

Cloud Client Prediction Models for Cloud Resource Provisioning in a
Multitier Web Application Environment

By

Akindele Abisola Bankole

A thesis submitted to the Faculty of Graduate and Postdoctoral

Affairs in partial fulfillment of the requirements

for the degree of

Master of Applied Science in Electrical and

Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Faculty of Engineering

Carleton University

Ottawa, Ontario, Canada

April 2013

© Copyright 2013, Akindele Abisola Bankole

ii

ABSTRACT
In order to meet Service Level Agreement (SLA) requirements, efficient scaling of

Virtual Machine (VM) resources in cloud computing needs to be provisioned for before

actually required due to the instantiation time required by the VM. One way to

proactively provision resources is by predicting future resource demands. Most existing

research on VM resource provisioning are either reactive in their approach or use only

non-business level metrics such as CPU, Memory and Network utilization in their

prediction model. In this research, a Cloud client prediction model for TPC-W

benchmark web application is developed and evaluated using three machine learning

techniques: Support Vector Machines (SVM), Neural Networks (NN) and Linear

Regression (LR). Business level metrics for Response Time and Throughput are included

in the prediction model with the aim of providing cloud clients with a more robust scaling

decision choice. Results and subsequent thorough analysis from the experimentation

carried out on Amazon Elastic Compute Cloud (EC2) show that Support Vector Machine

provides the best prediction model for random-like workload traffic pattern.

iii

ACKNOWLEDGEMENTS
Firstly, I would like to thank Professor Samuel Ajila for his unflinching support,

encouragement and guidance during the thesis.

My appreciation also goes to my family for their support and encouragement throughout

the period I worked on this thesis.

Finally, I thank my wife Omotayo for her help in proofreading my work on several

occasions. In addition, her support and encouragement are also well appreciated.

iv

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF APPENDICES ... x

LIST OF SYMBOLS AND ACRONYMS ..xi

CHAPTER 1: INTRODUCTION ... 1

1.1. Background .. 1

1.1.1. Cloud computing offerings ... 2

1.2. Motivation for the Thesis ... 2

1.3. Goal and Scope of the Thesis ... 4

1.4. Contributions of the Thesis .. 4

1.5. Outline of the Thesis .. 5

CHAPTER 2: STATE OF THE ART REVIEW .. 6

2.1. Cloud Computing ... 6

2.1.1. Cloud Computing Services ... 6

2.1.2. Types of Cloud .. 8

2.1.3. Amazon Elastic Compute Cloud (Amazon EC2) ... 8

2.1.4. Amazon Instance Type Specifications .. 9

2.1.5. Amazon EC2 Instance Options ... 9

2.2. Machine Learning .. 10

2.2.1. Supervised learning .. 11

2.2.2. Definition of machine learning terms... 11

2.2.3. Linear Regression ... 11

2.2.4. Neural Networks .. 12

v

2.2.5. Training Neural Networks .. 13

2.2.6. Training Neural Networks .. 15

2.2.7. Support Vector Machines ... 16

2.3. Resource Provisioning.. 18

2.4. Resource Prediction Techniques .. 19

2.5. Cloud Resource Provisioning and Techniques... 20

2.5.1. Threshold based provisioning .. 20

2.5.2. Control Theory based provisioning .. 21

2.5.3. Reinforcement Learning ... 22

2.5.4. Time series analysis provisioning .. 22

CHAPTER 3: DESIGN OF EXPERIMENT ... 25

3.1. System Architecture ... 25

3.2. WEKA .. 25

3.3. Experimental Setup .. 26

3.3.1. Feature Selection .. 26

3.3.2. Data collection using TPC-W benchmark .. 27

3.3.3. Feature reduction .. 29

3.3.4. Data preprocessing ... 29

3.3.5. Training of Dataset ... 30

3.3.6. Validation (Test) of Dataset ... 32

CHAPTER 4: SIMULATION RESULTS AND ANALYSIS 33

4.1. Linear Regression Models .. 33

4.1.1. CPU utilization training and test results ... 33

4.1.2. Throughput training and test results ... 34

4.1.3. Response time training and test results .. 36

vi

4.2. Neural Network Models ... 37

4.2.1. CPU Utilization training and test results .. 38

4.2.2. Throughput training and test results ... 39

4.2.3. Response time training and test results .. 39

4.3. Support Vector Machine (Regression) Models .. 41

4.3.1. CPU Utilization training and test results .. 41

4.3.2. Throughput training and test results ... 42

4.3.3. Response time training and test results .. 44

4.4. Comparison of Prediction Models.. 45

4.5. Sensitivity analysis ... 49

CHAPTER 5: DISCUSSION OF RESULTS .. 51

CHAPTER 6: CONCLUSION.. 53

6.1. Summary .. 53

6.2. Future Research .. 55

REFERENCES ... 56

vii

LIST OF TABLES
Table 1: Amazon Instance Type Specifications .. 9

Table 2: Experimental workload mix for some selected time .. 28

Table 3: Performance metrics and their calculations .. 31

Table 4: Final parameters of the SVM CPU Utilization and SLA prediction model 32

Table 5: Final parameters of the NN CPU Utilization and SLA prediction model 32

Table 6: Final parameters of the LR CPU Utilization and SLA prediction model 32

Table 7: CPU utilization training and test performance metric .. 33

Table 8: Throughput training and test performance metric .. 34

Table 9: Response time training and test performance metric .. 36

Table 10: CPU utilization training and test performance metric 38

Table 11: Throughput training and test performance metric .. 39

Table 12: Response time training and test performance metric .. 40

Table 13: CPU utilization training and test performance metric 41

Table 14: Throughput training and test performance metric .. 43

Table 15: Response time training and test performance metric .. 44

Table 16: CPU utilization step prediction for MAPE ... 46

Table 17: CPU utilization step prediction for RMSE ... 47

Table 18: Throughput step prediction for MAPE ... 48

Table 19: Throughput step prediction for RMSE ... 48

Table 20: Response time step prediction for MAPE .. 49

Table 21: Response time step prediction for RMSE ... 49

Table 22: Data consistency measurement ... 50

Table A.1: TPC-W Web Interaction Characteristics .. 62

Table A.2: TPC-W Web Interaction Frequencies for Each Mix 62

Table C.1: CPU utilization training and test performance metric 66

Table C.2: Throughput training and test performance metric ... 67

Table C.3: Response time training and test performance metric 68

viii

LIST OF FIGURES
Figure 3-1: Architecture of the System ... 26

Figure 3-2: Attribute selection option to rank attribute in order of relevance 29

Figure 3-3: Parameter search for SVR ... 31

Figure 4-1: CPU Utilization Actual and Predicted training output using LR 34

Figure 4-2: CPU Utilization’s Actual and Predicted test output using LR 35

Figure 4-3: Throughput’s Actual and Predicted training using LR 35

Figure 4-4: Throughput Actual and Predicted test output using LR 36

Figure 4-5: Response time Actual and Predicted training output using LR 37

Figure 4-6: Response time Actual and Predicted test output using LR 37

Figure 4-7: CPU Utilization Actual and Predicted training output using NN 38

Figure 4-8: CPU Utilization Actual and Predicted test output using NN 39

Figure 4-9: Throughput Actual and Predicted training using NN 40

Figure 4-10: Throughput Actual and Predicted test output using NN 40

Figure 4-11: Response time Actual and Predicted training output using NN................... 41

Figure 4-12: Response time Actual and Predicted test output using NN 42

Figure 4-13: CPU Utilization Actual and Predicted training output using SVR 43

Figure 4-14: CPU Utilization Actual and Predicted test output using SVR 43

Figure 4-15: Throughput Actual and Predicted Training using SVR 43

Figure 4-16: Throughput Actual and Predicted Test output using SVR 44

Figure 4-17: Response time Actual and Predicted training output using SVR................. 45

Figure 4-18: Response time Actual and Predicted test output using SVR 46

Figure 4-19: CPU utilization training prediction for SVR, NN and LR at selected time

interval .. 47

Figure 4-20: Throughput training prediction for SVR, NN and LR at selected time

interval .. 48

Figure B.1: Java script used to automate the user requests (Browsing mix) sent to the web

server .. 63

Figure B.2: Java script used to automate the collection of cloud metric (CPU utilization)

... 64

Figure C.1: CPU Utilization Actual and Predicted training output using SVR 66

ix

Figure C.2: CPU Utilization Actual and Predicted test output using SVR 66

Figure C.3: Throughput Actual and Predicted training output using SVR 67

Figure C.4: Throughput Actual and Predicted test output using SVR 67

x

LIST OF APPENDICES

APPENDIX A: TPC WEB INTERACTION .. 62

APPENDIX B: SAMPLE BATCH SCRIPTS .. 63

APPENDIX C: RESULTS FROM EXPLORATORY WORK .. 66

xi

LIST OF SYMBOLS AND ACRONYMS
API Application Programming Interface

AR1 Auto Regression of Order 1

ARMIA Auto Regressive Integrated Moving Average

CPU Central Processing Unit

CRM Customer Relationship Management

EBS Elastic Block Store

EC2 Elastic Compute Cloud

ECU Elastic Compute Unit

GPU Graphics Processing Unit

GUI Graphical User Interface

HPC High-Performance Computing

HTML HyperText Markup Language

I/O Input/Output

IaaS Infrastructure-as-a-Service

IDS Intrusion Detection System

LR Linear Regression

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

NN Neural Network

PaaS Platform-as-a-Service

QoE Quality of Experience

QoS Quality of Service

RBE Remote Browser Emulator

RBF Radial Basis Function

xii

RMSE Root Mean Square Error

S3 Simple Storage Service

SaaS Software-as-a-Service

SLA Service Level Agreement

SVM Support Vector Machine

SVR Support Vector Regression

TPC Transaction Processing Council

VLAN Virtual Local Area Network

VM Virtual Machine

1

CHAPTER 1: INTRODUCTION
1.1. Background

The advent of cloud computing has allowed contemporary business owners (with limited

capital for example) to rent and use infrastructure resources or services needed to run

their businesses in a pay-as-you-use manner. This usage has been made possible by

ubiquitous network connectivity and virtualization [31]. Specifically, Armbrust, M. et al.

[9] described cloud computing as both the applications delivered as services over the

Internet and the hardware and systems software in the datacentre that provide those

services. Merits of cloud computing over the conventional data center include [8]:

appearance of infinite computing resources on demand and elimination of an up-front

commitment by cloud users. Furthermore, the ability to pay for use of computing

resources on a short-term basis as needed and the economies of scale due to very large

data centers are additional merits.

From the foregoing, cloud computing is therefore a sharp departure from the traditional

method of owning a data center that warehouses infrastructure (networks, servers and

cooling systems). While the cloud offers numerous opportunities to providers and users,

data security and confidentiality, availability of service and effective resource

management techniques are some obstacles and challenges to the growth of cloud

computing. The opportunities amidst these obstacles discussed by Ambrust, M et al [8]

include: the deployment of encryption, VLANs and firewalls for data confidentiality and

auditability challenge. Also, by improving VM support, making use of flash memory

(which decreases I/O interference) and providing meta-scheduling abilities for high-

performance computing (HPC) systems; the obstacle of performance unpredictability can

be mitigated. Furthermore, the challenge of scalable storage presents an opportunity to

invent a storage system that is durable, available and can scale up and down on demand.

Finally, the challenge of scaling resources quickly in response to load without violating

service level agreements can be managed by inventing an auto-scaler that relies on

machine learning for prediction and subsequent dynamic resource scaling.

2

1.1.1. Cloud computing offerings

The three main markets associated with cloud computing include: Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-service (SaaS) [41].

Popular providers of these services are Amazon Elastic Compute Cloud (Amazon EC2),

Google App engine and Salesforce respectively. These services (Iaas, Paas and SaaS) can

be made accessible to the public, otherwise called public cloud or restricted for private

use (private cloud). Sometimes, these services can be hosted on a hybrid cloud which is a

composition of both public and private clouds.

This thesis used Amazon EC2, a public cloud for resource provisioning. The selection of

this cloud provider is based on the availability of documentation, open source

Application Programming Interface (API) and a vast array of instance types to select

from (representing either on-demand, reserved or spot instances). Finally, being an early

entrant in providing IaaS, Amazon EC2 boasts of a very good technical support team.

1.2. Motivation for the Thesis

One area that researchers have focused on is resource management. Quiroz et al [47]

described four stages of data center resource management: Virtual Machine (VM)

Provisioning1, Resource Provisioning (includes mapping and scheduling requests onto

distributed physical resources), Run-time Management and Workload Modeling. In this

thesis, focus will be on VM Provisioning. In trying to meet up with both client Service

Level Agreement (SLA) for Quality of Service (QoS) and their own operating cost, cloud

providers are faced with the challenges of under-provisioning (a starvation or saturation

of VM resources that leads to service degradation) and over-provisioning

(underutilization and subsequent waste of VM resources). Under-provisioning often leads

to SLA penalty resulting into business revenue loss on the part of the cloud providers [9,

24, 25] and also a poor Quality of Experience (QoE) for the cloud client’s customers

(unacceptable response time for time critical applications for example). On the other

hand, over-provisioning can lead to excessive energy consumption, culminating in high

1 efficient allocation of virtual resources to application jobs as they arrive at service queues, through the creation and allocation of
appropriately configured VM instances

3

operating cost and waste of resources [9, 24, 25]; though this has no negative impact on

the client. Accurate VM provisioning is a challenging research area that seeks to address

the two extremes especially where user workload requirements cannot be determined a

priori. Furthermore, VM boot up time has been reported to span various time durations

before it is ready to operate [2, 34, 38, 41, 47, 49]; specifically from between 5 and 10

minutes [2, 38], and between 5 and 15 minutes [49]. It is believed that during this time of

system and resource unavailability, requests cannot be serviced which can lead to penalty

on the part of the cloud providers. Multiplying this lag time over several server

instantiations in a data center can result in heavy cumulative penalties. These penalties or

compensations to the client cannot redeem the poor QoE the customers must have

perceived. To this end, cloud clients can take a proactive step to mitigate reputational loss

by controlling their VM provisioning using the Cloud provider's API. One of the

numerous strategies available to the client is a predictive approach wherein insight into

the future resource usage (CPU, memory, network and disk I/O utilization) may help in

scaling decisions ahead of time, thus, compensating for the start-up lag time [17]. Present

monitoring metrics made available to clients are limited to CPU utilization, memory and

network. These may not give a holistic view of the QoS. For instance, a web server may

not necessarily be saturated2 for an SLA breach to occur. Therefore, CPU based scaling

decisions may not achieve the goal of accurate VM provisioning. Several predictive

resource usage approaches exist, such as pattern matching and machine learning. In fact,

the use of machine learning as a predictive tool to allow dynamic scaling is one way of

mitigating the challenge of resource scaling [8]. In this thesis, some selected machine

learning techniques’ ability in forecasting future resource usage in a multi-tier web

application was evaluated. The following machine learning techniques are evaluated in

this thesis: Neural Network (NN), Linear Regression (LR) and Support Vector Machine

(SVM). In addition, the cloud watch metrics is extended by including business level

metrics such Throughput and Response time.

