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ABSTRACT 
This paper is part of a larger research project aiming to integrate 
dependability analysis in the early phases of the software 
development process, by generating and analyzing Stochastic 
Reward Net (SRN) models from UML software models. The 
paper is focused on adding fault tolerance to software designs by 
using Aspect-Oriented Modeling. More specifically, single-
version fault tolerance tactics are modeled as generic reusable 
aspects annotated with dependability attributes. The paper 
describes how the generic aspects are instantiated, bound to the 
context and composed with the original UML software model. 
Since an SRN analysis model is generated from the UML model, 
the paper discusses what kind of transformation rules are 
necessary for translating fault tolerance tactics from UML to 
SRN, giving as an example the transformation rule for checkpoint 
synchronization. A case study illustrates the proposed approach. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
reliability; D.2.13 [Software Engineering]: Reusable Software – 
reuse models. 

Keywords 
Fault Tolerance, Dependability Analysis, Model Transformation, 
Aspect Modeling. 

1. INTRODUCTION 
The dependability of a system is defined as the ability to avoid 
failures that are more frequent and severe than is acceptable [3]. It 
encompasses a set of attributes such as availability and reliability. 
Performing early quantitative dependability assessment and 
reasoning based on annotated architectural and behavioral models 
will help modelers to take the right design decisions for meeting 
the requirements. Our ultimate objective is to integrate 
dependability analysis in the model-driven software development 
process, by deriving automatically analysis models (based on Petri 
Net or other formalism) from UML software architectural and 
behavioral models, and by using the analysis results to provide 
feedback to the developer about dependability improvements. In 
our previous work, we introduced an automated dependability 
analysis framework that considers erroneous behavior and failure 

propagation of component based systems, called Component 
Erroneous Behavioral Aspect Modeling (CeBAM) [1]; we also 
proposed a set of transformation rules [2] to automatically derive 
Stochastic Reward Net (SRN) analysis models from UML 
architecture and behavior models annotated with MARTE profile 
and the dependability profile (DAM) [5, 19]. This paper is 
continuing the work toward such an objective, with the focus on 
using Aspect-Oriented Modeling (AOM) for adding fault 
tolerance mechanisms to software designs. The paper presents the 
Single Version Fault Tolerance Aspect Modeling (SvFTAM) 
approach that capture architectural and behavioral models of 
single fault tolerance tactics as generic reusable aspects annotated 
with formal dependability attributes. 

Fault avoidance and removal techniques help in designing and 
building systems that anticipate, recognize and correct faults at 
runtime. It is known that developing and deploying a software 
system free of faults is hard to achieve, even for the most 
experienced people using the best available tools [11, 14]. In 
order to prevent system failures during operation, fault tolerance 
techniques are introduced to tolerate erroneous states and recover 
the system by bringing it back to a correct state. According to [3], 
“fault tolerance means to avoid service failure in the presence of 
faults”. Fault tolerance mechanisms applied to the software 
architecture and behavior help to improve the overall system 
dependability and to deal with unpredictable situations, ensuring 
that the system behavior remains acceptable during operation. 

Software fault tolerance techniques can be categorized in three 
groups. The first is design diversity or multi-version techniques, 
where many replicas with different implementations are 
developed from the same specifications, but by different teams 
and different programming languages. Examples are the recovery 
block and N-version programming. The second group, data 
diversity, uses identical replication, but each replica will be 
executed with different data generated by data re-expression 
mechanisms from the original data. Example of this category is N-
copy programming [14, 22]. Single-version fault tolerance (SV-
FT) is the third category, based on redundant software modules 
that can detect faults and apply recovery actions, such as 
restarting or switching to a redundant spare module deployed on a 
different node. Exception handling, checkpoint, restart, and 
process pairs are examples of SV-FT techniques [23]. 

