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ABSTRACT

The thesis proposes and implements a transformation method that takes UML interaction
diagrams as input and generates equivalent activity diagrams as output. The transformation
approach takes into account the concurrency characteristics of the interacting objects. The
thesis describes the proposed transformation rules both at UML notation level, which is
more intuitive, and at UML metamodel level, which corresponds to the actual
implementation. A Java application was designed and built in the thesis for realizing the
proposed transformation. The application takes as input XML files produced by an existing
UML tool, which contain interaction diagrams in XMI format. The XMI standard defines
how to represent UML models in XML in order to facilitate information interchange
between different tools. The activity diagrams produced by our transformation are also

represented in XMI format.
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Chapter 1 Introduction

1.1 Motivation for the Thesis Research

In areatively short time the Unified Modeling Language (UML) from OMG has emerged as
the industry standard for designing and visualizing software systems. It provides severd
kinds of diagrams, which alow the description of different aspects and properties of systems,
like static and behavioral aspects, interaction among system components and physical
implementation details. Meanwhile, it has been recognized that performance analysis should
be integrated in the software development life cycle from the early stages. Reasons that are in
favor of using performance analysis during the software development include the end users
expectations, cost control and the fact that performance requirements are better met if
attention to performance problems is paid earlier rather than later. Software Performance
Engineering (SPE), introduced by Smith in her pioneering work [Smith90], has been the first
comprehensive agpproach to the integration of performance anadysis into the software
development process, from the earliest stages to the end. More motivations for using

performance engineering can be found in [Smith90], [Kahkipuro99] and [Wang99].

OMG recognized the importance of performance analysis by issuing a UML Performance
Profile [Profile01]. The profile identifies the basic abstractions used in performance anaysis,
and describes how these abstractions are expressed in terms of lightweight extensions to the
UML metamodel. By usng UML models annotated with quantitative performance

information, one can generate a performance model in order to conduct quantitative



performance analysis of the software represented by the UML models. The feedback to
software designers gained from the performance evaluation, will give them insights in the

crucia aspects of the system and allow them to refine the design at the UML modé level.

There are various types of performance models, which include gqueueing networks and their
extensons called Extended Queueing Networks (EQN) [Williamst98] and Layered
Queueing Networks (LQN) [Woodside+95], Stochastic Timed Petri nets (STPN) [King+99],

Stochastic Process Algebras (SPA) [Pooley99] and simulation models.

An open research problem and chalenge is to completely automate the process of deriving
performance models from software specification and to integrate the supporting tools in a

unique environment, as shown in Figure 1-1 [Petriu+01a].



UML Tool

UML
Model

UML to LQN

Transformation Analysis
Results

LQN Tool

LQN Model
Performance

Figure1-1 UML toLQN

Attempts ([Wang99], [Amer01]) have been made for the automatic transformation of a UML
model into a LOQN performance model using a graph rewriting tool PROGRES [Schurr9Q].
One of the limitations of using PROGRES is that it introduces an extra step necessary for
trandating UML models in XMI format into PROGRES input files. More research is under
way to build a Java application that reads UML models in XMI format obtained from UML
tools and transforms them into LQN performance models [Petriu+01a]. The work done in the

current thesisis a part of thislarger research effort.

Since performance is a dynamic property, scenarios play a key role in determining a
system’s performance characteristics from its UML models. [Profile01l] decomposes a

scenario in a sequence of one ore more scenario steps that are ordered conform to a generd



predecessor/successor relationship. In UML a scenario is an instance of a use case
[Quatrani98, pp. 65] and provides a means for the end user and the domain expert to state

thelr expectations about the desired behavior of a system to its developers [Booch94].

Scenarios are usually modeled either using interaction diagrams or activity diagrams. Both
interaction and activity diagrams describe the inter-object behavior of a system with
emphasis on different aspects. They both provide the overall operations of a system.
Interaction diagrams describe the detailed sequence of behavior from object to object and
from method to method [Booch+99]. However, interaction diagrams usually represent a
single scenario or a part of scenario. It is not aways clear how different scenarios are
pieced together in the system execution. UML offers another way to express the overall
flow of control, in the form of activity diagrams. Although statechart diagrams also
describe behavior, they provide alocalized view of an object (intra-object behavior), which

is not particularly useful for representing scenarios.

1.2 Scopeof the Thesis Research

As mentioned before, the work done in this thesis is a part of a larger project to generate
automatically performance models from UML models annotated with quantitative

performance information.
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Figure 1-2 Scope of the Thesis
The subject of the thesis is to implement an automatic transformation of an interaction

diagram (input) into an activity diagram (output). Both the input and output are represented
in XMl format. The thesis approach isillustrated in Figure 1-2. A CASE tool, (e.g. Rose or
ArgoUML), generates an XML file representing a UML model containing different
diagrams. In the thesis, however, we are interested only in interaction diagrams (sequence

or collaboration) and activity diagrams.

The Java application build in the thesis is represented by the gray rectangle named ID to
AD Transformation. First, an XMI reader reads an XML file generated by a UML toal,

converts its elements to UML metaobjects, and builds the internal data structure for the



model. Then the interaction diagrams from the model are converted to activity diagrams by
applying the appropriate rules. The activity diagrams that are generated are contained in a
new model. Finally, an XMI writer writes the new model to an XML file conforming to

XMI format, which can be imported again by UML tools for further usage.

Our application uses the metamodel library NSUML and its API, which help us to read,
process and create XMI files. XMI integrates three key industry standards: 1) XML —
eXtensible Markup Language, a W3C standard; 2) UML — an OMG modeling standard; 3)
MOF — Meta Object Facility, an OMG metadata repository standard. The integration allows
developers to share object models and other metadata over the Internet in a standardized
way, thus bringing consistency and compatibility to applications created in collaborative

environments.

1.3 Contributions

The goal of the thesis is to define and implement a transformation process that accepts as
input UML interaction diagrams (i.e. sequence or collaboration diagrams) and produces as
output equivalent activity diagrams that represent the same behavior as the input diagrams.
The contributions of the thesis are summarized as follows:
= Define transformation rules from interaction diagrams to activity diagrams at the
UML notation level. The transformation rules take into account the concurrency
characteristics of the interacting objects, and generate activity diagrams that contain

a separate swimlane for every thread of control.



= Express the above transformation rules at the UML metamodel level. Identify the
metamodel classes/objects used to represent the interaction and activity diagrams,
and express each transformation rule in terms of metamodel objects, their attributes
and relationships.

= Design, implement and test a Java application that realizes the above
transformation. The application takes as input XML files produced by an existing
UML tool, which contain interaction diagrams in XM| format encoded according to
the XMI standard [XMI1.1]. The input interaction diagrams are transformed into
equivalent activity diagrams, which are expressed also in XMI format according to

the XM standard.

1.4 ThesisOutline

The thesis includes 6 chapters, which are structured as follows:

Chapter 2 gives an overview of the background literature for the thesis. The UML and XMI
are described at first, followed by a short introduction of two UML design tools. Then the
UML Performance Profile is briefly presented, as the thesis transformation is part of a

larger project aiming to transform UML models into performance models.



Chapter 3 explores the behavior aspects represented in interaction diagrams and activity
diagrams, and gives a high-level view of the transformation approach, followed by the

transformation rules expressed at UML notation level.

Chapter 4 investigates the UML metamodel and the Novosoft UML API that was used to
implement the transformation [NSUML99]. The APl implements the UML metamodel.
The chapter continues by describing the transformation rules at the metamodel level. The

algorithm for the transformation is also given.

Chapter 5 describes the Java implementation of the proposed transformation, focusing on

the XMI input, output and transformation procedures. The verification of the Java

application is discussed, and a case study is aso investigated.

Chapter 6 summarizes the thesis research and opens some directions for future work.



Chapter 2 Literature Review

This chapter presents an overview of the background information related to the thesis, such
as the Unified Modeling Language (UML), the eXtensible Markup Language (XML), the
XML Metadata Interchange (XMI), UML design tools and the newly proposed UML

Performance Profile.

2.1 Unified Modeling Language

The Unified Modeling Language (UML), adopted as a standard (UML 1.1) by OMG in
1997, has been rapidly and widely adopted and has almost completely superseded the
earlier OO (Object-Oriented) methodologies, such as the Object Modeling Technique
(OMT) [Rumbaugh+91], Booch’'s Methodology [Booch94], OORAM [Reenskaug96],
Syntropy [Cook+94] and many others. The version 1.3 [UML1.3] is used throughout the
thesis. The latest version 1.4 has been adopted as the standard in September 2001, which is

described in [UML1.4]

Formally, UML is defined by an Object Management Group (OMG) document containing
9 sections. The following sections are particularly relevant to the thesis:

= UML Semantics: This section defines the UML “abstract syntax” in the form of a

set of UML packages. Each package contains a set of UML class diagrams

describing the UML metaclasses and their relationships. Each class in the

metamodel and its attributes are described in English. Well-formedness rules for
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UML models are expressed in the Object Constraint Language (OCL)
[Warmer+99]. Each package within the meta-model is further described by
additional English text that explains the intended interpretation of the elements in
the package.

= UML Notation Guide: This section describes the graphical notation for the elements
that compose eight kinds of UML diagrams, and how they work together. Examples
of UML diagrams are given together with English description. Each notation
element has a “Mapping” that describes in English how it is represented by the
elements in the metamodel. The notation guide also contains brief summary of
semantics.

= UML XMI DTD Specification: This section defines the XMI DTD for UML 1.3.
The OMG XMI standard [XMI1.1] specifies a structure for interchanging models
that uses XML (eXtensible Markup Language). One of the primary goals of
providing this DTD is to enable OO modeling tool interoperability. As with the IDL
(Interface Definition Language) definition [IDL99], the UML metamodel is
subjected to minor modifications to create a “physical metamodel”, which is then
mapped into XML Data Type Declarations (DTDs) — schemas that define the

structure of XML representations of UML models.

Although the UML provides arich set of modeling concepts and notations to meet the needs

of typical software modeling projects, users may sometimes require additional features and/or
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notations beyond those defined in the UML standard. For this purpose, UML provides three
built-in extension mechanisms:
= Constraints place semantic restrictions on particular design elements. UML uses the
OCL to define constraints.
= Tagged Valuesalow arbitrary information to be attached to any model €lement.
=  Sereotypes alow groups of constraints and tagged values to be given descriptive
names and to be applied to other model elements.
Using the above mechanisms enables us to represent new concepts in UML. For instance, we
could choose tagged vaue to add quantitative performance information to the UML
diagrams. In fact, the extenson mechanisms are used to define so-caled UML profiles,
which specialize UML for different application domains. One of the profiles being currently

defined is described in section 2.4.

2.1.1 UML Metamodd

The UML metamodé is defined as one of the layers of afour-layer metamodel architecture,
depicted in Figure 2-1. The four layers are:

= My: domain-specific information

= Mj: model of the domain-specific information, e.g. in UML

= My meta-model, e.g. definition of UML

=  Ms: meta-meta-model, e.g. definition of the way that UML is defined.
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Figure 2-1 Four-layer Metamodel Architecture

The fundamental relationship between these layers is intended to be the instance-of
relationship, which is clearly expressed in the UML specification [UML1.3]. The M3 level,
Meta Object Facility (MOF), defines the basic concepts from which specific metamdoels
are created at the meta (M) level. This includes the UML metamodel, which is regarded as
being an instance-of the MOF meta-metamodel. We will describe in more detail parts of the
UML metamodel related to interaction and activity diagrams in chapter 4. Normal user
models, created using the concepts of the UML, are regarded as residing at the M levdl,

and the ultimate run-time datais regarded as residing at the M level.

It is aways a difficult task for the UML specification to improve precision while
maintaining readability. For this reason, the current UML semanticsis informally specified.
The definition of semantics, such as dynamic behavior, is expressed in English, which
sometimes may lead ambiguity. Whether a UML model conforms to the semantics or not is

purely a matter of human interpretation based on reading of the English. On the other hand,
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UML defines a set of diagram types, but there is no metamodel representation of a diagram
itself. In other words, diagram interoperability is not supported in general because there is
no functional mapping between metamodel elements and diagrammatic elements. It is the
responsibility of UML tools to map the UML notation to the metamodel elements. In fact,
we found out that different UML tools use sometimes different mappings of the diagram

elements to metamodel elements, which is against the spirit of the standard.

2.2 XML and XMI

UML is used extensively to model object systems. It can't, however, capture
implementation details, interoperability semantics, information exchange format and so on.
Over the past few years the OMG has created an architecture for managing metadata. This
has resulted in severa officia metadata standards. The core standard is the Meta Object
Facility (MOF). XMI (XML Metadata Interchange) is an extension of the MOF into the
XML space. Thus, before focusing on the XML and XMI, it is important to grasp the basic

concepts of the MOF.

MOF is a self-describing meta-metamodel used to describe UML, a set of technology
metamodels (such as the CORBA Component Model (CCM), the Enterprise JavaBeans
(EJB)), as well as any other user-defined metamodels. The MOF standard selects a subset
of UML that is appropriate for modeling metadata. This subset is called the MOF core. The

key point is that the MOF core is independent of CORBA, Java, XML or any other



14

middleware technology. This is due to the fact that UML (of which the MOF core is a

subset) is technology-neutral.

MOF aso contains a set of rules that define the interoperability semantics and information
(metadata) exchange format for a given information model. The MOF to IDL (Interface
Definition Language) transformation rules can be applied to any metamodel to produce a
well-defined API. In addition to the API, the MOF rules also define the DTD
corresponding to the metamodel. The current official version of MOF is 1.3 and described

in [MOFL.3].

2.2.1 eXtensibleMarkup Language (XML)

XML is a new standard adopted by the World Wide Web Consortium (W3C) to
complement HTML for data exchange on the Web. It is away of working with information
in a structured form. The description of XML in the thesis emphasizes its role as a data
exchange format, not that of a document markup language. In this subsection, we outline
the major features that make XML great for information storage and interchange. More
information on XML can be found in [W3C], [Ducharme99], [Leventhal+98],

[Abiteboul+00], [Maruyama9d9] and [Armstrong01].

XML is designed specifically to describe content, rather than presentation. The major

features are summarized as follows:
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1. New tags may be defines at will.

2. Tagsidentify the information and break up the datainto parts.

3. XML documents are aways constrained to be well-formed.

4. Structures can be nested to arbitrary depth.

5. An XML document can contain an optional description of its grammar.
XML alows users to define new tags to indicate the structure of their documents. It tells
one what kind of data one has, not how to display it. Hierarchical structures make XML
documents faster to access and easier to manipulate. Since XML is inherently style-free, a
completely different stylesheet, such as XML Stylesheet Language (XSL) that lets you
dictate how to portray the data, can be used to produce output in postscript, TEX, PDF, or

some new format that hasn’t even been invented yet.

