
Simplifying Layered Queuing Network Models

Farhana Islam, Dorina Petriu, Murray Woodside

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

{fislam|petriu|cmw}@sce.carleton.ca

Abstract. The amount of detail to include in a performance model is usually
regarded as a judgment to be made by an expert modeler and the question “how
much detail is necessary?” is seldom asked and difficult to answer. However, if
a simpler model gives essentially the same performance predictions, it may be
more useful than a detailed model. It may solve more quickly, for instance. Or a
model for a complex sub-system such as a database server may be usefully sim-
plified so it can be included in larger system models. This paper describes an
aggregation process for layered queuing models that reduces the number of
queues (called tasks and processors, in layered models) while preserving the to-
tal execution demand and the bottleneck characteristics of the detailed model. It
demonstrates that this process can greatly reduce the number of tasks and pro-
cessors with a very small relative error.

Keywords: Performance Models, Layered Queuing Networks, Model simplifi-
cation.

1 Introduction

A performance model may include a very large amount of detail about resources and
operations, which makes it difficult to create, maintain and understand, and expensive
to solve. This is often true of models created from a system design, for example, be-
cause the model includes every operation and component. Frequently many of the
model entities have little impact on the performance, and can be aggregated or ig-
nored.

This paper considers layered queuing (LQ) models of service systems with distri-
buted and layered operations and resources. It examines a process for aggregating
operations and entities in the model, and its impact on performance predictions. The
ultimate goal is a process for automatically simplifying a model to an essential core
level of detail governed by an accuracy requirement over a range of cases. The first
step is to find operations that successfully simplify some details, and this is what is
reported here.

The paper examines model-simplification operations that aggregate sub-operations
(in LQ terms, activities), operations (in LQ terms, entries), software processes (in LQ
terms, tasks), and physical resources (processors). The simplification operations are
evaluated by their effect on the system response time or, equivalently, the system

2

throughput with a finite user population. Aggregation may be vertical (along a calling
path) or horizontal (across multiple calling paths and classes of operation). Evidence
is presented based on examples, that certain simplification operations introduce only
very small errors. Restrictions on simplification that preserve the bottleneck characte-
ristics of the model (which in turn determine its capacity) are investigated.

2 Related Work

In performance models which are product-form queuing networks, there is a po-
werful and much-used simplification result in the Norton Theorem for Queues [1], by
which any subnetwork of queues can be replaced by a single server with a state-
dependent service rate. The replacement is exact in the sense that the throughput and
delay at the subnetwork interface is the same for the single server. The original result
was for a single class of customer, and it was extended to multiple classes in [2]. The
exact simplification for product form networks, and approximations that use the same
construction technique for other models, can be referred to as flow-equivalent server
(FES) methods [3]. When a submodel is replaced by a FES centre, the entire model is
smaller and easier to solve, and parameter changes outside the submodel can be stu-
died efficiently. However the FES construction method requires solving the subnet-
work many times, once for every user population that it may experience, which does
not scale well to large systems with thousands of customers.

Surrogate delay methods (e.g. [3]) replace a subsystem by a delay which is found
by solving an auxiliary model. A surrogate delay is somewhat like a FES with a fixed
delay rather than a state-dependent rate, but the construction method is different and
requires an iterative solution which includes the auxiliary model. Surrogate delays are
most useful to address problems of simultaneous resource possession, rather than
particularly for model simplification.

When performance models are fitted by regression methods as in [4], a choice must
be made for the level of detail in the model and the modeler can select a simple struc-
ture to fit (and test the goodness of fit afterwards). This approach therefore automati-
cally includes the question of detail, and can answer it through tests of goodness of fit
as discussed in [4] (this reference describes fitting ordinary queuing models but it
applies equally to layered models). However this approach cannot be applied to mod-
els constructed from a design, before a system is built.

There does not appear to be any prior work on deriving a simplified layered
queuing model directly from a detailed one. In particular there is a lack of simplifica-
tion techniques that avoid the scalability problems of calibrating an FES. This work
approximates the system by a model with ordinary multiservers with parameters de-
rived during the aggregation.

This paper demonstrates a simplification process that can be applied on a detailed
LQN model with a single class of end users, to obtain a simplified model containing
only one non-bottleneck task and one bottleneck task or processor. A number of cases
of various structures of LQN models are studied where the performance results are
analyzed after applying the proposed simplification process.