Increasing redundancy by identical replication is a common 
approach for fault tolerance in hardware. According to [14] this 
approach is not applicable to software, which is deterministic and 
thus each replica receives and processes the same data; instead, 
design diversity needs to be used. However, the work in [10, 24] 
introduces a new thinking in software fault tolerance based on 
environmental diversity as opposed to design diversity. Software 
bugs are classified into two categories: Bohrbugs and 
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Mandelbugs. The former is manifested consistently under known 
conditions and should be fixed during testing, while the later is 
hard to reproduce and it has complex error propagation. In [24] it 
is shown that the failures caused by Mandelbugs are more 
predominant. Restart, reconfigure and reboot are techniques 
employed to recover from Mandelbugs. In practice, availability 
tactics presented in [4] depend on redundancy or retry of a single 
version. Indeed, design diversity is not widely adopted in practice 
due to its high cost and effort, being used only for mission critical 
systems. 

Adding any kind of fault tolerance mechanism is expected to 
improve the system's reliability and availability, but the effects are 
non-trivial due to the dependency of such mechanisms on the 
software context [6]. In fact, each fault tolerance technique needs 
to be customized and tailored to the application using it. Our 
proposed approach aims to provide quantitative data for 
supporting an easy comparison of different fault tolerance tactics, 
in order to select the best solution for a given system.  

In this paper, we address the above issues by introducing the 
SvFTAM approach that models single version fault tolerance 
tactics as generic reusable aspects. Our work has been inspired by 
the new vision of software fault tolerance introduced in [4, 24]. 
We illustrate our approach with three reusable fault tolerance 
tactics: spare with checkpoint, standby spare, and retry. A generic 
aspect is instantiated and then its parameters are bound to the 
application context. The resulting context-specific aspect models 
are then composed with the original design model.  

Applying fault tolerance to software architecture usually requires 
adding new components and modifying the existing ones, 
therefore the overall architecture changes and becomes harder to 
maintain. To overcome this issue, we replace a component 
without fault tolerance with a single composite component which 
contains the original component (possibly replicated) and a fault 
tolerance manager, preserves the original interfaces and has fault 
tolerance capabilities to recover from internal manifested failures 
and to prevent failure propagation (as described in section 3). 

The main contribution of this paper is threefold. First, we 
introduce the SvFTAM approach that applies fault tolerance 
tactics to the UML software architecture and behavior using the 
AOM approach. In a simple case study, we show how to model 
SV-FT tactics and then present an automated process for aspect 
instantiation and composition with the basic UML model, which 
represents not only the normal behavior, but also the erroneous 
behavior and failure propagation following the CeBAM approach 
introduced in our previous work (see sections 3 and 4). Secondly, 
we discuss what new transformation rules are necessary to map 
the elements of a fault-tolerance tactic to SRN, in order to extend 
the original SRN analysis model with the respective fault-
tolerance tactic, giving the checkpoint transformation as an 
example. Third, we illustrate how to approach the analysis by 
solving and comparing the derived SRN models before and after 
applying fault tolerance as explained in section five.   

The paper is organized as follow. Section 2 presents the Vehicle 
Tracking System (VTS) case study modeled according to 
CeBAM. Section 3 describes SvFTAM by modeling three SV-FT 
tactics. Section 4 illustrates the process of aspect instantiation and 
composition, whose effect is to refactor the case study model by 
adding the spare checkpoint tactic to the original design. Section 5 
discusses how to approach the analysis of the derived model and 
what transformation rules are necessary to map the elements of 
the fault-tolerance tactic to SRN, giving as example the 

checkpoint transformation. Section 6 discusses related works and 
section 7 concludes and summarizes the future work. 

2. CASE STUDY SYSTEM 
Vehicle Tracking System (VTS) is used as an example throughout 
this paper to illustrate the process of applying reusable single 
version fault tolerance tactics to a software architecture and 
behavior. The long-term objective is to automatically refactor the 
initial software design by adding different fault tolerance 
solutions, to generate the corresponding SRN analysis models and 
to compare quantitatively their effects on dependability attributes, 
such as availability and reliability.  
The paper focuses on VTS systems used in vehicles to send 
periodic status update to the central monitoring system, providing 
vehicle location and other basic information. A system with 
similar functionality can be installed in taxi, police patrol cars and 
cargo trucks to provide the central control system with 
information about the vehicle such as current location. We model 
the VTS system according to the CeBAM approach introduced in 
our previous work [1], which considers failure propagation 
between components. We focus on periodically sending vehicle 
location update as the most critical scenario.  

