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ABSTRACT

The interest in relating Software Architecture specification to Software Performance Analysis

has been growing rapidly in the past few years. However, there is still a gap between the

software development and the performance analysis domains. The main reasons for having

this gap has been the lack of a simple, inexpensive, and scalable techniques and tools for

building models of complex, distributed and real-time software systems, and for solving these

models to obtain the systems performance properties. Automated techniques are therefore

needed to ease the process of building and solving performance models.

In this thesis, a systematic methodology is developed to automatically translate Unified

Modeling Language (UML) software specification into Layered Queueing networks (LQN)

performance models using Graph Grammar techniques. UML was chosen as the input

language because it is a standard, widely accepted notation for software systems

specification. LQN was chosen as the output language since it is very appropriate for

modeling and analyzing the performance of layered systems, both at the software and

hardware levels. The Graph Grammar techniques were used since both the input and output

models have well defined graphical representations. Finally, a case study is developed to

verify the transformation process.
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C h a p t e r  1

1 INTRODUCTION

Software Performance Engineering (SPE) has evolved over the past years and has been

demonstrated to be effective during the development of many large systems [Smith-90].

Although the need for SPE is generally recognized by the industry, there is still a gap

between the software development and the performance analysis domains. The main reasons

for this gap has been the lack of a simple, inexpensive, and scalable techniques and tools for

building performance models of complex, distributed and real-time software systems, and for

solving these models to obtain the systems performance properties.

In the current practice, constructing performance models of complex systems is expensive to

develop and validate. To construct performance models, analysts inspect, analyze and

translate “by hand” software specifications into models, then solve these models under

different workload factors in order to diagnose performance problems and recommend design

alternatives for performance improvement. This performance analysis cycle, when done

properly starting at the early stages of design and continuing through all software

development stages is time consuming, and thus expensive. Automated techniques are

therefore needed to ease and accelerate the process of building and solving performance

models.

The need for automation is undeniable. Automation is an important factor in accelerating the

development of the 20th and the 21st civilization so quickly. Many processes when automated
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become cost-effective by consuming less time and effort, and consequently, less money. If

Software Performance models were to be generated automatically, software designers will

not find it hard to employ in their software development cycles, thus bridging the gap

between software development and software performance analysis domains.

1.1 Objectives

This work was done with the objective of developing a systematic methodology to

automatically translate software specifications written in the Unified Modeling Language

(UML) into Layered Queueing networks (LQN) performance models using Graph Grammar

techniques.

UML [OMG-99] was chosen as the language used for the input software specification since it

is now a standard, widely accepted notation for software systems specification.  LQN models

[Woodside-89, 95] were chosen as target output models. LQN was developed especially for

modeling complex concurrent and/or distributed software systems, and was proven useful for

providing insights into performance characteristics at software and hardware levels. In

addition, an efficient LQN toolset, which includes both simulation and analytical solvers, is

available for solving the generated models.

This transformation was done using Graph Grammar techniques. A programming tool named

PROGRES (Programmed Graph Rewriting System) was used for this purpose [Schürr-94,

99]. The PROGRES Language was found suitable to use since both the UML and LQN

models have well defined graphical representations.
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1.2 Contributions of the thesis

The thesis proposes a method to convert a UML specification of a software design,

augmented with quantitative performance annotations, into a LQN performance model. The

structure of the LQN model (i.e., its tasks and devices) is obtained from the high-level

software architecture and deployment information showing the allocation of software

components to physical devices. The high-level software architecture is described by UML

Collaboration diagrams that show the relationship between concurrent components (i.e.,

processes or threads represented in UML as active objects). The allocation of software to

hardware devices is described by UML Deployment diagrams.

The entries, phases, and activities of LQN tasks and their quantitative parameters are

obtained from UML behavioral descriptions of a few, well chosen representative scenarios.

UML Activity diagrams with swimlanes are used to represent these scenarios. The Activity

diagrams are specially built to show the scenario steps executed by different concurrent

components, and to emphasize the flow of control and object flow between concurrent

components in the system. In general, software designers prefer to use interaction diagrams

(Sequence or Collaboration) to describe the behaviour of the system and the interaction

between objects, rather than Activity diagrams, which show the flow control of activities but

not the responsibilities of every individual object. Therefore, the proposed method constructs

automatically the Activity diagrams used for LQN derivation from Sequence diagrams.

Quantitative performance annotations were added to the UML diagrams to specify

information such as processors and link speed, processes multiplicity, and expected CPU

demands for every scenario step. The following figure summarizes the proposed method.
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Sequence 
Diagrams

LQN Models
Activity 
Diagram

Performance 
Annotations

Collaboration 
Diagram

Deployment 
Diagram

Performance 
Annotations

Architectural 
Information

Graph
Grammar

Graph
Grammar

Figure 1: Summary of the proposed method of automatic transformation.

The proposed approach was implemented as a stand-alone PROGRES program, which

represents a “proof of concept” for the transformation from UML to LQN. The PROGRES

program runs in two phases. In the first phase of the graph transformation process, the

Activity diagrams that show the flow of control for the chosen scenarios from Sequence

diagrams and architectural information are obtained. In the second phase of the graph

transformation, the LQN model is derived from Activity diagrams, deployment information

and performance annotation. A PROGRES program requires a schema that describes the

types of nodes and edges in the graphs manipulated by the transformation program. A

PROGRES schema was proposed in the thesis that represents both the UML and LQN model

elements. The UML part of the schema is similar to the UML metamodel.
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Finally, a case study was developed to validate and verify the transformation process. In a

previous work by [Abd-97, 98a + b], three different software architectures of a distributed

software systems were developed and measurements of performance parameters under

various workload factors were recorded. In this thesis, the corresponding LQN models for

these architectures are developed based on the UML specification describing them and the

models are solved using the LQN solver presented in [Franks-95]. The “Activities” feature of

the LQN models enabled us to model parallelism in one of the studied architectures (namely

the P-ORB case). The measurements of the total response time of the three architectures are

then compared to the results obtained by solving their corresponding models.

1.3 Thesis Contents

This thesis is organized as follows:

Chapter 2 provides an overview of the background information on this thesis, such as

Software Performance Engineering (SPE), Layered Queueing Networks (LQN), the Unified

Modeling Language (UML), and Programmed Graph Rewriting System (PROGRES). It also

reviews some of the works that were recently done in transforming software specifications

written in UML into various kinds of performance models.

Chapter 3 describes the first phase of the graph transformation process, producing Activity

Diagrams with the objective of identifying the flows of control for the chosen scenarios. The

PROGRES schema and transformation rules specific to this phase are also explained.
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Chapter 4 describes the second phase of the graph transformation process, where the LQN

models are built. The PROGRES schema and transformation rules specific to this phase are

also explained.

Chapter 5 presents a case study that is developed to validate and verify the transformation

process, where the measurements of the total response time of three different architectures of

a distributed software systems are compared to the results obtained by solving their generated

models.

Chapter 6 concludes the thesis research, summarizes contributions of the thesis, and identifies

directions for future research.
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C h a p t e r  2

2 LITERATURE REVIEW

2.1 Software Performance Engineering (SPE)

Software Performance Engineering (SPE) is a technique introduced in [Smith-90]. It

proposes the use of quantitative methods and performance models in order to assess the

performance effects of different design and implementation alternatives. It is applied starting

from the earliest stages of software development throughout the whole lifecycle. Most current

practices in software design and implementation are based on a “design now and fix

performance later” approach. That is, the functional design and implementation of the system

are done first and the performance techniques are retrofitted at a later point in time. In many

situations the prototype fails to meet the performance requirements resulting in an expensive

redesign of the system. Analytic performance models are often used in software performance

engineering (SPE) because of its lower cost in comparison to simulation and measurement-

based approaches. Analytic models are also used in system selection studies and in capacity

planning  [Menasce-94].

Performance modeling, if done in the early design stages, can reduce the risk of performance

related failures by giving an early warning of problems. They also provide performance

predictions under varying environmental conditions or design alternatives. Solving the

performance model yields several values; for instance, the total response time and the

utilization for each server in the system. The performance model solution is then compared
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with the requirements and the performance limitations. If the results do not meet the

requirements, design parameters are changed, and the performance model is regenerated and

resolved. This cycle continues until requirements are met.

In the early development stages, the input parameter values to an analytic model are estimates

based on previous experience with similar systems, on measurement of reusable components,

on known platform overheads (such as system call execution times), and on time budgets

allocated to different components. As the development progresses and more components are

implemented and measured, the model parameters become more accurate and so do the

results.  In [Smith-90], it is shown that early performance modeling has definite advantages,

despite its inaccurate results, especially when the model and its parameters are continuously

refined throughout the software lifecycle.

As an application of SPE, a case study on how to apply the techniques of Software

Performance Engineering to Web applications is introduced in [Smith-00]. When developing

a web application, both responsiveness and scalability are very important design goals. This

paper focuses on using SPE techniques to construct and evaluate performance models of

various architectural alternatives early in development, with the goal of selecting a

combination that will meet performance objectives. Since the Web execution environment is

typically complex, simple models of software processing that are easily constructed and

solved were deliberately used to provide feedback on whether the proposed software is likely

to meet performance goals. This was achieved by employing an approximation technique

that provides the most important information while keeping the models themselves simple.
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This solution provided an estimate of the end-to-end response time and the scalability of the

Web application by studying how it performs under different workload conditions.

2.2 Layered Queueing Network (LQN)

Queueing network modeling is a popular and widely used technique for predicting the

performance of computing systems. Although queueing network models have been

successfully used in the context of traditional time-sharing computers, they often fail to

capture complex interactions among various software and hardware components in client-

server distributed processing systems. The Layered Queueing Networks (LQN) [Woodside-

89], [Woodside-95], [Franks-95] and the Method of Layers [Rolia-95] are examples of new

modeling techniques that were developed for handling such complex interactions.

LQN is a new adaptation of queueing models for systems with software and hardware servers

and resources. A model in LQN is closely linked to software specifications, which makes it

easy to develop and understand. It is well suited for systems with parallel processes running

on a multiprocessor or on a network, such as client-server systems.

An LQN model is represented as an acyclic graph whose nodes (named also tasks) are

software entities and hardware devices, and whose arcs denote service requests (See Figure

2). Tasks represent hardware or software objects that may execute concurrently. In LQN

models, tasks are classified into three categories; namely pure clients (also named reference

tasks, as they drive the system), pure servers, and active servers. While pure clients can only

send messages (requests) and pure servers can only receive requests, active servers can both

send and receive requests. This marks the main difference between LQN and QN, where

active servers, to which requests are arriving and queueing for service, may become clients to
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other servers as well. This gives rise to nested services. It is important to note that the word

layered in the name of LQN does not imply a strict layering of the tasks. A task may call

other tasks in the same layer, or skip over layers [Petriu-00b].

The LQN toolset presented in [Franks-99], which includes both simulation and analytical

solvers, is used in solving the generated LQN performance models of this work.

T1

P1

P2

T2_e2T2_e1

T2

1 1

1
1

T3 T4

P4P3

Pure Clients

Active Server

Pure Servers

Figure 2: Example of an LQN Model

2.2.1 LQN Components

2.2.1.1 Tasks and Processors (Server Nodes)

As mentioned before, server nodes, which can be either tasks or processors, are classified into

three categories; namely pure clients, pure servers, and active servers. They are typically

used as follows:
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• pure clients, which only send messages (requests), are used to model actual users and

other input sources.

• pure servers, which only receive requests, are generally used to model hardware

devices such as processors or disks.

• active servers, which can receive requests as well as make their own, are used to

model typical operating system processes.

Although not explicitly illustrated in LQN notation, each server has an implicit message

queue, called the request queue, where the incoming requests are waiting their turn to be

served. The default scheduling policy of the request queue is FIFO, but other policies are also

supported.

 A software or hardware server node can be either a single-server or a multi-server. A multi-

server is composed of more than one identical clones that work in parallel and share the same

request queue. A multi-server can also be an infinite-server if there is no limit to the number

of its clones. The tasks are drawn as parallelograms, and the processors as circles (see Figure

3 for illustration).
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T2

P1

T1

P2

e1

e1 Entry

Task 
(single-server)

Task Pool
(multi-server)

Processor
(single-server)

Processor
(multi-server)

Figure 3: Task and Entry Graphical Notation

2.2.1.2 Entries

An LQN task may offer more than one kind of service, each modeled by a so-called entry

drawn as a parallelogram “slice” (see Figure 3 for illustration). An entry is like a port or an

address of a particular service offered by a task. An entry has its own execution time and

demands for other services (given as model parameters).  Servers with more than one entry

still have a single input queue, where requests for different entries wait together.

An entry can be further decomposed into activities if more details are required to describe its

execution scenario. This is typically required when entries have fork and join interactions.

Activities are discussed next.
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2.2.1.3 Activities

Activities are components that represent the lowest level of detail in the performance model.

They can be connected together not only sequentially, but with fork and join interactions as

well. Activities are connected together to form a directed graph, which represents one or

more execution scenarios. Execution may branch into parallel concurrent threads of control,

or choose randomly between different paths. An Activity may have service time demand on

the processor on which its task runs or have zero service time. Just like entries, activities can

make requests to other tasks by way of synchronous or asynchronous messages (see Figure 4

for illustration).
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Or-Join

a [e] Activity with reply
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Figure 4: Activity Graphical Notation



25

After an AND-fork, all successor activities can execute in parallel, while after an OR-fork,

only one of the successor activities is executed, with probability Pi. Sequential execution is a

special case of an OR-fork with only one branch. Joins happens when multiple threads of

control are connected together. A special case of joins is the AND-joins since they introduce

synchronization delays [Franks-99].

Forking happens when a thread of control splits into two or more concurrent sub-threads,

while joining happen when two or more tasks synchronize with one another.  There are two

forms of fork-join behaviour that are based on whether the fork and join take place within the

same task, or in two separate tasks; namely intra-task fork-join and inter-task fork-join (see

Figure 5 for illustration).

Intra-task fork-join behaviour occurs when the fork and join take place within the same task.

This pattern is particularly useful for improving performance if parallelism in an application

can be exploited. With inter-task fork-join, messages originate from a common client task,

follow independent routes, and then join at another server task [Franks-99].
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Figure 5: Intra VS Inter task Fork-Join

2.2.1.4 Arcs (Requests)

Arcs in an LQN model denote requests from one entry to another. The labels on the arcs

denote the average number of requests made each time the corresponding phase in the source

entry is executed. Requests for service from one server to another can be made via three

different kinds of messages in LQN models: synchronous, asynchronous and forwarding

[Petriu-00b] (see Figure 6 for illustration).
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Synchronous M essage

Asynchronous M essage

Forwarding Message

Figure 6: Messages (requests) Graphical Notation

• A synchronous message represents a request for service sent by a client to a server,

where the client remains blocked until it receives a reply from the provider of service.

If the server is busy when a request arrives, the request is queued. After accepting a

request for one of its entries, the server starts to process it by executing a sequence of

one or more phases of that entry. At the end of phase 1, the server replies to the client,

which is unblocked and continues its work. The server continues with the following

phases, if any, working in parallel with the client, until the completion of the last

phase. After finishing the last phase, the server begins to serve a new request from the

queue, or becomes idle if the queue is empty. During any phase, the server may act as

a client to other servers.



28

 
phase1 (service) 

Client  

Server 

synchronous 

busy 

reply  

included services  
phase2         

(au tonomous  phase ) 
idle 

Client  

Server  

a) LQ N synchronous  message  

busy                   phase1                  phase2                           id le 
forwarding 

Client 
synchronous 

reply t o original  cl ient 

Server1  
  

Client 

Server1  

c) LQN forwarding  message  

Server2  
busy                        id le                phase1            phase2        id le 

Server2  

phase1  
Client 

Server 

asynchronous  

busy  

included services 
 phase2        

 phase2        

idle 

Client 

Server 

b) LQN asynchronous  message

Figure 7: Execution of synchronous, asynchronous, and forwarding LQN requests

• In the case of asynchronous message, the client does not block after sending the

message and the server does not reply back; instead only executing its phases as

shown in Figure 7.

• The forwarding message (represented by a dotted request arc) is associated with a

synchronous request that is served by a chain of servers. The client sends a

synchronous request to Server1, which begins to process the request, then at the end

of phase1 forwards it to Server2. Sever1 proceeds normally with the remaining phases

in parallel with Server2, then at the end of its last phase starts another cycle. The
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client, however, remains blocked until Server2, which replies to the client at the end

of its phase 1, serves the forwarded request. A forwarding chain can contain any

number of servers, in which case the client waits until it receives a reply from the last

server in the chain.

A phase may be deterministic or stochastic, and is subject to the following assumptions

[Petriu-00a]:

• The total CPU demand of a phase (whose mean is given as a parameter) is divided up

into exponentially distributed slices; each of which is delimited by a request to lower

level servers. The mean execution time is the same for all the slices.

• Requests to lower level servers are geometrically distributed with a specified mean

(given as a parameter) in stochastic phases, and occur for a fixed number of times in a

deterministic phase.

2.2.2 LQN parameters

The parameters of an LQN model are as follows:

• Customer (client) classes and their associated populations or arrival rates;

• The number of processor nodes and the task allocation on them;

• The multiplicity of each task or processor node in the system;

• Scheduling discipline for each software and hardware server;
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• The mean service time demand per visit for each activity and/or entry per phase;

• The mean number of synchronous, asynchronous, or forwarded messages sent from

entry/or activity to another per phase.

2.2.3 Solving the LQN Model

LQN models can be solved using the solving tools provided by the toolset in [Franks-95].

Typical results of an LQN model are response times, throughput, utilization of servers on

behalf of different types of requests, and queuing delays. The LQN results may be used to

identify the software and/or hardware bottlenecks that limit the system performance under

different workloads and configurations [Neilson-95].

LQN was developed especially for modeling complex concurrent and/or distributed software

systems. LQN was applied to a number of concrete industrial systems and was proven useful

for providing insights into performance limitations at software and hardware levels.
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2.3 The Unified Modeling Language (UML)

2.3.1 A Visual Modeling Language

As mentioned in [Booch-99] and [Quatr-00], a language provides the vocabulary and the

rules used to combine words in that vocabulary for the purpose of communication. A

modeling language is a language whose vocabulary and rules are used to represent both the

conceptual and the physical aspects of a system. The vocabulary and rules of a modeling

language tell you how to create and read models. The Unified Modeling Language (UML) is

a graphical modeling language that is used for visualizing, specifying constructing and

documenting software systems. It is a language for expressing system properties that are best

modeled graphically so that software developers can visualize their work products in

standardized blueprints or diagrams.

Models are abstractions of real systems. They help us visualize and understand complex

systems by highlighting the essentials of complex systems and filtering out nonessential

details, thus making the system easier to understand. Notation plays an important part in any

model. It serves as the language (vocabulary and rules) for communication between model

designers. The unified Modeling Language (UML) provides a very robust notation, which

grows from analysis into design.

