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Abstract

In this thesis, Q-learning fuzzy inference system is applied to pursuit-evasion differ-

ential games. The suggested technique allows both the evader and the pursuer to

learn their optimal strategies simultaneously. Reinforcement learning is used to au-

tonomously tune the input parameters and the fuzzy rules of a fuzzy controller for

both the evader and the pursuer. We focus more on the behaviours and the strategies

of the trained evader. The evader is trained to find its optimal strategy from the

received rewards during the game. The homicidal chauffeur game and the game of

two cars are used as examples of the method. The simulation results of the suggested

technique demonstrate that the trained evader is able to learn its optimal strategies.

Furthermore, the learning speed is investigated when using Q-learning with eligibility

traces in pursuit-evasion differential games.
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Chapter 1

Introduction

1.1 Overview

Reinforcement learning is learning complex behaviors through interactions with an

unknown environment without supervision or a teacher. In reinforcement learning,

an interacting learner or player receives feedback as rewards or punishments from

the environment. The player then learns to perform optimally based on the received

rewards. Reinforcement learning has recently been used to tune the parameters of a

fuzzy controller.

Fuzzy control offers an alternative way to replace conventional control methods es-

pecially when the control process is complex to analyze or when the available sources

of information are represented uncertainly. In robotic applications, for example, de-

signing an intelligent robot can achieve high levels of complexity, making it difficult

to use conventional control efficiently. Unlike conventional control methods, fuzzy

control provides a linguistic method to control a system by interpreting a humans

1
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heuristic knowledge. In recent studies, the combination of fuzzy control and rein-

forcement learning has been used to train mobile robots in pursuit-evasion differential

games.

Generally the solution of differential games or the optimal strategies of the players

are not always available to the players or are difficult to obtain. Therefore, the players

need to learn their optimal strategies by playing the game. Pursuit-evasion differential

games are one of the most important and challenging optimization problems. Several

solutions of the pursuit-evasion games have been developed such as the homicidal

chauffeur game and the game of two cars. The difficulty of the problem is due to

the conflicting aims of the players which try to make the best possible decisions

considering that the opponent is doing the same. In a pursuit-evasion game, one

pursuer tries to capture an evader in minimum time while the evader tries to escape

from the pursuer.

In pursuit-evasion games, both the evader and the pursuer need to learn their

optimal strategies simultaneously. The complexity of the game increases when de-

signing an evader that can learn to turn sharply and escape from the pursuer. Most

of the studies on the pursuit-evasion game in the literature did not train the evader

to escape. The investigation of this thesis focuses on training the evader in pursuit-

evasion games. This can be considered as a general problem that can be used to solve

other applications such as obstacle avoidance, missile avoidance, tactical air combat

and other military and security applications. The optimal solutions of the homicidal

chauffeur game and the time-optimal control strategy for the game of two cars are

available in the literature. Therefore we can compare our learned strategies with

the optimal solutions to evaluate the players’ learning process. Furthermore, we will
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investigate the learning speed in reinforcement learning.

1.2 Literature Review

The pursuit-evasion differential game is one type of differential game which is played

in the continues time domain [13]. In a pursuit-evasion game, a pursuer attempts to

capture an evader in minimal time, while the evader tries to avoid capture.

Pursuit-evasion games have been studied intensely for several decades because

of their importance as mentioned before. The formal theoretical solution concerning

optimal strategies and time-optimal control strategies of the homicidal chauffeur game

and the game of two cars are given in [13, 17, 19, 20]. In [13], Isaacs presented a

condition for the pursuer to succeed in capturing the evader in the homicidal chauffeur

game.

In a pursuit-evasion games, the evader and the pursuer need to learn their optimal

strategies by interacting with an unknown environment. In recent studies, fuzzy

reinforcement learning has been applied to differential games [6, 7, 9, 10] to train

the players to find their best control actions. Reinforcement learning is a learning

technique that maps situations to actions to maximize rewards [23].

To the best of our knowledge, most of the work done on the pursuit-evasion

differential game in the literature did not use reinforcement learning except the work

done by our colleagues Desouky and Schwartz [6] and Givigi et al. [9]. In [6] and [9],

the fuzzy reinforcement learning was applied to train the pursuer in a pursuit-evasion

differential game with a fuzzy Q(λ)-learning presented in [6] and a fuzzy actor-critic

method presented in [9].
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Givigi et al. [9] used reinforcement fuzzy learning to tune the output parameters

of a fuzzy controller in a pursuit-evasion game when a robot is pursuing another robot

which is moving along a straight line. Simulation results in [9] shows that reinforce-

ment learning can be used to teach the pursuer to capture the evader. Desouky and

Schwartz [6] developed a Q(λ)-learning fuzzy inference system (QLFIS) technique in

which Q-learning is combined with eligibility traces to tune the input and the out-

put parameters of a fuzzy controller. Q-learning is one of the common reinforcement

learning techniques [23, 26, 27] which estimates the expected rewards received in the

future given the current state-action pair. To use Q-learning with continues state

and action spaces, it is impractical to discretize the state space and the action space.

Instead, one can use a “function approximator” such as fuzzy systems to represent

the continuous state space and action space[5, 8, 10, 11].

Desouky and Schwartz [6] have successfully applied QLFIS to different versions of

the pursuit-evasion games to train the pursuer. Simulation results in [6] showed that

reinforcement learning can be used to teach the pursuer to capture the evader and

minimize the time of capture. This approach will be modified and simulated in this

thesis to make both the evader and the pursuer learn from playing the game. We will

also investigate the learning speed when using eligibility traces.

1.3 Contributions and Thesis Organization

This thesis attempts to cover some of the points that have not been represented in

the research so far. There is a lack of studies on how the evader can learn its optimal

strategy by playing the game. Moreover, the capture condition for the game has not
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been investigated when training the players. We analyze the pursuit-evasion game for

both the evader and the pursuer. The evader is trained to learn its optimal strategy

from the received rewards during the game. We focus more on the behaviours and

the strategies of the evader. We increase the complexity of the game by training the

evader to take the appropriate action whenever the pursuer reaches some threshold

distance. The trained evader learns to find this distance and to use an extreme

strategy to avoid being captured, or maximize the capture time if the capture must

happen.

Two pursuit-evasion differential games are used: the homicidal chauffeur game and

the game of two cars. We consider the optimal solutions and the capture conditions

of the homicidal chauffeur game to evaluate the learning technique. We first show

the simulation results of the optimal solution of the game for comparison. We then

apply a learning algorithm to the games to make both the evader and the pursuer

learn their optimal strategies simultaneously. The learning technique is based on

Q(λ)-learning fuzzy inference system. Furthermore, with a greater complexity of the

learning process and the game comes the need to consider the learning speed. We

will investigate the use of eligibility traces in Q(λ)-learning and show the difference

in the convergence speed when using Q-learning only.

The organization of this thesis is as follows:

• Chapter 2 presents the pursuit-evasion differential games. Two pursuit-evasion

games are presented: the homicidal chauffeur game and the game of two cars.

The formal results of optimal strategies are presented and simulated for both

the pursuer and the evader. Isaacs capture condition for the game and computer
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simulation results are discussed.

• Chapter 3 introduces fuzzy systems structure and components such as fuzzy

IF-THEN rules, fuzzy sets and membership functions. The capability of fuzzy

systems from a function approximation point of view is tested and simulated.

• Chapter 4 presents reinforcement learning including Markov decision processes,

temporal-difference learning, and eligibility traces. We investigate the use of

eligibility traces in Q(λ)-learning and compare the results when applying Q-

learning.

• Chapter 5 describes the Q(λ)-learning fuzzy inference system that will be used

to train the players in the homicidal chauffeur differential game and the game of

two cars. We apply a learning algorithm for both the evader and the pursuer to

learn their optimal strategies simultaneously. We then apply Q-learning without

the use of eligibility traces to evaluate the results and compare the results with

Q(λ)-learning. Computer simulation and results show that the evader can learn

to maximize the capture time and escape from the pursuer. We also show that

the use of eligibility traces did not speed up the learning process significantly.

• Chapter 6 concludes this thesis by stating the main contributions and points

out the future research directions.



Chapter 2

Differential Games

2.1 Pursuit-evasion Differential Game

Differential games (DG) are a family of dynamic, continuous time games. The pursuit-

evasion differential game is one type of differential game. It was originally presented

by Isaacs in 1954. Isaacs defined the “Homicidal Chauffeur Problem” in a Rand

technical report [12]. The game has been extended to more general pursuit-evasion

problems/games [13]. A pursuer or a group of pursuers attempt to capture one or a

group of evaders in minimal time while the evaders try to avoid being captured.

In a pursuit-evasion game, a pursuer attempts to capture an evader in minimal

time, while the evader tries to avoid capture. The objectives of the pursuer and the

evader are opposite to each other. Therefore, the pursuit-evasion game is a two-player

zero-sum game. The difficulty of the problem is due to the conflicting aims of the

players who try to make the best possible decisions considering that their opponents

are doing the same.

7



2.1. PURSUIT-EVASION DIFFERENTIAL GAME 8

We consider a two-player differential game. The players’ system dynamics are

given by

˙̄x(s) = f(x̄(s), ϕ̄(s), ψ̄(s), s), x̄(t0) = x̄0 (2.1)

where x̄(s) ∈ Rm is the state vector of dimension m, function f(·) determines the

dynamics of the system, ϕ̄ and ψ̄ are the strategies played by player 1 and player 2

respectively. The payoff, represented as P (ϕ̄, ψ̄), is given in the form

P (ϕ̄, ψ̄) = q(tf , x̄(tf )) +

tf∫
t0

g(x̄(s), ϕ̄, ψ̄, s)ds (2.2)

where tf is the terminal time (or the first time the states x̄(t) intersect a given final

condition), q(·) is the payoff at the terminal time, g(·) is the integral payoff and

functions q(·) and g(·) are chosen in order to achieve an objective. For a two-player

zero-sum game, player 1 uses strategy ϕ̄ to maximize the payoff P (·), whereas player

2 uses strategy ψ̄ to minimize it. In a two-player zero-sum game, there exist player’s

optimal strategies ϕ̄∗ and ψ̄∗ such that

P (ϕ̄∗, ψ̄) ≤ P (ϕ̄∗, ψ̄∗) ≤ P (ϕ̄, ψ̄∗), ∀ ϕ̄, ψ̄ (2.3)

where P (ϕ̄∗, ψ̄∗) is defined as the value function of the game.