 

 
(a) Components involved in update location scenario  

 

 
(b) Internal behavior of Tracking Data Service Component 

Figure 1. VTS case study 
Any failure in this scenario will affect the system availability and 
reliability. Figure 1(a) shows the components involved in the 
scenario, as well as their deployment. Vehicle Location Tracker is 
the active component that will periodically report the vehicle 
location to the Tracking Data Service component by calling the 
newUpdate() operation. Once Tracking Data Service component 
receives the location update, it will perform a set of actions 
depicted in Figure 1(b). For the sake of simplicity, we model only 
one failure mode (represented by the states Update Map Error and 
Unable to update). We annotate the model with MARTE+DAM 
profiles with information to be used in the derived SRN model, as 



explained in the last section of this paper. Note that we do not 
show here the port behavior state machines as recommended in 
CeBAM due to limited space. However, applying SvFTAM will 
not modify the port behavior of the original components, that have 
already passed the conformance and compatibility verification 
phase [1, 2]. The VTS system reliability and availability is an 
important non-functional property. Therefore, to achieve high 
reliability and availability, we have to avoid any single point of 
failure (such as Tracking Data Service component) by adding a 
fault tolerance mechanism to the initial design, as described in the 
following section. 

3. SINGLE VERSION FAULT 
TOLERANCE ASPECT MODELING  
Single version fault tolerance tactics [4, 11] have been widely 
used as best practices to improve system reliability and 
availability. However, there is a lack of modeling approaches able 
to represent these tactics in a generic reusable form, along with 
dependability annotations, which can be used in early software 
design phases. One of the main challenges is to customize and 
tailor the generic models to the software context in order to get 
accurate results in terms of dependability improvements. In order 
to model SV-FT tactics as reusable models we use AOM [25] to 
describe the structure and behavior of the selected tactics. In 
SvFTAM the generic structure and behavior of fault tolerance 
tactics is captured according to the CeBAM approach [1].  In 
order to reuse these generic tactics, we employ model 
transformations to automate the instantiation of context-specific 
aspects and to compose them with the basic model.  

In any fault tolerance mechanism, four basic actions are taken to 
tolerate an erroneous state. First, the error detection action 
determines the erroneous state. Next, during the processing phase, 
two actions focus on assessing the damage, identifying the cause 
of the error and restoring the system to its normal state. The last 
action uses the recovered state to continue the service and the 
normal operation [11, 14, 22]. All reusable single version fault 
tolerance tactics in our approach are modeled according to 
CeBAM [1] that captures normal and erroneous behavior. The 
detecting mechanism in our approach is started by the primary 
component, which sends a notification message (i.e., raising an 
exception), to the fault tolerance manager component. In such a 
case, a recovery action will be taken by switching the control to 
the redundant component, which then resumes the request. 

 
Figure 2. SvFTAM overall approach 

We have created the AspectComponent UML2 profile to model 
fault tolerance tactics as generic reusable aspects annotated with 

dependability attributes. We consider single version fault 
tolerance tactics as crosscutting concerns, which can be applied to 
different components in the system. A point cut is a query that 
identifies the join point(s) in the base model where the aspects 
should be composed. To fully automate the process of selecting 
and composing aspects, we specify a point cut as an OCL query 
string in AspectComponent profile. During the composition 
process, the OCL query will be passed to an OCL parser 
implemented as a QVTO black-box module, for parsing and 
executing the OCL query [20]. As shown in Figure 2, the generic 
aspect template of a selected tactic will be instantiated and the 
template parameters (parameters name start with “|” symbol) will 
be bound to context values, thus obtaining an application-specific 
aspect that will be composed with the base model. 

As illustrated in Figure 2, the original design (architecture and 
behavior) is built by the developer according to the user 
requirements. A dependability expert will augment the initial 
design in two phases. First, he/she will capture the erroneous 
behavior and will apply the required dependability attributes using 
the CeBAM, MARTE, and DAM profiles [1, 5, 19]. As shown in 
our previous work, erroneous behavior will be modeled as a 
context specific aspect, which is composed with the normal 
behavior using model transformation techniques. The next phase – 
which is the focus of this paper - is to refactor the software 
architecture and behavior by applying fault tolerance tactics to the 
most critical components. Different fault tolerance reusable 
aspects can be selected from a predefined library. A SV-FT 
weaver implemented in QVTO automates the process of obtaining 
the context-specific aspect and composing it with the basic model. 
The composed model (architecture and behavior) will be passed to 
another transformation chain (SM2SRN) to derive the SRN 
analysis model.  