2.3.2 Designing The System Architecture

Software architecture is very difficult to define, as mentioned in [Booch-99] and [Quatr-00].

Software architecture is not a one-dimensional thing. It is made up of concurrent multiple

views. It can be viewed as a set of strategic decisions about the structure and behavior of the
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system and the collaboration among the system elements; however, it is not merely that. It is

stated in [Booch-99] that:

 “Software architecture is not only concerned with structure and behavior, but also with
usage, functionality, performance, resilience, reuse, comprehensibility, economic and
technology constraints and tradeoffs and aesthetic concerns.”

According to [Booch-99], the architecture of a software system can be best described by five

interactive views, each focusing on a particular aspect of the system.

The use case view of a system includes the use cases that describe the behavior of the system

as seen by its end users, analysts and testers. It specifies the forces that shape the system’s

architecture.

The design view of a system addresses the functional requirements of the system, which are

the services that the system should provide to its end users. It includes classes, interfaces, and

collaborations that form the software system.

The process view of a system focuses on the runtime implementation of the system. It

includes the threads and processes that form the system’s concurrency and synchronization

mechanisms.  It takes into account requirements such as performance, reliability, scalability,

integrity, system management, and synchronization.

The implementation view of a system is concerned with the software module organization

within the development environment. It includes the components and files that can be

assembled in various ways to produce a running system.
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The deployment view of a system involves mapping software components to processing

nodes that form the system’s hardware topology on which the system is expected to run. The

deployment view takes into account the physical system parts requirements such as their

distribution, delivery, and installation.

2.3.3 The UML Building Blocks

The building blocks (vocabulary) of UML include three categories as described in [Jacob-98]

and [MOD-00]: elements, relationships and diagrams. Here is a short description of each

category:

• Elements are the basic object-oriented building blocks used to construct models. The
four kinds of elements are Structural, Behavioral, Grouping and Annotational.

o Structural elements, such as Classes, Active Classes, Interfaces, Usecases,
Collaborations, Components and Nodes, identify the entities that are to be
modeled.

o Behavioral Elements, such as State machines and Interactions, represent the
dynamic parts of the model and describe the changes in a system’s state over
time.

o Grouping elements, such as Packages, Models, Subsystems, and Frameworks,
are used for organizing parts of a model.

o Annotational elements, such as Notes, are used to describe or annotate
elements in a diagram.

• Relationships are used to join elements together in a model.
Within this category we find four kinds of relationships:

o Generalization is the relationship between a general element, called the super
class, and a more specific element, called the subclass.

o Association is the relationship used to connect one element to another.
Aggregation is a special form of association that specifies the whole-part
relationship. Composition is another form of association, with stronger
relationship between the whole and the part.
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o Dependency specifies the relationship between one element and the elements
that will be affected if its specification is changed.

o Realization defines the relationship between an interface or a use case and the
classifier that will implement their behavior. Realization is a form of
generalization, in which only behavior is inherited.

• Diagrams assemble related collections of elements together representing all or part of
a model. The static parts of a system use one of four structural diagrams, namely
Class, Object, Component, and Deployment diagrams, while the dynamic parts of a
system use one of five behavioral diagrams, namely Use case, Sequence,
Collaboration, State chart, and Activity diagrams.

o Class diagrams are the most commonly used diagrams in modeling Object-
Oriented systems. A Class diagram shows a set of classes, interfaces, and
collaborations and their relationships to illustrate the static design view of a
system.

o Object diagrams show sets of objects and their relationships. They are used to
illustrate static snapshots of instances of classes in different situations.

o Component diagrams show sets of components and their relationships. They
are used to illustrate the static implementation view of a system.

o Deployment diagrams show sets of nodes and their relationships, and are used
to illustrate the deployment view of a system.

o Use Case diagrams show sets of use cases and actors and their relationships.
They present an outside view of the system. The flow-of-events capture the
functionality of the use case, while scenarios are used to describe how use
cases are realized by identifying the objects, the classes, and the object
interactions needed to carry out a piece of the functionality specified by the
use case.

o Sequence diagrams are interaction diagrams that show sets of objects and the
messages sent and received by those objects, with emphasis on the time
ordering of messages. Sequence diagrams are semantically equivalent to
collaboration diagrams.

o Collaboration diagrams are interaction diagrams that show sets of objects,
links, and messages sent and received by these objects. They emphasize the
structural organization of their objects. Collaboration diagrams are
semantically equivalent to Sequence diagrams.
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o State diagrams show sets of states, transitions, events, and activities that
together constitute state machines. State diagrams are used to model the
behavior of an instance, class, or collaboration. State diagrams are
semantically equivalent to Activity diagrams; however, they emphasize the
event-ordered behavior of an object.

o Activity diagrams show sets of activities, the sequential or branching flow
from one activity to another, and objects that act and are acted upon. Activity
diagrams are semantically equivalent to State diagrams; however, they
emphasize the flow of control among objects.

2.3.4 The Metamodel

The architecture of the UML, as stated in [OMG-99], is based on a four-layer metamodeling

architecture that forms the infrastructure for defining the precise semantics required by

complex models. This architecture consists of the following layers: meta-metamodel,

metamodel, model, and user objects.

The meta-metamodeling layer forms the foundation for the metamodeling architecture. This

layer’s basic responsibility is to define the language for specifying the metamodel.

Examples of meta-meta-objects in the meta-metamodeling layer are: MetaClass,

MetaAttribute, and MetaOperation.

A metamodel is an instance of a meta-metamodel. This layer’s basic responsibility is to

define a language for specifying models. Examples of meta-objects in the metamodeling

layer are: Class, Attribute, and Operation.

A model is an instance of a metamodel. The Model layer’s basic responsibility is to define

a language that describes an information domain. Examples of objects in the modeling layer

are: Client, Broker, SendRequest, and ReceiveReply.
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User objects (user data) are an instance of a model. The basic responsibility of the user

objects layer is to describe a specific realization of the model. Examples of objects in the

user objects layer would be the instances created of object models or the current value of an

attribute, such as <Client-354> and 654.56.

In this work, we are particularly interested in the metamodel layer that describes the language

formally used to specify both sequence diagrams and activity diagrams. These metamodel

specifications will be used in setting the rules of the two diagrams transformation into LQN

models.

2.4 Transformations from UML

The interest in relating Software Architecture specification to Software Performance Analysis

has been growing rapidly in the past few years. Combining Software Architecture

specification with a software performance model enables software designers to compare

design alternatives, to test whether or not their software meats its intended performance

restrictions, and to avoid potential problems. Various approaches have been proposed to

derive a performance model from the Software Architecture specification. Many of these

approaches consider the Unified Modeling Language (UNL) as a specification language since

UML is now a widely accepted notation for specification of software systems. In this section,

some of these approaches will be presented.

In [Petriu-98, Petriu-99] and [Wang-99], a methodology that identifies frequently used

architectural patterns is presented. The methodology can be described as a formal approach

for generating LQN performance models from software architectural patterns using Graph

Grammar. The study describes patterns by their structure and behaviour. It then shows their
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corresponding performance models. This study considers a significant set of architectural

patterns, such as pipelines and filters, client-server, broker, layers, critical sections and

master-slave patterns. Since there is a direct correspondence between the single pattern and

the performance model, the target model is immediately given. This approach specifies the

patterns using UML–Collaborations, which represents a society of classes, interfaces, and

other elements that work together to provide some cooperative behaviour that is bigger than

the sum of all of parts. It then derives their performance models using a systematic approach.

This approach follows the SPE methodology and generates the performance models by

applying graph transformation techniques using the PROGRES tool.

The input to the tool is each architectural pattern’s elements represented in the Graph

Grammar language (the graph schema). Transformation rules were executed for each

architectural pattern found in the input architectural description graph, and the input graph

transforms into an output graph that represents an LQN model in graph schema. Performance

attributes, such as the allocation of processes to processors, the average execution time for

each software component; the average demands for resources and the network

communication delays were added to the system in the form of annotations.

In  [Andolfi-00], Software specifications are specified using Message Sequence Charts,

which are Sequence diagrams in the UML terminology. The proposed transformation

methodology is based on a systematic analysis of the Sequence diagrams, which allows

singling out the real degree of parallelism among the Software Architecture components and

their dynamic dependencies. This information is then used to automatically build a QN

Model corresponding to the Software Architecture description. This approach defines the QN
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Model by the analysis of a Labeled Transition System associated with the Sequence diagram,

and is only interested in analyzing the software architecture, without specifying or using

information regarding the underlying hardware platform.

The method proposed in [Corte-00] is based on the Software Performance Engineering (SPE)

methodology, introduced in [Smith-90]. It is based on two models: the software execution

model, which is based on execution graphs and represents the software architecture, and the

system execution model, which is based on EQN models and represents the hardware

platform. The analysis of the software model gives information concerning the resource

requirements of the software system. The obtained results are combined together with

information about the hardware devices. The resulting model represents the whole

software/hardware system.

In this approach, the software architecture is specified using three different UML diagrams:

Deployment diagrams, Sequence diagrams, and Use Case diagrams. From the Use Case and

Sequence diagram, the proposed methodology derives the software execution model, and

from the Deployment diagrams, it derives the system execution model. Both Use Case and

Deployment diagrams are enriched with performance annotations concerning workload

distribution and parameters of devices.

In [Balsamo-01], a comparison between eleven of the recently proposed approaches on the

transformation of the UML models of software Architectures into Performance evaluation

models is presented, with the aim of pointing out how the model transformation techniques

make use of the UML diagrams. The comparison is based on different aspects of these
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approaches. For example, it considers the types of UML diagrams and the type of derived

performance models (such as queueing networks, stochastic Petri nets, stochastic process

algebra, or simulation models). The comparison also considers whether or not the approaches

introduce specific constraints on the Software Architecture specified by the UML diagrams.

It also considers the generality of the proposed technique, which can be a systematic

methodology, or an informal presentation or just a case study. Most importantly, it considers

the additional information associated with the UML diagrams that are needed for a complete

definition and analysis of the performance model, and how this information is specified (i.e.

whether by using UML extensions or by using simple annotations on the UML diagrams).

This study came up with very interesting results. For instance, it concluded that Interaction

diagrams, such as Sequence diagrams and Collaboration diagrams, are the most important

diagrams used, since they model the software behaviour and present information concerning

the flow of control of the software components. Use case diagrams are used to derive

information to specify workloads, while Deployment and Component diagrams give

information concerning the structure of hardware devices and software components.

The study also observed that there is a common feature of the transformation approaches that

concerns the information to be added to the UML model to complete the definitions and

parameterization of the performance model. It found out that the approaches generally

observe that UML models do not provide all the necessary information for a complete

definition of the performance model; hence, UML extensions or simple diagram annotation

are proposed in almost all approaches.
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Various approaches, as was concluded, follow the Software Performance Engineering (SPE)

methodology, firstly presented in  [Smith-99]. Finally, the study observed that most of the

considered approaches are based on Queueing Networks (QN) performance models,

including their extensions like Extended Queueing Networks (EQN) models and Layered

Queueing Networks (LQN) models, since QN models have been traditionally used for

performance evaluation and prediction, and have proved to be a powerful and versatile tool.

2.4.1 Performance profile

Performance profile is a new concept in the works of OMG [OMG-00]. The profile extends

the UML metamodel with stereotypes and tagged values. It provides a notation for capturing

performance requirements within the design context, for specifying execution parameters,

which can be used by modeling tools to compute predictions, and for displaying performance

results computed by modeling tools or found in testing. [Woodside-01]. OMG performance

profile draft appeared after most of the work in this thesis was done. However, it would have

been so helpful to have this notion available, since UML models do not provide all the

necessary information for a complete definition of the performance model, as was mentioned

before.
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2.5 Programmed Graph Rewriting System (PROGRES)

A graph rewriting system is a set of rules that transforms one instance of a given class of

graphs into another instance of the same class of graphs. Graph rewriting systems are often

used as visual and executable specifications of abstract data types or graph manipulating

tools. PROGRES is a visual programming language that supports PROgramming with Graph

Rewriting Systems. It has a graph-oriented data model and a graphical syntax for its most

important language constructs. It offers additional means for defining derived data and for

non-deterministic programming [Schürr-94, 97, 97b, 99].

2.5.1 Components of a PROGRES Graph

A PROGRES graph is a directed attributed graph that consists of labeled nodes and directed

labeled edges, where attributes may be attached to nodes only. Nodes represent different

types of objects, while edges represent the relationships between these objects.

2.5.1.1 PROGRES Syntax

PROGRES offers the following syntactic constructs for defining the components of a

particular class of graphs and their legal combinations. These are

• Node types: which determine the static properties of their nodes instances. These

nodes are called REALIZATION nodes.

• Node Classes: which define common node type properties in order to inherit them to

node types as needed. Node classes play about the same role as abstract classes,

whereas node types are the counterparts to derived objects. They are called

SPECIFICATION nodes.
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• Intrinsic relationships: also called edge types, which are explicitly manipulated, and

possess restrictions concerning the types of their sources and targets.

• Derived relationships: defined by means of path or restriction expressions, which

model complex relationships between nodes or node classes, that are often needed or

used in a given graph. A path is represented by double arrows between two nodes,

whereas a restriction is represented by double arrows pointing to a node.

• Intrinsic attributes: which are defined for a particular set of node types and which

are explicitly manipulated

• Derived attributes: which are defined by means of directed equations and which

may have different definitions for different node types.

2.5.1.2 Negative Nodes and Relationships

A crossed-out node and a crossed-out edge (or path) represent the declaration of a negative

node and edge respectively.  The condition of a negative node or edge succeeds if matches

for all positive node and edge patterns may be found such that a match for the negative node

or edge pattern does not exist. In other words, a negative node or a negative edge represent

the condition that such a node or edge cannot exist if the condition is to succeed.

2.5.2 Definitions of Graph Schema

Using the previously defined syntax, the language features provided by PROGRES enable us

to define static properties of graphs in the form of a graph schema. The term graph schema is

similar to the term database schema in the database design process. The graph schema
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definition part of a PROGRES specification is usually kept separate from the graph rewriting

rules definitions. Figure 8 illustrates the notation for defining PROGRES schema:

attribute type

attribute type

Node Class

Node Type

edge type

instance of

subclass of

Derived
Attribute

Intrinsic
Attribute

Figure 8 Notation of Graph Schema

• Normal boxes represent node classes, which are connected to their super classes by
means of dotted edges representing “is­a” relationships.

• Boxes with round corners represent node types, which are connected to their uniquely
defined classes by means of dashed edges representing “type is instance of class”
relationships

• Solid edges between node classes represent edge type definitions

• Circles attached to node classes represent attributes with their names above or below
the connection line segment and their type definition nearby the circle. A double line
segment connects a derived attribute to its class while a normal line segment connects
an intrinsic attribute to its class.

All nodes inherit the attributes of their ancestors, but different node types have different rules

on how to compute the value of their derived attributes. PROGRES enables us to build

hierarchies of node classes by exploiting multiple inheritance as the relation between node
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classes using the is_a relationship to express the inheritance relationship. Multiple inheritance

may be used to cut down the size of graph schema definitions considerably.

2.5.3 Definition Of Graph Transformations

Whereas the graph schema part of a PROGRES specification enables us to specify the static

properties of a graph, the graph transformation part enables us to define the rewriting rules by

which we can query and change the manipulated graph. This can be done using tests, queries,

productions, transactions, and functions.  PROGRES allows the importing of external

functions and data types as well.

Tests and queries

Sub-graph tests and queries are the main constructs for inspecting already existing graphs

using path declarations and restrictions. Sub-graph tests search for the existence or

nonexistence of a certain sub-graph pattern in a host graph.

`1 = TaskNode `2: CallArc

      
end; 

test IsTaskReference( TaskNode : TASK_NODE) = 

Referenced_By

Figure 9 Example of a Test
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A query is the complex form of tests, where you can have multiple tests in a conditional

branch or a loop, for example. All sub-graph tests use restrictions and paths as complex

application conditions.

query IsThisEntryEmpty( LocalEntry : Entry) = 
         begin 
              IsEntryEmpty ( LocalEntry ) 
            & IsEntryInactive ( LocalEntry ) 
         end 
      end; 

Figure 10 Example of a Query

Productions and Transactions

Productions and transactions are used for creating and modifying schema consistent graphs.

Productions have a left and a right hand side graph pattern as their main components. The left

hand side (LHS) pattern of a production describes a sub-graph that must exist if the

production was to be executed. It is similar to executing a test to search for the existence or

non-existence of the LHS sub-graph.  The right hand side (RHS) pattern of a production

defines the node transformations that take place. It may include adding or deleting nodes or

edges, as well as changing attribute values.
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production CreateBasicSyncCall(fromInst, toInst : INSTANCE ; 
msgName : string ; TimeVal : integer ; out ActionId : ACTION) =

`2 = toInst`1 = fromInst

::=

transfer 3’.Name := msgName; 
         4'.Type := "SyncCallActionType"; 
         5'.Value := TimeVal; 
         return ActionId := 4'; 
    end; 

2' = `21'= `1

3' :Sync_Call

4' : CallAction

5' : SendingTime

ReceiverSender

Dispatches

Action_Time

Figure 11 Example of a Production

The general rules for executing a Production are the following:



47

• The LHS matching succeeds if all positive nodes and edge patterns are found and the

negative nodes and edges are not found.

• All positive nodes and edges in the LHS that have no counterparts in the RHS are

deleted from the graph.

• All nodes and edges in the RHS that have no counterparts in the LHS are added to the

graph.

• New attribute values are computed, as specified by the transfer section of the

production.

Transactions use the same control structures to construct complex graph transformation

processes from basic production applications in the same way as queries use them to

construct complex graph analysis processes from basic sub-graph tests. Both Productions and

Transactions can take a list of parameters and return a list of output values. Output

parameters must have the keyword “out” before their declaration.

      transaction GenerateLQNFile = 
         use ret : integer 
         do 
              ret := openFile ( "test.lqn" ) 
            & WriteHeaderSection 
            & WriteProcessorSection 
            & WriteTaskSection 
            & WriteEntrySection 
            & ret := closeFile ( 1 ) 
         end 
      end; 

Figure 12 Example of a Transaction
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The Main Transaction

Each PROGRES program must have exactly one transaction named “MAIN”. This

transaction serves as the entry point to the PROGRES program.  Here is an example of a

MAIN transaction:

   transaction MAIN = 
      begin 
          CreateProblem  
         & SolveProblem  
      end 
   end; 

Figure 13 Example of the Main Transaction

Non-deterministic Programming and Backtracking:

The PROGRES language was developed having certain design goals in mind. One design

goal is to use a graphical syntax where appropriate but not to exclude textual syntax when it

is more natural and concise.  Also, keeping track of rewriting conflicts and backtracking out

of dead end derivations was another design goal in mind. PROGRES specifications do not

rely on the rule-oriented programming paradigm for all purposes but support also imperative

programming of rule application strategies. These design goals were laid out because graph

rewrite rules with complex application conditions and control structures with backtracking

are rather useful for specifying software development tasks.