In our model, the game terminates when the evader is within the lethal range

of the pursuer (capture and terminal time), or when the time exceeds one minute

(escape). Players evaluate the current state and then select their next actions. The

players’ strategies are not shared and therefore each player has no knowledge of the

other player’s next selected action. We assume that the environment is obstacles-free.
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The players are wheeled mobile robots.

The existence of optimal strategies in Eq. (2.3) in the pursuit-evasion differential

game is determined by Isaacs condition [1]. The formal results concerning optimal

strategies for pursuit-evasion differential games are given in [13, 17, 19, 20]. The

homicidal chauffeur game and Isaacs condition for the game is discussed in Sect. 2.1.1.

In section Sect. 2.1.2 the game of two cars is presented as a second example of pursuit-

evasion differential games. Simulation results of the games are shown in Sect. 2.2.

2.1.1 The Homicidal Chauffeur Problem

The homicidal chauffeur problem is one of the most well-known model problems in

the theory of differential games. The homicidal chauffeur problem is presented as

the main example of a pursuit-evasion differential game. In our model, a homicidal

chauffeur game is played by autonomous robots. The chauffeur (the pursuer P) is

a car-like mobile robot and the pedestrian (the evader E) is a point that can move

in any direction instantaneously. In Isaacs’ homicidal chauffeur differential game, a

pursuer aims to minimize the capture time of an evader. The evader’s objective is to

maximize the capture time and avoid capture.

We assume that the players move at a constant forward speed wi, i ∈ p, e. The

pursuer’s speed is greater than the evader’s speed, but the evader can move in any

direction instantaneously. The motion of the pursuer is constrained by its maximum

steering angle such that

− (umax)p ≤ up ≤ (umax)p (2.4)

where (umax)p is the maximum steering angle.
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The maximum steering angle results in a minimum turning radius Rp defined by

Rp =
Lp

tan(umax)
(2.5)

where Lp is the pursuer’s wheelbase.

The dynamic equations for the pursuer P and the evader E are [13]

ẋp = wp cos(θp)

ẏp = wp sin(θp)

θ̇p =
wp
Rp

up (2.6)

ẋe = we cos(ue)

ẏe = we sin(ue)

where (x, y), w, and θ denote the position, the velocity, and the orientation respec-

tively as shown in Figure 2.1.

The angle difference φ between the pursuer and the evader is given as

φ = tan−1(
ye − yp
xe − xp

)− θp (2.7)

The relative distance between pursuer and evader is found as

d =
√

(xe − xp)2 + (ye − yp)2 (2.8)

The capture occurs when the distance d ≤ ` where ` is capture radius.



2.1. PURSUIT-EVASION DIFFERENTIAL GAME 11

 

 y 

P 

E 

xp  

( xe , ye ) 

L θp 

We 

yp  

Wp 

x 

Figure 2.1: Homicidal chauffeur problem

In [13, p. 232-237], Isaacs presented a condition for the pursuer to succeed in

capturing the evader. Assuming that the pursuer’s speed is greater than the evader’s

speed, the capture condition is given as

l/Rp >
√

1− γ2 + sin−1 γ − 1 (2.9)

where `/Rp is the ratio of the radius of capture to the minimum turning radius of the

pursuer, and γ = we/wp < 1 is the ratio of the evader’s speed to the pursuer’s speed.

If inequality (2.9) is reversed, E escapes from P indefinitely.

Based on the capture condition in Eq. (2.9) and Isaacs’ solution of the problem,

the evader’s optimal strategy can be obtained by solving the following two problems

[13, 19, 20]:
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1- When the evader is far enough from the pursuer, the evader’s control

strategy is to maximize the distance between the evader and the

pursuer as follows

ue = tan−1 ye − yp
xe − xp

(2.10)

2- When the pursuer approached the evader such that d ≤ Rp, the

evader adopts a second control strategy to avoid capture. The

pursuer cannot turn more than a minimum turning radius Rp.

Accordingly, the evader will make a sharp turn, normal to its

direction, and enter the pursuer’s non-holonomic constraint region

(or called the unreachable region). As shown in Figure 2.2, a

non-holonomic wheeled player is constrained to move along the path

with a bounded curvature denoted as two dotted circles which is the

pursuer’s minimum turning radius R given in Eq. (2.5). For the

evader to use the advantage of its higher maneuverability, the second

control strategy is given as

ueextreme = θe ± π/2 (2.11)

The pursuer’s optimal control strategy is to minimize the distance and capture the

evader in minimum time. The pursuer controls its steering angle as follows [1, 4, 17]

up = tan−1(
ye − yp
xe − xp

)− θp (2.12)
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u 

R 
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R 

Figure 2.2: The vehicle cannot turn into the circular region defined by its minimum
turning radius R.

2.1.2 The Game of Two Cars

The game of two cars includes two car-like mobile robots. Unlike the homicidal

chauffeur problem, the evader acts like a car and not like a pedestrian which moves in

any direction. The pursuer is faster than the evader but the evader can make sharper

turns than the pursuer (more maneuverable) such that

vp > ve

upmax < uemax

(2.13)
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Figure 2.3: The game of two cars

The dynamic equations for the pursuer and the evader are [13, 16]:

ẋi = wi cos(θi)

ẏi = wi sin(θi)

θ̇i =
wi
Li

tan(ui)

(2.14)

where i ∈ p, e, and (xi, yi), wi, θi, and Li denote the position, the velocity, the

orientation, and the wheelbase of the robot respectively. The parameters and the

model are shown in Figure 2.3.

The angle difference φi between the pursuer and the evader is given as

φi = tan−1(
ye − yp
xe − xp

)− θi (2.15)



2.1. PURSUIT-EVASION DIFFERENTIAL GAME 15

In [17] a time-optimal pursuit-evasion strategy is proposed and derived based on

the consideration of the worst-case motion of the evader. The pursuer’s strategy is

to minimize the distance and the time of capture by controlling its steering angle up

by Eq. (2.12).

The evader uses two different control strategies:

1- When the evader is far enough from the pursuer, the evader’s control

strategy is to maximize the distance by controlling its steering angle

as

ue = tan−1(
ye − yp
xe − xp

)− θe (2.16)

2- When the distance between the pursuer and the evader is less than

Rp, the evader adopts a second control strategy to avoid capture.

The evader will make a sharp turn uemax to enter the pursuer’s

non-holonomic constraint region. The evader’s second control

strategy is given as

uemax = θe ± π (2.17)

If the capture condition is not satisfied in equation Eq. (2.9), the

pursuer will be forced to reroute its path and continue pursuing.

In [17], a predictor is applied for the pursuer to pursue the unpredictable evader’s

behavior when the evader attempts to intrude into the non-holonomic constraint

region of the pursuer. We will not use the predictor in our simulation because we

want our evader to learn the optimal strategy itself and avoid capture when the
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escape condition is satisfied. Moreover, later in Chap. 5 we will evaluate the learning

technique with the theoretical results in this chapter given the capture condition in

Eq. (2.9).

2.2 Simulation Results

In this section we play pursuit-evasion differential games for autonomous robots. We

use the theoretical solution of the homicidal chauffeur game and and the time-optimal

control of the game of two cars described in Sect. 2.1. The capture condition is tested.

We assume that the pursuer is twice as fast as the evader, wp = 2m/s and we =

1m/s. The initial position of the pursuer is (xp, yp) = (0, 0) and the evader is (xe, ye) =

(10, 7). The initial orientation of the pursuer is θ = 0rad.

The wheelbase of the pursuer is L = 0.3m. The capture radius is ` = 0.15m which

is half the wheelbase of the pursuer ` = Lp

2
. The game terminates when the pursuer

can touch (or intercept) the evader such that the distance d ≤ 0.15m, or when the

time exceeds 60 sec (escape). We use the kinematic equations of the pursuer and the

evader given in Eq. (2.6) and Eq. (2.14). The parameters of the capture condition

will be set for two cases as follows.

The homicidal chauffeur game

• Case 1: we first set the maximum steering angle of the pursuer to −0.5rad ≤

upmax ≤ 0.5rad with Rp = 0.5491m. Given the stated parameters of the

system, Isaacs capture condition in Eq. (2.9) is not satisfied which means

that there exist a strategy for the evader to avoid capture. It can be

shown in Figure 2.4(b) that the evader is guaranteed to escape from the
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pursuer by making sharp turns when the distance between the two robots

d ≤ Rp, where E0 and P0 are the initial positions of the evader and pursuer

respectively.

• Case 2: the steering angle of the pursuer is now increased to −0.7rad ≤

upmax ≤ 0.7rad. In this case, the capture is achieved by meeting the

capture conditions in Eq. (2.9). Figure 2.4(b) shows that the pursuer can

capture the evader with capture time Tc = 11.90sec.

The Game of Two Cars

The game of two cars scenario described in Sect. 2.1.2 is simulated for the two

cases. Unlike the homicidal chauffeur problem, the evader acts like a car. The

maximum steering angle of the evader is −1 rad ≤ uemax ≤ 1 rad.

• Case 1: the maximum steering angle of the pursuer is set to−0.5rad ≤ upmax ≤

0.5rad with Rp = 0.5491m. Similarly, in this case simulation results show

that here exist a strategy for the evader to avoid capture. It can be shown

in Figure 2.5(a) that the evader escapes from the pursuer by making sharp

turns when d ≤ Rp. The path of the player is different from the homicidal

chauffeur because the evader in this game acts like a car.

• Case 2: the steering angle of the pursuer is increased to −0.7rad ≤ upmax ≤

0.7rad. The capture is again achieved. Figure 2.5(b) shows that the pur-

suer can capture the evader with capture time Tc = 12.10sec.
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Figure 2.4: The robots play the optimal strategies in the homicidal chauffeur game
for the two cases.
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Figure 2.5: The robots play the optimal strategies in the game of two cars for the
two cases.