Adding fault tolerance will introduce more complexity in the 
software models. To mitigate this issue, SvFTAM will replace the 
most critical component in the scenario with a composite 
component, preserving the original interfaces; the new component 
embeds a set of components working together to provide fault 
tolerance capabilities. In the following examples, it contains two 
identical replicated components offering functional services, 
which are copies of the replaced simple component. These 
replicas are deployed on different nodes and their internal 
behavior is refactored to support fault tolerance actions (i.e., 
failure notification). In addition, the new component contains a 
fault tolerance manager component dedicated to managing fault 
tolerance behavior by detecting failure notifications and switching 
between replicas in case of hardware and software failure.  

3.1 Spare with Checkpoint Tactic 
This tactic, also known as warm spare, was originally described in 
[4]. It has an active component that periodically updates the state 
of the redundant spare using a checkpoint mechanism. The 
architecture changes include a new auxiliary component for 
detecting failure, as well as modifications to the component 
internal behavior to send checkpoint synchronization to the other 
replica. Our proposed SvFTAM approach will limit the changes to 
just one component and keep all the other dependent components 
unchanged. Figure 3(a) captures the structure of this tactic as a 
generic reusable aspect model. 

As already mentioned, the aspect model is a single composite 
component including two replicas that provide the functional 
services specific to the application. The fault tolerance manager 
component manages fault the tolerance behavior, detecting 



failures and switching requests between replicas. The primary 
replica will send a checkpoint update to the secondary replica. In 
case of a failure, the primary component will notify the fault 
tolerance manager about the manifested failure. As a recovery 
action, the fault tolerance manger will switch the control to the 
second component, which will resume the execution from the 
most recent updated checkpoint. The fault tolerance behavior is 
executed inside the composite component and does not affect the 
other components from the original software architecture. In 
modeling this tactic’s structure, we use the AspectComponent 
profile that is a part of CeBAM profiles set, as well as the DAM 
profile for dependability annotations [5]. The main composite 
component stereotyped PointCut is used by the transformation 
tool to identify the critical component, as specified in the 
OCLQuery attribute. It is also stereotyped as Refactor, which will 
guide the transformation to replace the selected component in the 
base architecture model with a composite component. Note that 
the port(s) of the replaced component will not change and we just 
add delegation connections from the main port to each replica to 
pass the incoming or outgoing messages. Therefore, there are no 
changes in the other original component(s), which are unaware of 
the component replacement which is the effect of the aspect 
application. New activities and actions must be added to the 
original behavior of both replicated components to support fault 
tolerance. In order to automate refactoring the internal behavior of 
the replicated component we develop four generic aspects models 
as shown in Figure 3 (b, c, d, e). 

First, the standby refactor aspect will be instantiated once to 
modify the behavior of both replicas to start initially in standby 
mode and remain in that mode until receiving a setPrimary 
message from the fault tolerance manager. This aspect model has 
two states stereotyped with pointCut that are used to identify the 
source and target states in the base model. As explained earlier, 
the string value of the OCLQuery attribute will be passed to the 
OCL parser, which returns the join point in the base model. A 
similar technique is used for the transition stereotyped by Refactor 
to either replace a model element or to modify its attributes. It 
starts by identifying the transition in the base model using 
OCLQuery and then modifies its destination to the new added 
state (i.e., Standby). In addition, any model element stereotyped 
with Add will be treated by the transformation as a new behavior 
that needs to be added to the base model. Figure 3(c) shows the 
second refactor aspect, dedicated to refactoring failure modes 
states by adding an entry operation, which is used to notify the 
fault tolerance manger about the failure. In consequence, the 
control is either switched to the spare, or failure propagation is 
allowed in the case of failure in the spare component.  

