
XMI-based Transformation of UML
Interaction Diagrams to Activity Diagrams

by

Eric C. Wong

A thesis submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirement for the degree of

Master of Science
Information and Systems Science

School of Computer Science
Carleton University

Ottawa, Canada

January 2002

 Copyright 2002, Eric C. Wong

The undersigned recommend to the Faculty of
Graduate Studies and Research acceptance of the thesis

XMI-based Transformation of UML
Interaction Diagrams to Activity Diagrams

Submitted by Eric C. Wong, B. Sc.

in partial fulfillment of the requirements for the degree of
Master of Science

Information and Systems Science

Director, School of Computer Science

Dr. Dorina Petriu, Thesis Supervisor

Carleton University
January 2002

ABSTRACT

The thesis proposes and implements a transformation method that takes UML interaction

diagrams as input and generates equivalent activity diagrams as output. The transformation

approach takes into account the concurrency characteristics of the interacting objects. The

thesis describes the proposed transformation rules both at UML notation level, which is

more intuitive, and at UML metamodel level, which corresponds to the actual

implementation. A Java application was designed and built in the thesis for realizing the

proposed transformation. The application takes as input XML files produced by an existing

UML tool, which contain interaction diagrams in XMI format. The XMI standard defines

how to represent UML models in XML in order to facilitate information interchange

between different tools. The activity diagrams produced by our transformation are also

represented in XMI format.

ii

ACKNOWLEDGEMENT

First and foremost, I extend my deep gratitude and thanks to my supervisor, Dorina Petriu,

for her encouragement and guidance through this research. Without her help, advice and

trust, my studies in this area would not have been possible.

I would like to thank Carleton University, the School of Computer Science and the

Department of Systems and Computer Engineering for giving me the opportunity to do my

thesis work. I would also like to thank the members of RADS lab for creating a wonderful

working environment and for their technical support.

I extend my appreciation to all my friends for their helpful comments and suggestions.

Special thanks goes to Kathleen Hui Shen for her ideas and discussion. This work is reliant

on those mentioned in the reference and upon the people mentioned above. I thank them for

the solidity their shoulders have granted me.

The financial support from Communication and Information Technology Ontario (CITO) is

greatly appreciated.

Finally, I’m very grateful to my parents for their moral support and constant encouragement

during my studying at Carleton University.

iii

TABLE OF CONTENTS

Chapter 1 Introduction ...1

1.1 Motivation for the Thesis Research... 1

1.2 Scope of the Thesis Research ... 4

1.3 Contributions ... 6

1.4 Thesis Outline .. 7

Chapter 2 Literature Review..9

2.1 Unified Modeling Language... 9

2.1.1 UML Metamodel... 11

2.2 XML and XMI ... 13

2.2.1 eXtensible Markup Language (XML) .. 14

2.2.2 XML Metadata Interchange (XMI).. 16

2.2.2.1 XMI DTD Architecture.. 17

2.2.2.2 UML DTD... 17

2.3 UML Design Tools... 18

2.3.1 ArgoUML ... 19

2.3.2 Rational Rose.. 21

2.4 Performance Profile.. 22

2.4.1 Performance Modeling Techniques.. 23

Chapter 3 Consistent Behavior Representation in Interaction and Activity

Diagrams……..25

3.1 Conceptual Description .. 25

3.1.1 UML Collaboration ... 27

3.1.2 Interaction ... 28

3.1.2.1 Sequence Diagram... 34

3.1.2.2 Collaboration Diagram... 36

3.1.2.3 Object and Classifier Role.. 37

3.1.2.4 Message and Stimulus.. 37

3.1.2.5 Message Properties .. 38

iv

3.1.3 Activity Diagram... 40

3.1.3.1 Swimlane... 42

3.1.3.2 Action State... 44

3.1.3.3 Fork and Join ... 44

3.1.3.4 Branch and Merge.. 45

3.1.3.5 Object Flow State .. 46

3.1.3.6 Transition .. 46

3.2 Transformation Rules at UML Diagram Level .. 46

3.2.1 Basic cases .. 48

3.2.2 Example.. 54

3.2.3 Discussion... 56

Chapter 4 Detailed Design of the ID to AD Transformation59

4.1 Metamodel and API ... 59

4.1.1 UML Metamodel... 60

4.1.2 UML Physical Metamodel... 61

4.1.3 NOVOSOFT UML (NSUML) Metamodel and its API .. 63

4.2 Object Model in Novosoft UML API.. 65

4.2.1 Primitives .. 66

4.2.2 Enumerations .. 66

4.2.3 Datatypes .. 67

4.2.4 Elements ... 68

4.2.5 Attributes and Associations ... 70

4.2.5.1 Access to Attributes ... 70

4.2.5.2 Access to Associations... 72

4.3 UML Metamodel Representations .. 73

4.3.1 Interaction Diagram... 73

4.3.2 Activity Diagram... 80

4.4 Metaobjects for Some Basic Cases ... 85

4.4.1 Case 1: Sequential Execution in a Single Thread.. 85

4.4.2 Case 2: Synchronous Messages Send and Reply .. 87

4.4.3 Case 3: Asynchronous Creation of an Active Object .. 89

v

4.4.4 Case 4: Asynchronous Messages between Two Threads .. 91

4.5 Transformation Algorithm.. 92

Chapter 5 Implementation of Transformation Rules................................96

5.1 XMI Input .. 97

5.1.1 XMI Structure of Interaction Diagram ... 97

5.1.2 XMI Reader .. 99

5.1.2.1 Simple API for XML (SAX) .. 99

5.1.2.2 Elements Processing .. 102

5.2 XMI Output ... 104

5.2.1 XMI Structure of Activity Diagram... 104

5.2.2 XMI Writer ... 105

5.3 Transformation... 107

5.3.1 Transform ... 108

5.3.2 Traverse .. 110

5.4 Limitations and Discussion... 112

5.5 Verification .. 113

5.5.1 Document Object Model (DOM) and JTree ... 113

5.5.2 Testing Configuration.. 117

5.5.3 Results Evaluation... 119

5.6 Case Study ... 120

5.6.1 Testing Result ... 126

Chapter 6 Conclusion..131

6.1 Conclusion ... 131

6.2 Future work.. 132

References…..134

vi

List of Figures

Figure 1-1 UML to LQN .. 3

Figure 1-2 Scope of the Thesis ... 5

Figure 2-1 Four-layer Metamodel Architecture... 12

Figure 2-2 UML Metamodel: Backbone ... 18

Figure 2-3 ArgoUML’s Main Window ... 20

Figure 3-1 Collaboration and Interaction in the UML metamodel.. 28

Figure 3-2 Sequence Numbering .. 31

Figure 3-3 A Sequence Diagram in Rose .. 32

Figure 3-4 An Equivalent Collaboration Diagram in Rose... 33

Figure 3-5 Sequence Diagram with a Branch .. 34

Figure 3-6 Action Metamodel... 40

Figure 3-7 Activity Diagram with Swimlane and Object Flow State.. 41

Figure 3-8 Branch and Merge... 45

Figure 3-9 Sequential Execution... 49

Figure 3-10 Branch and Merge ... 50

Figure 3-11 Iteration... 51

Figure 3-12 Synchronous Message Send and Reply .. 52

Figure 3-13 Asynchronous Creation of an Active Object .. 53

Figure 3-14 Asynchronous Message between Two Execution Thread ... 53

Figure 3-15 Destruction and Termination ... 54

Figure 3-16 Example: Input Sequence Diagram.. 55

Figure 3-17 Example: Activity Diagram after Transformation .. 56

Figure 3-18 Alternative Representations for Modeling an Asynchronous Message........................ 56

Figure 3-19 Alternate Ways of Representing a Synchronous Message... 58

Figure 4-1 Package Structure of the UML Metamodel .. 61

Figure 4-2 Metaclass Abstraction ... 71

Figure 4-3 Access to Association.. 72

vii

Figure 4-4 Metamodel Representation for a Collaboration Diagram.. 79

Figure 4-5 Metamodel Representation for a Sequence Diagram .. 80

Figure 4-6 Metamodel Representation for an Activity Diagram .. 84

Figure 4-7 SD Metaobjects for Sequential Execution .. 86

Figure 4-8 AD Metaobjects for Sequential Execution ... 87

Figure 4-9 SD Metaobjects for Synchronous Message Send and Reply ... 87

Figure 4-10 AD Metaobjects for Synchronous Message Send and Reply....................................... 88

Figure 4-11 SD Metaobjects for Asynchronous Creation of an Active Object................................ 89

Figure 4-12 AD Metaobjects for Asynchronous Creation of an Active Object 90

Figure 4-13 SD Metaobjects for Asynchronous Messages between Two Threads 91

Figure 4-14 AD Metaobjects for Asynchronous Messages between Two Threads 92

Figure 5-1 Collaboration Diagram XML Tree Structure.. 98

Figure 5-2 Sequence Diagram XML Tree Structure (only for ArgoUML tool) 98

Figure 5-3 SAX Parser ... 100

Figure 5-4 Activity Diagram XML Tree Structure .. 104

Figure 5-5 Transformation Components ... 108

Figure 5-6 Transformation: CallAction (left), SendAction (right).. 111

Figure 5-7 JAXP APIs.. 114

Figure 5-8 Tree View of a DOM .. 115

Figure 5-9 GUI Configuration .. 117

Figure 5-10 Testing Window.. 118

Figure 5-11 Deployment Diagram for E-commerce System .. 121

Figure 5-12 Sequence Diagram for “ Get product info.” Use Case .. 122

Figure 5-13 Activity Diagram for “Get product info” Use Case .. 124

Figure 5-14 SD for "Get product info" use case in Rose.. 127

Figure 5-15 SD in XMI Format .. 128

Figure 5-16 Display Both SD and Equivalent AD... 129

Figure 5-17 Rose Imports AD in XMI format ... 130

viii

List of Tables

Table 4-1 Primitives ... 66

Table 4-2 Enumerations ... 67

Table 4-3 MVisibilityKind ... 67

Table 4-4 Datatypes ... 67

Table 4-5 MMultiplicity... 68

Table 4-6 Names' Correspondence.. 68

Table 4-7 Access to Association... 73

Table 5-1 Supporting Environments ... 97

ix

List of Acronyms

API Application Program Interface

CASE Computer Aided Software Engineering

CCM CORBA Component Model

CORBA Common Object Request Broker Architecture

DOM Document Object Model

DTD Document Type Declaration

FSM Finite State Machine

LQN Layered Queueing Network

MOF Meta Object Facility

MSC Message Sequence Chart

NSUML Novosoft UML

OCL Object Constraint Language

OMG Object Management Group

PGML Precision Graphics Markup Language

RFP Request for Proposal

RPC Remote Procedure Call

SAX Simple API for XML

SVG Scalable Vector Graphics

UML Unified Modeling Language

W3C World Wide Web Consortium

XMI XML Metadata Interchange

XML eXtensible Markup Language

XSL XML Stylesheet Language

Chapter 1 Introduction

1.1 Motivation for the Thesis Research

In a relatively short time the Unified Modeling Language (UML) from OMG has emerged as

the industry standard for designing and visualizing software systems. It provides several

kinds of diagrams, which allow the description of different aspects and properties of systems,

like static and behavioral aspects, interaction among system components and physical

implementation details. Meanwhile, it has been recognized that performance analysis should

be integrated in the software development life cycle from the early stages. Reasons that are in

favor of using performance analysis during the software development include the end users’

expectations, cost control and the fact that performance requirements are better met if

attention to performance problems is paid earlier rather than later. Software Performance

Engineering (SPE), introduced by Smith in her pioneering work [Smith90], has been the first

comprehensive approach to the integration of performance analysis into the software

development process, from the earliest stages to the end. More motivations for using

performance engineering can be found in [Smith90], [Kahkipuro99] and [Wang99].

OMG recognized the importance of performance analysis by issuing a UML Performance

Profile [Profile01]. The profile identifies the basic abstractions used in performance analysis,

and describes how these abstractions are expressed in terms of lightweight extensions to the

UML metamodel. By using UML models annotated with quantitative performance

information, one can generate a performance model in order to conduct quantitative

2

performance analysis of the software represented by the UML models. The feedback to

software designers gained from the performance evaluation, will give them insights in the

crucial aspects of the system and allow them to refine the design at the UML model level.

There are various types of performance models, which include queueing networks and their

extensions called Extended Queueing Networks (EQN) [Williams+98] and Layered

Queueing Networks (LQN) [Woodside+95], Stochastic Timed Petri nets (STPN) [King+99],

Stochastic Process Algebras (SPA) [Pooley99] and simulation models.

An open research problem and challenge is to completely automate the process of deriving

performance models from software specification and to integrate the supporting tools in a

unique environment, as shown in Figure 1-1 [Petriu+01a].

3

UML to LQN
Transformation

Analysis
Results

UML
Model

UML Tool

LQN Tool

LQN Model
 Performance

Figure 1-1 UML to LQN

Attempts ([Wang99], [Amer01]) have been made for the automatic transformation of a UML

model into a LQN performance model using a graph rewriting tool PROGRES [Schurr90].

One of the limitations of using PROGRES is that it introduces an extra step necessary for

translating UML models in XMI format into PROGRES input files. More research is under

way to build a Java application that reads UML models in XMI format obtained from UML

tools and transforms them into LQN performance models [Petriu+01a]. The work done in the

current thesis is a part of this larger research effort.

Since performance is a dynamic property, scenarios play a key role in determining a

system’s performance characteristics from its UML models. [Profile01] decomposes a

scenario in a sequence of one ore more scenario steps that are ordered conform to a general

4

predecessor/successor relationship. In UML a scenario is an instance of a use case

[Quatrani98, pp. 65] and provides a means for the end user and the domain expert to state

their expectations about the desired behavior of a system to its developers [Booch94].

Scenarios are usually modeled either using interaction diagrams or activity diagrams. Both

interaction and activity diagrams describe the inter-object behavior of a system with

emphasis on different aspects. They both provide the overall operations of a system.

Interaction diagrams describe the detailed sequence of behavior from object to object and

from method to method [Booch+99]. However, interaction diagrams usually represent a

single scenario or a part of scenario. It is not always clear how different scenarios are

pieced together in the system execution. UML offers another way to express the overall

flow of control, in the form of activity diagrams. Although statechart diagrams also

describe behavior, they provide a localized view of an object (intra-object behavior), which

is not particularly useful for representing scenarios.

1.2 Scope of the Thesis Research

As mentioned before, the work done in this thesis is a part of a larger project to generate

automatically performance models from UML models annotated with quantitative

performance information.

5

 ID to AD Transformation

Convert

Input

Export

UML Design Tools

XMI Reader
(NSUML API)

XMI Writer
(NSUML API)

Data Structure of
Metamodel Objects

(Interaction Diagram)

Data Structure of
Metamodel Objects
(Activity Diagram)

Transformation
(Java Application)

Import

Output

XML File
 XMI

(Interaction Diagram)

XML File
 XMI

(Activity Diagram)

Write

Figure 1-2 Scope of the Thesis

The subject of the thesis is to implement an automatic transformation of an interaction

diagram (input) into an activity diagram (output). Both the input and output are represented

in XMI format. The thesis approach is illustrated in Figure 1-2. A CASE tool, (e.g. Rose or

ArgoUML), generates an XML file representing a UML model containing different

diagrams. In the thesis, however, we are interested only in interaction diagrams (sequence

or collaboration) and activity diagrams.

The Java application build in the thesis is represented by the gray rectangle named ID to

AD Transformation. First, an XMI reader reads an XML file generated by a UML tool,

converts its elements to UML metaobjects, and builds the internal data structure for the

6

model. Then the interaction diagrams from the model are converted to activity diagrams by

applying the appropriate rules. The activity diagrams that are generated are contained in a

new model. Finally, an XMI writer writes the new model to an XML file conforming to

XMI format, which can be imported again by UML tools for further usage.

Our application uses the metamodel library NSUML and its API, which help us to read,

process and create XMI files. XMI integrates three key industry standards: 1) XML –

eXtensible Markup Language, a W3C standard; 2) UML – an OMG modeling standard; 3)

MOF – Meta Object Facility, an OMG metadata repository standard. The integration allows

developers to share object models and other metadata over the Internet in a standardized

way, thus bringing consistency and compatibility to applications created in collaborative

environments.

1.3 Contributions

The goal of the thesis is to define and implement a transformation process that accepts as

input UML interaction diagrams (i.e. sequence or collaboration diagrams) and produces as

output equivalent activity diagrams that represent the same behavior as the input diagrams.

The contributions of the thesis are summarized as follows:

§ Define transformation rules from interaction diagrams to activity diagrams at the

UML notation level. The transformation rules take into account the concurrency

characteristics of the interacting objects, and generate activity diagrams that contain

a separate swimlane for every thread of control.

7

§ Express the above transformation rules at the UML metamodel level. Identify the

metamodel classes/objects used to represent the interaction and activity diagrams,

and express each transformation rule in terms of metamodel objects, their attributes

and relationships.

§ Design, implement and test a Java application that realizes the above

transformation. The application takes as input XML files produced by an existing

UML tool, which contain interaction diagrams in XMI format encoded according to

the XMI standard [XMI1.1]. The input interaction diagrams are transformed into

equivalent activity diagrams, which are expressed also in XMI format according to

the XMI standard.

1.4 Thesis Outline

The thesis includes 6 chapters, which are structured as follows:

Chapter 2 gives an overview of the background literature for the thesis. The UML and XMI

are described at first, followed by a short introduction of two UML design tools. Then the

UML Performance Profile is briefly presented, as the thesis transformation is part of a

larger project aiming to transform UML models into performance models.

8

Chapter 3 explores the behavior aspects represented in interaction diagrams and activity

diagrams, and gives a high-level view of the transformation approach, followed by the

transformation rules expressed at UML notation level.

Chapter 4 investigates the UML metamodel and the Novosoft UML API that was used to

implement the transformation [NSUML99]. The API implements the UML metamodel.

The chapter continues by describing the transformation rules at the metamodel level. The

algorithm for the transformation is also given.

Chapter 5 describes the Java implementation of the proposed transformation, focusing on

the XMI input, output and transformation procedures. The verification of the Java

application is discussed, and a case study is also investigated.

Chapter 6 summarizes the thesis research and opens some directions for future work.

9

Chapter 2 Literature Review

This chapter presents an overview of the background information related to the thesis, such

as the Unified Modeling Language (UML), the eXtensible Markup Language (XML), the

XML Metadata Interchange (XMI), UML design tools and the newly proposed UML

Performance Profile.