3

Section 3 describes layered queuing network models, and Section 4 presents heu-
ristic principles for simplification using two example LQN models. Section 5
presents application of simplification principles on a case study that presents and
compares performance results among different levels of simplifications. Conclusions,
limitations and future works are discussed in Section 6.

3 The Layered queuing network (LQN) model

 Layered queuing networks (LQNs) are an elegant way to express simultaneous re-
source possession and are particularly intended to model layered software systems, in
which a software server depends not just on its processor, but on other software serv-
ers as well [8]. The model represents software components, their interactions and their
deployments. An LQN model basically presents software processes as tasks, one or
more operations (or service classes) of a process as entries, interactions among differ-
ent entries as calls or requests for service, and the host processors at which tasks are
deployed. Tasks and processors are servers with queues. Fig. 1 shows an example
LQN model of a three tiered (three layered) architecture. For each task, the rightmost
rectangle represents the task itself (labeled by the task’s name and thread multiplicity
m) and the other rectangles represent its entries (labeled by entry name and host de-
mand se for one invocation of the entry e). Every task is deployed on a host drawn as
an oval. A call from one entry to another is represented as an arrow labeled with the
mean number of calls yde from entry d to entry e. A task is a multiserver (the threads
are the servers) with a single queue, usually FIFO, to hold all the calls to its entries,
thus the calls are indicated to the entries but actually go first to the task queue.

Fig. 1. LQN model of a three-tier architecture

Client {20}

request
[1e-006]
Z=[1000]

(1) (2)

ClientH
{20}

WebServer

webEntry1
[2]

(2)

webEntry2
[3]

(3)

DBServer

dbEntry1
[3.5]

dbEntry2
[4]

WebH

DbH

4

In Fig. 1, the LQN model has three tasks - Client, WebServer and DBServer each of
which is deployed on its own host - ClientH, WebH and DbH respectively. The 20
users each takes 1000 ms think time (Z) between requests. They are modeled as 20
tasks each running on its own processor ClientH. Both WebServer and DBServer are
single threaded tasks and they each have two entries with host service demands indi-
cated in braces (i.e. webEntry1 has service demand 2 ms). A single client operation
includes one request to webEntry1 and two to webEntry2. Storage devices are not
shown but they can be modeled by a task representing the storage logic (read, write
operations for example) running on a host representing the device.

LQN models of real systems can be very large, if they describe systems with many
servers, replicated servers, and storage devices. Models with a dozen layers and do-
zens of tasks are common, and hundreds of tasks may arise in complex cases or with
large scale-out by replication. These large models are cumbersome and most of the
detail does not impact the performance.

Some asymptotic (bottleneck) properties of the model can be deduced from its pa-
rameters and will be used to guide the simplification. Let:

 Ye = the number of calls to entry e, per user Request. Ye = d Yd yde , where the
sum is over all the entries, with Yrequest = 1.

 Xe = the service time of one request to entry e, including waiting for its host,
and waiting for replies to calls it makes to other entries,

 Uh = utilization of each core in host h, per user response = (1/ mh) e(h) Ye se,
where the sum is over entries of tasks deployed on h,

 Ut = utilization of each thread of task t per user response = (1/ mt) e(t) YeXe,,
where the sum is over the entries of task t.

Then the most-saturated host is the one with the largest value of Uh and the most satu-
rated task is the one with the largest value of Ut. The system bottleneck is the entity
with the largest value of S, provided it is not a client of an entity that also has a large
value of S. To identify the system bottleneck in a layered system we must consider the
possibility of software bottlenecks as discussed in [9]. Considering any task, we say
its “servers” are its processor and any tasks that it calls. The bottleneck strength of a
task is the ratio of its utilization to the highest utilization among its servers. Then a
task is a software bottleneck (and the system bottleneck) if it has the largest bottle-
neck strength (considerably greater than unity) and also a high utilization (say greater
than 0.9). If no task qualifies, then the processor with the highest utilization is the
system bottleneck. If there is a software bottleneck and a saturated processor or pro-
cessors, then there are multiple system bottlenecks; this is uncommon but possible.

