFR represents the neural response that 

follows the speech envelope, while the FFR represents the neural response that 

directly follows the harmonic content of speech, and in particular the speech 

formants.  

   The sustained response of SpEPs can correspond to the Envelope Following 

Response (EFR) or Frequency Following Response (FFR) depending on how the 

response signals are analyzed. Figure 2-8 illustrates a simplified model for 

generating the EFR and FFR. Figure 2-8-(a) (left-hand panel) shows the EFR and FFR 

generated using a 200 Hz stimulus tone (A), and Figure 2-8-(b) (right-hand panel) 

shows EFR and FFR generated using a 2 kHz tone modulated at 200 Hz (G). Stimuli 

are presented sequentially in alternating polarities (A,B and G,H) and their 

corresponding brainstem responses are shown in C,D and I,J. Note that the half-

wave rectification is due to non-linear properties of hair cells. The EFR (E and K) is 

calculated by taking the average between the responses to the original stimulus and 

the inverted polarity stimulus, while the FFR (F and L) is calculated by taking the 

average between the response of the original stimulus and the negative of the 

response to the inverted polarity stimulus (Aiken and Picton, 2008).  As can be seen 
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in K, the EFR follows the envelope of the modulated stimulus although as seen in E, 

it may also contain additional components with twice frequency of harmonics found 

in the stimulus. On the other hand, as shown in F, the FFR directly follows the 

harmonic content of the stimulus and as seen in L, it suppresses any response to the 

envelope of the stimulus. 

Orig Stimulus

Inv Stimulus

Orig SpEP

Inv SpEP

EFR

(Orig SpEP + Inv SpEP) / 2

A

B

C

D

E

F

G

H

I

J

K

LFFR

(Orig SpEP + Inv SpEP) / 2

(a) (b)

Figure 2-8: Simplified model for generating EFR and FFR. Panel (a) on the left shows the brainstem 

response to a 200 Hz tone and panel (b) on the right panel shows the brainstem response to a 2 kHz tone 

modulated at 200Hz (based on Aiken and Picton, 2008). 

   Consequently, the EFR primarily reflects auditory neural activity that is phase-

locked to the envelopes of the speech stimuli, which are modulated at the 

fundamental frequency (F0=1/T0) as seen for example in Figure 2-3 (Aiken and 

Picton, 2008; Dajani et al., 2005). Although we would expect to see the EFR spectral 

content only at the modulation frequency (F0), the spectral contents are also seen at 

harmonics of F0 (i.e. multiple integer of F0) (Cebulla et al., 2006). These spectral 

contents are generated because of some non-linearities which are introduced by the 
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rectification process of the speech envelope within the cochlea and by non-linearities 

in neural processing (Aiken, 2008; Cebulla et al., 2006). This phenomenon can 

sometimes causes stronger EFR energy contents to appear at the harmonics of F0 

than at F0. This case can be seen in Figure 2-9, where spectral amplitudes at 

multiple integer of F0 (F0=100Hz) are strong. Figure 2-9 illustrates the EFR spectral 

amplitude of vowel \i\ which is averaged across 48 trials collected from 8 subjects 

(more information about data collection can be found in section 3.3). 
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Figure 2-9: Amplitude spectrum of Envelope Following Response (EFR) for vowel \i\ averaged across all 

trials and subjects (i.e. grand-average EFR). This figure confirms that there are robust peaks at F0 (100Hz) 

and a few of its harmonics. 

   The FFR is formed as a result of auditory neural phase-locking that directly follows 

the harmonics of a speech stimulus, and in particular near the first formant F1 since 

these harmonics are typically the most intense in the stimulus and are usually well 

within the phase-locking frequency limit of auditory neurons. Spectral analysis of the 

FFR shows that strong peaks occur at harmonics of F0 near the formant frequencies 

(Krishnan, 2002; Skoe and Kraus, 2010), as shown in Figure 2-10 where the strong 
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peaks occurred at 2F0, 3F0, and 4F0 which are the harmonics near F1=270Hz. 

Figure 2-10 illustrates FFR spectral amplitude of vowel \i\ which is averaged across 

48 trials collected from 8 subjects (more information about data collection can be 

found in section 3.3). 
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Figure 2-10: Amplitude spectrum of the Frequency Following Response (FFR) for vowel \i\ averaged 

across all trials and subjects (the grand-average FFR) with F1 = 270 Hz. The neural response to F1 can be 

observed from dominant peaks near F1 (i.e. 200, 300, and 400 Hz). 
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2.5 Related Work 

   Previous studies on SpEPs can be divided into two main groups: 1) studies which 

have tried to explain how the human auditory system processes speech by 

determining key signal features of SpEPs in both the time and spectral domains 

(Kraus and Nicole, 2005; Krishnan, 2002; Russo et al., 2004; Skoe and Kraus, 

2010), 2) studies which have investigated the relationship between hearing-related 

disorders (e.g., hearing and language-learning impairments) and the key temporal 

and spectral features of SpEPs found in the first group of studies (Song et al., 2006; 

Wible et al., 2005). The results from the latter group of studies have been proposed 

for improving objective hearing assessments, especially in some children with 

learning impairments, and to provide better rehabilitation strategies. Since the focus 

of this work is closer to the first group of studies, the second group of studies will not 

be discussed further. 

   The first group of studies have identified some prominent spectral and temporal 

peaks on SpEPs as major landmarks for human processing of speech. These peaks 

were identified both in the transient and sustained responses. Figure 2-11 illustrates 

significant temporal peaks in an averaged SpEP (black) from 24 normal hearing 

subjects using a 40ms synthetic \da\ consonant-vowel stimulus (grey). Moreover, 

the stimulus has been shifted in time to account for the onset of the stimulus (i.e. 

auditory neural transmission delay). In the transient response, peaks I, III, V, A, C 

are identified as temporal features among which the first four peaks were explained 

in section 2.4.1 and peak C corresponds to the onset of the voicing part of the 

stimulus (Johnson et al., 2005). In the sustained response, peaks D, E, and F 

correspond to the periodic acoustical landmarks of the stimulus (i.e. responses at 

pitch periods of the stimulus (~10ms). Peak O corresponds to the end of the 
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stimulus. The sustained response was best explained using spectral features and in 

particular EFR and FFR which were discussed in section 2.4.2 (Aiken, 2008). 
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Figure 2-11: Time-domain illustration of an averaged brainstem response (black) to a 40ms synthetic \da\ 

stimulus (grey) from 24 normal hearing subjects. The stimulus has been shifted to account for the onset 

delay. The major peaks are shown in the transient and sustained response (based on Skoe and Kraus, 2010). 

   Some of the more recent studies have compared SpEP features of different speech 

sounds to better understand how the auditory system encodes temporal and spectral 

acoustical features of stimuli. For example, one study used consonant-vowel 

syllables starting with three stop consonants ([ba], [da], and [ga]) as stimuli to 

compare the latency of significant temporal peaks over the first 60ms of their SpEPs 

which were collected from 22 normal hearing children (Johnson, et al., 2008). The 

stimuli were generated synthetically such that they had the same pitch frequency, 

formant frequencies after the initial transition, and first formant transition; however, 

they had different transitions to the second and third formants. The transitions to F2 

and F3 occupied frequency ranges in the following order from lowest to highest: 

[ba], [da], [ga]. The latency differences started as relatively large and they 

diminished over time until they vanished around 60ms, when all responses went to 

their steady state. The differences found in latency were in-line with the place coding 
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theory which states that higher frequencies get processed earlier because they are 

processed in the initial (basal) part of the basilar membrane (Johnson, et al., 2008).  

Another study considered the same set of stimuli but this time the only difference 

among stimuli was their second formant. They showed that SpEPs of the three stop 

consonants ([ga], [ba], and [da]), which were collected from 52 normal hearing 

children, can be distinguished by looking at SpEP phase changes over time (Skoe et 

al., 2011). 

   In this work we also studied SpEP features to help better understand how the 

human auditory system processes speech. However, there are a few differences 

between this work and previous work which are listed below, 

1- The purpose of this study was different: We investigated the automatic 

classification of SpEPs. This was done using the sustained and transient 

response features separately. The classification result provides a quantitative 

measure for discriminating SpEPs using transient and sustained response 

features. 

2- The sustained response features were different: In previous studies temporal 

features were used to investigate the differences between SpEPs of different 

speech sounds whereas in this study spectral features were used. We looked 

at the EFR and FFR response features to provide a better understanding about 

the phase-locking mechanism of the auditory neural system.  