2.1 Unified Modeling Language

The Unified Modeling Language (UML), adopted as a standard (UML 1.1) by OMG in

1997, has been rapidly and widely adopted and has almost completely superseded the

earlier OO (Object-Oriented) methodologies, such as the Object Modeling Technique

(OMT) [Rumbaugh+91], Booch’s Methodology [Booch94], OORAM [Reenskaug96],

Syntropy [Cook+94] and many others. The version 1.3 [UML1.3] is used throughout the

thesis. The latest version 1.4 has been adopted as the standard in September 2001, which is

described in [UML1.4]

Formally, UML is defined by an Object Management Group (OMG) document containing

9 sections. The following sections are particularly relevant to the thesis:

§ UML Semantics: This section defines the UML “abstract syntax” in the form of a

set of UML packages. Each package contains a set of UML class diagrams

describing the UML metaclasses and their relationships. Each class in the

metamodel and its attributes are described in English. Well-formedness rules for

10

UML models are expressed in the Object Constraint Language (OCL)

[Warmer+99]. Each package within the meta-model is further described by

additional English text that explains the intended interpretation of the elements in

the package.

§ UML Notation Guide: This section describes the graphical notation for the elements

that compose eight kinds of UML diagrams, and how they work together. Examples

of UML diagrams are given together with English description. Each notation

element has a “Mapping” that describes in English how it is represented by the

elements in the metamodel. The notation guide also contains brief summary of

semantics.

§ UML XMI DTD Specification: This section defines the XMI DTD for UML 1.3.

The OMG XMI standard [XMI1.1] specifies a structure for interchanging models

that uses XML (eXtensible Markup Language). One of the primary goals of

providing this DTD is to enable OO modeling tool interoperability. As with the IDL

(Interface Definition Language) definition [IDL99], the UML metamodel is

subjected to minor modifications to create a “physical metamodel”, which is then

mapped into XML Data Type Declarations (DTDs) – schemas that define the

structure of XML representations of UML models.

Although the UML provides a rich set of modeling concepts and notations to meet the needs

of typical software modeling projects, users may sometimes require additional features and/or

11

notations beyond those defined in the UML standard. For this purpose, UML provides three

built-in extension mechanisms:

§ Constraints place semantic restrictions on particular design elements. UML uses the

OCL to define constraints.

§ Tagged Values allow arbitrary information to be attached to any model element.

§ Stereotypes allow groups of constraints and tagged values to be given descriptive

names and to be applied to other model elements.

Using the above mechanisms enables us to represent new concepts in UML. For instance, we

could choose tagged value to add quantitative performance information to the UML

diagrams. In fact, the extension mechanisms are used to define so-called UML profiles,

which specialize UML for different application domains. One of the profiles being currently

defined is described in section 2.4.

2.1.1 UML Metamodel

The UML metamodel is defined as one of the layers of a four-layer metamodel architecture,

depicted in Figure 2-1. The four layers are:

§ M0: domain-specific information

§ M1: model of the domain-specific information, e.g. in UML

§ M2: meta-model, e.g. definition of UML

§ M3: meta-meta-model, e.g. definition of the way that UML is defined.

12

instance_of

instance_of

instance_of

M3
Meta-metamodel

MOF

M2
Metamodel

(UML Metamodel)
 M1

Model

M0
Data

Figure 2-1 Four-layer Metamodel Architecture

The fundamental relationship between these layers is intended to be the instance-of

relationship, which is clearly expressed in the UML specification [UML1.3]. The M3 level,

Meta Object Facility (MOF), defines the basic concepts from which specific metamdoels

are created at the meta (M2) level. This includes the UML metamodel, which is regarded as

being an instance-of the MOF meta-metamodel. We will describe in more detail parts of the

UML metamodel related to interaction and activity diagrams in chapter 4. Normal user

models, created using the concepts of the UML, are regarded as residing at the M1 level,

and the ultimate run-time data is regarded as residing at the M0 level.

It is always a difficult task for the UML specification to improve precision while

maintaining readability. For this reason, the current UML semantics is informally specified.

The definition of semantics, such as dynamic behavior, is expressed in English, which

sometimes may lead ambiguity. Whether a UML model conforms to the semantics or not is

purely a matter of human interpretation based on reading of the English. On the other hand,

13

UML defines a set of diagram types, but there is no metamodel representation of a diagram

itself. In other words, diagram interoperability is not supported in general because there is

no functional mapping between metamodel elements and diagrammatic elements. It is the

responsibility of UML tools to map the UML notation to the metamodel elements. In fact,

we found out that different UML tools use sometimes different mappings of the diagram

elements to metamodel elements, which is against the spirit of the standard.

2.2 XML and XMI

UML is used extensively to model object systems. It can’t, however, capture

implementation details, interoperability semantics, information exchange format and so on.

Over the past few years the OMG has created an architecture for managing metadata. This

has resulted in several official metadata standards. The core standard is the Meta Object

Facility (MOF). XMI (XML Metadata Interchange) is an extension of the MOF into the

XML space. Thus, before focusing on the XML and XMI, it is important to grasp the basic

concepts of the MOF.

MOF is a self-describing meta-metamodel used to describe UML, a set of technology

metamodels (such as the CORBA Component Model (CCM), the Enterprise JavaBeans

(EJB)), as well as any other user-defined metamodels. The MOF standard selects a subset

of UML that is appropriate for modeling metadata. This subset is called the MOF core. The

key point is that the MOF core is independent of CORBA, Java, XML or any other

14

middleware technology. This is due to the fact that UML (of which the MOF core is a

subset) is technology-neutral.

MOF also contains a set of rules that define the interoperability semantics and information

(metadata) exchange format for a given information model. The MOF to IDL (Interface

Definition Language) transformation rules can be applied to any metamodel to produce a

well-defined API. In addition to the API, the MOF rules also define the DTD

corresponding to the metamodel. The current official version of MOF is 1.3 and described

in [MOF1.3].

2.2.1 eXtensible Markup Language (XML)

XML is a new standard adopted by the World Wide Web Consortium (W3C) to

complement HTML for data exchange on the Web. It is a way of working with information

in a structured form. The description of XML in the thesis emphasizes its role as a data

exchange format, not that of a document markup language. In this subsection, we outline

the major features that make XML great for information storage and interchange. More

information on XML can be found in [W3C], [Ducharme99], [Leventhal+98],

[Abiteboul+00], [Maruyama99] and [Armstrong01].

XML is designed specifically to describe content, rather than presentation. The major

features are summarized as follows:

15

1. New tags may be defines at will.

2. Tags identify the information and break up the data into parts.

3. XML documents are always constrained to be well-formed.

4. Structures can be nested to arbitrary depth.

5. An XML document can contain an optional description of its grammar.

XML allows users to define new tags to indicate the structure of their documents. It tells

one what kind of data one has, not how to display it. Hierarchical structures make XML

documents faster to access and easier to manipulate. Since XML is inherently style-free, a

completely different stylesheet, such as XML Stylesheet Language (XSL) that lets you

dictate how to portray the data, can be used to produce output in postscript, TEX, PDF, or

some new format that hasn’t even been invented yet.

XML consists of two parts: documents and DTDs (Document Type Declarations). DTD

serves as grammar for the underlying XML document ([Martin99], [Maruyama99]). An XML

document is valid if it conforms to his DTD. In other words, elements in a valid document

may be nested only in the way described by the DTD and may have only the attributes

allowed by the DTD. The use of XML introduces the need for extra tools such as parsers

[XML] or APIs like Simple API for XML (SAX) [Armstrong01] and Document Object

Model (DOM) [DOM]. More on the way XML is used for interchanging UML models is

discussed in chapter 5.

16

XML is fast becoming the data representation of choice for the Web, especially when used

in combination with network-centric programs that send and retrieve information. For

example, a client/server application could transmit XML-encoded data back and forth

between the client and the server [Armstrong01].

2.2.2 XML Metadata Interchange (XMI)

The “X” in XMI means both XML and eXtensible. XMI is designed to be compatible with

upcoming XML technologies, which include Namespaces, XLinks, XPointers, and XML-

Schema [Abiteboul+00]. In particular, XMI will use the future capabilities of XML-Schema,

directly using new features such as XML data types and improved mechanisms for DTDs.

The XMI generation rules described below provide that extensibility.

XMI defines two sets of rules that provide open interchange and leverage the capabilities of

XML: DTD generation and document generation. The DTD generation is used to specify an

interchange format, and document generation creates documents that use a given XMI

DTD. The current official version of XMI is 1.1 and described in [XMI1.1].

XML DTDs alone do not have the ability to express the semantic meaning appropriate for

the model. They require a whole sets of additional concepts that are only available through

complete information architectures, such as UML, MOF, and others being developed by the

OMG. For example, an UML-based DTD allows interchange of object-oriented UML

17

models. This results in the ability to interchange at both the data level (XML) and the

semantic level (UML) [OMG].

2.2.2.1 XMI DTD Architecture

The XMI DTD architecture provides the necessary infrastructure for information transfer

by defining a uniform treatment of object identity, internal and external references,

document partitioning, tool-specific extensions, round-trip exchanges, incomplete models,

and differences [XMI1.1].

Every XMI DTD contains the elements generated from an information model, e.g. a UML

model, plus a fixed set of element declarations that may be used by all XMI documents.

These fixed elements provide a default set of data types and document structure, starting with

the top-level XMI element. Each XMI document contains one or more elements called XMI

that serves as a top level container for the information to be transferred. XMI is a standard

XML element and may stand alone in its own document or may be embedded in XML or

HTML documents. Detail descriptions of DTD design and generation principles can be found

in [XMI1.1].

2.2.2.2 UML DTD

UML DTD is the most widely used XMI DTD. It is a physical mechanism for

interchanging UML models conforming to the UML metamodel. This metamodel, so-called

physical metamodel, is fed into an XMI DTD generator to produce the UML DTD used by

18

tools to export and import UML models [UML1.3]. UML physical metamodel will be

discussed in more later in chapter 4. Figure 2-2 shows the central part of the UML

metamodel [UML1.3]. The metamodel is actually more extensive than this class diagram

suggests, but most of the elements not shown here derive in some way from these backbone

elements.

ModelElement

name
isSpecification
visiability

...()

Namespace

ownedElement()

GeneralizableElement

isAbstract
isRoot
isLeaf

specialization()
generalization()

Method

body : ProcedureExpression

specification()

Operation

specification
concurrency
isAbstract
isLeaf
isRoot

*1 *

+specification

1

BehavioralFeature

isQuery

parameter()
raisedSignal()

Feature

ownerScope
Parameter

kind
defaultValue

state()
event()
type()
behaviroalFeature()

0..1

*

+behavioralFeature

0..1

*

Classifier

isAbstract
isLeaf
isRoot

parameter()
StructuralFeature()
feature()

0..1

*

+owner

0..1

+feature
*

1

*

+type

1

*

StructuralFeature

multiplicity
targetScope
changeablility

type()

+type

Element

+parameter

Figure 2-2 UML Metamodel: Backbone

2.3 UML Design Tools

UML design tools are UML-based CASE (Computer Aided Software Engineering) tools

that support the use of design diagrams in the development of an object-oriented software

19

(also known as OOAD (Object-Oriented Analysis and Design)) tools. Assuming that XML

will become a universal data exchange format, many software vendors are building tools

for importing and exporting XML data. In this section we describe two UML design tools

in brief: ArgoUML [ArgoUML] and Rational Rose [Rose]. Both tools use third-party

products to support the UML DTD, and thus are XMI-compliant. We do not intend to give

comparisons of the tools, instead, the description concentrates on their XMI aspects.

Detailed user manuals for ArgoUML and Rational Rose are given in [ArgoUML] and

[Rose], respectively.

One thing worth to point out is that when drawing diagrams with a tool, a notation on a

computer screen may contain additional invisible information. Besides, not all modeling

information is presented most usefully in graphical notation. Tools are responsible for

keeping the consistence between the notation and the underlying model.

2.3.1 ArgoUML

ArgoUML is a Java-based cognitive CASE tool, and also an Open Source Development

project where users are invited to contribute [ArgoUML]. Figure 2-3 shows ArgoUML’s

main window which has a menu bar and four main panes: navigation, editing, to do and

details.

20

Figure 2-3 ArgoUML’s Main Window

The major features related to UML and XMI are described briefly below:

§ Runs on platform with Java 1.2: ArgoUML is coded entirely in Java and uses the

Java Foundation Classes.

§ Standard UML metamodel: ArgoUML is compliant with UML 1.3. The code for the

internal representation of an UML model is genreated by a special metamodel

library NSUML developed by Novosofts [NSUML99]. Some advanced features of

UML are not yet available in the diagrams, but the foundation to completely fulfill

all of UML is laid.

§ XMI-Support: ArgoUML uses XMI (XMI version 1.0 for UML 1.3 is used) as

standard saving mechanism so that easy interchange with other tools and

compliance with open standards are secured. The NSUML not only implements the

21

UML metamodel, but also provides XMI reader and writer to enable importing and

exporting for a UML model. Currently only the model information is saved in XMI,

but no graphical information (like layout of diagrams).

§ Diagram export formats: The standard saving format for diagrams is Precision

Graphics Markup Language (PGML), but it will be changed to the upcoming

standard for Scalable Vector Graphics (SVG) of the W3C consortium.

2.3.2 Rational Rose

Rational Software Corporation’s well-known Rose modeling tool has led the object-

oriented analysis and design market for years. With the three OOAD pioneers who started

the creation of UML – Grady Booch, James Rumbaugh, and Ivar Jacobson – on Rational’s

staff, it is not surprising that Rose was one of the first tools to support the UML. Today,

Rational is one of the OMG’s most active participants in maintaining and enhancing the

standard [Hess00].

Rose features include expanded round-trip engineering, support for UML 1.3, and built-in

team development. It also includes Rose Extensibility for developing add-in functionality.

Several third-party vendors already have used the extensibility features to integrate Rose

with their tools or environments. One of them is Unisys’ XMI add-in. Rose does not

directly support generating XMI from UML models. Instead, Unisys’ XMI add-in provides

this support, which is available at Rational’s Web site. It uses an XML tagging scheme that

lets other modeling tools to work with Rose diagrams, so different organizations can

22

collaborate on software projects. In the thesis, we used the XMI add-in to generate XML

files containing interaction diagrams, which are the input to our transformation process.

2.4 Performance Profile

As we mentioned in chapter 1, the thesis implements the transformation from interaction

diagrams to activity diagrams, which, combined with information taken from other

diagrams, will be used to build automatically performance models from UML models

([Amer01], [Petriu+00b]). Software Performance Engineering (SPE), initially introduced

by [Smith90], integrates performance evaluation into the software development process

from the early stages throughout the whole life cycle. Related works on building

performance models for OO system from software specifications can be found in

[Smith+97], [Kahkipuro99], and [Cortellessa+00].

OMG noticed that the lack of a quantifiable notion of time and resources in UML was an

impediment to its broader use in the real-time and embedded systems. As a consequence,

OMG issued a request for proposal (RFP) asking for a UML profile for “schedulability,

performance and time”. A first draft of the profile was made public in August 2000, and an

improved version in June 2001 [Profile01]. The profile focuses on properties that are

related to modeling of time and time-related aspects such as timeliness, performance and

schedulability. In particular, the profile does not intend to invent new analysis techniques.

Rather, it is aimed to be able to annotate a UML model in such a lightweight way that

23

various existing and future analysis techniques will be able to take advantage of the

provided features.

2.4.1 Performance Modeling Techniques

The profile on performance modeling (chapter 8 in [Profile01]) describes the following

general performance analysis of UML models:

§ associating performance-related QoS characteristics with selected elements of a

UML model.

§ specifying execution parameters which can be used by modeling tools to compute

predicted performance characteristics.

§ presenting performance results computed by modeling tools or found in testing.

Typical tools for this kind of analysis provide two important functions. The first is to

estimate the performance using some kinds of modeling techniques. The second is to

improve the system by identifying bottlenecks. There are three common techniques used in

most modeling tools:

§ Queueing Models: Define workloads that execute particular aspects in different

scenarios. This may require the distribution of the demand, passive resources as

well as devices, and the detailed scenario sequence. Different queueing models have

been extended, such as Extended Queueing Networks (EQN) and Layered Queueing

Network (LQN) developed in [Woodside+95].

24

§ Simulation Models: Define multiple logical tokens which execute the software,

following the detailed scenario structure and using execution time distributions for

the operations of each step.

§ Discrete-state models such as Petri Nets: Define tokens which execute the software,

following the detailed scenario structure.

According to the SPE methodology [Smith90] and to the Performance Profile [Profile01],

the building of a performance model starts from frequently executed scenarios annotated

with performance information. These scenarios can be modeled in UML either by

interaction diagrams or by activity diagrams. Even though we do not use directly the

Performance Profile in the thesis, the automatic transformation from interaction to activity

diagrams, which is the goal of the thesis, represents an important step in the process of

building performance models from UML models.

25

Chapter 3 Consistent Behavior Representation in Interaction

and Activity Diagrams

A picture can tell, what a thousand
words can’t. [Unknown]

This chapter investigates first the UML diagrams used to model behavior: interaction

diagrams (including sequence and collaboration diagrams), activity diagrams, and

statechart diagrams. The thesis will then focus on those diagrams that are most appropriate

for describing scenarios: interaction and activity diagrams. The chapter continues by

defining a transformation that takes an interaction diagram as input and generate the

corresponding activity diagram as output.

The chapter is organized as follows. In the first section we describe briefly the elements

contained in interaction and activity diagrams. Next we propose transformation rules

represented by basic cases at the notation level. The metamodel representations behind the

transformation rules will be described in next chapter.

3.1 Conceptual Description

UML describes five complementary views that are important in visualizing, specifying,

constructing, and documenting a software architecture: the use case view, the design view,

the process view, the implementation view and the deployment view. Each of these views

involves structural modeling, as well as behavioral modeling [Booch+99].

26

The static parts of a system are typically described by one of the four following diagrams:

class diagram, object diagram, component diagram, and deployment diagram. The UML

provides other additional diagrams to view the dynamic parts: use case diagram, interaction

diagram (sequence and collaboration diagram), activity diagram and statechart diagram.

Each kind of diagrams focuses on a certain perspective of the system. Particularly,

interaction diagrams represent the behavior of a set of objects (inter-object behavior), while

statechart diagrams look at each object individually and provides a narrow and deep view

of its behavior (intra-object behavior). Activity diagrams, on the other hand, emphasize the

flow of activities and can be used to represent both inter-object and intra-object behavior.

In the UML metamodel, the activity diagrams (which are a later addition to UML) are

considered as a kind of statecharts. However, this representation does not emphasize the big

difference between statecharts and activity diagrams. The former are attached to individual

objects and express only intra-object behavior, whereas the latter can be attached either to

an object (to describe its behavior) or to a use case or an interaction diagram (to describe

inter-object behavior).