2 based on CPU utilization metric only

4

1.3. Goal and Scope of the Thesis

The goal of this thesis is to design and develop a cloud client prediction model for cloud

resource provisioning in a multitier web application environment that is capable of

forecasting future resource usage and making timely VM provisioning.

The prediction capabilities of three machine learning techniques are analyzed using three

benchmark workloads from a Java implementation of TPC-W [57] hosted on Amazon

EC2. Three performance metrics are used to evaluate the prediction accuracy of the three

machine learning techniques. An important objective of this thesis is the addition of two

SLA metrics; response time and throughout to the prediction model. It is pertinent to

mention that no author has considered the combination of business level metrics and

coarse scale metrics such as CPU, Memory and Network utilizations.

The scope of this thesis is hinged on the IaaS model which offers developers more

flexibility in their choice of programming language as opposed to PaaS providers that

restrict users to their platform’s programming model (like Java and Ruby on Rails) [38,

23]. Finally, the prediction model is built around the web server tier only. It is possible to

extend the model to other tiers such as database or application layer.

1.4. Contributions of the Thesis

The contributions of this thesis include:

• The evaluation of the resource usage prediction capability of SVM, NN and LR

using three benchmark workloads from TPC-W

• The extension of the prediction model to include business level SLA metrics thus

providing wider and better scaling decision options for clients

• The comparison of the prediction capability of SVM, NN and LR under bursty

and steady traffic patterns

5

1.5. Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives a state of the art review.

Chapter 3 describes the methodology adopted and the experimental model for

performance analysis. Chapter 4 presents the simulation results obtained through

experiments of the various machine learning techniques. Chapter 5 discusses the results

while Chapter 6 concludes the thesis and also provides direction for future works.

6

CHAPTER 2: STATE OF THE ART REVIEW

This chapter discusses the existing work on cloud resource provisioning. Section 2.1

discusses the cloud computing service offerings. The Amazon EC2 infrastructure is also

discussed in this section. Section 2.2 provides a background on machine learning and the

three selected techniques (SVM, NN and LR). Section 2.3 provides a literature survey on

resource provisioning. Section 2.4 provides a literature survey on resource provisioning

techniques. Section 2.5 provides a literature survey on cloud resource provisioning and

techniques.

2.1. Cloud Computing

This sub-section builds on the brief introductory concept of cloud computing discussed in

Section 1.1.1.

2.1.1. Cloud Computing Services

Cloud computing can be classified under the services they provide which are:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-

service (SaaS).

• Infrastructure-as-a-Service (IaaS): This provides general on-demand

computing resources such as virtualized servers or various forms of storage as

metered resources [31]. According to Hofer and Karagiannis [32], customers buy

the resources, instead of having to set up servers, software and data center space

themselves, and get billed on the resources consumed. Customers then have to

install and run their application on the “rented” infrastructure. Maintenance and

support of the underlying infrastructure (VM) is handled by the provider.

Customers on the other hand control the entire software stack. Amazon EC2

instance is a classic example of IaaS platform that provides virtualized servers of

various capacities. Amazon’s data centers are spread across major world

Regions3 and Zones (North America, Europe, Asia and South America).

According to Amazon [2], these Zones are engineered to be insulated from

failures from other Zones and provide inexpensive, low latency network

3 Regions are made up of one or more Zones

7

connectivity to other Zones in the same Region. Amazon also offers storage

facilities with or without the EC2 instances. Amazon Elastic Block Store (EBS)

is available with EC2 instances while Amazon Simple Storage Service (Amazon

S3) can stand alone (without EC2 instance) [32]. With these advances, the low

level of IaaS makes it intrinsically difficult for providers like Amazon to offer

automatic scalability because the semantics associated with replication are

highly application dependent [57]. Extensive research using IaaS model has been

carried out by several authors. These include resource provisioning [38, l, 17,

26], energy efficiency [15, 44] and security issues [13, 22].

• Platform-as-a-Service (PaaS): This provides an existent managed higher-level

software infrastructure for building particular classes of applications and

services. The platform includes the use of underlying computing resources,

typically billed similar to IaaS products, although the infrastructure is abstracted

away below the platform [31]. Platform services are usually aimed at specific

domains, such as the development of web applications, and are dependent on

programming language [32]. Google App engine [4] falls in this category and its

target programming language is Java or Python. Several authors have used this

service model in their works. Boniface, M. et al [14] presented a novel PaaS

architecture targeting real-time Quality of Service (QoS) guarantees for online

interactive multimedia applications. Sandikkaya and Harmanci [51] focused on

security of PaaS clouds. They explored and classified security problems and also

proposed countermeasures for PaaS clouds.

• Software-as-a-Service (SaaS): This provides specific, already-created

applications as fully or partially remote services. Sometimes it is in the form of

web-based applications and other times it consists of standard non-remote

applications with Internet-based storage or other network interactions [31].

Customers of SaaS do not manage or control the underlying infrastructure and

application platform [32]. An example of this service is Salesforce that offers

customer relationship management (CRM) tools [5]. SaaS model has also found

application in many research areas. Nascimento and Correia [46] presented a

study on the use of anomaly-based intrusion detection system (IDS) with data

8

from a production environment hosting a SaaS web application of large

dimensions. Their goal was to use the IDS to detect previously unknown attacks.

Sun, W. et al [55] explored the configuration and customization issues and

challenges to SaaS vendors. They went ahead to develop a methodology

framework to help SaaS vendors plan and evaluate their capabilities and

strategies for service configuration and customization.

2.1.2. Types of Cloud

The services introduced in Section 2.1.1. can be deployed on either a Public or Private

cloud.

• Public cloud: These are cloud4 platforms that are made available to the general

public in a pay-as-you go manner. Since Public clouds are reachable via the

Internet they are susceptible to potential security attacks. Users also have few or

no control over the cloud environment [10]. Deployment of encryption algorithms

is one way of mitigating the control and security of data in public cloud

infrastructures. Small and midsized businesses with a small budget usually

patronize public cloud.

• Private cloud: These are internal data centers of a business or other

organizations, not made available to the general public and are large enough to

benefit from the advantages of cloud computing [8]. Organizations using private

clouds have great control on the cloud as it potentially runs inside a self-

controlled perimeter network boundary [10].

2.1.3. Amazon Elastic Compute Cloud (Amazon EC2)

Amazon EC2 is a web service that provides resizable compute capacity in the cloud. It is

designed to make web-scale computing easier for developers. The web service provides

the ability to obtain and configure capacity with minimal friction [2]. The web service

interface can be used to launch instances with a variety of operating systems, load them

4 The data center hardware and software

9

with custom application environments, manage network access permissions, and run the

image using as many or few systems as desired. Amazon EC2 highlights some of its

service benefits which include: elasticity – the ability to increase or decrease capacity

within minutes. Customers also have the choice of selecting from multiple instance types,

operating systems and software packages. Furthermore, a commitment to 99.95%

availability for each EC2 Region is offered in their SLA. Finally and importantly, they

offer a very low per hour pay rate for the compute capacity consumed.

2.1.4. Amazon Instance Type Specifications

Amazon EC2 has a range of instance types including: Standard Instances, Micro

Instances, High-Memory Instances, High-CPU Instances, Cluster Compute Instances,

High Memory Cluster Instances, Cluster graphic processing unit (GPU) Instances, High

I/O Instances and High Storage Instances [2]. Table 1 summarizes some instance types

and their specifications.

Table 1: Amazon Instance Type Specifications

Instance Type Platform CPU Memory (GB) Disk
(GB)

Cost/Hr ($)5

M1.Small 32 or 64-bit 1 ECU6 1.7 160 0.060
M1.Medium 32 or 64-bit 2 ECU 3.7 410 0.120
M1.Large 64-bit 4 ECU 7.5 850 0.240
M1.Extra Large 64-bit 8 ECU 15 1690 0.480
T1.micro 32 or 64-bit Up to 2

ECU
0.613 8 0.020

High Memory
Extra Large

64-bit 6.5 ECU 17.1 420 0.410

High-CPU
Medium

32 or 64-bit 5 ECU 1.7 350 0.145

2.1.5. Amazon EC2 Instance Options

Amazon EC2 offers three different instance purchasing options: On-Demand Instances,

Reserved Instances and Spot Instances.

5 Price for Linux/Unix instances
6 One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor [2]

10

• On-Demand Instances: On-Demand Instances allow customers to pay for

compute capacity by the hour with no long term commitments or upfront

payments. It allows for scalability by increasing or decreasing compute capacity

depending on the demands of the application; and only paying the specified

hourly rate for the instances used [2].

• Reserved Instances: This allows customers to make a low one-time, upfront

payment for an instance, reserve it for one or three year term, and pay a

significantly lower hourly rate for the instance. With reserved instances,

customers are guaranteed that their instances will always be available for the

operating system and Availability zone where it was purchased.

• Spot Instances: Spot Instances provide the ability for customers to purchase

compute capacity with no upfront commitment and at hourly rates usually lower

than the On-Demand rate. Spot Instances allow customers to specify the

maximum hourly price that they are willing to pay to run a particular instance

type. The Spot Price fluctuates based on supply and demand for instances, but

customers will never pay more than the maximum price they have specified. Tian,

C. et al [56] provided a detailed analysis on how the spot instances work.

2.2. Machine Learning

According to Wang and Summers [60], machine learning is the study of algorithms that

run on computer systems which can learn complex relationships or patterns from

empirical data and make accurate decisions. It is an interdisciplinary field that has close

relationships with artificial intelligence, pattern recognition, data mining and theoretical

computer science. The authors classified machine learning into supervised learning, semi-

supervised learning and unsupervised learning. The purpose of supervised learning is to

deduce a functional relationship from training data that generalises well to testing data.

Unsupervised learning on the other hand seeks to discover relationships between samples

or reveal the latent variables behind the observations. Semi-supervised learning falls

between supervised and unsupervised by utilizing both labeled and unlabeled data during

11

the training phase [60]. Supervised learning has been employed because its purpose

matches the problem area of this thesis.

2.2.1. Supervised learning

This is the learning that takes place based on a class of examples or learning based on

expert inputs [37]. It is the most common problem type in machine learning and it finds

application in regression and classification problems. Regression problems which deal

with predicting continuous valued output [33] would be used to forecast future values in

this thesis. Typical algorithms used in solving regression problems include Liner

Regression, Neural Networks and Support Vector Machines.

2.2.2. Definition of machine learning terms

Instances: These are the inputs to a machine learning scheme. They are the things to be

classified, associated or clustered. Each instance is an individual, independent of the

concept to be learned [61]

Attributes: Also called features are the observed variables [20]. For example, in

predicting the future CPU utilization, attributes such as memory utilized, disk read/write

and network in/out would be possible attributes.

Target class: This is the attribute to be predicted.

2.2.3. Linear Regression

A linear regression model assumes that the regression function 𝐸(𝑌|𝑋) is linear in the

input 𝑋1, … , 𝑋𝑝. They are simple and often provide an adequate and interpretable

description of how the inputs affect the output [58]. It is one of the staple methods in

statistics and it finds application in numeric prediction especially where both the output

or target class and the attributes or features are numeric [61]. The linear regression model

has the form:

𝑓(𝑋) = 𝛽0 + ∑ 𝑋𝑗𝛽𝑗
𝑝
𝑗=1 (1)

The 𝛽𝑗’s are the unknown parameters or coefficients, and the variables 𝑋𝑗 are specifically,

12

the quantitative inputs or attributes. Typically, the parameters 𝛽 are estimated from a set

of training data (𝑥1,𝑦1) … (𝑥𝑁 ,𝑦𝑁) [61, 58]. Each (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝)T is a vector of feature

measurements for the 𝑖th case. The most popular estimation method is least squares,

wherein we pick the coefficients 𝛽 = �𝛽0,𝛽1, … ,𝛽𝑝�T to minimize the residual sum of

squares (RSS) [58]

𝑅𝑆𝑆(𝛽) = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))𝑁
𝑖=1

2

 = ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1))𝑁

𝑖=1
2 (2)

Provided there are more instances than attributes, choosing weights to minimize the sum

of squared differences is really not difficult [61]. The geometry of least-squares fitting in

the 𝑅𝑝+1-dimensional space occupied by the pairs (𝑋,𝑌) is shown in Figure 2-1.

Linear regression is an excellent, simple scheme for numeric prediction. However, linear

models suffer from the disadvantage of non-linearity: if the data exhibits a non-linear

dependency, the best fitting straight line will be found [61].

In this thesis, the Linear Regression model in the WEKA tool (discussed in Section 3.2)

would be used to train the historical dataset. The forecasting accuracy would thereafter be

evaluated on the held out dataset (test dataset). Accuracy in this context would be based

on the performance metric summarized in Table 2.

2.2.4. Neural Networks

A neural network (NN) is a two-stage regression or classification model, typically

represented by a network diagram [58]. Several variants of neural network classifier

(algorithm) exist, some of which are; feed-forward, back-propagation, time delay and

error correction neural network classifier. Figure 2-2 shows a feed-forward neural

network.