XML consists of two parts. documents and DTDs (Document Type Declarations). DTD
serves as grammar for the underlying XML document ([Martin99], [Maruyama99]). An XML
document is valid if it conforms to his DTD. In other words, elements in a valid document
may be nested only in the way described by the DTD and may have only the attributes
allowed by the DTD. The use of XML introduces the need for extra tools such as parsers
[XML] or APIs like Simple APl for XML (SAX) [Armstrong01] and Document Object
Model (DOM) [DOM]. More on the way XML is used for interchanging UML models is

discussed in chapter 5.
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XML is fast becoming the data representation of choice for the Web, especially when used
in combination with network-centric programs that send and retrieve information. For
example, a client/server application could transmit XML-encoded data back and forth

between the client and the server [Armstrong01].

2.2.2 XML Metadata Interchange (XMI)

The “X” in XMI means both XML and eXtensible. XMI is designed to be compatible with
upcoming XML technologies, which include Namespaces, XLinks, XPointers, and XML-
Schema [Abiteboul+00]. In particular, XMI will use the future capabilities of XML-Schema,
directly using new features such as XML data types and improved mechanisms for DTDs.

The XMI generation rules described below provide that extensibility.

XMI defines two sets of rules that provide open interchange and leverage the capabilities of
XML: DTD generation and document generation. The DTD generation is used to specify an
interchange format, and document generation creates documents that use a given XMl

DTD. The current official version of XMI is 1.1 and described in [XMI1.1].

XML DTDs aone do not have the ability to express the semantic meaning appropriate for
the model. They require a whole sets of additional concepts that are only available through
complete information architectures, such as UML, MOF, and others being developed by the

OMG. For example, an UML-based DTD allows interchange of object-oriented UML
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models. This results in the ability to interchange at both the data level (XML) and the

semantic level (UML) [OMG].

2.2.2.1 XMI DTD Architecture

The XMI DTD architecture provides the necessary infrastructure for information transfer
by defining a uniform treatment of object identity, internal and external references,
document partitioning, tool-specific extensions, round-trip exchanges, incomplete models,

and differences [XMI1.1].

Every XMI DTD contains the elements generated from an information model, e.g. a UML
model, plus a fixed set of element declarations that may be used by all XMI documents.
These fixed elements provide a default set of data types and document structure, starting with
the top-level XMI element. Each XMI document contains one or more elements called XMl
that serves as a top level container for the information to be transferred. XMI is a standard
XML éement and may stand alone in its own document or may be embedded in XML or
HTML documents. Detail descriptions of DTD design and generation principles can be found

in [XMI1.1].

2222 UML DTD

UML DTD is the most widely used XMI DTD. It is a physica mechanism for
interchanging UML models conforming to the UML metamodel. This metamodel, so-called

physical metamoddl, is fed into an XMI DTD generator to produce the UML DTD used by
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tools to export and import UML models [UML1.3]. UML physical metamodel will be
discussed in more later in chapter 4. Figure 2-2 shows the central part of the UML
metamodel [UML1.3]. The metamodel is actualy more extensive than this class diagram

suggests, but most of the elements not shown here derive in some way from these backbone
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Figure 2-2 UML Metamodel: Backbone

2.3 UML Design Tools

UML design tools are UML-based CASE (Computer Aided Software Engineering) tools

that support the use of design diagrams in the development of an object-oriented software
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(also known as OOAD (Object-Oriented Analysis and Design)) tools. Assuming that XML
will become a universal data exchange format, many software vendors are building tools
for importing and exporting XML data. In this section we describe two UML design tools
in brief: ArgoUML [ArgoUML] and Rational Rose [Rose]. Both tools use third-party
products to support the UML DTD, and thus are XMI-compliant. We do not intend to give
comparisons of the tools, instead, the description concentrates on their XMI aspects.
Detailled user manuals for ArgpUML and Rational Rose are given in [ArgoUML] and

[Rosg], respectively.

One thing worth to point out is that when drawing diagrams with a tool, a notation on a
computer screen may contain additional invisible information. Besides, not al modeling
information is presented most usefully in graphical notation. Tools are responsible for

keeping the consistence between the notation and the underlying model.

231 ArgoUML

ArgoUML is a Java-based cognitive CASE tool, and aso an Open Source Development
project where users are invited to contribute [ArgoUML]. Figure 2-3 shows ArgoUML’s
main window which has a menu bar and four main panes. navigation, editing, to do and

details.
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Figure 2-3 ArgoUML’s Main Window

The major features related to UML and XMI are described briefly below:

Runs on platform with Java 1.2: ArgoUML is coded entirely in Java and uses the
Java Foundation Classes.

Standard UML metamodel: ArgoUML is compliant with UML 1.3. The code for the
interna representation of an UML model is genreated by a speciad metamodel
library NSUML developed by Novosofts [NSUML99]. Some advanced features of
UML are not yet available in the diagrams, but the foundation to completely fulfill
al of UML islaid.

XMI-Support: ArgoUML uses XMI (XMI version 1.0 for UML 1.3 is used) as
standard saving mechanism so that easy interchange with other tools and

compliance with open standards are secured. The NSUML not only implements the
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UML metamodel, but also provides XMI reader and writer to enable importing and
exporting for a UML model. currently only the model information is saved in XMI,
but no graphical information (like layout of diagrams).

= Diagram export formats. The standard saving format for diagrams is Precision
Graphics Markup Language (PGML), but it will be changed to the upcoming

standard for Scalable Vector Graphics (SVG) of the W3C consortium.

2.3.2 Rational Rose

Rational Software Corporation’s well-known Rose modeling tool has led the object-
oriented analysis and design market for years. With the three OOAD pioneers who started
the creation of UML — Grady Booch, James Rumbaugh, and Ivar Jacobson — on Rational’s
staff, it is not surprising that Rose was one of the first tools to support the UML. Today,
Rational is one of the OMG’'s most active participants in maintaining and enhancing the

standard [Hess00].

Rose features include expanded round-trip engineering, support for UML 1.3, and built-in
team development. It also includes Rose Extensibility for developing add-in functionality.
Severa third-party vendors already have used the extensibility features to integrate Rose
with their tools or environments. One of them is Unisys XMI add-in. Rose does not
directly support generating XMI from UML models. Instead, Unisys' XMI add-in provides
this support, which is available at Rational’s Web site. It uses an XML tagging scheme that

lets other modeling tools to work with Rose diagrams, so different organizations can
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collaborate on software projects. In the thesis, we used the XMI add-in to generate XML

files containing interaction diagrams, which are the input to our transformation process.

2.4 Performance Profile

As we mentioned in chapter 1, the thesis implements the transformation from interaction
diagrams to activity diagrams, which, combined with information taken from other
diagrams, will be used to build automatically performance models from UML models
([AmerQ1], [Petriu+00b]). Software Performance Engineering (SPE), initially introduced
by [Smith90], integrates performance evaluation into the software development process
from the early stages throughout the whole life cycle. Related works on building
performance models for OO system from software specifications can be found in

[Smith+97], [Kahkipuro99], and [Cortellessa+00].

OMG noticed that the lack of a quantifiable notion of time and resources in UML was an
impediment to its broader use in the real-time and embedded systems. As a consequence,
OMG issued a request for proposal (RFP) asking for a UML profile for “schedulability,
performance and time”. A first draft of the profile was made public in August 2000, and an
improved version in June 2001 [Profile01]. The profile focuses on properties that are
related to modeling of time and time-related aspects such as timeliness, performance and
schedulability. In particular, the profile does not intend to invent new analysis techniques.

Rather, it is amed to be able to annotate a UML model in such a lightweight way that
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various existing and future analysis techniques will be able to take advantage of the

provided features.

2.4.1 Performance Modeling Techniques

The profile on performance modeling (chapter 8 in [Profile01]) describes the following
genera performance analysis of UML models:
= associating performance-related QoS characteristics with selected elements of a
UML mode.
= gpecifying execution parameters which can be used by modeling tools to compute
predicted performance characteristics.

= presenting performance results computed by modeling tools or found in testing.

Typical tools for this kind of anaysis provide two important functions. The first is to

estimate the performance using some kinds of modeling techniques. The second is to

improve the system by identifying bottlenecks. There are three common techniques used in
most modeling tools:

= Queueing Models. Define workloads that execute particular aspects in different

scenarios. This may require the distribution of the demand, passive resources as

well as devices, and the detailed scenario sequence. Different queueing models have

been extended, such as Extended Queueing Networks (EQN) and Layered Queueing

Network (LQN) developed in [Woodside+95].
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= Simulation Models: Define multiple logical tokens which execute the software,
following the detailed scenario structure and using execution time distributions for
the operations of each step.

= Discrete-state models such as Petri Nets: Define tokens which execute the software,

following the detailed scenario structure.

According to the SPE methodology [Smith90] and to the Performance Profile [Profile01],
the building of a performance model starts from frequently executed scenarios annotated
with performance information. These scenarios can be modeled in UML either by
interaction diagrams or by activity diagrams. Even though we do not use directly the
Performance Profile in the thesis, the automatic transformation from interaction to activity
diagrams, which is the goa of the thesis, represents an important step in the process of

building performance models from UML models.
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Chapter 3 Consistent Behavior Representation in Interaction

and Activity Diagrams

A picture can tell, what a thousand
words can’'t. [ Unknown]
This chapter investigates first the UML diagrams used to model behavior: interaction
diagrams (including sequence and collaboration diagrams), activity diagrams, and
statechart diagrams. The thesis will then focus on those diagrams that are most appropriate
for describing scenarios. interaction and activity diagrams. The chapter continues by
defining a transformation that takes an interaction diagram as input and generate the

corresponding activity diagram as outpuit.

The chapter is organized as follows. In the first section we describe briefly the elements
contained in interaction and activity diagrams. Next we propose transformation rules
represented by basic cases at the notation level. The metamodel representations behind the

transformation rules will be described in next chapter.

3.1 Conceptual Description

UML describes five complementary views that are important in visualizing, specifying,
constructing, and documenting a software architecture: the use case view, the design view,
the process view, the implementation view and the deployment view. Each of these views

involves structural modeling, as well as behavioral modeling [Booch+99].
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The static parts of a system are typically described by one of the four following diagrams:
class diagram, object diagram, component diagram, and deployment diagram. The UML
provides other additional diagrams to view the dynamic parts. use case diagram, interaction

diagram (sequence and collaboration diagram), activity diagram and statechart diagram.

Each kind of diagrams focuses on a certain perspective of the system. Particularly,
interaction diagrams represent the behavior of a set of objects (inter-object behavior), while
statechart diagrams look at each object individually and provides a narrow and deep view
of its behavior (intra-object behavior). Activity diagrams, on the other hand, emphasize the
flow of activities and can be used to represent both inter-object and intra-object behavior.
In the UML metamodel, the activity diagrams (which are a later addition to UML) are
considered as akind of statecharts. However, this representation does not emphasize the big
difference between statecharts and activity diagrams. The former are attached to individual
objects and express only intra-object behavior, whereas the latter can be attached either to
an object (to describe its behavior) or to a use case or an interaction diagram (to describe

inter-object behavior).

The semantics and notation of statechart diagrams in the UML standard are substantially
those of Harel’s statecharts [Harel87]. A statechart diagram describes al the possible states
a particular object can get into and how the object’s state changes as a result of events that

reach the object. It separates an object from the rest of the system and examines its
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behavior in isolation. Statechart diagrams overcome the limitations of traditional Finite
State Machines (FSMs) while maintaining the benefits of finite state modeling by
introducing the concepts of both nested hierarchical states and orthogonality [Fowler97].
Further description on statechart diagrams is given in [UML1.3] and [Booch+99]. In the

thesis we are concerned with modeling scenarios, therefore we will not use statecharts.

In next two sections, we describe in more detail the interaction and activity diagrams that

are particularly relevant to the thesis.

3.1.1 UML Collaboration

A collaboration is “a society of classes, interfaces, and other elements that work together to
provide some cooperative behavior that is bigger than the sum of al its parts’ [Booch99,
pp. 27-371]. It describes a collection of objects that interact to implement some behavior
within a context. A collaboration has both a structural aspect and a behavioral aspect. The
structural aspect defines the context by a set of roles and their relationships, which is
typically rendered using class or object diagrams. The behavioral aspect specifies the
dynamics of how those elements interact (i.e. how the set of messages exchanged by the

objects are bound to the roles), which istypically rendered using an interaction diagram.

Figure 3-1 shows the relationship between Collaboration and Interaction in the UML
metamodel (Conventionally the initial letter is capitalized to mean a metaclass in UML). A

Collaboration specifies a set of roles played by Objects, and one or more corresponding
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Interactions show how Objects cooperate with each other when playing these roles. Each
role in a Collaboration is described with a Classifier Role, which specifies a projection of a
Class. A Classifier Role expresses which features declared in a class (such as Attributes and
Operations) are required in the Collaboration. An object playing a specific role must
conform to the Classifier Role, i.e. the Object must offer the operations stated by the
Classifier Role, and must contain Attribute Links corresponding to the Attributes of the
Classifier Role. Moreover, a Collaboration defines an Association Role which specifies

what associations are needed between the participating Classes.

Collééorati on

1* * *
Association Role Classifier Role Interaction

1 1

1*

I Message #' Actionl

Operation

Figure 3-1 Collaboration and Interaction in the UML metamodel

3.1.2 Interaction

An Interaction is defined within the context of a Collaboration. More precisely, it specifies
a collection of Messages between the various Classifier Roles of the Collaboration. Each
message specifies one specific kind of communication. A certain realization of a Message
is expressed with a Stimulus. A set of cooperating Objects playing the roles in the
Collaboration interact according to the Messages of the Interaction by sending Stimuli to

each other. These set of Stimuli are partially ordered based on the execution threads they
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belong to. Within each thread, the Stimuli are sent in sequential order, while Stimuli of

different threads may be sent in paralel or in an arbitrary order.

The order of Stimuli (Messages) reveals how the flow of control takes place among the
objects (notice that although Stimuli and Messages are semantically different, they are
treated in the same way in our implementation). This information is described by a
sequence-expression used to label the Messages. The following are samples of Message
labels:

2: nmessage- nane(argunet-list)

1.3.1: nmessage-nane(argunent-1Iist)
2.1la: nessage-nane(argunment-|ist)

[ x<0] 4: nessage-nanme(argunent-1ist)

The sequence—expression (such as 1.3.1) is a dot-separated list of sequence-terms followed
by a colon (*:’) [UMLL.3, pp. 3-125]. Each term represents a level of procedural nesting
within the overall interaction. If the control is concurrent, then nesting does not occur. Each
sequence-term has the following syntax:

label recurrence
where label is

integer
or

name
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The integer represents the sequential order of the Message within the next higher level of
procedura calling. An example is. Message 2.1.4 follows message 2.1.3 within activation
2.1. The name represents a concurrent thread of control. An example is: Message 2.1a and
message 2.1b are concurrent within activation 2.1. The recurrence represents conditional or
iteration execution, in which the UML does not prescribe their formats. An example for a
condition would be: [x<0]. An example for an iteration would be: *[i := 1..n]. Sequence
number is a sequence-expression without any recurrence terms. It must match the sequence

number of another Message.