4 The Simplification process

An LQN model like Fig. 1 is simplified by aggregating the activities, entries, tasks
and processors, using the following four operations. The goal is to reduce the number
of tasks and processors in the model while retaining the externally visible perfor-
mance measures, in this case the mean throughput and response time seen by the us-
ers.

5

1. Substitute the activities of an entry by a total entry demand equal to the sum of the
demands caused by executing the activities. Substitute the calls from these activi-
ties by calls from the entry, so for each destination entry the number of calls
equals the sum of the calls from the activities.

2. Merge the entries of a task. Thus all calls to these entries are redirected to the
merged entry, and all calls from these entries now originate from the merged en-
try. If this gives multiple call arcs between one pair of entries, they are merged al-
so.

3. Merge a set of tasks deployed on a common processor into one task. The entries
of each task are first merged separately, and then the merged entries are merged.
The merged call rates are calculated based on the relative throughputs of the
merged entries, as weights. The merged task’s multiplicity is the summation of
multiplicities of all the tasks that are being merged.

4. Merge a set of processors and all their tasks. The set of processors is replaced by a
single processor whose multiplicity is the sum of the multiplicities in the set, and
the merged task is assigned to the merged processor.

Simplification rules using these operations are applied with the goal of retaining the
externally visible performance measures, in this case the mean throughput and re-
sponse time seen by the users. The rules sequence the operations partly as indicated
within the operation descriptions (activities, then entries, then tasks, then processors),
and partly guided by the location of the system bottleneck.

The first principle of the simplification rules is to preserve the bottleneck task or
processor, since the capacity limit of a system is a key property. Thus operations 1
and 2 are applied to all tasks, but operations 3 and 4 are not applied to a task or pro-
cessor identified as a bottleneck.

A second principle is to preserve the total workload, so that the total throughput
and host demand of a merged entry or task, per user request, is the same as for the
entities that were merged. The third principle is to preserve concurrency, by which the
total multiplicity of a merged task or processor is equal to the sum of multiplicities of
the entities that were merged. These three principles are respected in the description
of the operations, given above.

4.1 Details of the Operations: Example 1

The detailed application of the operations, including the parameter calculations,
will be described with a running example defined by the LQN model from [6] pre-
sented in Fig. 2Fig. 2. (a). Each of a number of users ($N = 20) make one visit to the
Server task, which has one entry server with a number of activities. Some requests
from different activities are delegated to the pseudo-task BigLoop and some are re-
quested from the task Disk for diskread and diskwrite operations. Server and BigLoop
are deployed on the same processor ServerP which has a processor-shared queuing
discipline. Task Disk is deployed on DiskP with FIFO queuing discipline. From the
initial experiments, Disk and its processor are found to be the bottleneck in this mod-
el. Thus, Disk and its processor are to be preserved in the simplification process.

6

 (a) Original model from [6] (b) After aggregating the activities

Fig. 2. Aggregating activities in an example LQN model

User {20} Z=50

user
[1]

(1)

UserP
{∞}

Server {∞}

server

(1)

bigLoopDriver
[1e-006]

1.2
*

loop2
[1e-006]

loopEnd
[1e-006]

3.5
*

(1.7)

loopOperation
[0.1]

(2.3)

parA
[0.05]

parInit
[0.1]

+
0.6 0.4

parReply
[0.01]

seqInit
[0.3]

seqReply
[0.005]

serverStart
[1e-006]

BigLoop {∞}

bigLoop

first
[0.01]

fourth
[0.13]

(2)

second
[1e-006]

Disk

diskread
[1]

diskwrite
[0.04]

ServerP*

DiskP

User {20} Z=50

user
[1]

(1)

UserP*

Server {∞}

server
[0.358003]

(0.479998)

(3.75999)

BigLoop {∞}

bigLoop
[0.140001]

(2)

ServerP*

Disk

diskwrite
[0.04]

diskread
[1]

DiskP

7

The simplification operations are applied on this example and described as follows.
Some calculations can take advantage of finding a single solution of the model being
simplified, and this is assumed to be available.

Operation 1: Substituting activities. In each task t, for each entry e that has activ-
ities in its definition, the activities are aggregated. For activity i, let:

se, si = execution demand of entry e (to be found), and activity i, (given)
e, i = throughput of entry e and activity i, in any solution of the model.
wi = executions of activity i per request to entry e (this may be calculated by ex-
amining the activity graph, or from a model solution as wi = i/e)
yib = mean calls from activity i to another entry b of another task
yeb = aggregated mean calls from entry e to entry b (to be found).