3- The stimuli were different: In most previous work, consonant-vowel syllables 

were used as stimuli to study SpEPs, whereas in this study we used five pure 

English vowels as stimuli. Generally, consonants are short and contain rich 

acoustic information mainly on the non-voiced portion of speech (low spectral 

energy). Vowels, on the other hand, contain voiced information of speech, 

therefore it can provide more comprehensive understanding about the 

encoding of speech (Laroche, 2010; Johnson et. al., 2008).  
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3 Methodology 

3.1 Subjects 

   Eight subjects (six males and two females, 25-45 years old) participated in this 

experiment. The subjects had no known hearing problems, and normal hearing 

thresholds of 15 dB HL or less were confirmed in both ears through a pure-tone 

audiometric test using a Clinical Audiometer (model AC40, Interacoustics, Eden 

Prairie MN, USA) at 500, 1000, 2000, and 4000 Hz. Participants were asked to read 

and sign a consent form before starting the experiment and it was made sure that 

they understood the content of the consent form and the experimental procedures. 

This research was approved by the University of Ottawa Research Ethics Board. 

3.2 Stimuli 

   In this study we use English vowels as stimuli because their SpEPs can be readily 

recorded and analyzed compared to words or sentences, while they provide rich 

information about speech processing in the central auditory system. 

3.2.1 Methods for Generating Synthetic Speech  

   Synthetically-generated speech has applications in various fields such as text-to-

speech and systems for people with speech impairments. There are two methods for 

generating speech synthetically, Concatenative and Formant synthesis. In the 

concatenative method, different segments (words or diaphones) of human-generated 

speech are recorded in a database and they get concatenated to one another as 

needed (Dutoit, 1997; Van Santen et al., 1997; Holmes and Holmes, 2001). The 

formant method, on the other hand, follows the source-filter model and it requires 

specification of some characteristics such as formants, bandwidths of resonators, and 
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pitch frequency as input. The latter technique provides more flexibility for setting 

speech parameters to produce a desired speech property (eg. male vs. female 

speech); however, it is more complex compared to the concatenative method. In this 

study we used a simplified version of Klatt’s cascade/parallel formant synthesizer 

(Klatt, 1980), implemented by Laroche (2010) to generate the five English vowels 

(\a\,\e\,\ae\,\i\,\u\).  

   The parameters of the stimuli, namely the first 3 formant frequencies, formant 

bandwidths, and relative formant amplitudes, are shown in Table 3-1. These 

parameters followed those determined in previous work for male speakers (Klatt, 

1980; Peterson and Barney, 1952). The fundamental frequency (F0) of all vowels 

was set to 100 Hz. Only the first three formants (F1, F2, and F3) of each vowel were 

included, since these formants are the most dominant. All the vowel stimuli are 300 

ms in duration, and they were generated with a sampling frequency equal to 48 kHz.

Vowels
F1

(Hz) 
F2

(Hz) 
F3

(Hz) 
BW1
(Hz) 

BW2
(Hz) 

BW3
(Hz) 

A1
(dB) 

A2
(dB) 

A3
(dB) 

\a\ 700 1220 2600 130 70 160 -1 -5 -28 

\ae\ 660 1720 2410 70 150 320 -1 -12 -22 

\e\ 570 840 2410 100 60 110 0 -7 -34 

\i\ 270 2290 3010 50 100 140 -4 -24 -28 

\u\ 300 870 2240 65 110 140 -3 -19 -43 

Table 3-1: Formant frequencies, bandwidths and amplitudes of the five synthetic vowels used as stimuli.

   Figure 3-1 illustrates a simplified parallel/cascade vowel synthesizer that is used in 

this study to generate the five vowels. In this system, the source of all vowels is 

represented by train of impulses at the rate of F0 (100 Hz), and each formant is 

represented by a resonator acting as a narrow band-pass filter with center frequency 

and bandwidth equal to their corresponding values in Table 3-1. To obtain a 

synthetic vowel, the source impulses passed through three parallel resonators and 
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the resulting outputs were added together. The output signal, whose spectrum is 

shown on the furthest block on the right, was saved as a sound (.wav) file. 

The transfer function of each formant (resonator) was calculated using the following 

equations,

211
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Where the constants of the transfer functions are: 
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in which BW signifies the bandwidth for each formant, and Fs signifies the sampling 

frequency.  

Input source pulses

repeated at frequency of F0
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F3

Complete filter with

three formant peaks Output: synthetic vowel

Figure 3-1: Simplified Parallel/Cascade vowels synthesizer. 
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   Figure 3-2 shows single-sided amplitude spectra of the five synthetic English 

vowels which were generated using the formant synthesizer. Since we only analyze 

the brainstem response up to the frequencies in the region of the first formant (F1) 

in this study, this graph shows the amplitude spectra up to 1000 Hz to emphasize F1 

of all the vowels.
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Figure 3-2: Single-sided amplitude spectra of the stimuli (five synthetic English vowels) up to 1000 Hz. 
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3.3 Experimental Protocol 

   Subjects were seated comfortably in an acoustical booth located at the University 

of Ottawa Health Campus, in the School of Rehabilitation Sciences (Audiology 

Program). During a recording session, the subjects were asked to stay relaxed, while 

minimizing their movements in order to minimize noise in the recordings (i.e. to 

avoid artefacts). They were also asked to keep their eyes open, and to help them 

stay awake a muted movie with subtitles was shown during the experiment. The 

reason for asking subjects to stay awake was to reduce aterfacts due to physical 

movements, which are discussed in the next subsection (3.4.2). Also, for the 

consistency of data collection it was easier to ensure that subjects stay awake than 

asking them to fall sleep for the duration of data recording.

   A single recording session consisted of six trials, and in each trial, subjects were 

presented 500 repetitions of a single vowel at a repetition rate of 3.1/sec. Responses 

were coherently averaged over the 500 repetitions to give one EFR and one FFR prior 

to further analysis. A BioMARK v.7.0.2 system (Biological Marker of Auditory 

Processing, Bio-logic Systems Corporation) was used to present the stimuli and 

record the SpEPs. Each vowel was presented at a calibrated level of 80.5 dB SPL by 

adjusting an internal calibration factor in the BioMARK system, with the calibration 

performed by connecting the earphone to a 2cc coupler attached to a Brüel & Kjaer 

Artificial Ear type 4152, and a Sound Level Meter (SLM) Type 2230. 

   Figure 3-3 depicts the experimental set-up for collecting SpEPs. Stimuli were 

presented using Etymotic ER 2 insert earphones. Three gold-plated G.R.A.S. 

electrodes were used in this experiment; the recording electrode was placed at the 

vertex (Cz), the reference electrode was placed on right earlobe, and the ground 

electrode was placed on the left earlobe. Before placing the electrodes, the skin of 

the participants was scraped with cotton q-tips and Nuprep cream to lower the 
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impedance. Electrode impedances were kept below 5 k  during the recording by 

monitoring the impedance at the start and end of each trial, and discarding the trials 

with impedance higher than 5 k . Vowels were presented in alternate polarities (i.e. 

180 degree phase difference as shown in Figure 2-8) to both ears in order to allow 

the calculation of EFR and FFR which was discussed in section 2.4.2. Also, the vowels 

were played at 48 kHz with a 16-bit resolution. SpEPs were recorded with a sampling 

frequency of 3202 Hz for a duration of 319.8ms starting at stimulus onset. 

BioMARKSystem

Stimulus signal generator

Differential amplifier

Filter

Signal average

SpEPs

+

Ground

Insert Earphones

Figure 3-3: Schematic diagram of the experimental set-up. 
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3.4 Data Pre-processing 

3.4.1 Coherent Averaging 

   Generally, the SpEP in response to a single stimulus presentation is a small signal 

that is buried in noise. The most commonly-used approach to reduce the noise of 

SpEPs (i.e. to increase SNR) is coherent averaging over many repetitions (typically 

>1000) (Chandrasekaran and Kraus, 2010). The underlying assumption is that SpEP 

samples are synchronized to the stimuli and are similar in shape over the repetitions, 

while noise is random and uncorrelated between the different samples(Deutsch and 

Micheli-Tzanakou, 1987). Therefore, averaging over many response samples 

suppresses the noise and so increases the SNR of the SpEP samples. The coherent 

averaging formula is shown below, where si(t) represents a single SpEP sample and 

n is the number of repetitions. In this study we chose n to be 500 repetitions 

because it gave us desired robustness without having to select a higher number of 

repetitions. 

n

)(s

AverageCoherent 1

i

n

i

t

3.4.2 Artefact Reduction 

   As part of data pre-processing, it is important to eliminate or at least reduce 

artefacts in order to obtain cleaner and more robust SpEP samples. The artefacts can 

be categorized into three types based their sources, 1) physical movements, 2) 

electromagnetic (EM), and 3) Cochlear Microphonic (CM). As the name suggest, 

artefacts from physical movements can be caused by any body movements such as 

tightening of the jaw or the neck muscles. The EM arifacts occur because of 

surrounding ambient electromagnetic noise that can be due to nearby equipment or 
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machinery and power line noise, and potentially electromagnetic leakage from the 

stimulus generating equipment to the recording electrodes. Lastly, the CM artefacts 

originate from the cochlear hair cells and, similar to the FFR, the CM follows temporal 

shape of the stimulus (Skoe and Kraus, 2010).  