For a procedural flow of control, the sequence numbers are nested. For a nonprocedural
sequence among concurrent objects, the sequence numbers are not nested and are at the
same level. Moreover, sequence numbers indicate a predecessor/activator association
among Messages. The predecessors are the set of Messages that must be completed before
the current Message may be executed. The activator is the message that invoked the
procedure which in turn invokes the current message. The message corresponding to the
numerically preceding sequence number is an implicit predecessor. An example is
demonstrated in Figure 3-2, message 1.1 is the predecessor of message 1.2 within activation

1, whereas message 1.2.2a and message 1.2.2b are concurrent within activation 1.2.



31

obl: C1 ob2: C2 ob4: C4

1: Turnon Green

1.1: Turnon Blue

1.2: Tumoff Blue < |

1.2.1: Turnon Yelowa,

1.2.2a Tumon Gren 1.2.2b: Turn off Yelow:

T T
| |
| |
| |
I I

Figure 3-2 Sequence Numbering

The objects and messages involved in an interaction can be represented in two ways in the
UML.: one is using a sequence diagram that emphasizes the time ordering of the messages,
the other is using a collaboration diagram that emphasizes the relationships among the
objects that exchange the messages. Both sequence and collaboration diagrams are kinds of
interaction diagrams based on the same underlying information, i.e. they are semantically
equivalent. One can be transformed to the other in spite of their visual differences. In fact,
Rational Rose provides a function to allow one to render a sequence diagram as a
collaboration diagram, and vice versa. Figure 3-3 shows a sequence diagram. Its equivalent
collaboration diagram is shown in Figure 3-4. This is due to the fact that Rose represents
the sequence and collaboration diagrams by the same metamodel objects. This means that
by looking at an XMI file produced by Rose that contains an interaction diagram, one

cannot tell whether the corresponding graph was rendered as a sequence or as a
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collaboration diagram. Another UML tool we have used, ArgoUML, does not support such
a close equivalence. In ArgoUML, each kind of diagram has its own metamodel
representation in XMI, which means that the interpretation of the UML metamodel by
different UML tools is not unique. Chapter 4 will describe in more detail the metamodel

representations for these diagrams.
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Figure 3-4 An Equivalent Collaboration Diagram in Rose

The UML standard defines the concrete and abstract syntax for Collaborations and
Interactions and gives a description of the intended semantics. Idealy, the semantics of the
language must be precise if tools are to perform intelligent operations on models expressed
in the language, like consistency checks and transformations from one model to another.
The abstract syntax in UML is specified with the graphical notation of class diagrams in
UML itself, while the well-formedness rules of UML are given in an Object-oriented
Constraint Language named OCL. This, as we mentioned in 2.1.1, makes the semantics of

UML is till quite informal.



3.1.2.1 Sequence Diagram

Sequence diagrams are often most useful for showing scenarios, which are realizations of
use cases. The graphical syntax of a sequence diagram has two dimensions. the vertical
dimension represents the time and the horizontal dimension represents the different objects
[UML21.3]. Time normally proceeds downwards, and an arrow between two vertical lines
denotes a Stimulus sent between two objects (sender and receiver). Hence, the diagram
gives a clear visual cue to the flow of control over time. Usually, sequence diagrams omit

sequence numbers because the physical location of the arrow shows the relative sequences.

Sequence diagrams in the UML notation guide also provide presentation options for
addition features, such as branch and iteration. A branch is shown in Figure 3-5 by multiple

arrows leaving a single point, each labeled by a guard condition.

obl: C1

[x>0] foo(x)

[x<0] bar(x) ! " oz c2

doit(w)

Figure 3-5 Sequence Diagram with a Branch
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To present an iteration, a connected set of arrows may be enclosed and marked as an

iteration [UML1.3, pp. 3-106].

Much of sequence diagram notation is derived from the Message Sequence Chart (M SC)
notation, which is an older standard than UML [ITUTOO]. Unfortunately, the sequence
diagram notation from the current UML standard is still unsatisfactory. One of the
problems is that the notation does not scale up well. For example, if a branch is long, the
branch and merge may not be shown in the same sequence diagram. Ancther problem is
that both branch and iteration are not supported yet by the current UML tools (Rose or
ArgoUML). MSC standard described in [ITUTOO] has a better solution. In fact, it is
expected that the new version of UML (UML 2.0), on which OMG works right now, will
improve sequence diagrams with respects to iterations, branch/merge and diagram

decomposition.

The core elements in a sequence diagram are Object and Stimulus. In the UML metamodel,
Object is a subclass of Instance and originates from a Class, which provides a full
description of its objects. In our transformation a particular interest is given to the attribute
isActive of Class, which specifies whether an object of the class maintains its own thread of
control and runs concurrently with other active objects [UML1.3, pp. 2-27]. All instances
of an active class are active objects. The notation for an active object is shown as a

rectangle with a heavy border. Notice that in UML the thread of control represents an
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abstract notion of control and not an operating system thread. In general, an active object is
a composite that aggregates a number of passive objects executing within its thread. It has
the genera responsibility to coordinate the internal execution by dispatching messages to
its constituent parts. Usually, active objects are implemented as threads or processes, even

though UML does not specify how active objects should be realized.

3.1.2.2 Collaboration Diagram

A collaboration diagram represents a UML Collaboration, which contains a set of roles to
be played by Objects, as well as their required relationships given in a particular context
[UML1.3, pp. 3-111]. A collaboration diagram can be given in two different forms: at
instance level or at specification level. A collaboration diagram given at instance level
shows a collection of Objects and Links, whereas a collaboration diagram given at
specification level shows Classifier Roles, Association Roles and Messages as well as their
structures. The Objects and Links conform to the Classifier Roles and Association Roles of
the Collaboration. A Classifier Role (Association Role) defines a usage of an Object (Link),
while the base class (Association) specifies all properties of the Objects (Links). Compared
to sequence diagrams, the collaboration diagrams do not show time as a separate
dimension. Therefore, sequence numbers, described in section 3.1.2, are necessary to

indicate the sequence of interactions and the concurrent threads.
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3.1.2.3 Object and Classifier Role

As we mentioned before, an Object originates from a Class which is a Classifier. In a
Collaboration, however, not al the features of the participating Classifiers are aways
required. Hence, a Collaboration is not actually defined in terms of Classifiers, but of
Classifier Roles. The Classifier so represented is referred to as the base Classifier of that
particular Classifier Role. Similarly, Association Roles, not Associations, between those

Classifier Roles are considered in a Collaboration.

UML defines that an Object conforms to a Classifier Role if the Object has the properties
specified by the Classifier Role, i.e. the Attribute Links and the Links of the object match
al the Attributes and Association Roles specified by the Classifier Role, and all Operations
specified by the role may be applied to the Object. The Object may, of course, include more

Attribute Links than required by the respective Classifier Role [UML1.3, pp. 2-113].

3.1.2.4 Message and Stimulus

A Message is a specification of a communication between a sender and a receiver. The
Message specifies the roles played by the sender object and the receiver object, and it
indicates which Operation should be applied to the receiver by the sender. Moreover, the
set of Messages in an Interaction is partially ordered. Recall that the interaction specifies
the predecessors and activator of each message. Precisely to say, if a message has more

than one predecessor, it represents the joining of two threads of control. If a message has
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more than one successor, it indicates a fork of control into multiple threads. Thus, the
predecessor relationship imposes a partial ordering on the Messages within a procedure,

whereas the activator relationship imposes a tree on the activation of operations.

In UML there is a subtle difference between Message and Stimulus. A Stimulus reifies a
communication between two Objects and uses a Link between the sender and the receiver
for communication. A Message is a specification of Stimulus. The Message is connected to
an Action, which, when executed, causes the communication specified by the Message to
take place. There are different kinds of Actionsin UML, such as Call Action resulting in an
invocation of an operation on the receiver, Send Action resulting in the sending of a signal,
Create Action resulting in the creation of a new object, and Destroy Action resulting in the

destruction of an object. The properties of a Message are described in the next subsection.

UML indicates that a Stimulus conforms to a Message if the sender and receiver Objects of
the Stimulus are in conformance with the sender and the receiver roles specified by the
Message. Furthermore, the Action dispatching the Stimulus is the same as the Action

Associated with the Message [UML1.3, pp. 2-115].

3.1.2.5 Message Properties
Messages play a key role in inter-object behavior. Most often, message passing will be

realized with a smple direct call to a method in the target object, but that is not the only
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realization of a message. Other realizations include remote procedure calls (RPC), sending

messages via an OS message queue, |PC, and sending messages across a network.

[UML1.3] identifies two kinds of messages: sending a signal and invoking an operation.
The mgjor difference between them is that signal sending is always asynchronous, while
operation call may be either synchronous or asynchronous. The essential properties of a
message are:

= Sender

* Receiver

= Action

= Parameter list and return value

= Synchronization pattern an Arrival pattern
In most cases, a single receiver object is identified, but messages may be multicast to alist
of objects. UML is not defining a notation for broadcast, where al objects receive a
message without explicitly being part of alist. The arrival pattern, i.e. periodic or aperiodic,

isuseful in the analysis of real-time systems.

The UML standard defines several different kinds of actions, as shown in the action
metamodel depicted in Figure 3-6. Actions contain Arguments and may be contained in an
Action Sequence. Two kinds of actions are particularly relevant to our discussion: Call

Action and Send Action. Call Action is associated with an Operation. The receipt of a Call
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Action can raise a Call Event on the receiving object. Send Action is associated with a
Signal — a specification of an asynchronous Stimulus sent from one Object to another

Object. When a Signal is received by an Object, it can asynchronously raise an event called

aSignal Event.
| Message | | Stimulus |
1 01
Argument o4 Action -
9 N DestroyAction
value: Expression recurrence: lterationExpression

target: ObjectSetExpression

- 01 * isAsynchronous: Boolean
script: ActionExpression

UninterpretedAction

T TerminateAction
CreateAction | | CaJIActi0n| | SendAction || ReturnAction |
1 1
| Operation | | Signal |
1
ChangeEvent| | CallEvent | | Signal Event | | TimeEvent
\/

Figure 3-6 Action M etamodel

3.1.3 Activity Diagram

An activity diagram shows the flow of control from activity to activity. It is a special form
of a state diagram in which most of the states are actions and in which most of the
transitions are triggered by the completion of the actions. Normally, an activity diagram
assumes that computations proceed without external event-based interruptions. Activity

diagrams are particularly useful in connection with workflow and in describing behavior
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that has a lot of paralel processing [Fowler97, pp. 129]. Most of the states in such a
diagram are action states that represent atomic actions and do not permit transitions while
they are active. An activity diagram is similar to a traditional flow chart that is normally
limited to sequential control except it allows for concurrent control (forking/joining) in
addition to sequential control [Rumbaugh+99]. Figure 3-7 (taken from [UML1.3, pp. 3-
158]) presents an activity diagram and includes most common model elements. Next, the

semantics of some key elements is described.

Customer Sales Stockroom

I

- swimlane
object flow state
1

\

Nox|  Order  f----—- _

e N transition
[Paced] \Yi .
(object flow)
(Take order)

[Entered] Vi

action state ( Fill order )
/ |
transition J Order J

______

(control flow) ! [Filled]
d
H
P Order S

! [Delivered]
i
|

Collect order

Figure 3-7 Activity Diagram with Swimlane and Object Flow State
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3.1.3.1 Swimlane

Activity diagrams tell you what happens, but they do not tell you who does what. In the
domain modeling, such as workflow modeling of business processes, this means that the
diagram does not convey which business organization is responsible for each activity.
Swimlanes are an attempt to solve this problem by labeling each activity with the
responsible class or object. A swimlane is graphically separated from its neighbor by a
vertical solid line, as shown in Figure 3-7. In the metamodel, a swimlane maps into a

Partition of States in the ActivityGraph.

A swimlane specifies a locus of activities and represents a high-level responsibility for a
group of activities. Each swimlane may eventually be implemented by one or more classes.
There is a loose connection between swimlanes and concurrent flows of control.
Independent and concurrent flows of control can, but do not necessarily, map to different
swimlanes. For example, an activity diagram may represent the workflow in an enterprise,
where different swimlanes represent different departments. Even though a department may

have internal concurrent flows, this may not be shown in the activity diagram [AmerQ01].

Swimlanes are good in that they combine the activity diagram’s depiction of logic with the
interaction diagram’s depiction of responsibility [Fowler97, pp. 138]. On the other hand,
packaging objects involved in either interaction diagrams or activity diagrams appropriately

into nodes and threads is vital for system performance [Douglass00, pp. 216]. One of the
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key issues related to swimlanes is how to model the processing resources. This can be done
in two ways. The most direct is to associate the appropriate stereotype with a partition
(swimlane) that is linked to the appropriate object. However, this is only useful in cases
where each object or classifier role is executing on its own host, e.g. each of them is active
and has its own thread. Much more common is the situation where different partitions
represent objects that are executing on different hosts and that some objects share hosts. In
that case, neither the activity diagrams nor the interaction diagrams contain sufficient
information to determine the allocation of objects to hosts. Under those circumstances, it is
necessary to determine which processor resource is running which object with the

information from deployment diagrams and/or component diagrams [Profile01, pp. 8-148].

In our case, however, we choose to build the activity diagrams at a granularity level where
each swimlane corresponds to a single execution flow. In other words, a swimlane will
contain the activities carried out by one active object and any number of associated passive
objects. We choose to name the swimlane with name of the active object. An exception is
made for a passive object shared by active objects, as in the case of the producer/consumer
problem. More exactly, we consider that a passive object shared by several active objects

has its own “pseudo” thread, and therefore its own swimlane in the activity diagram.



3.1.3.2 Action State

An action state represents the execution of an atomic action, typically the invocation of an
operation. It is a simple state with an entry action whose only exit transition is implicitly
triggered by the completion of the action in the state. An action state in graphical syntax is

shown as shape with straight top and bottom and with convex arcs on the two sides.

In sequence diagrams, the object responsible for performing an action is shown by drawing
alifeline and placing actions on lifelines. Activity diagrams do not show the lifeline of the
object, but contain swimlanes to indicate who is responsible for different actions. The
actions within a swimlane can all be handled by the same object or by multiple objects

[UMLL.3, pp. 3-157].

3.1.3.3 Fork and Join

The concurrent control expressed in an activity diagram, as illustrated in Figure 3-7, is
achieved by using a synchronization bar to specify the fork and join of the parallel flows.

A synchronization bar is rendered as athick horizontal or vertical line.

A fork represents the splitting of a single flow of control into two or more concurrent flows
of control. Below the fork, the activities associated with each of these paths continue in
parallel and are conceptually concurrent. A join represents the synchronization of two or

more concurrent flows of control. Above the join, the activities associated with each of
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these paths continue in parallel. At the join, the concurrent flows synchronize, meaning that
each waits until al the incoming flows have reached the join, at which point one flow of

control continues on below the join [Booch+99, pp. 264].