According to Trevor, H. et al [58], there is typically one output unit 𝑌1 at the top i.e.

𝐾 = 1 for regression problems though multiple quantitative responses can be handled in

a seamless fashion. Derived features 𝑍𝑚 are created from linear combinations of the

input, and then the target 𝑌𝑘 is modeled as a function of linear combinations of the 𝑍𝑚,

13

𝑍𝑚 = 𝜎(𝛼0𝑚 + 𝛼𝑚𝑇 𝑋),𝑚 = 1, … ,𝑀,

 𝑇𝑘 = 𝛽0𝑘 + 𝛽𝑘𝑇𝑍,𝑘 = 1, … ,𝐾, (3)

𝑓𝑘(𝑋) = 𝑔𝑘(𝑇),𝑘 = 1, … ,𝐾,

Where 𝑍 = (𝑍1, 𝑍2,…, 𝑍𝑀), and 𝑇 = (𝑇1,𝑇2, … ,𝑇𝐾).

The activation function 𝜎(𝑣) is usually chosen to be the sigmoid 𝜎(𝑣) = 1
(1+ 𝑒𝑣)

.

Sometimes, Gaussian radial basis functions are used for 𝜎(𝑣), producing what is known

as a radial basis function network [58]. The units in the middle of the network, computing

the derived features 𝑍𝑚, are called hidden units because the values 𝑍𝑚 are not directly

observed.

The neural network model has unknown parameters, often called weights, and we seek

values for them that make the model fit the training data well. The complete set of

weights θ, consists of

{𝛼0𝑚,𝛼𝑚;𝑚 = 1,2, … ,𝑀} 𝑀(𝑝 + 1) weights,

{𝛽0𝑘,𝛽𝑘; 𝑘 = 1,2, … ,𝐾} 𝐾(𝑀 + 1) weights. (4)

For regression, the sum-of-squares errors is used as the error function [58]

𝑅(𝜃) = ∑ ∑ (𝑦𝑖𝑘 − 𝑓𝑘(𝑥𝑖))𝑁
𝑖=1

𝐾
𝑘=1

2. (5)

The generic approach to minimizing 𝑅(𝜃) is by gradient decent, called back-propagation.

2.2.5. Training Neural Networks

Starting Values

Starting values for weights are chosen to be random values near zero so that the model

starts out nearly linear, and becomes nonlinear as the weights increase. Use of exact zero

weights lead to zero derivatives and perfect symmetry, and the algorithm never moves.

Conversely, starting with large weights often leads to poor solutions [58].

14

Overfitting

Often neural networks have too many weights and will overfit the data at the global

minimum𝑅. Therefore, an early stopping rule is used to avoid overfitting by training the

model only for a while and stopping well before we approach the global minimum [58].

Figure 2-1: Linear least squares fitting with X ∈𝑹𝟐 [58].

 Y1 Y2 YK

 Z1 Z2 Z3 ZM

X1 X2 X3 XP-1 XP

...

...

...

Figure 2-2: Single hidden layer, feed forward neural network [58]

15

2.2.6. Training Neural Networks

Starting Values

Starting values for weights are chosen to be random values near zero so that the model

starts out nearly linear, and becomes nonlinear as the weights increase. Use of exact zero

weights lead to zero derivatives and perfect symmetry, and the algorithm never moves.

Conversely, starting with large weights often leads to poor solutions [58].

Overfitting

Often neural networks have too many weights and will overfit the data at the global

minimum𝑅. Therefore, an early stopping rule is used to avoid overfitting by training the

model only for a while and stopping well before we approach the global minimum [58].

Scaling of the Inputs

This can have a large effect on the quality of the final solution. Standardizing all inputs to

have a mean zero and standard deviation ensures all inputs are treated equally in the

regularization process, and allows one to choose a meaningful range for the random

starting weights [58].

Number of Hidden Units and Layers

Having too many hidden units is better than too few as with few hidden units, the model

might not have enough flexibility to capture the nonlinearities in the data [58]. Typical

number of hidden units is in the range of 5 to 100, with the number increasing with the

number of inputs and training instances. Choice of the number of hidden layers is guided

by the background knowledge and experimentation.

In this thesis, the Neural Network in the WEKA tool (discussed in Section 3.2) would be

used to train the historical dataset. Specifically, the back-propagation learning algorithm

(available in WEKA) would be employed. The forecasting accuracy of the trained NN

model would thereafter be evaluated on the held out dataset (test dataset).

16

2.2.7. Support Vector Machines

According to Sakr, G.E et al [50], Support Vector Machine (SVM) is a machine learning

algorithm that uses a linear hyperplane to create a classifier with a maximal margin. For

cases where the data is not linearly separable, the SVM maps the data into a higher

dimensional space called the feature space. It has the advantage of reducing problems of

overfitting or local minima. In addition, it is based on structural risk minimization as

opposed to the empirical risk minimization of neural networks [36]. SVM now finds

application in regression and is termed Support Vector Regression (SVR). The goal of

SVR is to find a function that has at most 𝜀 (the precision by which the function is to be

approximated [52]) deviation from the actual obtained target for all training data with as much

flatness as possible [54]. Figure 2-3 shows a regression machine constructed by the support

vector algorithm

Given training data (𝑥𝑖 ,𝑦𝑖) (𝑖 = 1, … 𝑙), where x is an n-dimensional input with 𝑥 ∈ 𝑅𝑛

and the output is 𝑦 ∈ 𝑅, the linear regression model can be written as [27] :

𝑓(𝑥) = < 𝑤, 𝑥 > + 𝑏 , 𝑤, 𝑥 ∈ 𝑅𝑛, 𝑏 ∈ 𝑅 (6)

where 𝑓(𝑥) is the target function and <. , . > denotes the dot product in 𝑅𝑛. To achieve

the flatness mentioned by [21], we minimize 𝑤 i.e. ||𝑤|| 2 =< 𝑤,𝑤 >. This can further

be written as a convex optimization problem:

minimize 1
2

||𝑤|| 2 subject to the constraint

 �𝑦𝑖 − < 𝑤, 𝑥𝑖 > −𝑏 ≤ 𝜀
< 𝑤, 𝑥𝑖 > +𝑏 − 𝑦𝑖 ≤ 𝜀

� (7)

Equation (7) assumes that there is always a function 𝑓 that approximates all pairs of

�𝑥𝑖 ,𝑦𝑖� with 𝜀 precision. However this may not be obtainable and thus [21] introduces

slack variables 𝛾𝑖, 𝛾𝑖∗ to handle infeasible constraints, with equation (7) leading to

Minimize 1
2

||𝑤|| 2 + C ∑ (𝛾𝑖 + 𝛾𝑖∗)𝑛
𝑖=1

subject to �
𝑦𝑖 − < 𝑤, 𝑥𝑖 > −𝑏 ≤ 𝜀 + 𝛾𝑖
< 𝑤, 𝑥𝑖 > +𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝛾𝑖∗

𝛾𝑖, 𝛾𝑖∗ ≥ 0
� (8)

17

(.)(.)(.)

 (X1)

7

 (X2)

4

 (X) (Xi)

1

1

.

. . .

.

.
. .i. .

.

. .

. .

. Output . i. K(X,(Xi) + b

Weights

dot product ((X). (Xi)). . = k(X, Xi)

 mapped vectors.(Xi) , .(X)

support vectors X1 ...Xi

test vectors X

Figure 2-3: Architecture of a regression machine constructed by the support vector
algorithm [54]

The constant 𝐶 > 0 determines the trade-off between the flatness of 𝑓 and the amount up

to which deviations larger than 𝜀 are tolerated. Equation (8) can be reformulated and

solved to give the optimal Lagrange multipliers 𝛼 𝑎𝑛𝑑 𝛼∗ with 𝑤 and 𝑏 given as

 𝑤 = ∑ (𝛼 − 𝛼∗)𝑛
𝑖=1 𝑥𝑖 and (9)

b = −1
2

< 𝑤, (𝑥𝑟 + 𝑥𝑠) (10)

𝑥𝑟𝑎𝑛𝑑 𝑥𝑠 are the support vectors, thus inserting (9) and (10) into (6) yields

𝑓(𝑥) = ∑ (𝛼 − 𝛼∗)𝑛
𝑖=1 < 𝑥𝑖 , 𝑥 > +𝑏 (11)

This generic approach is usually extended for nonlinear functions. This is done by

replacing 𝑥𝑖 with 𝜑(𝑥𝑖); a feature space that linearizes the relation between 𝑥𝑖 and 𝑦𝑖

[20].

Therefore, (11) can be re-written as:

 𝑓(𝑥) = ∑ (𝛼 − 𝛼∗)𝑛
𝑖=1 𝐾 < 𝑥𝑖, 𝑥 > +𝑏 (12)

where 𝐾 < 𝑥𝑖, 𝑥 > = < 𝜑(𝑥𝑖), 𝜑(𝑥) is the so called kernel function.

Four basic kernels are found in most SVM books and they are [20]:

18

• Linear: 𝐾(𝑥𝑖, 𝑥) = 𝑥𝑖𝑇𝑥

• Polynomial: 𝐾(𝑥𝑖, 𝑥) = (𝛾𝑥𝑖𝑇𝑥 + 𝑟)d , 𝛾 > 0.

• Radial basis function (RBF): 𝐾(𝑥𝑖, 𝑥) = exp (−𝛾||𝑥𝑖 − 𝑥||2) , 𝛾 > 0.

• Sigmoid: 𝐾(𝑥𝑖, 𝑥) = tanh (𝛾𝑥𝑖𝑇𝑥 + 𝑟).

Where 𝛾, 𝑟 𝑎𝑛𝑑 𝑑 are kernel parameters.

In this thesis, the Support Vector Machine in the WEKA tool (discussed in Section 3.2)

would also be used to train the historical dataset. Specifically, the Radial Basis Function

kernel (RBF); ideal for nonlinear dataset would be employed. Similarly like the other two

models, the forecasting accuracy of the trained SVM model would thereafter be evaluated

with the held out dataset (test dataset).

2.3. Resource Provisioning

Several research efforts to address resource provisioning have been investigated by

various authors. Gandhi, A. et al [25] presented a practical and systematic approach to

correctly provision server resources in data centers, such that SLA violations and energy

consumption are minimized. Their hybrid method for server provisioning first included a

discretization technique on historical workload dataset to identify workload demand

patterns. Next, a predictive provisioning technique was used to handle predicted load at

“coarse” time scales (hours). At the same time, a reactive provisioning handled any

excess workload at “finer” time scales (minutes). Comparing their hybrid provisioning

approach to both reactive only and predictive only provisioning, showed a decrease in

SLA violations with the hybrid approach. The improvement (decrease in SLA violation)

was attributed to the integration of both reactive and dynamic provisioning. Efficient

resource provisioning via VM multiplexing was the focus of Meng, X. et al [43]. They

proposed a joint-VM provisioning approach in which multiple VMs are consolidated and

provisioned together, based on an estimate of their aggregate needs. The benefit of VM

multiplexing is that when the peaks and troughs in multiple VMs are temporarily

unaligned, these VMs can be consolidated and provisioned together to save capacity.

Results from their work showed that joint provisioning outperformed the traditional

19

approach: individual VM provisioning. For instance, they reported 45% less physical

machines for hosting the same number of VMs compared to the traditional approach.

Quiroz et al. [47] identified VM provisioning as a problem of the end-to-end data center

provisioning and hence explored a decentralized online clustering approach to detect

patterns and trends and use same for virtual resources provisioning. The decentralization

allowed analysis of incoming jobs from multiple distributed queues. In addition, they

employed a Quadratic Response Surface Model (QRSM) to capture workload behavior

and thus estimate the application service time (response time).

2.4. Resource Prediction Techniques

Various resource prediction techniques for cloud, grid and network based applications

have been studied by authors. Viswanath and Valliyammai [59] proposed a prediction

approach that combined Adaptive Neuro based Fuzzy Inference Systems (ANFIS) and

clustering process to predict the future CPU load based on the historical data in a grid

environment. The historic CPU load data was first divided into sub-clusters using the

fuzzy C-means clustering. Each sub-cluster was then fed to local ANFIS prediction

models. The appropriate ANFIS cluster is then used to predict the future CPU load value.

Prediction with expert advice and conformal predictors were combined to provide

performance guarantees on predictions for network traffic demands in the work of

Dashevskiy and Luo [21]. Their goals were to construct a predictor that performs not

much worse than the best algorithm from a fixed set of algorithms and also to provide

valid and efficient prediction interval. Prediction with expert advice was used to achieve

the first goal while conformal predictors were used for the second goal. The works of

Sarkar, M. et al [53] focused on resource requirement prediction in distributed systems

like grids and clouds. They presented a feedback-based job modeling scheme based on

clone detection technique. In this technique, the execution data for each job running in

the environment were stored in an execution history. Newly submitted jobs were then

analyzed to find its clones (match) from the execution history and based on the data

stored in the execution history; the resource requirement of the new job was predicted.

Their clone detection technique was metric based comparison technique. Resource

prediction once a clone level was detected was carried out using linear and multi-linear

20

regression. Kupferman, J. et al [38] investigated and evaluated both static and dynamic

resource provisioning in three different traffic patterns – Weekly or Standard

Oscillations, Large Spike and Random by using a scoring algorithm based on availability

and cost. The authors established that dynamic resource provisioning outperforms the

expensive static provisioning7 by about 93% in cost reduction. Their resource prediction

technique was based on historical data and the employment of linear regression and auto

regression of order 1.

2.5. Cloud Resource Provisioning and Techniques

Several authors have worked in the area of resource provisioning using different

approaches. This section presents some of the related techniques in two broad categories:

predictive and reactive cloud provisioning techniques.