   We used a few techniques to eliminate/reduce the aforementioned artefacts. The 

first technique was averaging responses of alternating stimulus polarities when 

estimating the Envelope Following Response (EFR). This technique eliminates CM 

artefacts, because CMs from opposite polarities cancel out each other (Skoe and 

Kraus, 2010). The second technique was using foam insert earphones and plastic 

tubes for connecting earphones to the BioMark stimulus transducer. This reduces the 

risk of EM leakage from the stimulus generator equipment to the recording 

electrodes (Akhoun et al., 2008; Skoe and Kraus, 2010). The third technique was 

presenting the stimulus at a rate that does not contain multiple integers of powerline 

noise cycles to ensure the 60Hz artefact shifts in phase from one response to the 

other. The artefact was then suppressed after taking coherent averaging over 

repetitions of SpEP samples (Picton and John, 2004). As it was mentioned in Section 

3.3, we presented the stimulus at the rate of 3.1 Hz or in 322.6 ms intervals, which 

is not an integer multiple of the powerline peridiodicity. The fourth technique was 

decreasing body movements by providing a comfortable seat and asking subjects to 

stay relaxed and still during data collection. In the event of the occurrence of 

muscular and other types of artefacts, epochs in which the response exceeded 23.8 

µV were discarded by the BioMark system. Moreover, care was taken to repeat trials 

which contained more than 20 discarded epoches. Finally, we tried to reduce the 

electromagnetic artefact increasing the distance separating electrical equipment, 

such as DVD player, and the subject. 
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3.5 Classifying SpEPs of Five English Vowels 

3.5.1 Feature Selection 

   We selected two different sets of features for classification of the SpEPs. The first 

set of features was obtained from the frequency domain representation of the 

sustained response and the second set of features was obtained from the time 

domain representation of the transient response.

3.5.1.1 Sustained Feature Selection 

   For the first set of features, we examined both amplitude and phase of EFR and 

FFR spectra at F0 and its harmonics. The reason for selecting these frequencies is 

that we expected robust responses at harmonics of F0 due to the neural phase-

locking (discussed in section 2.4.2 Sustained Response). Also, by choosing discrete 

frequency points, we wanted to keep the feature selection approach straightforward 

in order to avoid working with complex transformations that are outside of the scope 

of this study.  

   We further reduced the number of frequency points by considering the spectral 

values (i.e. amplitudes and phases) between 100 Hz and 700 Hz, inclusive, for EFR, 

and between 200 Hz and 800 Hz, inclusive, for FFR. Therefore, the sustained feature 

vectors had 7 amplitude and 7 phase feature elements for the EFR or FFR. The 

reason why we selected frequencies below 1000 Hz is that neural phase-locking 

degrades above 1000 Hz and also the upper cut-off frequency of the band-pass filter 

on the BioMark system is 1000Hz. Moreover, by looking at the grand average 

amplitude spectra of the EFR and FFR (Figure 3-4 and Figure 3-5) we realized that 

the peaks at harmonics start diminishing after 700 Hz for EFR and after 800 Hz for 

FFR.  Also, the spectral component of the FFRs at 100 Hz was excluded because 

there were no robust peaks at this frequency. 
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   We assessed amplitude and phase features by comparing the classification results 

for different combinations of the features and found that using the phase features do 

not improve the classification accuracy by much (only 2-3% improvement). Thus, we 

decided to only consider the amplitude features to avoid the so-called “curse of 

dimensionality” which could increase the risk of overfitting and classification

complexity (Duda et al., 2001). This means the sustained feature vectors was 

reduced to 7 amplitude feature elements for the EFR or FFR. 

   The frequency spectrum was determined using the Discrete Fourier Transform 

(DFT) of the coherently averaged response in each trial, containing 1024 data points, 

and the amplitude spectra was calculated using the following formula, 

Amp Spectrum = | FFT (EFR or FFR signal in time domain, NFFT) / signal length | 

Single-sided Amp Spectrum = 2 x first or second half of Amp Spectrum 

where FFT stands for Fast Fourier Transform and NFFT = 1024.  

   Figure 3-4 shows the amplitude spectra of the EFR for each vowel averaged across 

all trials and subjects (i.e. grand-average EFRs). As can be seen, there are robust 

peaks at harmonics of F0. Figure 3-5 illustrates the amplitude spectra of the FFR for 

each vowel averaged across all trials and subjects (the grand-average FFRs). This 

figure confirms that peaks at harmonics of F0 are dominant near the F1 frequencies 

listed in Table 3-1. In this work, the responses to the second and third formants 

probably play little role in the analysis, because several of them were beyond the 

upper cut-off frequency of the band-pass filter on the BioMARK system of 1000 Hz, 

and beyond the phase-locking limit of the probable main generator of SpEPs in the 

upper brainstem (Johnson et al., 2005). 
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Figure 3-4: Single-sided amplitude spectra (up to 1000 Hz) of the SpEPs for all vowels averaged over all 

trials and all subjects (grand-averages) for the Envelope Following Response (EFR). 
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Figure 3-5: Single-sided amplitude spectra (up to 1000 Hz) of the SpEPs for all vowels averaged over all 

trials and all subjects (grand-averages) for the Frequency Following Response (FFR). 
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3.5.1.2 Transient Feature Selection 

   For the second set of features, we focused on the significant transient peaks from 

the EFRs (i.e. EFR from all trials) in the time domain. As was discussed in Section 

2.4.1 on the Transient Response, the significant transient peaks correspond to neural 

responses of major landmarks along the ascending auditory pathways and they are 

known as peak I, II, III, IV, V, and A. Of these, peaks V and A (a.k.a. the VA 

complex) have the most clinical use in speech ABR. The reason for choosing the 

transient responses only from the EFR, rather than the FFR or both EFR and FFR, is 

that the EFR does not contain CMs and so it provides a clean transient responses, 

whereas this is not the case for the FFR (Aiken, 2008; Russo et al., 2004). 

   We identified all the peaks using a Matlab program that we implemented by finding 

local maxima/minima around the time when we expected the peaks to occur. After 

determining the peaks, we realized that V and A were the most robust peaks relative 

to the background noise across all trials, whereas other peaks were not clearly 

present all the time. Hence, we only assessed features of the VA complex, namely 

amplitude and latency of V and A, VA duration, VA height, and VA slope (Russo et 

al., 2004). The classification accuracy obtained with all possible non-dependent 

combinations of the 7 features (i.e. highly linearly correlated features were not 

combined to avoid singularity in training data) showed that the 4 features of latency 

of V and A, and height of V and A provided the highest classification accuracy. As 

such, we present the classification results with transient feature vectors containing 

these 4 elements.  

3.5.2 Classification Method: Linear Discriminant Analysis (LDA)

   Linear Discriminant Analysis (LDA) was employed for classification using Matlab (v. 

7.9.0.529, The Mathworks, Natick, MA, U.S.) (Duda et al., 2001). We had five 

classes corresponding to the five different vowels and each class had 48 sets of 
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SpEPs trials (6 samples each corresponding to 500 stimulus repetitions per subject 

8 subjects). Leave-one-out with no replacement was used to train and test. That is, 

training was performed on all samples except one, which was used to test. The 

leave-one-out was repeated such that each of the 240 SpEP samples (5 vowels x 6 

trials/vowel x 8 subjects = 240) was tested. We used leave-one-out, because our 

data set is small and this approach provides more accurate training (i.e. reduces 

error rates) especially for small data sets (Duda et al., 2001). 

   Generally, LDA separates classes from one to another by drawing hyper-planes 

between classes such that the ratio of between-class variance over within-class 

variance is maximized in order to optimize class separation (Duda et al., 2001a).  