Chapter 3

Fuzzy Systems

Fuzzy systems have been used in a wide variety of applications in engineering, science,

business, medicine, psychology, and other fields [21]. In engineering, for example,

some potential application areas include [21]:

• Aircraft/spacecraft: flight control, engine control, avionic systems, failure diag-

nosis, navigation, and satellite attitude control.

• Robotics: position control and path planning.

• Autonomous vehicles: ground and underwater.

• Automated highway systems: automatic steering, braking, and throttle control

for vehicles.

20
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3.1 Fuzzy sets and Fuzzy rules

Fuzzy sets use linguistic labels arranged by membership functions (MF) to perform

numerical computation [14]. Fuzzy set theory provides a way of dealing with infor-

mation linguistically as an alternative to calculus. Fuzzy sets use linguistic labels

arranged by membership functions (MF) to perform numerical computation [14].

The universe of discourse X is defined as a collection of elements x which have

the same characteristics. A fuzzy set A in X can be denoted by [14]

A = {(x, µA(x))|x ∈ X} (3.1)

where µA(x) is the membership function (MF) for the fuzzy set A. The membership

functions can have values between 0 and 1. The MF maps the elements of the universe

of discourse to membership degrees between 0 and 1. If µA(x) only has values of 0 or

1, the fuzzy set A is called a crisp or a classical set.

The interpretations of set operations, such as union and intersection, are compli-

cated in fuzzy set theory due to the graded property of MF’s. Zadeh [28] proposed

the following definitions for union and intersection operations:

Union µA∪B(x) = max[µA(x), µB(x)]

Intersection µA∩B(x) = min[µA(x), µB(x)]

where A and B are fuzzy sets.

Membership functions are normally described using graphics. Figure 3.1 shows
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Figure 3.1: Examples of membership functions

various types of membership functions commonly used in fuzzy set theory. The Gaus-

sian membership function for example in Figure 3.1 (b) is given as

µA(x) = exp

(
−(
x−m
σ

)2

)
(3.2)

where the Gaussian MF parameters are the mean m and the standard deviation σ.

The trapezoidal membership function has four parameters as shown in figure
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3.1 (f). The trapezoidal MF is defined as

µ(x) =



0 : x < α

x− α
β − α : α ≤ x < β

1 : β ≤ x ≤ γ

x− γ
λ− γ : γ < x ≤ λ

0 : x > λ

(3.3)

Fuzzy IF-THEN rules can effectively model human expertise in an environment

of uncertainty and imprecision [14]. Fuzzy IF-THEN rules are defined as

<l : if x is A then y is B (3.4)

where x, y are called fuzzy or linguistic variables. The sets A and B are fuzzy sets

defined in X, Y . “x is A” is called the antecedent or premise, “y is B” is called the

consequence or conclusion.

The fuzzy IF-THEN rules used in a Takagi – Sugeno (TS) fuzzy system give a

mapping from the input fuzzy sets to a linear function in the output [24, 25]. The

rules are in the following form

<l : IF x1 is A
l
1 AND x2 is A

l
2 AND ... AND xj is A

l
j THEN fl = K l

0 + ... +K l
jxj

(3.5)

where fl is the output function of rule l and K l
n is the consequent parameter.

When fl is a constant, then we have a zero-order TS fuzzy model [14]. Let K l be
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the constant for the output fl. The number of rules is determined by the number of

inputs and their corresponding MF’s. Given 2 inputs and 3 MF’s for each input, we

need to construct 32 = 9 rules. The rules are given as

<1 : IF x1 is A1 AND x2 is A4 THEN f1 = K1

<2 : IF x1 is A1 AND x2 is A5 THEN f2 = K2

<3 : IF x1 is A1 AND x2 is A6 THEN f3 = K3

<4 : IF x1 is A2 AND x2 is A4 THEN f4 = K4

<5 : IF x1 is A2 AND x2 is A5 THEN f5 = K5

<6 : IF x1 is A2 AND x2 is A6 THEN f6 = K6

<7 : IF x1 is A3 AND x2 is A4 THEN f7 = K7

<8 : IF x1 is A3 AND x2 is A5 THEN f8 = K8

<9 : IF x1 is A3 AND x2 is A6 THEN f9 = K9

Another format for constructing the fuzzy rules is the tabular format as shown in

table 3.1.

Table 3.1: Tabular format.

@
@
@

@
@

x1

x2
A4 A5 A6

A1 K1 K2 K3

A2 K4 K5 K6

A3 K7 K8 K9



3.2. FUZZY INFERENCE ENGINE 25

3.2 Fuzzy Inference Engine

A fuzzy inference engine is used to combine fuzzy IF-THEN rules in the fuzzy rule

base into a mapping from a fuzzy set A’ in X to a fuzzy set B’ in Y. One of the

commonly used fuzzy inference engines is called the product inference engine. The

product inference engine is also used in our work in later chapters. In this section,

the structure of the product inference engine is presented and explained.

We first provide the two operations on fuzzy sets: intersection and union. Assume

we have two fuzzy sets A and B defined in the same universe of discourse U , the

intersection of these two fuzzy sets is a fuzzy set whose membership function is

µA∩B(x) = T (µA(x), µB(x)) = µA(x) ? µB(x) (3.6)

where ? is defined as a t-norm operator. Two commonly used t-norm operators are

Minimum : Tmin(a, b) = min(a, b) (3.7)

Algebraic product : Tap(a, b) = ab . (3.8)

The union of two fuzzy sets A and B is a fuzzy set whose membership function is

given by

µA∪B(x) = S(µA(x), µB(x)) = µA(x)+̇µB(x) (3.9)

where +̇ is denoted as an s-norm operator. Two commonly used s-norm operators
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are

Maximum : Smax(a, b) = max(a, b) (3.10)

Algebraic sum : Sap(a, b) = a+ b− ab . (3.11)

In the product inference engine, the algebraic product is used for all the t-norm

operators and max is used for all the s-norm operators.

To interpret the IF-THEN operation, one can use Mamdani implication. In the

Mamdani implication, a fuzzy if-then rule can be considered as a binary fuzzy relation

give by

µR(x, y) = µA×B(x, y) = µA→B(x, y) = µA(x) ? µB(y) (3.12)

where A → B is used to interpret the fuzzy relation. If Eq. (3.8) is used as the

t-norm operator ? in (3.12), then (3.12) is called the Mamdani’s product implication.

In fuzzy logic, the generalized modus ponens is defined as

premise 1(rule): if x is A then y is B

premise 2(fact): x is A′

conclusion: y is B′

Based on the generalized modus ponens, the fuzzy set B′ is inferred as

µB′(y) = sup
x∈X

T
[
µA′(x), µA→B(x, y)

]
(3.13)

where T [·] denotes the t-norm operator and sup denotes the greatest element in the

set.

In the individual rule-based inference, each fuzzy IF-THEN rule generates an
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individual output fuzzy set and the whole output of the fuzzy inference engine is the

combination of all the individual output fuzzy sets. In the product inference engine,

we combine the individual output fuzzy sets by union.

Overall, the product inference engine includes the following three parts:

1. algebraic product for all the t-norm operators and max for all the s-norm oper-

ators;

2. Mamdani’s product implication;

3. individual-rule based inference with union combination.

Based on the above structure of the product inference engine, equation (3.13) becomes

µB′(y) =
M

max
l=1

µB′
l
(y)

=
M

max
l=1

[
sup
x∈X

(µA′(x)
n∏
j=1

µAl
j
(xj)µBl(y))

]
(3.14)

We take an example here. Assume that we have two fuzzy IF-THEN rules with two

antecedents for each rule such that:

premise 1 (rule 1): if x1 is A1
1 and x2 is A1

2 then y is B1

premise 2 (rule 2): if x1 is A2
1 and x2 is A2

2 then y is B2

premise 3 (fact): x1 is A′1 and x2 is A′2

conclusion: y is B′

(3.15)



3.3. FUZZIFIER AND DEFUZZIFIER 28

 
 Fuzzy Rules 

IF-THEN 

Fuzzy Inference Engine 

Fuzzification  Defuzzification 
Input  Output  

Figure 3.2: Fuzzy System components

Then the output of the product inference engine for (3.15) becomes

µB′(y) =
2

max
l=1

max
x1,x2

[µA′
1
(x1)µA′

2
(x2)

2∏
j=1

µAl
i
(xj)µBl(y)] . (3.16)

3.3 Fuzzifier and Defuzzifier

3.3.1 Fuzzifier

Figure 3.2 shows the fuzzy system structure. The first block in the fuzzy system is

the fuzzifier. The fuzzifier converts each input which is a precise quantity to degrees

of membership in a membership function [15]. The fuzzification block matches the

input values with the conditions of the rules. The fuzzification determines how well the

condition of each rule matches that particular input. There is a degree of membership

for each linguistic term that applies to that input variable.
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3.3.2 Defuzzifier

Defuzzification is the conversion of a fuzzy quantity into a precise quantity. Many

defuzzification methods have been proposed in the literature in recent years. The

weighted average defuzzification method is the most frequently used in fuzzy applica-

tions since it is one of the most computationally efficient methods [22]. The weighted

average defuzzification method is expressed as

f =

M∑
l=1

(
J∏
j=1

µA
l
j(xj)

)
fl

M∑
l=1

(
J∏
j=1

µA
l
j(xj)

) (3.17)

where J is number of inputs and M is number of rules.

3.4 Fuzzy Systems and Examples

Fuzzy systems are also known as fuzzy inference systems (FIS), or fuzzy controllers

when used as controllers. Takagi–Sugeno (TS) fuzzy systems and Mamdani fuzzy

systems are commonly used in fuzzy applications. We want to investigate how well

fuzzy systems can approximate a given system. The following theorem from [25] is

known as the “Universal Approximation Theorem.” We will then give an example to

show the capability of fuzzy systems from a function approximation point of view.