The Role interface is implemented by each replica to provide a 
service invoked by the fault tolerance manager to set the primary 
component. The main difference between setPrimary() and 
setPrimary(ChcekpointName) operations is that the former will be 
called during the initialization of the component, while the later 
will be called after a failure to resume the service from the last 
updated checkpoint. In fact, the implementation of these interfaces 
depends on the fault tolerance manager behavior. For instance, in 
our case the first replica will be always the primary component, 
until a failure occurs, in which case the second replica will resume 
the service from the most recently updated checkpoint. 

In this tactic, the primary component will keep the spare 
component updated by sending periodic state updates. Figure 3(a) 
shows the checkpoint interface implemented by the second 
replica, which is the checkpoint receiver. In order to capture this 

behavior, we need to refactor the internal behavior of both 
replicas, by adding a checkpoint state in similar join points. 
However, the first replica will act as checkpoint sender, while the 
second will act as receiver. Therefore, we develop two refactor 
checkpoint aspects. It is the responsibility of the dependability 
modeler to insure that the checkpoint states are added in similar 
join points using OCL queries. Figure 3(d) shows the sender 
refactor aspect, which has an entry action for sending a 
checkpoint synchronization request to its counterpart.  

 

 
(a) Composite component aspect of spare with checkpoint 
tactic 

 
(b) Standby refactor aspect 

 

 
(c) Failure mode refactor aspect 

 
(d) Sender checkpoint refactor aspect 

 
(e) Receiver checkpoint refactor aspect 

Figure 3. Spare with checkpoint tactic: structural and 
behavior aspects models 

The call is synchronous, as the checkpoint sender waits for an 
acknowledgment from the receiver. A special transformation rule 
that maps the checkpoint behavior to SRN is presented in section 
5.1.The fault tolerance manager has two main tasks: it acts as a 
failure detector receiving failure notifications from the replicas 
and it decides which component is the primary and when to 
switch the control to the standby component in case of 



unrecovered failure. Both replicas start in the standby mode, until 
the fault tolerance manager sends the setPrimary message to the 
first replica. The primary replica keeps the standby replica 
updated by sending checkpoint updates, as already mentioned. 
Any incoming message will be passed to both replicas, but only 
the primary component will handle the request and the standby 
component will simply ignore it. A failure will propagate to other 
outside components only if the second replica fails, too. Software 
repair behavior is not considered in this tactic. However, the failed 
component due software failure will be repaired only if the 
hardware restarted. The fault tolerance manager behavior and the 
number of checkpoints can be customized according to the 
software context. For instance, it can detect the failure of the 
primary component due to hardware failure and then it switches to 
the second active redundant component. 

3.2 Standby Spare Tactic 
The structure of the standby spare tactics has two identical 
redundant components: one of them active and the second in 
standby mode. If the primary replica fails, then the fault tolerance 
manager will switch the control to the standby component to start 
handling the request form the beginning. Indeed, such behavior is 
suitable for systems with high reliability requirements [4]. The 
structure is modeled as a reusable aspect template by following 
similar concepts as in the previous tactic (see section 3.1), but 
without adding checkpoint interface between the two replicas.  
For the behavior we apply the same standby refactor aspect and 
failure mode aspect from Figure 3(b) and Figure 3(c), 
respectively. During fail over to standby component, the fault 
tolerance manager will call the setPriamry(serviceName) method 
implemented by the second replica to change its mode to primary 
and to start over the processing for the failed service from the 
beginning based on the service name passed as a parameter. A 
special transformation rules is implement to capture this behavior 
in the analysis model. 

3.3 Retry and Restart Tactics  
In principle, the previous tactics depends on replicating identical 
software components on different deployment nodes, without 
modifying the software behavior. It helps to avoid the effects of 
Mandelbugs by masking the failure and trying to process the 
request again on a different node hosting another instance of the 
same software component. However, the retry tactic depends on 
an error detection mechanism that identifies the erroneous state 
and retries the failed action before the failure mode manifested. 
This behavior can be modeled using CeBAM by including the 
retry action in the erroneous aspect model. 