One of the biggest advantages of LDA over more complex classifiers like artificial 

neural networks is that it prevents over-fitting especially when the data set is small. 
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4 Results 

   We evaluated the classification results using a classification accuracy measure 

which is the aggregate of correctly classified samples over the total number of 

samples (Duda et al., 2001). It is important to note that the chance level accuracy is 

20% since we have 5 classes (100% / 5 vowels = 20%). The next two sections 

present the results using the features from the sustained response (section 4.1) and 

transient response (section 4.2). Finally, section 4.3 presents the classification result 

for combination of the sustained and transient response features. 

4.1 Classification of SpEPs using Sustained Response Features 

   Table 4-1 shows LDA classification accuracies per subject for three different sets of 

amplitude features including, 1) EFR (7 elements), 2) FFR (7 elements), and 3) 

EFR+FFR (combining both EFR and FFR features to generate a new feature set with 

14 elements). The last row of this table illustrates the overall classification accuracy 

(i.e. average accuracy over 8 subjects) and as can be seen EFR+FFR amplitude 

features provided the highest accuracy of 80.83% followed by the individual EFR and 

FFR amplitude features.    

   Since the dimensions of the three feature sets are relatively large (i.e. dimension 

of size 7 and 14) we also performed linear Support Vector Machine (SVM) 

classification to confirm the LDA classification results and to see if the classification 

accuracies improve. Similar to LDA, SVM draws hyper-planes between classes; 

however, SVM generates a hyper-plane between two classes by considering nearest 

points of the two classes and not the whole training set (Duda et al., 2001). Table A-

1 in Appendix-B illustrates the overall classification accuracies for the SVM 

classification. Since the classification accuracies achieved from the SVM approach are 
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similar and in some cases a bit lower than those obtained from the LDA approach, 

we will focus on the LDA results. Other SVM results are also provided in this 

Appendix and are discussed below wherever it is applicable. 

Classification Accuracy 

Subjects EFR + FFR EFR FFR 

Sub1 70.00% 60.00% 56.67% 

Sub2 80.00% 66.67% 53.33% 

Sub3 83.33% 76.67% 53.33% 

Sub4 53.33% 70.00% 26.67% 

Sub5 80.00% 53.33% 63.33% 

Sub6 100.00% 76.67% 80.00% 

Sub7 93.33% 70.00% 66.67% 

Sub8 86.67% 83.33% 36.67% 

All Subs 80.83% 69.58% 54.58% 

Table 4-1: LDA classification accuracies of three different amplitude feature sets. 

   In order to visualize the distribution of data samples, we plotted EFR and FFR 

amplitudes from the subject who provided the highest accuracy rate for each EFR 

and FFR feature sets (i.e. subjects 8 and 6 who provided the highest accuracies for 

EFR and FFR feature sets respectively). Figure 4-1 shows log-scaled EFR amplitude 

distribution for three trials from subject 8. This figure presents 3 amplitude values 

for each of 7 frequency points (i.e. harmonics of F0) which were discussed in section 

3.5.1.1. We chose to show the amplitude spectra from only the first 3 trials, instead 

of 6 trials, to provide a clearer and less cluttered plot. Similarly, Figure 4-2 shows 

log-scaled FFR distribution for subject 6. This way we can visualize 7 features of each 

EFR and FFR, which were discussed in section 3.5.1.1, in 2-dimensional plot; 

however, we cannot clearly see how each class is distributed with respect to other 

classes. To see that we performed Uncorrelated Linear Discriminant Analaysis 

(ULDA), using Matlab (v. 7.9.0.529, The MathWorks, Natick, MA, U.S.A), on all trials 
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for each of the three feature sets listed in Table 4-1 and plotted the first two 

features. Figure 4-3, Figure 4-4, and Figure 4-5 illustrate these plots for EFR+FFR, 

EFR, and FFR feature sets respectively. ULDA is an effective feature reduction 

method which generates up to M-1 statistically uncorrelated features (i.e. minimizes 

redundancy) for a problem that has M classes (Jin et al., 2001a; Jin et al., 2001b). 
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Figure 4-1: Log-scaled EFR amplitude features for the first 3 trials from Subject 8. 
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Figure 4-2: Log-scaled FFR amplitude features for the first 3 trials from Subject 6. 
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Figure 4-3: Feature1 versus feature2 of the ULDA analysis on the original EFR+ FFR features for all trials. 
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Figure 4-4: Feature 1 versus feature 2 of the ULDA analysis on the original EFR feature set for all trials. 
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Figure 4-5: Feature 1 versus feature 2 of the ULDA analysis on the original FFR feature set for all trials. 
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   Table 4-2 provides more details on the classification results by showing confusion 

matrices and Mahalanobis distances for all trials over the three feature sets (also, 

Table A-2 in Appendix-B provides confusion matrices for the SVM approach). The left 

column of Table 4-2-((a), (b), and (c)) illustrates confusion matrices for the three 

different amplitude feature sets. Each value in the confusion matrices represents the 

number of samples, from one class, which got classified to a particular class. For 

example, the value in row 1 column 2 (1,2) of Table 4-2-(a) indicates that 3 of 48 

SpEP samples from the vowel \a\ was being heard as the vowel \ae\ (i.e. 4 samples 

of vowel \a\ were misclassified to vowel \ae\). Another example is the value in cell 

(3,3) of Table 4-2-(a) which indicates that 36 of 48 SpEP samples of the vowel \e\ 

was being heard as the vowel \e\ (i.e. 36 samples of vowel \e\ were correctly 

classified). Table4-2-(a) shows that vowel \i\ and \ae\ have provided the highest and 

lowest accuracies of 97.9% (47 correctly classified samples/48 samples in each 

class) and 66.66% (32/48), respectively. Also, the lowest classification accuracy 

(22.9%) among the three confusion matrices belongs to vowel \ae\ in the case of 

using FFR amplitude features (Table 4-2-(c)).  

   The right column of Table 4-2-((d), (e), and (f)) illustrates the Mahalanobis 

distances between all possible pair-wise combinations of the five vowels for the three 

different amplitude feature sets (Note that all Mahalanobis distances are normalized 

with Mahalanobis distance of each vowel from itself since the distance was the same 

for all vowels). Each value in “Mahal Dist” matrices represents the averaged 

Mahalanobis distances from every SpEP sample of one class in “Sample Vowels” to a 

reference class in “Reference Vowels”. For example, the value in cell (2,1) of Table 

4-2-(d) shows the averaged Mahalanobis distance of 48 vowel \ae\ SpEP samples 

from the reference class vowel \a\. The smallest Mahalanobis distance in all three 

matrices is 1, which corresponds to cases where the reference and the sample 

vowels are the same (i.e. the diagonal cells of the matrices) and the largest distance 
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(13.45) belongs to the distance between the sample vowel \i\ and the reference 

vowel \a\ in the EFR Mahalanobis Distance matrix (Table 4-2- (e)). In order to 

simplify the comparison between confusion matrices and Mahalanobis distances, five 

different shades of grey are used that signify five different ranges for classification 

distribution and Mahalanobis distances. In general, the darker the grey, the higher 

the classification rate and the longer is the distance. 
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(a)

(c)

(b)

(d)

(e)

(f)

\a\ \ae\ \e\ \i\ \u\

\a\ 41 3 4 0 0

\ae\ 7 32 6 0 3

\e\ 6 4 36 0 2

\i\ 0 0 0 47 1

\u\ 0 1 7 2 38

Conf Matrix 

EFR + FFR

Predicted Vowels
A

c
tu

a
l 
V

o
w

e
ls

\a\ \ae\ \e\ \i\ \u\

\a\ 34 5 9 0 0

\ae\ 5 32 6 4 1

\e\ 12 11 22 0 3

\i\ 0 1 0 46 1

\u\ 0 0 9 6 33

Conf Matrix 

EFR

Predicted Vowels

A
c
tu

a
l 
V

o
w

e
ls

\a\ \ae\ \e\ \i\ \u\

\a\ 22 17 1 0 8

\ae\ 23 11 5 1 8

\e\ 1 6 24 7 10

\i\ 1 0 2 37 8

\u\ 2 1 4 4 37

Conf Matrix 

FFR

Predicted Vowels

A
c
tu

a
l 
V

o
w

e
ls

\a\ \ae\ \e\ \i\ \u\

\a\ 1.00 4.04 5.19 12.29 8.55

\ae\ 3.49 1.00 4.63 6.19 3.73

\e\ 4.50 4.26 1.00 6.43 4.13

\i\ 12.12 8.37 10.09 1.00 6.55

\u\ 5.23 4.59 4.25 5.88 1.00

Mahal Dist 

EFR + FFR

Sample Vowels

R
e
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re
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c
e
 V

o
w

e
ls

\a\ \ae\ \e\ \i\ \u\

\a\ 1.00 3.78 2.48 13.45 8.31

\ae\ 3.64 1.00 2.64 3.99 3.80

\e\ 1.77 1.88 1.00 3.76 2.71

\i\ 12.66 8.12 8.96 1.00 6.40

\u\ 3.73 3.37 2.22 2.81 1.00R
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 V
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Sample VowelsMahal Dist 