Theorem 3.4.1 For any given real continuous function g(x) on a compact set U ⊂

Rn and arbitrary ε > 0 with Gaussian MF’s, there exists a fuzzy logic system f(x) in
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the form of 3.17 such that

sup
x∈U
|f(x)− g(x)| < ε . (3.18)

The proof is shown on [25, p. 124-126].

The next example introduced in [18] shows the capability of fuzzy systems from a

function approximation point of view. It shows that fuzzy systems are good approx-

imators on a given nonlinear system.

Example 2.1 Consider a first order nonlinear system. The dynamic equation of

the system is given by [25]

ẋ(t) =
1− e−x(t)

1 + e−x(t)
+ u(t) = f(x) + u(t) . (3.19)

We define five fuzzy sets over the interval [−3, 3]: negative medium(NM), negative

small(NS), zero(ZE), positive small(PS) and positive medium(PM). The membership

functions are given by

µNM(x) = exp(−(x+ 1.5)2)

µNS(x) = exp(−(x+ 0.5)2)

µZE(x) = exp(−x2) (3.20)

µPS(x) = exp(−(x− 0.5)2)

µPM(x) = exp(−(x− 1.5)2) .

Figure 3.3(a) shows the five membership functions.



3.4. FUZZY SYSTEMS AND EXAMPLES 31

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p 

G
ra

de
s

NM NS ZE PS PM

X

(a) The membership functions of 5 fuzzy sets.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p 

G
ra

de
s

X

NB NM NS ZE PS PM PB

(b) The membership functions of 7 fuzzy sets.

Figure 3.3: The membership functions.
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To estimate the dynamics of the system, the following linguistic descriptions (fuzzy

if-then rules) are given to the designer:

R1 : if x is near − 1.5 then f(x) is near − 0.6

R2 : if x is near − 0.5 then f(x) is near − 0.2

R3 : if x is near 0 then f(x) is near 0 (3.21)

R4 : if x is near 0.5 then f(x) is near 0.2

R5 : if x is near 1.5 then f(x) is near 0.6

Set the conclusions y1 = −0.6, y2 = −0.2, y3 = 0, y4 = 0.2 and y5 = 0.6 as in 3.4.

Since there is only one antecedent for every fuzzy if-then rule, rewrite 3.17 as

f̂(x) =

5∑
l=1

yl[µAl(x)]

5∑
l=1

[µAl(x)]

=
−0.6µNM(x)− 0.2µNS(x) + 0.2µPS(x) + 0.6µPM(x)

µNM(x) + µNS(x) + µZE(x) + µPS(x) + µPM(x)

=
−0.6e−(x+1.5)2 − 0.2e−(x+0.5)2 + 0.2e−(x−0.5)2 + 0.6e−(x−1.5)2

e−(x+1.5)2 + e−(x+0.5)2 + e−x2 + e−(x−0.5)2 + e−(x−1.5)2
(3.22)

Figure 3.4(a) shows the estimation f̂(x) (dot line). Fig. 3.4(b) shows the estimation

error (dash line)|f(x)− f̂(x)| < ε = 0.35 over the interval [−3, 3].

To make ε smaller, we need more specific membership functions and linguistic

descriptions in the fuzzy system. We define 7 fuzzy sets over the interval [−3, 3]: nega-

tive big(NB), negative medium(NM), negative small(NS), zero(ZE), positive small(PS),

positive medium(PM) and positive big(PB). The membership functions of the fuzzy
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sets NB and PB are defined as µNB(x) = exp(−(x+2.5)2), µPB(x) = exp(−(x−2.5)2).

The membership functions of fuzzy sets NM, NS, ZE, PS and PM are the same as

in 3.20. Figure 3.3(b) illustrates the membership functions of the 7 fuzzy sets. The

fuzzy if-then rules are given as

R1 : if x is near − 2.5 then f(x) is near − 0.85

R2 : if x is near − 1.5 then f(x) is near − 0.64

R3 : if x is near − 0.5 then f(x) is near − 0.24

R4 : if x is near 0 then f(x) is near 0 (3.23)

R5 : if x is near 0.5 then f(x) is near 0.24

R6 : if x is near 1.5 then f(x) is near 0.64

R7 : if x is near 2.5 then f(x) is near 0.85

where y1 = −0.85, y2 = −0.64, y3 = −0.24, y4 = 0, y5 = 0.24, y5 = 0.64 and

y5 = 0.85 the conclusions in 3.4.

Then the fuzzy system becomes

f̂(x) =

7∑
l=1

yl[µAl(x)]

7∑
l=1

[µAl(x)]

=
−0.85e−(x+2.5)2 − 0.64e−(x+1.5)2 − 0.24e−(x+0.5)2+

e−(x+2.5)2 + e−(x+1.5)2 + e−(x+0.5)2 + e−x2+

0.24e−(x−0.5)2 + 0.64e−(x−1.5)2 + 0.85e−(x−2.5)2

e−(x−0.5)2 + e−(x−1.5)2 + e−(x−2.5)2
(3.24)
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Figure 3.4(a) shows the estimation f̂(x) (dash line). Fig. 3.4(b) shows the estimation

error (solid line) |f(x)− f̂(x)| < 0.15 over the interval [−3, 3].
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Chapter 4

Reinforcement Learning

4.1 Introduction

Reinforcement learning (RL) is a learning technique that maps situations to actions

so as to maximize a numerical reward [23]. The learner in reinforcement learning

does not know which actions can yield the most reward. The learner must use the

reward and try possible actions and discover its optimal action to satisfy its goal.

The learner’s actions may affect not only the immediate reward but also the next

situation and all subsequent rewards [23]. In reinforcement learning, there is no

external supervisor that can guide the learner’s learning process. The learner has

to learn from its own experience by interacting with the environment. Therefore,

reinforcement learning can be characterized as a problem of learning by interacting

with the environment to achieve a goal.

In a reinforcement learning problem, the learner is called the agent, which interacts

with the environment. The goal for an agent is to maximize the rewards received from

36
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Figure 4.1: The reinforcement learning structure

the environment. Figure 4.1 shows the structure of a reinforcement learning problem.

At time t, the agent observes the current state st and chooses an action at. Then the

agent moves to the next state st+1 with a received reward rt+1. The goal for the agent

is to maximize the accumulated rewards received from the next state and afterwards.

A policy for an agent is defined as the mapping from states to probabilities of choosing

each possible action [23]. We use πt(s, a) to denote the agent’s policy, which is the

probability of choosing action at = a at the state st = s. A policy is called an optimal

policy when the agent can maximize its accumulated received rewards if the agent

follows this policy.

The above framework is flexible and can be applied in many different ways to

many different problems. For example, the time steps can be fixed intervals of real

time or successive stages. The actions can be voltages applied to the motors of a

robot arm, or high-level decisions. Similarly, the states can be completely determined

by direct sensor readings, or high-level and abstract, such as symbolic descriptions of

objects in a room [23].
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The reinforcement learning framework is a considerable abstraction of the problem

of goal-directed learning from interaction [23]. It can be reduced to three signals

passing back and forth between an agent and its environment: one signal to represent

the choices made by the agent (the actions), one signal to represent the basis on

which the choices are made (the states), and one signal to define the agent’s goal (the

rewards) [23].

In reinforcement learning, the goal of the agent is formalized in terms of the re-

wards received from the environment. The reward in a reinforcement learning problem

is a simple number rt ∈ <. The agent’s goal is to maximize the total amount of reward

it receives which is the cumulative reward in the long run. For example, suppose that

we want a robot learn to escape from a maze. We can set up the reward as zero all

the time except that we give a reward of 1 when the robot escapes. Or we can give a

reward of -1 for every time step that the robot passes before the escape. In this way,

we encourage the agent to escape as quickly as possible.

The agent receives a sequence of immediate rewards rt+1, rt+2, rt+3, ..., after each

time step t. The sum of the rewards at time t are given as

Rt = rt+1 + rt+2 + rt+3 + · · · rT (4.1)

where T is a final time step in an episode. Each episode starts from an initial state

and ends at a terminal state. We call the task which can be finished in a finite time

as an episodic task. Similarly, we call the task as a continuing task if the task goes

on continually without limit. Then we have T =∞ in (4.1) for a continuing task.

If we add discounting into the rewards, the goal of the agent becomes maximizing
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the sum of the discounted reward received over the future which is

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (4.2)

where γ ∈ [0, 1] is the discount factor. The discount factor determines the present

value of future rewards such that a reward received k time steps in the future is only

worth γk−1 times of the value if it were received immediately. If γ < 1, the infinite

sum in (4.2) has a finite value as long as the reward sequence rk is bounded. If γ = 0,

the agent always considers maximizing its immediate rewards. If the discount factor

γ approaches 1, the agent takes future rewards into account more strongly.

4.2 Markov Decision Processes

Single-agent reinforcement learning can be described as a Markov decision process

(MDP) [2].

Definition 1 A Markov decision process (MDP) is a tuple (S,A, T, γ, R) where S is

the state space, A is the action space, T : S×A×S → [0, 1] is the transition function,

γ ∈ [0, 1] is the discount factor and R : S × A× S → R is the reward function.