Then the aggregated execution demand is
 se = i wi si (1)

and the aggregated number of calls from entry e to another entry b is
yeb = i wi yib (2)

where the sum in both cases is over the activities of entry e.
In the example, in entry server for each activity, the values of (activity name,

weight, execution demand) are (serverStart, 1, 1.e-6), (parinit, 0.6, 0.1), (parA, 0.6,
0.05), (parReply, 0.6, 0.01), (seqinit, 0.4, 0.3), (loopOperation, 1.4, 0.1), (loop2, 1.4,
1.e-6), (loopEnd, 0.4, 1.e-6), (bigLoopDriver, 0.48, 1.e-6), (seqReply, 0.4, 0.005).
Applying Eq (1) we obtain sserver = 0.358. Applying Eq (2) for the call from bigLoop-
Driver to bigLoop, the entry has the aggregated calls yserver,bigLoopDriver = 0.48. Fig. 2(b)
represents the model after aggregating all the activities from Fig. 2(a).

Operation 2: Merging Entries. The second operation merges the entries of each task
t having more than one entry. Let:

sm, sk = execution demand of the merged entry m (to be found), and of the original
entry k of task t,
ykb, ymb = mean number of calls from entry k of task t to an entry b of another task,
and from the merged entry m to entry b,
wk = weight of original entry k = fraction of all calls to task t, that go to entry k.
From any solution, wk can be found as k/k k, where the sum is over the entries to
be merged. Then the service demand of the merged entry is:

sm = k wk sk (3)
and the calls from entry m to another entry b are:

ymb = k wk ykb (4)
where the sums are over the entries to be merged in both equations.

In Fig. 2(b), only task Disk has more than one entry. So, the values of (entry name,
weight, execution demand) are (diskread, 0.797, 1), (diskwrite, 0.203, 0.04). Applying
Eq (3), sm = 1 * 0.797 + 0.04 * 0.203 = 0.805. There are no outgoing calls from Disk.
The incoming calls are simply transferred to the merged entry (if this results in more
than one call from a specific entry, the calls are merged and the numbers summed).
Fig. 3(a) represents the model after merging entries.

8

(a) after merging entries (b) after merging the Server and BigLoop tasks

Fig. 3. More merging operations

Operation 3: Merging tasks on the same processor: We consider merging two
tasks that share a host. Each task has a single entry (entries have been previously
merged if necessary). If one task calls the other, we call it vertical merging, otherwise
it is horizontal merging.

Vertical merging: Let
sa, sb, sm = the service demands of the entries a and b of the two tasks, and the entry

of the merged task, respectively.
yab = the number of calls from entry a to entry b
yac, ybc , ymc = the number of calls from entries a and b to a third entry c, and from

the merged entry m to c, respectively.
Then the service demand and number of calls for the entry of the merged task are:

 sm = sa + yab sb (5)
 ymc = yac + yab ybc (6)

User {20} Z=50

user
[1]

(1)

UserP*

Server {∞}

server
[0.358003]

(3.75999)

(0.479998)

BigLoop {∞}

bigLoop
[0.140001]

(2)

ServerP*

Disk

eDisk
[0.804746]

DiskP

User {20} Z=50

user
[1]

(1)

UserP*

MergedTask1 {∞}

mergedEntry1
[0.425204]

(4.71999)

mergedProcessor1*

Disk

eDisk
[0.804746]

DiskP

9

The incoming calls in vertically merged tasks are calculated as for merged entries.
In Fig. 3(a), Server and BigLoop both are deployed on the same processor ServerP.
They are merged in Fig. 3(b) as “MergedTask1” with an entry “mergedEntry1” with
service demand of 0.3580003 + 0.479998 * 0.140001 = 0.425204 (following Eq (5)).
The number of outgoing calls from mergedTask1 to eDisk is = 3.7599926 + 0.479998
*2 = 4.71999 (following Eq (6)).