The semantics and notation of statechart diagrams in the UML standard are substantially

those of Harel’s statecharts [Harel87]. A statechart diagram describes all the possible states

a particular object can get into and how the object’s state changes as a result of events that

reach the object. It separates an object from the rest of the system and examines its

27

behavior in isolation. Statechart diagrams overcome the limitations of traditional Finite

State Machines (FSMs) while maintaining the benefits of finite state modeling by

introducing the concepts of both nested hierarchical states and orthogonality [Fowler97].

Further description on statechart diagrams is given in [UML1.3] and [Booch+99]. In the

thesis we are concerned with modeling scenarios, therefore we will not use statecharts.

In next two sections, we describe in more detail the interaction and activity diagrams that

are particularly relevant to the thesis.

3.1.1 UML Collaboration

A collaboration is “a society of classes, interfaces, and other elements that work together to

provide some cooperative behavior that is bigger than the sum of all its parts” [Booch99,

pp. 27-371]. It describes a collection of objects that interact to implement some behavior

within a context. A collaboration has both a structural aspect and a behavioral aspect. The

structural aspect defines the context by a set of roles and their relationships, which is

typically rendered using class or object diagrams. The behavioral aspect specifies the

dynamics of how those elements interact (i.e. how the set of messages exchanged by the

objects are bound to the roles), which is typically rendered using an interaction diagram.

Figure 3-1 shows the relationship between Collaboration and Interaction in the UML

metamodel (Conventionally the initial letter is capitalized to mean a metaclass in UML). A

Collaboration specifies a set of roles played by Objects, and one or more corresponding

28

Interactions show how Objects cooperate with each other when playing these roles. Each

role in a Collaboration is described with a Classifier Role, which specifies a projection of a

Class. A Classifier Role expresses which features declared in a class (such as Attributes and

Operations) are required in the Collaboration. An object playing a specific role must

conform to the Classifier Role, i.e. the Object must offer the operations stated by the

Classifier Role, and must contain Attribute Links corresponding to the Attributes of the

Classifier Role. Moreover, a Collaboration defines an Association Role which specifies

what associations are needed between the participating Classes.

1

1

0..1

1..*

*

*

*

1..*

Collaboration

Association Role

Interaction

Message

Action

Classifier Role

Operation

Figure 3-1 Collaboration and Interaction in the UML metamodel

3.1.2 Interaction

An Interaction is defined within the context of a Collaboration. More precisely, it specifies

a collection of Messages between the various Classifier Roles of the Collaboration. Each

message specifies one specific kind of communication. A certain realization of a Message

is expressed with a Stimulus. A set of cooperating Objects playing the roles in the

Collaboration interact according to the Messages of the Interaction by sending Stimuli to

each other. These set of Stimuli are partially ordered based on the execution threads they

29

belong to. Within each thread, the Stimuli are sent in sequential order, while Stimuli of

different threads may be sent in parallel or in an arbitrary order.

The order of Stimuli (Messages) reveals how the flow of control takes place among the

objects (notice that although Stimuli and Messages are semantically different, they are

treated in the same way in our implementation). This information is described by a

sequence-expression used to label the Messages. The following are samples of Message

labels:

2: message-name(argumet-list)

1.3.1: message-name(argument-list)

2.1a: message-name(argument-list)

[x<0] 4: message-name(argument-list)

The sequence–expression (such as 1.3.1) is a dot-separated list of sequence-terms followed

by a colon (‘:’) [UML1.3, pp. 3-125]. Each term represents a level of procedural nesting

within the overall interaction. If the control is concurrent, then nesting does not occur. Each

sequence-term has the following syntax:

label recurrence

where label is

integer

or

name

30

The integer represents the sequential order of the Message within the next higher level of

procedural calling. An example is: Message 2.1.4 follows message 2.1.3 within activation

2.1. The name represents a concurrent thread of control. An example is: Message 2.1a and

message 2.1b are concurrent within activation 2.1. The recurrence represents conditional or

iteration execution, in which the UML does not prescribe their formats. An example for a

condition would be: [x<0]. An example for an iteration would be: *[i := 1..n]. Sequence

number is a sequence-expression without any recurrence terms. It must match the sequence

number of another Message.

For a procedural flow of control, the sequence numbers are nested. For a nonprocedural

sequence among concurrent objects, the sequence numbers are not nested and are at the

same level. Moreover, sequence numbers indicate a predecessor/activator association

among Messages. The predecessors are the set of Messages that must be completed before

the current Message may be executed. The activator is the message that invoked the

procedure which in turn invokes the current message. The message corresponding to the

numerically preceding sequence number is an implicit predecessor. An example is

demonstrated in Figure 3-2, message 1.1 is the predecessor of message 1.2 within activation

1, whereas message 1.2.2a and message 1.2.2b are concurrent within activation 1.2.

31

1.2.2b: Turn off Yellow

1.2.2a: Turn on Green

ob1: C1

ob2: C2

ob3: C3

1: Turn on Green

ob4: C4

1.1: Turn on Blue

1.2: Turn off Blue
 1.2.1: Turn on Yellow

Figure 3-2 Sequence Numbering

The objects and messages involved in an interaction can be represented in two ways in the

UML: one is using a sequence diagram that emphasizes the time ordering of the messages,

the other is using a collaboration diagram that emphasizes the relationships among the

objects that exchange the messages. Both sequence and collaboration diagrams are kinds of

interaction diagrams based on the same underlying information, i.e. they are semantically

equivalent. One can be transformed to the other in spite of their visual differences. In fact,

Rational Rose provides a function to allow one to render a sequence diagram as a

collaboration diagram, and vice versa. Figure 3-3 shows a sequence diagram. Its equivalent

collaboration diagram is shown in Figure 3-4. This is due to the fact that Rose represents

the sequence and collaboration diagrams by the same metamodel objects. This means that

by looking at an XMI file produced by Rose that contains an interaction diagram, one

cannot tell whether the corresponding graph was rendered as a sequence or as a

32

collaboration diagram. Another UML tool we have used, ArgoUML, does not support such

a close equivalence. In ArgoUML, each kind of diagram has its own metamodel

representation in XMI, which means that the interpretation of the UML metamodel by

different UML tools is not unique. Chapter 4 will describe in more detail the metamodel

representations for these diagrams.

Figure 3-3 A Sequence Diagram in Rose

33

Figure 3-4 An Equivalent Collaboration Diagram in Rose

The UML standard defines the concrete and abstract syntax for Collaborations and

Interactions and gives a description of the intended semantics. Idealy, the semantics of the

language must be precise if tools are to perform intelligent operations on models expressed

in the language, like consistency checks and transformations from one model to another.

The abstract syntax in UML is specified with the graphical notation of class diagrams in

UML itself, while the well-formedness rules of UML are given in an Object-oriented

Constraint Language named OCL. This, as we mentioned in 2.1.1, makes the semantics of

UML is still quite informal.

34

3.1.2.1 Sequence Diagram

Sequence diagrams are often most useful for showing scenarios, which are realizations of

use cases. The graphical syntax of a sequence diagram has two dimensions: the vertical

dimension represents the time and the horizontal dimension represents the different objects

[UML1.3]. Time normally proceeds downwards, and an arrow between two vertical lines

denotes a Stimulus sent between two objects (sender and receiver). Hence, the diagram

gives a clear visual cue to the flow of control over time. Usually, sequence diagrams omit

sequence numbers because the physical location of the arrow shows the relative sequences.

Sequence diagrams in the UML notation guide also provide presentation options for

addition features, such as branch and iteration. A branch is shown in Figure 3-5 by multiple

arrows leaving a single point, each labeled by a guard condition.

ob1: C1

ob2: C2

ob3: C3

[x>0] foo(x)

[x<0] bar(x)
 doit(w)

ob4: C4

Figure 3-5 Sequence Diagram with a Branch

35

To present an iteration, a connected set of arrows may be enclosed and marked as an

iteration [UML1.3, pp. 3-106].

Much of sequence diagram notation is derived from the Message Sequence Chart (MSC)

notation, which is an older standard than UML [ITUT00]. Unfortunately, the sequence

diagram notation from the current UML standard is still unsatisfactory. One of the

problems is that the notation does not scale up well. For example, if a branch is long, the

branch and merge may not be shown in the same sequence diagram. Another problem is

that both branch and iteration are not supported yet by the current UML tools (Rose or

ArgoUML). MSC standard described in [ITUT00] has a better solution. In fact, it is

expected that the new version of UML (UML 2.0), on which OMG works right now, will

improve sequence diagrams with respects to iterations, branch/merge and diagram

decomposition.

The core elements in a sequence diagram are Object and Stimulus. In the UML metamodel,

Object is a subclass of Instance and originates from a Class, which provides a full

description of its objects. In our transformation a particular interest is given to the attribute

isActive of Class, which specifies whether an object of the class maintains its own thread of

control and runs concurrently with other active objects [UML1.3, pp. 2-27]. All instances

of an active class are active objects. The notation for an active object is shown as a

rectangle with a heavy border. Notice that in UML the thread of control represents an

36

abstract notion of control and not an operating system thread. In general, an active object is

a composite that aggregates a number of passive objects executing within its thread. It has

the general responsibility to coordinate the internal execution by dispatching messages to

its constituent parts. Usually, active objects are implemented as threads or processes, even

though UML does not specify how active objects should be realized.

3.1.2.2 Collaboration Diagram

A collaboration diagram represents a UML Collaboration, which contains a set of roles to

be played by Objects, as well as their required relationships given in a particular context

[UML1.3, pp. 3-111]. A collaboration diagram can be given in two different forms: at

instance level or at specification level. A collaboration diagram given at instance level

shows a collection of Objects and Links, whereas a collaboration diagram given at

specification level shows Classifier Roles, Association Roles and Messages as well as their

structures. The Objects and Links conform to the Classifier Roles and Association Roles of

the Collaboration. A Classifier Role (Association Role) defines a usage of an Object (Link),

while the base class (Association) specifies all properties of the Objects (Links). Compared

to sequence diagrams, the collaboration diagrams do not show time as a separate

dimension. Therefore, sequence numbers, described in section 3.1.2, are necessary to

indicate the sequence of interactions and the concurrent threads.

37

3.1.2.3 Object and Classifier Role

As we mentioned before, an Object originates from a Class which is a Classifier. In a

Collaboration, however, not all the features of the participating Classifiers are always

required. Hence, a Collaboration is not actually defined in terms of Classifiers, but of

Classifier Roles. The Classifier so represented is referred to as the base Classifier of that

particular Classifier Role. Similarly, Association Roles, not Associations, between those

Classifier Roles are considered in a Collaboration.

UML defines that an Object conforms to a Classifier Role if the Object has the properties

specified by the Classifier Role, i.e. the Attribute Links and the Links of the object match

all the Attributes and Association Roles specified by the Classifier Role, and all Operations

specified by the role may be applied to the Object. The Object may, of course, include more

Attribute Links than required by the respective Classifier Role [UML1.3, pp. 2-113].

3.1.2.4 Message and Stimulus

A Message is a specification of a communication between a sender and a receiver. The

Message specifies the roles played by the sender object and the receiver object, and it

indicates which Operation should be applied to the receiver by the sender. Moreover, the

set of Messages in an Interaction is partially ordered. Recall that the interaction specifies

the predecessors and activator of each message. Precisely to say, if a message has more

than one predecessor, it represents the joining of two threads of control. If a message has

38

more than one successor, it indicates a fork of control into multiple threads. Thus, the

predecessor relationship imposes a partial ordering on the Messages within a procedure,

whereas the activator relationship imposes a tree on the activation of operations.

In UML there is a subtle difference between Message and Stimulus. A Stimulus reifies a

communication between two Objects and uses a Link between the sender and the receiver

for communication. A Message is a specification of Stimulus. The Message is connected to

an Action, which, when executed, causes the communication specified by the Message to

take place. There are different kinds of Actions in UML, such as Call Action resulting in an

invocation of an operation on the receiver, Send Action resulting in the sending of a signal,

Create Action resulting in the creation of a new object, and Destroy Action resulting in the

destruction of an object. The properties of a Message are described in the next subsection.

UML indicates that a Stimulus conforms to a Message if the sender and receiver Objects of

the Stimulus are in conformance with the sender and the receiver roles specified by the

Message. Furthermore, the Action dispatching the Stimulus is the same as the Action

Associated with the Message [UML1.3, pp. 2-115].

3.1.2.5 Message Properties

Messages play a key role in inter-object behavior. Most often, message passing will be

realized with a simple direct call to a method in the target object, but that is not the only

39

realization of a message. Other realizations include remote procedure calls (RPC), sending

messages via an OS message queue, IPC, and sending messages across a network.

[UML1.3] identifies two kinds of messages: sending a signal and invoking an operation.

The major difference between them is that signal sending is always asynchronous, while

operation call may be either synchronous or asynchronous. The essential properties of a

message are:

§ Sender

§ Receiver

§ Action

§ Parameter list and return value

§ Synchronization pattern an Arrival pattern

In most cases, a single receiver object is identified, but messages may be multicast to a list

of objects. UML is not defining a notation for broadcast, where all objects receive a

message without explicitly being part of a list. The arrival pattern, i.e. periodic or aperiodic,

is useful in the analysis of real-time systems.

The UML standard defines several different kinds of actions, as shown in the action

metamodel depicted in Figure 3-6. Actions contain Arguments and may be contained in an

Action Sequence. Two kinds of actions are particularly relevant to our discussion: Call

Action and Send Action. Call Action is associated with an Operation. The receipt of a Call

40

Action can raise a Call Event on the receiving object. Send Action is associated with a

Signal – a specification of an asynchronous Stimulus sent from one Object to another

Object. When a Signal is received by an Object, it can asynchronously raise an event called

a Signal Event.

1

1

*

*

*

0,1

*

*

0,1

*

*

1

0,1

Message

Stimulus

ActionSequence

Argument

value: Expression

Action

recurrence: IterationExpression
target: ObjectSetExpression
isAsynchronous: Boolean
script: ActionExpression

DestroyAction

UninterpretedAction

TerminateAction

ReturnAction

CreateAction

CallAction

SendAction

CallEvent

SignalEvent

ChangeEvent

TimeEvent

Event

1

Signal

Operation

Figure 3-6 Action Metamodel

3.1.3 Activity Diagram

An activity diagram shows the flow of control from activity to activity. It is a special form

of a state diagram in which most of the states are actions and in which most of the

transitions are triggered by the completion of the actions. Normally, an activity diagram

assumes that computations proceed without external event-based interruptions. Activity

diagrams are particularly useful in connection with workflow and in describing behavior

41

that has a lot of parallel processing [Fowler97, pp. 129]. Most of the states in such a

diagram are action states that represent atomic actions and do not permit transitions while

they are active. An activity diagram is similar to a traditional flow chart that is normally

limited to sequential control except it allows for concurrent control (forking/joining) in

addition to sequential control [Rumbaugh+99]. Figure 3-7 (taken from [UML1.3, pp. 3-

158]) presents an activity diagram and includes most common model elements. Next, the

semantics of some key elements is described.

Request service

Pay

Take order

Fill order

Deliver order

Collect order

Order
[Placed]

Order
[Delivered]

Order
[Entered]

Order
[Filled]

Sales

Stockroom

Customer

swimlane
 object flow state

transition
(object flow)

action state

transition
(control flow)

Figure 3-7 Activity Diagram with Swimlane and Object Flow State

42

3.1.3.1 Swimlane

Activity diagrams tell you what happens, but they do not tell you who does what. In the

domain modeling, such as workflow modeling of business processes, this means that the

diagram does not convey which business organization is responsible for each activity.

Swimlanes are an attempt to solve this problem by labeling each activity with the

responsible class or object. A swimlane is graphically separated from its neighbor by a

vertical solid line, as shown in Figure 3-7. In the metamodel, a swimlane maps into a

Partition of States in the ActivityGraph.

A swimlane specifies a locus of activities and represents a high-level responsibility for a

group of activities. Each swimlane may eventually be implemented by one or more classes.

There is a loose connection between swimlanes and concurrent flows of control.

Independent and concurrent flows of control can, but do not necessarily, map to different

swimlanes. For example, an activity diagram may represent the workflow in an enterprise,

where different swimlanes represent different departments. Even though a department may

have internal concurrent flows, this may not be shown in the activity diagram [Amer01].

Swimlanes are good in that they combine the activity diagram’s depiction of logic with the

interaction diagram’s depiction of responsibility [Fowler97, pp. 138]. On the other hand,

packaging objects involved in either interaction diagrams or activity diagrams appropriately

into nodes and threads is vital for system performance [Douglass00, pp. 216]. One of the

43

key issues related to swimlanes is how to model the processing resources. This can be done

in two ways. The most direct is to associate the appropriate stereotype with a partition

(swimlane) that is linked to the appropriate object. However, this is only useful in cases

where each object or classifier role is executing on its own host, e.g. each of them is active

and has its own thread. Much more common is the situation where different partitions

represent objects that are executing on different hosts and that some objects share hosts. In

that case, neither the activity diagrams nor the interaction diagrams contain sufficient

information to determine the allocation of objects to hosts. Under those circumstances, it is

necessary to determine which processor resource is running which object with the

information from deployment diagrams and/or component diagrams [Profile01, pp. 8-148].

In our case, however, we choose to build the activity diagrams at a granularity level where

each swimlane corresponds to a single execution flow. In other words, a swimlane will

contain the activities carried out by one active object and any number of associated passive

objects. We choose to name the swimlane with name of the active object. An exception is

made for a passive object shared by active objects, as in the case of the producer/consumer

problem. More exactly, we consider that a passive object shared by several active objects

has its own “pseudo” thread, and therefore its own swimlane in the activity diagram.

44

3.1.3.2 Action State

An action state represents the execution of an atomic action, typically the invocation of an

operation. It is a simple state with an entry action whose only exit transition is implicitly

triggered by the completion of the action in the state. An action state in graphical syntax is

shown as shape with straight top and bottom and with convex arcs on the two sides.

In sequence diagrams, the object responsible for performing an action is shown by drawing

a lifeline and placing actions on lifelines. Activity diagrams do not show the lifeline of the

object, but contain swimlanes to indicate who is responsible for different actions. The

actions within a swimlane can all be handled by the same object or by multiple objects

[UML1.3, pp. 3-157].

3.1.3.3 Fork and Join

The concurrent control expressed in an activity diagram, as illustrated in Figure 3-7, is

achieved by using a synchronization bar to specify the fork and join of the parallel flows.

A synchronization bar is rendered as a thick horizontal or vertical line.