3.1.3.4 Branch and Merge

It is possible to express conditiona branching (i.e. a selection between alternate branches)
by having different possible transitions that depend on Guard conditions leaving from the
decision point. UML provides a shorthand for showing decisions and for merging their
separate paths back together. The notation for a decision is the traditional diamond shape,
with one incoming arrow and with two or more outgoing arrows, each labeled by a distinct
guard condition with no event trigger, as shown in Figure 3-8 (taken from [UML1.3], pp. 3-
155). A merge symbol has the same diamond shape except that it has one outgoing arrow
and two or more incoming arrows. Branching and merging are usually paired in a nested

fashion. Both branch and merge symbols map into a Pseudostate of kind junction.

Calculate costs

[cost >= $50]

[cost < $50]
/I( Charge customer

Get authorization

Figure 3-8 Branch and Merge
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3.1.3.5 Object Flow State

An object flow between actions in an activity diagram (drawn as a rectangular shape)
represents the data flow between activities. More exactly, the generation of an object by an
action in an action state may be modeled by an object flow state that is triggered by the
completion of the action state. The use of the object in a subsequent action state may be
modeled by connecting the output transition of the object flow state as an input transition to

the action state.

3.1.3.6 Transition

Transitions show the path from one action state to the next action state. Each transition is
triggered upon the completion of its previous state and does not have a specia trigger of its
own. Transitions leaving an action state should not include an event signature (as do the
transitions in a state machine). A transition may include a guard (Boolean expression) that
is evaluated before the transition is triggered. Most of the transitions used in an activity
diagram are normally very simple. More complex transitions like compound transitions are

used in state machine diagram.

3.2 Transformation Rulesat UML Diagram L evel

In this section, transformation rules from a sequence to an activity diagram are illustrated at
notation level. This provides a “bird’s-eye view” of the transformation approach. In the
following chapter these transformations will be described in detail by making use of the

UML metamodel which is more abstract and less readable.
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The UML standard [UML1.3] defines a canonical UML notation that might be called the
publication format for the models. Notation does not add meaning to a model and has no
semantics, but it is more intuitive and it helps the user to understand the meaning of the
model. Also, notation is more than pictures; it includes information in text-based forms and
invisible hyperlinks among different presentation elements [Rumbaugh+99]. For simplicity,
the transformation rules are described by using sequence diagram notation. These rules
apply to collaboration diagrams as well, due to the semantic equivalence between sequence

and collaboration diagrams.

The concept behind the transformation is to follow the flow of messages in a sequence
diagram, considering the execution threads of all active objects involved in the
collaboration. Sequential executions, conditional branching and action kinds are identified
in the message flow, and are trandated into appropriate states in the corresponding activity
diagram. The activity diagram contains separate swimlanes for each active object to show
the actions performed by the active object and its associated passive objects. Special
treatments are given to messages exchanged between different threads of control that
introduce fork/join connectors in the activity diagram. For example, creating an active
object is equivalent to forking a new thread of control, sending an asynchronous signal also
forks a thread, whereas the receipt of a message from another thread is equivalent to a

synchronization point (i.e., a join). Messages exchanged between execution threads carry
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objects that can be represented as object flow states in the activity diagram according to the

notation from [UML1.3].

The transformation from sequence diagrams to activity diagrams takes as input the
following information:

= XMI file containing the sequence diagram

= additional user input regarding the grouping of the objects from the sequence

diagram in execution threads (which become activity diagram swimlanes).

3.2.1 Basccases
In this subsection 7 basic cases are given to illustrate how to convert a sequence diagram to
an activity diagram. A more complex sequence diagram can be decomposed into smple

fragments, each of them treated by applying these basic cases or a combination thereof.

In an activity diagram, the following notation is employed to express the names of the
action states that are converted from sequence diagram messages.

i nvoke( obj ect Nane. nessage) for an operation call on the sender side

obj ect Nane. nessage() for an operation call on the receiver side

send( nessage) for asignal send on the sender side

recei ve( message) for asignal receipt on the receiver side

new for a creation of a new object on the sender side



49

init for a creation of anew object on the receiver side
Generally, these names are given according to the kind of the action attached to the
message. For example, if the action type is CalAction, then an operation call will be

invoked by the sending object and executed by the receiving object.

All basic cases can be categorized roughly into two categories: cases a, b and ¢ in which the
messages are exchanged in the same thread of control, and cases d, e, f and g in which the

messages are exchanged between different threads of control.

a) A set of consecutive sequential messages without any branching or iteration that pass
between objects in the same execution thread, as shown in Figure 3-9, where r is an

active object and m and n are passive objects executed in the same thread of control.

-
N
~
LR | m:M | n:N | |
! ! : —
| a0 | |
- e )
| b() |
|
]
1

)

n.b()

Figure 3-9 Sequential Execution
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b) Messages with guard conditions that are alternatives of the same condition in a
sequence diagram are mapped to a branch/merge structure in the corresponding activity

diagram, as shown in Figure 3-10.

same thread

A=
rr I

R mM nN :
N | ¢
T T c=b) | —
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'

r

|

|

d
:

ng(

Figure 3-10 Branch and Merge

c) Aniteration (loop) can be achieved by using one action state that sets the value of an
iterator, another action state that increments the iterator, and a branch that evaluates if
the iteration is finished [Booch+99, pp. 263], as shown in Figure 3-11. Notice that
UML 1.3 does not prescribe the format of iteration or condition, it may be expressed in

pseudocode or an actual programming language.
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Figure 3-11 Iteration

d) A synchronous message between objects running in different threads of control is
treated as a join operation on the receiving side in the corresponding activity diagram,
and its reply marks the corresponding fork, as shown in Figure 3-12. The object flow is
also shown. The sender’s thread will be suspended from the moment it sends the
message until the reply is received back. An “idle” action state plays the same role as an

initial state to indicate concurrency among different execution threads.
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e b D
a)
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reply

;
receive(reply)
|
|

Figure 3-12 Synchronous M essage Send and Reply

€) An asynchronous creation of an active object marks a fork operation in the

corresponding activity diagram. Figure 3-13 shows also how to map self-call.

same thread
\ L | [~ |
£S I r.R I
same thread
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Figure 3-13 Asynchronous Creation of an Active Object
f) An asynchronous message sent to another thread of control indicates a join operation on
the recelver side and a fork operation on the sender side in the corresponding activity

diagram, as shown in Figure 3-14.

same thread same thread
— — r | | m |
|,—S|IﬂIImMI|M|
a()
< h().
c —_—)
90 do

Figure 3-14 Asynchronous M essage between Two Execution Thread

g) An asynchronous destroy action marks a fork operation. A terminate action indicates
self-destruction of an object and maps to a “terminate” action state. If an active object
terminates itself, its thread will stop to execute and become dead, as shown in Figure

3-15.
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Figure 3-15 Destruction and Termination

3.2.2 Example
The transformation on a complex example, as shown in Figure 3-16 and Figure 3-17, is
illustrated. The example is taken from [Petriu+98], which combines the different cases

together.
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Figure 3-16 Example: Input Sequence Diagram
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Figure 3-17 Example: Activity Diagram after Transfor mation

3.2.3 Discussion

There exist aternative representations for modeling the sending/receiving of an

asynchronous message, as shown in Figure 3-18 [Petriu+01b].

Csend(requaD C Wait ) (send(requaD ( Wait > productRequst > ( Wait )
—f- =

\
"7 request| T recuest [ e request |. _
N \ MY
\\
( Oortime\f\ork) Geoeive(requﬂ) COor‘{ inue V\DI‘D Geoejve(requa) CConti nu(-Z‘V\DﬂD 2 productRequest
a) Using ActionStates and b) Using ActionStates ¢) Using Signal Send/Receipt
fork/joins without fork/joins symbols and fork/joins

Figure 3-18 Alter native Representations for Modeling an Asynchronous M essage

Figure 3-4 presents three notations to model an asynchronous message. In notation a), the
action state that represents the sending of the message is followed by an explicit fork: one
thread for the continuing the execution of the sender, and the other thread for the message
just sent. This representation conforms to the UML notation guide and is very close to Petri
net model. The disadvantage of the approach is that the object flow state is not directly
connected to the sending and receiving action states. Another disadvantage is that it may

introduce too many forks and joins that may cloud the understanding of the diagram.
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Notation b) ssmplifies the previous one by making the fork and join implicit. Unfortunately,
the approach assumes that the dotted transitions connected to the object flow behave
differently than the other transitions, which is not supported by the UML standard. More
exactly, it is assumed that after the sending action, the dotted transition is fired
simultaneously with the normal transition leading to the next action state of the sender.
Also, in order to enter the receiving action state, both its incoming transitions (dotted and

normal) must be ready to fire.

Notation ¢) modifies the first one in yet another way: it uses the signal sending/receipt
symbols from [UML 1.3, pp. 3-160]. The advantage is that the sending and receiving
actions stand out, making the diagram easier to read. However, the mapping of the “signal
sending” symbol givenin [UML1.4 pp. 3-161] should be changed to an ActionState instead
of a SendAction. This solution also inherits the disadvantages from the solution a the
object flow not directly connected with the action states that produce/take it as output/input,

and too many forks and joins in the model.

It should be mention that the thesis implements solution a. Also, there are two alternatives
in representing a synchronous message between threads of control, as shown in Figure
3-19. In the first solution (b), the flow of control of the senders is interrupted when the

sender is blocked waiting for the reply, whereas in the second solution (c) the waiting state



58

of the sender is shown explicitly. We have chosen the first solution in the thesis, but the

second can be also implemented with very little change.

D @D
1

J return
e Obj_a

receive(reply)

c) Second activity diagram representation

b) First activity diagram representation

Figure 3-19 Alternate Ways of Representing a Synchronous M essage
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Chapter 4 Detailed Design of the ID to AD Transfor mation

The analysis and design of the ID to AD transformation concentrate on the manipulation of

the metaobjects involved in the transformation rules.

Chapter 4 is structured as follows: the first section describes the UML metamodel and the
Novosoft UML APl as well as their relationship. The second section describes in more
depth the API. The third section highlights the main points of the metamodel
representations for interaction diagrams and activity diagrams. The fourth section gives the
object diagrams that show the metaobjects, corresponding to the basic cases presented in

the previous chapter. Finaly, the last section describes the transformation algorithm.

4.1 Metamode and API

As mentioned before, the UML standard consists of three main specifications: a notation
guide that specifies the visual appearance of UML diagrams, a semantics specification that
details the UML metamodel, and the OCL (Object Constraint Language) specification that
adds a first-order predicate logic language for expressing constraints on UML models. The
UML metamodel is itself a UML model that specifies how a UML design can be

represented [Rumbaugh+99].

Novosoft UML (NSUML) API is an open-source Java library implementing the UML

metamodel [NSUML99]. It consists of interfaces, classes, attributes and methods, which
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supports the elements of the UML metamodels. There is a simple correspondence between

metaobj ects names and NSUML interfaces/classes names.

411 UML Metamode

As described in section 2.1.1, the UML metamodel is defined as one of the layers of afour-
layer metamodeling architecture. It is regarded as being an instance-of the MOF residing at
the M2 level. The officia version of the UML metamodel at the time of the thesis research
was UML 1.3 (OMG released the latest version of UML 1.4 in September 2001). The
metamodel concepts and semantic constructions are described in chapter 2 “UML
Semantics’ of [UML1.3]. The metamodel referred in the rest of thesis is version of 1.3

unless otherwise specified.

The metamodel is divided into three main packages, as shown in Figure 4-1.
= The foundation package defines the static structure of the UML.
= The behaviora elements package defines the dynamic structure of the UML.

=  The model management package defines the organizational structure of UML models.
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Figure 4-1 Package Structure of the UML Metamodel

4.1.2 UML Physical Metamodel

In addition to the UML metamodel, OMG aso proposed the UML physical metamodel,
which is more clear for realization and practical for implementation. The specifications of
the physical metamodel are described in UML XMI DTD, which is a physical mechanism
for interchanging UML models conforming to the UML metamodel. Chapter 6 in
[UML1.3] contains a normative DTD that represents the UML 1.3 metamodel generated

from the XM1 1.0 standard.
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Some of the distinctions between the UML physical metamodel and the UML metamodel

areasfollows[UML1.3]:

Names

Changed spaces in package namesto ' .
Added names for association ends that did not have them. Convention: the name of the
adjoining class with the first letter in lower case. If this resulted in a name duplication,

then a numbered suffix was added.

Additions

Added enumeration literals as attributes of the enumeration classes for enumeration
datatypes.
Added 'sorted' enumeration literal to OrderingKind.

Added inheritance link from Message to Model Element.

Association Classes

Made ElementOwnership AssociationClass attributes by moving the visibility and
isSpecification attributes to the M odel Element class.

Removed the attribute "visiblity" from classes AssociationEnd and Feature.

Made the AssociationClass ElementResidence a class by removing the association
between Component and ModelElement and adding associations between
ElementResidence and Component and between ElementResidence and

M odel Element.
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Made the AssociationClass Elementimport a class by removing the association
between ModelElement and Package and adding associations between Model Element
and Elementimport and between Elementlmport and Package.

Made the AssociationClass TemplateParameter a class by removing the association
between ModelElement and ModelElement for template parameters and added
associations between ModelElement and TemplateParameter and between

TemplateParameter and Model Element.

4.1.3 NOVOSOFT UML (NSUML) Metamodel and its API

Novosoft UML is an open-source Java software that implements the UML metamodel. The

version of Novosoft UML API used in our transformation application is0 4 19 that can be

download from [NSUML99]. The APl mentioned in the rest of thesis will refer to Novosoft

UML API unless otherwise specified.

The major features provided by Novosoft UML API are described briefly as follows:

The APl alows various kinds of work with models, such as generating and
seridization of UML models, organizing of access to model elements, modifying,
adding and deleting of features (through attributes and opposite roles in associations).

The APl implements UML elements in: packages, datatypes, classes, their methods
and associations. Besides, the API contains many other useful methods not specified

by OMG.
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= The API contains Reflective API. The main sense of reflective methods is the access to
features by their names, instead of invocation of explicit Setter, Getter, Adder or
Remover methods.

= The API supports the XMI standard. It can read and write UML models according to
the XMI format.

Limited modifications were made to the metamodel to make it fit the Java language.

Multiple inheritance used in the standard metamodel, for example, was replace with Java

interfaces and single inheritance.

ArgoUML is an open-source UML tool that is using the Novosoft UML library.
ArgoUML’s implementation of the API uses JavaBeans-style method naming and changing
notifications, which is supported by reflection in the API. For example, the attribute target
of meta-class Action in the metamodel is accessed with methods getTarget() and
setTarget() in the ArgoUML implementations. Also, whenever the concurrency of an action
is changed, a standard JavaBeans property change event is fired with information about the

name of the property that changed, its old value and its new value.

However, the fact that the API fulfills the metamodel does not mean that ArgoUML
implements all the functions (features) supported by the API. For example, class Partition
in the API provides methods to access contents and activityGraph. But ArgoUML does not

support swimlanes (partitions) in an activity diagram. Therefore, no information of partition
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can be obtained from an activity diagram generated in XMI format by ArgoUML. Similar
problems exist with the XMI generated by Rational Rose as well. For example, Rose does
not support object flow states in an activity diagram. Consequently, we were forced to
modify by hand some XMI files produced by these two tools in case in which the tools do
not support yet standard UML features. However, these modifications were in general
minor, and most the XMI files used to test our implementation were produced directly by

the UML tools.

