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Abstract—In this paper, a Q(A)-learning fuzzy inference
system (QLFIS) is applied to a differential game. We use the
homicidal chauffeur differential game as an example of the
method. The suggested method allows both the evader and
the pursuer to learn their optimal strategies. The parameters
of the input and the fuzzy rules of a fuzzy controller are
tuned autonomously using Q()\)-learning. Simulation results
demonstrate that the players are able to learn their optimal
strategies.

[. INTRODUCTION

In differential games, players need the ability to learn,
adapt and interact with an unknown environment. Reinforce-
ment learning (RL) has been used to train the players. A
common reinforcement learning technique called Q-learning
is introduced in [1]-[3]. In [4] and [5], a reinforcement
fuzzy learning is applied to the pursuit-evasion differential
game. A fuzzy Q(A)-learning technique is presented in [4],
[6] and a fuzzy actor-critic method is presented in [5]. The
authors showed that RL can be used to teach the pursuer to
capture the evader and minimize the capture time. However,
the evader did not learn to escape from the pursuer. The
evader needs to learn from rewards and perform an optimal
control action. In this paper, we introduce a technique to
make both the evader and the pursuer learn their optimal
strategies simultaneously using reinforcement learning.

RL is used train players to learn complex behavior through
interactions with the environment without supervision or a
teacher [1]. RL also plays an important role in adaptive
control. Recently, RL has been applied to train players in
differential games [6]-[8]. An interacting learner or player
receives feedback as rewards and punishments from the
world (environment). The player then learns to perform
optimally based on the feedback. Q-learning is one of the
common reinforcement learning techniques [1]-[3].

Q-learning estimates the expected rewards received in
the future given the current state-action pair. Q-learning is
generally used in the case where the state space and the
action space are both discrete. In some situations, such as
differential games, it is impractical to discretize the state
space and the action space [4], [9]. In order to use a RL
technique such as Q-learning in a continuous space, one can
apply fuzzy reinforcement learning to differential games and

B. Al Faiya is with the Department of Systems and Computer Engi-
neering, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada
abadr@sce.carleton.ca

H. M. Schwartz is with Faculty of Systems and Computer Engineer-
ing, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada
schwartz@sce.carleton.ca

use fuzzy systems to represent the continuous state space and
action space [10]-[12].

We apply reinforcement fuzzy learning technique to the
homicidal chauffeur game. The fuzzy logic controller (FLC)
input and output parameters are tuned using Q(A)-learning.
This approach is based on the methods proposed by Desouky
et al. [4], [6] and Givigi et al. [5]. We extended the game
by adding the distance as an input to the FLC for the
evader. Moreover, the capture condition for the game is
investigated when training the players. The evader learns
to take the appropriate action whenever the pursuer reaches
some threshold distance. The trained evader learns to find
this distance and to make sharp turns (extreme strategy) to
avoid being captured, or maximize the capture time if the
capture must occur. At the same time, the pursuer learns to
capture the evader. To evaluate and validate our results, the
theoretical solution of the game is illustrated.

In this paper, we first introduce the homicidal chauffeur
differential game in the next section. The fuzzy controller
structure is described in Section III. In Section IV, we
describe the fuzzy reinforcement learning technique. Simula-
tion results are presented in Section V. Finally, conclusions
are presented in Section VI

II. HOMICIDAL CHAUFFEUR DIFFERENTIAL
GAME

Differential games (DG) [13] are a family of dynamic,
continuous time games. The homicidal chauffeur differential
game is one type of differential game. It was originally
presented by Isaacs in 1954. Isaacs defined the “Homicidal
Chauffeur Problem” in a Rand technical report [14]. The
game has been extended to include more general pursuit-
evasion problems/games [13]. A pursuer or a group of pur-
suers attempts to capture one evader or a group of evaders in
minimal time while the evaders try to avoid being captured.

The game terminates when the evader is within the lethal
range of the pursuer (capture or termination time), or when
the time exceeds one minute (escape). Players evaluate the
current state and then select their next actions. The players’
strategies are not shared and therefore each player has no
knowledge of the other player’s next selected action. We
assume that the environment is obstacle-free.

The existence of optimal strategies in the pursuit-evasion
differential game is determined by Isaacs condition [13],
[15], [16]. The formal results of optimal strategies for
pursuit-evasion differential games are given in [13], [17].
The homicidal chauffeur game and Isaacs condition for the
game are discussed below.
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Fig. 1: Homicidal chauffeur problem model

In our game, a homicidal chauffeur game is played by
autonomous robots. The chauffeur (the pursuer P) is a car-
like mobile robot and the pedestrian (the evader E) is a
point that can move in any direction instantaneously. In
Isaacs’ homicidal chauffeur differential game, a pursuer aims
to minimize the capture time of an evader. The evader’s
objective is to maximize the capture time and avoid capture.