A fork represents the splitting of a single flow of control into two or more concurrent flows

of control. Below the fork, the activities associated with each of these paths continue in

parallel and are conceptually concurrent. A join represents the synchronization of two or

more concurrent flows of control. Above the join, the activities associated with each of

45

these paths continue in parallel. At the join, the concurrent flows synchronize, meaning that

each waits until all the incoming flows have reached the join, at which point one flow of

control continues on below the join [Booch+99, pp. 264].

3.1.3.4 Branch and Merge

It is possible to express conditional branching (i.e. a selection between alternate branches)

by having different possible transitions that depend on Guard conditions leaving from the

decision point. UML provides a shorthand for showing decisions and for merging their

separate paths back together. The notation for a decision is the traditional diamond shape,

with one incoming arrow and with two or more outgoing arrows, each labeled by a distinct

guard condition with no event trigger, as shown in Figure 3-8 (taken from [UML1.3], pp. 3-

155). A merge symbol has the same diamond shape except that it has one outgoing arrow

and two or more incoming arrows. Branching and merging are usually paired in a nested

fashion. Both branch and merge symbols map into a Pseudostate of kind junction.

[cost < $50]

[cost >= $50]

Get authorization

Charge customer

Calculate costs

Figure 3-8 Branch and Merge

46

3.1.3.5 Object Flow State

An object flow between actions in an activity diagram (drawn as a rectangular shape)

represents the data flow between activities. More exactly, the generation of an object by an

action in an action state may be modeled by an object flow state that is triggered by the

completion of the action state. The use of the object in a subsequent action state may be

modeled by connecting the output transition of the object flow state as an input transition to

the action state.

3.1.3.6 Transition

Transitions show the path from one action state to the next action state. Each transition is

triggered upon the completion of its previous state and does not have a special trigger of its

own. Transitions leaving an action state should not include an event signature (as do the

transitions in a state machine). A transition may include a guard (Boolean expression) that

is evaluated before the transition is triggered. Most of the transitions used in an activity

diagram are normally very simple. More complex transitions like compound transitions are

used in state machine diagram.

3.2 Transformation Rules at UML Diagram Level

In this section, transformation rules from a sequence to an activity diagram are illustrated at

notation level. This provides a “bird’s-eye view” of the transformation approach. In the

following chapter these transformations will be described in detail by making use of the

UML metamodel which is more abstract and less readable.

47

The UML standard [UML1.3] defines a canonical UML notation that might be called the

publication format for the models. Notation does not add meaning to a model and has no

semantics, but it is more intuitive and it helps the user to understand the meaning of the

model. Also, notation is more than pictures; it includes information in text-based forms and

invisible hyperlinks among different presentation elements [Rumbaugh+99]. For simplicity,

the transformation rules are described by using sequence diagram notation. These rules

apply to collaboration diagrams as well, due to the semantic equivalence between sequence

and collaboration diagrams.

The concept behind the transformation is to follow the flow of messages in a sequence

diagram, considering the execution threads of all active objects involved in the

collaboration. Sequential executions, conditional branching and action kinds are identified

in the message flow, and are translated into appropriate states in the corresponding activity

diagram. The activity diagram contains separate swimlanes for each active object to show

the actions performed by the active object and its associated passive objects. Special

treatments are given to messages exchanged between different threads of control that

introduce fork/join connectors in the activity diagram. For example, creating an active

object is equivalent to forking a new thread of control, sending an asynchronous signal also

forks a thread, whereas the receipt of a message from another thread is equivalent to a

synchronization point (i.e., a join). Messages exchanged between execution threads carry

48

objects that can be represented as object flow states in the activity diagram according to the

notation from [UML1.3].

The transformation from sequence diagrams to activity diagrams takes as input the

following information:

§ XMI file containing the sequence diagram

§ additional user input regarding the grouping of the objects from the sequence

diagram in execution threads (which become activity diagram swimlanes).

3.2.1 Basic cases

In this subsection 7 basic cases are given to illustrate how to convert a sequence diagram to

an activity diagram. A more complex sequence diagram can be decomposed into simple

fragments, each of them treated by applying these basic cases or a combination thereof.

In an activity diagram, the following notation is employed to express the names of the

action states that are converted from sequence diagram messages.

 invoke(objectName.message) for an operation call on the sender side

 objectName.message() for an operation call on the receiver side

 send(message) for a signal send on the sender side

 receive(message) for a signal receipt on the receiver side

 new for a creation of a new object on the sender side

49

 init for a creation of a new object on the receiver side

Generally, these names are given according to the kind of the action attached to the

message. For example, if the action type is CallAction, then an operation call will be

invoked by the sending object and executed by the receiving object.

All basic cases can be categorized roughly into two categories: cases a, b and c in which the

messages are exchanged in the same thread of control, and cases d, e, f and g in which the

messages are exchanged between different threads of control.

a) A set of consecutive sequential messages without any branching or iteration that pass

between objects in the same execution thread, as shown in Figure 3-9, where r is an

active object and m and n are passive objects executed in the same thread of control.

r: R

m: M

n: N

a()

b()

m.a()

n.b()

r

same thread

Figure 3-9 Sequential Execution

50

b) Messages with guard conditions that are alternatives of the same condition in a

sequence diagram are mapped to a branch/merge structure in the corresponding activity

diagram, as shown in Figure 3-10.

c:= b()

a()

[c=c1] d()

g()

[c=c2] f()

[c=c2]

[c=c1]

n.d()

n.f()

n.g()

r: R

m: M

n: N

r

same thread

m.a()

n.b()

Figure 3-10 Branch and Merge

c) An iteration (loop) can be achieved by using one action state that sets the value of an

iterator, another action state that increments the iterator, and a branch that evaluates if

the iteration is finished [Booch+99, pp. 263], as shown in Figure 3-11. Notice that

UML 1.3 does not prescribe the format of iteration or condition, it may be expressed in

pseudocode or an actual programming language.

51

[condition]

[!condition]

n.b()

n.c()

r

m.a()

setIterator

b()

a()

c()

r: R

m: M

n: N

same thread

*[loop condition]

incrementIterator

Figure 3-11 Iteration

d) A synchronous message between objects running in different threads of control is

treated as a join operation on the receiving side in the corresponding activity diagram,

and its reply marks the corresponding fork, as shown in Figure 3-12. The object flow is

also shown. The sender’s thread will be suspended from the moment it sends the

message until the reply is received back. An “idle” action state plays the same role as an

initial state to indicate concurrency among different execution threads.

52

r: R

m: M

n: N

a()

b()

reply

invoke(m.a)

idle

m.a()

n.b()

receive(reply)

m

 r

return
Obj_a

request
Obj_a

same thread

Figure 3-12 Synchronous Message Send and Reply

e) An asynchronous creation of an active object marks a fork operation in the

corresponding activity diagram. Figure 3-13 shows also how to map self-call.

b()

r: R

n: N

a()

new

s: S

m: M

d()

c()

s.a()

s.c()

m

r

new(m)

init

n.d()

same thread

same thread

m.b()

53

Figure 3-13 Asynchronous Creation of an Active Object

f) An asynchronous message sent to another thread of control indicates a join operation on

the receiver side and a fork operation on the sender side in the corresponding activity

diagram, as shown in Figure 3-14.

r: R

n: N

a()

c

s: S

m: M

b()

g()

d()

s.a()

m

r

receive(c)

idle

m.b()

send(c)

s.g()

m.d()

c

same thread

same thread

Figure 3-14 Asynchronous Message between Two Execution Thread

g) An asynchronous destroy action marks a fork operation. A terminate action indicates

self-destruction of an object and maps to a “terminate” action state. If an active object

terminates itself, its thread will stop to execute and become dead, as shown in Figure

3-15.

54

r: R

m: M

n: N

a()

b()

reply

delete()

invoke(m.a)

n.b()

idle

m.a()

receive(reply)

m

r

n.delete()

terminate

request
Obj_a

return
Obj_a

same thread

Figure 3-15 Destruction and Termination

3.2.2 Example

The transformation on a complex example, as shown in Figure 3-16 and Figure 3-17, is

illustrated. The example is taken from [Petriu+98], which combines the different cases

together.

55

x: X

v:V

u:U y:Y

reply

b()

a()

new

new

d()

[c = c2] h()

delete()

f

h()

[c = c1] g()

same thread

same thread

z:Z

Figure 3-16 Example: Input Sequence Diagram

invoke(y.a)

y

x

idle

y.a()

z

send(f)

new

init

u.b()

v.new()

[c=c2]

[c=c1]

v.g()

v.h()

v.delete()

terminate

receive(f)

u.h()

receive(reply)

request
Obj_a

f

return
Obj_a

56

Figure 3-17 Example: Activity Diagram after Transformation

3.2.3 Discussion

There exist alternative representations for modeling the sending/receiving of an

asynchronous message, as shown in Figure 3-18 [Petriu+01b].

request

Wait

b) Using ActionStates
without fork/joins

a) Using ActionStates and
fork/joins

request

Wait

Continue work

send(request)

send(request)

receive(request)

Continue work

productRequest

productRequst

request

Wait

c) Using Signal Send/Receipt
symbols and fork/joins

Continue work

receive(request)

Figure 3-18 Alternative Representations for Modeling an Asynchronous Message

Figure 3-4 presents three notations to model an asynchronous message. In notation a), the

action state that represents the sending of the message is followed by an explicit fork: one

thread for the continuing the execution of the sender, and the other thread for the message

just sent. This representation conforms to the UML notation guide and is very close to Petri

net model. The disadvantage of the approach is that the object flow state is not directly

connected to the sending and receiving action states. Another disadvantage is that it may

introduce too many forks and joins that may cloud the understanding of the diagram.

57

Notation b) simplifies the previous one by making the fork and join implicit. Unfortunately,

the approach assumes that the dotted transitions connected to the object flow behave

differently than the other transitions, which is not supported by the UML standard. More

exactly, it is assumed that after the sending action, the dotted transition is fired

simultaneously with the normal transition leading to the next action state of the sender.

Also, in order to enter the receiving action state, both its incoming transitions (dotted and

normal) must be ready to fire.

Notation c) modifies the first one in yet another way: it uses the signal sending/receipt

symbols from [UML 1.3, pp. 3-160]. The advantage is that the sending and receiving

actions stand out, making the diagram easier to read. However, the mapping of the “signal

sending” symbol given in [UML1.4 pp. 3-161] should be changed to an ActionState instead

of a SendAction. This solution also inherits the disadvantages from the solution a: the

object flow not directly connected with the action states that produce/take it as output/input,

and too many forks and joins in the model.

It should be mention that the thesis implements solution a. Also, there are two alternatives

in representing a synchronous message between threads of control, as shown in Figure

3-19. In the first solution (b), the flow of control of the senders is interrupted when the

sender is blocked waiting for the reply, whereas in the second solution (c) the waiting state

58

of the sender is shown explicitly. We have chosen the first solution in the thesis, but the

second can be also implemented with very little change.

invoke(m.a)

idle

m.a()

receive(reply)

m

r

return
Obj_a

request
Obj_a

invoke(m.a)

idle

m.a()

receive(reply)

m

r

return
Obj_a

request
Obj_a

waiting

r: R

m: M

a()

a) Sequence diagram

b) First activity diagram representation

c) Second activity diagram representation

Figure 3-19 Alternate Ways of Representing a Synchronous Message

59

Chapter 4 Detailed Design of the ID to AD Transformation

The analysis and design of the ID to AD transformation concentrate on the manipulation of

the metaobjects involved in the transformation rules.

Chapter 4 is structured as follows: the first section describes the UML metamodel and the

Novosoft UML API as well as their relationship. The second section describes in more

depth the API. The third section highlights the main points of the metamodel

representations for interaction diagrams and activity diagrams. The fourth section gives the

object diagrams that show the metaobjects, corresponding to the basic cases presented in

the previous chapter. Finally, the last section describes the transformation algorithm.

4.1 Metamodel and API

As mentioned before, the UML standard consists of three main specifications: a notation

guide that specifies the visual appearance of UML diagrams, a semantics specification that

details the UML metamodel, and the OCL (Object Constraint Language) specification that

adds a first-order predicate logic language for expressing constraints on UML models. The

UML metamodel is itself a UML model that specifies how a UML design can be

represented [Rumbaugh+99].

Novosoft UML (NSUML) API is an open-source Java library implementing the UML

metamodel [NSUML99]. It consists of interfaces, classes, attributes and methods, which

60

supports the elements of the UML metamodels. There is a simple correspondence between

metaobjects names and NSUML interfaces/classes names.

4.1.1 UML Metamodel

As described in section 2.1.1, the UML metamodel is defined as one of the layers of a four-

layer metamodeling architecture. It is regarded as being an instance-of the MOF residing at

the M2 level. The official version of the UML metamodel at the time of the thesis research

was UML 1.3 (OMG released the latest version of UML 1.4 in September 2001). The

metamodel concepts and semantic constructions are described in chapter 2 “UML

Semantics” of [UML1.3]. The metamodel referred in the rest of thesis is version of 1.3

unless otherwise specified.

The metamodel is divided into three main packages, as shown in Figure 4-1.

§ The foundation package defines the static structure of the UML.

§ The behavioral elements package defines the dynamic structure of the UML.

§ The model management package defines the organizational structure of UML models.

61

Collaborations

State

Machines

Activity

Graph

Use

Cases

Common

Behavior

Extension

Mechanisms

Core

Data

Type

Model

Management

Behavioral Elements

Foundation

Figure 4-1 Package Structure of the UML Metamodel

4.1.2 UML Physical Metamodel

In addition to the UML metamodel, OMG also proposed the UML physical metamodel,

which is more clear for realization and practical for implementation. The specifications of

the physical metamodel are described in UML XMI DTD, which is a physical mechanism

for interchanging UML models conforming to the UML metamodel. Chapter 6 in

[UML1.3] contains a normative DTD that represents the UML 1.3 metamodel generated

from the XMI 1.0 standard.

62

Some of the distinctions between the UML physical metamodel and the UML metamodel

are as follows [UML1.3]:

Names

§ Changed spaces in package names to '_'.

§ Added names for association ends that did not have them. Convention: the name of the

adjoining class with the first letter in lower case. If this resulted in a name duplication,

then a numbered suffix was added.

Additions

§ Added enumeration literals as attributes of the enumeration classes for enumeration

data types.

§ Added 'sorted' enumeration literal to OrderingKind.

§ Added inheritance link from Message to ModelElement.

Association Classes

§ Made ElementOwnership AssociationClass attributes by moving the visibility and

isSpecification attributes to the ModelElement class.

§ Removed the attribute "visiblity" from classes AssociationEnd and Feature.

§ Made the AssociationClass ElementResidence a class by removing the association

between Component and ModelElement and adding associations between

ElementResidence and Component and between ElementResidence and

ModelElement.

63

§ Made the AssociationClass ElementImport a class by removing the association

between ModelElement and Package and adding associations between ModelElement

and ElementImport and between ElementImport and Package.

§ Made the AssociationClass TemplateParameter a class by removing the association

between ModelElement and ModelElement for template parameters and added

associations between ModelElement and TemplateParameter and between

TemplateParameter and ModelElement.

4.1.3 NOVOSOFT UML (NSUML) Metamodel and its API

Novosoft UML is an open-source Java software that implements the UML metamodel. The

version of Novosoft UML API used in our transformation application is 0_4_19 that can be

download from [NSUML99]. The API mentioned in the rest of thesis will refer to Novosoft

UML API unless otherwise specified.

The major features provided by Novosoft UML API are described briefly as follows:

§ The API allows various kinds of work with models, such as generating and

serialization of UML models, organizing of access to model elements, modifying,

adding and deleting of features (through attributes and opposite roles in associations).

§ The API implements UML elements in: packages, datatypes, classes, their methods

and associations. Besides, the API contains many other useful methods not specified

by OMG.

64

§ The API contains Reflective API. The main sense of reflective methods is the access to

features by their names, instead of invocation of explicit Setter, Getter, Adder or

Remover methods.

§ The API supports the XMI standard. It can read and write UML models according to

the XMI format.

Limited modifications were made to the metamodel to make it fit the Java language.

Multiple inheritance used in the standard metamodel, for example, was replace with Java

interfaces and single inheritance.

ArgoUML is an open-source UML tool that is using the Novosoft UML library.

ArgoUML’s implementation of the API uses JavaBeans-style method naming and changing

notifications, which is supported by reflection in the API. For example, the attribute target

of meta-class Action in the metamodel is accessed with methods getTarget() and

setTarget() in the ArgoUML implementations. Also, whenever the concurrency of an action

is changed, a standard JavaBeans property change event is fired with information about the

name of the property that changed, its old value and its new value.

However, the fact that the API fulfills the metamodel does not mean that ArgoUML

implements all the functions (features) supported by the API. For example, class Partition

in the API provides methods to access contents and activityGraph. But ArgoUML does not

support swimlanes (partitions) in an activity diagram. Therefore, no information of partition

65

can be obtained from an activity diagram generated in XMI format by ArgoUML. Similar

problems exist with the XMI generated by Rational Rose as well. For example, Rose does

not support object flow states in an activity diagram. Consequently, we were forced to

modify by hand some XMI files produced by these two tools in case in which the tools do

not support yet standard UML features. However, these modifications were in general

minor, and most the XMI files used to test our implementation were produced directly by

the UML tools.

4.2 Object Model in Novosoft UML API

This section will describe how the NSUML API constructs objects as well as their

attributes and associations. The object model in the API contains four types of objects:

primitives, enumerations, datatypes and elements. They correspond to UML types and

metaobjects. The classification is based on UML stereotypes of the objects and the ways of

how the API maps these objects to Java constructs.

Primitives have the stereotype <<primitive>>, Enumerations the stereotype

<<enumeration>> and datatypes and elements have no stereotypes. There are two major

distinctions between datatypes and elements. First, any datatype is mapped only to one Java

class in the API, whereas any element is mapped to one Java class and one Java interface.

Second, datatype classes are created manually, whereas element classes and interfaces are

created with the help of a generator program.

66

The API also contains auxiliary classes, which provide additional functions such as events

and undo/redo. All auxiliary interfaces and classes are created manually.

4.2.1 Primitives

Primitives are the UML objects, which have the stereotype <<primitive>>. There are no

special classes in the NSUML corresponding to them. The NSUML maps such objects to

ordinary Java types, according to Table 4-1:

UML Primitives Java Types
Boolean boolean
Name String
Integer int
UnlimitedInteger int
LocationReference String
Geometry String

Table 4-1 Primitives

4.2.2 Enumerations

The NSUML realizes enumerations as final Java classes with private constructors only.