4.2 Object Model in Novosoft UML API

This section will describe how the NSUML API constructs objects as well as their
attributes and associations. The object model in the API contains four types of objects:
primitives, enumerations, datatypes and elements. They correspond to UML types and
metaobjects. The classification is based on UML stereotypes of the objects and the ways of

how the APl maps these objects to Java constructs.

Primitives have the stereotype <<primitive>>, Enumerations the stereotype
<<enumeration>> and datatypes and elements have no stereotypes. There are two major
distinctions between datatypes and elements. First, any datatype is mapped only to one Java
class in the API, whereas any element is mapped to one Java class and one Java interface.
Second, datatype classes are created manually, whereas element classes and interfaces are

created with the help of a generator program.
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The API aso contains auxiliary classes, which provide additional functions such as events

and undo/redo. All auxiliary interfaces and classes are created manually.

421 Primitives
Primitives are the UML objects, which have the stereotype <<primitive>>. There are no
gpecia classes in the NSUML corresponding to them. The NSUML maps such objects to

ordinary Javatypes, according to Table 4-1:

UML Primitives | Java Types

Boolean boolean
Name String
Integer int

Unlimitedinteger | int
L ocationReference | String
Geometry String

Table 4-1 Primitives

4.2.2 Enumerations
The NSUML redlizes enumerations as final Java classes with private constructors only.
Names of enumerations begin with letter M, prefixed to original UML names. A NSUML

enumeration classes are indicated in Table 4-2:

UML enumerations NSUML Java classes
AggregationKind MAggregationKind
CallConcurrencyKind M CallConcurrencyKind
ChangeableKind M ChangeableKind

MessageDirectionKind | MMessageDirectionKind
OperationDirectionKind | MOperationDirectionKind
OrderingKind MOrderingKind
ParameterDirectionKind | MParameterDirectionKind
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PseudostateKind M PseudostateKind
ScopeKind M ScopeKind
VisihilityKind MVisibilityKind

Table 4-2 Enumerations
During the initialization of enumeration classes there are constructed several predefined
final static public instances in accordance with the UML standards. For example, there are
3 avalable instances of the class MVishilityKind: MVisibilityKind.PRIVATE,
MVisibilityKind. PROTECTED, and MVisibilityKind.PUBLIC. In addition, the class
contains 3 integer attributes that correspond to the above mentioned instances (see Table

4-3).

MVisbilityKind
Predefined instances Corresponding class attributes
MVisibilityKind.PRIVATE MVisibilityKind. PRIVATE
MVisibilityKind. PROTECTED | MVishilityKind. PROTECTED
MVisibilityKind.PUBLIC MVisibilityKind._ PUBLIC

Table 4-3 MVisibilityKind

4.2.3 Datatypes

Each datatype is mapped to exactly to one NSUML Java class. The creation of names for
datatypes is the same as for enumerations, e.g. prefix M to original UML names. Below

(Table 4-4) al datatype classes are presented.

NSUML Datatype classes
MEXxpression MA ctionExpression
MATrgListsExpression | MBooleanExpression
MlterationExpression | MMappingExpression
MProcedrueExpression | MTimeExpression
MTypeExpression
MMultiplicity MMultiplicityRange

Table 4-4 Datatypes
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Notice that Class MExpression is the superclass for all the group of Expression classes.

Class MMultiplicity is intended for description of role multiplicities. There are four

predefined instances of this class, as shown in Table 4-5. They correspond to the most

widespread types of UML multiplicities:

MMultiplicity
Predefined Instances | Corresponding UML Multiplicities
MMultiplicity. MO 1 | 0..1
MMultiplicityM1 1 |1
MMultiplicity. MO _N | *
MMultiplicity. M1 N | 1..N

Table 4-5 MMultiplicity

4.2.4 Elements

Elements form the biggest object class. UML elements are structured in packages, such as
Foundation, Core, Behavior, and so on. The typical elements are Package, Classifier,
Attribute, Method, Operation, etc. Each element is mapped exactly to one interface and one
class in the NSUML. There exists a simple name correspondence between UML elements

and NSUML Javainterfaces and classes, as shown in Table 4-6:

Names Correspondence
UML Element | NSUML Interface | NSUML Class
Package M Package M Packagel mpl
Classifier MClassifier M Classifierlmpl

Table 4-6 Names Correspondence
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The NSUML API contains one important class that is the superclass for al the element
Java classes. This is the class MBaselmpl, which implements interface MBase. Many
interesting additional functionalities of NSUML elements are realized due to the methods
defined in the base class. It is supposed there is no need to create instances of this class, but
to create instances of its subclasses. For example, NSUML Java class MClassimpl
implementing UML metaclass Class is a subclass of the base class. There are two ways to

create a new instance of the metaclass Class, as showed below:

MBase cl sO = new MO asslnpl ();
MJ ass cl sl = new MJ asslnpl ();

This means users have to operate with interface references only.

MJ asslnpl cls = new MJd asslnpl (); //Error! Do not use simlar references
Also, interface MBase contains overridden in all subclasses method getUMLClassName(),
returning the real UML name of the metaclass, which is implemented in the NSUML. See

the following segment:

public class Mstereotypel npl extends Mzeneralizabl eEl enent | npl inplenents
Mst er eot ype {
N code for class Stereotype ------------
public String get UMLO assName() {
return “Stereotype”;
}

}

So, if there is areference to interface MBasg, it’'s easy to recognize which UML metaobject

corresponds to this reference.
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425 Attributesand Associations

Element objects may contain attributes, whose types are primitive, enumeration or

datatype. Two element metaclasses can be connected with the help of an association.

Each attribute and role (in association) is mapped to a set of public user method of element
interfaces and classes. These methods support access to an attribute or role as well as
modifications of their values. There is a smple correspondence between the names of
attributes or roles in UML and the names of NSUML methods. This section contains the
classification of user methods for accessing attributes and associations, the description of

rules for naming of the methods and the role of these methods.

4251 Accessto Attributes

Attributes are divided into two types. boolean and non-boolean. A set of methods for
access to boolean and non-boolean attributes is the same, but there exists a minor

differences in naming the methods.

Attributes are stored as private objects in the NSUML element class. Access to object
attributes is organized with the help of so-called Getter and Setter methods that are declared
in the corresponding interfaces and implemented by each class. The roles of the methods

are follows: Getter is a method that returns the value of an attribute; Setter sets the value of
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the attribute. Figure 4-2 shows UML metaclass Abstraction that has an attribute mapping of

type MappingExpression.

Abstraction

@}m apping : MappingExpression

Figure 4-2 Metaclass Abstraction

In the NSUML API interface MAbstraction corresponding to the metaclass has the

following form:

public interface MAbstraction extends Mdependency ({
/1 generating attributes
/1 attribute: mapping
MVappi ngExpr essi on get Mappi ng() ;
Voi d set Mappi ng( MVappi ngExpr essi on _arg);
/1 generating associ ati ons

}
Methods getMapping() and setMapping() are implemented in the class MAbstractionlmpl.

Generally, the name of the Getter method is created by capitalizing the first letter of the
attribute name and adding the prefix get, and the name of the Setter method is formed in the

similar manner.

In a case of a boolean attributes, the interface looks like:

public interface MAssoci ati onEnd extends Mvbdel El ement {
/1 generating attributes

f/ attribute: isNavigable
bool ean i sNavi gabl e();
Voi d set Navi gabl e(bool ean _arg);
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4.25.2 Accessto Associations

Each association in the NSUML metamodel is an unnamed association between two
elements. An association has two roles (or ends), and each role has its own name and
multiplicity. The role attached to an element is the direct role, the other one is called the
opposite role. The NSUML has no specia objects for associations. It maps associations to
fields and methods of element classes. Each element class contains and treats the

information about the opposite role of the association to which it belongs.

Figure 4-3 represents a class diagram with two UML metaclasses: Feature, and Classifier,

and an unnamed associ ation between them.

Feature
l%ownerScope : ScopeKind

+feature +owner Classifier

* {ordered} 0.1

Figure 4-3 Access to Association

1. Therole with the name owner is the opposite role for metaclass Feature and has the
multiplicity 0..1.

2. Therole with the name feature is the opposite role for metaclass Classifier and has
the ordered multiplicity *.

3. The association isread as “ any Classifier contains an arbitrary number of ordered
Features. A Feature can be attached to one Classifier only”.

NSUML maps role owner and role feature to private fields in the corresponding class.

Java Class Private Field
M Featurel mpl MClassifier _owner
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| MClassifierlmpl | List _feature |
Table 4-7 Accessto Association

Feature contains the information about the owner Classifier in the field _owner, and
Classifier contains the list of Feature in the field _feature. These fields can be accessed
through Getter, Setter and other methods defined in interfaces, as shown in the following

segments:

pubi c interface M-eature extends Mbdel El ement {
/1 opposite role: owner this role: feature
Ml assifier getOmer();
voi d set Omer (M assifier _arg);
}
pubic interface MJ assifier extends MNanespace, Mzeneralizabl eEl enent {
/1 opposite role: feature this role: owner
Li st getFeatures();
Voi d set Features(List _arg);

Voi d addFeat ure( Mreature _arg);
Voi d renoveFeat ure( Mreature _arg);

4.3 UML Metamodel Representations

This section summarizes the metamodel elements used to represent interaction and activity
diagrams [UML1.3] by using the NSUML API. This corresponds to the code used in our

implementation.

4.3.1 Interaction Diagram

The elements constituting a collaboration diagram and a sequence diagram, as described in

[UML1.3], are presented in this subsection.
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ModelElement:

A mode element is an element that is an abstraction drawn from the system being modeled.
It is the base for all modeling meta-classes in the UML. All other modeling meta-classes
are either direct or indirect subclasses of Model Element.

Collaboration:

A description of a general arrangement of objects and links that interact within a context to
implement a behavior, such as a use case or operation. In the metamodel, a Collaboration
contains a set of ClassifierRoles and AssociationRoles, and may aso contain a set of
Interactions.

I nteraction:

A specification of how messages are sent between objects and other instances to perform a
task. The interaction is defined in the context of a collaboration. In the metamodel, an
Interaction contains a set of Messages.

Classifier:

A classifier is an element that describes behavioral and structural features. It comes in
several forms, including class, data type, interface, and component. In the metamodel, a
Classifier declares a collection of Attributes, Methods, and Operations.

ClassifierRole:

A classifier role is a specific role played by a participant in a collaboration. It specifies a

restricted view of a classifier, defined by what is required in the collaboration. A classifier
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role has a reference to a classifier (the base) and a multiplicity. It can be connected to other
classifier roles by association roles.

AssociationRole:

An association role is an association that is meaningful and defined only in the context
described by a collaboration. In the metamodel, an AssociationRole is a composition of a
set of AssciationEndRoles.

AssociationEndRole:

An association-end role specifies an endpoint of an association as used in a collaboration.
In the metamodel, an AssociationEndRole is part of an AssociationRole and specifies the
connection of an AssociationRole to a ClassifierRole.

M essage:

In the metamodel, a Message defines one specific kind of communication between
instances in an Interaction such as raising a Signal, invoking an Operation, creating or
destroying an Instance.

I nstance:

An instance is an individual entity with its own identity and value. In the metamodel,
Instance is connected to at least one Classifier which declares its structure and behavior.
Instance is an abstract metaclass.

Object:

An object is a discrete entity with a well-defined boundary and identity that encapsulates

state and behavior. In the metamodel, an object is a subclass of Instance and it originates
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from at least one Class. In this work, we represent two types of objects: active objects,
which are instances of active classes, and passive objects, which are instances of passive
classes.

Stimulus:

A stimulus is a communication between two objects that convey information. In the
metamodel, a stimulus conforms to a Message. A stimulus will cause a Signal sent to an
Instance, or an invocation of an Operation. It has a sender, areceiver, and may have a set of
actual arguments, al being Instances.

AttributeL ink:

An attribute link is a named slot in an instance, which holds the value of an attribute. In the
metamodel AttributeLink is a piece of the state of an Instance and holds the value of an
Attribute.

Link:

A link is a connection between instances. In the metamodel Link is an instance of an
Association.

LinkEnd:

A link end is an end point of a link. In the metamodel LinkEnd is the part of a Link that
connects to an Instance.

Signal:

A signa is a specification of an asynchronous stimulus communicated between instances.

In thiswork, both signals and asynchronous stimuli are considered to be the same thing.
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Action:

An action is an executable atomic computation that results in a change in the state of the
model or the return of avalue. An action has a target object, a reference to the signal to be
sent or the operation to be performed, alist of argument values, and an optional recurrence
expression specifying possible iteration.

ActionSequence:

An action sequence is a collection of actions. In the metamodel, an Action Sequence is an
Action, which is an aggregation of other Actions.

CallAction:

A call action is an action resulting in an invocation of an operation on an instance. In the
metamodel, CalAction is an Action. The designated Instance or set of Instances is
specified via the target expression, and the actua arguments are designated via the
argument association inherited from Action.

SendAction:

A send action is an action that results in the sending of a signa. In the metamodel,
SendAction isan Action. It is associated with the Signal to be raised.

CreateAction:

A Create Action is an action resulting in the creation of an instance of some classifier.
DestroyAction:

A Destroy Action is an action results in the destruction of an object specified by the target

association of the Action.
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TerminateAction:
A Terminate Action results in self-destruction of an object. The target of a Terminate

Action isimplicitly the Instance executing the action.

Figure 4-4 and Figure 4-5 show the NSUML elements involving in collaboration diagrams
and sequence diagrams, respectively. To simplify, only the attribute and operation names
are shown, rather than their full description (arguments, return type, etc). Notice that the
aggregations shown in two Figures actually mean compositions. Rational Rose does not

provide a notation for a composition, which is a solid filled diamond.
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Figure 4-5 Metamodel Representation for a Sequence Diagram

4.3.2 Activity Diagram
Semantically, an activity diagram is a state machine that emphasizes the sequential and
concurrent steps of a computational procedure. Therefore, an activity diagram shares many

metamodel elements with a state machine.
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The following elements are used in activity diagrams defined in [UML1.3]:

ActivityGraph:

An activity graph is a special case of a state machine that defines a computational process
in terms of the control-flow and object-flow among its constituent actions. In the
metamodel, ActivityGraph extends StateMachine.

Transition:

A transition is a directed relationship between a source state vertex and a target state vertex.
Transition isachild of Model Element.

StateVertex:

A state vertex is an abstraction of a node in a state chart graph. In genera, it can be the
source or destination of any number of transitions. State Vertex is a child of Model
Element.