We assume that the players move at a constant forward
speed w;. The pursuer’s speed is greater than the evader’s
speed, but the evader can move in any direction instan-
taneously. The steering angle of the pursuer is given as
—Up,y < Up Uy, Where up,  is the maximum steering
angle. The maximum steering angle results in a minimum
turning radius R, defined by

Ly
where L, is the pursuer’s wheelbase.

The dynamic equations for the pursuer P and the evader
E are [13]

i, =wpcos(0),)
Yp =wpsin(6,)
6, = &u 2
b= gl @
Xe = wecos(u,)

Ve = wesin{u,)

where (x,y), w, and 0 denote the position, the velocity, and
the orientation respectively as shown in Fig.1.

The angle difference ¢ between the pursuer and the evader
is given as

1, Ye—Yp
=tan (———=)—0 3
o=t =7)-6, )

The relative distance between pursuer and evader is found

as

d= \/(xe _xp)z +(ve _YP)Z 4)

The capture occurs when the distance d < ¢ where ¢ is the
capture radius.

In ( [13], p. 232-237), Isaacs presented a condition such
that the pursuer can succeed in capturing the evader. As-
suming that the pursuer’s speed is greater than the evader’s
speed, the capture condition is given as

I/R, > /1=y +sin 'y—1 (3)
where £/R, is the ratio of the radius of capture to the
minimum turning radius of the pursuer, and y=w./w, < 1
is the ratio of the evader’s speed to the pursuer’s speed. If
inequality (5) is reversed, E escapes from P indefinitely.

Based on the capture condition in (5) and Isaacs’ solution
of the game, the evader’s optimal strategy can be obtained
by solving the following two problems [13], [18], [19]:

1- When the evader is far enough from the
pursuer, the evader’s control strategy is to
maximize the distance between the evader and
the pursuer as follows

1 Ye—Yp (6)

Xe—Xp

u, = tan

2- When the pursuer approaches the evader such
that d < R, the evader adopts a second
control strategy to avoid capture. The pursuer
cannot turn more than a minimum turning
radius R,,. The evader will make a sharp turn,
normal to its direction, and enter the pursuer’s
non-holonomic constraint region. As shown in
Fig.2, a non-holonomic player is constrained
to move along a path with a bounded
curvature such as the pursuer’s minimum
turning radius R, given in Eq.(1). The
evader’s second control strategy is given as

=0,1tmn/2 (7

Ue extreme

Fig. 2: The vehicle cannot turn into the circular region
defined by its minimum turning radius R.

The pursuer’s optimal control strategy is to minimize
the distance and capture the evader in minimum time. The



pursuer controls its steering angle as follows [4], [16], [17]

1, Ye— Y
up = tan 1()7);)—61, (8)

III. FUZZY CONTROLLER STRUCTURE

We use two inputs (fuzzy variables) for the fuzzy con-
troller and generate one output from the fuzzy controller. The
inputs for the pursuer are the angle difference ¢ and its rate of
change ¢. The inputs for the evader are the angle difference
0 and the distance d. In this paper, we add the distance as an
input to the fuzzy controller for the evader. The reason is that
the evader has higher maneuverability than the pursuer and
the distance between the evader and the pursuer is critical
for the evader to decide if it needs to make a sharp turn.

For simplicity and to avoid the “curse of dimensionality”
problem, we use two inputs and three fuzzy sets for each
input to construct the controller. The pursuer’s fuzzy sets
are positive (P), zero (Z) and negative (N) for the angle
difference ¢ and its derivative ¢. The evader’s fuzzy sets
are positive (P), zero (Z) and negative (N) for the angle, and
far (F), close (C) and very close (V) for the distance.

We apply a zero-order Takagi-Sugeno (TS) fuzzy inference
system (FIS) [20]. TS FIS consists of fuzzy IF-THEN rules
and a fuzzy inference engine. Given the fuzzy variables x;
and the corresponding fuzzy sets A; and B;, the fuzzy IF-
THEN rules are

R, :IF x1 is A, AND x, is B, THEN fi=K' (9)

where x; represents ¢ and ¢ for the pursuer, ¢ and d for the
evader. The term f; is the output function of rule / and K
is the parameter for the consequence part of the fuzzy rules.

Three membership functions (MF) are used for each input
which results in constructing 3> = 9 rules. The Gaussian MFs
are given as

R
ay(x) = exp (—(’“’ ,Cl>2> (10)

o

1A

The Gaussian MFs parameters are the mean ¢ and the
standard deviation &, which are the input parameters to be
tuned by RL signals. Figures 3a and 3b show the initial MFs
before tuning.