EFR

\a\ \ae\ \e\ \i\ \u\

\a\ 1.00 1.53 5.24 6.21 3.11

\ae\ 1.73 1.00 4.09 4.53 2.10

\e\ 2.98 2.80 1.00 2.48 1.56

\i\ 4.91 4.19 5.65 1.00 2.71

\u\ 4.03 2.96 4.44 4.17 1.00

Sample Vowels

R
e

fe
re

n
c
e
 V

o
w

e
ls

Mahal Dist 

FFR

Classification 

Accuracy

>40% (20 48)

20%40% (10 19)

10% 20%(5 9)

0.02% 10%(1 4)

0%(0)

Mahalanobis 

Distamce

1

1 2

2 5

5 8

>8

Table 4-2: Left column shows confusion matrices for a) EFR+FFR, b) EFR, and c) FFR. The darker the 

grey, the higher the classification rate is and vice versa. Right column shows Mahalanobis distances 

between all possible pair-wise combinations of vowels for d) EFR+FFR, e) EFR, f) FFR. The darker the 

grey, the smaller the Mahalanobis distance is and vice versa. 
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4.2 Classification of SpEPs Using Transient Response Features 

   We performed LDA classification on all possible combinations of the seven transient 

features including latency and height of V and A waves, VA complex duration, VA 

height, and VA slope. We compared the corresponding classification accuracies and 

found that a feature set containing the combination of the four features derived from 

the latency and height of V and A waves provides the highest overall accuracy of 

38.33% (SVM provided a classification accuracy of 34.58%). Table 4-3 shows 

classification accuracies per subject for the set of these four transient features.  

   To visualize the distribution of the five classes with respect to each other for the 

aforementioned feature set, we performed ULDA on all trials and plotted the first two 

features (this is shown in Figure 4-6). 

Subjects 
Classification Accuracy for   

V,A latency + V,A height 

Sub1 33.33% 

Sub2 33.33% 

Sub3 46.67% 

Sub4 26.67% 

Sub5 50.00% 

Sub6 36.67% 

Sub7 30.00% 

Sub8 50.00% 

All Subs 38.33% 

Table 4-3: LDA classification accuracies per subject using 4 transient features 

 (latency and height of V and A). 
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Figure 4-6: Feature 1 versus feature 2 of the ULDA analysis on the 4 transient features  

(latency and height of V and A) for all trials.    

   Table 4-4 provides more details about the classification results for each class by 

illustrating confusion matrices, on the left side (a) and (b), and Mahalanobis 

distances, on the right side (c), for the four selected transient features (also, Table 

A-3 in Appendix-B provides a confusion matrix for the SVM approach). As can be 

seen in confusion matrix (a), vowel \ae\ and \u\ have provided the highest and 

lowest accuracies of 62.5% (30/48) and 14.58% (7/48) respectively. Since vowel \a\ 

provides the lowest classification accuracy among all vowels, we re-examined the 

trials without vowel \a\ samples to see if the classification accuracies improve. The 

result of this analysis is shown in the confusion matrix (c).  

   Table 4-4-(c) shows Mahalanobis distances between all possible pair-wise 

combinations of the five vowels for the 4 transient features (Note that all 

Mahalanobis distances are normalized with the Mahalanobis distance of each vowel 
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from itself since the distance was the same for all vowels). The longest and shortest 

Mahalanobis distances are 2.28 and 0.74 which belong to the distance of vowel \ae\ 

from \u\ and vowel \a\ from \i\, respectively. Similar to Table 4-2 in the sustained 

response feature analysis section, we used three different shades of grey to better 

show the relation between classification distribution and Mahalanobis distances. In 

general, the darker the grey, the higher the classification rate and the longer the 

distance is. 

\a\ \ae\ \e\ \i\ \u\

\a\ 7 11 15 7 8

\ae\ 8 21 6 9 4

\e\ 2 7 16 12 11

\i\ 5 9 5 18 11

\u\ 1 2 8 7 30

Conf Matrix 

Transient 

EFR

Predicted Vowels

A
c
tu

a
l 
V

o
w

e
ls

\a\ \ae\ \e\ \i\ \u\

\a\ 1.00 1.76 1.94 2.05 1.55

\ae\ 0.92 1.00 1.58 1.63 1.52

\e\ 0.91 1.44 1.00 1.49 1.05

\i\ 0.74 1.08 1.20 1.00 0.97

\u\ 1.42 2.28 1.89 2.20 1.00

Mahal Dist 

EFR

Sample Vowels

R
e

fe
re
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e
 V
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w

e
ls

(a) (c)

Classification 

Accuracy

>30% (15 48)

10% 30% (5 14)

< 10% (0 4)

Mahalanobis 

Distamce

<= 1

1 2

> 2

\ae\ \e\ \i\ \u\

\ae\ 24 12 11 1

\e\ 13 15 7 13

\i\ 10 14 11 13

\u\ 10 7 10 21

Conf Matrix 

Transient 

EFR

Predicted Vowels

A
c
tu

a
l 
V

o
w

e
ls

(b)

Table 4-4: (a) The confusion matrix for the group of 4 transient features which provide the highest 

classification accuracy among all possible combinations of the transient features (i.e. latency and height of 

V and A). (b) The confusion matrix without vowel \a\. The darker the grey the higher the classification rate 

is and vice versa. (c) Mahalanobis distances between all possible pair-wise combinations of vowels for the 

4 transient features. The darker the grey, the smaller the Mahalanobis distance is and vice versa.

   Table 4-5 shows means and Standard Error of the Mean (SEM) of the transient 

features for all vowels and Figure 4-7 to Figure 4-10 show the corresponding graphs 

for each feature. To further investigate the transient features, one-way ANOVA was 

performed on each feature in order to identify features with significant mean 

differences of the means among the five classes. The last row of Table 4-5 lists p-
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values of one-way ANOVA for each feature in which three shades of grey are used to 

signify the p-values lower than three standard thresholds (the darker the grey, the 

lower the threshold is).  

Class 

Labels
Stats

V latency   

(ms)

A Latency   

(ms) 

V Height 

(µV)

A Height 

(µV)

VA duration 

(ms)

VA height   

(µV)

VA slope 

(µV/ms)

Mean 8.06 9.78 0.41 -0.05 1.72 0.46 -0.27

SEM 0.11 0.14 0.02 0.02 0.10 0.03 0.01

Mean 7.78 9.87 0.38 -0.10 2.08 0.48 -0.23

SEM 0.10 0.18 0.02 0.04 0.15 0.04 0.02

Mean 8.25 10.04 0.46 -0.05 1.78 0.51 -0.31

SEM 0.11 0.15 0.03 0.03 0.10 0.04 0.02

Mean 8.33 10.37 0.45 -0.01 2.05 0.46 -0.23

SEM 0.15 0.21 0.03 0.03 0.13 0.03 0.01

Mean 8.79 10.34 0.37 -0.05 1.54 0.42 -0.28

SEM 0.09 0.14 0.02 0.03 0.11 0.03 0.01

< 0.001 < 0.05 < 0.05 0.3248 < 0.01 0.4293 < 0.01

vowel \u\

ANOVA: p-value

vowel \a\

vowel \ae\

vowel \e\

vowel \i\

Table 4-5: Means and Standard Error of the Mean (SEM) of the seven transient response features for all 48 

trials for each class. The ANOVA p-values are listed on the last row of the table. The three shades of grey 

represent significance level such that the darker the grey the lower the significance level.
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Figure 4-7: Mean and SEM of the latency of waves V and A for 48 trials of each class. 
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Figure 4-8: Mean and SEM of the height of waves V and A for 48 trials of each class.
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Figure 4-9: Mean and SEM of the duration and height of the VA complex for 48 trials of each class. 
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Figure 4-10: Mean and SEM of the slope of the VA complex for 48 trials of each class. 
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4.3 Classification of SpEPs using Sustained & Transient 

Response Features 

   The combination of all sustained (“EFR+FFR”) and the best 4 transient response 

features provide a classification accuracy of 83.33% which is 3% higher than the 

highest classification accuracy obtained using the “EFR + FFR” feature set (also, SVM 

provided a classification accuracy of 81.25%). Table 4-6 shows the corresponding 

confusion matrix along with four shades of grey (Table A-4 in Appendix-B shows SVM 

confusion matrix). 