Backtracking in PROGRES tries to find another match within the host graph in case of

failure. It works as follows. PROGRES tries to find a match for a certain configuration in a
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certain test or query. If more than one match exists, one is chosen non-deterministically

(which means that if the execution of a program repeated, it is not guaranteed that the same

matches will be chosen again). PROGRES then tries to find a match for the next

configuration in the next test or query. If it succeeds in finding a match, then it proceeds to

finding a match for the next configuration and so on. If it fails to find any match in the

existing graph, then backtracking starts, reentering the first test call and reactivating the

pattern match process. As a result, the first test either determines another configuration or

fails. In the first case, execution of the test or query is continued with checking the

consistency of a new configuration; in the second case, the whole query fails and triggers

backtracking or abortion of its calling test or query in turn.

Functions

A function in PROGRES does some work for computing a certain value. It may have may

input parameters, but it must have only one output value.

function Increment : ( Number : integer) -> integer = 
         (Number + 1) 
      end; 

Figure 14 Example of a Function

Imported types and functions

Imported or built-in types and functions may be defined in PROGRES for an application-

oriented style of programming. These types and functions are defined in the “imported”
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section of a PROGRES specification, and the libraries where their specifications exist are

copied to PROGRES imported libraries directory.

from RealNumbers import 
 
      types 
         Real; 
 
      functions 
         R_IntToReal    : ( integer) -> Real, 
         Real_StringToValue 
                        : ( string) -> Real, 
         Real_ValueToString 
                        : ( Real) -> string, 
         R_0            : ( integer) -> Real, 
         BQPlusQuote    : ( Real, Real) -> Real, 
         BQStarQuote    : ( Real, Real) -> Real, 
         BQSlashQuote   : ( Real, Real) -> Real; 
 
   end; 

Figure 15 Example of the Import Section

Using the PROGRES language may not be suitable for solving all kinds of problems.

Choosing a suitable programming language depends on the nature of the problem you are

trying to solve. In this work, we are trying to transform software specification from UML to

LQN, both of which having well defined graphical representation. The PROGRES Language

was found suitable to use for solving this kind of problem.
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C h a p t e r  3

3 UML TRANSFORMATION – PHASE 1

3.1 Conceptual Description

3.1.1 Sequence Diagrams

Sequence diagrams is a popular way of describing an interaction, which is a set of partially

ordered messages between several objects in a collaboration to achieve a certain function or

result. An Interaction specifies several communications between a sender role and a receiver

role. Collections of Objects that conform to these Classifier roles communicate by

dispatching Stimuli, which in turn conform to the Messages in the Interaction. Sequence

diagrams emphasize the time ordering of messages. A sending time can be specified for each

dispatched message.

Each Message was dispatched as a result of an Action. Several types of actions could be

specified that may or may not dispatch a Message. For example, the Create Action results in

the creation of a new Object Instance. The Destroy Action results in a message that destroys

the receiver Object. On the other hand, a Local Action could be specified for an Object to

perform some calculations locally or to make a decision. Also the Terminate Action results in

an Object that terminates itself, without any Messages being dispatched.

UML differentiates between two types of messages, namely synchronous and asynchronous

messages. In the synchronous message or call case, the sender object role blocks waiting for

the receiver object role to finish processing before it returns back to its flow of control. In the
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asynchronous message case, the sender object role drops a message in the receiver object role

mailbox and resumes immediately its own flow of control. There is also a notation for a reply

call if indicating a reply is necessary to show in a sequence diagram.

One interaction diagram is often not enough to represent a use case. Several sequence

diagrams might be needed to represent all possible flows of events of a use case. Action

sequences can be used to represent nested sequence diagrams as an action sequence can be

further decomposed into several actions and action sequences, and may possibly be

represented via another sequence diagram.

3.1.2 Activity Diagrams

Activity diagrams focus on the activities that take place among objects. Whereas interaction

diagrams show flow of control from object to object, activity diagrams show flow of control

from activity to activity. An interaction diagram looks at the objects that pass messages,

while an activity diagram looks at the flow of actions executed by the objects. An activity is

an ongoing non-atomic execution within a state machine. Activities ultimately result in some

kind of an action. Within an activity diagram, you can also model the flow of an object as it

moves from state to state at different points in the flow of control.

Activity diagrams commonly contain action states, activity states, transitions, and objects.

Action states are atomic and can’t be decomposed. They represent the execution on an action.

Activity states, on the other hand, are not atomic and can be further decomposed. Each

activity state might be composed of other action or activity states and can have its own

activity diagram.
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Transitions show the path from one action or activity state to the next action or activity state.

Each transition is triggered upon the completion of its previous state and does not have a

special trigger of its own. Beside the simple, sequential transitions, activity diagrams can

have a branch, which specifies alternate paths taken based on some Boolean expression

called a Guard. When branching is non-conditional, it represents concurrent flows of control.

A fork represents the splitting of a single flow of control into two or more flows of control,

while a join represents the synchronization of two or more concurrent flows of control.

If objects are involved in the flow of control associated with an activity diagram, they are

represented by what is called “Object flows”. Activity diagrams can illustrate the object flows

by connecting objects with dependency relationships to the activities acting upon them. It can

also show the objects’ changing role, state and attribute values within a certain object flow.

An interesting way or organizing activity states on an activity diagram is to partition them

into groups, called swimlanes. In an activity diagram, each swimlane represents a high-level

responsibility for a group of activities, and can be implemented by one or more classes in

general. There is a loose connection between swimlanes and concurrent flows of control.

Independent and concurrent flows of control can, but not necessarily do, map to different

swimlanes. For example, an Activity diagram may represent the workflow in an enterprise,

where different swimlanes represent different departments. Even though a department may

have internal concurrency, this is not shown in the Activity diagram.

In our case, however, we choose to build the activity diagrams at a granularity level where

each swimlane corresponds to a single execution flow. In other words, a swimlane will
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contain the activities carried out by one active object and any number of associated passive

objects. In the second graph transformation phase, a swimlane will correspond to an LQN

task.

3.1.3 The Aim Of Phase1

The first phase of the transformation converts from Sequence diagrams to Activity diagrams.

The main purpose of this phase is to identify the active threads of control and the interactions

between them. Several Sequence diagrams describing different interactions between the same

set of objects, passive and active, would typically be converted into one Activity diagram

with multiple levels of abstractions. This transformation is done using PROGRES.

3.2 PROGRES Graph Transformation

3.2.1 The Schema

In UML, all diagrams could be described in terms of their constituting elements and the

relationship existing between these elements. This part of the schema (given in Figure 16)

represents the UML metamodel description of a Sequence diagrams in PROGRES notation.

In this notation, nodes represent the UML elements and edges represent the relationships

among them. Figure 17 describes in turn Activity diagrams in exactly the same way. The

shaded nodes in this figure are ones that were initially introduced in the first figure that had to

be repeated.

3.2.1.1 UML Defined Elements For Sequence Diagrams

The elements constituting any Sequence diagram, as described in the UML metamodel

specification [OMG-99], are described in this section. The relationships defined between

them are represented via the edges connecting these elements as shown in Figure 16 below.
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Some attributes, such as “Size” (for ARGUMENT), “Cycles” (for ACTION), and

“Probability” (for GUARD and STATE_VERTEX) do not come from the UML metamodel.

They were added to the schema to represent performance annotations.

Model Element:

A model element is an element that is an abstraction drawn from the system being modeled.

In the metamodel, a Model Element is a named entity in a Model. It is the base for all

modeling meta-classes in the UML. All other modeling meta-classes are either direct or

indirect subclasses of Model Element.

Classifier:

A classifier is an element that describes behavioral and structural features. It comes in several

forms, including class, data type, interface, and component. In the metamodel, a Classifier

declares a collection of Attributes, Methods, and Operations.

Classifier Role:

A classifier role is a specific role played by a participant in a collaboration. It specifies a

restricted view of a classifier, defined by what is required in the collaboration.

Instance:

The instance construct defines an entity to which a set of operations can be applied and which

has a state that stores the effects of the operations. In the metamodel, Instance is connected to



56

at least one Classifier which declares its structure and behavior. Instance is an abstract

metaclass.

Object:

An object is an instance that originates from a class. In the metamodel, an object is a subclass

of Instance and it originates from at least one Class. In this work, we represent two types of

objects: Active Objects, which are instances of Active Classes, and Passive Objects, which

are instances of Passive Classes.

Message:

In the metamodel, a Message defines one specific kind of communication between instances

in an Interaction such as raising a Signal, invoking an Operation, creating or destroying an

Instance.

Stimulus

In the metamodel, a stimulus conforms to a Message. It is a communication, such as a Signal

sent to an Instance, or an invocation of an Operation. It has a sender, a receiver, and may

have a set of actual arguments, all being Instances.

Action:

An action is a specification of an executable statement that forms an abstraction of a

computational procedure that results in a change in the state of the model. It can be realized

by sending a message to an object or modifying a link or a value of an attribute. In the
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metamodel, an Action may be part of an Action Sequence and may contain a specification of

a target as well as a specification of the actual arguments.

Action Sequence:

An action sequence is a collection of actions. In the metamodel, an Action Sequence is an

Action, which is an aggregation of other Actions.

Call Action:

A call action is an action resulting in an invocation of an operation on an instance. In the

metamodel, the Call Action is an Action. The designated Instance or set of Instances is

specified via the target expression, and the actual arguments are designated via the argument

association inherited from Action.

Send Action

A send action is an action that results in the sending of a signal. Although calling an

operation is different than sending a signal, in this work both Send Actions Call actions are

considered to be the same type of action.

Create Action:

A Create Action is an action resulting in the creation of an instance of some classifier.
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Destroy Action:

A Destroy Action is an action results in the destruction of an object specified by the target

association of the Action.

Terminate Action:

A Terminate Action results in self-destruction of an object. The target of a Terminate Action

is implicitly the Instance executing the action.

Signal:

A signal is a specification of an asynchronous stimulus communicated between instances. In

this work, both signals and asynchronous stimuli are considered to be the same thing.

Argument:

An argument is an expression describing how to determine the actual values passed in a

dispatched request. It is aggregated within an action.

Time

In the metamodel, a Time defines a value representing an absolute or relative moment in time

and space. A Sending Time is associated with each action or sent message in this work for

determining the order of actions with respect to time.
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3.2.1.2 UML Defined Elements For Activity Diagrams

The following are the definitions of elements in the UML metamodel that appear in an

Activity diagram as described in [OMG-99].

Transition

A transition is a directed relationship between a source state vertex and a target state vertex.

Transition is a child of Model Element.

State Vertex

A State Vertex is an abstraction of a node in a state chart graph. In general, it can be the

source or destination of any number of transitions. State Vertex is a child of Model Element.

State

A state is an abstract meta-class that models a static situation, such as an object waiting for

some external event to occur, or a dynamic situation, such as the process of performing some

activity. The model element under consideration enters the state when the activity starts and

leaves it as soon as the activity is completed. State is a child of State Vertex.

Pseudo State

A pseudo state is an abstraction that includes different types of transient vertices that are used

to connect multiple transitions into more complex state transitions paths. Pseudo State is a

child of State Vertex. Here are some of the pseudo states used in this work:
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•An initial Pseudo state represents a default vertex that is the source for a single transition to

the default state of a composite state. There can be at most one initial vertex in a composite

state.

•The join pseudo state serves to merge several transitions coming from different source state

vertices. The transitions entering a join vertex cannot have guards.

•The fork pseudo state serves to split an incoming transition into two or more transitions.

The segments outgoing from a fork vertex must not have guards.

•The decision pseudo state is term defined in this work to represent both static and dynamic

conditional branch. It is a junction that can be used to split an incoming transition into

multiple outgoing transition segments with different guard conditions.

•The merge pseudo state is a junction that can be used to converge multiple incoming

transitions into a single outgoing transition representing a shared transition path

Composite State:

A composite state is a state that contains other state vertices (states, pseudo states, etc.). A

state vertex can be a part of at most one composite state. Composite State is a child of State.
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Sub-activity State:

A sub-activity state is a submachine state that executes a nested activity graph. The semantics

of a sub-activity state are equivalent to the model obtained by statically substituting the

contents of the nested graph as a composite state replacing the sub-activity state.

Action State

An action state represents the execution of an atomic action, typically the invocation of an

operation. An action state is a simple state with an entry action. The state therefore

corresponds to the execution of the entry action itself and the outgoing transition is activated

as soon as the action has completed its execution.

Object Flow State

An object flow state defines an object flow between actions in an activity graph. Operating on

an object by an action in an action state may be modeled by an object flow state that is

triggered by the completion of the action state. Generally each action places the object in a

different state that is modeled as a distinct object flow state.

Final State

A final State is a special kind of state signifying that the enclosing composite state is

completed. A final state cannot have any outgoing transitions. Final State is a child of State.
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Guard

A guard is a boolean expression that is attached to a transition as a control over its firing. If

the guard is true at its evaluation time, the transition is enabled; otherwise, it is disabled.

Guard is a child of Model Element.

Partition

A partition is a mechanism for dividing the states of an activity graph into groups. Partitions

often correspond to organizational units in a business model.

Swimlane

A swimlane maps into a Partition of the States in the Activity Graph. A state symbol in a

swimlane causes the corresponding State to belong to the corresponding Partition.

3.2.1.3 Loops and Complex Branching

The notation provided in the UML for specifying iteration and complex branching is very

limited. An iteration indicates that the message, as well as any nested messages, will be

repeated in accordance with the given expression. A condition represents a message whose

execution depends on the evaluation of a Boolean guarding condition. To model an iteration

in the UML, the sequence number of a message is prefixed with an iteration expression such

as *[i = 1..n], or just *  without specifying any details. To model a condition, the sequence

number of a message is prefixed with a guarding condition expression, such as (x >0). The

alternate path of a branch will have the same sequence number, but each path must be
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uniquely distinguishable by a non-overlapping condition. This notation is not sufficient to

clearly represent loops and branching in a Sequence diagram.

In [ITUT-99], there is a formal, more elaborate, definition for specifying loops and complex

branching in Message Sequence Charts (MSC). MSC is a structured, formal graphical

language that was the basis from which Sequence diagrams were derived. In [ITUT-99], it is

stated: “Simple scenarios (described by Basic Message Sequence Charts) can be combined to

form more complete specifications by means of High-level Message Sequence Charts”. It has

introduced the concept of Inline expressions, a high-level structural concept, that help

structure notions of alternatives, parallel composition and loops. In this work, we have used

these definitions to represent loops and complex branching in a Sequence diagram. The node

“Loop Action” was added to the Sequence diagram Schema as explained below. This is not

from the present UML metamodel, but there is a hope that new versions will include

something similar. The reason for hope is that the present UML 1.3 version already states in

words that “a connected set of messages may be endorsed and marked as an iteration”. This

will have to be supported at the metamodel level in future UML versions.

Loop Action:

Which is of type ACTION_SEQUENCE. It indicates that the loop or a complex branch is a

composite action, which can be further expanded in a separate Sequence diagram.

Both Complex Branching and Parallel Compositions can be represented via an Action

Sequence node. In this work, we assume that if more than one Action or Action Sequence has

the same Sending Time value, this indicates a case of either branching or parallel
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composition. For simplicity, if the Actions or Action Sequences with the same sending time

value have Guard Conditions attached to them, they are considered alternatives of conditional

branching; otherwise, they are considered to be happening in parallel.

According to [Booch-99], in activity diagrams, the effect of iteration can be achieved by

using one action state that sets the value of an iterator, another action state that increments the

iterator, and a branch that evaluates if the iteration is finished. This technique is used in this

work to transform loops in Sequence diagrams into loops in Activity diagrams.

3.2.2 Transactions And Productions

As described before, all elements of Sequence diagrams and Activity diagrams are

represented in PROGRES in the form of Nodes and Edges. There are two kinds of nodes:

Node Types and Node Classes. Node Types are the ones that determine the static properties

of their node instances, while Node Classes are definitions of common Node Type properties.

The relationship between node types and node classes is similar to the relationship between

derived classes and their abstract base classes. There are two types of edges as well: edges

that define intrinsic relationships, which are explicitly defined between sources and targets,

and edges that define derived relationships, which define a path expression between a source

and a target that are not directly connected.

3.2.2.1 Production Rules For Creating Sequence Diagrams

As mentioned before, the PROGRES program developed in the thesis is a standalone

program, not connected to a UML tool. The “input graph” which will be transformed into an

“output graph” has to be entered first. We have defined a set of APIs under the form of
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PROGRES transactions that can be used to generate the input graph for this phase of the

transformation. The list of APIs is given below.

• CreateNewInstance( InstanceName, TaskName : string ; IsActive
: boolean ; out NewInst : INSTANCE)

(*Creates a new Instance. IsActive determines if it is an
Active_Object or Passive_Object. Returns a handle to the new
instance*)

• CreateMainActionSequence( ActionSequenceName : string ; out
MainActionSequence : ACTION_SEQUENCE)

(*Creates the main action sequence, the one enclosing all other
actions and action sequences. Returns a handle to the main action
sequence*)

• CreateDynamicNewInstance( fromInst : INSTANCE ; InstanceName
: string ; IsActive : boolean ; TimeVal : integer; LocalAS :
ACTION_SEQUENCE ; ExpCycles : integer ; out NewInst :
INSTANCE)

(*Creates a new instance dynamically. Returns a handle to the
new instance*)

• DestroyDynamicInstance( fromInst, toInst : INSTANCE ; TimeVal
: integer ; LocalAS : COMPOSITE_ACTION ; ExpCycles : integer)

(*Destroys an instance dynamically*)

• TerminateInstance( theInst : INSTANCE ; TimeVal : integer ;
LocalAS : COMPOSITE_ACTION ; ExpCycles : integer)

(*Terminates the calling instance theInst*)

• CreateLocalAction( InstId : INSTANCE ; actionName, OptGuard :
string ; TimeVal : integer ; LocalAS : COMPOSITE_ACTION;
ExpCycles : integer)

(*Creates a local action. No message is dispatched*)

• CreateActionSequence( InstId : INSTANCE ; actionName,
OptGuard : string ; TimeVal : integer ; LocalAS :
COMPOSITE_ACTION ; ExpCycles : integer ; out ResultASAction :
COMPOSITE_ACTION)

(*Creates an action sequence. Returns a handle to the new action
sequence*)

• CreateLoopAction( InstId : INSTANCE ; LoopId : string ; LoopCount,
TimeVal : integer ; LocalAS : COMPOSITE_ACTION; out ResultLoop :
COMPOSITE_ACTION)

(*Creates an loop action. Returns a handle to the new loop
action*)
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• CreateSyncCall( FromInstId, ToInstId : INSTANCE ; MsgName,
OptArg : string ; ArgSize : integer; OptGuard : string ;
TimeVal : integer ; LocalAS : COMPOSITE_ACTION ; ExpCycles :
integer)

(*Createa a synchronous call between two instances*)

• CreateAsyncCall( FromInstId, ToInstId : INSTANCE ; MsgName,
OptArg : string ; ArgSize : integer; OptGuard : string ;
TimeVal : integer ; LocalAS : COMPOSITE_ACTION ; ExpCycles :
integer)

(*Creates an asynchronous call between two instances*)

• CreateReplyCall( FromInstId, ToInstId : INSTANCE ; MsgName,
OptArg : string ; ArgSize : integer; OptGuard : string ;
TimeVal : integer ; LocalAS : COMPOSITE_ACTION ; ExpCycles :
integer)

(*To indicate a reply to a synchronous call*)

• Sleep( FromInstId : INSTANCE ; TimeVal : integer ; LocalAS :
COMPOSITE_ACTION ; ExpCycles : integer)

 (*To indicate a delay without doing any work*)

Here is an example of how PROGRES generate a Synchronous Call in a Sequence diagrams

using its production rules (illustrated in Figure 18). This production rule is called when there

is a call action between two active objects, where the message exchanged is of type

“Synchronous Call”. The left had side (LHS) of the production has two nodes: fromInstance

and toInstance. This means that the pre-conditions for performing this production rule is to

find the match for the given two instances in the current PROGRES generated set of nodes.