The steering angle u is the output formed by the weighted
average defuzzifier expressed as

2

9
Z((H#Al(xi))Kl)
=1 l:12 (11)

9
Z (HllAz (1)
=1

i=1

u =

The fuzzy rules are illustrated using the tabular format.
Tables I and II show the fuzzy decision table and the output
constant K’ for the pursuer and the evader respectively before
learning.
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(a) The membership functions of the(b) The membership functions of the
pursuer before training. evader before training.

Fig. 3: Membership functions before training

TABLE I: The pursuer’s fuzzy decision table and the output
constant K’ before learning

o
o N V4 P
N -0.5 -0.25 0.0
V4 -0.25 0.0 0.25
P 0.0 0.25 0.5

IV. REINFORCEMENT LEARNING

A learning agent in a reinforcement learning problem
interacts with the environment and receives a reward r; at
each time step 7. The agent’s goal is to maximize the long
run discounted return R; [1]

T
R = Z “/I(”z+k+1 (12)
k=0
where (0 <vy< 1) is the discount-factor, ¢ is the current time
step, and T is the episode terminal time.

One common type of reinforcement learning is Q-learning.

Q-learning estimates the action-value function Q(s,a) to

achieve the best expected return. The action-value function
is given as

Q(Saa):E{Z“/(”kHth25,0120} (13)
k=0

where s is the state and a is the action.

A. Q(M)-learning Fuzzy Inference System

Desouky et al. [4] proposed a Q(A)-learning fuzzy infer-
ence system QLFIS technique. In the QLFIS technique, the
controller and the function approximator are represented by
fuzzy systems. Q(A)-learning is used to tune the input and the
output parameters of the fuzzy logic controller (FLC) and the
function approximator implemented by FIS. The advantage
of this QLFIS technique is that one can use Q-learning in



TABLE II: The evader’s fuzzy decision table and the output
constant K! before learning

o d VvC CS FA
N —n/2 | —m/2 | —n/4
Z —n/2 | =/2 0.0
P /2 /2 /4

a continuous domain by using a fuzzy inference system to
represent the continuous state space and action space.

In [4], QLFIS was successfully applied to train the pursuer
to capture the evader in minimum time, but the evader did not
learn. Moreover, the capture condition for the game has not
been investigated when training the players. In this paper, we
apply QLFIS algorithms for the homicidal chauffeur game
to train both the evader and the pursuer.

The construction of the learning system is shown in Fig.
4. Desouky et al. [4] derived and presented the update rules
of the learning process.

As shown in Fig.4, the TD error &, is given as

& :rt-‘rl+Yma?-XQt(st+17d)_Qt(staat) (14)

The Q(A)-learning action-value function in is updated by

Orv1(st,ar) = Qi (s1,a;) + 0, ¢ (15)

where (0 < o < 1) is the learning rate, and the replacing
eligibility traces e, with the trace decay parameter (0 <A <
1) is represented as

aQt (St 5 at)
g

e =Yhe—1 + (16)

8
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Fig. 4: Construction of the learning system where the white
Gaussian noise A (0,62) is added as an exploration mecha-
nism.

Given the parameters £ = [K ¢ 6] to be tuned in the fuzzy
systems, the update rules for the FIS are defined by [4]

d
Eris(t+1) =Epys(2) +M; {Ykell + Qt(sr?ut)] a7
9Errs
and the update rules for the FLC are defined by
ou u,—u
Errc(t+1) =&rrc(r) + 88 [()] (18)
ric’ On

where
aQt(g(;(t;“t) T Zl (I)l
aQt(staut) | 90 Gsw) | (K[—Q1(Suu1))w 2(x;i—ch) 19
dris 90 - Lo (07)2 (9
90 (s1,tr) (Kl*Qt(“hut))m 2(xj—c;)
ach | Yoy 1ol
O Y0
du u (K'—u) - 2(xi—c))?
Frpe | o0 | T | T ()3 (20)
FLC aﬁ“] (K —u) Z(X,'*Cl[‘)
ac; | Yior (ol

with the learning rate m for the FIS and { for the FLC. The
firing strength ®; and the normalized firing strength @®; of
rule [ are defined as follows [4]

2 .
(‘01 = Hexp (_(-xl ZCI
i=1 ]

9
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The learning algorithm used in our simulation is shown

in Algorithm 1, where M is the number of episodes (games)
and N is the number of steps (plays) in each episode.

Algorithm 1 QLFIS Algorithm.