Horizontal merging: We call it horizontal merging when there is no calling rela-
tionship between the tasks. Just as for merging two entries of the same task, the ser-
vice demand and the calls of the merged task are computed by Eq (3) and (4), where
the entry k designates the single entry of one of the tasks to be merged, and the sums
are over this set of entries. As in merging entries, the calls into the separate entries are
transferred to the merged entry m and if this results in multiple calls between a pair of
entries, the calls are merged and the numbers summed. There are no additional sets of
tasks sharing a processor in figure Fig. 3(b), so this calculation is not applied. For this
example the last step would be to possibly merge some of the processors, each having
a single task. This step will be discussed in the second example in Section 4.2.

Table 1. Performance results of three simplification operations of Example1

In Example1, the multiplicities of the tasks Server and BigLoop are infinite (i.e.,
no thread limit), whereas Disk and the Processors ServerP and DiskP are single serv-
ers.

The effect of the three levels of simplification on the model of Example1 can be
seen in Table 1. On the first row of this table, the system throughput, system service
time and resource utilizations of the original model are shown. In the subsequent
rows, the same performance metrics are reported after activity, entry and task simpli-
fications respectively. From the two rightmost columns of Table 1, it is observed that
the amount of errors incurred by each simplification is relatively low comparing to the
gain in the size of the models (discussed more in Section 5). Throughput error due to
activity and entry simplifications are less than 1%, and to task simplification is less
than 2%. The errors incurred by activity, entry and task simplifications on system
response time is less than 1%, about 2% and almost 5% respectively. Moreover, along
the simplifications steps, the utilizations of tasks and processors also remain almost
same. The system bottleneck is DiskP (the disk hardware) for all cases. Although the
Disk task is also saturated, its server DiskP is equally saturated, so Disk is not a soft-
ware bottleneck (see [9] for techniques for identifying and mitigating software bottle-
neck).

10

4.2 Details of the Operations: Example 2

Fig. 4(a) represents another example of an LQN model called “eShop” where a num-
ber of users’ requests go through StoreApp, CustomerDB, InventoryDB and FileServ-
er for read and write operations. This model has just one entry per task so it is ready
for task-level simplification. Preliminary experiments show that the bottleneck is the
task StoreShopping.

(a) Original model of eShop (b) After merging CustomerDB and InventoryDB

Fig. 4. An LQN model of eShop

In this model, tasks CustomerDB and InventoryDB are merged since they are dep-
loyed on the same processor. So, the values of (entry name, weight, execution de-
mand) are (cRW, 0.439, 3), (iRW, 0.561, 2). So, Applying Eq (3) the service demand
of the mergedTask we found, sm = 3 * 0.439 + 2 * 0.561 = 2.439 (where the through-
puts of cRW and iRW are 0.03001 and 0.03833 respectively). The number of incom-
ing calls to the merged entry is 9 since the incoming calls from storeShopping should
be directly summed up. For the number of outgoing calls, the values of (entry name,
weight, number of calls from merging entry of task to fRW) are (cRW, 0.439, 3),
(iRW, 0.561, 3). Thus, applying Eq (4), the number of calls from the merged entry to
fRW is 3 * 0.439 + 3 * 0.561 = 3. Fig. 4(b) represents the model after merging Cus-
tomerDB and InventoryDB tasks.

UserClass {40}

userBehav
[1e-006]
Z=[1000]

(3)

pUser

StoreShopping

storeShopping
[3]

(4) (5)

pWebServers

CustomerDB

cRW
[3]

(3)

InventoryDB

iRW
[2]

(3)

pDBServers*

FileServer

fRW
[4]

pFileServers

UserClass {40}

userBehav
[1e-006]
Z=[1000]

(3)

pUser

StoreShopping

storeShopping
[3]

(9)

pWebServers

MergedTask1 {2}

mergedEntry1
[2.43913]

(3)

mergedProcessor1*

FileServer

fRW
[4]

pFileServers

11

Operation 4: Merging Processors and tasks
The next step of aggregation for this example will be merging different tasks that

are deployed on different processors. In case of horizontal as well as vertical merging
of such tasks, the service demands, incoming and outgoing calls and multiplicities of
tasks are calculated as for horizontal and vertical merging of tasks on the same pro-
cessor, as discussed in Operation 3 in Section 4.1. The merged processor’s multiplici-
ty is the aggregation of multiplicities of merging processors. In Fig. 5(a), FileServer
and MergedTask1 (originally deployed on different processors) are merged.