The right hand side (RHS) has five nodes, two of which match those in the LHS. This means

that the effect of the production rules is the generation of the remaining three nodes and all

the added edges while keeping the LHS nodes. The added nodes represent the call action, the

time of the call action, and the message dispatched as a result of the call action, namely a

synchronous call. The added edges establish the relationships between these nodes. For
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example, the fromInstance becomes the Sender of the synchronous call, while the toInstance

becomes the Receiver of the synchronous call.

The Sync_Call node is assigned msgName as its name, the Sending Time node is assigned the

input parameter TimeVal as its value, and the CallAction is given the type

SyncCallActionType as illustrated by the transfer section. The return value of this production

is the CallAction node itself.

production CreateBasicSyncCall(fromInst, toInst : INSTANCE ; 
msgName : string ; TimeVal : integer ; out ActionId : ACTION) =

`2 = toInst`1 = fromInst

::=

transfer 3’.Name := msgName; 
         4'.Type := "SyncCallActionType"; 
         5'.Value := TimeVal; 
         return ActionId := 4'; 
    end; 

2' = `21'= `1

3' :Sync_Call

4' : CallAction

5' : SendingTime

ReceiverSender

Dispatches
Action_Time

Figure 18: CreateBasicSyncCall Production Rule.
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3.2.2.2 Production Rules For Transforming SDs To ADs

After creating the input graph that represents a set of Sequence diagrams, the PROGRES will

transform the actual conversion of the graph into the output graph. The transformation from

Sequence diagrams into Activity diagrams is done using production rules. Figure 19

illustrates one of the production rules used in this transformation, namely “Transform-

SyncCallNoArg”.

In this production rule, PROGRES looks for the pattern indicated in the LHS of the

production. It looks for the sender thread and the receiver thread, along with the local action

that caused the dispatch of the synchronous message. An arrow “within” the sender thread

and the receiver thread indicate that both threads are running in their own flow of control and

are not joined with another thread, blocked or terminated for any reason. Unfortunately, if

PROGRES finds several matching pre-condition patterns in its running instance, it chooses

one randomly. It is up to the programmer to take advantage of this fact, for instance in depth-

first searches, or to make sure that there is only one pattern in a running instance for

PROGRES to chose from.

'6 = ReceiverSL '5 = SenderSL '4 = LocalAction

'8 : Arrow '7 = LocalArrow

WithinWithin

production TransformSyncCallNoArgument( LocalAction : ACTION 
; SenderSL, ReceiverSL : Swimlane ; LocalArrow : Arrow ; 
OpProb : Real) = 

::=
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transfer 12’.Name := ‘6.Name & "." & ‘4.Name; 
               10’.Name := "JOIN " & ‘5.Name & " and " & ‘6.Name;
               9’.Name := ‘4.Name; 
               9’.SL := ‘5.Name; 
               11’.SL := ‘6.Name; 
               12’.Prob := OpProb; 
               10’.Prob := OpProb; 
    end; 

6` = '6 4' = `4 5' = `5

11' : Arrow

10' : Join

8' = `8

Within

9' : Arrow

IntoInto

12' : ActionState

Outof

Outof

Entry_Action

7' = `7

Into

Figure 19:  TransformSyncCallNoArgument Production Rule

When PROGRES finds the pattern matching the pre-condition, it generated the pattern in its

production’s RHS. In this example, an Action State node is created, with the action causing

the message set as its entry action. Also a join state is created to join the sender thread and

the receiver thread, and the sender thread is blocked waiting for a reply. Having no Arrow

“within” the sender swimlane indicates this blocking.
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Another example is illustrated in Figure 20, which shows the “TransformDestroyAction”

production rule. The sender thread in this case attempts to destroy the receiver thread by

sending a “Destroy Message”. When executing such a production rule and after finding the

pre-condition pattern, an Action State is created in the sender swimlane, with the Destroy

Action set as its entry action. A final state is created in the receiver swimlane, and the arrow

“within” the receiver swimlane is directed to it. No arrows can be going “out of” the final

state, which means that the thread has terminated.
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'2 = ReceiverSL '1 - SenderSL '4 = LocalAction

'5 : Arrow '3 = LocalArrow

WithinWithin

production TransformDestroyAction( LocalAction : ACTION ; SenderSL, 
ReceiverSL : Swimlane ; LocalArrow : Arrow ; OpProb : Real) 
    = 

::=

      transfer 7’.Name := ‘4.Name & " " & ‘2.Name; 
               8’.Name := "END " & ‘2.Name; 
               6’.SL := ‘1.Name; 
               7’.Prob := OpProb; 
    end; 

8` : FinalState 1' = `1 4' = `4

5` = '5 6' : Arrow

7' : ActionState

3' = `3

2' = `2

Into Within

Outof

Action

Into

Figure 20: TransformDestryAction Production Rule.
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3.2.2.3 Transformation Algorithm

After creating a Sequence diagram (or a set of nested Sequence diagrams), the following

algorithm is followed to transform all indicated messages and actions into an Activity

diagram (or a set of nested Activity diagrams). The indicated Sending Time for each action is

used to order these actions. Here is a simplified pseudo code of this algorithm:

• Get Main Action Sequence
• Transform All Instances Into Initial States
• Get All Times in Action Times Set
• When not empty ( Action Times Set )

o Loop
o Get Min Time ( Action Times Set )
o If one action in an Action Time

§ Then Transform One Actions
o If mode than one action in an Action Time

§ Then if these actions have Guard Conditions
• Then transform as Alternative Actions
• Else transform As Parallel Actions

o End Loop
• Repeat algorithm for all nested Action Sequences

Note that the time of actions indicate the partial ordering of actions. The Action Times Sets

holds the time values (i.e. order) of actions that occur in an action sequence.

The result of executing this algorithm is the generation of an equivalent set of Activity

diagrams to the input set of Sequence diagrams that will be used in the next phase of

transformation into LQN Models.

3.2.3 A Simple Example

This section explains the first phase of transformation via a simple example. In this example,

we have two active objects, a client and a server. The client communicates with the server by
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sending a synchronous message. When the server receives this message, it does some work,

then sends a reply back to the client. The client is blocked until the server sends the reply.

Three actions are identified in this example. The first action, a Call Action, is performed by

the client and has a time value = 1. This call action dispatches a synchronous call, whose

sender is the client and whose receiver is the server. The second action, a Local Action, is

performed by the server, and has a time value = 2. This local action does not dispatch any

message. If some expected number of cycles is associated with this amount of work, it will be

assigned to the action and used later in calculating the service time. The third action, a Call

Action, is performed by the server, and has a time value = 3. It dispatches a reply message

whose sender is the server and whose receiver is the client. The following figure illustrates

the sequence diagram that describes this example, along with its graph representation.

Client Server

Work

Msg1

Msg1_Rep

Sequence Diagram

Call Action

Time
Value = 1

Sync_Call
Name = Msg1

Action Time

Dispatches

Sender

Receiver

Performs

Local Action
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Figure 21: Simple example, Phase1 input graph
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After applying the transformation rules, the input graph is transformed to an output graph that

represents an activity diagram. The two active objects are transformed into two initial states,

each belonging to a different swimlane, namely the client thread and the server thread. An

arrow is going out of each initial state. The first action, the call action, is transferred into a

join state followed by an arrow. The two arrows from the two swimlanes join by going into

the join state. The second action, the local action, is transformed into an action state, whose

entry action is the local action. An arrow is going out of this action state. The third action, the

reply action, is transformed into a fork state, where two arrows are going out of it, each

belonging to a different swimlane. The following figure illustrates the output graph of phase

1, along with the Activity graph that it represents.
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Figure 22: Simple Example, Phase1 output graph
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More examples of the first phase of transformation can be found in Chapter 5 “Case Studies”

(see for example Figure 39) as will be explained later.
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C h a p t e r  4

4 UML TRANSFORMATION – PHASE 2

4.1 Conceptual Description

4.1.1 LQN models

The layered Queuing Networks (LQN) is a model of a network of tasks running on

processors and communicating via a send-receive-reply pattern [Woodside-89][Woodside-

95][Franks-95]. If the sender of a message is blocked waiting for a reply, we call this pattern

of communication a rendezvous, an RPC, or a synchronous message. If the sender of a

message does not wait for a reply, we call this asynchronous messaging.

In any LQN model, the two basic building blocks are tasks and requests. A task is an entity

that models a software process execution demand and executes some work if its processor is

available. Each task may have different classes of workloads on the processor, which can be

represented by having several entries. Each entry provides a different service pattern and a

different workload; it has its own service time and visit ratio to other server tasks. All entries

of one task share a common task queue, which uses a first-come first-served queuing

discipline.

The execution of an entry after receiving a message may be broken into more than one phase.

The first phase ends when the reply is sent back and the caller is unblocked. The second

phase ends when the entry is done processing the request. There might be a following third

phase in which the entry forwards the request to another entry in another task.
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An entry can be further decomposed into activities if more details are required to describe its

execution scenario. This is typically required when entries have fork and join interactions.

(See section 2.2.1.3 for more details about activities). Execution of a sequence of activities

may branch into parallel concurrent threads of control, or choose randomly between different

paths. In this work, Intra-task fork-join, where the fork and join take place within the same

task, is used in one of the architectures of the case study, namely the P-ORB (see section 5.4

for more details).

A communication request from one task (called a client) to another (called a server) can be

synchronous, asynchronous, or forwarding. The client is blocked when sending a

synchronous request until the server sends back the reply. An asynchronous request is a

request where the client does not block waiting for a reply. A forwarding request is similar to

a synchronous request from the client’s point of view. However, the server does not send

back the reply to the client. Instead, it forwards the request to another server, and then, it is

free to do other work. After the second server finishes the request, it sends back the reply to

the original client instead of sending it to the first server. The client is blocked until it

receives the reply. There can be more than two servers in the forwarding chain.

A server may be a single server, a multi server or an infinite server. A single server is

modeled as a single task, which handles only one request at a time. A multi server is modeled

as a number of tasks sharing one processor, and a common queue for incoming requests. A

replicated server, however, is similar to a multi-server, except that each task has its own

processor and request queue. An infinite server is modeled as an infinite number of tasks on

an infinite number of processors that can handle an infinite number of requests.
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4.1.2 The Logical Mapping

Flows of control and Messages exchanged among them in the UML notation map to Tasks

and communication Requests in LQN.  In UML, each independent flow of control is modeled

as an active object, which can independently initiate and receive control activities (messages

or signals). An Active object is an object that owns a process or a thread. A process is a

heavyweight flow that can execute concurrently with other processes, whereas a thread is a

lightweight flow that can execute concurrently with other threads within the same process

[Booch-99].

Objects interact by passing messages from one to the other. If a message is passed from one

passive object to another, such an interaction is nothing more than simple invocation of an

operation, assuming that there is only one flow of control passing through these objects at a

time. If a message is passed from one active object to another, we have inter-process

communication, which might be either a synchronous call of an operation or an asynchronous

send of a signal or call of an operation. If a message is passed from an active object to a

passive object, it can be viewed as a thread using a resource. In this case, mechanisms for

safe resource sharing among several active objects must be considered. If a message is passed

from a passive object to an active object, it has the same semantics as an active object passing

a message to an active object, since every flow of control is eventually rooted to some active

object [Booch-99].

4.1.3 Aim of Phase 2

In phase 1, we obtain Activity diagrams that identify flows of control and inter-process

communications. The aim of phase 2 is to transform software representation from Activity
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diagrams into an LQN model. In phase 2, flows of control are transformed into tasks and

inter-process communications are transformed into requests among these tasks.  In this work,

it is assumed that a task is a component in UML that contains only one active object

representing its flow of control, and may contain zero or more passive objects as well, all

belonging to one and the same swimlane. In a more general case, other criteria can be used to

decide how many objects, active and passive, belong to a swimlane. Information of

components and their contained objects are depicted in UML in Component diagrams and

Deployment diagrams.

However, there are other performance parameters that must be specified as the input of an

LQN models. For example, the number of processors in the system, how they are linked

physically, and how tasks are allocated on them must be specified. The speed of processors

and physical communication links and the multiplicity of tasks and processors are also input

parameters. For each service provided, an average service time must be provided in an LQN

model as well.

Moreover, it is very useful to know in advance the relationships between tasks in

collaboration. For example, when interpreting an asynchronous message between two tasks,

it would be very helpful to know who is the server and who is the client in that collaboration.

With minimal effort, we can know if this message is a request or a reply. If the two tasks

were in a different collaboration, a “pipeline” collaboration for instance, the interpretation of

the message might be totally different.
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Some of this information is extracted from UML specifications, but from diagrams other than

Sequence and Activity diagrams. For example, Deployment diagrams show processing nodes

and how they are liked together and Component diagrams show objects to components

allocation.  Moreover, one has to add quantitative performance annotations to these diagrams,

as for example processors and links speed as well as the multiplicity of both processors and

tasks. From Collaboration diagrams, the relationship between objects could be extracted and

used in interpreting communication requests among tasks. This type of work was done in

previous masters thesis [Qang-99]. Extracting information from Deployment, Component

and Collaboration diagrams is not the main focus of this work; therefore, very simple

methods were added for extracting the needed information without deep analysis done on the

metamodel for these diagrams. The following sections in this chapter explain how Phase 2

transformation is done.

4.2 PROGRES Graph Transformation

The schema section describes how LQN models elements are represented in PROGRES

schema. The following sections explain the rules and the algorithms used to transform

PROGRES representation of Activity diagrams into an LQN model input file.

4.2.1 The Schema

This part of the schema includes the elements that constitute an LQN model. Some of the

nodes of the schema represent input parameters needed for any LQN model. Other nodes

represent the relationship that might exist between objects in a collaboration. This

information could be extracted from notes attached to UML diagrams, such as Component,
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Deployment, and Collaboration diagrams. Figure 23 illustrates these elements and the

relationship between them.

Processor

A processor is the physical node on which one or more tasks may run.

Task

Tasks represent software components, which may execute concurrently.

Entry

Entries differentiate service demands at the tasks.  A task may have several entries, one for

each service it provides.

Activity

Activities are components that represent the lowest level of detail that are used to model

concurrent processing or alternate processing within a task.

Phase

Phases denote different intervals of services within entries.

Arc

Arcs represent requests for service made from entry to entry through send-receive-reply

message interactions.
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Figure 23: “PROGRES Schema for LQN elements”

Multiplicity:

A Multiplicity defines a non-empty set of non-negative integers.  It indicates the number of

copies that exist of a task (component) or a processor (node).
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Service Time

The mean service time expected for each service provided by a server. In this work, it is

given in terms of the number of expected processing cycles. It can then be multiplied by the

processor’s speed on which the server task is allocated (how many cycles per msec) to obtain

the exact time.

Bytes Transferred

The size of the message transferred in bytes.  This is used to calculate the communication

delay, given a link speed.

Processor and Link Speed

The speed of the physical processor given by the number of cycles per msec, and the link

speed given by the number of bytes transferred per second.

Reply Arc

This arc is not required to be explicitly shown in an LQN model. However, it was added to

account for the communication delay when sending a long reply message.

Client-Server

Setting this relationship between two active objects indicates that the messages exchanged in

between them can be interpreted in the context of a client-server relationship.
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Forwarding

Setting this relationship between three active objects indicates that the messages exchanged

in between them can be interpreted in the context of a client-broker-server relationship.

4.2.2 Transactions and Productions

In section 3.2.2.1 the APIs for generating the input graph were introduced. In section 4.2.2.1,

the transactions used to set up the physical configuration are described. The productions used

in the transformation from Activity diagrams to LQN models are described in section 4.2.2.2.

Section 4.2.2.3 describes how an LQN input file is generated as an end result of this

transformation.

4.2.2.1 APIs for creating configurations

Using the following APIs, we can describe the physical configuration of a software system.

These APIs can be also used to indicate task-to-processor allocation (information extracted

from deployment diagrams), as well as object-to-object relationship in any collaboration

(information extracted from activity diagrams). Only two relationships are used in this work:

Client-Server and Forwarding relationships.

• transaction NewProcessorNode( ProcessorId : string ; Multiplicity :
integer ; SchedulingFlag, ProcessorSpeed : string)

(*Create a new processor node. Indicate processor multiplicity,
scheduling flag, and speed*)

• transaction NewTaskComponent( TaskId, ProcessorId : string ;
Multiplicity : integer)

(*Create a task and allocated on this processor. Indicate Task
multiplicity*)

• transaction LinkProcessorNodes( Proc1Id, Proc2Id, LinkSpeed :
string)

(*Create a physical link between the two processors. Indicate the link
speed*)
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• production AddClientServerRelationship( ClientName, ServerName :
string)

(*Set the relationship between two objects to be a client-Server
relationship*)

• production AddForwardingRelationship( ClientName, ForwarderName,
ServerName : string)

(*Set the relationship between three objects to be a client-broker-
server relationship*)

4.2.2.2 Production Rules

There are many production rules used in this phase of transformation to transform Activity

diagrams into LQN models. We have selected only some of them for the purpose of

illustration.

The first rule, “AddNewEntryToTask”, is called whenever a new entry is needs to be added

to a task. This is detected when a server receives a new communication request that it didn’t

receive before. Each task has one entry designated as the current entry. When a new entry is

added, it becomes the task’s current entry.