2.5.1. Threshold based provisioning

Han et al [29] proposed and implemented a lightweight approach to enable cost-effective

elasticity for cloud applications. Their solution which was centered on the cloud

provider’s side employed two scaling techniques to support QoS requirements of the

application owner: Self-healing and Resource-level scaling. For self-healing, idle

resources of one VM can be used to release the overloaded resources in another while

resource-level scaling is based on using unallocated resources at a particular physical

machine to scale up a VM executing on it. Though their scaling technique (scale up or

down) can be completed very fast; in a matter of milliseconds, the reactive scaling

mechanism employed would definitely lead to SLA penalty when a new VM

provisioning is required. Furthermore, some resource providers may choose not to export

the access to hypervisor-level actuators of the cloud computing infrastructure, such as

controlling the CPU and memory allocations [40]. This constraint makes their work

restrictive and not generalistic. The work by Hasan, M.Z. et al [30] provided cloud clients

(tenants) the ability to set policies which indicated conditions under which resources

should be auto-scaled. Their Integrated and Autonomic Cloud Resource Scaler (IACRS)

integrates performance metrics from other multiple domains (compute, network and

7 Static provisioning determines the minimum number of machines required for 100% availability at peak periods of a given trial and
then run the machines for the duration of the trial

21

storage) in making scaling decisions. While their proposed algorithm is a departure from

scaling decisions using the regular singular metric (CPU), the algorithm has not been

implemented and thus provides no performance evaluation of any kind. In addition, their

approach was also reactive and VM boot up or lag time would result in SLA penalty. A

dynamic scaling algorithm for automated provisioning of VM resources based on

threshold number of active sessions in a web application was introduced by Chieu, T.C.

et al [18]. However, since a session is a sequence of individual requests of different types,

it has been reported that session length is dynamic and unknown at the time of session

origination [45]. Muppala, S. et al [45] further went on to state that because of the

relative unpredictability of the session length, a metric which is independent of session

length is favorable and mandatory for performance guarantee of session based Internet

services. It should be noted that the work of Chieu, T.C. et al [18] did not consider the

VM boot up time in their active session scaling indicator. Finally, there were no actual

experimentation results for their algorithm.

2.5.2. Control Theory based provisioning

According to Lorido-Botran, T. et al [41], control theory has been applied to automate the

management of web server systems and data centers, and it shows interesting results in

cloud computing. Control systems are either closed loop or open loop systems. For the

open loop system, control action does not depend on the system output (non-feedback)

while in the case of closed loop; the controller output µ(𝑡) tries to force the system output

𝐶(𝑡) to be equal to the reference input 𝑅(𝑡) at any time 𝑡 irrespective of the disturbance

Δ𝐷 [7]. Ghanbari, H. et al [26] used control theory to find a proper reservation action

(immediate, in-advance, best effort or auction based reservation) at any given time based

on the current system state. Their approach tried to minimize the average response time

and at the same time minimize resource cost by selecting the most appropriate reservation

action. Though the authors agreed that best effort or on-demand reservation may not be

provisioned in a timely manner, no discussion on how to handle this possible reservation

action was mentioned in their work. Lim, H.C. et al [40] proposed that cloud customers

should be empowered to operate their own dynamic controllers, outside or as extensions

to the cloud platform itself. Their solution centered on adapting the control policy for

22

cases where fine grained actuators for adjusting CPU entitlements are not made available

by cloud providers. They introduced proportional thresholding policy which modifies an

integral control by using a dynamic target range (CPU utilization for example), instead of

a single target value. Though their proportional thresholding policy performed better than

the static thresholding policy, their control approach was reactive thus penalties would be

incurred when provisioning a new VM to handle more client requests. Finally, the control

target was a single metric – CPU. They did not consider SLA related metrics such as

response time and throughput in their control target. Consolidating on their proportional

thresholding policy, Lim, H.C. et al [39] applied this policy to an elastic storage. This

time around, they addressed the actuator lag stemming from delay in provisioning new

instances and also redistributing stored data.

2.5.3. Reinforcement Learning

Reinforcement learning (RL) is another type of automatic decision-making approach that

can be applied to VM provisioning [41]. It is well suited to cloud computing as it does

not require a priori knowledge of the application performance model, but rather learns it

as the application runs [23]. Dutreilh, X. et al [23] used the Q-learning algorithm for their

work as the Q-function is easy to learn from experience. The approach is; given a

controlled system, the learning agent repeatedly observes the current state (workload,

number of VMs and performance SLA), takes an action and then a transition to a new

state occurs. The new state and corresponding reward is then observed. However,

because defining the policy from which decisions can be chosen can take a long time

(exploration and exploitation [48]) the authors introduced a convergence speedup phase

at regular intervals to hasten the learning process.

2.5.4. Time series analysis provisioning

Time series analysis could be used to find repeating patterns in the input workload or try

to forecast future values. For example, a certain performance metric, such as average

CPU load (utilization) will be periodically sampled at fixed intervals. The result will be a

time-series 𝑋 containing a sequence of the last 𝑤 observations [41]:

 𝑋 = 𝑥𝑡 , 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑤+1 (13)

23

Several authors have used time series analysis for dynamic VM provisioning; for

example, [17] presented a resource usage prediction algorithm that used a set of historical

data to identify similar usage patterns to predict future usage. The string matching

concept which is: given a text string 𝑇 = 𝑡0𝑡1 … 𝑡𝑛 and a pattern 𝑃 = 𝑝0𝑝1 … 𝑝𝑚 find a

substring of consecutive characters from 𝑇 called 𝑇𝑖,𝑗 that has the smallest edit distance as

possible was used by the authors. Specifically, the past cloud client usage traces is

analogous to the text string 𝑇; the present usage pattern consisting of the last usage

measure of the cloud client is similar to the pattern 𝑃 while the future usage pattern will

be interpolated by using a weighted interpolation and will have an approximate value that

will follow after the present pattern. Experiments with their modified string matching

algorithm (Knuth-Morris-Pratt) on three different workload traces showed impressive

prediction capabilities of 0.9 to 4.8% prediction error. The prediction look ahead was for

100 seconds. Kupferman, J. et al [38] compared three platform-agnostic algorithms for

scaling resources dynamically: one developed by RightScale, and two others that predict

system loads based on Linear Regression (LR) and AutoRegression of order 1 (AR1).

The algorithms were evaluated based on a scoring metric which gauges how well a given

algorithm performed based on availability and cost. While the RightScale used a voting

mechanism to decide when to scale VM instances up or down, their AR1 model estimates

future workload based on a finite history window. The AR1 was able to predict the

average load over the next 5 minutes. As for LR, the linear least-squares technique was

used to find the polynomial function that is closest to a set of points; subsequently, the

algorithm was used to predict the amount of requests per second that will occur in the

future (100 seconds). The algorithm then compares the predicted CPU utilization with the

current computing resources and scales up or down as necessary. Evaluating each

algorithm with three different traffic patterns: Standard Oscillation, Large Spike and

Random traces; AR1 gave best performance8 for standard and large spike traffic pattern

while RightScale performed best for random traffic. A cloud resource prediction and

provisioning scheme (RPPS) that automatically predicts future demand and performs a

proactive resource provisioning for cloud applications was presented by Fang, W. et al

[24]. Their scheme employed a load prediction algorithm based on the Autoregressive

8 The authors developed a scoring algorithm that consists of the number of total and dropped requests and the cost of provisioning the
machines.

24

Integrated Moving Average (ARIMA) model. The resource usage (CPU utilization) time

series were fed into the load predictor model to predict short-term resource demands.

Based on this model, predictive provisioning of VMs was achieved for two situations:

Normal and Sudden load spike workloads. For the normal workload that could be

accurately predicted by their model, fine-grained VM-level resource scaling technique9

was employed. For the sudden load spikes the coarse-grained capacity scaling approach

was used i.e. dynamically adding new VM instances. It suffices to state that they

considered VM boot up lag in their coarse-grained capacity scaling. Experimental results

of their model showed that the prediction model made less than 10% underestimation or

overestimation with occasional higher overestimation errors of 20% resulting from peak

loads. The authors proposed handling peak or spike loads with pre-reserved resources.

The work presented by Sadeka, I. et al [49] also concerns the use of time-series analysis

for adaptive resource provisioning in the cloud. Their proposed prediction framework

used statistical models that are able to speculate the future surge in resource requirement;

thereby enabling proactive scaling to handle temporal bursty workload. The authors

evaluated the prediction capabilities of two machine learning algorithms: Neural Network

and Linear Regression. Historical data was first collected by using the TPC-W

benchmarking e-commerce application hosted on Amazon cloud. The sampled CPU

utilization dataset was then used to train both learning algorithms after which a forecast

of the future CPU utilization on a 12 minute interval (the average boot up time for a new

VM instance) was carried out. The same training procedure was employed with the

sliding window technique which works by anchoring the left point of a potential segment

at the first data point of a time series, then attempting to approximate the data to the right

with increasing longer segments [35]. Performance evaluation10 of the two learning

algorithms showed that Neural Network demonstrated enhanced accurate prediction

capability compared to Linear Regression.

9 This involves adjusting the VM CPU and memory allocation from the hypervisor-level actuators
10 MAPE, MAE, RMSE and PRED (25)

25

CHAPTER 3: DESIGN OF EXPERIMENT

This chapter focuses on the experimental design of the client prediction models from

three machine learning techniques. Section 3.1 describes the system architecture setup for

the experiment. Section 3.2 describes the open source WEKA tool used to train historical

dataset. Section 3.3 describes the step by step experimental setup and it includes the

parameter value used to train the three machine learning models.

3.1. System Architecture

As mentioned in Section 1.3, the cloud client prediction model for cloud resource

provisioning in a multitier web application environment has the following components in

the overall architecture (Figure 3-1):

• Client infrastructure: This is a High-CPU Instance with 1.7 GB of memory, 5 EC2

Compute Units (2 virtual cores with 2.5 EC2 Compute Units each) and 350 GB of

instance storage. The TPC-W emulator is executed on this infrastructure

• Web server infrastructure: This is a 3.75 GB of memory, 2 EC2 Compute Unit (1

virtual core with 2 EC2 Compute Unit) and 410GB instance storage. The Java

implementation of the TPC-W benchmark is deployed on a Tomcat web server

environment

• Database server infrastructure: This is a 7.5 GB of memory, 4 EC2 Compute

Units (2 virtual cores with 2 EC2 Compute Units each) and 850GB instance

storage. MYSQL is the relational database management system used

3.2. WEKA

WEKA is used to train and test the three machine learning techniques. Waikato

Environment for Knowledge Analysis (WEKA) is a data mining software in Java that has

a collection of several machine learning algorithms for data mining tasks including SVM,

NN and LR [28]. Experiments can be carried out using either the command-line or

graphical user interface (GUI) option. In this thesis the GUI option is used. Specifically,

the Explorer application which is an environment for exploring data with WEKA is

26

selected. The choice of WEKA is hinged on its open source availability and rich suite of

several learning algorithms including SVM, NN and LR.

Figure 3-1: Architecture of the System

3.3. Experimental Setup

In this section, the step by step details of experimentation are discussed.

3.3.1. Feature Selection

Usually, prediction models are based on a continuous observation of a number of specific

features [50]. The following initial features are selected for the three target values (CPU

utilization, response time and throughput) [1]:

i. DiskReadOps: This metric identifies the rate at which an application reads a disk.

ii. DiskWriteOps: This metric identifies the rate at which an application writes to a

hard disk.

iii. DiskReadBytes: This metric is used to determine the volume of the data the

application reads from the hard disk of the instance.

iv. DiskWriteBytes: This metric is used to determine the volume of the data the

application writes onto the hard disk of the instance.

27

v. NetworkIn: This metric identifies the volume of incoming network traffic to an

application on a single instance.

vi. NetworkOut: This metric identifies the volume of outgoing network traffic to an

application on a single instance.

vii. Memory Utilized: This metric collects and sends the memory utilization

excluding cache memory and buffers.

viii. Memory Available: This metric collects and sends available memory used by the

operating system and the application.

ix. Swap Utilized: The amount of swap spaced utilized.

3.3.2. Data collection using TPC-W benchmark

TPC-W has been used by several authors [62, 16] for resource provisioning and capacity

planning [49]. Similar to Sadeka et al. [49], a Java implementation of TPC-W that

emulates an online bookshop is used. It is deployed on a-two-tier architecture as depicted

in Figure. 3-1. The system resource metrics like CPU utilization and memory used are

collected from the web server while the response time and throughput are measured from

the “client’s” end. TPC-W has a remote browser emulator (RBE) that allows a single

node to emulate several clients. The response time in this context is the time lag between

when a page request is made to the reception of the last byte of the HTML response page.

Similarly, the throughput is the total number of web interactions completed during an

experimental run.

TPC-W is modeled after an online bookstore and includes complex application logic, a

significant web serving component including both static and dynamic web pages, and

transaction processing connectivity to an online relational database containing product

inventory [16]. It has 14 web interactions characteristics of which 6 belong to the

Browsing category and the other 8 to the Ordering category as shown in Table A.2 of

Appendix A. The characteristics of these web interactions can be seen in Table A.1

(Appendix A). The three workload mixes used by TPC-W: Browsing, Shopping and

Ordering are made up of a combination of Browsing and Ordering categories. For

instance, Browsing mix is made up of 95% Browsing category (consists of 6 web

interactions that make up the 95%) and 5% Ordering category (consists of 8 web

28

interactions that make up the 5%). For this experiment, the N – number of clients in

Figure 3-1 refers to the number of users participating in any of the three workload mixes.

Table 2 shows some randomly selected workload mix used in the course of the

experiments. During the 1st to 7th minute, there are 84 Shopping mix users, 52 Browsing

mix users and 52 Ordering mix users simultaneously making requests to the Web server

(a total of 188 user requests). Each workload mix runs for 7 minutes and the choice of

this time interval is intuitive as there is no documented time frame for how long workload

mix should run. By adjusting the number of emulated clients in a random pattern, a

changing workload that sends requests to the web server in a continuous fashion

throughout the duration of the experiment is created. Appendix B shows the Browsing

mix Java batch script that is called every 7 minutes. Amazon EC2 has a web service that

enables monitoring, managing and publishing of various metrics [1]. The traditional Top

command in Linux is not used as this command give metrics for the underlying host and

not the actual instance [3] . Feature readings (defined in Section 3.3.1) are collected every

60 seconds by some customized Java batch scripts. For instance, to collect CPU

utilization the Amazon EC2 API is: “"mon-get-stats CPUUtilization --start-time 2013-

01-08T19:17:00 --end-time 2013-01-08T19:50:00 --period 60 --statistics “+stat+” --

namespace “+namesp+" --dimensions “+ dimen”. The “--statistics” parameter returns

the average reading over 60 seconds while “--dimensions” is the instance-id; the “--

namespace” is a conceptual container11 for metrics [1] and for this thesis the EC2

namespace is used. Appendix B shows the full Java batch script for CPU utilization. The

duration for the entire experiment is 532 minutes. The data is then used to build the

prediction model from which forecast can be made for future resource requirement and

business level metrics of the web server.