Names of enumerations begin with letter M, prefixed to original UML names. A NSUML

enumeration classes are indicated in Table 4-2:

UML enumerations NSUML Java classes
AggregationKind MAggregationKind
CallConcurrencyKind MCallConcurrencyKind
ChangeableKind MChangeableKind
MessageDirectionKind MMessageDirectionKind
OperationDirectionKind MOperationDirectionKind
OrderingKind MOrderingKind
ParameterDirectionKind MParameterDirectionKind

67

PseudostateKind MPseudostateKind
ScopeKind MScopeKind
VisibilityKind MVisibilityKind

Table 4-2 Enumerations

During the initialization of enumeration classes there are constructed several predefined

final static public instances in accordance with the UML standards. For example, there are

3 available instances of the class MVisibilityKind: MVisibilityKind.PRIVATE,

MVisibilityKind.PROTECTED, and MVisibilityKind.PUBLIC. In addition, the class

contains 3 integer attributes that correspond to the above mentioned instances (see Table

4-3).

MVisibilityKind
Predefined instances Corresponding class attributes
MVisibilityKind.PRIVATE MVisibilityKind._PRIVATE
MVisibilityKind.PROTECTED MVisibilityKind._PROTECTED
MVisibilityKind.PUBLIC MVisibilityKind._PUBLIC

Table 4-3 MVisibilityKind

4.2.3 Datatypes

Each datatype is mapped to exactly to one NSUML Java class. The creation of names for

datatypes is the same as for enumerations, e.g. prefix M to original UML names. Below

(Table 4-4) all datatype classes are presented.

NSUML Datatype classes
MExpression MActionExpression
MArgListsExpression MBooleanExpression
MIterationExpression MMappingExpression
MProcedrueExpression MTimeExpression
MTypeExpression
MMultiplicity MMultiplicityRange

Table 4-4 Datatypes

68

Notice that Class MExpression is the superclass for all the group of Expression classes.

Class MMultiplicity is intended for description of role multiplicities. There are four

predefined instances of this class, as shown in Table 4-5. They correspond to the most

widespread types of UML multiplicities:

MMultiplicity
Predefined Instances Corresponding UML Multiplicities
MMultiplicity.M0_1 0..1
MMultiplicity.M1_1 1
MMultiplicity.M0_N *
MMultiplicity.M1_N 1..N

Table 4-5 MMultiplicity

4.2.4 Elements

Elements form the biggest object class. UML elements are structured in packages, such as

Foundation, Core, Behavior, and so on. The typical elements are Package, Classifier,

Attribute, Method, Operation, etc. Each element is mapped exactly to one interface and one

class in the NSUML. There exists a simple name correspondence between UML elements

and NSUML Java interfaces and classes, as shown in Table 4-6:

Names’ Correspondence
UML Element NSUML Interface NSUML Class
Package MPackage MPackageImpl
Classifier MClassifier MClassifierImpl
… … …

Table 4-6 Names' Correspondence

69

The NSUML API contains one important class that is the superclass for all the element

Java classes. This is the class MBaseImpl, which implements interface MBase. Many

interesting additional functionalities of NSUML elements are realized due to the methods

defined in the base class. It is supposed there is no need to create instances of this class, but

to create instances of its subclasses. For example, NSUML Java class MClassImpl

implementing UML metaclass Class is a subclass of the base class. There are two ways to

create a new instance of the metaclass Class, as showed below:

MBase cls0 = new MClassImpl();
MClass cls1 = new MClassImpl();

This means users have to operate with interface references only.

MClassImpl cls = new MClassImpl(); //Error! Do not use similar references

Also, interface MBase contains overridden in all subclasses method getUMLClassName(),

returning the real UML name of the metaclass, which is implemented in the NSUML. See

the following segment:

public class MStereotypeImpl extends MGeneralizableElementImpl implements
Mstereotype {
 // ---------- code for class Stereotype ------------
 …
 public String getUMLClassName(){
 return “Stereotype”;
 }
 …
}

So, if there is a reference to interface MBase, it’s easy to recognize which UML metaobject

corresponds to this reference.

70

4.2.5 Attributes and Associations

Element objects may contain attributes, whose types are primitive, enumeration or

datatype. Two element metaclasses can be connected with the help of an association.

Each attribute and role (in association) is mapped to a set of public user method of element

interfaces and classes. These methods support access to an attribute or role as well as

modifications of their values. There is a simple correspondence between the names of

attributes or roles in UML and the names of NSUML methods. This section contains the

classification of user methods for accessing attributes and associations, the description of

rules for naming of the methods and the role of these methods.

4.2.5.1 Access to Attributes

Attributes are divided into two types: boolean and non-boolean. A set of methods for

access to boolean and non-boolean attributes is the same, but there exists a minor

differences in naming the methods.

Attributes are stored as private objects in the NSUML element class. Access to object

attributes is organized with the help of so-called Getter and Setter methods that are declared

in the corresponding interfaces and implemented by each class. The roles of the methods

are follows: Getter is a method that returns the value of an attribute; Setter sets the value of

71

the attribute. Figure 4-2 shows UML metaclass Abstraction that has an attribute mapping of

type MappingExpression.

A b stra c t i o n

m a p p i n g : M a p p i n g E x p r e s s i o n

Figure 4-2 Metaclass Abstraction

In the NSUML API interface MAbstraction corresponding to the metaclass has the

following form:

public interface MAbstraction extends MDependency {
 // generating attributes
 // attribute: mapping
 MMappingExpression getMapping();
 Void setMapping(MMappingExpression _arg);
 …
 //generating associations
 …
}

Methods getMapping() and setMapping() are implemented in the class MAbstractionImpl.

Generally, the name of the Getter method is created by capitalizing the first letter of the

attribute name and adding the prefix get, and the name of the Setter method is formed in the

similar manner.

In a case of a boolean attributes, the interface looks like:

public interface MAssociationEnd extends MModelElement {
 // generating attributes
 …
 // attribute: isNavigable
 boolean isNavigable();
 Void setNavigable(boolean _arg);
 …
}

72

4.2.5.2 Access to Associations

Each association in the NSUML metamodel is an unnamed association between two

elements. An association has two roles (or ends), and each role has its own name and

multiplicity. The role attached to an element is the direct role, the other one is called the

opposite role. The NSUML has no special objects for associations. It maps associations to

fields and methods of element classes. Each element class contains and treats the

information about the opposite role of the association to which it belongs.

Figure 4-3 represents a class diagram with two UML metaclasses: Feature, and Classifier,

and an unnamed association between them.

 Feature
ownerScope : ScopeKind

Classifier

0..1 *
+owner +feature

0..1 * {ordered}

Figure 4-3 Access to Association

1. The role with the name owner is the opposite role for metaclass Feature and has the

multiplicity 0..1.

2. The role with the name feature is the opposite role for metaclass Classifier and has

the ordered multiplicity *.

3. The association is read as “ any Classifier contains an arbitrary number of ordered

Features. A Feature can be attached to one Classifier only”.

NSUML maps role owner and role feature to private fields in the corresponding class:

Java Class Private Field
MFeatureImpl MClassifier _owner

73

MClassifierImpl List _feature

Table 4-7 Access to Association

Feature contains the information about the owner Classifier in the field _owner, and

Classifier contains the list of Feature in the field _feature. These fields can be accessed

through Getter, Setter and other methods defined in interfaces, as shown in the following

segments:

pubic interface MFeature extends MModelElement {
 …
 // opposite role: owner this role: feature
 MClassifier getOwner();
 void setOwner(MClassifier _arg);
 …
}

pubic interface MClassifier extends MNamespace, MGeneralizableElement {
 …
 // opposite role: feature this role: owner
 List getFeatures();
 Void setFeatures(List _arg);
 Void addFeature(MFeature _arg);
 Void removeFeature(MFeature _arg);
 …
}

4.3 UML Metamodel Representations

This section summarizes the metamodel elements used to represent interaction and activity

diagrams [UML1.3] by using the NSUML API. This corresponds to the code used in our

implementation.

4.3.1 Interaction Diagram

The elements constituting a collaboration diagram and a sequence diagram, as described in

[UML1.3], are presented in this subsection.

74

ModelElement:

A model element is an element that is an abstraction drawn from the system being modeled.

It is the base for all modeling meta-classes in the UML. All other modeling meta-classes

are either direct or indirect subclasses of Model Element.

Collaboration:

A description of a general arrangement of objects and links that interact within a context to

implement a behavior, such as a use case or operation. In the metamodel, a Collaboration

contains a set of ClassifierRoles and AssociationRoles, and may also contain a set of

Interactions.

Interaction:

A specification of how messages are sent between objects and other instances to perform a

task. The interaction is defined in the context of a collaboration. In the metamodel, an

Interaction contains a set of Messages.

Classifier:

A classifier is an element that describes behavioral and structural features. It comes in

several forms, including class, data type, interface, and component. In the metamodel, a

Classifier declares a collection of Attributes, Methods, and Operations.

ClassifierRole:

A classifier role is a specific role played by a participant in a collaboration. It specifies a

restricted view of a classifier, defined by what is required in the collaboration. A classifier

75

role has a reference to a classifier (the base) and a multiplicity. It can be connected to other

classifier roles by association roles.

AssociationRole:

An association role is an association that is meaningful and defined only in the context

described by a collaboration. In the metamodel, an AssociationRole is a composition of a

set of AssciationEndRoles.

AssociationEndRole:

An association-end role specifies an endpoint of an association as used in a collaboration.

In the metamodel, an AssociationEndRole is part of an AssociationRole and specifies the

connection of an AssociationRole to a ClassifierRole.

Message:

In the metamodel, a Message defines one specific kind of communication between

instances in an Interaction such as raising a Signal, invoking an Operation, creating or

destroying an Instance.

Instance:

An instance is an individual entity with its own identity and value. In the metamodel,

Instance is connected to at least one Classifier which declares its structure and behavior.

Instance is an abstract metaclass.

Object:

An object is a discrete entity with a well-defined boundary and identity that encapsulates

state and behavior. In the metamodel, an object is a subclass of Instance and it originates

76

from at least one Class. In this work, we represent two types of objects: active objects,

which are instances of active classes, and passive objects, which are instances of passive

classes.

Stimulus:

A stimulus is a communication between two objects that convey information. In the

metamodel, a stimulus conforms to a Message. A stimulus will cause a Signal sent to an

Instance, or an invocation of an Operation. It has a sender, a receiver, and may have a set of

actual arguments, all being Instances.

AttributeLink:

An attribute link is a named slot in an instance, which holds the value of an attribute. In the

metamodel AttributeLink is a piece of the state of an Instance and holds the value of an

Attribute.

Link:

A link is a connection between instances. In the metamodel Link is an instance of an

Association.

LinkEnd:

A link end is an end point of a link. In the metamodel LinkEnd is the part of a Link that

connects to an Instance.

Signal:

A signal is a specification of an asynchronous stimulus communicated between instances.

In this work, both signals and asynchronous stimuli are considered to be the same thing.

77

Action:

An action is an executable atomic computation that results in a change in the state of the

model or the return of a value. An action has a target object, a reference to the signal to be

sent or the operation to be performed, a list of argument values, and an optional recurrence

expression specifying possible iteration.

ActionSequence:

An action sequence is a collection of actions. In the metamodel, an Action Sequence is an

Action, which is an aggregation of other Actions.

CallAction:

A call action is an action resulting in an invocation of an operation on an instance. In the

metamodel, CallAction is an Action. The designated Instance or set of Instances is

specified via the target expression, and the actual arguments are designated via the

argument association inherited from Action.

SendAction:

A send action is an action that results in the sending of a signal. In the metamodel,

SendAction is an Action. It is associated with the Signal to be raised.

CreateAction:

A Create Action is an action resulting in the creation of an instance of some classifier.

DestroyAction:

A Destroy Action is an action results in the destruction of an object specified by the target

association of the Action.

78

TerminateAction:

A Terminate Action results in self-destruction of an object. The target of a Terminate

Action is implicitly the Instance executing the action.

Figure 4-4 and Figure 4-5 show the NSUML elements involving in collaboration diagrams

and sequence diagrams, respectively. To simplify, only the attribute and operation names

are shown, rather than their full description (arguments, return type, etc). Notice that the

aggregations shown in two Figures actually mean compositions. Rational Rose does not

provide a notation for a composition, which is a solid filled diamond.

79

MGeneralizableElement

isAbstract
isLeaf
isRoot

...()

MModelElement

name
isSpecification

namespace()
.. .()

M N amesp ac e

ownedElement()

MClassif ier

isAbstract
isLeaf
isRoot

... .()

MCol laborat ion

interaction()
ownedElement()
...()

MAssociationEndRole

base()

MInteraction

context()
message()

+interact io n

+context

MClassifierRole

base()
message1()
message2()
av ailableFeature()

1

1..*

1

+ownedElement
1..*

+ base

MAssociationRole

m e ssage()
base()

1

*

1

+ownedElement
*

M M e ssage

interaction()
communicationConnection()
action()
sender()
receiv er()
predecessor()
activator()

+interact ion

+message

+sender

+message2

+receiver

+mes sa ge 1

+message

+communicationConnection

MAction

...

...()

+action

not all
operations listed

M C lass

i sAc t ive

Figure 4-4 Metamodel Representation for a Collaboration Diagram

80

MObject

MAction
isAsynchronous
script
target
recurrence

stimulus()
transition()
message()
actionSeqence()
actualArgument()
state1()
state2()
state3()

Stimulus

dispatchAction()
communicationLink()
receiver()
sender()
argument()

1

*

+dispatchAction1

*

MAttributeLink

linkEnd()
instance()
value()
attribute()

MClassifier

....

....()

MLink

stimulus()
connection()
association()

+communicationLink

+stimulus

MInstance

stimulus1()
stimulus2()
stimulus3()
componentInstance()
slot()
linkEnd()
attributeLink()
classifier()

1

*

+receiver
1

*

1

*

+sender

1

*

*

*

+argument *

*

+value

+attributeLink
+slot

+classifier

MLinkEnd

link()
instance()
linkEnd()
qualifiedValue()
associationEnd()

+connection

1

*

+instance
1

+linkEnd *

MModelElement

....

....()

Figure 4-5 Metamodel Representation for a Sequence Diagram

4.3.2 Activity Diagram

Semantically, an activity diagram is a state machine that emphasizes the sequential and

concurrent steps of a computational procedure. Therefore, an activity diagram shares many

metamodel elements with a state machine.

81

The following elements are used in activity diagrams defined in [UML1.3]:

ActivityGraph:

An activity graph is a special case of a state machine that defines a computational process

in terms of the control-flow and object-flow among its constituent actions. In the

metamodel, ActivityGraph extends StateMachine.

Transition:

A transition is a directed relationship between a source state vertex and a target state vertex.

Transition is a child of Model Element.

StateVertex:

A state vertex is an abstraction of a node in a state chart graph. In general, it can be the

source or destination of any number of transitions. State Vertex is a child of Model

Element.

State:

A state is an abstract meta-class that models a static situation, such as an object waiting for

some external event to occur, or a dynamic situation, such as the process of performing

some activity. The model element under consideration enters the state when the activity

starts and leaves it as soon as the activity is completed. State is a child of State Vertex.

PseudoState:

A pseudo state is an abstraction that includes different types of transient vertices that are

used to connect multiple transitions into more complex state transitions paths. Pseudo State

is a child of State Vertex. Here are some of the pseudo states used in this work:

82

§ An initial Pseudo state represents a default vertex that is the source for a single

transition to the default state of a composite state. There can be at most one initial

vertex in a composite state.

§ A join pseudo state serves to merge several transitions coming from different source

state vertices. The transitions entering a join vertex cannot have guards.

§ A fork pseudo state serves to split an incoming transition into two or more transitions.

The segments outgoing from a fork vertex must not have guards.

§ A branch pseudo state splits the transition path into two or more segments, each with a

separate guard condition. A merge converges multiple incoming transitions into a

single outgoing transition. A merge is the inverse of a branch and uses the same

notation (diamond symbol) as a branch except a merge has no conditions.

CompositeState:

A composite state is a state that contains other state vertices (states, pseudo states, etc.). A

composite state is mainly used in state machine and can be decomposed into concurrent

substates or into mutually exclusive disjoint substates. Composite State is a child of State.

ActionState:

An action state represents the execution of an atomic action, typically the invocation of an

operation. It is a state whose purpose is to execute an entry action, after which it takes a

completion transition to another state. An action state has no substructure, internal

activities, or internal transitions.

83

ObjectFlowState:

An object flow state defines an object flow between actions in an activity graph. Operating

on an object by an action in an action state may be modeled by an object flow state that is

triggered by the completion of the action state. Generally each action places the object in a

different state that is modeled as a distinct object flow state.

FinalState:

A final State is a special state signifying that the enclosing composite state is completed. A

final state cannot have any outgoing transitions. Final State is a child of State.

Guard:

A guard is a Boolean expression that is attached to a transition as a control over its firing. If

the guard is true at its evaluation time, the transition is enabled; otherwise, it is disabled.

Guard is a child of Model Element.

Partition:

A partition (swimlane) is a mechanism for dividing the states of an activity graph into

groups. Partitions often correspond to organizational units in a business model.

CallEvent:

A call event represents an event of receiving a call for an operation that is implemented by

actions in state machine transitions.

SignalEvent:

A signal event represents the reception of an asynchronous signal.

84

Figure 4-6 shows the involved NSUML elements in activity diagrams:

MFinalState MSimpleState

MActionState
isDynamic
dynamicMultiplicity
dynamicArguments

MPseudoState

kind

MActivityGraph

partition()

MPartition

contents()
activityGraph()1 0..11

+partition

0..1

attributes and
roles are omitted

kind= FORK, JOIN,
INITIAL, BRANCH

MCompositeSate

isCurrent

subvertex()

MModelElement

...

...()

*

*

*

+contents

*

MGuard
expression

transition()

MAction
isAsynchronous
script
target
recurrence

stimulus()
actionSequence()
actualArgument()
message()
state1()
state2()
state3()
transition()

MStateVertex

incoming()
outgoing()
container()

0..1

0..*

+container

0..1

+subvertex

0..*

MStateMachine

subMachineState()
transition()
top()
context()

+context

+behavior

MState

doActivity()
internalTransition()
deferrableEvent()
stateMachine()
classifierInState()
exit()
entry()

0..1
0..1

+entry

0..1
0..1

0..1

0..1

+exit

0..1

0..1

0..10..1

+doActivity

0..10..1

1

0..1

+top
1

+stateMachine 0..1

MTransition

target()
source()
stateMachine()
trigger()
state()
eff ec t ()
guard()

1 0..11

+guard

0..1

0..1

0..1

+transition0..1

+effect0..1

+outgoing+source

+incoming+target

0..1

*

+state
0..1

+internalTransition
*

*

0..1

+transition *

0..1

MObjectFlowState

isSynch

parameter()
type()

Figure 4-6 Metamodel Representation for an Activity Diagram

85

4.4 Metaobjects for Some Basic Cases

In the above section the metamodel representations for interaction diagram and activity

diagram are depicted at metaclass-level. The transformation, however, will ultimately

handle a specific diagram and deal with objects instead of classes. This section will use

object diagrams, which are used to model object structures at a given moment in time, to

illustrate objects’ participation in several typical basic cases described in the previous

chapter.

