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Abstract— In this paper, a Q(λ)-learning fuzzy inference
system (QLFIS) is applied to a differential game. We use the
homicidal chauffeur differential game as an example of the
method. The suggested method allows both the evader and
the pursuer to learn their optimal strategies. The parameters
of the input and the fuzzy rules of a fuzzy controller are
tuned autonomously using Q(λ)-learning. Simulation results
demonstrate that the players are able to learn their optimal
strategies.

I. INTRODUCTION

In differential games, players need the ability to learn,

adapt and interact with an unknown environment. Reinforce-

ment learning (RL) has been used to train the players. A

common reinforcement learning technique called Q-learning

is introduced in [1]–[3]. In [4] and [5], a reinforcement

fuzzy learning is applied to the pursuit-evasion differential

game. A fuzzy Q(λ)-learning technique is presented in [4],

[6] and a fuzzy actor-critic method is presented in [5]. The

authors showed that RL can be used to teach the pursuer to

capture the evader and minimize the capture time. However,

the evader did not learn to escape from the pursuer. The

evader needs to learn from rewards and perform an optimal

control action. In this paper, we introduce a technique to

make both the evader and the pursuer learn their optimal

strategies simultaneously using reinforcement learning.

RL is used train players to learn complex behavior through

interactions with the environment without supervision or a

teacher [1]. RL also plays an important role in adaptive

control. Recently, RL has been applied to train players in

differential games [6]–[8]. An interacting learner or player

receives feedback as rewards and punishments from the

world (environment). The player then learns to perform

optimally based on the feedback. Q-learning is one of the

common reinforcement learning techniques [1]–[3].

Q-learning estimates the expected rewards received in

the future given the current state-action pair. Q-learning is

generally used in the case where the state space and the

action space are both discrete. In some situations, such as

differential games, it is impractical to discretize the state

space and the action space [4], [9]. In order to use a RL

technique such as Q-learning in a continuous space, one can

apply fuzzy reinforcement learning to differential games and
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use fuzzy systems to represent the continuous state space and

action space [10]–[12].

We apply reinforcement fuzzy learning technique to the

homicidal chauffeur game. The fuzzy logic controller (FLC)

input and output parameters are tuned using Q(λ)-learning.

This approach is based on the methods proposed by Desouky

et al. [4], [6] and Givigi et al. [5]. We extended the game

by adding the distance as an input to the FLC for the

evader. Moreover, the capture condition for the game is

investigated when training the players. The evader learns

to take the appropriate action whenever the pursuer reaches

some threshold distance. The trained evader learns to find

this distance and to make sharp turns (extreme strategy) to

avoid being captured, or maximize the capture time if the

capture must occur. At the same time, the pursuer learns to

capture the evader. To evaluate and validate our results, the

theoretical solution of the game is illustrated.

In this paper, we first introduce the homicidal chauffeur

differential game in the next section. The fuzzy controller

structure is described in Section III. In Section IV, we

describe the fuzzy reinforcement learning technique. Simula-

tion results are presented in Section V. Finally, conclusions

are presented in Section VI.

II. HOMICIDAL CHAUFFEUR DIFFERENTIAL

GAME

Differential games (DG) [13] are a family of dynamic,

continuous time games. The homicidal chauffeur differential

game is one type of differential game. It was originally

presented by Isaacs in 1954. Isaacs defined the “Homicidal

Chauffeur Problem” in a Rand technical report [14]. The

game has been extended to include more general pursuit-

evasion problems/games [13]. A pursuer or a group of pur-

suers attempts to capture one evader or a group of evaders in

minimal time while the evaders try to avoid being captured.

The game terminates when the evader is within the lethal

range of the pursuer (capture or termination time), or when

the time exceeds one minute (escape). Players evaluate the

current state and then select their next actions. The players’

strategies are not shared and therefore each player has no

knowledge of the other player’s next selected action. We

assume that the environment is obstacle-free.

The existence of optimal strategies in the pursuit-evasion

differential game is determined by Isaacs condition [13],

[15], [16]. The formal results of optimal strategies for

pursuit-evasion differential games are given in [13], [17].

The homicidal chauffeur game and Isaacs condition for the

game are discussed below.







TABLE II: The evader’s fuzzy decision table and the output

constant Kl before learning

❍
❍
❍
❍

φ
d

VC CS FA

N −π/2 −π/2 −π/4

Z −π/2 π/2 0.0

P π/2 π/2 π/4

a continuous domain by using a fuzzy inference system to

represent the continuous state space and action space.

In [4], QLFIS was successfully applied to train the pursuer

to capture the evader in minimum time, but the evader did not

learn. Moreover, the capture condition for the game has not

been investigated when training the players. In this paper, we

apply QLFIS algorithms for the homicidal chauffeur game

to train both the evader and the pursuer.