`1 = TaskNode `3 : EntryCurrent_Entry

production AddNewEntryToTask( TaskNode : Task ; EntryId : string) = 

::=
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1' = `1

2' :Entry

Current_Entry

transfer 2'.Id := EntryId; 
                  1'.EntryCount := (1 + `1.EntryCount); 
end; 

3' = `3Owns

Figure 24:"AddNewEntryToTask" production rule

The new entry gets the passed entry ID and the task’s entry count is incremented by one.

The “CreateArc” production rule adds an arc between two entries (or activities) whenever a

request is detected. The node “CallArc” is created and passed back as a return value.

production CreateArc( Id, Type : string ; fromEntry, toEntry : 
ENTACT_NODE ; ph1Visits, ph2Visits, ph3Visits : Real 
                             ; out LocalArc : CallArc) 
      = 

`1 =fromEntry `2 =toEntry

 ::=
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1' = `1 2' = `2

3' :CallArc

Out

In

         transfer 3'.ArcId := Id; 
                  3'.ArcType := Type; 
                  3'.Phase1Visits := ph1Visits; 
                  3'.Phase2Visits := ph2Visits; 
                  3'.Phase3Visits := ph3Visits; 
         return LocalArc := 3'; 
      end; 
Figure 25: "CreateArc" production rule

A unique ID is given to each arc. The “Type” indicates whether it is a synchronous,

asynchronous or a forwarding arc. The arc is created with a visit ratio calculated for each

phase.

The following section presents the global picture of how this transformation is done.

4.2.2.3 Algorithm for generating LQN models

Generating an LQN performance model is done in three main stages. In the first stage, the

processors, the links and the tasks in the system are identified and created. This information is

directly given to the PROGRES program using the API “ConfigurePlatform” as will be

illustrated in Chapter 5”Case Studies” later (see as an example Figure 36). In the second

stage, as will be explained in this section, the transformation algorithm is applied to the
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generated Activity diagram that resulted as output from phase 1 of the transformation. During

this stage, entries and activities within a task are identified and generated, as well as arcs

between these entries and activities. The final stage of creating the LQN performance model

is writing the LQN output file and figuring out the service time of each entry and activity, as

well as the arcs and their visit ratios. This stage is explained in the next section.

The transformation algorithm traverses the resulting activity graph that consists of one or

more action sequences. It starts with the initial states in each action sequence. It calls

“TraverseState” for every initial state. The transformation algorithm runs in two iterations. In

the first iteration, it determines the number of entries or activities each task has. In the second

iteration, it determines the arcs that go from one entry (or activity) to another, representing

communication requests. The reason for this design is the non-deterministic nature of

PROGRES. We cannot guarantee that the thread of control of the initiator of a request is

going to be traversed before the receiver. If we are traversing the receiver before the initiator,

and we detect that a request has been received, we cannot determine from which entry of the

initiator this request has been sent. Here is the algorithm for traversing an Activity Graph.

• Traverse Activity Graph
• Get All Action Sequences
• Loop For all Action Sequences

o Get All Initial States
o Loop for all Initial States

§ TraverseState ( InitialState, false )
o end
o Reinitialize Transitions
o Loop for all Initial States

§ TraverseState ( InitialState, true )
o end

• end
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Any activity graph consists of a set of states followed by a set of transitions followed by a set

of states until final states are reached. That’s why “TraverseState” ends up by calling

“TraverseTransition” for all its outgoing transitions, which in turn calls “TraverseState” for

the transition’s following state. This recursion ends when the final state is reached. Here is

the pseudo code for “TraverseTransition”:

TraverseTransition( LocalTrans : TRANSITION) 
    choose 
     when (LocalTrans.Traversed = true) 
       then skip 
       else  
           LocalTrans.Traversed := true 
           GetStateOfTransition ( LocalTrans,out LocalState) 
           TraverseState (LocalState) 

end 

Figure 26: "Pseudo-code for TraverseTransition"

When traversing a state, one of four cases is detected. In case 1, the final state is reached.

Upon reaching this case, traversing stops and continues where it has left before. If case 2 is

reached, we have no transitions going out of the state, while it is not a final state. This means

that the thread of control has blocked. In case 3, one or more transitions are outgoing from

the current state. If there is only one transition going out, then the normal thread of control is

followed. If there is more than one transition going out of the state, then we have a forking

state (whether conditional or non conditional state) and outgoing transitions are traversed one

by one. Here is the pseudo code for “TraverseState”:
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TraverseState( LocalState : STATE_VERTEX) 
    GetTransitionsOfState ( out TransSet ) 
    Choose 
       // Case 1: We have reached the final state 
       when (LocalState is instance_of FinalState) 
       then skip 
       else 
       // case 2: Thread is blocked 
       when empty ( TransSet ) 
        then  
            TranslateBlockingState                           
        else 
        // case 3: thread is not blocked 
        when not empty ( TransSet ) 
        then 
          choose 
             when (OnlyOneTransitionInTransSet) 
             then 

  // case 3.1: One thread of control after state 
  TranslateNormalState 

               TraverseTransition ( LocalTrans ) 
             else 

// case 3.2: Thread has forked to more than one thread 
of control 

               TranslateForkingState 
              for_all trans = elem ( TransSet ) 
                 TraverseTransition ( trans ) 

               end 
             end 
         end 
end; 

Figure 27:"Pseudo-code for TraverseState"

In all cases, a test for a key state is done. A key state is a Fork, a Join, a Decision or a Merge

state. When a key state is found, a check is made to see if we are in one of the four situations:

(a) Is the traversed thread sending a message? (b) Is it sending a reply? (c) Is it receiving a

message? or (d) is it receiving a reply? A check to the established relationships between the

active objects is done to determine the sending receiving logic here. Finally, the appropriate

translation of adding a new entry or a new arc is done accordingly.
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Here are the rules followed when generating the LQN model:

• Each task starts with only one entry. A new entry is added to the task if a new type of

a communication request is received. If a request is received more than once with the

same message ID, it is considered to be one request, with a visit ration = 2.

• All entries start in Phase 1. When a server sends a reply back to the client, or forwards

it to another server, it moves to the second phase within the entry. Phase 3 is left for

future enhancement in case other relationships are added, such as the “pipeline”

relationship.

• Activities are detected if a conditional or non-conditional branching state is

encountered. In the case of conditional branching, an “OrFork” is used to connect

alternate activities. A probability for each branch is calculated based on the given

guard condition. An “OrJoin” is used to end the conditional branching, representing a

“merge” state in Activity diagrams.

• In the case of non-conditional branching, an “AndFork” is used whenever a “Fork”

state is used for concurrency. Similarly, and “AndJoin” is used to end the

concurrency, representing a “Join” state in Activity diagrams. Note that in Activity

diagrams, a “Fork” state might as well be used in the case of a server sending a reply.

In such a case, no concurrency is in place.

• There are two types of arcs: Call arcs and Reply arcs. A Call arc is generated when a

communication request is detected between an entry (or activity) and another entry
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(or activity). A Reply arc is generated when a reply is detected. The visit ratio for

each arc is calculated per phase.

The following graph illustrates the algorithm’s two iterations. In the first iteration, a new

entry is detected when a new request is received, while a new phase is detected right after a

reply is sent. In the second iteration, communication arcs are detected when their

corresponding patterns are matched while traversing the graph.

Client Thread Server Thread

Work

CleanupSend Again

Work Again

Sync Call

Reply Call

Async Call

Client Thread Server Thread

Work

CleanupSend Again

Work Again

Entry1
Phase1

Entry2
Phase1

Entry1
Phase2

Iteration1: Entries and Phases Iteration2: Arcs

Figure 28: Extracting Entry, Phase and Arc information

Calculating The Service Time:

Service Times for entries and activities are calculated per phase. Each message or action

entered in the Sequence diagram has an expected number of cycles on a processor. These
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numbers of cycles are assigned to action states in the activity diagram. Action states in

turn are assigned to entries or activities. The sum of the expected number of cycles in an

entry (or activity) for all its assigned action states is multiplied by the probability of its

occurrence and then divided by the processor speed of its task to obtain the entry’s (or

activity’s) expected service time. The time spent in transferring messages is also added to

the service time. For all arcs going out of the entry (or activity), the length of the message

carried along on that arc is multiplied by the visit ration of that arc and then divided by

the speed of the link that carries that message.

The following equation summarizes the way service times are calculated per entry (or

activity) showing the two components: “pure” CPU execution and CPU overhead due to

sending messages:

∑
∑

+

=

LinkSpeedVisitRatioOutArcgthMessageLenOutArc

edocessorSpeobabilityeActionStatCycleseActionStatePerEntryServiceTim

/.*.

Pr/Pr.*.

Out arcs include messages sent to other servers as well as replies sent back to clients. If

the two tasks are co-allocated on a single processor, the overhead due to sending

messages is not included as part of the CPU overhead.

Only the assignment of action states to entries and activities is done in this stage of

transformation. Calculating the expected service time of entries and activities per phase is

actually done in the next stage of transformation, as will be explained in the next section.
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Correctness of the Transformation:

Many test cases were developed for testing each possible transformation and compare the

output with the expected output in order to verify the correctness of the transformations. Test

cases covered creating active instances, passive instances, synchronous calls (with and

without arguments), asynchronous calls (with and without arguments), reply calls (with and

without arguments), local actions, create actions, destroy actions, terminate actions, and

loops. All previous actions were tried alone, in a conditional branch, and in a non-conditional

branch, and were performed once on an active instance and another time on a passive

instance.

4.2.2.4 Writing the LQN output file

After traversing all action sequences in the system, the output LQN model file is generated.

This is done using the following transaction:

      transaction GenerateLQNFile = 
         use ret : integer 
         do 
              ret := openFile ( "test.lqn" ) 
            & WriteHeaderSection 
            & WriteProcessorSection 
            & WriteTaskSection 
            & WriteEntrySection 
            & ret := closeFile ( 1 ) 
         end 
      end; 

Figure 29: "GenerateLQNFile transaction"

The first transaction opens the output file. The standard header section is then written to the

output file. A query is done to get all the processors in the system, then a processor record is
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filled with each processor’s information. Finally, the whole record is written to the output

file, creating the processor section.

A similar procedure is followed when writing the “Task” section. A query is done to get all

tasks in the system, then a task record is filled with each task’s information. If a task does not

receive any incoming requests, it is marked as a reference task. The whole tasks record is

then written once to the output file, creating the task section. Here is the code of the

“writeTaskSection” transaction:

transaction WriteTaskSection = 
use TaskSet : Task [0:n]; E_List, T_Ref, T_Proc : string; 
        ret : integer 
  do 
    FindAllTasks ( out TaskSet ) 
  & for_all TElem := elem ( TaskSet ) 
    do 
      GetEntryList ( TElem, out E_List ) 
    & GetTaskReferenceFlag ( TElem, out T_Ref ) 
    & GetTaskProcessor ( TElem, out T_Proc ) 
    & ret := updateTaskRecord ( TElem.TId, T_Ref, E_List, T_Proc, 
TElem.TMultiplicity ) 
    end 
  & ret := writeTaskRecord ( 1 ) 
 end 
end; 

Figure 30: "writeTaskSection transaction"

In “writeEntrySection”, more work is done to write both the entry section and the activity

section of the LQN file. After finding all entries and activities in the system, the service time

per phase is calculated for each entry and activity and the entry record is updated. As

explained in the previous section, action states are assigned to entries or activities. Their

expected number of cycles on a processor, along with that processor speed, is used to



98

calculate the service time for an entry or activity. The set of arcs in the system is also found,

and written to an arc record, with its visit ratio per phase. If a message is carried along with a

call or reply arc, the message transformation time is also calculated using the message size

and the given link speed on which this message was transferred. It is then added to the service

time of the sender task entry. The final step closes the output file.

4.2.3 A Simple Example (cont.)

Continuing with the simple example, introduced in section 3.2.3, the second phase of

transformation is described here. The output graph is phase 1 is used as the input graph of

phase 2 of the transformation, along with other graphs that represent collaboration and

deployment diagrams. It is given that there is a client-server relationship between the client

active object and the server active object. This fact is represented with the node

CLIENT_SERVER that links between the Client_Thread and the Server_Thread swimlanes

in the PROGRES input graph of phase2.
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Client Thread Server Thread

CLIENT_SERVER
Relationship

Client Server

Client Server

Client_Server

Client Server

Collaboration Diagram
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Client
Task

P2

Server
Task

Deployment Diagram

Processor P1 Processor P2

Task T1 Task T2

Linksupports supports

communicates

Collaboration Input Graph Deployment Input Graph 

Figure 31: Simple Example, Collaboration and Deployment information

Also it is given from the deployment diagram that the client and the server are parts of

different components, each supported by different processor nodes. This fact is represented in

the input graph of phase two via two processor nodes, communicating through a link, that

support two different tasks. Figure 31 illustrates the collaboration and the deployment

diagrams, with their corresponding graphs.

The resulting graph from Phase1 transformation, together with the graphs representing

deployment and collaboration information, constitutes the input graph of phase 2. After

applying the transformation rules, and extracting the entries, phases and arcs information, the

following graph is the result, which represents the corresponding LQN model.
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Figure 32: Simple Example, Phase2 output graph

The two tasks represent the two active threads of control. Each task has a default entry. The

join state is transformed into a call arc between the two entries, while the fork state is

transformed into a reply arc. Any work done in the Action state is transformed into some

service time assigned to the entry of the task representing the server thread (namely T2_e1).

The resulting graph represents an LQN model for the simple example shown on Figure 32.

Note that reply arcs do not show on the LQN model.

More examples of the second phase of transformation can be found in Chapter 5 “Case

Studies” (see for example Figure 49) as will be explained later.
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C h a p t e r  5

5 CASE STUDIES

5.1 CORBA-Based Client Server Study

In a study that investigates the relative performance of different CORBA-based client-server

architectures, based on a commercially available CORBA compliant ORB software called

ORBLine, [Abd-97][Abd98a, b], three architectures were designed and implemented, namely

the Handle-driven ORB (H-ORB), the Forwarding ORB (F-ORB) and the Process Planner

(P-ORB). The relative performance of these architectures was investigated under different

workload conditions. The purpose of this chapter is to generate automatically the LQN

models from UML specifications of the system and see if it gives acceptable results. A more

detailed performance analysis of these systems by using “hand-built” LQN models was done

in [Petriu-00a] (the thesis author is a co-writer of [Petriu-00a]) The models that were

developed in [Petriu-00a] are equivalent to the models developed in this case study.

5.1.1 Why This Study Was Chosen

The distributed nature of the architectures studied in [Abd-97] and [Abd-98a,b] very well

suits the nature of a problem solved by a Layered Queuing Network model. The three

architectures studied are interestingly different in nature, which implies that the automation

process will face three different challenges to solve.  Furthermore, the measurements taken

on the real system serve to validate the correctness and the accuracy of the models resulting

from the automation process.
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5.1.2 The Three Architectures

In [Abd-97], the case study was inspired from the model of a banking system. The bank

offers two types of accounts, a Checking account and a Savings account. The bank maintains

two independent classes of servers, namely Class A for checking accounts and Class B for

saving accounts. There are two identical class A servers, A1 and A2, and two identical class

B servers, B1 and B2. A client request asks for the current balance of both of his accounts.

The request processing steps will vary depending on the underlying architecture, whether it is

the H-ORB, the F-ORB or the P-ORB.

The Client Request Path is the path a request takes starting from the client node, passing

through all intermediate nodes, getting processed in the sought server on the destination node

and all the way back to the originating client. Each client requires one service from both of

the server classes A and B and these services are assumed to be independent of each other

and can be invoked concurrently.

The client request path varies depending on the underlying ORB architecture. In the H-ORB,

the client gets the address of the server from the agent and communicates with the server

directly. In the F-ORB, the client request is forwarded by the agent to the appropriate server.

The server then returns the results of the computations to the client. In the P-ORB, the agent

combines the two requests, forwards them concurrently to both servers, waits for the arrival

of the two results, then combines the two results and sends them back to the client.

5.1.3 Workload Factors

Five factors that strongly affect the workload in [Abd-97] were investigated:
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• Message Size (L): the length of the message (in bytes) the client sends per request to

the sought server which in turn sends it back.

• Request Service Times S A and S B : the total CPU demand that each client request

needs at each class of servers.

• Number of clients (N): the total number of active clients during the life of the

experiment.

• Inter-Node Communication Delay (D): Client nodes may be several nodes away

from agent and server nodes in a geographically dispersed distributed system. A delay

is expected to occur with the increase of the number of intermediate nodes. Forcing

the sending process to sleep for D time units simulates the delay experienced by a

particular request.

• Degree of Cloning: the degree of cloning used for the agent process. A clone of a

process is its copy that shares a message queue with its parent.

The following table summarizes the values used for the workload factors:

Factors Levels
N 1,2,4,8,16,24
D (msec) 200, 250, 500, 1000
L (bytes) 4800, 9600, 19200
SA / SB (msec) 10/15, 50/75, 250/375
Degree Of Cloning 1, 4, 8

Table 1 : Levels for the Workload Factors
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5.2 H-ORB

The handle-driven ORB is an architecture in which the agent returns a server’s handle back to

the requesting client. This handle contains all the information required to interact with the

server application. Using this handle, the client can invoke a remote procedure or send a

message to the server, which in turn sends the reply back to the client.

5.2.1 The H-ORB Request Path

In the Handle-driven ORB, the client request path proceeds as follows:

• The client obtains the handle for a server of class A from the default agent.

• The client invokes the server it has obtained the handle for (A1 or A2).

• The client obtains the handle for a server of class B from the default agent.

• The client invokes the server it has obtained the handle for (B1 or B2).

The Agent in the H-ORB is called the Default Agent and is supplied by ORBeline.

Obtaining the source-code for the ORBeline default agent was not possible in [Abd-97].

Since the measurements were done on a local area network with short communication delays,

an artificial network delay was introduced in the experiments. A sleeping pattern was

developed to simulate this network delay. The client sleeps twice: first before sending to the

default agent, and second after receiving the handle. Also, the client sleeps before sending the

request to a server, while the server sleeps prior to sending the reply back to the client.
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5.2.2 H-ORB in UML

The automation process starts with the UML specification of the software system. A full

description of the H-ORB architecture is not given here. Instead, only the Client Request Path

and the process allocation need to be specified in UML to serve as input for the automation

process. This section gives these specifications in UML for the H-ORB architecture.