\a\ \ae\ \e\ \i\ \u\

\a\ 40 4 4 0 0

\ae\ 5 34 7 0 2

\e\ 4 4 38 0 2

\i\ 0 0 0 47 1

\u\ 0 1 6 0 41

Conf Matrix 

Sustaind + 

Transient

Predicted Vowels

A
c
tu

a
l 
V

o
w

e
ls

Classification 

Accuracy

>40% (20 48)

20% 40% (10 19)

10% 20% (5 9)

0.02% 10% (1 4)

0% (0)

Table 4-6: Confusion matrix for the combination of sustained and transient response features.
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5 Discussion 

   The classification results show that the sustained and transient components of 

SpEPs with five English vowels can be identified through a basic classification 

method, which to the best of our knowledge, is the first attempt in speech 

recognition using SpEPs measured using surface electrode. This finding suggests that 

the different components of SpEPs carry useful information for discriminating speech 

stimuli. In the next three subsections (5.1, 5.2, and 5.3) we discuss about the 

classification results and properties of the sustained and transient response features. 

5.1 Classification of SpEPs using Sustained Response Features 

   Classification accuracy results obtained from the sustained response experiment 

demonstrate that we were able to successfully classify SpEPs of five different vowels 

with an accuracy of 80.83%, which is considerably higher than the chance level of 

20% (100% / 5 vowels = 20%).  

   The ability to classify the five English vowels using SpEPs demonstrates that 

brainstem neural responses in the region of F0 and F1 contain valuable information 

for discriminating vowels. Both the EFR and FFR features provide a classification 

accuracy that is considerably higher than chance, demonstrating speech information 

in both signals. Together the EFR and FFR features provide the highest classification 

accuracy followed by the individual EFR and FFR features. The fact that the EFR 

features provide higher classification accuracy than the FFR features is a key finding, 

because so far it has been thought that the phonetic information is mainly contained 

in the speech formants, which get reflected in the FFR, and not in the speech 

envelope, which gets reflected in the EFR (Greenberg et al., 2004). The following two 

subsections (5.1.1 and 5.1.2) provide more details about the properties of the EFR 
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and FFR amplitude features. In subsection 5.1.3, we provide a discussion on 

assessing the classification distributions of all three feature sets. 

5.1.1 Investigation on the Properties of the EFR Amplitude Features

   The classification accuracy of 69.58% with the EFR was relatively high especially in 

comparison with the FFR. This finding implies that the EFR amplitude features may 

contain more perceptually relevant information compared to the FFR amplitude 

features. This is a novel finding since neural activity that corresponds to the 

envelope of speech and its harmonics can be used to 

distinguish the vowels, whereas vowels are usually thought to be perceptually 

discriminated based mainly on the formant frequencies, and in particular the relative 

frequencies of F1 and F2 (Advendano et al., 2004; Assmann and Summerfield, 2004; 

Peterson and Barney; 1952). Moreover, this finding is different from the model that 

Kraus and Nicol proposed in which the “source” of speech, reflected in components of 

the response in the region of F0, and “filter” of speech, reflected in components of 

the response in the region of F1, are processed separately (Kraus and Nicol, 2005). 

In our study, the differences in the envelope shapes of the vowels can only be due to 

differences in the formant content since the impulse train source signal used to 

synthesize all the vowels was the same. Therefore, differences among the responses 

to vowels in the region of F0 in the EFR cannot be said to reflect any differences in 

the “source”. Instead, they correspond to neural activity that results from differences 

in the “filter”. This neural activity occurs at frequencies mostly well below the first 

formant and yet allows for vowel discrimination. 

   By looking at the grand average of the EFR and FFR amplitude spectra, shown in 

Figure 3-4 and Figure 3-5, it appears vowels may be differentiated using the EFR 

spectrum better than using the FFR spectrum. This can be better seen from the 2-D 
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ULDA representation of the EFR and FFR features in Figure 4-4 and Figure 4-5 

respectively.  

   The strength of the EFR amplitude features can be due to two reasons. The first 

reason is that we expect to get different EFR components for different vowels since 

the shape of envelope is different for each vowel as shown in Appendix A. The 

difference in the shape of envelopes is caused by the three formants of each vowel. 

The second reason is that the EFR contents which are introduced by non-linearities of 

the cochlea and the different neural centres leading up to the upper brainstem during 

processing of speech envelope. In general, as it was mentioned in section 2.4.2, for 

the EFR we would expect to see the highest spectral amplitude at F0 and the lower 

spectral amplitudes at harmonics of F0. However, in this work we observed some 

cases which do not follow this assumption. For example, in Figure 3-4 the EFR 

spectral amplitude of vowel \a\ at F0 (100Hz) is very small compared to other 

harmonics. Other examples are the EFR spectral amplitudes of vowel \ae\ and \e\ at 

F0 and 2F0 which are almost equal. These behaviours can be due to some non-

linearities which are introduced by the rectification process of the speech envelope 

within the cochlea and by non-linearities in neural processing (Aiken, 2008). These 

effects could result in EFR spectral content that differentiates well between the 

vowels. 

5.1.2 Investigation on the Properties of the FFR Amplitude Features 

   Although the FFR amplitude features provided a classification accuracy of 54.58%, 

which is more than 2.5 times the chance accuracy, these features demonstrated less 

phonetic information compared to the EFR features. The strength of the FFR 

amplitude features can also be partly due to FFR content which is introduced by non-

linearities of the cochlea. Ideally, as it was mentioned in section 2.4.2, we would 

expect to see strong spectral amplitudes at harmonics of F0 near the first formant 
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(F1) of each vowel; therefore, we would expect to observe similar FFR spectral 

amplitudes for the vowels with similar F1. However, this statement is not true for all 

cases in this study. For example, vowels \i\ and \u\ have similar F1 values (270Hz 

and 300Hz respectively) while their SpEPs do not look similar in Figure 3-5 and they 

have the highest classification accuracies (77%) among all vowels. Such 

dissimilarities could be explained by distortion products which are caused by the 

nonlinearity characteristic of the cochlea (Aiken, 2008). This phenomenon generates 

spectral amplitudes at 2Fa-Fb and Fb-Fa, Fa and Fb can refer to any multiple integer 

of F0 as long as Fa<Fb. A good example of distortion products can be seen in Figure 

3-5 where the spectral amplitude at 2F0 (200Hz) is very strong in “vowel \a\-FFR” 

graph while we would expect to only observe strong peaks at harmonics of F0 that 

are close to the first formant of vowel \a\ (i.e. 700Hz). This component could be 

caused by 2F1-F2 (F1 and F2 are the first and second formant of the vowel \a\). 

Another example is the spectral amplitude at 2F0 in “vowel \e\-FFR” graph possibly 

generated by the effect of distortion product in FFRs.  

   The weakness of the FFR amplitude features could be due to three reasons. The 

first reason is that for most of the vowels (\a\, \ae\, and \i\), only the FFR in the 

region of F1 was included in the analysis; responses at F2 and F3 were generally 

omitted, as explained in section 3.5.1.1. Adding the responses of higher formants 

(especially F2), if they are available in the SpEP, might improve the FFR features by 

providing additional distinct information specific to each vowel (Peterson and Barney; 

1952). This reasoning can be supported by considering accuracies of vowels \a\ and 

\u\ in confusion matrix of FFR (Table 4-2-(c)) which have the two highest accuracies 

among all the tested vowels. The second formants of these two vowels are near 800 

Hz (Table 3-1) which means that F2 information could have been included in the FFR 

features thus potentially contributing to the highest accuracies. 



57

   The second reason for the weakness of the FFR amplitude features is that the F1 

frequencies for vowels \a\, \ae\, and \e\ are similar and also similar for vowels \i\ 

and \u\ (Table 3-1). This could generate overlapping response peaks at harmonics of 

F0 around F1 frequencies. For instance, vowels \a\ and \ae\ have the closest F1 

frequencies among all vowels. As shown in Table 4-2-(c), they were mainly 

misclassified with each other. However, there are instances in Table 4-2-(c) that 

show this may not be applicable to all vowels. For example, vowels \a\, \ae\, and \e\ 

were highly misclassified with vowel \u\ even though their F1 frequencies were not 

similar.  