The construction of the learning system is shown in Fig.

4. Desouky et al. [4] derived and presented the update rules

of the learning process.

As shown in Fig.4, the TD error δt is given as

δt = rt+1 + γmax
á

Qt(st+1, á)−Qt(st ,at) (14)

The Q(λ)-learning action-value function in is updated by

Qt+1(st ,at) = Qt(st ,at)+αδt et (15)

where (0 < α ≤ 1) is the learning rate, and the replacing

eligibility traces et with the trace decay parameter (0≤ λ≤
1) is represented as

et = γλet−1 +
∂Qt(st ,at)

∂ξ
(16)
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Fig. 4: Construction of the learning system where the white

Gaussian noise N (0,σ2
n) is added as an exploration mecha-

nism.

Given the parameters ξ= [K c σ]⊤ to be tuned in the fuzzy

systems, the update rules for the FIS are defined by [4]

ξFIS(t +1) = ξFIS(t)+ηδt

[

γλet−1 +
∂Qt(st ,ut)

∂ξFIS

]

(17)

and the update rules for the FLC are defined by

ξFLC(t +1) = ξFLC(t)+ζδt

[

∂u

∂ξFLC

(
un−u

σn

)

]

(18)

where
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with the learning rate η for the FIS and ζ for the FLC. The

firing strength ωl and the normalized firing strength ω̄l of

rule l are defined as follows [4]

ωl =
2

∏
i=1

exp

(

−(
xi− cl

i

σl
i

)2

)

(21)

ω̄l =
ωl

9

∑
l=1

ωl

(22)

The learning algorithm used in our simulation is shown

in Algorithm 1, where M is the number of episodes (games)

and N is the number of steps (plays) in each episode.

Algorithm 1 QLFIS Algorithm.

1: MFs ← Fig.3

2: Kl ← Tables I and II

3: Q(s,u)← 0 {FIS Q-values}
4: e← 0 {eligibility traces of the FIS}
5: γ← 0.95 ; λ← 0.9 ; σn← 0.08

6: for i← 1 to M do

7: η← (0.1−0.09
(

i
M

)

)
8: ζ← (0.01−0.009

(

i
M

)

)
9: (xp,yp)← (0,0) {pursuer initial position}

10: initialize (xe,ye) randomly {evader initial position}
11: update sp = (φ, φ̇)
12: update se = (φ,d)
13: u← Eq. (11) {for the pursuer and the evader}
14: for j← 1 to N do

15: un← u+N0 {for the pursuer and the evader}
16: Q(st ,u)← Eq. (11)

17: play the game, observe the next states s′p and s′e and

the reward r

18: Q(st+1,u
′)← Eq. (11)

19: δt ← Eq. (14)

20: et ← Eq. (16) {for the FIS}
21: ξ(t +1)FIS← Eq. (17) {update FIS input and

output parameters}
22: ξ(t +1)FLC← Eq. (18) {update FLC input and

output parameters}
23: st ← st+1 ; u← u′

24: end for

25: end for
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Fig. 8: The evader avoids capture when upmax = 0.5rad.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

Po

Eo

Fig. 9: The pursuer can capture the evader when upmax =
0.7rad.

TABLE V: The pursuer’s fuzzy decision table and the output

constant Kl after 900 learning episodes

❍
❍
❍
❍φ
φ̇

N Z P

N -0.4763 -0.2503 -0.0075

Z -0.2413 0.0023, 0.1522

P -0.0046, 0.2650 0.4777

For comparison, we show the results of the theoretical

solution described in Sect. II. Given the stated parameters

of the system and using Isaacs’ capture condition, there

exists a strategy for the evader to avoid capture when

−0.5rad ≤ upmax ≤ 0.5rad. Fig. 8 shows that the evader

can escape from the pursuer by making sharp turns. We

then increase the maximum steering angle of the pursuer to

−0.7rad ≤ upmax ≤ 0.7rad. In this case, the capture condition

is satisfied. The pursuer can capture the evader as shown in

Fig. 9 with capture time = 11.90sec.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The simulation of our model shows that the evader learns

to turn and escape from the pursuer by using the Q(λ)-

learning algorithm to tune the input and the output param-

eters of a fuzzy logic controller. Isaacs showed that if the

capture conditions are not satisfied, there exists a strategy

for the evader to avoid capture. We show that the evader can

learn the optimal strategy to avoid capture. The technique

shows that the learning algorithm converges to equilibrium

after approximately 900 episodes. Furthermore, the evader’s

strategy can be improved by adding more membership func-

tions.
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