1: MFs < Fig.3

2: K' ¢ Tables I and II

3: Q(s,u) 0 {FIS Q-values}
4 e+0 {eligibility traces of the FIS}
5: Y+ 095 ; A« 0.9 ; c6,« 0.08

6: fori+ 1 to M do

7. M+ (0.1-0.09(5))

8 {+ (0.01-0.009(5))

9 (xp,yp) < (0,0) {pursuer initial position}
10:  initialize (x,,y.) randomly {evader initial position}

—
—_

update s, = (9,0)

12:  update s, = (¢,d)

13 u< Eq. (11) {for the pursuer and the evader}
14. for j< 1 to N do

15: Up < U+ No {for the pursuer and the evader}

16: O(s;,u) < Eq. (11)

17: play the game, observe the next states s;, and s/, and
the reward r

18: Q(sit1,u) + Eq. (11)

19: o, + Eq. (14)

20: e; < Eq. (16) {for the FIS}

21: E(t+1)pis + Eq. (17) {update FIS input and
output parameters}

22: E(t+1)prc + Eq. (18)  {update FLC input and
output parameters }

23: Sp =S s u+u

24:  end for

25: end for
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Fig. 5: The pursuer captures the evader with 100 learning
episodes

V. SIMULATION RESULTS

The pursuer is twice as fast as the evader such that
wp = 2m/s and w, = lm/s. The wheelbase of the pursuer
is L = 0.3m. In each episode, the position of the evader is
initialized randomly. The initial position of the pursuer is
at the origin (x,,y,) = (0,0) and the initial orientation is
0 = Orad. We simulate the kinematic equations of the pursuer
and the evader given in Eq. (2).

The game terminates when the pursuer captures the evader,
or when the time exceeds 60 sec (escape). The capture
radius is ¢ < 0.15m, which is half the wheelbase of the
pursuer £ < LTP. The maximum steering angle of the pursuer
is —0.5rad <wu,,,,. < 0.5rad with R, = 0.5491m. Given the
stated parameters of the system and using Isaacs’ capture
condition (5), there exists a strategy for the evader to avoid
capture.

We simulate the game using the learning algorithm given
in Algorithm 1. The game is initialized such that the pursuer
can capture the evader. However, the capture conditions (5)
are set such that the evader can theoretically escape. We then
run the simulation allowing both the evader and the pursuer
to learn simultaneously. Both players use the same learning
algorithm. The goal of initializing the parameters so that the
pursuer captures the evader, is to test whether the evader will
eventually learn to escape.

The number of steps in each episode is 600, and the
sampling time is 0.1sec. The system id simulated for different
number of learning episodes. At the beginning of learning,
the pursuer always captured the evader, as shown in Fig.5.
After 500 episodes, as shown in Fig.6, the evader increased
the capture time and made successful maneuvers. Figure 7
and table III show that the evader learned to escape from
the pursuer after approximately 900 episodes. The evader
makes sharp turns when the distance 4 < R,. The evader
avoids capture by changing its direction and entering into
the pursuer’s turning radius constraint. The tuned fuzzy
consequence parameters K' of the players after 900 episodes
are shown in tables IV and V.
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Fig. 6: The evader increases the capture time after 500
learning episodes
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Fig. 7: The evader learns to escape after 900 learning
episodes

TABLE IV: The evader’s fuzzy decision table and the output
constant K’ after 900 learning episodes

d

o vC CL FE
N -1.5848 | -1.5782 | -0.4074
Z -1.5758 | 1.5526, 0.0331
P 1.5930, 1.5794 0.2626

TABLE III: This table summarizes the capture time for dif-
ferent number of learning episodes compared to the optimal
solution for the homicidal chauffeur game

Game no. of episodes | Capture time (sec)
Theoretical - escape (> 60)
100 12.90
After learning using QLFIS 500 25.10
900 escape (> 60)
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Fig. 8: The evader avoids capture when up,,. = 0.5rad.
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Fig. 9: The pursuer can capture the evader when up,, =
0.7rad.

TABLE V: The pursuer’s fuzzy decision table and the output
constant K after 900 learning episodes

0 ¢ N z P
N -0.4763 | -0.2503 | -0.0075
z -0.2413 | 0.0023, | 0.1522
P -0.0046, | 0.2650 0.4777

For comparison, we show the results of the theoretical
solution described in Sect. II. Given the stated parameters
of the system and using Isaacs’ capture condition, there
exists a strategy for the evader to avoid capture when
—0.5rad < up,,, < 0.5rad. Fig. 8 shows that the evader
can escape from the pursuer by making sharp turns. We
then increase the maximum steering angle of the pursuer to
—0.7rad < uy,,,. <0.7rad. In this case, the capture condition
is satisfied. The pursuer can capture the evader as shown in
Fig. 9 with capture time = 11.90sec.

VI. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

The simulation of our model shows that the evader learns
to turn and escape from the pursuer by using the Q(A)-

learning algorithm to tune the input and the output param-
eters of a fuzzy logic controller. Isaacs showed that if the
capture conditions are not satisfied, there exists a strategy
for the evader to avoid capture. We show that the evader can
learn the optimal strategy to avoid capture. The technique
shows that the learning algorithm converges to equilibrium
after approximately 900 episodes. Furthermore, the evader’s
strategy can be improved by adding more membership func-
tions.
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