State:

A state is an abstract meta-class that models a static situation, such as an object waiting for
some external event to occur, or a dynamic situation, such as the process of performing
some activity. The model element under consideration enters the state when the activity
starts and leaves it as soon as the activity is completed. State is a child of State Vertex.
PseudoState:

A pseudo state is an abstraction that includes different types of transient vertices that are
used to connect multiple transitions into more complex state transitions paths. Pseudo State

isachild of State Vertex. Here are some of the pseudo states used in this work:
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= An initial Pseudo state represents a default vertex that is the source for a single
transition to the default state of a composite state. There can be a most one initia
vertex in a composite state.
= A join pseudo state serves to merge several transitions coming from different source
state vertices. The transitions entering ajoin vertex cannot have guards.
= A fork pseudo state serves to split an incoming transition into two or more transitions.
The segments outgoing from a fork vertex must not have guards.
= A branch pseudo state splits the transition path into two or more segments, each with a
separate guard condition. A merge converges multiple incoming transitions into a
single outgoing transition. A merge is the inverse of a branch and uses the same
notation (diamond symbol) as a branch except a merge has no conditions.
CompositeState:
A composite state is a state that contains other state vertices (states, pseudo states, etc.). A
composite state is mainly used in state machine and can be decomposed into concurrent
substates or into mutually exclusive digoint substates. Composite State is a child of State.
ActionState:
An action state represents the execution of an atomic action, typically the invocation of an
operation. It is a state whose purpose is to execute an entry action, after which it takes a
completion transition to another state. An action state has no substructure, internal

activities, or interna transitions.
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ObjectFlowState:

An object flow state defines an object flow between actions in an activity graph. Operating
on an object by an action in an action state may be modeled by an object flow state that is
triggered by the completion of the action state. Generally each action places the object in a
different state that is modeled as a distinct object flow state.

FinalState:

A final State is a specia state signifying that the enclosing composite state is completed. A
fina state cannot have any outgoing transitions. Final State is a child of State.

Guard:

A guard is a Boolean expression that is attached to a transition as a control over itsfiring. If
the guard is true at its evaluation time, the transition is enabled; otherwise, it is disabled.
Guard isachild of Model Element.

Partition:

A partition (swimlane) is a mechanism for dividing the states of an activity graph into
groups. Partitions often correspond to organizational units in a business model.

CallEvent:

A call event represents an event of recelving a call for an operation that is implemented by
actions in state machine transitions.

SignalEvent:

A signal event represents the reception of an asynchronous signal.
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4.4 Metaobjectsfor Some Basic Cases

In the above section the metamodel representations for interaction diagram and activity
diagram are depicted a metaclass-level. The transformation, however, will ultimately
handle a specific diagram and deal with objects instead of classes. This section will use
object diagrams, which are used to model object structures at a given moment in time, to
illustrate objects participation in several typical basic cases described in the previous

chapter.

Each case described below contains two object diagrams: one represents the metaobjects in
the sequence diagram, and the other represents the metaobjects generated for the equivalent

activity diagram. For each case, the detail description is given in section 3.2.1.

441 Casel: Sequential Execution in a Single Thread



Input Data Structure shown in Figure 4-7:
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Figure 4-7 SD Metaobjectsfor Sequential Execution

Output Data Structure shown in Figure 4-8:
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Figure 4-8 AD Metaobjectsfor Sequential Execution

4.4.2 Case2: Synchronous M essages Send and Reply

Input Data Structure shown in Figure 4-9:
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Figure 4-9 SD Metaobjectsfor Synchronous Message Send and Reply



Output Data Structure shown in Figure 4-10:

activityGraph:
MActivityGraph
subvertex |
compositeState: a): callEventl:
M CompositeState MOperation MCallEvent
transition
_— initial State: _— ready:
M PseudoState MActionState | ¢
\ P
kind := INITIAL target . t4: MTransition
Source X .
— request Obj a oin:
t1: MTransition MObjectFlowsState — MPseudoState | f@rcet
- source
target] kind := JOIN
i - t5: MTransition
| invoke(m.a): 13: MTransition
MActionState || m.a(): target
SOUrca MActionState
>
t2: MTransition -
— n.b():
MActionState
[ 7 MTransi
19: MTransition L7 MTransition
S fork:
MPseudoState
return Obj a
— MObjectFlowState kind := FORK
110: MTransition -
18: MTransition
| receive(return):
MActionState
111: MTransition
final State:
MPFinal State

Figure 4-10 AD Metaobjectsfor Synchronous Message Send and Reply



4.4.3 Case 3: Asynchronous Creation of an Active Object

Input Data Structure shown in Figure 4-11:
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MAssociationEndRole o: - MClassifierRole [~ |
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Figure 4-11 SD Metaobjectsfor Asynchronous Creation of an Active Object



Output Data Structure shown in Figure 4-12:

MActivityGraph
subvertex | transition
compositeState:
M ConpositeState
initial State;
MPseudoState
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kind := INITIAL ”
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t3: MTranstion
fork:
MPseudoState Source: » target
| et | 16: MTransition
| st [
kind := FORK MActionState
t4: MTransition t7: MTranstion
sc(): ‘source n.b():
MActionState MActionState
target
t5: MTranstion

Figure 4-12 AD Metaobjectsfor Asynchronous Creation of an Active Object



4.4.4 Case4: Asynchronous M essages between Two Threads

Input Data Structure shown in Figure 4-13:

ownedElements | collaboration: MCollaboration ownedElements
(MAssociationRole) (MClassifierRole)
interaction
roleEndi: E . L
MASssociationEndRole (EEEITE
——— Minteraction
roleEnd2: 4[3 i
MAssociationEndRole al): SIMElasaRde
MCallAction
| rolel: dispatch |
MAssociationRole msgl:
MM essage
— role2:
MAssociationRole msg2:
MM essage
roleEnd3: 4[3 dispatch
MAssociationEndRole a
a0: sender
— MCallAction
rolecnos: I: MClassifierRole
MAssociationEndRole <@ |
isActive := true
role3: i
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roleEnds: 4@ , sender a
MAssociationEndRole dispatch
] (4 m: MClassifierRole
roleEnd: MSendAction —
MAssociationEndRole isActive := true
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role4: msgé4:
MAssociationRole MMessan
dispatch
roleEnd7: 4[3
MAssociationEndRole bO:
MCallAction
roleEnd8:
MAssociationEndRole a
10
msa5:
roles: MMessage sender
| MAssocigionRole " n: MClassifierRole
dispatch
isActive:=false
roleEnd9: d0:
MAssociationEndRole MCallAction
roleEndi0:
MAssociationEndRole 10

Figure 4-13 SD Metaobjects for Asynchronous M essages between Two Threads
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Output Data Structure shown in Figure 4-14:

activityGraph:
MActivityGraph
subvertex |
compositeState: c: MSignal signal Event1:
M ConmpositeState M SignalEvent
transition
initial State: - ready:
M PseudoState MActionState | "9
I~ 3
kind := INITIAL MTransition
) i | m.b(): taraet
t1: MTransition MActionState | spurce
t4: ]
sa(): MTransition
MActionState | send(c): target
MActionState
\ R
t2: MTransition MTransition
fork:
source 1 M PseudoState
— ol : iti kind := FORK o
M PseudoState 16 MTransition MTransition
kind := JOIN
c _— m.d():
— MObjectFlowState MActionState
110: MTransition i7:
MTransition
i 19: MTransition
receive(c):
MActionState target
t11: MTransition
sg():
MActionState

Figure 4-14 AD Metaobjectsfor Asynchronous M essages between Two Threads

4.5 Transformation Algorithm

The algorithm reads an XMI files containing the input interaction diagram, transforms it
into an output activity diagram and finally writes the XMl file containing the output model.

The most interesting part is the middle of the algorithm that does the actual transformation.
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Primarily what the transformation does is to create an output model that represents the
equivalent activity diagram from the input model, based on the transformation rules that
were described in chapter 3. These rules can be roughly seen as a transformation algorithm
expressed at the notation level. Each basic case reflects a facet of the algorithm in certain
situations. In this section the transformation algorithm is described at the metamodel level,
showing how it manipulates and creates metaobjects. The main steps of the transformation

algorithm (at a high level of abstraction) are as follows:

linitialize new nodel and activityG aph;
2 sort nessages and put theminto a list;
3 partition objects;

4 for(each nessage in the list) do

5 i f(message is concurrent) then

6 create a fork;

7 handl e concurrent nessages at the sane |evel;

8 endi f

9 i f(sender and receiver are in the sane partition) then
10 create a StateVertex;

11 handl e action with condition;

12 handl e | oop situation;

13 endi f

14 else /* sender and receiver are in different partition */
15 handl e Cal | Acti on;

16 handl e SendActi on;

17 handl e CreateActi on;

18 handl e DestroyActi on;

19 handl e Ret urnActi on;

20 handl e Ter m nat eActi on;
21 endif
22 endfor

23 finalize activityG aph and nodel ;

The algorithm generally follows the flow of messages from the input interaction diagram.
The messages passing between objects in an interaction diagram are partially ordered. This

means that the messages may be sequential or concurrent. Within an interaction, the
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messages are related by the predecessor and activator relationships, as discussed in chapter
3. We sort the messages based on their predecessor and activator relationships. The
predecessor (sequencing) relationship organizes the messages into a linear sequence. If two
messages have a common predecessor and are not otherwise sequenced, then they may be
executed concurrently. The activator (caller-called) relationship defines nested procedure
structure. Each call adds another level of nesting to the sequence. Within a call, messages
have a predecessor relationship to establish their relative order (which may permit
concurrency). The messages are traversed in order, according to the for loop found in the
line 4 of the pseudocode. Each message will have a sender, receiver and an associated
action. The algorithm first checks whether the sending object and receiving object are in the
same execution thread (i.e. in the same partition), which falls into two situations. For each
situation, it takes the appropriate way to handle different kinds of action. During the
transformation procedure, different model elements, such as Transition, PseudoState,
ActionState, ObjectFlowState, will be created and linked together to construct an

ActivityGraph and thereafter, a new model.

The partitioning of objects by execution threads plays an important role in the way the
activity diagram is generated. However, this information cannot be found in the input
interaction diagram. Our algorithm needs to receive partitioning information either from the
user, or from other UML diagrams, such as component or deployment diagrams. In our

implementation, the user decides on object partitioning. However, when the algorithm will
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be used in the larger content of transforming UML models into performance models, such

partitioning information will be extracted from other UML diagrams.

The transformation algorithm was given at very high level. In next chapter, as we dig into
the implementation, more details of the algorithm, such as handling different kinds of

action and creating transitions to link state vertices, will be described.
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Chapter 5 Implementation of Transformation Rules

The ID to AD transformation consists of three main parts. XMI input, XMI output and
transformation, as illustrated in the thesis scope in Figure 1-2. The XMI input converts
XMI elements into NSUML objects (unmar shal | i ng). The XMI output can be seen as
the inverse of XMI input, which converts NSUML objects into XMI elements
(mar shal | i ng). The transformation part is the most important for the thesis, analyzing
the objects of an interaction diagram and generating the objects of the corresponding
activity diagram according to the transformation rules. The structure of chapter 5 is as
follows. The first three sections correspond to those three parts, followed by a discussion of
limitations. Then, a discussion of the implementation verification follows, which contains a
description of DOM and of the testing evaluation. Finally an e-commerce system model is

investigated as a case study.

The implementation is developed in Borland JBuilder 3° under the Windows NT® platform.
Three kinds of APIs need to import: JDK 1.3 and JAXP 1.1 from Sun Microsystem®, and
Novosoft® UML APl 0.4.19. All of them can be download from the corresponding
companies Web sites. JAXP 1.1 APl provides the necessary methods to handle XML and
Document Object Model (DOM). Novosoft UML API implements the metamodel of UML
1.3 and provides XMI-support. The related environments to the implementation are

summarized in Table 5-1:
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UML Design Tools | XMI Support UML | XMI
Rational Rose 2000 Unisys Rose 1.3 1.0

Enterprise Edition XML Tools 1.3.2
ArgoUML v.0.8.1a NSUML 0.4.19 13 1.0

Table 5-1 Supporting Environments

5.1 XMI Input

ArgoUML and Rose use different mechanisms to generate an XMl file for a model. In
ArgoUML, severa files will be generated everytime when a model is saved. This includes
an XMI file that stores model information and PGML files that store layout information.
Rose saves a model in its mdl file. A separate XMl file (Rose uses .xml as its extension) is

obtained through a function called “Export Model to UML” in the Tools menu.

This section is divided in two parts. the first one presents the XMI structure of an
interaction diagram, which represents the XMI objects in a tree-structure. The second

describes how the XM reader translates XM1 elements to Java objects.

5.1.1 XMI Structure of Interaction Diagram

Semantically, the XMI files generated from UML tools contain the metamodel objects that
represent different diagrams, as discussed in the previous chapters. However, an XMl fileis
aspecial kind of XML file that follows the standard UML DTD. Consequently, an XMl file
can be represented in atree-look structure as any other XML file. Figure 5-1 and Figure 5-2

illustrate the tree-structure for collaboration and sequence diagrams.
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Figure 5-1 Collaboration Diagram XML Tree Structure

Figure 5-2 Sequence Diagram XML Tree Structure (only for ArgoUML tool)

If Rose is used to draw an interaction diagram (be it a collaboration or a sequence diagram),
it maps to the XMI structure shown in Figure 5-1. Thisis because in Rose the two diagrams
are semantically equivalent. Using ArgoUML to draw a collaboration or a sequence

diagram results in a different XMI structure corresponding to Figure 5-1 and Figure 5-2,

respectively.
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5.1.2 XMI Reader

The XMI input is realized by the class XM Reader found in the NSUML. The class is a
huge java file consisting of more than 20,000 lines of source code. Its responsibility is to
create Java objects (NSUML objects) from an XMI file. In fact, XMIReader uses an

existing parser to parse the input file, as described in the next section.

5.1.2.1 Simple API for XML (SAX)

XM Reader uses SAX (Simple API for XML) which is an event-based XML API. The

following segment of code istaken from XM Reader :

public class XM Reader extends Handl er Base {
org. xm . sax. Parser parser = null;
public XM Reader () throws SAXException,
Par ser Conf i gur ati onException {

/* get SAX parser, which is event-driven */
SAXPar ser Fact ory saxpf = SAXParser Factory. newl nstance();
parser = saxpf.newSAXParser (). getParser();
parser. set ErrorHandl er (this);

par ser. set Docunment Handl er (t hi s) ;
parser.setEntityResol ver(this);

}
public Mvbdel parse(lnputSource p_is) {

blérser. parse(p_is);

}

The technique is to register a handler with the SAX parser, after which the parser invokes

the appropriate callback methods whenever it sees anew XML tag or encounters an error.
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Another mgjor type of XML API isthe tree-based DOM API. DOM API compilesan XML
document into an internal tree structure and then allows an application to navigate that tree.
DOM will be used to make the internal structure visible to facilitate the verification, which

will be discussed in section 5.5. SAX and DOM APIs are defined by XML-DEV and by the

W3C, respectively.

The basic structure of the SAX parser is shown below (Figure 5-3):

SAXParser

Factory Content

Handler

Error
Handler

~. SAX
Reader
E

\""_"" DTD
Handler

Entity
Resolver

i

Figure 5-3 SAX Parser

Two packages are needed: or g. xml . sax andj avax. xni . par sers.