Sequence Diagram:

The Client Request Path of the H-ORB architecture could be described in UML using the

following sequence diagram:

ServerB1

Msg3: GetHandle

Msg3_Rep

Msg4: DoWork

Msg4_Rep

Msg1: GetHandle

Msg1_Rep

Msg2: DoWork

Msg2_Rep

ServerB2ServerA2ServerA1AgentClient

Msg4: DoWork

Msg4_Rep

Msg2_Rep

Msg2: DoWork

alt

p=0.5

p=0.5

alt

p=0.5

p=0.5

Sleep

Sleep

Sleep

Sleep

Sleep

Sleep

Sleep

Sleep

Sleep

Sleep

Figure 33: H-ORB Sequence Diagram
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Note that all the client calls are synchronous; hence, the client is blocked waiting for the reply

for its requests to both the servers and the default agent. The client chooses randomly

between sending the request to ServerA1 or to ServerA2. The probability of choosing one

path is equal to 50%, as shown as an appended annotation on the figure. The alternate path

exists also when choosing between sending the request to ServerB1 or to ServerB2.

Collaboration Diagram:

A collaboration can be used to specify the implementation of design constructs; their context

and interactions. This could be used to identify the presence of design patterns within a

system design. In the H-ORB case, we can identify the CLIENT-SERVER relationship

between the Client and the Agent, and the Client and ServerA1, Server A2, ServerB1 and

ServerB2 objects. This relationship is illustrated in the following figure.

CLIENT_SERVERAgent

ServerA1 ServerB1

Client n

client

server

server

server

ServerA2 ServerB2

Client 1

server server

Client
Server

Figure 34: H-ORB Collaboration Diagram



107

Deployment Diagram:

The LQN model needs to know some information about the participating tasks and

processors. For example, it needs to know as input the different processors, their multiplicity,

scheduling, and connections, as well as the way tasks are allocated on them. The multiplicity

of processor and tasks is also needed for input. This information is deduced from the case

study in [Abd-97] as follows:

• There are two instances of the ServerA task (A1 and A2), each allocated on a separate

processor.

• There are two instances of the ServerB task (B1 and B2), each allocated on a separate

processor.

• The number of client tasks (N) varies as a workload input. Each client is allocated on

a different processor (processor multiplicity = infinite).

• The agent can handle many requests at the same time. It has been modeled here as an

infinite task on a single processor.

Processor and Network speed:

The service time per request is equal to the number of cycles a request needs from a task on a

certain processor divided by the speed of this processor (in cycles per msec). Since we have

as input the service time per request for both servers, we have set the processor speed for all

processors to be 1 unit (say X cycles per msec). At the same time, we required as input to the
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PROGRES program the number of cycles required per request. This means that we can

specify 10 cycles (actually 10 * X cycles) for a service time that we know will take 10 (msec)

to finish.

In [Abd-97], a LAN of 10 Mbps was used through out all experiments. Therefore, the

network speed was set to be 1000 bits per msec as input to the PROGRES program. The

following deployment diagram describes the H-ORB tasks and processors and their allocation

in UML.

P1 P2

P5P3

Agent_TaskClient_Tasks

ServerB1_TServerA1_T

P6

ServerB2_T

P4

ServerA2_T

1..n

1..n

1..n

Figure 35: H-ORB Deplyment Diagram
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5.2.3 H-ORB in PROGRES

The following table summarizes the workload values chosen in this work as input to the

PROGRES program. It is comparable to the values of the case study experiment whose

output is illustrated in Figure A-1 on page A-2 of appendix “A” of [Abd-97].

Selected workload values:

Factors Levels
N 1,2,4,8,16,24
D (msec) 200
L (bytes) 4800
SA / SB (msec) 10/15
Degree Of Cloning 1
Agent service time (msec) 4

Table 2: H-ORB Workload Factors Selected Values

All performance parameters, such as service times and inter-node delays, were extracted from

[Abd-97]. The Agent service time per request was not explicitly stated in [Abd-97].

However, it was not small enough to be ignored. Its value (4 msec) was inferred from the

measurements.

5.2.3.1 PROGRES Input

Three functions determine the input for the PROGRES program; “ConfigurePlatform”,

“EstablishCollaborationInfo”, and “CreateProblem”.  In the first one, we create the different

processors and tasks. We specify for each processor its name, multiplicity, scheduling and

speed. For tasks, we specify the task name and multiplicity as well as on which processor it

will be allocated. Note that a multiplicity of 0 means infinity for both processors and tasks.

Finally, we create communication links between processors and specify their transmission
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speed in bits per msec. The input to this function is extracted mainly from the H_ORB

Deployment diagram (see Figure 35).

transaction ConfigurePlatform = 
      begin 
           NewProcessorNode ( "P1", 0, "f", "1.0" ) 
         & NewProcessorNode ( "P2", 0, "f", "1.0" ) 
         & NewProcessorNode ( "P3", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P4", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P5", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P6", 1, "f", "1.0" ) 
         & NewTaskComponent ( "T1", "P1", 1 ) 
         & NewTaskComponent ( "T2", "P2", 0 ) 
         & NewTaskComponent ( "T3", "P3", 1 ) 
         & NewTaskComponent ( "T4", "P4", 1 ) 
         & NewTaskComponent ( "T5", "P5", 1 ) 
         & NewTaskComponent ( "T6", "P6", 1 ) 
         & LinkProcessorNodes ( "P1", "P2", "10000.0" ) 
         & LinkProcessorNodes ( "P1", "P3", "10000.0" ) 
         & LinkProcessorNodes ( "P1", "P4", "10000.0" ) 
         & LinkProcessorNodes ( "P1", "P5", "10000.0" ) 
         & LinkProcessorNodes ( "P1", "P6", "10000.0" ) 
      end 
   end; 
 
Figure 36: H-ORB ConfigurePlatform Function.

In the second function, some pre-known relationships between objects in collaboration are

established. For example, in the H-ORB architecture, we know that there is a Client-Server

relationship between the Client and the Agent, and the Client and each of the two servers.

The input to this function is extracted mainly from the H_ORB Collaboration diagram (see

Figure 34: H-ORB Collaboration Diagram).
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   transaction EstablishCollaborationInfo = 
      begin 
           AddClientServerRelationship ( "Client", "HORB" ) 
         & AddClientServerRelationship ( "Client", "SERVER_A1" ) 
         & AddClientServerRelationship ( "Client", "SERVER_A2" ) 
         & AddClientServerRelationship ( "Client", "SERVER_B1" ) 
         & AddClientServerRelationship ( "Client", "SERVER_B2" ) 
      end 
   end; 

Figure 37: H-ORB EstablishCollaborationInfo Function

Finally, the sequence diagram is described step by step in the “CreateProblem” function. The

input to this function is extracted mainly from the H_ORB Sequence diagram (see Figure 33).

All API in all functions are used as described previously in Sections 3.2.2.1 and 4.2.2.1.

Modeling Task Delay

In this work, a simple task delay is modeled as a synchronous call to an infinite task that runs

on an infinite processor. The function “Sleep”, introduced in section 3.2.2.2, was used to

indicate the sleeping of an active object. When sleep is called, a check is done to see if the

sleep task was created or not. If not, an infinite task named “Sleep_T” is created on an infinite

processor “Sleep_P”. A Client-Server relationship between the active thread and this task is

also created. Then a Synchronous call from this active thread to the Sleep Task is done with

an expected number of cycles equals to the sleeping time. A reply from the Sleeping task to

the active thread is then created and execution proceeds normally. If an active object calls

sleep and there is already a Sleep task, the creation part is skipped and the Synchronous call,

along with its relay are created. Calling the Sleep function mimics the sleeping pattern that

was used in [Abd-97] case study explained above.
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transaction CreateProblem = 
      use C_Inst, H_Inst, SA1_Inst, SA2_Inst, SB1_Inst, SB2_Inst : INSTANCE; 
          MainAS, AS1, AS2, AS3, AS4 : COMPOSITE_ACTION 
      do 
           CreateMainActionSequence ( "MainActionSequence", out MainAS ) 
         & CreateNewInstance ( "Client", "T1", true, out C_Inst ) 
         & CreateNewInstance ( "HORB", "T2", true, out H_Inst ) 
         & CreateNewInstance ( "SERVER_A1", "T3", true, out SA1_Inst ) 
         & CreateNewInstance ( "SERVER_A2", "T4", true, out SA2_Inst ) 
         & CreateNewInstance ( "SERVER_B1", "T5", true, out SB1_Inst ) 
         & CreateNewInstance ( "SERVER_B2", "T6", true, out SB2_Inst ) 
         & Sleep ( C_Inst, 1, MainAS, 200 ) 
         & CreateSyncCall ( C_Inst, H_Inst, "Msg1", "", 0, "", 3, MainAS, 0 ) 
         & CreateLocalAction ( H_Inst, "FindAddress", "", 4, MainAS, 4 ) 
         & Sleep ( H_Inst, 5, MainAS, 200 ) 
         & CreateReplyCall ( H_Inst, C_Inst, "Msg1_Rep", "", 0, "", 7, MainAS, 0 ) 
         & Sleep ( C_Inst, 8, MainAS, 200 ) 
         & CreateActionSequence ( C_Inst, "AS1", "0.5", 10, MainAS, 0, out AS1 ) 
         & CreateActionSequence ( C_Inst, "AS2", "0.5", 10, MainAS, 0, out AS2 ) 
         & CreateSyncCall ( C_Inst, SA1_Inst, "Msg2", "ARG1", 4800, "", 1, AS1, 0 ) 
         & CreateSyncCall ( C_Inst, SA2_Inst, "Msg2", "ARG1", 4800, "", 1, AS2, 0 ) 
         & CreateLocalAction ( SA1_Inst, "DoWork", "", 2, AS1, 10 ) 
         & CreateLocalAction ( SA2_Inst, "DoWork", "", 2, AS2, 10 ) 
         & Sleep ( SA1_Inst, 3, AS1, 200 ) 
         & CreateReplyCall ( SA1_Inst, C_Inst, "Msg2_Rep", "ARG1", 4800, "", 5, AS1, 0 ) 
         & Sleep ( SA2_Inst, 3, AS2, 200 ) 
         & CreateReplyCall ( SA2_Inst, C_Inst, "Msg2_Rep", "ARG1", 4800, "", 5, AS2, 0 ) 
         & Sleep ( C_Inst, 11, MainAS, 200 ) 
         & CreateSyncCall ( C_Inst, H_Inst, "Msg3", "", 0, "", 13, MainAS, 0 ) 
         & CreateLocalAction ( H_Inst, "FindAddress", "", 14, MainAS, 4 ) 
         & Sleep ( H_Inst, 15, MainAS, 200 ) 
         & CreateReplyCall ( H_Inst, C_Inst, "Msg3_Rep", "", 0, "", 17, MainAS, 0 ) 
         & Sleep ( C_Inst, 18, MainAS, 200 ) 
         & CreateActionSequence ( C_Inst, "AS3", "0.5", 20, MainAS, 0, out AS3 ) 
         & CreateActionSequence ( C_Inst, "AS4", "0.5", 20, MainAS, 0, out AS4 ) 
         & CreateSyncCall ( C_Inst, SB1_Inst, "Msg4", "ARG2", 4800, "", 1, AS3, 0 ) 
         & CreateSyncCall ( C_Inst, SB2_Inst, "Msg4", "ARG2", 4800, "", 1, AS4, 0 ) 
         & CreateLocalAction ( SB1_Inst, "DoWork", "", 2, AS3, 15 ) 
         & CreateLocalAction ( SB2_Inst, "DoWork", "", 2, AS4, 15 ) 
         & Sleep ( SB1_Inst, 3, AS3, 200 ) 
         & CreateReplyCall ( SB1_Inst, C_Inst, "Msg4_Rep", "ARG2", 4800, "", 5, AS3, 0 ) 
         & Sleep ( SB2_Inst, 3, AS4, 200 ) 
         & CreateReplyCall ( SB2_Inst, C_Inst, "Msg4_Rep", "ARG2", 4800, "", 5, AS4, 0 ) 
         & TerminateInstance ( C_Inst, 21, MainAS, 0 ) 
         & TerminateInstance ( H_Inst, 22, MainAS, 0 ) 
         & TerminateInstance ( SA1_Inst, 23, MainAS, 0 ) 
         & TerminateInstance ( SA2_Inst, 24, MainAS, 0 ) 
         & TerminateInstance ( SB1_Inst, 25, MainAS, 0 ) 
         & TerminateInstance ( SB2_Inst, 26, MainAS, 0 ) 
      end 
   end; 
 

Figure 38: H-ORB CreateProblem Function
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5.2.3.2 PROGRES Output

The first phase of transformation generates a description of an Activity diagram in text

format. The graphical representation of this Activity diagram is given in the following figure.
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(a) Sending to Server A
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Client H-ORB Agent Server B1 Server B2
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(B) Sending to Server B

Figure 39: H-ORB Activity Graph
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The PROGRES program was run, and it produced as output the LQN performance model

given in the following figure. The textual description of this Model is illustrated in Figure 64,

Appendix A.

T1

Te_e2Te_e1

T2

0.5 0.5

P1

T4 T5T3 T6

P5P4P3 P6

P2

0.50.5

Sleep_T

Sleep_P

4

Figure 40: H-ORB LQN Performance Model

The calculated service times for each entry is summarized in the following table:

Entry Service Time
T1_e1 807.68
T2_e1 204
T2_e2 204
T3_e1 213.84
T4_e1 218.84

Table 3: H-ORB Calculated Service Time per Entry
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The model was then used as input to the LQN solver (LQNS), giving the following results for

the Mean Client Response Time (in seconds) for the different values of the number of clients

(N).

Number of Clients Model Results Measured Values Error %
1 1.64836 1.7212 4.231931211
2 1.70365 1.7212 1.019637462
4 1.82544 1.75 -4.310857143
8 2.11086 1.9 -11.09789474
16 2.80472 2.5 -12.1888
24 3.58537 3.2 -12.0428125

Table 4: H-ORB Model Results VS Measured Values

A comparison between the results obtained and the measured values is depicted in the

following graph.
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Figure 41: H-ORB Model results VS Measured values Graph
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5.3 F-ORB

As stated in [Abd-97] case study, the Forwarding ORB (F-ORB) architecture differs from the

previous architecture in the sense that the f-agent forwards the reply to the sought server

rather than returning the handle to the requesting client. During each experiment, a fixed

number of F-agents (number is equal to the chosen degree of cloning) are implemented. All

F-agents are activated and set ready to receive and process any client request in cooperation

with the default agent supplied by ORBeline. The F-Agent and the default agent are co-

allocated on the same processor and are treated as one task.

5.3.1 The F-ORB Request Path

In the Forwarding ORB, the client request path proceeds as follows:

• The client selects an F-agent randomly and uses its handle to send the request.

• F-agent obtains handle for a server of class A (A1 or A2) and uses the handle

obtained to relay the request to the server.

• The Server of class A returns the reply to the originating client

• The client uses F-agent’s handle to forward its request destined for a class B (B1 or

B2) server.

• F-agent obtains the handle for a class B server and uses the handle obtained to relay

the request to the server.

• The Server of class B returns the reply to the originating client
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All path steps use Asynchronous (send one way) calls to the called process. To simulate inter-

node delay, all processes sleep before sending any call.

5.3.2 F-ORB in UML

This section gives the Sequence, the Collaboration, and the Deployment diagram of the F-

ORB architecture.

Sequence Diagram: The Client Request Path of the F-ORB architecture could be described

in UML using the following sequence diagram:

ServerB1

Msg2_fwd: DoWork

Msg2_Rep

Msg1 fwd:
DoWork

Msg1_Rep

ServerB2ServerA2ServerA1AgentClient

Msg2_fwd: DoWork

Msg2_Rep

Msg1_Rep

Msg1_fwd: DoWork

alt

p=0.5

p=0.5

alt

p=0.5

p=0.5

Msg1: GetHandle

Msg2: GetHandle

Sleep

Sleep

Sleep

Sleep

Sleep

Sleep

Sleep

Sleep

Figure 42: F-ORB Sequence Diagram



120

Collaboration Diagram:

A collaboration can be used to specify the implementation of design constructs; their context

and interactions. This could be used to identify the presence of design patterns within a

system design. In the F-ORB case, we can identify the FORWARDING relationship between

the Client the Agent, and the two instances of ServerA (A1 and A2), and between the Client,

the Agent and the two instances of ServerB (B1 and B2). This relationship is illustrated in the

following figure.

FORWARDINGAgent

ServerA1 ServerB2

Client 1

client

agent

server server

ServerB1ServerA2

Client n

server server

Client
Agent
Server

Figure 43: F-ORB Collaboration Diagram

Deployment Diagram:

The Deployment diagram of the F-ORB is similar to that of the H-ORB. The main

differences are the links between processors and the multiplicity of the agent task. In the F-
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ORB case, the F-agent is linked to both servers on top of all the links of the H-ORB. The

multiplicity of the F-Agent task is controlled by the case study in [Abd-97] and is equal to the

chosen degree of cloning.

P1 P2

P5P3

Agent_TaskClient_Task

ServerB1_TServerA1_T

P4

ServerA2_T

P6

ServerB2_T

1..n

1..n

Figure 44: F-ORB Deployment Diagram

5.3.3 F-ORB in PROGRES

The selected workload factors of the F-ORB in this work are the same as the ones previously

selected for the H-ORB, (summarized in Table 2: H-ORB Workload Factors Selected
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Values). It is comparable to the values of [Abd-97] case study experiment whose output is

illustrated in Figure A-1 on page A-2 of appendix “A” of [Abd-97].

5.3.3.1 PROGRES Input

The three functions that determine the input for the PROGRES program are shown in the

following three figures. The main differences between the F-ORB and the previously

described H-ORB in the “ConfigPlatform” are the processor links and the Agent task

multiplicity. The input to this function is extracted mainly from the F_ORB Deployment

diagram (see Figure 44).

   transaction ConfigurePlatform = 
      begin 
           NewProcessorNode ( "P1", 0, "f", "1.0" ) 
         & NewProcessorNode ( "P2", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P3", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P4", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P5", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P6", 1, "f", "1.0" ) 
         & NewTaskComponent ( "T1", "P1", 1 ) 
         & NewTaskComponent ( "T2", "P2", 1 ) 
         & NewTaskComponent ( "T3", "P3", 1 ) 
         & NewTaskComponent ( "T4", "P4", 1 ) 
         & NewTaskComponent ( "T5", "P5", 1 ) 
         & NewTaskComponent ( "T6", "P6", 1 ) 
         & LinkProcessorNodes ( "P1", "P2", "10000.0" ) 
         & LinkProcessorNodes ( "P1", "P3", "10000.0" ) 
         & LinkProcessorNodes ( "P1", "P4", "10000.0" ) 
         & LinkProcessorNodes ( "P1", "P5", "10000.0" ) 
         & LinkProcessorNodes ( "P1", "P6", "10000.0" ) 
         & LinkProcessorNodes ( "P2", "P3", "10000.0" ) 
         & LinkProcessorNodes ( "P2", "P4", "10000.0" ) 
         & LinkProcessorNodes ( "P2", "P5", "10000.0" ) 
         & LinkProcessorNodes ( "P2", "P6", "10000.0" ) 
      end 
   end; 
 Figure 45: F-ORB ConfigPlatform Function

The relationship between the objects Client, Agent, and Server is not a client-server anymore.