Each case described below contains two object diagrams: one represents the metaobjects in

the sequence diagram, and the other represents the metaobjects generated for the equivalent

activity diagram. For each case, the detail description is given in section 3.2.1.

4.4.1 Case 1: Sequential Execution in a Single Thread

86

Input Data Structure shown in Figure 4-7:

b():
MCallAction

a():
MCallAction

role1:
MAssociationRole

n: MClassifierRole

isActive := false

model: MModel

dispatch

dispatch

sender

receiver

sender

receiver

role2:
MAssociationRole

roleEnd4:
MAssociationEndRole

roleEnd3:
MAssociationEndRole

roleEnd1:
MAssociationEndRole

roleEnd2:
MAssociationEndRole

interaction:
MInteraction

messages

collaboration: MCollaboration

m: MClassifierRole

isActive := false

r: MClassifierRole

isActive := ture

msg1:
MMessage

msg2:
MMessage

ownedElements
(MAssociationRole)

OwnedElements
(MClassifierRole)

1

2

3

4

1

2

3

4

interaction

Figure 4-7 SD Metaobjects for Sequential Execution

Output Data Structure shown in Figure 4-8:

transition

target

target

source

source

target
 source

activityGraph:
MActivityGraph

initialState:
MPseudoState

kind := INITIAL

m.a():
MActionState

n.b():
MActionState

finalState:
MFinalState

t1:
MTransition

t2:
MTransition

t3:
MTransition

subvertex

compositeState:
MCompositeState

87

Figure 4-8 AD Metaobjects for Sequential Execution

4.4.2 Case 2: Synchronous Messages Send and Reply

Input Data Structure shown in Figure 4-9:

b():
MCallAction

a():
MCallAction

role1:
MAssociationRole

n: MClassifierRole

isActive := false

dispatch

dispatch

sender

receiver

sender

receiver

role2:
MAssociationRole

roleEnd4:
MAssociationEndRole

roleEnd3:
MAssociationEndRole

roleEnd1:
MAssociationEndRole

roleEnd2:
MAssociationEndRole

interaction:
MInteraction

messages

collaboration: MCollaboration

r: MClassifierRole

isActive := ture

msg1:
MMessage

msg2:
MMessage

ownedElements
(MAssociationRole)

OwnedElements
(MClassifierRole)

1

2

3

4

2

3

4

m: MClassifierRole

isActive := true

role3:
MAssociationRole

roleEnd6:
MAssociationEndRole

roleEnd5:
MAssociationEndRole

5

6

return:
MReturnAction

dispatch

receiver

sender

msg3:
MMessage

5

6

1

interaction

Figure 4-9 SD Metaobjects for Synchronous Message Send and Reply

88

Output Data Structure shown in Figure 4-10:

source

target

source

target

transition

subvertex

target

target
 source

source

activityGraph:
MActivityGraph

a():
MOperation

callEvent1:
MCallEvent

initialState:
M PseudoState

kind := INITIAL

m.a():
MActionState

n.b():
MActionState

finalState:
MFinalState

t4: MTransition

compositeState:
M CompositeState

invoke(m.a):
MActionState

request Obj_a:
MObjectFlowState

ready:
MActionState

join:
MPseudoState

kind := JOIN

fork:
MPseudoState

kind := FORK

return Obj_a:
MObjectFlowState

t5: MTransition

t6: MTransition

t7: MTransition

t8: MTransition

t9: MTransition

t1: MTransition

receive(return):
MActionState

t11: MTransition

t2: MTransition

t10: MTransition

t3: MTransition

Figure 4-10 AD Metaobjects for Synchronous Message Send and Reply

89

4.4.3 Case 3: Asynchronous Creation of an Active Object

Input Data Structure shown in Figure 4-11:

c():
MCallAction

a():
MCallAction

role1:
MAssociationRole

dispatch

dispatch

sender

receiver

sender

receiver

role2:
MAssociationRole

roleEnd4:
MAssociationEndRole

roleEnd3:
MAssociationEndRole

roleEnd1:
MAssociationEndRole

roleEnd2:
MAssociationEndRole

interaction:
MInteraction

messages

collaboration: MCollaboration

msg1:
MMessage

msg2:
MMessage

ownedElements
(MAssociationRole)

ownedElements
(MClassifierRole)

1

2

3

4

2

6

role3:
MAssociationRole

roleEnd6:
MAssociationEndRole

roleEnd5:
MAssociationEndRole

5

6

new:
MCreateAction

dispatch

receiver

sender

msg3:
MMessage

interaction

b():
MCallAction

dispatch

msg4:
MMessage

role4:
MAssociationRole

roleEnd8:
MAssociationEndRole

roleEnd7:
MAssociationEndRole

7

8

m: MClassifierRole

isActive := true

n: MClassifierRole

isActive := false

4

3

5

1

7

8

s: MClassifierRole

isActive := false

r: MClassifierRole

isActive := true

Figure 4-11 SD Metaobjects for Asynchronous Creation of an Active Object

90

Output Data Structure shown in Figure 4-12:

target

source

target

source

transition

subvertex

target

target

source

source

activityGraph:
MActivityGraph

init:
MActionState

new:
MActionState

s.c():
MActionState

t1: MTransition

compositeState:
MCompositeState

n.b():
MActionState

s.a():
MActionState

initialState:
MPseudoState

kind := INITIAL

fork:
MPseudoState

kind := FORK

t2: MTransition

t3: MTransition

t4: MTransition

t5: MTransition

t7: MTransition

t6: MTransition

Figure 4-12 AD Metaobjects for Asynchronous Creation of an Active Object

91

4.4.4 Case 4: Asynchronous Messages between Two Threads

Input Data Structure shown in Figure 4-13:

g():
MCallAction

a():
MCallAction

role1:

MAssociationRole

dispatch

dispatch

sender

receiver

sender

receiver

role2:
MAssociationRole

roleEnd4:
MAssociationEndRole

roleEnd3:
MAssociationEndRole

roleEnd1:
MAssociationEndRole

roleEnd2:
MAssociationEndRole

interaction:
MInteraction

msg1:
MMessage

msg2:
MMessage

ownedElements
(MAssociationRole)

ownedElements
(MClassifierRole)

1

2

3

4

2

5

role3:
MAssociationRole

roleEnd6:
MAssociationEndRole

roleEnd5:
MAssociationEndRole

5

6

c:
MSendAction

dispatch

receiver

sender

msg3:
MMessage

interaction

b():
MCallAction

dispatch

msg4:
MMessage

role4:
MAssociationRole

roleEnd8:
MAssociationEndRole

roleEnd7:
MAssociationEndRole

7

8

4

3

6

1

7

8

s: MClassifierRole

isActive := false

collaboration: MCollaboration

d():
MCallAction

dispatch

msg5:
MMessage

role5:

MAssociationRole

roleEnd9:
MAssociationEndRole

9

10

r: MClassifierRole

isActive := true

8

10

n: MClassifierRole

isActive := false

m: MClassifierRole

isActive := true

roleEnd10:
MAssociationEndRole

Figure 4-13 SD Metaobjects for Asynchronous Messages between Two Threads

92

Output Data Structure shown in Figure 4-14:

source

source

target

source

target

transition

subvertex

target

target
 source

source

activityGraph:
MActivityGraph

c: MSignal

signalEvent1:
MSignalEvent

initialState:
MPseudoState

kind := INITIAL

m.b():

MActionState

send(c):
MActionState

s.g():
MActionState

t3:
MTransition

compositeState:
MCompositeState

ready:
MActionState

fork:
MPseudoState

kind := FORK

t4:
MTransition

t5:
MTransition

t6:
MTransition

t7:
MTransition

t1: MTransition

receive(c):
MActionState

t11: MTransition

t2: MTransition

t10: MTransition

m.d():
MActionState

join:
MPseudoState

kind := JOIN

s.a():
MActionState

t9: MTransition

c:
MObjectFlowState

t8: MTransition

Figure 4-14 AD Metaobjects for Asynchronous Messages between Two Threads

4.5 Transformation Algorithm

The algorithm reads an XMI files containing the input interaction diagram, transforms it

into an output activity diagram and finally writes the XMI file containing the output model.

The most interesting part is the middle of the algorithm that does the actual transformation.

93

Primarily what the transformation does is to create an output model that represents the

equivalent activity diagram from the input model, based on the transformation rules that

were described in chapter 3. These rules can be roughly seen as a transformation algorithm

expressed at the notation level. Each basic case reflects a facet of the algorithm in certain

situations. In this section the transformation algorithm is described at the metamodel level,

showing how it manipulates and creates metaobjects. The main steps of the transformation

algorithm (at a high level of abstraction) are as follows:

1 initialize new model and activityGraph;
2 sort messages and put them into a list;
3 partition objects;
4 for(each message in the list) do
5 if(message is concurrent) then
6 create a fork;
7 handle concurrent messages at the same level;
8 endif
9 if(sender and receiver are in the same partition) then
10 create a StateVertex;

 11 handle action with condition;
12 handle loop situation;
13 endif
14 else /* sender and receiver are in different partition */
15 handle CallAction;
16 handle SendAction;
17 handle CreateAction;
18 handle DestroyAction;
19 handle ReturnAction;
20 handle TerminateAction;
21 endif
22 endfor
23 finalize activityGraph and model;

The algorithm generally follows the flow of messages from the input interaction diagram.

The messages passing between objects in an interaction diagram are partially ordered. This

means that the messages may be sequential or concurrent. Within an interaction, the

94

messages are related by the predecessor and activator relationships, as discussed in chapter

3. We sort the messages based on their predecessor and activator relationships. The

predecessor (sequencing) relationship organizes the messages into a linear sequence. If two

messages have a common predecessor and are not otherwise sequenced, then they may be

executed concurrently. The activator (caller-called) relationship defines nested procedure

structure. Each call adds another level of nesting to the sequence. Within a call, messages

have a predecessor relationship to establish their relative order (which may permit

concurrency). The messages are traversed in order, according to the for loop found in the

line 4 of the pseudocode. Each message will have a sender, receiver and an associated

action. The algorithm first checks whether the sending object and receiving object are in the

same execution thread (i.e. in the same partition), which falls into two situations. For each

situation, it takes the appropriate way to handle different kinds of action. During the

transformation procedure, different model elements, such as Transition, PseudoState,

ActionState, ObjectFlowState, will be created and linked together to construct an

ActivityGraph and thereafter, a new model.

The partitioning of objects by execution threads plays an important role in the way the

activity diagram is generated. However, this information cannot be found in the input

interaction diagram. Our algorithm needs to receive partitioning information either from the

user, or from other UML diagrams, such as component or deployment diagrams. In our

implementation, the user decides on object partitioning. However, when the algorithm will

95

be used in the larger content of transforming UML models into performance models, such

partitioning information will be extracted from other UML diagrams.

The transformation algorithm was given at very high level. In next chapter, as we dig into

the implementation, more details of the algorithm, such as handling different kinds of

action and creating transitions to link state vertices, will be described.

96

Chapter 5 Implementation of Transformation Rules

The ID to AD transformation consists of three main parts: XMI input, XMI output and

transformation, as illustrated in the thesis scope in Figure 1-2. The XMI input converts

XMI elements into NSUML objects (unmarshalling). The XMI output can be seen as

the inverse of XMI input, which converts NSUML objects into XMI elements

(marshalling). The transformation part is the most important for the thesis, analyzing

the objects of an interaction diagram and generating the objects of the corresponding

activity diagram according to the transformation rules. The structure of chapter 5 is as

follows. The first three sections correspond to those three parts, followed by a discussion of

limitations. Then, a discussion of the implementation verification follows, which contains a

description of DOM and of the testing evaluation. Finally an e-commerce system model is

investigated as a case study.

The implementation is developed in Borland JBuilder 3© under the Windows NT© platform.

Three kinds of APIs need to import: JDK 1.3 and JAXP 1.1 from Sun Microsystem©, and

Novosoft© UML API 0.4.19. All of them can be download from the corresponding

companies’ Web sites. JAXP 1.1 API provides the necessary methods to handle XML and

Document Object Model (DOM). Novosoft UML API implements the metamodel of UML

1.3 and provides XMI-support. The related environments to the implementation are

summarized in Table 5-1:

97

UML Design Tools XMI Support UML XMI

Rational Rose 2000

Enterprise Edition

Unisys Rose

XML Tools 1.3.2

1.3 1.0

ArgoUML v.0.8.1a NSUML 0.4.19 1.3 1.0

Table 5-1 Supporting Environments

5.1 XMI Input

 ArgoUML and Rose use different mechanisms to generate an XMI file for a model. In

ArgoUML, several files will be generated everytime when a model is saved. This includes

an XMI file that stores model information and PGML files that store layout information.

Rose saves a model in its mdl file. A separate XMI file (Rose uses .xml as its extension) is

obtained through a function called “Export Model to UML” in the Tools menu.

This section is divided in two parts: the first one presents the XMI structure of an

interaction diagram, which represents the XMI objects in a tree-structure. The second

describes how the XMI reader translates XMI elements to Java objects.

5.1.1 XMI Structure of Interaction Diagram

Semantically, the XMI files generated from UML tools contain the metamodel objects that

represent different diagrams, as discussed in the previous chapters. However, an XMI file is

a special kind of XML file that follows the standard UML DTD. Consequently, an XMI file

can be represented in a tree-look structure as any other XML file. Figure 5-1 and Figure 5-2

illustrate the tree-structure for collaboration and sequence diagrams.

98

Class
isActive

Association

isAbstract
isLeaf
isRoot

connection()

Model

Collection : ownedElement()

ClassifierRole

Classifier : base()
Message : message1()
Message : message2()

Action

isAsynchronous

Message : message()
Argument : actualArgument()

Message

ClassifierRole : sender()
ClassifierRole : receiver()
Action : action()
AssociationRole : communicationConnection()
Interaction : interaction()

AssociationRole

Message : message()
AssociationEndRole : connection()

Collaboration

Interaction : interaction()
Collection : ownedElement()

Interaction

Collaboration : context()
Message : message()

Figure 5-1 Collaboration Diagram XML Tree Structure

Object

Stimulus : stimulus2()
Stimulus : stimulus3()
LinkEnd : linkEnd()
Classifier : classifier()

Stimulus

Instance : sender()
Instance : receiver()
Action : dispatchAction()
Link : communicationLink()
Argument : argument()

CallAction

Stimulus: stimulus()
Argument: actualArgument()

SendAction

Stimulus: stimulus()
Argument: actualArgument()

CreateAction

Stimulus: stimulus()
Argument: actualArgument()

DestroyAction

Stimulus: stimulus()
Argument: actualArgument()

ReturnAction

Stimulus: stimulus()
Argument: actualArgument()

Model

....

Collection : ownedElement()

TerminateAction

Stimulus: stimulus()
Argument: actualArgument()

Class

isActive

Operation
isAbstract
isLeaf
isRoot

specification
concurrency

operation()

Link

Stimulus : stimulus()
LinkEnd : connection()

LinkEnd

Instance : instance()
Link : link()

Figure 5-2 Sequence Diagram XML Tree Structure (only for ArgoUML tool)

If Rose is used to draw an interaction diagram (be it a collaboration or a sequence diagram),

it maps to the XMI structure shown in Figure 5-1. This is because in Rose the two diagrams

are semantically equivalent. Using ArgoUML to draw a collaboration or a sequence

diagram results in a different XMI structure corresponding to Figure 5-1 and Figure 5-2,

respectively.

99

5.1.2 XMI Reader

The XMI input is realized by the class XMIReader found in the NSUML. The class is a

huge java file consisting of more than 20,000 lines of source code. Its responsibility is to

create Java objects (NSUML objects) from an XMI file. In fact, XMIReader uses an

existing parser to parse the input file, as described in the next section.

5.1.2.1 Simple API for XML (SAX)

XMIReader uses SAX (Simple API for XML) which is an event-based XML API. The

following segment of code is taken from XMIReader:

public class XMIReader extends HandlerBase {
 …
 org.xml.sax.Parser parser = null;
 public XMIReader() throws SAXException,

 ParserConfigurationException {
 …
 /* get SAX parser, which is event-driven */
 SAXParserFactory saxpf = SAXParserFactory.newInstance();
 parser = saxpf.newSAXParser().getParser();

 parser.setErrorHandler(this);
 parser.setDocumentHandler(this);
 parser.setEntityResolver(this);

 …
 }
 public MModel parse(InputSource p_is) {
 …
 parser.parse(p_is);
 …
 }
 …
}

The technique is to register a handler with the SAX parser, after which the parser invokes

the appropriate callback methods whenever it sees a new XML tag or encounters an error.

100

Another major type of XML API is the tree-based DOM API. DOM API compiles an XML

document into an internal tree structure and then allows an application to navigate that tree.

DOM will be used to make the internal structure visible to facilitate the verification, which

will be discussed in section 5.5. SAX and DOM APIs are defined by XML-DEV and by the

W3C, respectively.

The basic structure of the SAX parser is shown below (Figure 5-3):

Figure 5-3 SAX Parser

Two packages are needed: org.xml.sax and javax.xml.parsers.

§ Package org.xml.sax defines the SAX interfaces. This package also defines

HandlerBase – a default implementation of a base class for the various “handlers”

defined by the interfaces, as well as an InputSource class, which encapsulates

information that tells where the XML data is coming from.

101

§ Package javax.xml.parsers defines the SAXParserFactory class which

returns the SAXParser. Also it defines the ParserConfigurationException

class for reporting errors.

Here is a summary of the key SAX APIs:

§ SAXParserFactory: generates an instance of the parser.

§ Parser: The org.xml.sax.Parser interface defines methods like

setDocumentHandler to set up event handlers and parse(URL) that, as the data

in XML is parsed, invokes one of several callback methods defined by the interfaces

DocumentHandler, ErrorHandler, DTDHandler, and EntityResolver.

§ DocumentHandler: Methods like startDocument, endDocument,

startElement, and endElement are invoked when an XML tag is recognized.

This interface also defines methods characters and

processingInstruction, which are invoked when the parser encounters the text

in an XML element or an inline processing instruction, respectively.

§ ErrorHandler: Methods error, fatalError, and warning are invoked in

response to various parsing errors. The default error handler throws an exception for

fatal errors and ignores other errors (including validation errors).

§ EntityResolver: Method resolveEntity is invoked when the parser must identify

data by a URI.