Table 2: Experimental workload mix for some selected time
Time (minutes) 1-7 56-63 154-161 350-357 490-497 504-511
Shopping mix users 84 168 16 180 248 160
Browsing mix users 52 112 36 320 192 160
Ordering mix users 52 108 28 224 268 160
Total user
Requests

188 388 80 724 708 480

11 Examples of other containers include; Amazon Elastic Block Store (EBS), Amazon Relational Database (RDS) [z15]

29

3.3.3. Feature reduction

The importance of selecting the right features for prediction modeling is very critical to

reducing the potential source of error as the data mining principle of “junk in, junk out”

means erroneous predictions can occur even if the prediction algorithm is optimal [50].

The Weka tool [28] is used to determine the relevance of each feature in an instance to

the target class (CPU, response time and throughput). Using attribute selection

functionality, the least correlated attributes are eliminated: DiskReadOps, DiskWriteOps,

DiskReadBytes, DiskWriteBytes, Memory Utilized, Memory Available and Swap

Utilized. Figure 3-

Figure 3-2: Attribute selection option to rank attribute in order of relevance [28]

3.3.4. Data preprocessing

During this phase, the 6 input features (including CPU utilization, Response Time and

Throughput) are scaled to values between 0 and 1. Normalization or scaling is carried out

by finding the highest value within each input in the 532 dataset, and dividing all the

values within the same feature by the maximum value. The main advantage for

normalizing is to avoid attributes in greater numeric ranges dominating those in smaller

numeric range [20].

30

3.3.5. Training of Dataset

As discussed earlier, the goal of this thesis is to build prediction model that can forecast

future resource requirement (using CPU utilization) and two business level SLA –

response time and throughput. Towards this end, the normalized sampled dataset is used

to train the prediction model. First, training with CPU utilization as the target class is

done using the three machine learning techniques discussed above. Next, using the same

dataset, models for both response time and throughput are trained. The metrics in Table 3

are used to evaluate both training and testing results of the models.

Model 1 - CPU utilization

• Neural Network: Using the Weka tool, the model is trained with the following

parameters: learning rate ρ = 0.38, number of hidden layers = 1, number of hidden

neurons = 4, momentum = 0.2 and epoch or training time =10000. These

parameters gave the best results after several trials. Parameter selection is usually

based on heuristics as there is no mathematical formula or theory that has been

proposed to select the best parameters

• Linear Regression: The Weka tool is also used to train the model. The only

parameter set was the ridge parameter which was set to the default of 1.0E-8. The

ridge parameter minimizes the penalized residual sum of squares [58]. Varying

the value had no significant impact on the target value

• Support Vector Regression: SVR has four kernels that can be used to train a

model. They are: Linear, Polynomial, Radial Basis Function (RBF) and Sigmoid

[36]. The four different kernels were tried with RBF returning the most promising

result with the least MAPE value. This is expected as RBF can handle the case

when the relationship between features and target value is nonlinear [20]. Before

training, the Grid Parameter Search for Regression with cross validation is used

(v-fold cross validation) [19] (Figure 3 - 3) to estimate the C and 𝛾. Cross-

validation is a technique used to avoid the over fitting problem [q, z6]. The search

range for C was between 2-3 to 25
 and that of 𝛾 between 2-10 and 22. These values

are purely heuristics with guidance from various author’s work [q, z6]. The search

returns the optimal C and 𝛾 by using the Mean Square Error to evaluate the

31

accuracy of the various C and 𝛾 combinations. The best C and λ was 14 and

0.0092. Using these parameters, the model was trained with the Radial Basis

Function (RBF) Kernel.

Figure 3-4: Parameter search for SVR [19]

Model 2 – Response time and Throughput

The business SLA metrics were approached in a similar way as Model 1. For

Throughput, SVR’s C and 𝛾 were 8 and 0.009 respectively. NN values for ρ, hidden

layer, hidden neurons and momentum were 0.4, 1, 3 and 0.2 respectively. Finally the

ridge parameter for LR was 1.0E-8. Similarly, for Response time; SVR’s C and 𝛾 were

1.05 and 0.009 respectively. NN values for ρ, hidden layer, hidden neurons and

momentum were 0.5, 1, 3 and 0.2 respectively. The ridge parameter for LR was 1.0E-8.

Tables 4, 5 and 6 list the final parameters used for training the SVM, NN and LR model.

Table 3: Performance metrics and their calculations
Metric Calculation
MAPE12 1

𝑛
 ∑ | 𝑎𝑖−𝑝𝑖|

𝑎𝑖
𝑛
𝑖=1 where 𝑎𝑖 and 𝑝𝑖 are the actual and predicted values

respectively
RMSE13 √∑ (𝑎𝑖−𝑝𝑖) 2𝑛

𝑖=1
𝑛

12 Mean Absolute Percentage Error
13 Root Mean Square Error

32

MAE14 1
𝑛
∑ |𝑝𝑖 − 𝑎𝑖|𝑛
𝑖=1

PRED 25 No. of observations with relative error ≤ 25% / No. of observation

Table 4: Final parameters of the SVM CPU Utilization and SLA prediction model
Metric CPU

Utilization
Response time Throughput

C parameter search range 2-3 - 25 2-3 - 25 2-3 - 25
𝜸 parameter search range 2-10 - 22 2-10 - 22 2-10 - 22

C 14 1.05 8
𝜸 0.0092 0.009 0.009

Table 5: Final parameters of the NN CPU Utilization and SLA prediction model
Metric CPU

Utilization
Response time Throughput

learning rate 0.38 0.5 0.4
number of hidden layers 1 1 1

number of hidden neurons 4 3 3
momentum 0.2 0.2 0.2

Table 6: Final parameters of the LR CPU Utilization and SLA prediction model
Metric CPU

Utilization
Response time Throughput

ridge parameter 1.0E-8 1.0E-8 1.0E-8

3.3.6. Validation (Test) of Dataset

This step is very significant as it is possible to obtain impressive results for training data

but dismal results when it comes to testing. Furthermore, prediction accuracy is based on

the held out test dataset. A training-to-testing ratio of 60%:40% (319:213) was used as

this gave the optimal prediction output for the models. A 12 minute prediction interval to

test our prediction model is adopted. This is based on reports from previous works [2, 38]

regarding VM boot up time and motivation from the work of [49]. The prediction trend at

the 9th, 10th, 11th and 12th minute is included to check for consistency and reliability in the

prediction models of SVR, NN and LR.

14 Mean Absolute Error

33

CHAPTER 4: SIMULATION RESULTS AND ANALYSIS

This chapter presents the results of the various experimental simulations for determining

the prediction capability of the three machine learning techniques: SVM, NN and LR.

The objective of this section is to present and evaluate the accuracy of the selected

machine techniques in forecasting future resource usage for random workload traffic

patterns over an extended period of time. In addition, the inclusion of business level

metrics to the prediction is considered. Results include both training and test datasets.

The parameters used to obtain these results have already been presented in Section 3.

Similarly, the performance metrics have also been defined in the previous section (Table

3).

4.1. Linear Regression Models

Results from CPU Utilization, Throughput and Response time for both training and test

dataset are presented.

4.1.1. CPU utilization training and test results

Table 7 shows the training and testing performance metric results for the LR.

Furthermore, Figures 4-1 and 4-2 present the graphical representation of the actual and

predicted CPU utilization for the 319 minutes of training and 213 minutes of testing

respectively. The training MAPE value was about three times that of testing. The reason

for this is that the training dataset’s values are steeper than the test dataset. For instance,

at the 137th minute, the CPU utilization is approximately 65 percent and this falls to about

5 percent at the 139th minute. Figures 4-1 shows this graphically. Aside the test model

MAPE result, the other three metric values are worse than the training model result. The

reason for this is attributed to the negative predicted values and also the general poor

forecasting ability of LR in a non-linear traffic pattern as captured in Figure 4-2.

Table 7: CPU utilization training and test performance metric
Model MAPE RMSE MAE PRED(25)
Training 113.31 14.70 11.11 0.51
Test 36.19 22.13 15.98 0.36

34

4.1.2. Throughput training and test results

The Throughput’s training and test performance metric results are shown in Table 8. In

addition, Figures 4-3 and 4-4 present the graphical representation of the actual and

predicted Throughput values for both training and test dataset respectively. The training

and test interval are the same as that of CPU Utilization. All training metric results are

better than test results. In fact, from the 397th minute of the test dataset, a continuous and

erroneous negative prediction is forecasted. This significantly contributes to the dismal

test results as the difference between the actual and predicted value results into a higher

value as opposed to the expected lower difference that occurs if both values are positive.

Figure 4-4 shows the downward spiral in Throughput forecast. This again confirms a

weak training and forecasting ability of LR in a non-linear traffic pattern.

Table 8: Throughput training and test performance metric
Model MAPE RMSE MAE PRED(25)
Training 75.25 4.45 3.22 0.57
Test 156.08 23.39 19.44 0.04

Figure 4-1: CPU Utilization Actual and Predicted training output using LR

35

Figure 4-2: CPU Utilization’s Actual and Predicted test output using LR

Figure 4-3: Throughput’s Actual and Predicted training using LR

36

Figure 4-4: Throughput Actual and Predicted test output using LR

4.1.3. Response time training and test results

The Response time’s training and test performance metric results are shown in Table 9.

Furthermore, Figures 4-5 and 4-6 present the graphical representation of the actual and

predicted Response time values for both training and testing dataset respectively. While

the training results are of high accuracy, the test performance metric fails to provide an

accurate and reliable forecast. The test dataset prediction follows a similar pattern as that

of Throughput’s test; negative prediction values. Figure 4-6 shows the divergence in

predicted and actual values. Though the training metrics are impressive, the validity of

the learning algorithm (LR in this case) is hinged on the test dataset performance.

Table 9: Response time training and test performance metric
Model MAPE RMSE MAE PRED(25)
Training 17.58 1.24 0.81 0.90
Test 87.97 8.78 7.88 0.02

37

Figure 4-5: Response time Actual and Predicted training output using LR

Figure 4-6: Response time Actual and Predicted test output using LR

4.2. Neural Network Models

In the sub-sections that follow, the CPU utilization, Throughput and Response time

training and testing dataset results are presented.

38

4.2.1. CPU Utilization training and test results

The CPU utilization training and test performance metric results for NN model is shown

in Table 10. Figures 4-7 and 4-8 present the graphical representation of the actual and

predicted CPU utilization for the 319 minutes of training and 213 minutes of testing

respectively. The training MAPE value is also very high and the reason for this is similar

to the explanation given in section 4.1.1. It is also observed that the test dataset has some

series of negative values in its prediction as shown in Figure 4-8. The number of negative

predicted values which is more than that of LR contributed to the poorer test metric

values.

Table 10: CPU utilization training and test performance metric
Model MAPE RMSE MAE PRED(25)
Training 105.63 14.08 9.48 0.59
Test 50.46 31.08 19.82 0.34

Figure 4-7: CPU Utilization Actual and Predicted training output using NN

39

Figure 4-8: CPU Utilization Actual and Predicted test output using NN

4.2.2. Throughput training and test results

The Throughput’s training and test performance metric results are shown in Table 11. In

addition, Figures 4-9 and 4-10 present the graphical representation of the actual and

predicted Throughput values for both training and test dataset respectively. Comparing

the training and test model results, the test model’s metric values are quite better than the

training model. Some predicted throughput values in the training model are negative

(Figure 4-8). However, negative prediction is absent for the test dataset (Figure 4-9).

Table 11: Throughput training and test performance metric
Model MAPE RMSE MAE PRED(25)
Training 56.46 6.85 4.96 0.30
Test 38.90 6.12 4.46 0.47

4.2.3. Response time training and test results

The Response time’s training and test performance metric results are shown in Table 12.

Furthermore, Figures 4-11 and 4-12 present the graphical representation of the actual and

predicted Response time values for both training and test dataset respectively. Both

training and test model’s metric values are quite similar. Comparing this result (Response

time) with the previous two, it is observed that both training and test dataset values are

positive. However, the high training metric values (MAPE, RMSE and MAE) are

40

attributed to the large variations in some predicted and actual Response time as shown in

Figure 4-11.

Figure 4-9: Throughput Actual and Predicted training using NN

Figure 4-10: Throughput Actual and Predicted test output using NN

Table 12: Response time training and test performance metric
Model MAPE RMSE MAE PRED(25)
Training 36.28 3.51 2.38 0.58
Test 35.15 3.80 2.94 0.48

41

Figure 4-11: Response time Actual and Predicted training output using NN

4.3. Support Vector Machine (Regression) Models

Similar to the two previous sub-sections, CPU utilization, Throughput and Response time

training and testing dataset results are presented.

4.3.1. CPU Utilization training and test results

The CPU utilization training and test performance metric results for SVR model is shown

in Table 13. Figures 4-13 and 4-14 present the graphical representation of the actual and

predicted CPU utilization for the 319 minutes of training and 213 minutes of testing

respectively. As discussed in previous sections, the training model also had a very high

MAPE value (107.8). A significant improvement is however observed in the test dataset

metric. Figure 4-14 shows that all predicted values are positive and quite close to the

actual values. However, some sudden spikes result into substantial variation in values.

Table 13: CPU utilization training and test performance metric
Model MAPE RMSE MAE PRED(25)
Training 107.80 15.48 10.09 0.64
Testing 22.84 11.84 8.74 0.64

42

Figure 4-12: Response time Actual and Predicted test output using NN

4.3.2. Throughput training and test results

The Throughput’s training and test performance metric results are shown in Table 14.