In Definition 1, the transition function T ass′ represents the probability of the next

state being s′ given the current state s and the selected action a. The transition

function satisfies ∑
s′∈S

T ass′ = 1 ∀s ∈ S, ∀a ∈ A (4.3)

where s′ represents a possible state at the next time step.
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The reward function Ra
ss′ represents the received expected reward at the next state

s′ given the current action a and the current state s. In a Markov decision process, the

states have the Markov property such that the player’s next state and reward only

depends on the player’s current state and action. In other words, the conditional

probability distribution of the player’s next state and reward only depends on the

player’s current state and action such that

Pr

{
st+1 = s′, rt+1 = r′

∣∣∣∣ st, at, . . . , s0, a0

}
= Pr

{
st+1 = s′, rt+1 = r′

∣∣∣∣ st, at} . (4.4)

A player’s policy π : S → A in an MDP is defined as a probability distribution

over the player’s action set A from a given state s ∈ S. Given the state s, a player’s

policy π(s, a) must satisfy

∑
a∈A

π(s, a) = 1 ∀s ∈ S. (4.5)

The goal of a player in an MDP is to maximize the expected long-term reward received

from the environment. We denote π∗(s, a) as the optimal policy for the player in an

MDP as the policy that can maximize the long term rewards. In an MDP, the state-

value function V π(s) ( or the value of a state ) is defined as the expected received

reward when the player follows a policy π at state s and thereafter. The state-value

function V π(s) is given as

V π(s) = Eπ

{
∞∑
k=0

γkrk+t+1

∣∣∣∣ st = s

}
(4.6)
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where t is the current time step, γ ∈ [0, 1] is a discount factor, and rk+t+1 is the

received immediate reward at time step k + t + 1. Under an optimal policy π∗, the

state-value function satisfies

V ∗(s) ≥ V π(s) ∀π,∀s ∈ S (4.7)

According to [23], the state-value function in (4.6) can be rewritten as follows

V π(s) = Eπ

{
∞∑
k=0

γkrk+t+1

∣∣∣∣ st = s

}

=
∑
a∈A

π(s, a)
∑
s′∈S

T ass′Eπ

{
rt+1 + γ

T∑
k=0

γkrk+t+2

∣∣∣∣ st = s, at = a, st+1 = s′

}
=

∑
a∈A

π(s, a)
∑
s′∈S

T ass′
(
Ra
ss′ + γV π(s′)

)
(4.8)

where T ass′ = Pr {st+1 = s′|st = s, at = a} is the probability of the next state being

st+1 = s′ given the current state st = s and action at = a at time step t, and

Ra
ss′ = E{rt+1|st = s, at = a, st+1 = s′} is the expected immediate reward received

at state s′ given the current state s and action a. Equation (4.8) is the Bellman

equation for V π(s). We can also have the optimal state-value function V ∗(s) if the

player follows the optimal policy π∗ at state s and thereafter. Then the state-value

function V ∗(s) is the Bellman optimality equation where

V ∗(s) = max
a∈A

∑
s′∈S

T ass′
(
Ra
ss′ + γV ∗(s′)

)
. (4.9)

In an MDP, the action-value function Qπ(s, a) is defined as the expected received

reward when the player chooses an action a at state s and follows a policy π thereafter.
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The action-value function Qπ(s, a) is given as

Qπ(s, a) =
∑
s′∈S

T ass′
(
Ra
ss′ + γV π(s′)

)
(4.10)

Similar to the state-value function, we have the optimal action-value function Q∗(s, a)

when the player chooses an action a at state s and follows the optimal policy π∗

thereafter. The optimal action-value function is given as

Q∗(s, a) =
∑
s′∈S

T ass′
(
Ra
ss′ + γV ∗(s′)

)
(4.11)

Given the transition function and the reward function, we can find the optimal

state-value function and the optimal policy using a value iteration method [23]. The

method is listed in Algorithm 1.

Algorithm 1 Value iteration [23]

1: Initialize V (s) = 0 for all s ∈ S
2: repeat
3: ∆← 0
4: For each s ∈ S:
5: v ← V (s)
6: V (s)← maxa∈A

∑
s′∈S T

a
ss′

(
Ra
ss′ + γV (s′)

)
7: ∆← max(∆, |v − V (s)|)
8: until ∆ < θ for all s ∈ S (θ is a small positive number)
9: Output a deterministic policy π such that

10: π(s) = arg maxa
∑

s′∈S T
a
ss′

(
Ra
ss′ + γV (s′)

)

Example 4.1 We present an MDP example. A player plays on a 9× 9 playing field.

Starting from the initial position denoted as “P” in Figure 4.2, the player tries to

reach a goal denoted as “*”. The player can move up, down, left and right. If the
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player’s chosen action is taking the player off the grid, the player stays still. At

each time step, the player takes an action a and moves one cell. For simplicity, the

transition function is set to 1 for each movement. The reward function is set to −1

on all transitions such that

Ra
ss′ = −1, ∀s ∈ S (4.12)

The above equation denotes that the player receives −1 for each movement until the

player reaches the goal.

The player’s objective is to reach the goal with minimum steps from the fixed

initial position. Based on the player’s reward function and transition function, we

can find the player’s optimal policy using the above value iteration algorithm. We set

the discount factor γ = 1 and apply Algorithm 1 to the game. Figure 4.3 shows the

iterations for updating the state-value function. After 11 iterations, the state-value

function converges to the optimal state-value function. Starting from the initial state,

the player’s optimal policy is shown in Figure 4.4.

4.3 Temporal-Difference Learning

Temporal-difference(TD) learning is a prediction technique that can be used for solv-

ing the reinforcement learning problem. TD learning methods can learn directly from

new experience without knowing the environment’s dynamics [23]. TD methods can

be used to estimate the state-value function V π for a given policy π. The simplest
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Figure 4.2: An example of Markov decision processes

TD method is given as

V (st) = V (st) + α
[
rt+1 + γV (st+1)− V (st)

]
(4.13)

where α is the learning rate, γ is the discount factor and rt+1 is the received immediate

reward at time t+1. The method in (4.13) is also called TD(0) method. The complete

TD(0) method is shown in Algorithm 2.

4.3.1 Q-learning

Q-learning is also described as a model-free reinforcement learning method which

is learning the controller without the need of learning the model. Q-learning was

introduced by Watkins [26]. The agent in Q-learning learns to choose the correct

action without knowing its reward function and transition function.
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Figure 4.3: state-value function iteration algorithm in Example 4.1
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Figure 4.4: The player’s optimal policy in Example 4.1

Algorithm 2 TD(0) method (evaluate the given poilcy)

1: Initialize the state-value function V (s)
2: for Each iteration do
3: Initialize s
4: Select an action a at the current state s based on the given policy π.
5: Observe the received immediate reward r at the subsequent state s′.
6: Update V (s) by

V (s)← V (s) + α
[
r + γV (s′)− V (s)

]
7: s← s′

8: end for
9:
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The simplest form of Q-learning called one-step Q-learning is given by

Q(s, a) = Q(s, a) + α
(
r + γmax

a
Q(s′, a′)−Q(s, a)

)
(4.14)

where r is the received immediate reward at time t+ 1, α is the learning rate and γ is

the discount factor. The part r+ γmaxaQ(s′, a′)−Q(s, a) in (4.14) is the temporal-

difference error calculated at time t + 1. Using the Q-learning method, the optimal

action-value function Q∗(x, a) can be estimated based on the TD error received from

the environment.

Q-learning can be directly applied to a learning problem in a discrete domain. For

a learning problem in a continuous domain, the action space and the state space need

to be discretized in order to setup the Q function. However, the number of state-

action pairs in the Q function becomes large when we perform a fine discretization.

This requires a large memory storage capacity and results in a slow learning process.

The Q-learning algorithm is given in Algorithm 3.

Example 4.2 We use the same example illustrated in Example 4.1 to test the per-

formance of Q-learning. Assume the player has no prior knowledge of its transition

function or reward function. Q-learning algorithm presented in Algorithm 3 is applied

to Example 4.1. The discount factor is set to 1 and the learning rate is set to 0.9. For

each movement, the player received an immediate reward of -1. The action selection

is based on an ε-greedy strategy such that the player selects an action randomly with

probability 0.2 or a greedy action with probability 0.8. We run one simulation which

includes 200 episodes of the game. Each episode starts at the player’s initial position

and ends when the player reaches the goal. In each episode, we record how many
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Algorithm 3 Q-learning

1: Initialize Q(s, a) = 0 ∀s ∈ S, a ∈ A
2: for each episode do
3: initialize s
4: for each step do
5: select an action a at the current state s using ε-greedy strategy.
6: observe the received immediate reward r
7: observe s′

8: update Q(s, a) by
Q(s, a)← Q(s, a) + α

(
r + γmaxa′ Q(s′, a′)−Q(s, a)

)
9: s← s′ ; a← a′

10: end for
11: end for

(ε-greedy strategy is an action-selection strategy such that the player selects a
greedy action with a probability 1-ε and a random action with a probability ε)

steps the player needed to reach the goal. We plot the steps to reach the goal versus

episodes. Then we run 40 simulations and average the result. Figure 4.5 shows that

Q-learning helped the player minimize the steps to reach the goal.

4.4 Eligibility Traces

Eligibility traces are one of the basic mechanisms of reinforcement learning that can

be used for temporal-difference methods, such as Q-learning. One way to view eligi-

bility traces is based on the mechanistic perspective [23]. From this perspective, an

eligibility trace records the occurrence of an event, such as the number of times that

the same state is visited or the number of times the same action is taken. When a

TD error is received from the environment, the trace checks all possible states and

actions that are related. Credit or blame is assigned to only the eligible states or

actions. The TD error is then updated according to the eligible states or actions.



4.4. ELIGIBILITY TRACES 49

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Episodes

S
te

ps
 to

 r
ea

ch
 th

e 
go

al

Figure 4.5: Q-learning applied to Example 4.1

We present the backward view of the TD(λ) algorithm. The eligibility trace

is represented as an additional memory variable associated with each state. The

eligibility trace is denoted by et(s) ∈ <+ for state s at time t. One type of eligibility

trace is the replacing trace. After each time step t, the eligibility traces for all states

decay by γλ, and the eligibility trace for the specific state revisited at time t is set to

1 such that

et(s) =


γλet−1(s) if s 6= st

1 if s = st

(4.15)
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Figure 4.6: Illustration of eligibility traces (origin from [23])

where γ is the discount factor and λ is called the decay-rate parameter for eligibil-

ity traces. The replacing trace in (4.15) resets to 1 the state revisited, and fades

away gradually when the state is not revisited. The replacing trace is illustrated in

Figure 4.6.

The traces in Figure 4.6 record which states have recently been visited in terms

of γλ [23]. The TD error for state-value prediction is given as

δt = rt+1 + γVt(st+1)− Vt(st) (4.16)

Based on the above equation and the eligibility traces in (4.15), the global TD error

is given by

∆Vt(s) = αδtet(s),∀s ∈ S (4.17)

A complete TD(λ) algorithm is given in Algorithm 4, where each update that depends

on the current TD error is combined with traces of past events.