102

§ DTDHandler: Methods defined in this interface are invoked when processing

definitions in a DTD.

 A typical application such as XMIReader needs to provide only a DocumentHandler

at a minimum. It can override the methods for some events and ignore the methods for

other events.

5.1.2.2 Elements Processing

To understand how an event-based XMIReader works, consider the following sample

document:

<?xml version=”1.0”>
<doc>
<para>Hell, world!</para>
</doc>

An event-based interface will break the structure of this document down into a series of

linear event:

start document
start element: doc
start element: para
characters: Hello, world!
end element: para
end element: doc
end document

XMIReader defines five methods to handle those events: startDocument,

endDocument, startElement, endElement, and characters. When a start tag

or end tag is encountered, the name of the tag is passed as a String to the startElement

or endElement method, as appropriate. When a start tag is encountered, any attributes it

defines are also passed in an AttributeList.

103

XMIReader has a method called process(String, AttributeList) which is

mainly responsible for creating NSUML objects. Each object has a unique id (xmi.id)

within a document. A HashMap will be used to keep the ids and objects. As described in

chapter 4, every object may have attributes or associations (opposite roles). Thus the next

step is to process an object’s attributes and associations if they are available. Because the

UML DTD determines the structure of an XMI file, XMIReader uses String comparison

against the DTD to distinguish attributes and associations.

Processing an object’s associations is more complicated than processing its attributes. This

will involve how to build and keep object references. XMI provides xmi.idref that

allows an XMI element to refer to another XMI element within the same document using

the XML IDREF mechanism. Recall that a HashMap has been used to store all the objects

and their ids. If an xmi.id that xmi.idref refers to can be found, then the referred

object will be assigned as an association. But if a referred id cannot be found in the

HashMap, this means the referred object is yet to be created. An internal private class

Link in XMIReader is going to handle this situation. Class Link has instance variables

sourceObject that represents the owner object of the association, and

parameterXMIID that represents the id of referred object. After the parser completes

parsing a document, a method performLinking() will be invoked to link a source

object and its referred object together.

104

5.2 XMI Output

When a transformation from an interaction diagram to an activity diagram is done, it means

that a new model that represents the newly generated activity diagram is created. This

section illustrates what the XMI structure of an activity diagram looks like, and briefly

explains how XMIWriter writes a model out in XMI format.

5.2.1 XMI Structure of Activity Diagram

The XMI structure of an activity diagram is shown in Figure 5-4.

Signal

SignalEvent

Signal : signal()

Operation

CallEvent

Operation : operation()

Model
...

Collection : ownedElements()

ActivityGraph

Model : context()
CompositeSate : top()
Transition : transition()
Collection : partition()

PesudoState
kind

Transition : incoming()
Transition : outgoing()
CompositeState : container()

ActionState

Transition : incoming()
Transition : outgoing()
CompositeState : container()

FinalState

Transition : incoming()
Transition : outgoing()
CompositeState : container()

CompositeState

ActivityGraph : statemachine()
Subvertex : subvertex()

ObjectFlowState

Classifier : type()
Parameter : parameter()
Transition : incoming()
Transition : outgoing()
CompositeState : container()

Transition

Subvertex : source()
Subvertex : target()
Guard : guard()

Guard
expression

Transition:transition()

Figure 5-4 Activity Diagram XML Tree Structure

105

Several points should be mentioned about the figure. First, compared to its metamodel

representation, the XMI structure is quite simplified. This is because relationships between

classes are hidden in element associations, e.g. shown by xmi.idref. Second, The figure

shows only the elements that have xmi.id. Not all classes converted to elements will be

assigned xmi.id. For example, class Partition has no xmi.id. It is a collection that

consists of different state vertices.

5.2.2 XMI Writer

XMIWriter consits of even more lines of code than XMIReader, but the structure of

XMIWriter is actually simpler than XMIReader because object constructions are not

needed anymore. Dismantling a machine is always easier than assembling it together again.

XMIWriter is the inverse of XMIReader, so they are similar in many respects. The

following codes are segments of XMIWriter:

public class XMIWriter extends PrintWriter {
 …
 protected MModel mmodel = null;
 Public XMIWriter(MModel p_mmodel, java.io.Writer p_out) throws

 IOException {
 super(p_out);
 MModel = p_mmodel;
 }
 …
 protected AttributeListImpl al = new

AttributeListImpl();
 protected org.xml.sax.DocumentHandler dh = null;

 public void gen(org.xml.sax.DocumentHandler p_dh) throws
 IncompleteXMIException{

 dh = p_dh;
 dh.startDocument();

106

 al.addAttribute("xmi.version", CDATA_TYPE, "1.0");
 dh.startElement("XMI", al); al.clear();

 dh.startElement("XMI.header", al);
 … /* declares some common XMI elements */
 dh.endElement("XMI.header");

 dh.startElement("XMI.content", al);

 printModelMain(getModel()); /* main process method */

 dh.endElement("XMI.content");
 dh.endElement("XMI");

 dh.endDocument();
 …
}

XMIWrtier extends PrinterWriter that is to print formatted representations of

objects to a text-output stream. Its constructor takes two parameters: MModel and

Writer. In order to generate an XMI, an instance of XMIWriter must indirectly call the

method gen(DocumentHandler). In this method a declaration comes first, which

identifies the version and encoding scheme. After the declaration, a root element XMI is

defined. Any other elements are contained within that element. Under the root element

XMI, two nested elements are defined: XMI.header and XMI.content. Elements to be

defined are not arbitrary, they must conform to the UML DTD so that the generated XMI is

not only well-formed, but also valid.

XMI.header contains several common XMI elements, e.g. XMI.exporter and

XMI.metamodel. Detail explanations can be found in [XMI 1.0]. XMI.content

contains the actual model information being transferred. To output the model as XMI

format is implemented by method printModelMain().

107

The method printModelMain() bases on the UML DTD to write out a model and its

contained objects. As we mentioned before, a DTD specifies the kinds of tags that can be

included in a document, and the valid structure of elements. The object may contain

attributes and associations, all those are converted to XMI elements. The element converted

from an object will be given an xmi.id as an attribute, which is an integer starting from 1.

The element converted from an association will be given an xmi.idref as its attribute,

which refers to the xmi.id of the owner object that association belongs to.

5.3 Transformation

This section describes how we built the Java application to perform the transformation

according to the algorithm that is given in chapter 4. The application contains several

components, as shown in Figure 5-5.

_curModel: MModel
_newModel: MModel
reader: XMIReader
writer: XMIWriter
t ransformer: Transformer

readAndTransformModel(inputFile, outputFile): void

<<interface>>
Transformer

getNewModel(): MModel

Transformer_CD

getNewModel(): MModel
transform(): void
……

oldModel: MModel
newModel: MModel

Transformer_SD

getNewModel(): MModel
transform(): void
……

input file

output file

XMIParser

oldModel: MModel
newModel: MModel

108

Figure 5-5 Transformation Components

In this figure, the class XMIParser has instance variables of XMIReader and

XMIWriter. Besides, XMIParser needs to know whether the input is from a

collaboration diagram or from a sequence diagram before it passes the input model

information to an appropriate Transformer. Transformer is an interface that is

realized by two classes: Tranformer_CD which handles the input from an collaboration

diagram, and Transformer_SD which handles the input from a sequence diagram.

These two classes follow exactly the same algorithm, but deal with different XMI input

structures (as described in section 5.1.1).

5.3.1 Transform

The transformation algorithm is actually executed in the method transform(). The

purpose of the method is to create a new model to represent the equivalent activity diagram.

This is demonstrated by the segment of code given as follows:

public void transform() throws IOException {
 …
 sortMessages();

 partitionObjects();
 initializePartitions();
 …
 traverse();
 …
 finalizePartitions();
 addContentsToPartitions();

 setActivityGraph();
 newModel.addOwnedElement(actGraph);
 …

109

}

For sorting messages, UML defines the following syntax for a message label:

 predecessor guard-condition sequence-expression return-value :=
 message-name argument-list

Both predecessor and sequence-expression provide necessary information for sorting. In

most cases, predecessor is implied by the numeric sequence numbers and need not be

explicitly listed. The API provides two relevant methods: getPredecessors() and

getActivator(), thus the relative order of the messages can be obtained. After the

sorting, the messages will be put into an ArrayList like the following:

 {msg_1, msg_2, … {msg_a, msg_b, …}, … , msg_n }

where the sublist {msg_a, msg_b, …} contains messages that are concurrent.

For partitioning the objects, the application asks the users how to partition by listing all

active and passive object xmi.ids in a COMMAND window. We made the assumption

that a partition (swimlane) contains the activities carried out by only one active object and

any number of associated passive objects. In other words, each partition represents a

concurrent component. HashMap will be used to hold each partition and its related objects

for later references. The next step is to initialize each partition by assigning an initial state,

which indicates the components are running concurrently. To be consistent with the UML

standard, only the first partition, associated with an active object that sends the first

message, will be given an Initial Pseudostate. Each of the remaining partitions will start

110

with an “idle” ActionState to indicate that is up waiting for a message. A HashMap

partition2StateVertices is used to keep track of all the state vertices for each

partition. Some utility methods, e.g. add() and remove(), are created to manipulate the

HashMap.

5.3.2 Traverse

The for loop in the transformation algorithm is performed by the method traverse().

When traversing messages, two situations will be encountered: the sender and receiver of a

message are in the same or in different execution thread. In each case, the transformation

takes appropriate ways to handle according to the type of action associated with the

message. The case with different execution thread is more complex than the case with one

execution thread as more factors need to be taken into consideration. The description below

will focus on the more complex case. For those messages that are running concurrently, e.g.

msg_a, msg_b, a Fork Pesudostate will be created to indicate concurrency, then each

message still falls into one of the two cases mentioned above. This may be done

recursively.

When a message is being traversed, its associated action provides the most important

information for the transformation. UML defines 7 kinds of Actions (see section Message

Properties in chapter 3). The most two common kinds are CallAction and SendAction.

Figure 5-6 shows how we transform these two kinds of Actions. The transformation

111

includes the creation of new state vertices, such as action states, fork/join pseudostates, and

object flow states, and of new transitions to link the state vertices together.

invoke(m.a)

m.a()

object flow
info.

send(request)

receive(request)

request

Figure 5-6 Transformation: CallAction (left), SendAction (right)

CallAction is synchronous. The caller is blocked and yields control to the called procedure

until it returns. It is assumed in UML notation that every call has a paired return which may

be omitted, i.e. implicit at the end of an activation. SendAction is asynchronous, resulting

in an explicit fork. For both of them, ActionStates are created and given meaningful names.

We use the notation of ObjectFlowState but do not adhere strictly to its semantics. It will be

used to convey performance information between entries and tasks in the future when

activity diagrams convert to LQN models.

When handling different kinds of Action, the transformation may create two particular

kinds of PseudoState, fork and join. The value of Action’s attribute isAsychronous

indicates whether to create a fork PseudoState or not. A join PseudoState is needed when

the receipt of a message is from another execution thread. There is an exception if there is

an explicit return action in a procedure call since the receiver (caller) waits for the

completion of the called procedure.

112

The transitions used in activity diagrams are simpler than in state machines. The method

connect() is used to generate a transition that connects a source StateVertex and a target

StateVertex, as follows:

 public MTransition connect(MStateVertex from, MStateVertex to) {
 MTransition transition = new MTransitionImpl();
 …
 transition.setSource(from);
 transition.setTarget(to);
 …
 /* set guard if there is a branch */
 …
 from.addOutgoing(transition);
 to.addIncoming(transition);
 …
 }

It is possible that StateVertex from or to is not finalized yet when the method is called.

For example, if a transition is going to link from a fork PseudoState to an ActionState, the

fork may have other outgoing transitions in a later. Therefore, the appropriate updates for

both the transition and StateVertex will be necessary if one of them is changed. Similar

treatments also apply to other model elements that have bilateral associations between

them.

5.4 Limitations and Discussion

There is a compromise in the UML between the desire for precision and the need of

developers to work with various design tools, which may have different interpretations of

the UML semantics. On one side, the existing UML semantics documentation and the

metamodeling approach already provide a good foundation for a precise semantics. But the

113

meaning of the UML, which is mainly described in English, is informal and unstructured,

therefore does not provide a solid foundation for developing formal analysis and

development techniques. The semantics of actions and argument lists, for instance, have

therefore been left somewhat incomplete and ambiguous within UML itself. As a result, the

API (NSUML API) we import is also incomplete in some aspects.

Another problem is that the current UML tools, such as Rational Rose or ArgoUML, do not

support entirely the whole set of features provided by the UML metamodel. For example,

both Rose and ArgoUML do not support some model elements or functions, such as object

flow state, concurrent messages, iteration, and so on. This means that the XMI files

obtained from the tools are either incomplete or imprecise. When we needed XMI files to

test our implementation, we had to modify some of the files by hand in order to introduce

features that are not yet supported by today’s tools.

5.5 Verification

To facilitate the verification of the generated output in XMI format, it would be better to

make the internal data structure in XMI visible. To do that a GUI application is built to

display an XMI using Document Object Model (DOM).

5.5.1 Document Object Model (DOM) and JTree

In section 5.1.2.1, we surveyed the event-driven SAX API. An alternative to access an XML

document structure is to use a tree-based DOM API.

114

DOM is a tree structure, where each node contains one of the components from an XML

structure. It was developed by the W3C, primarily to specify how future Web browsers and

embedded scripts should access HTML and XML documents. There is a core standard that

applies to both HTML and XML (available from [DOM]).

DOM provides a set of APIs to access and manipulate nodes in the DOM tree. However,

the DOM standard is silent on the subject of how to create a DOM from an existing XML

file. This problem is solved by the JAXP DocumentBuilder interfaces, as shown in

Figure 5-7.

Figure 5-7 JAXP APIs

When the input source, either a File object, an input stream, a SAX InputSource object, or a

URL, is parsed, the DocumentBuilder will return an org.w3c.dom.Document

object:

DocumentBuilder builder =
DocumentBuilderFactory.newInstance().newDocumentBuilder();

 Document document = builder.parse(input source);

115

Details of JAXP API are given in [JAXP 1.1].

To help to have a clear idea of how nodes in a DOM are structured, it is better to display

the internal structure in a GUI, as shown in Figure 5-8:

Figure 5-8 Tree View of a DOM

A class Dom, as shown below, is created to display a DOM tree. The class Dom converts a

DOM into a JTreeModel and displays the full DOM in a JTree. It makes sense to stuff the

DOM into a JTree, since the DOM is a tree, and the Swing JTree component is all about

displaying trees. But a JTree displays a TreeModel and a DOM is not TreeModel.

Therefore, an adapter class DomToTreeModelAdapter is created to make the DOM

looks like a TreeModel to a JTree.

116

public class Dom extends JPanel
{
 // Global value so it can be ref'd by the tree-adapter

 static Document document;
 …
 // Set up the tree

 JTree tree = new JTree(new DomToTreeModelAdapter());
 …
 public class DomToTreeModelAdapter implements
 javax.swing.tree.TreeModel {…}

 public class AdapterNode {…}
 …
}

The inner class AdapterNode wraps a DOM node and returns the desired string to be

displayed in the tree. What the TreeModel gives to the JTree will be in fact be

AdapterNode objects that wrap DOM nodes. The class also includes a few additional utility

methods.

One of the really nice things about the JTree model is the relative ease with which you

convert an existing tree for display. Part of reasons for that is the clear separation between

the displayable view, which JTree uses, and the modifiable view, which the application

uses. For more on that separation, see [Armstrong+00]. For now, the important point is to

satisfy the methods in the TreeModel interface we need and register the appropriate JTree

listeners.

117

5.5.2 Testing Configuration

A new class ApplicationDemo is created to wrap the class Dom and the class

XMIParser together in order to display the input and output in the same window. GUI

configuration and testing window are shown in Figure 5-9 and Figure 5-10 respectively.

ApplicationDemo

XMIParser

1. XMI Input
2. XMI Output
3. Transformat ion

Dom

Display an XMI

Figure 5-9 GUI Configuration

118

Figure 5-10 Testing Window

The main window is divided into half: the upper half is to display an XMI file from an

interaction diagram; the lower half is to display an XMI file from the equivalent activity

diagram. To simplify the operation of the application, three JButtons are created: Import

File, RESET, and Export File. Functions of XMIParser are invoked whenever JButton

Export File is clicked. This includes XMI input, transformation and XMI output that were

described in previous sections.

119

5.5.3 Results Evaluation

Our testing results must satisfy two criteria: correctness and interoperability between UML

tools. All basic cases were tested and inspected for these two criteria. One of the key

features of XMI is that XMI eases the problem of tool interoperability by providing a

flexible and easy to parse information interchange format. ArgoUML uses XMI as its

standard saving mechanism. Rational Rose saves model information in a proprietary format

(mdl file), but allows for importing an UML model in XMI format. We did try to use the

tools to import our results to test the interoperability. In principle, ArgoUML displays

metamodel information in its Navigation Panel, and Rational Rose in its Browser window.

However, due to the limitations that we discussed in section 5.4, both tools lose information

when importing our XMI files that contained features not yet supported by the tools.

Rational Rose cannot display model elements that are not supported yet, e.g. object flow

state. ArgoUML is even worse, unsupported model elements in an XMI must be discarded

before the file is imported. Despite these problems, both tools were able to read our files

and display the elements they understood. It should be mentioned that we could not use the

diagrams in the usual UML notation because XMI, by definition, does not contain layout

information.

It would be perfect to have both metamodel information and the equivalent diagram for the

validation. The transformation we implemented, as mentioned before, is a metamodel-

120

transformation. Using the DOM to display the internal data structure makes an XMI more

readable, which is helpful for checking the correctness of the model.

5.6 Case Study

In this section we show how our transformation algorithm was applied to an electronic-

commerce system. The system is distributed as shown in the deployment diagram in Figure

5-11. There are two types of users: remote and local, who are using the system in the same

way. However, they will experience quite different response times due to the different

communication network delays. This is a three-tier server system: the users interact with a

web server, which requests information from a e-commerce server, which in turn sends

queries to two databases: a non-secure and a secure database. Each server component runs

on its own node.

121

RemotePC

GUI

1..R

LocalPC

GUI

1..L

Remote
User

Local
User

WebServer

WebProc

DBServer

DBproc

eCommServer

eCommProc

SecureDBserver

Secure
DBproc

<<Internet>>

<<LAN>>

Figure 5-11 Deployment Diagram for E-commerce System

[*n] readDisk()

RemoteUser

WebProc

eCommProc

Secure
DBproc

DBproc

productRequest()

priceDescrReq()

getPrice()

getDescription()

statusReport()

productPage()

DisplayPage()

122

Figure 5-12 Sequence Diagram for “ Get product info.” Use Case

123

proReq

remoteUser

WebProc

DBproc

Display page

eCommProc

SecureDBproc

return
prodInf

request
prQuy

return
price

request
desQuy

productPage

idle

idle

found?