Instead, it could be seen as a forwarding relationship between the three entities. This
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relationship is established using the function “AddForwardingRelationship” between the

three participating objects. The input to this function is extracted mainly from the F_ORB

Collaboration diagram (see Figure 43).

   transaction EstablishCollaborationInfo = 
      begin 
           AddForwardingRelationship ( "Client", "FORB", "SERVER_A1" ) 
         & AddForwardingRelationship ( "Client", "FORB", "SERVER_A2" ) 
         & AddForwardingRelationship ( "Client", "FORB", "SERVER_B1" ) 
         & AddForwardingRelationship ( "Client", "FORB", "SERVER_B2" ) 
      end 
   end; 

Figure 46: F-ORB EstablishCollaborationInfo Function

The sequence diagram is described step by step in the “CreateProblem” function. The input to

this function is extracted mainly from the F_ORB Sequence diagram (see Figure 42). All API

in all functions are used as described previously in Sections 3.2.2.1 and 4.2.2.1.
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transaction CreateProblem = 
      use C_Inst, F_Inst, SA1_Inst, SA2_Inst, SB1_Inst, SB2_Inst : INSTANCE; 
          MainAS : COMPOSITE_ACTION 
      do 
           CreateMainActionSequence ( "MainActionSequence", out MainAS ) 
         & CreateNewInstance ( "Client", "T1", true, out C_Inst ) 
         & CreateNewInstance ( "FORB", "T2", true, out F_Inst ) 
         & CreateNewInstance ( "SERVER_A1", "T3", true, out SA1_Inst ) 
         & CreateNewInstance ( "SERVER_A2", "T4", true, out SA2_Inst ) 
         & CreateNewInstance ( "SERVER_B1", "T5", true, out SB1_Inst ) 
         & CreateNewInstance ( "SERVER_B2", "T6", true, out SB2_Inst ) 
         & Sleep ( C_Inst, 1, MainAS, 200 ) 
         & CreateAsyncCall ( C_Inst, F_Inst, "Msg1", "ARG1", 4800, "", 3, MainAS, 0 ) 
         & CreateLocalAction ( F_Inst, "FindAddress", "", 4, MainAS, 4 ) 
         & Sleep ( F_Inst, 5, MainAS, 200 ) 
         & CreateAsyncCall ( F_Inst, SA1_Inst, "Msg1", "ARG1", 4800, "0.5", 7, MainAS, 0 ) 
         & CreateLocalAction ( SA1_Inst, "DoWork" , "", 8, MainAS, 10 ) 
         & Sleep ( SA1_Inst, 9, MainAS, 200 ) 
         & CreateAsyncCall ( SA1_Inst, C_Inst, "Msg1_Rep", "ARG1", 4800, "", 11, MainAS, 0 ) 
         & CreateAsyncCall ( F_Inst, SA2_Inst, "Msg1", "ARG1", 4800, "0.5", 7, MainAS, 0 ) 
         & CreateLocalAction ( SA2_Inst, "DoWork", "", 12, MainAS, 10 ) 
         & Sleep ( SA2_Inst, 13, MainAS, 200 ) 
         & CreateAsyncCall ( SA2_Inst, C_Inst, "Msg1_Rep", "ARG1", 4800, "", 15, MainAS, 0 ) 
         & Sleep ( C_Inst, 16, MainAS, 200 ) 
         & CreateAsyncCall ( C_Inst, F_Inst, "Msg2", "ARG2", 4800, "", 18, MainAS, 0 ) 
         & CreateLocalAction ( F_Inst, "FindAddress", "", 19, MainAS, 4 ) 
         & Sleep ( F_Inst, 20, MainAS, 200 ) 
         & CreateAsyncCall ( F_Inst, SB1_Inst, "Msg2" , "ARG2", 4800, "0.5", 22, MainAS, 0 ) 
         & CreateLocalAction ( SB1_Inst, "DoWork", "", 23, MainAS, 10 ) 
         & Sleep ( SB1_Inst, 24, MainAS, 200 ) 
         & CreateAsyncCall ( SB1_Inst, C_Inst, "Msg2_Rep", "ARG2", 4800, "", 26, MainAS, 0 ) 
         & CreateAsyncCall ( F_Inst, SB2_Inst, "Msg2", "ARG2", 4800, "0.5", 22, MainAS, 0 ) 
         & CreateLocalAction ( SB2_Inst, "DoWork", "", 27, MainAS, 10 ) 
         & Sleep ( SB2_Inst, 28, MainAS, 200 ) 
         & CreateAsyncCall ( SB2_Inst, C_Inst, "Msg2_Rep", "ARG2", 4800, "", 30, MainAS, 0 ) 
         & TerminateInstance ( C_Inst, 31, MainAS, 0 ) 
         & TerminateInstance ( F_Inst, 32, MainAS, 0 ) 
         & TerminateInstance ( SA1_Inst, 33, MainAS, 0 ) 
         & TerminateInstance ( SA2_Inst, 34, MainAS, 0 ) 
         & TerminateInstance ( SB1_Inst, 35, MainAS, 0 ) 
         & TerminateInstance ( SB2_Inst, 36, MainAS, 0 ) 
      end 
   end; 

Figure 47: F-ORB CreateProblem Function
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5.3.3.2 PROGRES Output

The first phase of transformation generates a description of an Activity diagram in text

format. The graphical representation of this Activity diagram is given in the following figure.
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Figure 48: F-ORB Activity Graph
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When the PROGRES program was run, it produced as output the LQN given in the following

figure. The textual description of this Model is illustrated in Figure 65, Appendix A.
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0.5 0.5
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0.50.5

Sleep_T
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Figure 49: F-ORB LQN Performance Model

The calculated service times for each entry is summarized in the following table:

Entry Service Time
T1_e1 407.68
T2_e1 207.84
T2_e2 207.84
T3_e1 213.84
T4_e1 218.84

Table 5: F-ORB Calculated Service Time per Entry
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The model was then used as input to the LQN solver (LQNS), giving the following results for

the Mean Client Response Time (in seconds) for the different values of the number of clients

(N).

Number of Clients Model Results Measured Values Error %

1 0.82336 1.3142 37.34895754
2 1.16632 1.32 11.64242424
4 2.0361 1.8 -13.11666667
8 3.74539 3.3 -13.49666667
16 7.09926 6.4 -10.9259375
24 10.4351 10 -4.351

Table 6: F-ORB Model Results VS Measured Values

A comparison between the results obtained and the measured values is depicted in the

following graph.
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Figure 50: F-ORB Model Results VS Measured Values



130

5.4 P-ORB

In the Process Planner (P-ORB) architecture, the client sends its two requests combined in

one message to an implemented P-agent. The P-agent decomposes the request into its simple

constituent services, invokes the respective servers and when all services are performed, it

relays back a single coherent reply to the originating client. The p-agent invokes both servers

in a pseudo parallel asynchronous mode since the design assumes no interdependencies

between the two constituent requests. Both servers are invoked using the send one-way call;

however, there is only one inter-node delay involved. During each experiment, a fixed

number of P-agents are activated and set ready to receive and process any client request in

cooperation with the default agent supplied by ORBeline The P-agent and the default agent

are co-allocated on the same processor and are considered to be one task.

5.4.1 The P-ORB. Request Path

In the P-ORB, the client request path proceeds as follows:

• The client selects a P-agent randomly and uses its handle to send the request.

• The client forwards the request to P-agent using send one-way call.

• The P-agent decomposes the request into its constituents and obtains a handle for a

dispatcher of a server of class A, and a second handle for a dispatcher of a class B

server.

• The P-agent uses these handles to relay the request to the respective servers in a

pseudo parallel asynchronous mode (one simulated inter-node delay for both of the

send one way calls).
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• The selected Server of class A returns the reply to the calling p-agent in a send one-

way mode after sleeping for the preset inter-node delay.

• The selected Server of class B returns the reply to p-agent in a pseudo asynchronous

mode after sleeping the preset inter-node delay.

• The P-agent packs all constituent replies into a final, single and coherent reply and

sends it to the originating client, after sleeping the preset inter-node delay.

5.4.2 P-ORB in UML

This section gives the Sequence diagram and the Deployment diagram of the P-ORB

architecture.

Sequence Diagram:

The Client Request Path of the P-ORB architecture could be described in UML using the

following sequence diagram:

ServerB1 ServerB2ServerA2ServerA1AgentClient

Action Sequence (1)

Action Sequence (2)

(a)
Main Action Sequence

Msg1: GetHandle

Sleep

Sleep

Msg1_Rep

Sleep
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ServerB1

Msg1_Rep

ServerB2ServerA2ServerA1AgentClient

Msg1_Rep

Msg1_fwd: DoWork

alt

p=0.5

p=0.5

(b)
 Action Sequence (1): Agent sends message to Server A

Sleep

Sleep

Msg1 fwd:
DoWork

ServerB1 ServerB2ServerA2ServerA1AgentClient

alt

p=0.5

p=0.5

(c)
 Action Sequence (2): Agent sends message to Server B

Msg2_fwd: DoWork

Msg2_Rep

Msg2_fwd: DoWork

Msg2_Rep

Sleep

Sleep

Figure 51: P-ORB Sequence Diagram
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Collaboration Diagram:

A collaboration can be used to specify the implementation of design constructs; their context

and interactions. This could be used to identify the presence of design patterns within a

system design. In the P-ORB case, we can identify the CLIENT-SERVER relationship

between the Client and the Agent, the Agent and ServerA, and the Agent and ServerB

objects. This relationship is illustrated in the following figure.

CLIENT_SERVER

Agent

ServerA1 ServerB2

Client n

client

server

serverserver

CLIENT_SERVERclient

ServerB1ServerA2

server server

Client 1

Client
Server

Client
Server

Figure 52: P_ORB Collaboration Diagram
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Deployment Diagram:

The Deployment diagram of the P-ORB is similar to that of the F-ORB. The main differences

are the links between processors. In the P-ORB case, the client needs not to be connected to

the servers. Just like in the F-ORB case, the multiplicity of the P-Agent task is controlled by

[Abd-97] case study and is equal to the chosen degree of cloning.

P1 P2

P5P3

Agent_TaskClient_Task

ServerB1_TServerA1_T

P4

ServerA2_T

P6

ServerB2_T

1..n

1..n

Figure 53:P-ORB Deployment Diagram
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5.4.3 P-ORB in PROGRES

The selected workload factors of the P-ORB in this work are the same as the ones previously

selected for the H-ORB, (summarized in Table 2: H-ORB Workload Factors Selected

Values). It is comparable to the values of [Abd-97] case study experiment whose output is

illustrated in Figure A-1 on page A-2 of appendix “A” of [Abd-97].

5.4.3.1 PROGRES Input

The three functions that determine the input for the PROGRES program are shown in the

following three figures. The main differences between the P-ORB and the F-ORB in the

“ConfigPlatform” are the processor links. The input to this function is extracted mainly from

the P_ORB Deployment diagram (see Figure 53).

    transaction ConfigurePlatform = 
      begin 
           NewProcessorNode ( "P1", 0, "f", "1.0" ) 
         & NewProcessorNode ( "P2", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P3", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P4", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P5", 1, "f", "1.0" ) 
         & NewProcessorNode ( "P6", 1, "f", "1.0" ) 
         & NewTaskComponent ( "T1", "P1", 1 ) 
         & NewTaskComponent ( "T2", "P2", 1 ) 
         & NewTaskComponent ( "T3", "P3", 1 ) 
         & NewTaskComponent ( "T4", "P4", 1 ) 
         & NewTaskComponent ( "T5", "P5", 1 ) 
         & NewTaskComponent ( "T6", "P6", 1 ) 
         & LinkProcessorNodes ( "P1", "P2", "10000.0" ) 
         & LinkProcessorNodes ( "P2", "P3", "10000.0" ) 
         & LinkProcessorNodes ( "P2", "P4", "10000.0" ) 
         & LinkProcessorNodes ( "P2", "P5", "10000.0" ) 
         & LinkProcessorNodes ( "P2", "P6", "10000.0" ) 
      end 
   end; 
 

Figure 54: P_ORB ConfigurePlatform Function
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In the P-ORB architecture, a Client-Server relationship is established between the Client and

the Agent, and between the Agent and each of the four servers. The input to this function is

extracted mainly from the P_ORB Collaboration diagram (see Figure 52).

transaction EstablishCollaborationInfo = 
      begin 
           AddClientServerRelationship ( "Client", "PORB" ) 
         & AddClientServerRelationship ( "PORB", "SERVER_A1" ) 
         & AddClientServerRelationship ( "PORB", "SERVER_A2" ) 
         & AddClientServerRelationship ( "PORB", "SERVER_B1" ) 
         & AddClientServerRelationship ( "PORB", "SERVER_B2" ) 
      end 
 

Figure 55: P-ORB EstablishCollaborationInfo Function

The sequence diagram is described step by step in the “CreateProblem” function. The input to

this function is extracted mainly from the P_ORB Sequence diagram (see Figure 51). All API

in all functions are used as described previously in Sections 3.2.2.1 and 4.2.2.1.
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transaction CreateProblem = 
      use C_Inst, P_Inst, SA1_Inst, SA2_Inst, SB1_Inst, SB2_Inst : INSTANCE; 
          MainAS, AS1, AS2: COMPOSITE_ACTION 
      do 
           CreateMainActionSequence ( "MainActionSequence", out MainAS ) 
         & CreateNewInstance ( "Client", "T1", true, out C_Inst ) 
         & CreateNewInstance ( "PORB", "T2", true, out P_Inst ) 
         & CreateNewInstance ( "SERVER_A1", "T3", true, out SA1_Inst ) 
         & CreateNewInstance ( "SERVER_A2", "T4", true, out SA2_Inst ) 
         & CreateNewInstance ( "SERVER_B1", "T5", true, out SB1_Inst ) 
         & CreateNewInstance ( "SERVER_B2", "T6", true, out SB2_Inst ) 
         & Sleep ( C_Inst, 1, MainAS, 200 ) 
         & CreateSyncCall ( C_Inst, P_Inst, "Msg12", "ARG1", 4800, "", 3, MainAS, 0 ) 
         & CreateLocalAction ( P_Inst, "FindAddress", "", 4, MainAS, 8 ) 
         & Sleep ( P_Inst, 5, MainAS, 200 ) 
         & CreateActionSequence ( P_Inst, "AS1", "", 7, MainAS, 0, out AS1 ) 
         & CreateActionSequence ( P_Inst, "AS2", "", 7, MainAS, 0, out AS2 ) 
         & CreateAsyncCall ( P_Inst, SA1_Inst, "Msg1", "ARG1", 4800, "", 1, AS1, 0 ) 
         & CreateLocalAction ( SA1_Inst, "DoWork", "", 2, AS1, 10 ) 
         & Sleep ( SA1_Inst, 3, AS1, 200 ) 
         & CreateAsyncCall ( SA1_Inst, P_Inst, "Msg1_Rep", "ARG1", 4800, "", 5, AS1, 0 ) 
         & CreateAsyncCall ( P_Inst, SA2_Inst, "Msg1", "ARG1", 4800, "", 1, AS1, 0 ) 
         & CreateLocalAction ( SA2_Inst, "DoWork", "", 6, AS1, 10 ) 
         & Sleep ( SA2_Inst, 7, AS1, 200 ) 
         & CreateAsyncCall ( SA2_Inst, P_Inst, "Msg1_Rep", "ARG1", 4800, "", 9, AS1, 0 ) 
         & CreateAsyncCall ( P_Inst, SB1_Inst, "Msg2", "ARG2", 4800, "", 1, AS2, 0 ) 
         & CreateLocalAction ( SB1_Inst, "DoWork", "", 2, AS2, 15 ) 
         & Sleep ( SB1_Inst, 3, AS2, 200 ) 
         & CreateAsyncCall ( SB1_Inst, P_Inst, "Msg2_Rep", "ARG2", 4800, "", 5, AS2, 0 ) 
         & CreateAsyncCall ( P_Inst, SB2_Inst, "Msg2", "ARG2", 4800, "", 1, AS2, 0 ) 
         & CreateLocalAction ( SB2_Inst, "DoWork", "", 6, AS2, 15 ) 
         & Sleep ( SB2_Inst, 7, AS2, 200 ) 
         & CreateAsyncCall ( SB2_Inst, P_Inst, "Msg2_Rep", "ARG2", 4800, "", 9, AS2, 0 ) 
         & Sleep ( P_Inst, 8, MainAS, 200 ) 
         & CreateReplyCall ( P_Inst, C_Inst, "Msg12_Rep", "ARG2", 4800, "", 10, MainAS, 0 ) 
         & TerminateInstance ( C_Inst, 21, MainAS, 0 ) 
         & TerminateInstance ( P_Inst, 22, MainAS, 0 ) 
         & TerminateInstance ( SA1_Inst, 23, MainAS, 0 ) 
         & TerminateInstance ( SA2_Inst, 24, MainAS, 0 ) 
         & TerminateInstance ( SB1_Inst, 25, MainAS, 0 ) 
         & TerminateInstance ( SB2_Inst, 26, MainAS, 0 ) 
      end 
   end; 
 

Figure 56: P-ORB CreateProblem Function

5.4.3.2 PROGRES Output

The first phase of transformation generates a description of an Activity diagram in text

format. The graphical representation of this Activity diagram is given in the following figure.
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Figure 57: P-ORB Activity Graph

The PROGRES program was run, and it produced as output the LQN Model illustrated in the

following figure. The textual description of this Model is illustrated in Figure 66, Appendix

A.
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Figure 58: P-ORB LQN Performance Model

The “Activities” feature of the LQN models enabled us to model parallelism in the P-ORB

case. Forking using an AND-Fork model activities that are done in parallel, while forking

using an OR-Fork model alternate paths of execution. The replying activity in the P-ORN

model is “a3”.

The calculated service times for each entry /activity is summarized in the following table:

Entry Service Time
T1_e1 203.84
T2_e1_a1 0
T2_e1_a2 200
T2_e1_a3 200
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T2_e1_a4 200
T3_e1 213.84
T4_e1 218.84

Table 7: P-ORB Calculated Service Time per Entry/Activity

 The model was then used as input to the LQN solver (LQNS), giving the following results
for the Mean Client Response Time (in seconds) for the different values of the number of
clients (N).