In TD(λ) algorithm, if λ = 0, we call it TD(0) where all traces are zero at t except

for the trace corresponding to st. Then the TD(λ) reduces to the simple TD rule in
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Algorithm 4 TD(λ)

1: Initialize s
2: for Each step do
3: Select an action a at the current state s given by π.
4: Observe the received immediate reward r at the subsequent state s′.
5: Update
6: δ ← r + γV (s′)− V (s)
7: e(s)← e(s) + 1
8: For all s:
9: V (s)← V (s) + αδe(s)

10: e(s)← γλe(s)
11: s← s′

12: end for

(4.13).

4.4.1 Q(λ)-learning

Watkin’s Q(λ) learning [27] is the combination of eligibility traces and Q-learning. At

each time step, the traces for all state-action pairs are decayed by γλ if a greedy action

was taken or set to 0 if an exploratory action was taken, and the trace corresponding

to the current state and action is reset to 1. The replacing trace is given as

et(s, a) =


1 if s = st and a = at

0 if s = st and a 6= at

λγet−1(s, a) if s 6= st

for all s and a (4.18)
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The eligibility trace for the continuous state and action spaces is defined as [3, 6]

et = γλ et−1 +
∂Qt(st, at)

∂ξ
(4.19)

where ξ is the parameter to be tuned.

The learning part for the Q(λ) learning algorithm is given as

Qt+1(s, a) = Qt(s, a) + αδtet(s, a), (4.20)

where

δt = rt+1 + γmax
a′

Qt(st+1, a
′)−Qt(st, at). (4.21)

The complete Q(λ) learning algorithm is shown in Algorithm 5.

Algorithm 5 Q(λ)-learning

1: initialize Q(s,a) arbitrarily
2: e← 0 . initialize the eligibility traces
3: for each episode do
4: Initialize s, a
5: for each step do
6: Take action a, observe r, s′.
7: Choose action a′ from state s′ using ε-greedy strategy

a∗ ← arg maxaQ(s′, a)
δ ← r + γQ(s′, a∗)−Q(s, a)

8: For all s, a:
Q(s, a)← Q(s, a) + αδe(s, a)

Update eligibility traces e(s, a) for all s, a based on (4.18)
9: s← s′; a← a′

10: end for
11: end for
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We now apply the above Q(λ)-learning to Example 4.1. We use the same param-

eter settings as in Example 4.2. The decay-rate parameter is set to 0.9. We run 40

simulations which includes 200 runs of the game in each simulation and average the

result. The dash line in Figure 4.7 is the result from Figure 4.2 for Q-learning. We add

it here for comparison. The solid line is the result from Q(λ)-learning. Compared

with Q-learning, Q(λ)-learning slightly speeded up the convergence of the player’s

learning process. The learning speed did not change significantly. Note that when

using traces, one should consider that traces require more computations per episode

and more memory capacity.
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Figure 4.7: Q(λ)-learning and Q-learning applied to Example 4.1



4.5. ACTOR-CRITIC METHODS 54

4.5 Actor-Critic Methods

The actor-critic structure is shown in Fig. 4.8, where the policy structure is called

the actor and the estimated value function is called the critic [23]. The actor is used

to select the action based on the current policy, and the critic is used to estimate the

state-value function V (s). After the actor generates an action, the critic will evaluate

the generated action in the form of TD errors defined as

δt = rt+1 + γV̂ (st+1)− V̂ (st) (4.22)

where V̂ is the estimated value function.

Action 

Actor

Reward

 TD 
error

Critic

Value 
Function

Policy

Environment 

 

State 

Figure 4.8: The actor-critic architecture (origin from [23])
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Actor-critic methods can be used for reinforcement learning problems in a contin-

uous domain such as the pursuit-evasion differential game. In order to represent the

continuous state space and generate output signals, the critic and the actor can be

represented by fuzzy systems [9]. Based on Figure 4.8, the parameters of the fuzzy

system can be updated by TD errors. One of the earliest methods approximates

Q∗(s, a) rather than V (s), where the critic and the actor can be updated with Q-

learning algorithm [6]. In the next chapter, we will present the structure in [6] and

apply the algorithm for differential games.

4.6 Summary

In this chapter, we reviewed the framework of reinforcement learning. We presented

the elements of a reinforcement learning problem. These elements include the re-

inforcement learning agent and its environment, the reward and the agent’s policy.

We reviewed Markov decision processes and the Markov property. We presented

temporal-difference learning methods and Q-learning as one of the TD methods. Af-

ter that, we discussed eligibility traces which can be combined with TD methods.

We illustrated Q(λ)-learning which is a combination of the eligibility traces and Q-

learning. We investigated the learning speed when eligibility traces are combined

with Q-learning. Actor-critic methods were also introduced in this chapter.



Chapter 5

Reinforcement Learning applied to

Pursuit-Evasion Games

Desouky and Schwartz [6] proposed a learning technique called the “Q(λ)-learning

fuzzy inference system” based on reinforcement learning. Reinforcement learning is

used to tune the parameters of the fuzzy systems without the need of an expert or prior

knowledge of the system’s behaviours. The QLFIS technique has been successfully

applied to the pursuit-evasion differential game to train the pursuer to capture the

evader in minimum time.

There is however a lack of studies on how the evader can learn its optimal strategy

by playing the game. In this work, we focus more on learning the behaviours and

the strategies of the evader. The QLFIS algorithm will be modified to train both the

evader and the pursuer simultaneously. We extend the game by adding the distance as

an input for the evader to take the appropriate actions whenever the pursuer reaches

some threshold distance. Unlike the previous work, the trained evader learns to find

56
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this distance and to make sharp turns (extreme strategy) to maximize the time of

capture and, if possible, avoid being captured. At the same time, the pursuer learns

to capture the evader, if possible, and minimize the time of capture.

The complexity of the game and the learning process increases when using function

approximation and when designing an evader that learns to turn and escape from

the pursuer. Therefore we need to consider the learning speed. This chapter also

investigates the learning speed when using eligibility traces with Q-learning.

Two versions of pursuit-evasion differential games are used: the homicidal chauf-

feur game and the game of two cars. The learning technique will be applied to the

games and simulation results will be evaluated and compared to the optimal solution

results. The capture condition will be considered when evaluating the trained evader.

This chapter is organized as follows. The fuzzy system structure used with the

learning system is developed in Sect. 5.1. Sect. 5.2 describes the QLFIS technique and

the updating rules. The learning algorithm and the simulation results are presented

in Sect. 5.3.

5.1 Fuzzy Controller Structure

The pursuit-evasion games is described in Sect. 2.1. The inputs for the pursuer are

the angle difference between the pursuer and the evader φ and its rate of change φ̇.

The control strategy for the pursuer and the evader is to drive the angle difference to

zero. Moreover, because the evader is higher in maneuverability, the distance between

the evader and the pursuer d is critical for the evader to decide when to make a sharp

turn. The inputs for the evader are the angle difference φ and the distance d.
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Figure 5.1: The pursuer’s membership functions before training

For simplicity and to avoid the “curse of dimensionality” problem, three fuzzy sets

are formed for each input to construct the controller. The fuzzy sets of the pursuer

are positive (P), zero (Z), and negative (N) for the angle difference φ and its derivative

φ̇. The fuzzy sets for the evader are positive (P), zero (Z) and negative (N) for the

angle difference, and far (F), close (C) and very close (V) for the distance.

Three Gaussian membership functions (MFs) are used for each input, which results

in constructing 32 = 9 rules. The Gaussian MFs are given as

µAl
(xi) = exp

(
−(
xi − cli
σli

)2

)
(5.1)

where the Gaussian MF parameters, the mean c and the standard deviation σ, are

the input parameters to be tuned by RL signals. Figures 5.1 and 5.2 show the initial

MFs before tuning for the pursuer and the evader respectively.

We assume that the controller is a fuzzy logic controller (FLC). We use a zero-

order Takagi-Sugeno (TS) fuzzy inference system (FIS) described in Sect. 3.1. The

TS fuzzy model consists of fuzzy IF-THEN rules and a fuzzy inference engine. The
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Figure 5.2: The evader’s membership functions before training.

consequence of a zero-order TS fuzzy system is constant. Given the fuzzy variables

xi and the corresponding fuzzy sets Aj and Bj, the fuzzy IF-THEN rules are

<l : if x1 is Aj and x2 is Bj THEN fl = K l (5.2)

where xi are the inputs φ and φ̇ for the pursuer, and φ and d for the evader. The

term fl is the output of rule l, and K l is the consequence part of the fuzzy rules.

The controller is formed using a zero-order TS FIS. The output of the FLC is the

steering angle u formed by the weighted average defuzzification expressed as

u =

9∑
l=1

((
2∏
i=1

µAl
(xi))K

l)

9∑
l=1

(
2∏
i=1

µAl
(xi))

(5.3)

Similarly, the function approximation is formed using a zero-order TS FIS. The
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output of the FIS is called a Q-value calculated as

Q(s, a) =

9∑
l=1

((
2∏
i=1

µAl
(xi))β

l)

9∑
l=1

(
2∏
i=1

µAl
(xi))

(5.4)

where β is the consequence constant K l in Eq. (5.2)

The fuzzy rules are illustrated using the tabular format. The initial output con-

stant K l of the fuzzy rules before learning for the pursuer and the evader are shown

in tables 5.1 and 5.2 respectively .