Read from disk

[true]

[false]

idle

request
prDeRe

productInfo

Get price

idle

statusReport

send(proReq)

receive(proReq)

invoke(prDeRe)

receive(pDeRe)

invoke(prQuy)

invoke(desQuy)

receive(prQuy)

return(price)

receive(deQuy)

return(descr)

receive(price)

receive(desc)
 return

 descr

return(prodInf)

receive(prInf)

return(proPg)

receive(proPg)

return
proPg

124

Figure 5-13 Activity Diagram for “Get product info” Use Case

Figure 5-12 shows the sequence diagram for the “Get product info” scenario (the

realization of the “happy path” of the use case with the same name), whereas Figure 5-13

shows the corresponding activity diagram. A user sends a request to the component

WebProc, which gets product information from the eCommProc, then builds a HTML page

that is sent back to the user. In turn, the component eCommProc gets in parallel, the

product description from DBproc, a non-secure database server, and the price information

from SecureDBProc, a secure database server. DBproc performs a sequential file access,

hence the iteration for reading from disk until the desired information is found. The secure

DB makes an indexed file access, so there is no iteration when reading from disk. Note that

in order to show the intra-object behavior on the sequence diagram, one has to add some

self-messages (such as those for the user and DBproc).

The example contains a number of client-server relationships, which are realized in two

ways. The client-server relationship between the user and WebProc is realized through two

separate asynchronous messages, one for the request and the other for the reply. It is

impossible to use a synchronous message in this case because the user does not block

immediately after sending the request; instead, it goes on to displays a status report to the

user, and then it starts waiting for the reply. On the other hand, the client/server

relationships between webProc and eCommProc on one side, and between eCommProc and

each of the two databases on the other side are realized through synchronous messages.

125

Note that the component eCommProc has internal concurrency, as shown by the fork/join

in both Figure 5-12 and Figure 5-13.

The Activity diagram from Figure 5-13 models the same behaviour as the sequence

diagram, but with more explicit model elements that can be annotated with performance

information. Some of the details from Figure 5-13 are only implied in Figure 5-12. The

activity diagram contains a swimlane for every concurrent component. The asynchronous

messages are represented as in Figure 5-6 described in subsection 5.3.2. A synchronous

message is represented by two related asynchronous messages, one for the request and

another for the reply. The sender of a synchronous message blocks immediately after

sending the request, and waits for the expected reply. Before receiving any kind of

message, a receiver should be ready for it.

 Although there is some redundancy in the proposed activity diagram style, we have chosen

it for two reasons: a) to be able to add performance annotations as mentioned before, and b)

to create a visual clue that connects the sending and receiving of a message, and facilitates

the reading of the diagram. The object flow state attached by two dotted transitions to the

sending and receiving states represents the “handing over” of responsibility from one

component instance to the next. It is easy to follow the execution flow for the scenario and

the actions performed by each instance on its behalf (shown shaded in gray and in Figure

5-13).

126

The activity diagram shows also the execution thread(s) for each individual component on

behalf of the respective scenario. We made the assumption that the instance that initiates

the scenario starts at the initial state of the activity diagram and ends at its final state. All

the other components are assumed to have a cyclic behavior, waiting in a state named

“idle” to receive their first signal that triggers them into action. At the end of the scenario,

these components will return to the idle state by default. Note that it is easy to represent a

component with internal concurrency, as for example the eCommProc component. By

collecting the partial behaviours for different scenarios, one can build the complete state

machine for every component; however, this is beyond the scope of the thesis.

5.6.1 Testing Result

The sequence diagram shown in Figure 5-12 was drawn in Rose, which is shown in Figure

5-14. The differences between Figure 5-14 and Figure 5-12 are due to the fact that Rose

does not support some features such as an branching or merging. The sequence diagram in

XMI format that were obtained from Rose is shown in Figure 5-15. After the

transformation was done, the equivalent activity diagram in XMI format is shown in Figure

5-16. The XMI file that represents the activity diagram was then imported back to Rose,

which is shown in Figure 5-17. The left-hand-side Browser window in Rose shows the

model elements that were described in the XMI file. As mentioned in section Verification,

Rose cannot display the model elements that are not supported yet, e.g. object flow states.

127

Figure 5-14 SD for "Get product info" use case in Rose

128

Figure 5-15 SD in XMI Format

129

Figure 5-16 Display Both SD and Equivalent AD

130

Figure 5-17 Rose Imports AD in XMI format

131

Chapter 6 Conclusion

6.1 Conclusion

The thesis proposed an approach to automate the XMI-based transformation from UML

interaction diagrams to activity diagrams. The thesis introduced transformation rules at

notation level and at UML metamodel level. The transformation pays attention to

concurrency/distribution and parallelism issues, and captures the following behavioral

asptects:

§ The execution flow of the actions corresponding to a certain scenario, showing the

potential parallelism such as fork/join and branch/merge.

§ The concurrent instances (components) responsible for each action and the explicit

“hand over” of responsibility between instances represented by the object flow

carried by messages.

§ The behavior of each concurrent component as it contributes to the respective

scenario.

§ The explicit sending/receiving actions executed by each concurrent component.

The thesis investigated in detail the UML metamodel representations for interaction and

activity diagrams. It identified the participating metaclasses and their relationships in the

diagrams. With the aid of a special metamodel library NSUML, the proposed

transformation is conducted, in fact, at metaobject level. The metamodel information,

132

represented in XMI format, will facilitate information exchange and provide product

interoperability among development teams in collaborative environments.

The thesis designed and implemented a Java GUI application, which takes an interaction

diagram in XMI format that produced from a UML design tool as an input and

automatically generates the equivalent activity diagram as the output by applying the

transformation rules. The application used two different techniques to process an XMI:

SAX API is used to build data structure of a model, and DOM API is used to visualize the

internal structure of an XMI. The limitations of the implementation were also discussed.

The thesis made the first known attempt at UML diagrams transformation in terms of XMI.

Our work is one step in a larger research project aiming at deriving performance models

from UML models and integrating the results of performance analysis back to the UML

models. Although the UML standard is still evolving and the XMI standard is evolving

with it, we still believe that the conceptual approach proposed in this thesis will be

applicable to the future versions.

6.2 Future work

A number of issues need to be addressed in the future work, some of which are currently

under way. These issues are closely related to the challenge related to the automatic

derivation of performance models from software specification and the integration of the

feedback in the UML models:

133

§ As mentioned before, other students are doing work on deriving LQN performance

models from scenarios represented by activity diagrams annotated with performance

information. Two immediate work items are: a) to introduce Performance Profile

stereotypes and tagged values in the ID to AD transformation realized in this thesis,

and b) to integrate everything in the UML to LQN transformation.

§ The current transformation is actually implemented at metamodel level. It uses a

special XMI reader and writer to import and export an XMI. One possible extension

is to use XSLT (eXtensible Stylesheet Language Transformation) to directly

transform an XMI into another XMI, eliminating the need of the metamodel library

NSUML by a set of template rules. Each template rule contains a template and a

matching pattern to specify how to transform the input file into an output file.

§ An activity diagram generated in XMI format is more abstract and less readable. It

would be very useful to display such activity diagrams in a UML tool, so that the

user could see the actual UML graphical notation. An impediment to this is the fact

that, by definition, XMI does not contain layout information.

134

References

[Abiteboul+00] Abiteboul, S., Buneman, P. & Suciu, D., Data on the Web: From Relations
to Semistructured Data and XML, Morgan Kaufmann Publishers, San
Francisco, California, 2000.

[Amer01] Amer, H., “Automatic transformation of UML software specification into
LQN performance models using graph grammar techniques”, Ottawa.
Thesis (M.Eng.), Carleton University, 2001.

[ArgoUML] ArgoUML: An Open-Source UML-Tool, See http://argouml.tigris.org/.

[Armstrong01] Armstrong, E., “Working with XML: The Java API for XML Parsing
(JAXP) Tutorial”, See http://java.sun.com/xml/jaxp-1.1/docs/tutorial/.

[Armstrong+00] Armstrong, E., Santos, T. & Wilson S., “Understanding the TreeModel”,
See http://java.sun.com/products/jfc/tsc/articles/jtree/index.html.

[Balsamo01] Balsamo, S., & Simeoni, M., “Deriving Performance Models from
Software Architecture Specifications”, See
http://www.dsi.unive.it/~balsamo/saladin/bal-sim.2.01.pdf

[Bradley00] Bradley, N., The XML Companion, 2nd Edition, Mass., Addison-Wesley,
2000.

[Booch94] Booch, G., Object-Oriented Analysis and Design with Applications (2nd

ed.), Benjamin/Cummings, Redwood City, 1994.

[Booch+99] Booch, G., Rumbaugh, J. & Jacobson, I., The Unified modeling language
user guide, Reading, Mass., Addison-Wesley. 1999.

[Cook+94] Cook, S. & Daniels, J., Designing Object Systems: Object-Oriented
Modeling with Syntropy, Prentice-Hall, Hemel Hempstead, 1994

[Cortellessa+00] Cortellessa, V. & Mirandola, R., “Deriving a Queueing Network
based Performance Model from UML Diagrams”, Proceedings of the
Second InternationalWorkshop on Software and Performance,
Ottawa, Canada, pp 58-70, Sept. 2000.

[DOM] Document Object Model, See http://www.w3c.org/DOM.

[Douglass00] Douglass, B.P., Real-time UML; developing efficient objects for embedded
systems, 2nd ed. Reading, Mass., Addison-Wesley. 2000.

135

[DuCharme99] DuCharme, B., XML:the annotated specification, Upper Saddle River, N.J.,
Prentice Hall. 1999.

[Evans+99] Evans, A. & Kent, S., Core Meta-Modelling Semantics of UML: The
pUML Approach, In Robert France and Bernhard Rumpe, editors,
Proceedings of the Unified Modeling Language: UML’99: Beyond the
Standard, Lecture Notes in Computer Science 1723. Springer-Verlag, 1999.

[Fowler97] Fowler, M., UML Distilled: Applying the Standard Object Modeling
Language, Mass., Addison-Wesley, 1997.

[Gerard+01] Gerard, S. & Ober, I., “Parallelism/Concurrency specifications with UML”,
White Paper for the Workshop on Concurrency Issues in UML,
International Conferences <<UML>> 2001, Toronto, Canada, Oct, 2001
See http://wooddes.intranet.gr/uml2001/WhitePaper
/WhitePaperOnParallelism.pdf, October 2001.

[Harel87] Harel, D., Statecharts: A Visual Formalism for Complex Systems, in
Science of Computer Programming, Vol. 8, 1997.

[Hess00] Hess, D. A., “Rational Rose Enterprise Edition”, Tech update product info,
See http://techupdate.cnet.com/enterprise/0-6119586-723-3121217.html

[Horstmann+99a] Horstmann, C.S. & Cornell, G., Core Java 2 Volume II – Advanced
Features, UpperSaddle River, N.J., Sun Microsystems Press. 1999.

[Horstmann+99b] Horstmann, C.S. & Cornell, G., Core Java 2 Volume II – Fundamentals,
UpperSaddle River, N.J., Sun Microsystems Press. 1999.

[IDL99] CORBA IDL definition, See http://cgi.omg.org/cgi-bin/doc?formal/99-10-
01.pdf, 1999.

[ITUT00] International Telecommunication Union (ITU-T Z.120), Message Sequence
Chart (MSC), 2000.

[JAXP 1.1] An XML API in Java, See
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/index.html.

[Kahkipuro99] Kahkipruo, P., UML Performance Modeling Framework for Object-
Oriented Distributed Systems, In Robert France and Bernhard Rumpe,
editors, Proceedings of the Unified Modeling Language: UML’99: Beyond
the Standard, Lecture Notes in Computer Science 1723. Springer-Verlag,
1999.

136

[King+99] King, P., & Pooley, R., “Derivation of Petri Net Performance Models from
UML Specifications of Communication Software”, Proc. of XV UK
Performance Engineering Workshop, 1999.

[Leventhal+98] Leventhal, M., Lewis, D. & Fuchs, M., Designing XML Internet
applications. Upper Saddle River, N.J., Prentice Hall PTR, 1998.

[Marshall00] Marshall, C., Enterprise modeling with UML; designing successfull
software through business analysis, Reading, Mass., Addison-Wesley.
2000.

[Martin99] Martin, T.A., Project cool guide to XML for Web designers.
New York, John Wiley, 1999.

[Maruyama99] Maruyama, H., XML and Java; developing Web applications. Reading,
Mass., Addison Wesley, 1999.

[MOF1.3] OMG: Meta Object Facility (MOF) Specification, Version 1.3, See
http://www.omg.org/cgi-bin/doc?formal/00-04-03, April, 2000.

[NSUML99] Novosoft UML API, See http://www.novosoft-us.com/.

[Jacobson00] Jacobson, I., The road to the unified software development process. Rev.
and updated by Stefan Bylund. Cambridge, UK, Cambridge University
Press, 2000.

[Jacobson98] Jacobson, I., Booch, G. & Rumbaugh, J., The Unified Software
Development Process, MA: Addison Wesley Longman Inc., 1998.

[Oestereich99] Oestereich, B., Developing software with UML; object-oriented analysis
and design in practice, Harlow, England, Addison-Wesley, 1999.

[Overgaard99] Overgaard, G., A Formal Approach to Collaborations in the Unified
Modeling Language, In Robert France and Bernhard Rumpe, editors,
Proceedings of the Unified Modeling Language: UML’99: Beyond the
Standard, Lecture Notes in Computer Science 1723. Springer-Verlag, 1999.

[Petriu+01a] Petriu, D.C., & Shen, H., “Applying the UML Performance Profile: Graph-
Grammar-based Derivation of LQN Models from UML Specifications”,
submitted to the 12th International Conference on Modeling Tools and
Techniques for Computer and Communication Systems Performance
Evaluation Tools’2002, to be held in London, April 2002.

[Petriu+01b] Petriu, D.C., & Wong, E., “Using Activity Diagram for Representing
Concurrent Behavior”, White Paper for the Workshop on Concurrency

137

Issues in UML, International Conferences <<UML>> 2001, to be held
in Toronto, Canada, See http://wooddes.intranet.gr/uml2001/WhitePaper
/WhitePaperOnParallelism.pdf, October 2001.

[Petriu+00a] Petriu, D.C. & Sun, Y., “Consistent Behavior Representation in Activity
and Sequence Diagrams”, to appear in Proc. of UML’2000, York, GB, Oct
2000.

[Petriu+00b] Petriu, D.C. & Wang, X., “From UML Description of High-level Software
Architecture to LQN Performance Models”, In Nagl, M., Schurr, A.,
Munch, M. (eds): Applications of Graph Transformation with Industrial
Relevance, AGTIVE’99, Lecture Nodes in Computer Science, Vol. 1779,
p.47-62, Springer, 2000.

[Petriu+98] Petriu, D.C. & Wang, X., “Deriving Software Performance Models from
Architectural Pattern by Graph Transformations”, Proceedings of the Sixth
International Workshop on Theory and Application of Graph
Transformations TAGT’98, Paderborn, Germany, Nov. 1998.

[Pooley99] Pooley, R., “Using UML to Derive Stochastic Process Algebra Models”
Proc. of XV UK Performance Engineering Workshop, 1999.

[Profile01] OMG: “Response to the OMG RFP for Schedulability, Performance, and
Time”, OMG document number ad/2001-06-14, http://www.omg.org/cgi-
bin/doc?ad/2001-06-14, June 2001.

[Quatrani98] Quatrani, T., Visual modeling with rational rose and UML, Reading Mass.,
Addison-Wesley. 1998.

[Rose] Rational Software Cooperation, See
http://www.rational.com/products/rose/index.jsp.

[Reenskaug96] Reenskaug, T., Working with Objects, Manning, Greenwich, 1996.

[Rumbaugh+91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W.,
Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs.
1991.

[Rumbaugh+99] Rumbaugh, J., Jacobson, I. & Booch, G., The Unified modeling language
reference manual, Reading Mass., Addison-Wesley. 1999.

[Schurr90] Schurr, A., “Introduction to PROGRES, an Attributed Graph Grammar-
based Specification Language”, In: Nagl, M., (ed): Graph-Theoretic
Concepts in Computer Science, Lecture Notes in Computer Science, Vol.
411, pp. 151-165, 1990.

138

[Smith90] Smith, C.U., “Performance Engineering of Software Systems”, Reading
Mass., Addison Wesley, 1990.

[Smith+97] Smith, C.U. & Williams, L.G., “Performance Engineering Evaluation of
OO Systems with SPE.ED”, in Marie, R., et al. (eds), Computer
Performance Evaluation – Modeling Techniques and Tools, Springer
LNCS, 1997.

[UML1.3] OMG: Unified Modeling Language Specification, version 1.3, See
http://www.omg.org/cgi-bin/doc?formal/00-03-02, March 2000.

[UML1.4] OMG: Unified Modeling Language Specification, version 1.4, See
http://www.omg.org/cgi-bin/doc?formal/01-09-67, Sep 2001.

[Wang99] Wang, X., Deriving Software Performance Models From Architectural
Patterns By Graph Transformation, M.Eng. thesis, Department of Systems
and Computer Engineering, Carleton University, 1999.

[Warmer+99] Warmer, J.B. & Kleppe, A.G., The Object Constraint Language: Precise
Modeling with UML, Addison-Wesley, Reading, Mass. 1999.

[Williams+98] Williams, L.G., & Smith, C.U., “Performance Evaluation of Software
Architectures” in Proc. of WOSP’98, Santa Fe, New Mexico, USA, 1998

[Woodside+95] Woodside, C.M., Neilson, J.E., Petriu, D.C., & Majumdar, S., “The
Stochastic Rendezvous Network Model for Performance of Synchronous
Client-Server-Like Distributed Software”, IEEE Transactions on
Computers, Vol. 44, Nb. 1, January 1995.

[W3C] World Wide Web Consortium, See http://www.w3c.org.

[XMI1.0] OMG: XML Metadata Interchange specification, version 1.0, See
http://cgi.omg.org/cgi-bin/doc?formal/00-06-01, 2000.

[XMI1.1] OMG: XML Metadata Interchange specification, version 1.1, See
http://www.omg.org/cgi-bin/doc?formal/2000-11-02, 2000.

[XML1.0] eXtensible Markup Language (XML) version 1.0, Tim Bray, et al, W3C,
10 Feb 1998, See http://www.w3c.org/TR/REC-xml.