   The third reason for the weakness of the FFR amplitude features is that the FFR is 

generally a weaker response (in amplitude) than the EFR and so the natural 

biological variability could impact the FFRs such that the auditory phase-locking to F1 

was not consistent across subjects. As a result, the FFR spectra of different vowels 

may not have been strongly distinguishable when the responses were combined from 

all subjects. This claim can be confirmed by comparing the variability of the 

individuals’ classification accuracies for the EFR and FFR features in Table 4-1. The 

difference between the highest and lowest individual’s accuracies is 30% (83.33% - 

53.33%) for the EFR features and 53.33% (80% - 26.67%) for the FFR features. 

This indicates that the FFR features are more subject dependent compared to the 

EFR features. Another observation to support this claim is that subject 4 gave the 

lowest classification accuracy of 26.67% using the FFR features while this subject 

provided a classification accuracy of 70% using the EFR features. The reason is that 

the SpEP recordings from this subject contained more artefact/noise compared to 

other subjects’ recordings. This was due to the fact that he had very dense hair and 

it was difficult to maintain the recording electrode directly on his scalp while keeping 

the impedance lower than 5 k  as was discussed in section 3.3. This indicates that 

the FFR is more vulnerable to noise than EFR.
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5.1.3 Investigation on the Classification Distribution 

   In order to support the results of confusion matrices, Mahalanobis distances were 

calculated for the same pairs of vowels. As can be seen in Table 4-2, for the most 

part, the shorter Mahalanobis distances generally correspond to higher 

misclassification rates and longer Mahalanobis distances generally correspond to 

lower misclassification rates. This can be better observed by comparing the shades of 

grey of the matching cells. Although the colours are not the same for all matching 

cells, they are close enough to confirm that when there is high misclassification rate, 

the Mahalanobis distance is low and vice versa. However, there are a few cases 

which do not follow this rule. Two good examples are cells (5,1) and (5,2) in Table 4-

2-(b) and (e) which show that the LDA classifier was able to discriminate the vowels 

and correctly classify them despite the low Mahalanobis distance. Another example 

of this is cell (2,1) in Table 4-2-(c) and (f) which shows that vowel \ae\ was more 

classified to vowel \a\ than vowel \ae\, while the Mahalanobis distance of vowel \ae\ 

from itself (cell (2,2) in Table 4-2-(f)) is smaller than the Mahalanobis distance of 

vowel \ae\ from vowel \a\ (cell (2,1) in Table 4-2-(f)). Such discrepancies between 

the two analysis approaches can be explained based on two reasons. The first reason 

is that the main difference between applying LDA and Mahalanobis distance on two 

classes is that LDA uses the pooled covariance matrix to build a hyperplane between 

the two classes, whereas Mahalanobis distance uses a covariance of a single class, 

depending on which class is taken as a reference, to calculate the distance. The 

second reason is that we used different methods to test and train for each analysis 

approach. For LDA, we used leave-one-out, whereas for Mahalanobis distance we 

considered all samples of one class as “Reference Vowels” and all samples other 

class as “Sample Vowels”. 
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5.2 Classification of SpEPs Using Transient Response Features 

   The fact that we were able to classify SpEPs of the English vowels using the 

transient response features indicates that the process of encoding of vowels begins 

even before processing the pitch and formants of the stimuli. In other words, this 

result suggests that the neural response from the lower brainstem response and in 

particular during transition between the lower and upper brainstem (i.e. VA complex) 

carries vowel-specific information. As it was explained in section 2.5, previous 

studies have found differences in the transient response when the stimulus was a 

consonant-vowel syllable with different initial consonants primarily because of the 

different gaps that follow the consonant (Johnson, et al., 2008; Skoe et al., 2011). 

However, to the best of our knowledge, nobody has distinguished between separate 

vowels using the onset response or suggested that it contains phonetic information. 

   The LDA classification result obtained from the best combination of the transient 

response features (V,A latency and height) demonstrates that we were able to 

successfully classify SpEPs of the five vowels with an accuracy of 38.33%, which is 

almost double the chance level of 20% (100% / 5 vowels = 20%). We verified that 

this accuracy is different from chance level using the one-tailed binomial test with 

the following set of variables,  

Total number of samples: n=240,  

Number of samples that were correctly classified: k=91 (240x38.33%), 

The probability of occurrence of one class: a=0.2, 

The probability of occurrence of the other classes: b=1-a=0.8  

The Binomial test result gives a p-value < 0.001, which indicates that it is extremely 

unlikely that the accuracy of 38.33% happened by chance. 

   As can be seen from the confusion matrix in Table 4-4-(a), all vowels have been 

classified correctly with an accuracy above 33.33% except for vowel \a\ which has 
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an accuracy of 14%. The ULDA distribution of vowel \a\ in Figure 4-6 also shows that 

the samples of vowel \a\ are more scattered compared to the samples of the other 

four vowels. To assess the impact of vowel \a\ samples on the classification 

accuracy, we performed LDA classification on the data without vowel \a\ samples. As 

shown in Table 4-4-(b), after removing the samples of vowel \a\ the accuracy of 

vowel \ae\ was improved by 6%; however, the accuracies for the three other classes 

were diminished.  

   In the next subsection (5.2.1) we provide a discussion on the properties of the 

transient response features. In subsection 5.2.2, we discuss the significance of the 

transient response. Finally in subsection 5.2.3, we talk about assessing the 

classification distribution for the transient response features. 

5.2.1 Investigation on the Properties of the Transient Response Features 

   In general, the transient response features have provided lower classification 

accuracies compared to the sustained response features. The weakness of the 

transient features could be due to three reasons. The first reason is that the 

transient response does not include acoustic information of the vowel stimuli (i.e. 

pitch and formants); therefore, we would expect to see less vowel-specific 

information in the transient. 

   The second reason is that we averaged over 500 repetitions to generate a single 

trial while previous studies averaged over at least 1000 repetitions for a single trial 

(Russo et al., 2004; Wible et al., 2004; Johnson et al., 2008). The higher number of 

repetitions reduces noise and provides more robust transient peaks. Using a larger 

number of repetitions could have helped to obtain other transient peaks including 

peaks I, II, III, and IV which as a result may have provided a stronger collection of 

features. 
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    The third reason is that the transient response peaks and trough were identified 

automatically by finding local maxima and minima, respectively, within a certain time 

range (as explained in section 3.5.1.2). This could generate outliers, because the 

shape and location of the transient response landmarks can vary from one subject to 

another due to biological differences. As such, the results could have improved if the 

transient landmarks were identified by an auditory clinical expert. Figure C-1 in 

Appendix C shows transient responses corresponding to 6 trials of vowel \a\ from 

subject 1. As can be seen, the shape of the waveforms and the positions of the 

peaks are not consistent among the 6 trials. 

5.2.2 Investigation on the Significance of the Transient Response Features 

   The transient features were further investigated by looking at the mean and SEM 

of all transient features for each class (Table 4-5). The ANOVA test was performed to 

identify features which have different means for the five vowels at three different 

significant levels (i.e. 0.05, 0.01, and 0.001). The result of this test is shown on the 

last row of the Table 4-5. As can be seen the V latency provided the lowest 

significant level followed by VA duration and slope, and A latency and V height. It is 

important to note that three features (i.e. V,A latency and V height) out of the four 

selected transient features (i.e. V,A latency and height) are among the features with 

low ANOVA p-value. This confirms that most of the selected features follow ANOVA 

results. Although VA duration and slope provide the second lowest p-value among all 

features they could not be used in combination with V latency, which provides the 

lowest p-value, because these features are highly correlated and they cause 

singularity as was discussed in section 3.5.1.2.    

   The fact that the ANOVA test shows significantly small p-value with V latency 

implies that the V latency distributions of the five classes are different from one 

another. This difference could be due to the place of activation on the basilar 
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membrane; higher frequencies get processed earlier because they activate neural 

responses on the basal (initial) portion of the basilar membrane (Johnson, et al., 

2008; Skoe et al., 2011). From the left plot in Figure 4-7, it can be seen that there 

are significant differences between mean value of different pairs of vowels except for 

vowels \e\ and \u\. These differences may indicate the effect of the place coding; 

however, the decreasing order of the mean latencies (/ae/</a/</e/</u/</i/) cannot 

be correlated to increasing order of any of the three formants of the five vowels. This 

could be due to the fact that we used three different formants for each vowel so it is 

not obvious in what order and combination the stimulus formants affect the latency 

of the transient response. The reason for the similarity of mean values for vowels \e\ 

and \i\ could be 1) errors in the automatic peak selection, and 2) the low number of 

repetitions per trial. 