Table 5.1: The output constant K l of the pursuer’s fuzzy decision table before
learning

HHH
HHHφ

φ̇
N Z P

N -0.5 -0.25 0.0

Z -0.25 0.0 0.25

P 0.0 0.25 0.5

Table 5.2: The output constant K l of the evader’s fuzzy decision table before learn-
ing

HHH
HHHφ

d
V C F

N −π/2 −π/2 −π/4
Z −π/2 π/2 0.0

P π/2 π/2 π/4
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5.2 Q(λ)-learning Fuzzy Inference System

The construction of the learning system is given in Figure 5.3. As we discussed in

Section 4.5, we present in this section a fuzzy actor-critic method algorithm called

Q-learning fuzzy inference system QLFIS proposed in [6]. In the QLFIS technique,

the controller and the function approximator are represented by fuzzy systems. The

function approximator “FIS” is used to generalize or predict the optimal-value func-

tion Q∗(s, a), while Q(λ)-learning is used to tune the input and the output of the

fuzzy controller “FLC” and the function approximator. The advantage of QLFIS

technique is that one can use Q-learning in a continuous domain by using a fuzzy

inference system to represent the continuous state space and action space. Desouky

and Schwartz [6] derived the update rules of the learning process. We will briefly

describe the derivation of the learning process to understand the update rules.

 

 

u un 

Q(st,u) 
δt 

+ − rt+1+max Q(s t+1,uʹ) 
uʹ 

s 

System 

N0 
+ + ∑ FLC 

∑ 

s 

FIS 

Figure 5.3: Construction of the learning system where the white Gaussian noise
N (0, σ2

n) is added as an exploration mechanism.
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The Q-learning estimates the Q∗(s, a) based on the TD error. The TD error δt

shown in Figure 5.3 is calculated as

δt = rt+1 + γmax
á
Qt(st+1, á)−Qt(st, at) (5.5)

Apply the eligibility traces et as defined in Sect. 4.4.1. Then the action-value

function Q(s, a) is updated by

Qt+1(st, at) = Qt(st, at) + αδt et (5.6)

where (0 < α ≤ 1) is the learning rate. The eligibility traces with the trace decay-rate

parameter (0 ≤ λ ≤ 1) are given in Eq. (4.19).

et = γλ et−1 +
∂Qt(st, at)

∂ξ
(5.7)

Define the vector of the input and output parameters by

ξ =


K

c

σ

 (5.8)

Then the update rules for the FIS are defined by [6]

ξFIS(t+ 1) = ξFIS(t) + ηδt

[
γλet−1 +

∂Qt(st, ut)

∂ξFIS

]
(5.9)

and the update rules for the FLC are defined by
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ξFLC(t+ 1) = ξFLC(t) + ζδt

[
∂u

∂ξFLC
(
un − u
σn

)

]
(5.10)

where

∂Qt(st, ut)

∂ξFIS
=


∂Qt(st,ut)

∂Kl

∂Qt(st,ut)

∂cli

∂Qt(st,ut)

∂σl
i

 =


∑

l ω̄l

(Kl−Qt(st,ut))∑
l ωl

ωl
2(xi−cli)

(σl
i)

2

(Kl−Qt(st,ut))∑
l ωl

ωl
2(xi−cli)2

(σl
i)

3

 (5.11)

∂u

∂ξFLC
=


∂u
∂Kl

∂u
∂cli

∂u
∂σl

i

 =


∑

l ω̄l

(Kl−u)∑
l ωl

ωl
2(xi−cli)

(σl
i)

2

(Kl−u)∑
l ωl

ωl
2(xi−cli)2

(σl
i)

3

 (5.12)

with the learning rate η for the FIS and ζ for the FLC. The terms ωl and ω̄l are called

the firing strength and the normalized firing strength of rule l [6], defined as follows

ωl =
2∏
i=1

exp

(
−(
xi − cli
σli

)2

)
(5.13)

ω̄l =
ωl

9∑
l=1

ωl

(5.14)

We now construct the immediate reward r used in RL update rules. The goal of

the players is to use the received rewards to learn appropriate actions. Because the

pursuer aims to capture the evader and minimize the time of capture, the distance be-

comes the optimization criteria, such that the pursuer wants to minimize the distance

while the evader wants to maximize the distance. The distance D(t) at each time

step t is calculated by Eq. (2.8). The variation of the distance, ∆D(t), is calculated
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as

∆D(t) = D(t)−D(t+ 1) (5.15)

The maximum value of variation of the distance is defined as ∆Dmax = VrmaxT

where Vrmax is the maximum relative velocity of the pursuer and the evader (Vrmax =

Vp + Ve) and T is the sampling time.

The pursuer approaches the evader with a positive value of ∆D(t), while the

evader moves away from the pursuer with a negative value. The immediate reward r

for the players is given by

rt+1 =


∆D(t)

∆Dmax

for pursuer

− ∆D(t)

∆Dmax

for the evader

(5.16)

5.2.1 Q-learning Fuzzy Inference System Without Eligibility

Traces

Eligibility traces are used to modify a one-step update rule to a multi-step update.

This means that the agent will take into account not only the immediate reward but

also the future rewards. If λ = 0, traces are set to zero at t except for the trace

corresponding to st. Then the Q(λ) is reduced to one-step update, or simply Q-

learning. We will simulate the system with and without the use of eligibility traces

to test the effect of the eligibility traces on the learning process.
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5.3 Simulation Results

The learning process is modified for our game to train both the evader and the pursuer

as shown in Algorithm 7, where M is the number of episodes (games) and N is the

number of steps (plays) in each episode.

The game is simulated for different numbers of episodes. The number of steps is

600, and the sampling time is 0.1sec. The game terminates when the pursuer captures

the evader, or when the time exceeds 60 sec (escape).

The pursuer is twice as fast as the evader such that wp = 2m/s and we = 1m/s.

The wheelbase of the pursuer is L = 0.3m. The capture radius is ` = 0.15m which is

half the wheelbase of the pursuer ` = Lp

2
. The maximum steering angle of the pursuer

is −0.5rad ≤ upmax ≤ 0.5rad with Rp = 0.5491m. Given the stated parameters of the

system and using Isaacs’ capture condition in Eq. (2.9), there exists a strategy for the

evader to avoid capture. The reason why we choose these parameters is that, based

on the chosen parameters, the evader with its optimal strategy can always escape.

Therefore, our goal is to test whether the evader will learn this optimal strategy. We

assume that the evader has no knowledge of the strategy of the pursuer.

The parameters of the game are also initialized such that the pursuer can cap-

ture the evader with the current strategies before learning. However, the capture

conditions in Eq. (2.9) are set such that the evader can theoretically escape. The

goal of initializing the parameters such that the pursuer captures the evader, is to

test whether the evader will eventually learn to escape. We then run the simulation

allowing both the evader and the pursuer to learn simultaneously. Both players use

the same learning algorithm.
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Algorithm 6 QLFIS Algorithm for the pursuer and the evader.

1: Initialize the membership function values for the antecedents of the FLC and the
FIS as shown in Figures 5.1 and 5.2.

2: Initialize the values for the consequent K l of the controller with the values shown
in tables 5.1 and 5.2. The values of the FIS are the Q-values initialized to zeroes.

3: e← 0 . eligibility traces of the FIS
4: γ ← 0.95 ; λ← 0.9
5: σn ← 0.08
6: for i← 1 to M do
7: η ← (0.1− 0.09

(
i

M

)
)

8: ζ ← (0.01− 0.009
(
i

M

)
)

9: Initialize the position of the pursuer at the origin (xp, yp) = (0, 0)
10: Initialize the position of the evader (xe, ye) randomly
11: Update the state of the pursuer sp = (φ, φ̇) and the evader se = (φ, d)
12: Calculate the output of the FLC

u←

9∑
l=1

((
2∏
i=1

µAl
(xi))K

l)

9∑
l=1

(
2∏
i=1

µAl
(xi))

. for the pursuer and the evader

13: for j ← 1 to N do
14: un ← u+N0 . for the pursuer and the evader
15: Calculate the output of the FIS for the current states

Q(st, u)←

9∑
l=1

((
2∏
i=1

µAl
(xi))β

l)

9∑
l=1

(
2∏
i=1

µAl
(xi))

16: Play the game, observe the next states st+1 for P and E
17: Calculate the reward r from Eq. (5.16)
18: Calculate the output of the FIS for the new states

Q(st+1, u
′)←

9∑
l=1

((
2∏
i=1

µAl
(xi))β

l)

9∑
l=1

(
2∏
i=1

µAl
(xi))
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Algorithm 7 QLFIS Algorithm (Continued.)

19: Calculate the TD error
δt ← rt+1 + γmaxáQt(st+1, á)−Qt(st, at)

20: Calculate the gradient for the input and the output parameters of the
FLC and the FIS from Eq. (5.11) and Eq. (5.12).

21: Update the eligibility traces et for the FIS using Eq. (4.18)
22: Update the input and output parameters of the FIS

ξ(t+ 1)FIS ← ξFIS(t) + ηδt

[
γλet−1 + ∂Qt(st,ut)

∂ξFIS

]
23: Update the input and output parameters of the FLC

ξ(t+ 1)FLC ← ξFLC(t) + ζδt

[
∂u

∂ξFLC
(un−u

σn
)
]

.

24: st ← st+1 ; u← u′

25: end for
26: end for

We start by simulating the pursuer only assuming that the evader is a fixed point

on the plane to evaluate the fuzzy controller and the learning process. We further will

investigate how much the learning process can be improved with the use of eligibility

traces. Then we apply the learning algorithm to the homicidal chauffeur game and to

the game of two cars to make both the pursuer and the evader learn simultaneously.

In the game of two cars, we will investigate the use of eligibility traces in Q(λ)-learning

and test the convergence speed of the trained evader which learns to escape.

5.3.1 Pursuer Moving to a Fixed Point

We start by simulating a simple game such that the pursuer is moving to a fixed

point on the plane. The initial position of the pursuer is at the origin (xp, yp) = (0, 0)

and the initial orientation is θ = 0rad. We assume that the fixed point is at (x, y) =

(30, 17).

When the pursuer plays its optimal strategy given in Eq. (2.12), the pursuer
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reached the point after 17.1 sec, which is called the time of capture. Figure 5.4 shows

the path of the pursuer.

Now we use a fuzzy controller as the main controller. The output of the fuzzy

controller is calculated by Eq. (5.3). The MFs of the pursuer are shown in Figure 5.1

and the fuzzy consequence parameters K l are shown in table 5.1. The parameters of

the pursuer are initialized with a priori knowledge of its optimal play. When using

the fuzzy control before learning, the pursuer reached the point in 17.6 sec. The path

of the pursuer with the stated initial parameters is shown in Figure 5.4.