= Package org.xm . sax defines the SAX interfaces. This package also defines
Handl er Base — a default implementation of a base class for the various “handlers’
defined by the interfaces, as well as an | nput Sour ce class, which encapsulates

information that tells where the XML datais coming from.
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Package j avax. xnl . par sers defines the SAXPar ser Fact ory class which
returns the SAXParser. Also it defines the Par ser Conf i gur ati onExcepti on

class for reporting errors.

Hereis asummary of the key SAX APIs:

SAXPar ser Fact or y: generates an instance of the parser.

Parser: The org.xm .sax. Parser interface defines methods like
set Docunent Handl er to set up event handlers and par se( URL) that, as the data
in XML is parsed, invokes one of several callback methods defined by the interfaces
Docunent Handl er, Err or Handl er, DTDHandl er ,and Ent i t yResol ver.
Docunent Handl er: Methods like startDocunent, endDocunent,
start El enent, and endEl enent are invoked when an XML tag is recognized.
This interface also defines methods characters and
processi ngl nstructi on, which are invoked when the parser encounters the text
inan XML element or an inline processing instruction, respectively.

Er r or Handl er: Methods error, fatal Error, and war ni ng are invoked in
response to various parsing errors. The default error handler throws an exception for
fatal errors and ignores other errors (including validation errors).

Entit yResol ver: Method resolveEntity is invoked when the parser must identify

databy a URI.
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= DTDHandl er: Methods defined in this interface are invoked when processing
definitionsinaDTD.

A typical application such as XM Reader needs to provide only a Docunent Handl er

at a minimum. It can override the methods for some events and ignore the methods for

other events.

5.1.2.2 Elements Processing

To understand how an event-based XM Reader works, consider the following sample

document:

<?xm version="1.0">
<doc>

<para>Hel | , worl d! </ para>
</ doc>

An event-based interface will break the structure of this document down into a series of

linear event:

start docunent

start el enent: doc

start elenment: para
characters: Hello, world!
end el enent: para

end el enent: doc

end docunent

XM Reader defines five methods to handle those events. start Docunment,
endDocunent, start El enent, endEl enent , and char act er s. When a start tag
or end tag is encountered, the name of the tag is passed as a String to the st ar t El enent
or endEl enent method, as appropriate. When a start tag is encountered, any attributes it

definesareasopassedinan At t ri but eLi st.
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XM Reader has a method called process(String, AttributelList) whichis
mainly responsible for creating NSUML objects. Each object has a unique id (xm . i d)
within a document. A HashMap will be used to keep the ids and objects. As described in
chapter 4, every object may have attributes or associations (opposite roles). Thus the next
step is to process an object’s attributes and associations if they are available. Because the
UML DTD determines the structure of an XMI file, XM Reader uses String comparison

against the DTD to distinguish attributes and associations.

Processing an object’s associations is more complicated than processing its attributes. This
will involve how to build and keep object references. XMI provides xm . i dr ef that
alows an XMI element to refer to another XMI element within the same document using
the XML IDREF mechanism. Recall that a HashMap has been used to store all the objects
and their ids. If an xm . i d that xm . i dref refers to can be found, then the referred
object will be assigned as an association. But if a referred id cannot be found in the
HashMap, this means the referred object is yet to be created. An internal private class
Li nk in XM Reader is going to handle this situation. Class Li nk has instance variables
sourceCbj ect that represents the owner object of the association, and
par anmet er XM | D that represents the id of referred object. After the parser completes
parsing a document, a method per f or nLi nki ng() will be invoked to link a source

object and its referred object together.
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5.2 XMI Output

When a transformation from an interaction diagram to an activity diagram is done, it means
that a new model that represents the newly generated activity diagram is created. This
section illustrates what the XMI structure of an activity diagram looks like, and briefly

explanshow XM Wi t er writesamodel out in XMI format.

5.2.1 XMI Structure of Activity Diagram

The XMI structure of an activity diagram is shown in Figure 5-4.

Figure 5-4 Activity Diagram XML Tree Structure
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Severa points should be mentioned about the figure. First, compared to its metamodel
representation, the XM structure is quite ssimplified. This is because relationships between
classes are hidden in element associations, e.g. shown by xm . i dr ef . Second, The figure
shows only the elements that have xm . i d. Not al classes converted to elements will be
assigned xmi . i d. For example, class Partiti on hasnoxm . i d. Itisacollection that

consists of different state vertices.

5.2.2 XMI Writer

XM Wi t er consits of even more lines of code than XM Reader , but the structure of
XM Wi ter isactualy smpler than XM Reader because object constructions are not

needed anymore. Dismantling a machine is always easier than assembling it together again.

XM Wi ter istheinverse of XM Reader, so they are similar in many respects. The

following codes are segmentsof XM Wi t er:

public class XM Witer extends PrintWiter {

protected Mvbdel model = null;
Public XM Witer(Mvwdel p_nmodel, java.io.Witer p_out) throws
| OException {

super (p_out);
Mvbdel = p_mmodel ;
}

protected AttributelListlnpl al = new
AttributeListlnpl();
protected org.xm .sax. Docunent Handl er dh = null;

public void gen(org.xm .sax. Docunent Handl er p_dh) throws
I nconpl et eXM Except i on{

dh = p_dh;
dh. start Docunent () ;
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al .addAttri bute("xm .version", CDATA TYPE, "1.0");
dh.startEl ement ("XM", al); al.clear();

dh. start El ement (" XM . header”, al);
.../l * declares some common XM el enents */
dh. endEl enent (" XM . header ") ;

dh.startEl ement ("XM .content", al);
print Model Mai n(get Model ()); /* main process nethod */

dh. endEl enent (" XM . content");
dh. endEl enent ("XM ") ;

dh. endDocunent () ;
}

XM W tier extends PrinterWiter that is to print formatted representations of
objects to a text-output stream. Its constructor takes two parameters. Mvbdel and
Wi t er.In order to generate an XMI, an instance of XM Wi t er must indirectly cal the
method gen( Docunent Handl er) . In this method a declaration comes first, which
identifies the version and encoding scheme. After the declaration, a root element XM is
defined. Any other elements are contained within that element. Under the root element
XM , two nested elements are defined: XM . header and XM . cont ent . Elements to be
defined are not arbitrary, they must conform to the UML DTD so that the generated XM is

not only well-formed, but also valid.

XM . header contains several common XMI elements, eg. XM . exporter and
XM . met anodel . Detail explanations can be found in [XMI 1.0]. XM . cont ent
contains the actual model information being transferred. To output the model as XMl

format is implemented by method pr i nt Model Mai n() .
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The method pri nt Model Mai n() bases on the UML DTD to write out a model and its
contained objects. As we mentioned before, a DTD specifies the kinds of tags that can be
included in a document, and the valid structure of elements. The object may contain
attributes and associations, all those are converted to XMI elements. The element converted
from an object will be given an xm . i d as an attribute, which is an integer starting from 1.
The element converted from an association will be given an xm . i dr ef as its attribute,

which refers to the xmi.id of the owner object that association belongs to.

5.3 Transformation

This section describes how we built the Java application to perform the transformation
according to the algorithm that is given in chapter 4. The application contains several

components, as shown in Figure 5-5.

input file output file

T

XM Parser

_curModel: MModel
_newModel: MModel
reader: XMIReader
writer: XMIWriter
transformer: Transformer

readAndTransformModel (inputFile, outputFile): void

p

<<interface>>
Transformer

getNewModel(): MModel

AN AN
| |
1 1
Transformer_CD Transformer_SD
oldModel: MModel oldModel: MModel
newModel: MModel newModd: MModel

getNewModel (): MModel getNewModel(): MModel
transform(): void transform(): void
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Figure 5-5 Transformation Components

In this figure, the class XM Par ser has instance variables of XM Reader and
XM Witer. Besidess XM Parser needs to know whether the input is from a
collaboration diagram or from a sequence diagram before it passes the input model
information to an appropriate Tr ansf or mer. Transformer is an interface that is
realized by two classes: Tr anf or mer _CD which handles the input from an collaboration
diagram, and Tr ansf or mer _SD which handles the input from a sequence diagram.
These two classes follow exactly the same algorithm, but deal with different XMI input

structures (as described in section 5.1.1).

5.3.1 Transform

The transformation agorithm is actually executed in the method t r ansf orn(). The
purpose of the method is to create a new model to represent the equivalent activity diagram.

This is demonstrated by the segment of code given as follows:

public void transforn() throws | OException {
.s.(.)rt Messages() ;

partitionCbjects();
initializePartitions();

traverse();

finalizePartitions();
addCont ent sToPartitions();

set ActivityG aph();
newhMbdel . addOmnedE!l enent (act G aph) ;
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For sorting messages, UML defines the following syntax for a message label:

predecessor guard-condition sequence-expression return-value :=
message-name argument-list

Both predecessor and sequence-expression provide necessary information for sorting. In
most cases, predecessor is implied by the numeric sequence numbers and need not be
explicitly listed. The API provides two relevant methods. get Pr edecessor s() and
get Acti vat or (), thus the relative order of the messages can be obtained. After the
sorting, the messages will be put into an ArrayList like the following:

{msg_ 1, msg 2,...{msg amsg b,...},..., msg_n }

where the sublist {msg_a, msg_b, ...} contains messages that are concurrent.

For partitioning the objects, the application asks the users how to partition by listing all
active and passive object xm . i ds in a COMMAND window. We made the assumption
that a partition (swimlane) contains the activities carried out by only one active object and
any number of associated passive objects. In other words, each partition represents a
concurrent component. HashMap will be used to hold each partition and its related objects
for later references. The next step is to initialize each partition by assigning an initial state,
which indicates the components are running concurrently. To be consistent with the UML
standard, only the first partition, associated with an active object that sends the first

message, will be given an Initial Pseudostate. Each of the remaining partitions will start
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with an “idle’” ActionState to indicate that is up waiting for a message. A HashMap
partition2StateVertices is used to keep track of all the state vertices for each
partition. Some utility methods, e.g. add() and r enove( ) , are created to manipulate the

HashMap.

5.3.2 Traverse

The for loop in the transformation agorithm is performed by the method t r aver se() .
When traversing messages, two situations will be encountered: the sender and receiver of a
message are in the same or in different execution thread. In each case, the transformation
takes appropriate ways to handle according to the type of action associated with the
message. The case with different execution thread is more complex than the case with one
execution thread as more factors need to be taken into consideration. The description below
will focus on the more complex case. For those messages that are running concurrently, e.g.
msg_a, msg_b, a Fork Pesudostate will be created to indicate concurrency, then each
message still falls into one of the two cases mentioned above. This may be done

recursively.

When a message is being traversed, its associated action provides the most important
information for the transformation. UML defines 7 kinds of Actions (see section Message
Properties in chapter 3). The most two common kinds are CallAction and SendAction.

Figure 5-6 shows how we transform these two kinds of Actions. The transformation
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includes the creation of new state vertices, such as action states, fork/join pseudostates, and

object flow states, and of new transitions to link the state vertices together.

N
N
N
~] objectflow |- _
info. N
N request | ——__
] N

m.&()
@ ( receive(request) )

send(request)

Figure 5-6 Transformation: CallAction (left), SendAction (right)

CallAction is synchronous. The caller is blocked and yields control to the called procedure
until it returns. It is assumed in UML notation that every call has a paired return which may
be omitted, i.e. implicit a the end of an activation. SendAction is asynchronous, resulting
in an explicit fork. For both of them, ActionStates are created and given meaningful names.
We use the notation of ObjectFlowState but do not adhere strictly to its semantics. It will be
used to convey performance information between entries and tasks in the future when

activity diagrams convert to LQN models.

When handling different kinds of Action, the transformation may create two particular
kinds of PseudoState, fork and join. The value of Action’s attribute i SAsychr onous
indicates whether to create a fork PseudoState or not. A join PseudoState is needed when
the receipt of a message is from another execution thread. There is an exception if there is
an explicit return action in a procedure call since the receiver (caller) waits for the

completion of the called procedure.
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The transitions used in activity diagrams are smpler than in state machines. The method
connect () isused to generate atransition that connects a source StateVertex and a target

StateVertex, as follows:

public Mrransition connect(MstateVertex from MstateVertex to) {
MIransition transition = new MIransitionl npl ();

transition. set Source(from;
transition. set Target (to);

f; set guard if there is a branch */

from addQut goi ng(transition);
t 0. addl ncom ng(transition);

}
It is possible that StateVertex f r omor t o is not finalized yet when the method is called.

For example, if atransition isgoing to link from af or k PseudoState to an ActionState, the
f or k may have other outgoing transitions in a later. Therefore, the appropriate updates for
both the transition and StateVertex will be necessary if one of them is changed. Similar
treatments also apply to other model elements that have bilateral associations between

them.

5.4 Limitations and Discussion

There is a compromise in the UML between the desire for precision and the need of
developers to work with various design tools, which may have different interpretations of
the UML semantics. On one side, the existing UML semantics documentation and the

metamodeling approach aready provide a good foundation for a precise semantics. But the
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meaning of the UML, which is mainly described in English, is informa and unstructured,
therefore does not provide a solid foundation for developing formal analysis and
development techniques. The semantics of actions and argument lists, for instance, have
therefore been left somewhat incomplete and ambiguous within UML itself. As aresult, the

APl (NSUML API) we import is aso incomplete in some aspects.

Another problem is that the current UML tools, such as Rational Rose or ArgoUML, do not
support entirely the whole set of features provided by the UML metamodel. For example,
both Rose and ArgoUML do not support some model elements or functions, such as object
flow state, concurrent messages, iteration, and so on. This means that the XMI files
obtained from the tools are either incomplete or imprecise. When we needed XMI files to
test our implementation, we had to modify some of the files by hand in order to introduce

features that are not yet supported by today’ s tools.

5.5 Verification

To facilitate the verification of the generated output in XMI format, it would be better to
make the interna data structure in XMl visible. To do that a GUI application is built to

display an XMI using Document Object Model (DOM).

5.5.1 Document Object Model (DOM) and JTree

In section 5.1.2.1, we surveyed the event-driven SAX API. An dternative to access an XML

document structureis to use atree-based DOM API.
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DOM is a tree structure, where each node contains one of the components from an XML
structure. It was developed by the W3C, primarily to specify how future Web browsers and
embedded scripts should access HTML and XML documents. There is a core standard that

applies to both HTML and XML (available from [DOM]).

DOM provides a set of APIs to access and manipulate nodes in the DOM tree. However,
the DOM standard is silent on the subject of how to create a DOM from an existing XML
file. This problem is solved by the JAXP Docunent Bui | der interfaces, as shown in

Figure 5-7.

DocumentBuilder
Factory

]

- Documnent (DOM)
‘—" m— s f— (e

Figure5-7 JAXP APIs

When the input source, either a File object, an input stream, a SAX InputSource object, or a
URL, is parsed, the Docunent Bui | der will return an or g. w3c. dom Docunent

object:

Docunent Bui | der bui |l der =
Docurnent Bui | der Fact ory. newl nst ance() . newDocunent Bui | der () ;
Document docunent = buil der. parse(i nput source);
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Details of JAXP API are given in [JAXP 1.1].