   Also, we looked at the latency of wave A and sketched its mean and SEM for each 

class in Figure 4-8 to verify the effect of place coding. Although the ANOVA result 

states that the means are different with a p-value <  0.05, SEM overlaps can be 

observed between vowels \a\, \ae\, and \u\ on the one hand and vowels \e\ and \i\ 

on the other hand. As a result, it is hard to judge the presence of the effect of place 

coding for this feature.   

5.2.3 Investigation on the Classification Distribution 

   To support the LDA classification results shown in the confusion matrices (Table 4-

4-(a) and (b)), we calculated Mahalanobis distances. Also, we used three shades of 

grey to simplify the comparison between the two measures. As can be seen in Table 

4-4-(c), the small Mahalanobis distances on the non-diagonal cells correspond to 

large number of misclassifications on the matching cells in Table 4-4-(a) and (b). 

However, there are a few exceptions to this statement. A good example is cell 

(\e\,\a\) which shows a very small Mahalanobis distance in Table 4-4-(c) while it has 
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a very low misclassification rate in Table 4-4-(a). Such exceptions can be explained 

by the difference between LDA classification and Mahalanobis distance which was 

discussed in the previous section. 

5.3 Classification of SpEPs Using Sustained & Transient 

Response Features 

   The classification accuracy was increased by 3% when the combination of the 

sustained and transient response features was used as a feature set. Comparing 

Table 4-2-(a) and Table 4-6, it can be seen that the classification accuracies in Table 

4-6 have increased for the vowels with lower accuracies in Table 4-2-(a) (i.e. vowels 

\a\, \ae\, \e\, and \u\) than the vowel with the highest classification accuracy (i.e. 

vowel \i\). For example, the classification accuracy of vowel \u\ has improved by 6% 

while the classification accuracy of vowel \i\ has not changed.  

   In order to assess the significance of this improvement, we performed a paired t-

test in which the first sample included classification accuracies of the five vowels in 

Table 4-2-(a), and the second sample included classification accuracies of the five 

vowels in Table 4-6. The result of the t-test was not statistically significant showing 

that the 3% increase is likely due to chance. Therefore, we cannot conclude that 

there could be phonetic information that is mutually exclusive between the two sets 

of features. 
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6 Conclusion and Future Work 

6.1 Summary of Conclusions 

   We have demonstrated that the Speech Evoked Potentials (SpEPs) of five English 

vowels can be classified with fairly high accuracy of 80.33% for the sustained 

response features and 38.33% for the transient response features, using a Linear 

Discriminant Analysis (LDA) classifier. We used amplitudes of EFR and FFR as the 

sustained response features and temporal properties of the VA complex as the 

transient features. Results show that the EFR amplitude features represents each 

vowel better compared to the FFR amplitude features. The advantage of the EFR 

amplitude features was explained to be possibly due to different envelope shape of 

the vowels and significant EFR content at harmonics of F0 which are introduced by 

non-linearities of auditory neural system during processing of speech envelope. The 

disadvantage of the FFR amplitude features was suggested to be due to the 

limitation of examining only the responses of F1, having similar F1 frequencies for 

some vowels, and the biological variability of the subjects.  

Moreover, we attributed the weakness of the transient response features to the low 

number of repetitions used to generate a single trial and the automatic approach for 

selecting the significant transient peaks. 

   Results obtained from this study demonstrate that SpEPs contain useful 

information which can be used to distinguish different speech stimuli. Therefore, this 

work is a solid baseline for further study of SpEP classification using more complex 

stimuli, such as words. In addition, the high accuracy with the EFR spectral features 

is a novel finding since it has been thought that the filter characteristics of speech 

make the main contribution to perceptual discrimination of different vowels. 

Moreover, the ability to classify the vowels with the transient response features is a 
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potentially novel finding because the transient response to a vowel has been thought 

to carry general sound onset information and not vowel-specific information. 

6.2 Future Work 

The future directions for this study are, 

1- Using more complex speech stimuli 

   In this study we have demonstrated that SpEPs of the five synthetic vowels 

contain valuable information which can be used for classification of the SpEPs. 

For future work, natural vowels and more complex speech sounds such as 

words and sentences can be investigated to provide a better understanding of 

the speech processing in the auditory system. 

2- Applying more complex classifiers 

   We have obtained a good classification result with a simple classifier like 

LDA. Using more complex pattern classification methods such as neural 

network and hidden Markov model may help to achieve a better result 

especially when more complex speech stimuli are used. Note that given the 

limited data set in this study, a simple classifier like LDA probably helped to 

prevent over-fitting. 

3- Employing feature selection and feature reduction methods 

   In this work we simply performed feature selection by choosing spectral 

amplitudes at particular frequency points. Employing more advanced feature 

selection and feature reduction methods (e.g., information gain ratio) may 

help to obtain a higher classification accuracy by providing optimal and 

consistent features. 

4- Collecting data from a larger number of subjects 

   In general, having a large collection of data is always ideal for classification 

problems because of two reasons: 1) a part of data can be used only as a test 
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set, 2) the possibility of over-fitting can be prevented. As such, the 

classification results of this study may be improved by collecting additional 

data from a larger number of subjects. 



67

Appendix A: Stimuli in Time Domain 
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Figure A-1: Time domain representation of five synthetic vowels as spoken by a male with T0=10ms.
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Appendix B: SVM Classification 

Results

   Table B-1 shows the overall SVM classification accuracies for the three different 

sets and Table B-2 provides more details on the classification results by showing 

confusion matrices. 

Amplitude  

Features

Classification 

Accuracy

EFR + FFR 80.00%

EFR 69.17%

FFR 53.33%

Table B-1: SVM classification accuracies of three different amplitude feature sets for all trials 

\a\ \ae\ \e\ \i\ \u\

\a\ 37 4 6 0 1

\ae\ 3 33 6 0 6

\e\ 5 3 36 0 4

\i\ 0 0 0 46 2

\u\ 0 2 4 2 40

Conf Matrix 

EFR + FFR

Predicted Vowels

A
c
tu

a
l 
V

o
w

e
ls

\a\ \ae\ \e\ \i\ \u\

\a\ 34 4 9 0 1

\ae\ 3 28 9 6 2

\e\ 11 10 21 0 6

\i\ 0 0 2 44 2

\u\ 0 0 6 3 39

A
c
tu

a
l 
V

o
w

e
ls

Conf Matrix 

EFR

Predicted Vowels

(a)

\a\ \ae\ \e\ \i\ \u\

\a\ 13 22 2 0 11

\ae\ 13 14 10 2 9

\e\ 0 4 28 4 12

\i\ 0 0 3 37 8

\u\ 1 1 4 6 36

Conf Matrix 

FFR

Predicted Vowels

A
c
tu

a
l 
V

o
w

e
ls

(b) (c)

Classification 

Accuracy

>40% (20 48)

20% 40% (10 19)

10% 20% (5 9)

0.02% 10% (1 4)

0% (0)

Table B-2: SVM confusion matrices for a) EFR+FFR, b) EFR, and c) FFR. The darker the grey, the higher 

the classification rate is and vice versa. 
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\a\ \ae\ \e\ \i\ \u\

\a\ 6 4 2 17 19

\ae\ 0 12 4 22 10

\e\ 1 3 7 18 19

\i\ 2 5 1 25 15

\u\ 2 1 2 10 33

Conf Matrix  

Transient 

EFR

Predicted Vowels

A
c
tu

a
l 
V

o
w

e
ls

Classification 

Accuracy

>30% (15 48)

10% 30% (5 14)

< 10% (0 4)

Table B-3: SVM confusion matrix for the group of 4 transient features which provide the highest 

classification accuracy among all possible combinations of the transient features (i.e. latency and height of 

V and A). The darker the grey, the smaller the Mahalanobis distance is and vice versa. 

Classification 

Accuracy

>40% (20 48)

20% 40% (10 19)

10% 20% (5 9)

0.02% 10% (1 4)

0% (0)

\a\ \ae\ \e\ \i\ \u\

\a\ 38 5 4 1 0

\ae\ 3 35 6 1 3

\e\ 4 1 39 0 4

\i\ 0 1 1 44 2

\u\ 0 2 5 2 39

Conf Matrix 

Sustaind + 

Transient

Predicted Vowels

A
c
tu

a
l 
V

o
w

e
ls

Table B-4: SVM confusion matrix for the combination of sustained and transient response features. 
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Appendix C: Transient Response 
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Figure C-2: Transient responses of vowel \a\ obtained from 6 trials of subject 1 
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