To evaluate the learning technique, the learning algorithm is applied to the fuzzy

controller for the pursuer to learn its optimal strategy. The pursuer learns from the

game by tuning the input and the output parameters of the fuzzy controller. After

approximately 90 learning episodes, the pursuer reduced the time to reach the point

to 17.2 sec. The path of the pursuer after learning in Figure 5.4 shows that the evader

can learn to correct its path to reach the point in minimum time. Note that we used

three membership function for simplicity. The path can be improved by adding more

membership functions as we have shown in Example 3.1. However, the number of

fuzzy rules will increase exponentially.

We now apply Q-learning without the use of eligibility traces to test the perfor-

mance of Q(λ)-learning. In each episode, we record how much time the player needs

to reach the point. We plot the time to reach the goal versus 100 episodes. Then

we run 20 simulations and average the result. The solid line in Figure 5.5 is the

result from using Q(λ)-learning. The dash line is the result from using Q-learning.

Compared with Q-learning, Q(λ)-learning did not significantly speed up the conver-

gence of the player’s learning process. Moreover, when a function approximation is
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Figure 5.4: The path of the pursuer after learning
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Figure 5.5: Q(λ)-learning and Q-learning applied to the pursuer. The solid line
is the result from using Q(λ)-learning. The dash line is the result from using
Q-learning.

used with traces, the traces required more computations per episode and more mem-

ory capacity. The average time of computation to complete 100 learning episodes is

28.8 sec when using Q(λ)-learning, while the average time of computation when using

Q-learning is 21.4 sec.

5.3.2 Homicidal Chauffeur Game

We now simulate the homicidal chauffeur game when the evader learns to turn. The

learning algorithm is given in Algorithm 7. Each episode starts by initializing the

position of the evader randomly. The initial position of the pursuer is at the origin

(xp, yp) = (0, 0) and the initial orientation is θ = 0rad. The kinematic equations

of the pursuer and the evader are given in Eq. (2.6). The parameters of the fuzzy
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Figure 5.6: The pursuer captures the evader with 100 learning episodes

controller are initialized as shown in Figures 5.1 and 5.2, and tables 5.1 and 5.2.

At the beginning of learning, the pursuer always captures the evader as shown in

Figure 5.6. After 500 episodes in Figure 5.7 the evader increased the capture time and

made successful maneuvers. Figure 5.8 and table 5.5 show that the evader learned to

escape from the pursuer after approximately 900 episodes. The evader makes sharp

turns when the distance d ≤ Rp. The evader avoids capture by changing its direction

and entering into the pursuer’s turning radius constraint.

The MFs of the evader and the pursuer after tuning the input parameters c and σ

are shown in Figure 5.9 and Figure 5.10, respectively. The learners’ fuzzy consequence

parameters K l after 900 episodes are shown in tables 5.3 and 5.4.
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Figure 5.7: The evader increases the capture time after 500 learning episodes

Figure 5.8: The evader learns to escape after 900 learning episodes
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Figure 5.9: The membership functions of the evader after training.
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Figure 5.10: The membership functions of the pursuer after training
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Table 5.3: The evader’s fuzzy decision table and the output constant K l after
learning

@
@
@
@
@

φ

d
V C F

N -1.585 -1.578 -0.407

Z -1.576 1.553 0.033

P 1.593 1.580 0.265

Table 5.4: The pursuer’s fuzzy decision table and the output constant K l after
learning

@
@
@
@
@

φ

φ̇
N Z P

N -0.476 -0.250 -0.008

Z -0.242 0.002, 0.152

P -0.005, 0.265 0.478

Table 5.5: This table summarizes the capture time for different number of learning
episodes compared to the optimal solution for the homicidal chauffeur game

Game no. of episodes Capture time Tc (sec)

Theoretical – > 60 (escape)

100 12.90

After learning using QLFIS 500 25.10

900 > 60 (escape)
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Figure 5.11: The pursuer captures the evader with 100 learning episodes

5.3.3 The Game of Two Cars

The initial position of the pursuer is at the origin (xp, yp) = (0, 0), and the position

of the evader is initialized randomly at each episode. The initial orientation of the

pursuer, and the initial positions are the same as the homicidal chauffeur game. The

initial orientation of the evader is θe = 0rad. We use the kinematic equations of the

pursuer and the evader given in Eq. (2.14).

Similarly, the game is initialized such that the pursuer can capture the evader as

shown in Fig.5.11. After 500 episodes in Fig.5.12 the evader increased the capture

time and made a successful maneuver. Figure 5.8 and table 5.6 show that the evader

learned to escape from the pursuer after approximately 1300 episodes. The evader

makes sharp turns to enter into the pursuer’s turning radius constraint when the

distance d ≤ Rp.



5.3. SIMULATION RESULTS 76

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Figure 5.12: The evader increases the capture time after 500 learning episodes

Figures 5.15 and 5.14 show the MFs of the evader and the pursuer after learning.

The consequence parameters K l after training are shown in tables 5.7 and 5.8 .

Table 5.6: Summary of the time of capture for different number of learning episodes
in the game of two cars

Game no. of episodes Capture time Tc (sec)

Theoretical – > 60 (escape)

100 13.70

After learning using QLFIS 500 27.50

1300 > 60 (escape)
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Figure 5.13: The evader learns to escape after 1300 learning episodes.
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Figure 5.14: The pursuer’s membership functions after training
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Figure 5.15: The evader’s membership functions after training.
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Table 5.7: The evader’s fuzzy decision table and the output constant K l after
learning

@
@
@
@
@

φ

d
V C F

N -1.591 -1.572 -0.337

Z -1.613 1.571 0.146,

P 1.537 1.573 0.429

Table 5.8: The pursuer’s fuzzy decision table and the output constant K l after
learning

@
@
@
@
@

φ

φ̇
N Z P

N -0.4660, -0.2512 -0.0005

Z -0.3507 0.0274, 0.1765

P -0.0124 0.2615, 0.4830

Without Eligibility Traces. We now apply Q-learning without the use of

eligibility traces. In each episode, we record the time of capture and plot the time

versus 500 episodes. Then we run 10 simulations and average the result. The solid

line in Figure 5.16 is the result from using Q(λ)-learning. The dash line is the result

from using Q-learning. Compared with Q-learning, the learning speed is similar to

that with the eligibility traces. The convergence speed of the player’s learning process

was not improved significantly when using Q(λ)-learning.



5.4. SUMMARY 81

0

5

10

15

20

25

30

35

40

45

50

55

60
1 8 1
5 2
2

2
9

3
6

4
3

5
0 5
7

6
4

7
1

7
8

8
5 9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

2
4

6

2
5

3

2
6

0

2
6

7

2
7

4

2
8

1

2
8

8

2
9

5

3
0

2

3
0

9

3
1

6

3
2

3

3
3

0

3
3

7

3
4

4

3
5

1

3
5

8

3
6

5

3
7

2

3
7

9

3
8

6

3
9

3

4
0

0

4
0

7

4
1

4

4
2

1

4
2

8

4
3

5

4
4

2

4
4

9

4
5

6

4
6

3

4
7

0

4
7

7

4
8

4

4
9

1

4
9

8

C
ap

tu
e

 T
im

e

Episodes

Without eligibility traces 

With eligibility traces

Figure 5.16: The time of capture with the use of eligibility traces in the game of
two cars

5.4 Summary

This chapter presented the applications of fuzzy Q(λ)-learning and fuzzy Q-learning

to pursuit-evasion differential games. The fuzzy controller, the convergence of the

learning process and the learning speed were investigated. The QLFIS technique is

then used to train both the evader and the pursuer simultaneously. The trained evader

learned to make sharp turns (extreme strategy) to maximize the time of capture and,

if possible, avoid being captured. Simulation results of the homicidal chauffeur game

and the game of two cars showed that the evader successfully learned to escape from

the pursuer. The use of eligibility traces did not significantly improve the learning

speed when used in Q(λ)-learning. Moreover, eligibility traces required more compu-

tations per episode.



Chapter 6

Conclusions And Future Work

Pursuit-evasion differential games have been studied and solved using various op-

timization techniques such as optimal control and reinforcement learning. In this

thesis, pursuit-evasion differential games and the results of the formal theoretical

solutions of optimality are shown in Chap. 2. Chapter 3 illustrated the construc-

tions of fuzzy systems. We also examined the capability of fuzzy systems from a

function approximation point of view. Chapter 4 presented the concept of reinforce-

ment learning. Under the framework of reinforcement learning, we presented Markov

decision processes, temporal-difference learning and eligibility traces. Q(λ)-learning

combines Q-learning with the eligibility traces. The learning speed was tested when

the eligibility traces is combined with Q-learning. The use of eligibility traces did

not significantly improve the learning speed when used in Q(λ)-learning. Moreover,

eligibility traces required more computations per episode and more memory capacity.

In Chap. 5, pursuit-evasion differential games are investigated on how the evader
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and the pursuer can learn their optimal strategies simultaneously. The capture con-

dition parameters of the homicidal chauffeur game are set such that there exist a

strategy for the evader to avoid capture. The simulation results in Chap. 5 showed

that the evader successfully learned its optimal strategy. The trained evader learns to

turn and escape from the pursuer after using the QLFIS algorithm to tune the input

and the output parameters of the fuzzy controller. The QLFIS technique showed

that the players’ strategies converges to an equilibrium. When eligibility traces is

used in Q(λ)-learning, eligibility traces did not significantly improve the learning

speed. Furthermore, eligibility traces can increase the complicity of the learning pro-

cess and required more computations per episode and more memory capacity. In

future research, the learning performance of the evader can be improved by adding

more membership functions to the QLFIS algorithm. The evaluation of the QLFIS

technique was conducted via computer simulation. Empirical results are needed in

the future to evaluate the proposed method. Furthermore, the QLFIS algorithm can

be applied to other multi-agent reinforcement learning problems such as the soccer

game.
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