To help to have a clear idea of how nodes in a DOM are structured, it is better to display

the internal structurein a GUI, as shown in Figure 5-8:

[EADOM tempd.xmi [_T=]x]

1 Docurnent Attributes: i id=smi 1,
@ CIElement il
@ [ Element: XMl header
© [ Element Ml content
] A Element: Model_Management Model
D Element: Foundation.Core MadelElement.name
D Element: Foundation Core ModelElement isSpecification
D Element: Foundation Core GeneralizableElement isRoot
D Element: Foundation Core GeneralizableElementisLeaf
D Element: Foundation. Core GeneralizableElement isAbstract
@ [ Element: Foundation Core Namespace.ownedElerment
] = Element Model_Management Package
D Element: Foundation.Core ModelElement.name
D Element: Foundation.Care.ModelElement.isSpecification
D Element: Faundation Core GeneralizableElement isRoat
D Element Foundation Core GeneralizableElementisLeaf
D Element Foundation. Core GeneralizableElement isAbstract
@ [ Element: Foundation Core ModelElement namespace
@ [ Elerment: Foundation. Core Namespace ownedElerment

Figure5-8 Tree View of a DOM

A class Dom as shown below, is created to display a DOM tree. The class Domconverts a
DOM into a JTreeModel and displays the full DOM in a JTree. It makes sense to stuff the
DOM into a JTree, since the DOM s a tree, and the Swing JTree component is all about
displaying trees. But a JTree displays a TreeModel and a DOM is not TreeModel.
Therefore, an adapter class DomTloTr eeModel Adapt er is created to make the DOM

looks like a TreeModel to a JTree.



116

public class Dom extends JPanel

{

/1 dobal value so it can be ref'd by the tree-adapter
static Docunment docunent;

/1l Set up the tree
JTree tree = new JTree(new DomloTr eeModel Adapter());

public class DonToTreeMbdel Adapt er inplenents
j avax. swi ng.tree. TreeModel {.}

public class AdapterNode {.}

}
The inner class AdapterNode wraps a DOM node and returns the desired string to be

displayed in the tree. What the TreeModel gives to the JTree will be in fact be
AdapterNode objects that wrap DOM nodes. The class also includes a few additional utility

methods.

One of the really nice things about the JTree model is the relative ease with which you
convert an existing tree for display. Part of reasons for that is the clear separation between
the displayable view, which JTree uses, and the modifiable view, which the application
uses. For more on that separation, see [Armstrong+00]. For now, the important point is to
satisfy the methods in the TreeModel interface we need and register the appropriate JTree

listeners.
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5.5.2 Testing Configuration

A new class ApplicationDeno is created to wrap the class Dom and the class
XM Par ser together in order to display the input and output in the same window. GUI

configuration and testing window are shown in Figure 5-9 and Figure 5-10 respectively.

ApplicationDemo

Dom

Display an XM

XMIParser

1. XMI Input
2. XMI Output
3. Transformation

Figure 5-9 GUI Configuration
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i B voori e RESET]| Bl oo i

Import from: M:\Examples\tesicaseslroselcreateAndSelf.xmi
[ Document
9 T3 Elernent, XMl
© [ Element ¥Ml.header
® [ Element ¥Ml.content
¢ [ Element Model_Management Model
D Element: Foundation.Care.ModelElement.name
[ Element: Foundation.Care MadelElementisSpecfication
[ Elernent: Foundation.Care GeneralizableElement isRoot
[ Elernent Faundatinn Core GeneralizableElement isLeat
D Element: Foundation.Core.GeneralizableElement.isAbstract
@ [ Element: Foundation.Core.Namespace.ownedElement

| Attributes: s id=sam 1,
Az vdd=-122-117-60- 25- 80 dd:efibbedfdad:-8000,

Export to: M:\Exampies\testcases\tempicreateAndSelf_output.xmi
3 Document
@ [T Element XMl
@ [ Element: XMl header
@ [ Element: XMl.content
L) Ij-'EIémeﬁt'M'ode\;Managemem.Model
[ Elernent Faundatinn Core MadelElement narme
D Element: Foundation Core ModelElementisSpecification
D Element: Foundation.Core.GeneralizableElementisRoot
D Element: Foundation.Care.GeneralizableElementisLeafl
[ Elernent: Foundation.Care. GeneralizableElement isabstract
& [ Element Foundation.Core.Hamespace.ownedElement

| Attributes: s dd=srm 1,

Transformation is done!
| Dom is displaying your export file. J
|¢ Click RESET ta start again.

iﬂStalll @J Exploring - GUID...l thesisFormatW.Z | @Eng\ishrthinesa I Acrobat Reader | @JBuwldar | mﬁommand F’lomp...“ @Applicatinnn,,, \(ﬁ—ﬁg’]& 708 PM

Figure 5-10 Testing Window

The main window is divided into half: the upper half is to display an XMI file from an
interaction diagram; the lower half is to display an XMl file from the equivalent activity
diagram. To simplify the operation of the application, three JButtons are created: Import
File, RESET, and Export File. Functions of XM Par ser are invoked whenever JButton
Export File is clicked. This includes XMl input, transformation and XMI output that were

described in previous sections.
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5.5.3 Results Evaluation

Our testing results must satisfy two criteria: correctness and interoperability between UML
tools. All basic cases were tested and inspected for these two criteria. One of the key
features of XMI is that XMI eases the problem of tool interoperability by providing a
flexible and easy to parse information interchange format. ArgoUML uses XMI as its
standard saving mechanism. Rational Rose saves model information in a proprietary format
(mdl file), but allows for importing an UML model in XMI format. We did try to use the
tools to import our results to test the interoperability. In principle, ArgoUML displays
metamodel information in its Navigation Panel, and Rational Rose in its Browser window.
However, due to the limitations that we discussed in section 5.4, both tools lose information
when importing our XMI files that contained features not yet supported by the tools.
Rational Rose cannot display model elements that are not supported yet, e.g. object flow
state. ArgoUML is even worse, unsupported model elements in an XMI must be discarded
before the file is imported. Despite these problems, both tools were able to read our files
and display the elements they understood. It should be mentioned that we could not use the
diagrams in the usual UML notation because XMI, by definition, does not contain layout

information.

It would be perfect to have both metamodel information and the equivaent diagram for the

validation. The transformation we implemented, as mentioned before, is a metamodel-
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transformation. Using the DOM to display the internal data structure makes an XMI more

readable, which is helpful for checking the correctness of the model.

5.6 Case Study

In this section we show how our transformation algorithm was applied to an electronic-
commerce system. The system is distributed as shown in the deployment diagram in Figure
5-11. There are two types of users. remote and local, who are using the system in the same
way. However, they will experience quite different response times due to the different
communication network delays. This is a three-tier server system: the users interact with a
web server, which requests information from a e-commerce server, which in turn sends
gueries to two databases: a non-secure and a secure database. Each server component runs

on its own node.



RemotePC 1.H

GuIl
Remote
User |
| <<JpUIAU >> I:l
LocalPC 1.1
GUI
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Local
User
WebProc
<<NV1>> |:|
SecureDBserver eCommServer DBServer
Seaure eCommProc DBproc
DBproc —_—

/

Figure 5-11 Deployment Diagram for E-commer ce System
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Figure 5-12 Sequence Diagram for “ Get product info.” Use Case
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Figure 5-13 Activity Diagram for “Get product info” Use Case

Figure 5-12 shows the sequence diagram for the “Get product info” scenario (the
realization of the “happy path” of the use case with the same name), whereas Figure 5-13
shows the corresponding activity diagram. A user sends a request to the component
WebProc, which gets product information from the eCommProc, then buildsaHTML page
that is sent back to the user. In turn, the component eCommProc gets in paralel, the
product description from DBproc, a non-secure database server, and the price information
from SecureDBProc, a secure database server. DBproc performs a sequential file access,
hence the iteration for reading from disk until the desired information is found. The secure
DB makes an indexed file access, so there is no iteration when reading from disk. Note that
in order to show the intra-object behavior on the sequence diagram, one has to add some

self-messages (such as those for the user and DBproc).

The example contains a number of client-server relationships, which are realized in two
ways. The client-server relationship between the user and WebProc is realized through two
separate asynchronous messages, one for the request and the other for the reply. It is
impossible to use a synchronous message in this case because the user does not block
immediately after sending the request; instead, it goes on to displays a status report to the
user, and then it starts waiting for the reply. On the other hand, the client/server
relationships between webProc and eCommProc on one side, and between eCommProc and

each of the two databases on the other side are realized through synchronous messages.
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Note that the component eCommProc has internal concurrency, as shown by the fork/join

in both Figure 5-12 and Figure 5-13.

The Activity diagram from Figure 5-13 models the same behaviour as the sequence
diagram, but with more explicit model elements that can be annotated with performance
information. Some of the details from Figure 5-13 are only implied in Figure 5-12. The
activity diagram contains a swimlane for every concurrent component. The asynchronous
messages are represented as in Figure 5-6 described in subsection 5.3.2. A synchronous
message is represented by two related asynchronous messages, one for the request and
another for the reply. The sender of a synchronous message blocks immediately after
sending the request, and waits for the expected reply. Before receiving any kind of

message, a receiver should be ready for it.

Although there is some redundancy in the proposed activity diagram style, we have chosen
it for two reasons: @) to be able to add performance annotations as mentioned before, and b)
to create a visual clue that connects the sending and receiving of a message, and facilitates
the reading of the diagram. The object flow state attached by two dotted transitions to the
sending and receiving states represents the “handing over” of responsibility from one
component instance to the next. It is easy to follow the execution flow for the scenario and
the actions performed by each instance on its behalf (shown shaded in gray and in Figure

5-13).
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The activity diagram shows also the execution thread(s) for each individual component on
behalf of the respective scenario. We made the assumption that the instance that initiates
the scenario starts at the initial state of the activity diagram and ends at its final state. All
the other components are assumed to have a cyclic behavior, waiting in a state named
“idle” to receive their first signal that triggers them into action. At the end of the scenario,
these components will return to the idle state by default. Note that it is easy to represent a
component with internal concurrency, as for example the eCommProc component. By
collecting the partial behaviours for different scenarios, one can build the complete state

machine for every component; however, this is beyond the scope of the thesis.

5.6.1 Testing Result

The sequence diagram shown in Figure 5-12 was drawn in Rose, which is shown in Figure
5-14. The differences between Figure 5-14 and Figure 5-12 are due to the fact that Rose
does not support some features such as an branching or merging. The sequence diagram in
XMI format that were obtained from Rose is shown in Figure 5-15. After the
transformation was done, the equivalent activity diagram in XMI format is shown in Figure
5-16. The XMI file that represents the activity diagram was then imported back to Rose,
which is shown in Figure 5-17. The left-hand-side Browser window in Rose shows the
model elements that were described in the XM file. As mentioned in section Verification,

Rose cannot display the model elements that are not supported yet, e.g. object flow states.
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&3 ApplicationDemo

@ 3 Element: XM
@ [ Element: XMl.header
© I Element: XMl.content
? 3 Elerrent Model_Management.Model
D Element: Foundation Core ModelElement name

D Element: Foundation.Core.ModelElernentyvisibility
D Element: Foundation.Core.MadelElernent.isSpecification
D Element: Foundation Core GeneralizahleElement isRoot
D Element: Foundation Core GeneralizahleElement.isLeaf
D Element: Foundation.Care.GeneralizahleElement.isAbstract
Element: Foundation Core.Namespace ownedElement

@[3 Element Foundation.Core.Class

lernent: Foundation.Care Class
@ [ Elerent Foundation.Core.Class
@ [ Element Foundation.Core.Class

Figure5-15 SD in XM| Format



[ Document
9 CJElement Xmi

© [ Element XMlhaader
@ [ Element XMl content
] A Element Model_Management.Model
D Element: Foundation Core MadelElement name
D Element: Foundation.Core ModelElement wisibility
D Element: Foundation. Core ModelElementisSpecification
[} Element Foundation.Gore.GeneralzahleElementisRoot

Export to: M:thesisWWyDigestitestingleCommerceAD.xml
3 Document
@ I Elerment XM|
@ (] Element. XMl.header
@ [ Element XMl content
§ [ Element: Model_ManagermentModel
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D Element: Foundation.Core.GeneralizableElement.isRoat
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ey . 5

Figure 5-16 Display Both SD and Equivalent AD
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Chapter 6 Conclusion

6.1 Conclusion

The thesis proposed an approach to automate the XMI-based transformation from UML
interaction diagrams to activity diagrams. The thesis introduced transformation rules at
notation level and at UML metamodel level. The transformation pays attention to
concurrency/distribution and paralelism issues, and captures the following behaviora
asptects:
= The execution flow of the actions corresponding to a certain scenario, showing the
potential parallelism such as fork/join and branch/merge.
= The concurrent instances (components) responsible for each action and the explicit
“hand over” of responsibility between instances represented by the object flow
carried by messages.
= The behavior of each concurrent component as it contributes to the respective
scenario.

=  The explicit sending/receiving actions executed by each concurrent component.

The thesis investigated in detail the UML metamodel representations for interaction and
activity diagrams. It identified the participating metaclasses and their relationships in the
diagrams. With the ad of a specid metamode library NSUML, the proposed

transformation is conducted, in fact, at metaobject level. The metamodel information,
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represented in XMI format, will facilitate information exchange and provide product

interoperability among development teams in collaborative environments.

The thesis designed and implemented a Java GUI application, which takes an interaction
diagram in XMI format that produced from a UML design tool as an input and
automatically generates the equivalent activity diagram as the output by applying the
transformation rules. The application used two different techniques to process an XMl:
SAX AP is used to build data structure of a model, and DOM API is used to visualize the

internal structure of an XMI. The limitations of the implementation were also discussed.

The thesis made the first known attempt at UML diagrams transformation in terms of XMI.
Our work is one step in a larger research project aiming at deriving performance models
from UML models and integrating the results of performance analysis back to the UML
models. Although the UML standard is still evolving and the XMI standard is evolving
with it, we still believe that the conceptual approach proposed in this thesis will be

applicable to the future versions.

6.2 Futurework

A number of issues need to be addressed in the future work, some of which are currently
under way. These issues are closely related to the challenge related to the automatic
derivation of performance models from software specification and the integration of the

feedback in the UML models;
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As mentioned before, other students are doing work on deriving LQN performance
models from scenarios represented by activity diagrams annotated with performance
information. Two immediate work items are: a) to introduce Performance Profile
stereotypes and tagged values in the ID to AD transformation realized in this thesis,
and b) to integrate everything in the UML to LQN transformation.

The current transformation is actually implemented at metamodel level. It uses a
special XM reader and writer to import and export an XMI. One possible extension
is to use XSLT (eXtensible Stylesheet Language Transformation) to directly
transform an XMI into another XM, eliminating the need of the metamodel library
NSUML by a set of template rules. Each template rule contains a template and a
matching pattern to specify how to transform the input file into an output file.

An activity diagram generated in XMI format is more abstract and less readable. It
would be very useful to display such activity diagrams in a UML tool, so that the
user could see the actual UML graphical notation. An impediment to this s the fact

that, by definition, XMI does not contain layout information.
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