Figures 4-15 and 4-16 present the graphical representation of the actual and predicted

Throughput values for both training and test dataset respectively. The significant

difference in the training and test MAPE value is also attributed to the spikes as shown in

Figure 4-15. For instance, at the 256th minute, the actual Throughput value is

approximately 16 requests/second while at the next minute; it drops to approximately 1.8

requests/second. The predicted value at this point is about 16 requests/second. The large

variation lasted for about 12 minutes before the gap was closed.

43

Figure 4-13: CPU Utilization Actual and Predicted training output using SVR

Figure 4-14: CPU Utilization Actual and Predicted test output using SVR

Table 14: Throughput training and test performance metric
Model MAPE RMSE MAE PRED(25)
Training 78.78 4.74 2.80 0.70
Testing 22.07 3.22 2.41 0.67

Figure 4-15: Throughput Actual and Predicted Training using SVR

44

Figure 4-16: Throughput Actual and Predicted Test output using SVR

4.3.3. Response time training and test results

The Response time’s training and test performance metric results are shown in Table 15.

Additionally, Figures 4-17 and 4-18 present the graphical representation of the actual and

predicted Response time values for both training and test dataset respectively. The

training and test models present similar metric values. The graph in Figure 4-17 shows

some variation in the predicted and actual Response time values especially between the

140th and 160th minute and also towards the end of the training dataset. Comparing the

graph with that of Figure 4-18, test dataset, a diverging trend between the actual and

predicted occurs. Therefore, the training metric output result is better (overall) than that

of test. The reason for the higher test metric values (apart from MAPE) is; RMSE and

MAE are more sensitive to the occasional large error (especially for RMSE in the

squaring process) than MAPE [6].

Table 15: Response time training and test performance metric

Model MAPE RMSE MAE PRED(25)
Training 18.96 1.55 0.85 0.88
Test 14.30 1.74 1.33 0.83

45

Figure 4-17: Response time Actual and Predicted training output using SVR

4.4. Comparison of Prediction Models

Following the presentation of results in the previous sub-sections, a comparative analysis

of the three models is the focus of this section. The overall CPU utilization values range

from 1.73% to 85.96%. The training dataset presented in Tables 7, 10 and 13 the MAPE

are above 100 percent with LR having the highest of 113.31. This abnormally high

performance metric value is attributed to the fact that the traffic pattern of the workload

for the experiment is random. For instance, at the 140th minute, there is a drop from 65%

to about 5% CPU utilization. This drop lasted for about 40 minutes after which it surged

again. The training behavior of the three models (SVR, NN and LR) for this scenario is

shown in Figure 4-19. It can be observed that NN shows a zigzag prediction pattern

between the 132nd to about the 155th minute after which it gave a near perfect prediction

of the CPU utilization. SVR and LR present a better and stable CPU utilization prediction

than NN during this same interval. Isolating this randomness would significantly reduce

the MAPE values; however, one of the goals of this thesis is to study how these learning

techniques would perform in an almost realistic workload scenario. The PRED (25)

metric for SVR reported the highest value of 0.64 or 64%. More importantly, the

forecasting (prediction) ability of these techniques gives a more interesting trend.

46

Figure 4-18: Response time Actual and Predicted test output using SVR

SVR significantly outperforms the other two models when MAPE, RMSE and MAE

performance metrics are considered. Interestingly, the test dataset was made up of short

burst of high-low CPU utilization as shown in Figures 4-2, 4-8 and 4-14. The

generalization capability of SVR is brought to fore as it is least susceptible to the high-

low test dataset values that should result in poor forecasting output. NN and LR reports

negative CPU utilization, an anomaly that exposes their weakness in random workload

forecasting. The MAPE and RMSE step15 predictions in Tables 16 and 17 respectively

show a prediction reliability of SVR and LR as opposed to NN. SVR yields the least

MAPE, RMSE and MAE error. Therefore, a conclusion may be drawn in favor of SVR as

the strongest and superior prediction model for CPU utilization with LR following

closely.

Table 16: CPU utilization step prediction for MAPE
Model 9-min 10-min 11-min 12-min
SVR 22.31 22.69 22.78 22.84
NN 53.07 49.90 45.62 50.46
LR 34.43 35.14 35.92 36.19

15 WEKA allows step wise forecasting at pre-defined time intervals

47

Figure 4-19: CPU utilization training prediction for SVR, NN and LR at selected time
interval

Table 17: CPU utilization step prediction for RMSE

Model 9-min 10-min 11-min 12-min
SVR 11.86 11.96 11.92 11.84
NN 31.56 29.69 27.64 31.08
LR 20.97 21.43 21.84 22.13

Moving on to the business level metrics of which the Throughput model is analysed first;

the throughput values had a range between 1.25 and 21 requests/second. Again, Figure 4-

20 shows the selected throughput training result between the 132nd and 180th minute. The

SVR and LR models could not adjust immediately to the sharp drop at the 141st minute

thus accounting for the high MAPE value. SVR and LR took about 12 minutes to

significantly reduce the variance between the predicted and actual throughput values

though LR’s prediction was not as close to the actual compared to SVR. Figures 4-19 and

4-20 show negative prediction values for NN even though NN had the best training

MAPE value of 56.46. Figure 4-20 explains the reason for this as though NN had some

negative predictions, the variance between predicted and actual throughput is the least.

The step prediction outputs for test dataset are summarised in Tables 18 and 19. The

dataset is also a mix of high and low throughput values corresponding to the random

workload pattern employed for this thesis. SVR metrics proved to be the best by

displaying a strong generalizing attribute, i.e. using the trained model to forecast unseen

data (test) in a non-fitting manner. Figures 4-10 and 4-16 show the graph plot of the

48

forecasting ability of NN and SVR respectively. LR however, displayed very poor metric

values. Figure 4-4 shows the graphical representation of its forecasting ability.

Figure 4-20: Throughput training prediction for SVR, NN and LR at selected time
interval

Table 18: Throughput step prediction for MAPE
Model 9-min 10-min 11-min 12-min
SVR 21.38 21.62 21.80 22.07
NN 38.84 36.87 37.39 38.90
LR 122.73 135.44 146.51 156.08

Table 19: Throughput step prediction for RMSE
Model 9-min 10-min 11-min 12-min
SVR 3.17 3.18 3.20 3.22
NN 5.94 5.94 5.97 6.12
LR 18.88 20.60 22.10 23.39

Finally on the business level metric wherein Response time model is analysed; the overall

Response time value had a range from about 0.6 to 12 seconds. From the results obtained

for the training dataset presented in Tables 8, 11 and 14, LR performed best in

comparison to SVR and NN though SVR’s metrics are very close to LR. However, the

step prediction output for the test dataset shown in Tables 20 and 21 reveals a very poor

prediction capability of LR. Figure 4-6 shows the deviation for LR. The test result shows

an overfitting behaviour for the training dataset for LR as the test dataset prediction is on

a continuous decrease to the point of negative values. NN had a better prediction result

than LR. SVR’s results are the best for all metrics. The prediction consistency of SVR is

49

also brought to fore in Tables 20 and 21. It may therefore be ascertained that SVR is a

model of choice in a random-like workload pattern.

Table 20: Response time step prediction for MAPE
Model 9-min 10-min 11-min 12-min
SVR 21.38 21.62 21.80 22.07
NN 39.52 34.50 32.44 35.15
LR 14.21 14.39 14.37 14.30

Table 21: Response time step prediction for RMSE
Model 9-min 10-min 11-min 12-min
SVR 1.72 1.75 1.75 1.74
NN 4.13 3.77 3.61 3.80
LR 8.77 9.78 9.73 8.78

4.5. Sensitivity analysis

In this section, the validity of the experimental results is ascertained using the Little’s

law. Customers (user requests) arrive at the system (web server), stay for a while

(receiving service) and leave. Little’s law states that the average number of users in a

system is equal to the departure rate of the user requests from the system multiplied by

the average time each user request spends in the system. This can be summarized as: [42]

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 =

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑥 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 (14)

Little’s law is quite general and requires few assumptions. It applies to any black box that

may contain an arbitrary set of components such as CPU [42]. Using Little’s law, the

consistency of the measurement data obtained from the experiment can be validated. Due

to the large sample space (532 data points), the data from Table 2 is used as subset of the

entire dataset in checking the consistency of the measurement data. From equation (14),

the Number of users in the system is the Total user Request; the departure rate is the

Throughput. The average time spent in the system would be calculated and compared

with the response time measured experimentally.

50

During the 1st to 7th minute interval, the average throughput measured was 5.29
requests/second. The average number of users during this time interval is 188

7
~ 27. Using

equation(14), the average time spent is 27
5.29

= 5.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The measured average
response time during this period was 4.66 seconds. The percentage variance would be:

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡−𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡)
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡

𝑥 100. With this example, Table 22

is completed.

Table 22: Data consistency measurement
Time (minute) 1-7 56-63 154-

161
350-
357

490-
497

498-
503

504-
511

Average total user
requests

27
(188/7)

55
(388/7)

11
(80/7)

103
(724/7)

101
(708/7)

95
(664/7)

69
(480/7)

Average
Throughput

(Requests/second)

5.29 10.52 2.47 15.92 10.00 12.23 13.27

Average time
spent

(seconds)

5.10 5.23 4.45 6.47 10.01 7.77 5.2

Measured time
spent

4.66 4.92 9.92 7.53 9.06 9.01 9.45

Time variance
(%)

9.44 6.31 55.14 14.08 10.49 13.76 44.97

It can be observed that the results at the 154th-161st minute and that of the 504th-511th

minute had a high percentage variance. While the period between 154-161 minute

duration has an acceptable average throughput (based on numbers of user requests), the

latter (504-511) has an unusually high average throughput for the number of users during

the 7 minute window. For the 504-511 time interval, the logical explanation for this

anomaly could be that the web server is still processing user requests from the 498-503

window when the 504-511 user request batch started sending requests. The measured

response time also shows that more requests i.e. greater than the actual average of 69

users must have been requesting for service at the web server. However, the anomaly

during the 154-161 window could be attributed to experimental error.

51

CHAPTER 5: DISCUSSION OF RESULTS

Research into prompt resource scaling as presented in Section 2.5 is extensive. One of the

contributions of this thesis is to compare the prediction accuracy in a non-linear and a

linear-like workload traffic pattern. Therefore, this section, discusses the results in this

thesis (non-linear traffic pattern) and that from an exploratory work (linear traffic pattern)

[11, 12]. These two works are similar in the area of designing and developing cloud client

prediction models using SVR, LR and NN. The differences on the other hand include the

experiment duration of 532 minutes compared to 170 minutes in exploratory work, and

the workload traffic pattern that is non-linear but linear in the exploratory work. These

differences can provide insights, specifically on the impact of workload traffic pattern on

the prediction accuracy of SVR. The analysis of results from Section 4 showed that

SVR’s prediction accuracy is the best in comparison with NN and LR. SVR displayed a

strong generalising capability as the validation of the trained model with test dataset

reported better performance metrics. In the exploratory work by Bankole and Ajila [11,

12], SVR had the best prediction accuracy for both CPU utilization and the business

metrics (Response time and Throughput). Comparison between the three models from

this thesis and that from the exploratory work by Bankole and Ajila [11, 12] presents the

following observations:

• CPU model: Figure C.1 in Appendix C shows the workload traffic pattern

(training) from the experiment conducted by Bankole and Ajila [11, 12]. As

mentioned before, the duration of the experiment was 170 minutes. The training

to test dataset ratio was 60%:40% (same ratio was also used in the throughput

and response time model discussed in the sub sections below). Figure 4-13 shows

the heavily non-linear (random) pattern in this thesis. The prediction accuracy

(MAPE and PRED 25 metric) for the training dataset in this thesis is lower than

that of the exploratory work as shown in Table C.1. The randomness in workload

traffic as explained in the previous section is responsible for this. Likewise, the

test dataset prediction accuracy obtained in this thesis is slightly lower than that

of the exploratory work (Table C.1). Comparing the prediction graphs of Figure

C.2 (exploratory work) and Figure 4-14 (thesis) may show a random workload

traffic pattern; this is not the case. Figure C.2 is made up of 68 minutes of dataset

52

while Figure 4-14 is drawn with 212 minutes of held out dataset (over 200%

difference).

• Throughput model: The graphs in Figures C.3 and 4-15 show the effect of the

workload traffic pattern on the throughput model with Figure 4-15 presenting a

random-like pattern. The authors of the exploratory work [11, 12] did not report

the training performance metric; therefore, comparison is on test metric only.

Table C.2 show higher prediction accuracy for the exploratory work for the three

metrics (MAPE, RMSE and PRED (25)). This shows that there is a correlation

between prediction accuracy and workload traffic pattern. This is expected as it is

easier to predict future occurrences based on linear historic patterns than

conditions of uncertainty (random)

• Response time model: Similar to the throughput discussion, only the test

performance metric is reported by Bankole and Ajila [11, 12]. Figures C.6 and 4-

18 show the prediction trend for the exploratory and current work respectively.

Table C.3 however shows close similarity between the two works. The similarity

is attributed to the fact that the range of the response time values is smaller than

that of the CPU utilization. This results into less prediction error.

This comparison would have been definitive if the exploratory work had similar historical

dataset size as this thesis (170 minutes versus 532 minutes). It may however be deduced

that the prediction accuracy of SVR decreases with increase in workload traffic

randomness.

53

CHAPTER 6: CONCLUSION
This chapter provides a summary of the research performed in this thesis and also

directions for future research.