(a) Merging tasks deployed (b) Merging processors only
on different processors

Fig. 5. More simplification operations on eShop

Table 2. Effects of the simplification operations on system Response Time and Throughput for
Example2

UserClass {40}

userBehav
[1e-006]
Z=[1000]

(3)

pUser

StoreShopping

storeShopping
[3]

(9)

pWebServers

MergedTask2 {3}

mergedEntry2
[14.4391]

mergedProcessor2*
{2}

UserClass {40}

userBehav
[1e-006]
Z=[1000]

(3)

pUser

StoreShopping

storeShopping
[3]

(9)

MergedTask2 {3}

mergedEntry2
[14.4391]

mergedProcessor3*
{3}

12

Table 3. Effects of simplification operations on Utilizations of resources of Example2

Since pWebservers is not a bottleneck processor, it can be merged with the other
non-bottleneck processor. In Fig. 5(b), processors pWebServers (multiplicity 2) and
mergedProcessor2 (multiplicity 1) are merged as mergedProcessor3 with multiplicity
3. Table 2 and Table 3 represent the performance results of the simplification process
for Example2.

From Table 2, it is observed that merging tasks CustomerDB and InventoryDB
incur only about 1% error in system throughput and system response time. Then,
merging vertical tasks MergedTask1 and FileServer incur less than 6% and 4% errors
in system throughput and system response time respectively. However processor
merging incurred much higher errors (about 17% each). We see that the database
processor utilization is only 0.16, compared to 0.81 for the file server processor.
When the total capacity is shared the contention is significantly lower for the
fileserver accesses, and this effect is even stronger after the very lightly loaded
webserver processor is merged (note that the merged processor utilization of 0.992 is
relative to a capacity of 3, so it is only 33% saturated). This effect would be much less
pronounced if the original database processor were lower. At 81% saturation it is
almost a bottleneck itself. So, merging near-bottleneck resources (tasks and
processors) degrades accuracy.

This sugggests that merging processors might not be a good idea in many cases.
But, it is also to be noted from Table 3, which shows the utilizations of tasks and
processors after the simplification operations, the system bottleneck (i.e.,
StoreShopping task) remains the same througout the simplifcation process.

In Example2, all the tasks and processors are single-threaded initially. But, after
the merging operations the number of threads of the merged resources are added to
get new multiplicites. These new multipliticies are shown in curly braces in Table 3.

5 Case study

The performance results reported in this section were obtained by simulation with
the lqsim solver [5] with a confidence interval of ±1% of the mean at 95% confidence
level. A Java application is built which takes the original LQN model as input and
generates a series of simplified models, which include models after merging activities,
entries and tasks.

We consider a complex LQN model of a Business Reporting System generated
from the Palladio Component Model (PCM) published in [7] as a case study to dem-
onstrate the application of the proposed simplification process. Business Reporting

13

System lets users retrieve reports and statistical data about running business processes
from a data base [7]. Fig. 6(a) shows the original model of our case study. This model
contains a large number of tasks, entries and activities. Fig. 6(b) represents the sim-
plified model from Fig. 6(a). The original model has two highly utilized tasks, which
are preserved in the simplified model: one is the software bottleneck of the system
and the other is a direct caller of the bottleneck tasks. The other non-bottleneck tasks
are simplified into a single non-bottleneck task. The performance results after differ-
ent steps of the simplification process (i.e., activity, entry and task simplification) are
comparable, as shown in the subsequent figures.

(a) Original model from [7] (b) Simplified model

Fig. 6. Layered Queueing Network of the Business Reporting System generated from PCM

(a) System Throughput (jobs/ms)

(b) System Throughput Error (in %)

sageScenario_BRS_usage_scenario_1_Task {50} Z=

UsageScenario_BRS_usage_scenario_1_Entry
[0]

(1)

ario_BRS_usage_scenario_1_Processo

UsageScenario_Loop_3_Task

UsageScenario_Loop_3_Entry
[0]

(1)

geScenario_Loop_3_Processo

WebServer_IHTTP_processRequest_67

WebServer_IHTTP_processRequest_67
[0]

(1.99999)

_IHTTP_processRequest_67_Processo

MergedTask39 {40}

mergedEntry39
[0.481354]

mergedProcessor39*
{40}

highly utilized
task

bottleneck

14

Fig. 7. System throughput after various simplification operations

(a) System Response Time (ms)