Number of Clients Model Results Measured Values Error %
1 0.73509 0.9015 18.45923461
2 1.09699 1.2 8.584166667
4 2.08761 2.1 0.59
8 4.20283 4.2 -0.067380952
16 8.45052 8.8 3.971363636
24 12.6999 13 2.308461538

Table 8: P-ORB Model Results VS Measured Values

A comparison between the results obtained and the measured values is depicted in the

following graph.
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Figure 59: P-ORB Model Results VS Measured Values Graph
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5.5 Varying the H-ORB

The question of “What is the effect on the Mean Client Total Response Time if a certain

workload value changes” is a question that a model was built to answer. Here we ask two

questions of this kind regarding the H-ORB case: What happens to the Mean Client Total

Response Time if the Inter-node-delay changes?, and what happens if the message size

changes?

5.5.1 Varying The Inter-Node Delay (H-ORB V1)

Starting with the H-ORB architecture, the Inter-Node Delay value was changed and fed as

input to the PROGRES program. Since we need to compare to a measured value, we had to

change the message length as well to have a comparable experiment in [Abd-97] case study.

The following table summarizes the workload values chosen as input to the PROGRES

program in the case of H-ORB V1. It is comparable to the values of [Abd-97] case study

experiment whose output is illustrated in Figure C-4 on page C-4 of appendix “C” of [Abd-

97].

Factors Levels
N 1,2,4,8,16,24
D (msec) 500
L (bytes) 150
SA / SB (msec) 10/15
Degree Of Cloning 1
Agent service time (msec) 4

Table 9: H-ORB V1 Workload Factors Selected Values
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5.5.1.1 PROGRES Input

The previous changes translate into the following “CreateProblem” function. The sleep time,

which resembles the inter-node delay, has changed from 200 to 500 (ms) compared to the H-

ORB case (see Figure 38 for comparison). The rest of the function remains the same. Only

changes are shown in the following figure; the rest is skipped.

transaction CreateProblem = 
      use C_Inst, H_Inst, SA1_Inst, SA2_Inst, SB1_Inst, SB2_Inst : INSTANCE; 
          MainAS, AS1, AS2, AS3, AS4 : COMPOSITE_ACTION 
      do 
           CreateMainActionSequence ( "MainActionSequence", out MainAS ) 
  | 
         & Sleep ( C_Inst, 1, MainAS, 500 ) 
          | 
        & Sleep ( H_Inst, 5, MainAS, 500 ) 
  | 
         & Sleep ( C_Inst, 8, MainAS, 500 ) 
  | 
         & Sleep ( SA1_Inst, 3, AS1, 500 ) 
  | 
         & Sleep ( SA2_Inst, 3, AS2, 500 ) 
  | 
         & Sleep ( C_Inst, 11, MainAS, 500 ) 
  | 
         & Sleep ( H_Inst, 15, MainAS, 500 ) 
  | 
         & Sleep ( C_Inst, 18, MainAS, 500 ) 
  | 
         & Sleep ( SB1_Inst, 3, AS3, 500 ) 
  | 
         & Sleep ( SB2_Inst, 3, AS3, 500 ) 
  | 
         & TerminateInstance ( C_Inst, 21, MainAS, 0 ) 
  | 
      end 
   end; 
 

Figure 60: H-ORB V1 CreateProblem Function
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5.5.1.2 PROGRES Output

When the PROGRES program was run, it produced as output an LQN model that is similar to

the H-ORB model (see Figure 40). The only change is in the service time of each entry in the

Entry section. The calculated service times for each entry is summarized in the following

table:

Entry Service Time
T1_e1 2000.24
T2_e1 504
T2_e2 504
T3_e1 510.12
T4_e1 515.12

Table 10: H-ORB V1 Calculated Service Time per Entry

The model was then used as input to the LQN solver (LQNS), giving the following results for

the Mean Client Response Time (in seconds) for the different values of the number of clients

(N).

Number of Clients Model Results Measured Values Error %
1 4.03348 4.2 3.964761905
2 4.16717 4.2 0.781666667
4 4.46066 4.2 -6.206190476
8 5.144 4.7 -9.446808511
16 6.79149 6.1 -11.33590164
24 8.63862 7.8 -10.75153846

Table 11: H-ORB V1 Model Results VS Measured Values

A comparison between the results obtained and the measured values is depicted in the

following graph.
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Figure 61: H-ORB V1 Model Results VS Measured Value Graph

5.5.2 Varying The Message Length (H-ORB V2)

Starting with the H-ORB architecture, the Message Length value was changed and fed as

input to the PROGRES program.

The following table summarizes the workload values chosen as input to the PROGRES

program in the case of H-ORB V2. It is comparable to the values of the case study

experiment whose output is illustrated in Figure A-9 on page A-7 of appendix “A” of [Abd-

97].

Factors Levels
N 1,2,4,8,16,24
D (msec) 200
L (bytes) 19200
SA / SB (msec) 10/15
Degree Of Cloning 1
Agent service time (msec) 4

Table 12: H-ORB V2 Workload Factors Selected Values
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5.5.2.1 PROGRES Input

The previous changes translate into the following “CreateProblem” function. The main

difference between it and the H-ORB input is that the size of the transferred message has

changed from 4800 to 19200 bytes (see Figure 38 for comparison). Only changes are shown

here; the rest of the function is skipped.

transaction CreateProblem = 
use C_Inst, H_Inst, SA1_Inst, SA2_Inst, SB1_Inst, SB2_Inst : INSTANCE;  
          MainAS, AS1, AS2, AS3, AS4 : COMPOSITE_ACTION 
           CreateMainActionSequence ( "MainActionSequence", out MainAS ) 
  | 
         & CreateSyncCall ( C_Inst, SA1_Inst, "Msg2", "ARG1", 19200, "", 1, AS1, 0 ) 
         & CreateSyncCall ( C_Inst, SA2_Inst, "Msg2", "ARG1", 19200, "", 1, AS2, 0 ) 
  | 
         & CreateReplyCall ( SA1_Inst, C_Inst, "Msg2_Rep", "ARG1", 19200, "", 5, AS1, 0 ) 
         & CreateReplyCall ( SA2_Inst, C_Inst, "Msg2_Rep", "ARG1", 19200, "", 5, AS2, 0 ) 
  | 
         & CreateSyncCall ( C_Inst, SB1_Inst, "Msg4", "ARG2", 19200, "", 1, AS3, 0 ) 
         & CreateSyncCall ( C_Inst, SB2_Inst, "Msg4", "ARG2", 19200, "", 1, AS4, 0 ) 
  | 
        & CreateReplyCall ( SB1_Inst, C_Inst, "Msg4_Rep", "ARG2", 19200, "", 5, AS3, 0 ) 
        & CreateReplyCall ( SB2_Inst, C_Inst, "Msg4_Rep", "ARG2", 19200, "", 5, AS4, 0 ) 
          | 
         & TerminateInstance ( C_Inst, 21, MainAS, 0 ) 
      end 
   end; 

Figure 62: H-ORB V2 CreateProblem Function

5.5.2.2 PROGRES Output

When the PROGRES program was run, it produced as output an LQN model that is similar to

the H-ORB model (see Figure 40). The only change is in the service time of entries in the

Entry section. The calculated service times for each entry is summarized in the following

table:

Entry Service Time
T1_e1 830.72
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T2_e1 204
T2_e2 204
T3_e1 225.36
T4_e1 230.36

Table 13: H-ORB V2 Calculated Service Time per Entry

The model was then used as input to the LQN solver (LQNS), giving the following results for

the Mean Client Response Time (in seconds) for the different values of the number of clients

(N).

Number of Clients Model Results Measured Values Error %
1 1.69444 1.7933 5.512741873
2 1.75132 1.8 2.704444444
4 1.877 1.8 -4.277777778
8 2.17348 2 -8.674
16 2.90084 2.7 -7.438518519
24 3.72285 3.5 -6.367142857

Table 14: H-ORB V2 Model Results VS Measured Values

A comparison between the results obtained and the measured values is depicted in the

following graph.

The Response Time of the H-ORB,
D=200 ms, L=19200 bytes, SA/SB=10/15 ms, Cloning=1

0

1

2

3

4

1 2 4 8 16 24

Number of Clients (N)

M
ea

n 
C

lie
nt

 R
es

po
ns

e 
T

im
e 

R
 (s

ec
)

Model

Measured

Figure 63: H-ORB V2 Model Results VS Measured Values
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General Remarks

• The results of the comparisons between the measurements done in [Abd-97] case

study and between the results obtained by the generated models show that the

generated models are very reasonable, if not very good representations of the real

systems. The results show an error percentage of less than (+/-13.5), except for a

couple of cases (F-ORB, N=1 and P-ORB, N=1).

• The “Activities” feature of the LQN models enabled us to model parallelism in the P-

ORB case. Forking using AND-Forks models activities that are done in parallel,

while forking using OR-Forks models alternate paths of execution.

• In all cases, we needed to add annotation to UML specifications to specify

performance related parameters since UML does not provide all the necessary

information for a complete definition of the performance model.
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C h a p t e r  6

6 CONCLUSION

The objective of this work is to develop a systematic methodology to automatically translate

software specifications written in the Unified Modeling Language (UML) into Layered

Queueing networks (LQN) performance models using Graph Grammar techniques.  This

objective was met by developing a PROGRES program that transforms specifications of

software systems written using UML diagrams into LQN models.

The transformation processes was done in two phases. The input to the first phase is a graph

that represents the software system’s UML Sequence diagram plus some additional

information on software architecture. The output is a graph that represents the system’s

Activity diagram, which serves as the input to the next phase. The output of the second phase

is a graph that represents the equivalent LQN model of the system that is written to a text file.

For each phase, a new algorithm was developed that traverses the input graph and produces

its equivalent output graph.

Collaboration diagrams were used to add information about the relationships between the

active objects in the system. Deployment diagrams were used to add the physical properties

of the system. In all cases, annotations were added to the UML specifications to specify

performance related parameters since UML does not provide all the necessary information

for a complete definition of the performance model.
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A case study is developed to validate and verify the transformation process, where the

measurements of three different software architectures of a distributed software systems are

compared to the results of their equivalent generated LQN models. The comparison shows

very reasonable, if not very good, representation of the real systems. In most cases, the

error% was less than 13.5%, which still gives a good approximation of reality. However, the

main purpose of the thesis was not to conduct a thorough performance analysis of these

systems, but to show that the LQN model automatically obtained from UML specifications

give acceptable results.

This suggests that comparing between alternate architectures can be done easily if the

equivalent models are automatically generated. This saves the amount of effort and time

spent in developing the models by hand and gives fast feedback to the designers. The

PROGRES transformation represents a proof of concept for the proposed method of deriving

LQN models from UML specifications.

Future work is necessary to develop a better input and output techniques for the PROGRES

program. For example, the PROGRES input graphs could be obtained from an XML file that

describes the UML model. Similarly, the intermediate output of the PROGRES program,

which represents the equivalent Activity diagram could be written in XML format for further

usage in a UML tool.

Other UML diagrams may contribute to the input of the process as well. For example, some

designers prefer using Collaboration diagrams to specify interactions rather than using

sequence diagrams.
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The issue of performance annotations needs further study. After the Performance Profile

proposal is refined and adopted by OMG, the graph transformation must be made consistent

with the profile.
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APPENDIX “A”

H-ORB resulting LQN model for number of clients = 1.

 
"Please Add Comment" 
0.00001 
100 
1 
0.9 
-1 
 
P  7 
p P2 f i 
p P3 f m 1 
p Sleep_P f i 
p P4 f m 1 
p P5 f m 1 
p P6 f m 1 
p P1 f i 
-1 
 
T  7 
t T2 n T2_e1 T2_e2 -1 P2 i 
t T6 n T6_e1 -1 P6 m 1 
t Sleep_T n Sleep_T_e1 -1 Sleep_P i 
t T3 n T3_e1 -1 P3 m 1 
t T1 r T1_e1 -1 P1 m 1 
t T5 n T5_e1 -1 P5 m 1 
t T4 n T4_e1 -1 P4 m 1 
-1 
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E  8 
s T5_e1 18.84 0 0 -1 
f T5_e1 0 0 0 -1 
s T2_e1 4 0 0 -1 
f T2_e1 0 0 0 -1 
s T2_e2 4 0 0 -1 
f T2_e2 0 0 0 -1 
s Sleep_T_e1 200 0 0 -1 
f Sleep_T_e1 1 0 0 -1 
s T6_e1 18.84 0 0 -1 
f T6_e1 0 0 0 -1 
s T1_e1 7.68 0 0 -1 
f T1_e1 0 0 0 -1 
s T4_e1 13.84 0 0 -1 
f T4_e1 0 0 0 -1 
s T3_e1 13.84 0 0 -1 
f T3_e1 0 0 0 -1 
y T1_e1 Sleep_T_e1 4 0 0 -1 
y T2_e1 Sleep_T_e1 1 0 0 -1 
y T2_e2 Sleep_T_e1 1 0 0 -1 
y T3_e1 Sleep_T_e1 1 0 0 -1 
y T4_e1 Sleep_T_e1 1 0 0 -1 
y T5_e1 Sleep_T_e1 1 0 0 -1 
y T6_e1 Sleep_T_e1 1 0 0 -1 
y T1_e1 T3_e1 0.5 0 0 -1 
y T1_e1 T4_e1 0.5 0 0 -1 
y T1_e1 T2_e1 1 0 0 -1 
y T1_e1 T5_e1 0.5 0 0 -1 
y T1_e1 T6_e1 0.5 0 0 -1 
y T1_e1 T2_e2 1 0 0 -1 
-1 
 

Figure 64: H-ORB LQN Model File
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F-ORB resulting LQN model for number of clients = 1.

 
"Please Add Comment" 
0.00001 
100 
1 
0.9 
-1 
 
P  7 
p P1 f i 
p P4 f m 1 
p Sleep_P f i 
p P5 f m 1 
p P6 f m 1 
p P2 f m 1 
p P3 f m 1 
-1 
 
T  7 
t T1 r T1_e1 -1 P1 m 1 
t T2 n T2_e2 T2_e1 -1 P2 m 1 
t Sleep_T n Sleep_T_e1 -1 Sleep_P i 
t T5 n T5_e1 -1 P5 m 1 
t T6 n T6_e1 -1 P6 m 1 
t T4 n T4_e1 -1 P4 m 1 
t T3 n T3_e1 -1 P3 m 1 
-1 
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E  8 
s T1_e1 7.68 0 0 -1 
f T1_e1 0 0 0 -1 
s T3_e1 13.84 0 0 -1 
f T3_e1 0 0 0 -1 
s Sleep_T_e1 200 0 0 -1 
f Sleep_T_e1 1 0 0 -1 
s T5_e1 18.84 0 0 -1 
f T5_e1 0 0 0 -1 
s T4_e1 13.84 0 0 -1 
f T4_e1 0 0 0 -1 
s T2_e2 7.84 0 0 -1 
f T2_e2 0 0 0 -1 
s T6_e1 18.84 0 0 -1 
f T6_e1 0 0 0 -1 
s T2_e1 7.84 0 0 -1 
f T2_e1 0 0 0 -1 
y T1_e1 Sleep_T_e1 2 0 0 -1 
y T2_e1 Sleep_T_e1 1 0 0 -1 
y T2_e2 Sleep_T_e1 1 0 0 -1 
y T3_e1 Sleep_T_e1 1 0 0 -1 
y T4_e1 Sleep_T_e1 1 0 0 -1 
y T5_e1 Sleep_T_e1 1 0 0 -1 
y T6_e1 Sleep_T_e1 1 0 0 -1 
y T1_e1 T2_e1 1 0 0 -1 
y T1_e1 T2_e2 1 0 0 -1 
z T2_e1 T3_e1 0.5 0 0 -1 
z T2_e1 T4_e1 0.5 0 0 -1 
z T2_e2 T5_e1 0.5 0 0 -1 
z T2_e2 T6_e1 0.5 0 0 -1 
-1 
 

Figure 65: F-ORB LQN Model File
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P-ORB resulting LQN model for the number of clients = 1.

G 
"Please Add Comment" 
0.00001 
100 
1 
0.9 
-1 
 
P  7 
p P1 f i 
p P3 f m 1 
p Sleep_P f i 
p P5 f m 1 
p P6 f m 1 
p P2 f m 1 
p P4 f m 1 
-1 
 
T  7 
t T2 n T2_e1 -1 P2 m 1 
t T3 n T3_e1 -1 P3 m 1 
t Sleep_T n Sleep_T_e1 -1 Sleep_P i 
t T5 n T5_e1 -1 P5 m 1 
t T6 n T6_e1 -1 P6 m 1 
t T1 r T1_e1 -1 P1 m 1 
t T4 n T4_e1 -1 P4 m 1 
-1 
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E  7 
s T1_e1 3.84 0 0 -1 
f T1_e1 0 0 0 -1 
s T5_e1 18.84 0 0 -1 
f T5_e1 0 0 0 -1 
s Sleep_T_e1 200 0 0 -1 
f Sleep_T_e1 1 0 0 -1 
s T6_e1 18.84 0 0 -1 
f T6_e1 0 0 0 -1 
s T3_e1 13.84 0 0 -1 
f T3_e1 0 0 0 -1 
s T4_e1 13.84 0 0 -1 
f T4_e1 0 0 0 -1 
A T2_e1 T2_e1_a1  
y T1_e1 T2_e1 1 0 0 -1 
y T1_e1 Sleep_T_e1 1 0 0 -1 
y T3_e1 Sleep_T_e1 1 0 0 -1 
y T4_e1 Sleep_T_e1 1 0 0 -1 
y T5_e1 Sleep_T_e1 1 0 0 -1 
y T6_e1 Sleep_T_e1 1 0 0 -1 
-1 
 
A T2  
s T2_e1_a4 0  
s T2_e1_a3 0  
s T2_e1_a2 0  
s T2_e1_a1 0  
s T2_e1_a5 0  
s T2_e1_a6 0  
s T2_e1_a7 0  
s T2_e1_a8 0  
s T2_e1_a9 0  
s T2_e1_a10 0  
z T2_e1_a5 T3_e1 1  
z T2_e1_a6 T4_e1 1  
z T2_e1_a8 T5_e1 1 
z T2_e1_a9 T6_e1 1 
y T2_e1_a2 Sleep_T_e1 1 
y T2_e1_a4 Sleep_T_e1 1 
y T2_e1_a3 Sleep_T_e1 1 
:  
T2_e1_a1 -> T2_e1_a4  & T2_e1_a2;  
T2_e1_a2 -> (0.5) T2_e1_a5 + (0.5) T2_e1_a6; 
T2_e1_a5 + T2_e1_a6 -> T2_e1_a7; 
T2_e1_a4 -> (0.5) T2_e1_a8 + (0.5) T2_e1_a9; 
T2_e1_a8 + T2_e1_a9 -> T2_e1_a10; 
T2_e1_a10  & T2_e1_a7 -> T2_e1_a3;  
T2_e1_a3[T2_e1]  
-1  
 

Figure 66: P-ORB LQN Model File
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