6.1. Summary

The appearance of infinite computing resources on demand and the ability to pay for use

of computing resources on a short-term basis as needed are some of the numerous

opportunities cloud computing offers. With this array of opportunities come some

challenges amongst which are data security threats, performance unpredictability and

ensuring prompt (quick) resource scaling. This thesis is focused on prompt resource

scaling assurance. Several techniques such as Control theory, Threshold based

provisioning and Machine learning have been employed by various authors. Detailed

discussions of these techniques are presented in Section 2.5. However, a fundamental

challenge in the area of resource scaling is that VM instantiation (scaling) takes from 5 to

12 minutes before requests can be accepted and served [2, 34, 38, 41, 47, 49]. During this

instantiation duration, possibility of SLA violations, poor customers' QoE and ultimately

reputational loss are potential setbacks. Furthermore, monitoring metrics made available

to cloud clients are limited to coarse metrics such as CPU, Memory and Network

utilization. These may not give a broad view of the QoS. Control theory and Threshold

based techniques are reactive in operation and may not prevent these setbacks. Research

shows that statistical machine learning technique is used as a predictive tool for dynamic

scaling [8]. In this thesis, three forecasting models are built using Linear Regression

(LR), Neural Network (NN) and Support Vector Regression (SVR) for a two-tier TPC-W

web application. Asides from the traditional single metric prediction using CPU

utilization, the monitoring metric is extended to include response time and throughput

(business SLA metrics). This three-factor combination in the prediction model should

provide a broader view of the QoS. The user workload traffic employed in this thesis is

random, an approach to simulate a realistic workload pattern. After an extensive

simulation lasting about 10 hours, the three machine learning techniques are trained and

validated with 60% and 40% of the historical dataset respectively. The performance of

54

SVR, LR and NN are measured using four metrics; MAPE, RMSE, MAE and PRED

(25). Section 4 thoroughly discussed and analysed the results obtained.

Overall, Support Vector Regression model displayed superior prediction accuracy over

both Neural Network and Linear Regression in a 9-12 minute window. Specifically and

in terms of the test MAPE performance metric the following key observations from the

simulation results are presented.

• In the CPU utilization prediction model, SVR outperformed LR and NN by 58%

and 120% respectively

• For the Throughput prediction model, SVR again outperformed LR and NN by

607% and 76% respectively; and finally,

• The Response time prediction model saw SVR outperforming LR and NN by

515% and 146% respectively

The clear prediction superiority of SVR shows strong generalization ability in a non-

linear model (random-like workload pattern). SVR can optimally map the non-linear

input data to a higher dimension feature space via the Kernel function (RBF in this case),

then perform linear regression in the higher dimensional feature space [52]. The absence

of the Kernel function in LR and NN makes them difficult to perform well in non-linear

models.

The effect of the degree of non-linearity (randomness) is another insight that is

noteworthy. Comparing the results of this thesis with a similar and exploratory work [11,

12] which employed a linear workload traffic model shows that the prediction accuracy

reduces with increased workload traffic randomness. Even though this is expected, the

variance in prediction accuracy of the results obtained in this thesis and the exploratory

work is not striking as discussed critically in Section 5. Again, the comparison would

have been definitive and objective if the exploratory work had similar historical dataset

size as this thesis (170 minutes versus 532 minutes).

Therefore, based on these experimental results SVR may be accepted as the best

prediction model. Consequently, cloud clients can employ SVR to build their prediction

models. Furthermore, the addition of business level SLA metrics (response time and

55

throughput) into the prediction model paves the way for a three-factor combination

decision matrix for scaling VM resources. The inclusion of response time and throughput

further broadens the view of the QoS of client applications as these business level metrics

may have degraded long before an application reaches its set CPU utilization threshold.

6.2. Future Research

In this study, forecasting future resource usage using machine learning techniques has

shown promising results. However, some areas have been identified for further research

and they are presented in this section.

• This study has focused on only the web server tier. Further work to include the

database tier may be worth investigating. With this inclusion,

unsaturated/saturated webserver and database combination can be modeled and

subsequent forecasting made using the same machine learning techniques.

• Investigating the combination of SVR and other predicting techniques that may

further increase the prediction accuracy is another future direction.

• In order to further validate the forecasting strength of machine learning

techniques and specifically SVR, the use of other application workloads that are

not web based is another interesting investigation that may be pursued.

56

REFERENCES
[1] “Amazon CloudWatch Developer Guide API Version 2010-08-01”, 2013.

[Online]. Available:

http://awsdocs.s3.amazonaws.com/AmazonCloudWatch/latest/acw-dg.pdf.

[2] “Amazon elastic compute cloud (amazon ec2)”, 2013. [Online]. Available:

http://aws.amazon.com/ec2.

[3] “Amazon Web services Discussion Forums”, 2013. [Online]. Available:

https://forums.aws.amazon.com/thread.jspa?threadID=67697

[4] “Google AppEngine”, 2013. [Online]. Available:

https://developers.google.com/appengine.

[5] “Salesforce”, 2013. [Online]. Available: http://www.salesforce.com.

[6] “What’s the bottom line? How to compare models, 2005. [Online]. Available

http://people.duke.edu/~rnau/compare.htm

[7] Ali-Eldin, A. et al. “An adaptive hybrid elasticity controller for cloud

infrastructures”. IEEE Network Operations and Management Symposium

(NOMS) pp 204-212. Hawaii, USA. April, 2012.

[8] Armbrust, M. et al. “A view of cloud computing”. Commun. ACM. 53, 4 pp. 50–

58, April, 2010.

[9] Armbrust, M. et al. 2009. Above the Clouds: A Berkeley View of Cloud

Computing.

[10] Astrova, I. et al. July. “Security of a Public Cloud”. 6th International Conference

on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). pp.

564–569, Palmero, Italy. July, 2012.

[11] Bankole A., and Ajila S.A., “Cloud Client Prediction Models for Cloud Resource

Provisioning in a Multitier Web Application Environment”, in 7th IEEE

International Symposium on Service-Oriented System Engineering (IEEESOSE

2013), San Francisco Bay, USA March 25 – 28, 2013.

[12] Bankole A., and Ajila S.A., Predicting Cloud Resource Provisioning using

 Machine Learning Techniques, in 25th IEEE Canadian Conference on Electrical

and Computer Engineering (CCECE 2013), Regina, Saskatchewan, Canada, May

5 – 8, 2013.

57

[13] Bertholon, B. et al. “Certicloud: A Novel TPM-based Approach to Ensure Cloud

IaaS Security”. IEEE International Conference on Cloud Computing (CLOUD).

pp. 121–130. 2011.

[14] Boniface, M. et al. “Platform-as-a-Service Architecture for Real-Time Quality of

Service Management in Clouds”. 5th International Conference on Internet and

Web Applications and Services (ICIW). pp. 155–160, Barcelona, Spain. May,

2010.

[15] Borgetto, D. et al. May. “Energy-Efficient and SLA-Aware Management of IaaS

clouds”. 3rd International Conference on Future Energy Systems: Where Energy,

Computing and Communication Meet (e-Energy). pp. 1–10. Madrid, Spain. May,

2012.

[16] Cain , H. W. et al., “An Architectural Evaluation of Java TPC-W” in Proceedings

of the Seventh International Symposium on High- Performance Computer

Architecture, Nuevo Leone, Mexico. January, 2001.

[17] Caron, E. et al., "Forecasting for Grid and Cloud Computing On-Demand

Resources Based on Pattern Matching" 2nd International Conference on Cloud

Computing Technology and Science (CloudCom). pp.456-463, Indianapolis, USA.

November, 2010.

[18] Chieu, T.C. et al. “Dynamic Scaling of Web Applications in a Virtualized Cloud

Computing Environment”. IEEE International Conference on e-Business

Engineering ,ICEBE ’09. pp 281-286. Macau, China. October, 2009.

[19] Chih-Chung, C. and Chih-Jen , L., “LIBSVM : a library for support vector

machines”. ACM Transactions on Intelligent Systems and Technology, 2:27:1--

27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

[20] Chih-Wei, H. et al, “A practical guide to support vector classification”. Technical

report, Department of Computer Science and Information Engineering, National

Taiwan University, Taipei, 2003. [Online]. Available:

http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

[21] Dashevskiy, M. and Luo, Z. "Time series prediction with performance guarantee".

IET Communications. Vol. 5, Issue 8, pp. 1044–1051. 2010.

58

[22] Dawoud, W. et al. “Infrastructure as a service security: Challenges and solutions”.

7th International Conference on Informatics and Systems (INFOS). pp. 1–8,

Washington DC, USA. July, 2010.

[23] Dutreilh, X. et al. “Using Reinforcement Learning for Autonomic Resource

Allocation in Clouds: Towards a Fully Automated Workflow” Proceedings of the

7th International Conference on Autonomic and Autonomous Systems. pp 67-74.

Mestre, Italy. May, 2011.

[24] Fang, W. et al. “RPPS: A Novel Resource Prediction and Provisioning Scheme in

Cloud Data Center”. IEEE Ninth International Conference on Services Computing

(SCC). pp.609 –616, Washington DC, USA. June, 2012.

[25] Gandhi, A. et al. “Hybrid resource provisioning for minimizing data center SLA

violations and power consumption”. Sustainable Computing: Informatics and

Systems. pp. 91–104. Orlando, Florida, USA. June, 2012.

[26] Ghanbari, H. et al. “Optimal autoscaling in a IaaS cloud”. Proceedings of the 9th

international conference on Autonomic computing. pp 173-178. San Jose,

California, USA. September, 2012.

[27] Guosheng. H et al., "Grid Resources Prediction with Support Vector Regression

and Particle Swarm Optimization," 3rd International Joint Conference on

Computational Science and Optimization (CSO), vol.1, pp.417-422, China. May,

2010.

[28] Hall, M. et al., “The WEKA Data Mining Software: An Update”, SIGKDD

Explorations, Volume 11, Issue 1. 2009.

[29] Han, R. et al. “Lightweight Resource Scaling for Cloud Applications”. 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid), pp 644 –651, Ottawa Canada, May. 2012.

[30] Hasan, M.Z. et al. “Integrated and autonomic cloud resource scaling”. IEEE

Network Operations and Management Symposium (NOMS). pp 1327-1334.

Hawaii, USA. April, 2012.

[31] Hilley, D. Cloud Computing: A Taxonomy of Platform and Infrastructure-level

Offerings: 2009. https://smartech.gatech.edu/handle/1853/34402. Accessed: 2013-

01-24.

59

[32] Hoefer, C.N. and Karagiannis, G. "Taxonomy of cloud computing services". IEEE

GLOBECOM Workshops (GC Wkshps), pp. 1345–1350, Miami, USA. December,

2010.
[33] Holehouse A. “Stanford Machine Learning”. [Online]. Available:

http://www.holehouse.org/mlclass/index.html

[34] Imam, M.T. et al. “Neural network and regression based processor load prediction

for efficient scaling of Grid and Cloud resources”. 14th International Conference

on Computer and Information Technology (ICCIT). pp 333-338, Bangladesh,

India. Dec 2011.

[35] Keogh, E. et al. “An online algorithm for segmenting time series”. Proceedings

of IEEE International Conference on Data Mining. pp 289-296. San Jose,

California, USA. November, 2001.

[36] Khashman, A. and Nwulu, N.I, "Intelligent prediction of crude oil price using

Support Vector Machines", in IEEE 9th International Symposium on Applied

Machine Intelligence and Informatics (SAMI), pp.165-169, Smolenice, Slovakia.

January, 2011.

[37] Kulkarni, P. “Reinforcement and Systematic Machine Learning For Decision

Making”, Wiley-IEEE Press, 2012.

[38] Kupferman, J. et al., “Scaling Into the Cloud”. University of California, Santa

Barbara, Tech. Rep.

http://cs.ucsb.edu/~jkupferman/docs/ScalingIntoTheClouds.pdf. 2009.

[39] Lim, H.C. et al. “Automated control for elastic storage”. Proceedings of the 7th

international conference on Autonomic computing. pp 1-10. Washington DC,

USA. June, 2010.

[40] Lim, H.C. et al. “Automated control in cloud computing: challenges and

opportunities”. Proceedings of the 1st workshop on Automated control for

datacenters and clouds. pp 13-18. Barcelona, Spain. June, 2009.

[41] Lorido-Botran, T. et al. “Auto-scaling Techniques for Elastic Applications in

Cloud Environments” Department of Computer Architecture and Technology,

University of Basque Country, Tech. Rep. EHU-KAT-IK-09-12. Sept. 2012.

60

[42] Menasce, D.A. et al. “Performance by Design: Computer Capacity Planning By

Example” Prentice Hall. 2004.

[43] Meng, X. et al. "Efficient resource provisioning in compute clouds via VM

multiplexing". Proceedings of the 7th international conference on Autonomic

computing. pp. 11–20, Washington DC, USA. June, 2010.

[44] Mouftah, H.T. and Kantarci, B. “Chapter 11 - Energy-Efficient Cloud Computing:

A Green Migration of Traditional IT”. Handbook of Green Information and

Communication Systems. Academic Press. pp. 295–330. 2013.

[45] Muppala, S. et al. “Regression-based resource provisioning for session slowdown

guarantee in multi-tier Internet servers”. Journal of Parallel and Distributed

Computing. Pp 362-375 March. 2012.

[46] Nascimento, G. and Correia, M. "Anomaly-based intrusion detection in software

as a service". IEEE/IFIP 41st International Conference on Dependable Systems

and Networks Workshops (DSN-W). pp. 19–24, Hong Kong, China. June, 2011.

[47] Quiroz, A et al., “Towards autonomic workload provisioning for enterprise Grids

and clouds” in Grid Computing, 2009 10th IEEE/ACM International Conference.

pp 50-57, Banff, Alberta, Canada. October, 2009.

[48] Richard S. S and Andrew B.B., “Reinforcement Learning an Introduction”

http://www.scribd.com/doc/92878651/Reinforcement-Learning-an-Introduction-

Richard-S-Sutton-Andrew-G-Barto. Accessed: 2013-01-02.

[49] Sadeka, I. et al., “Empirical prediction models for adaptive resource provisioning

in the cloud”, Future Generation Computer Systems, vol. 28, no. 1, pp 155 – 165,

January, 2012.

[50] Sakr, G.E et al., "Artificial intelligence for forest fire prediction" IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM), pp.1311-

1316, Montreal, Canada. July, 2010.

[51] Sandikkaya, M.T. and Harmanci, A.E. “Security Problems of Platform-as-a-

Service (PaaS) Clouds and Practical Solutions to the Problems” IEEE 31st

Symposium on Reliable Distributed Systems (SRDS). pp. 463–468, Irvine,

California, USA. October, 2012.