(b) System Response Time Error (%)

Fig. 8. System response time after various simplification operations

From Fig. 7(a) it can be seen that the system throughput of the original model is
very close to that of simplified models, obtained after activity, entry and task simplifi-
cations. Fig. 7(b) further shows that the error caused by task simplification is higher
than that of entry simplification, which in turn is higher than that of activity simplifi-
cation. This variation of error is expected, because the simplifications done for larger
model elements (e.g., task) require more approximations than simplifications for
smaller model elements (e.g., activity and entry). Also, the simplification process
incurs more errors for small number of customers, because the error caused by the
simplification process is spread over only few customers.

From Fig. 8(a), it can be observed that the proposed simplification process main-
tains the response time behavior of the system as well. For a high number of custom-
ers (e.g., N>20), the simplification error in response time is less than 5% (see Fig.
8(b)). However, for small N (e.g., N=10), the error in system response time is higher
after task simplification. On the contrary, what is important is that, throughout the
simplification process, the bottlenecks of the system remain unchanged with similar
utilizations. It was found that for N=10, the utilizations of both highly utilized tasks
before any simplification and after all the simplifications are 70% and 73% respec-
tively, which gives an error of less than 1%.

6 Conclusion

Large performance models are problematic for human and computer, as they are
difficult to maintain and take a long time to solve. This paper proposes a model sim-
plification process that compacts a given LQN model to its smallest possible size
while preserving the result accuracy level, by reducing non-bottleneck resources to a
single resource. The work shown in this paper can be extended in many ways. It needs
to be investigated whether the simplifications are associative for a set of resources. If
not, then further investigation can be done on finding the optimal order of simplifica-
tion that incurs less error. Also, models can be classified into different patterns (e.g.,
sequential, tree-like etc.) and it can be studied whether they need different rules for
finding the optimal order. The position (e.g., at the top, middle or bottom) of the bot-

15

tleneck resource as well as bottleneck intensity in a model may also affect the optimal
rule. Furthermore, traceability models can be developed to keep track of the simplifi-
cation steps so that the modeler can go back to an intermediate simplification step and
modify performance parameters if needed. The proposed simplification has been
applied so far to systems with a single class of users. Further investigation is needed
to find the effect of the simplification process on performance results for multiple
classes of users.

References

1. Chandy, K.M., Herzog, U., Woo, L.: Parametric analysis of queuing networks, IBM Jour-
nal of Research and Development, Vol.19, Issue 1, Pages 36-42 (1975)

2. Kritzinger, P.S., Wyk, S.V., Krzesinski, A.E.: A generalization of Norton’s theorem for
multiclass queueing networks, Performance Evaluation, Volume 2, Issue 2, Pages 98-107
(July 1982)

3. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C. Quantitative system perfor-
mance - computer system analysis using queueing network models, Prentice Hall. ISBN:
978-0-13-746975-8 (1984)

4. Woodside, M.: The Relationship of Performance Models to Data, Proc SPEC Int Work-
shop on Performance Evaluation (SIPEW), Darmstadt, Lecture Notes In Computer
Science, Vol. 5119, pp 9 - 28 (2008)

5. Layered Queuing Network homepage. http://www.sce.carleton.ca/rads/lqns/
6. Woodside, M.: Tutorial Introduction to Layered Modeling of Software Performance, Edi-

tion 4.0, RADS Lab: http://www.sce.carleton.ca/rads/lqns
7. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically Improve Software Ar-

chitecture Models for Performance, Reliability, and Cost Using Evolutionary Algorithms,
Proc. First Joint WOSP/SIPEW International Conference on Performance Engineering,
Pages 105-116 (2010)

8. Franks, G., Al-Omari, T., Woodside, C.M., Das, O., Derisavi, S.: Enhanced Modeling and
Solution of Layered Queueing Networks, IEEE Trans. on Software Eng. Vol. 35, No. 2
(2009)

9. Franks, G., Petriu, D., Woodside, M., Xu, J., Tregunno, P.: Layered bottlenecks and their
mitigation, Proc of 3rd Int. Conference on Quantitative Evaluation of Systems QEST'2006,
Pages 103-114, Riverside, CA, USA, Sept. 2006.