61

[52] Sapankevych, N and Sankar, R., "Time Series Prediction Using Support Vector

Machines: A Survey," Computational Intelligence Magazine, IEEE, vol.4, no.2,

pp.24-38, May 2009.

[53] Sarkar, M. et al. "Resource requirement prediction using clone detection

technique". Future Generation Computer Systems. Vol. 29, Issue 4 pp. 936–952.

June, 2013.

[54] Smola, A.J and Scholkopf, B., “A Tutorial on Support Vector Regression” in

Statistics and Computing vol 14, pp. 199 – 222, 2004.

[55] Sun, W. et al. “Software as a Service: Configuration and Customization

Perspectives”. IEEE Congress on Services Part II, SERVICES-2, pp. 18–25. 2008.

[56] Tian, C. et al. "Decision model for provisioning virtual resources in Amazon

EC2". 8th International Conference on Network and Service Management

(CNSM), pp. 159–163, Las Vegas, USA. October, 2012.

[57] TPC, TPC-W Benchmark, Transaction Processing Performance Council (TPC),

San Francisco, CA, USA, 2003.

[58] Trevor, H. et al. “The Elements of Statistical Learning: Data Mining, Inference,

and Prediction”, New York: Springer, 2009.

[59] Viswanath, C. and Valliyammai, C. "CPU load prediction using ANFIS for grid

computing". International Conference on Advances in Engineering, Science and

Management (ICAESM) pp. 343–348. Tamil Nadu, India. March, 2012.

[60] Wang, S. and Summers, R.M. "Machine learning and radiology". Medical Image

Analysis. Vol 16, Issue 5. pp. 933-951. 2012.

[61] Witten, I. H and Frank, E. “Data Mining Practical Machine Learning Tools and

Techniques with Java Implementations”, San Diego: Academic Press, 2000.

[62] Wood, T. et al., “Profiling and Modeling Resource Usage of Virtualized

Applications” Proceedings of the 9th ACM/IFIP/USENIX International

Conference on Middleware, pp. 366-387, New York, USA. 2008.

62

APPENDIX A: TPC WEB INTERACTION

Table A.1: TPC-W Web Interaction Characteristics [16]
Name Dynamic

HTML?
Table
Joins

Images Max Response
Time (seconds)

Admin Confirm Yes 4 5 20
Admin Request Yes 2 6 3
Best Seller Yes 3 9 5
Buy Confirm Yes 1 2 5
Buy Request Yes 1 3 3
Customer Registration No N/A 4 3
Home Yes 1 9 3
New Product Yes 2 9 5
Order Display Yes 1 2 3
Order Inquiry No N/A 3 3
Product Detail Yes 2 6 3
Search Request No N/A 9 3
Search Result Yes 2 9 10
Shopping Cart Yes 1 9 3

Table A.2: TPC-W Web Interaction Frequencies for Each Mix [16]
Web Interaction Browsing mix

(%)
Shopping mix

(%)
Ordering mix

(%)
Browse 95 80 50
Best Sellers 11.00% 5.00 0.46
Home 29.00 16.00 9.12
New Products 11.00 5.00 0.46
Product Detail 21.00 17.00 12.35
Search Request 12.00 20.00 14.54
Search Result 11.00 17.00 13.08
Order 5 20 50
Admin Confirm 0.09 0.09 0.11
Admin Request 0.10 0.10 0.12
Buy Confirm 0.69 1.20 10.18
Buy Request 0.75 2.60 12.73
Customer Registration 0.82 3.00 12.86
Order Display 0.25 0.66 0.22
Order Inquiry 0.30 0.75 0.25
Shopping Cart 2.00 11.60 13.53

63

APPENDIX B: SAMPLE BATCH SCRIPTS

Java script used to automate the user requests (Browsing mix) sent to the web server
import java.io.IOException;

import java.io.InputStream;

public class DOSCommand2 {

 public static void StartFactory2(String user, String file) {

 final String dosCommand = "java rbe.RBE -EB rbe.EBTPCW2Factory " + user + " -OUT " + file + " -

RU 5 -MI 410 -RD 5 -WWW http://ec2-50-16-224-2.compute-1.amazonaws.com:8080/tpcw -CUST 869074

-ITEM 1000 -TT 1.0 -MAXERROR 400 -TT 1.0";

 try {

 final Process process = Runtime.getRuntime().exec(dosCommand);

 final InputStream in = process.getInputStream();

 int ch;

 while((ch = in.read()) != -1) {

 System.out.print((char)ch);

 }

 }

 catch (Exception e) {

 System.out.println("Error");

 }

 }

}

Figure B.1: Java script used to automate the user requests (Browsing mix) sent to the web
server

Parameter definitions:

http://ec2-50-16-224-2.compute-1.amazonaws.com:8080/tpcw: Web server url

user: number of shopping users sent to the web server

CUST: number of customers in the TPC-W database

ITEM: number of image items

MAXERROR: maximum errors allowed

MI: measurement interval in seconds

RU: ramp-up time

RD: ramp down time

TT: think time multiplication

OUT: Output file (provided by the parameter file in the method StartFactory2)

64

import java.io.*;

public class ec2cpu

{

static String stat = "\"Average\"";

static String namesp = "\"AWS/EC2\"";

static String dimen = "\"InstanceId=i-956bf9e4\"";

static String getMetric = "mon-get-stats CPUUtilization --start-time 2013-01-20T20:52:00 --end-time
2013-01-20T22:30:00 --period 60 --statistics " +stat+ " --namespace " +namesp+" --dimensions " +
dimen;

 public static void main(String [] args)

 {

 try

 { String cmd = getMetric;

 Process child = Runtime.getRuntime().exec(cmd);

 InputStream lsOut = child.getInputStream();

 InputStreamReader r = new InputStreamReader(lsOut);

 BufferedReader in = new BufferedReader(r);

 String line;

 while((line=in.readLine()) != null)

 {

 BufferedWriter out = new BufferedWriter(new FileWriter("cpureading.txt",true));

out.write(line + "\n");

out.close();

 }

 }

 catch(Exception e)

 {

 System.out.println("Error");

 }

}}

Figure B.2: Java script used to automate the collection of cloud metric (CPU utilization)

65

Parameter definition:

--statistics: parameter returns the average reading over 60 seconds. Other statistics option
include; sum, maximum, minimum

--dimension: is the Amazon EC2 instance-id

 --namespace: container metric for AWS product. Amazon EC2 product is represented by
AWS/EC2, Amazon Simple Notification Service is given by AWS/SNS and Amazon Elastic
Block Store represented as AWS/EBS

66

APPENDIX C: RESULTS FROM EXPLORATORY WORK

Figure C.1: CPU Utilization Actual and Predicted training output using SVR

Figure C.2: CPU Utilization Actual and Predicted test output using SVR

Table C.1: CPU utilization training and test performance metric
Model MAPE RMSE PRED(25)
Training (exploratory work) 16.15 15.48 0.77
Training (thesis) 107.80 15.48 0.64

Test (exploratory work) 16.84 12.21 0.84
Test (thesis) 22.84 11.84 0.64

67

Figure C.3: Throughput Actual and Predicted training output using SVR

Figure C.4: Throughput Actual and Predicted test output using SVR

Table C.2: Throughput training and test performance metric
Model MAPE RMSE PRED(25)
Test (exploratory work) 10.67 1.37 0.875
Test (thesis) 22.07 3.22 0.67

68

Figure C.5 Response time Actual and Predicted training output using SVR

Figure C.6 Response time Actual and Predicted test output using SVR

Table C.3: Response time training and test performance metric
Model MAPE RMSE PRED(25)
Test (exploratory work) 14.17 1.92 0.89
Test (thesis) 14.30 1.74 0.83

	Abstract
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Figure 3-1: Architecture of the System 26
	Figure 3-2: Attribute selection option to rank attribute in order of relevance 29
	Figure 3-3: Parameter search for SVR 31
	Figure 4-1: CPU Utilization Actual and Predicted training output using LR 34
	Figure 4-2: CPU Utilization’s Actual and Predicted test output using LR 35
	Figure 4-3: Throughput’s Actual and Predicted training using LR 35
	Figure 4-4: Throughput Actual and Predicted test output using LR 36
	Figure 4-5: Response time Actual and Predicted training output using LR 37
	Figure 4-6: Response time Actual and Predicted test output using LR 37
	Figure 4-7: CPU Utilization Actual and Predicted training output using NN 38
	Figure 4-8: CPU Utilization Actual and Predicted test output using NN 39
	Figure 4-9: Throughput Actual and Predicted training using NN 40
	Figure 4-10: Throughput Actual and Predicted test output using NN 40
	Figure 4-11: Response time Actual and Predicted training output using NN 41
	Figure 4-12: Response time Actual and Predicted test output using NN 42
	Figure 4-13: CPU Utilization Actual and Predicted training output using SVR 43
	Figure 4-14: CPU Utilization Actual and Predicted test output using SVR 43
	Figure 4-15: Throughput Actual and Predicted Training using SVR 43
	Figure 4-16: Throughput Actual and Predicted Test output using SVR 44
	Figure 4-17: Response time Actual and Predicted training output using SVR 45
	Figure 4-18: Response time Actual and Predicted test output using SVR 46
	Figure 4-19: CPU utilization training prediction for SVR, NN and LR at selected time interval 47
	Figure 4-20: Throughput training prediction for SVR, NN and LR at selected time interval 48
	Figure B.1: Java script used to automate the user requests (Browsing mix) sent to the web server 63
	Figure B.2: Java script used to automate the collection of cloud metric (CPU utilization) 64
	Figure C.1: CPU Utilization Actual and Predicted training output using SVR 66
	Figure C.2: CPU Utilization Actual and Predicted test output using SVR 66
	Figure C.3: Throughput Actual and Predicted training output using SVR 67
	Figure C.4: Throughput Actual and Predicted test output using SVR 67
	LIST OF APPENDICES
	LIST OF SYMBOLS AND ACRONYMS
	Chapter 1: INTRODUCTION
	1.1. Background
	1.1.1. Cloud computing offerings

	1.2. Motivation for the Thesis
	1.3. Goal and Scope of the Thesis
	1.4. Contributions of the Thesis
	1.5. Outline of the Thesis

	CHAPTER 2: STATE OF THE ART REVIEW
	2.
	2.1. Cloud Computing
	2.1.1. Cloud Computing Services
	2.1.2. Types of Cloud
	2.1.3. Amazon Elastic Compute Cloud (Amazon EC2)
	2.1.4. Amazon Instance Type Specifications
	1.
	2.
	2.1.
	2.1.1.
	2.1.2.
	2.1.3.
	2.1.4.
	2.1.5. Amazon EC2 Instance Options

	1.
	2.
	2.1.
	2.2. Machine Learning
	2.2.1. Supervised learning
	2.2.2. Definition of machine learning terms
	1.
	2.
	2.1.
	2.2.
	2.2.1.
	2.2.2.
	2.2.3. Linear Regression
	2.2.4. Neural Networks
	1.
	2.
	2.1.
	2.2.
	2.2.1.
	2.2.2.
	2.2.3.
	2.2.4.
	2.2.5. Training Neural Networks
	2.2.6. Training Neural Networks
	2.2.7. Support Vector Machines
	2.3. Resource Provisioning
	1.
	2.
	2.1.
	2.2.
	2.3.
	2.4. Resource Prediction Techniques
	1.
	2.
	2.1.
	2.2.
	2.3.
	2.4.
	2.5. Cloud Resource Provisioning and Techniques
	2.5.1. Threshold based provisioning
	2.5.2. Control Theory based provisioning
	1.
	2.
	2.1.
	2.2.
	2.3.
	2.4.
	2.5.
	2.5.1.
	2.5.2.
	2.5.3. Reinforcement Learning
	2.5.4. Time series analysis provisioning

	CHAPTER 3: DESIGN OF EXPERIMENT
	3.
	3.1. System Architecture
	3.2. WEKA
	3.3. Experimental Setup
	3.3.1. Feature Selection
	3.3.2. Data collection using TPC-W benchmark
	3.3.3. Feature reduction
	3.3.4. Data preprocessing
	3.3.5. Training of Dataset
	3.3.6. Validation (Test) of Dataset

	CHAPTER 4: SIMULATION RESULTS AND ANALYSIS
	4.
	4.1. Linear Regression Models
	4.1.1. CPU utilization training and test results
	4.1.2. Throughput training and test results
	1.
	2.
	3.
	4.
	4.1.
	4.1.1.
	4.1.2.
	4.1.3. Response time training and test results
	4.2. Neural Network Models
	4.2.1. CPU Utilization training and test results
	4.2.2. Throughput training and test results
	1.
	2.
	3.
	4.
	4.1.
	4.2.
	4.2.1.
	4.2.2.
	4.2.3. Response time training and test results
	5.
	6.
	7.
	8.
	8.1.
	8.2.
	8.2.1.
	8.2.2.
	1.
	2.
	3.
	4.
	4.1.
	4.2.
	4.3. Support Vector Machine (Regression) Models
	4.3.1. CPU Utilization training and test results
	5.
	6.
	7.
	8.
	8.1.
	8.2.
	1.
	2.
	3.
	4.
	4.1.
	4.2.
	4.3.
	4.3.1.
	4.3.2. Throughput training and test results
	5.
	6.
	7.
	8.
	8.1.
	8.2.
	8.3.
	8.3.1.
	1.
	2.
	3.
	4.
	4.1.
	4.2.
	4.3.
	4.3.1.
	4.3.2.
	4.3.3. Response time training and test results
	1.
	2.
	3.
	4.
	4.1.
	4.2.
	4.3.
	4.4. Comparison of Prediction Models
	1.
	2.
	3.
	4.
	4.1.
	4.2.
	4.3.
	4.4.
	4.5. Sensitivity analysis

	CHAPTER 5: DISCUSSION OF RESULTS
	5.

	Chapter 6: conclusion
	6.
	6.1. Summary
	6.2. Future Research

	REFERENCES