 
Figure 4. Restart aspect     

The restarting tactic is a similar single version FT tactic that 
forces the software component to restart if any local failure mode 
is manifested. The restart behavior is modeled as a separate aspect 
that can be applied to the component internal behavior as shown 
in Figure 4. In this aspect the source state point cut will be the 
failure mode state while the target point cut state will be the initial 
state of the component internal behavior.   

4. ASPECT COMPOSITION 
The proposed process of using aspects for refactoring the software 
architectural and behavioral models in order to add fault tolerance 
capabilities is illustrated in Figure 5. As discussed in the previous 
sections, single version fault tolerance tactics can be modeled as 
generic reusable aspect models, which are then instantiated and 
their parameters bound to application specific values, producing 
context specific aspect models. 

 
Figure 5. Refactoring Aspect to add fault tolerance 

We choose to specify the point cuts as OCL queries, represented 
by string attribute of the stereotype PointCut. For instance, Figure 
3(a) shows a parameterized OCL query expression as a string. 
Before the instantiation, the modeler will provide values for the 
template parameters to build up the complete query (e.g., the 
component name). During the aspect composition, the refactoring 
engine will invoke the OCLParser to parse and execute the OCL 
expression for finding the join points. 

In the case of the VTS system we refactor the base model 
(architecture and behavior) by adding the fault tolerance tactic 
“spare with checkpoint”. At the architecture level we just need to 
replace the Tracking Data Service component with a composite 
component that supports fault tolerance, keeping all the other 
dependent components unchanged. The modeler is expected to 
provide values for the template parameters such as component 
name and OCL query parameters. The refactoring engine will use 
the AspectComponent profile stereotypes as composition 
directives to guide the refactoring process. It starts by looking for 
PointCut stereotype and passes the OCLQuery string to the 
OCLParser black-box code to parse and execute the OCL 
expression for identifying the join points in the base model. In this 
case, the query should return at least one component (i.e., 
Tracking Data Service).  

The next step in the transformation algorithm is to replace the join 
point element with a composite component (instantiated as a 
context specific aspect) which is stereotyped with Refactor. Note 
that this replacement will preserve the existing ports and 
connections with the other original components. An internal 
redundant component stereotyped with Refactor is in fact a copy 
of the replaced component in the original model. Every model 
element stereotyped with Add will be added as a new model 
element in the final woven model. Figure 6(a) shows the 
refactored architectural model obtained as a result. 



The internal behavior of both replicated components is similar. It 
is refactored by three aspects. The first aspect will add a standby 
state after the initial PseudoState and a new transition triggered by 
the event setPrimary sent by the fault tolerance manager. The 
second aspect will refactor all failure mode states by adding an 
entry operation to notify the fault tolerance manager about the 
failure manifestation. The last aspect is the checkpoint aspect, 
which will be added in the same joint point to each replica, but 
with different behavior. Tracking Data Service Replica1 acts as a 
checkpoint sender, while Tracking Data Service Replica2 acts as a 
receiver. To ensure that the checkpoint is added in the same join 
point in each replicas we verify the result of PointCut OCL query 
during composition. Figure 6(b) shows the internal behavior of the 
contained primary redundant component. The behavior of the 
second redundant component will be identical to the primary 
component, except for the checkpoint state, which receives 
updates rather than sending them. 

 

 
(a) Components involved in the update location scenario with 

fault tolerance tactic 
 

 

(b) Internal behavior of Tracking Data Service Replica1 

Figure 6. Applying spare with checkpoint tactic to VTS case 
study 

5. DEPENDABILITY ANALYSIS  
The dependability model of a system describes the failure and 
repair process of each component and also captures the failure 
propagation between software components, as well as failure 
propagation from a hardware node to the hosted software. In 
practice, software engineers model the normal behavior of the 
system and ignore the erroneous behavior due to its complexity. 
In our previous work [1, 2] we introduced a modeling approach 
that utilizes Aspect Modeling to separately model component 
erroneous behavior annotated with dependability information 
using the MARTE and DAM profiles [5, 19]. We extend this 
approach here to model fault tolerance patterns as generic aspects 
that can be applied automatically to any design. The purpose is to 

help developers to quantitatively compare different design 
alternatives, in order to estimate the improvement brought by 
different fault tolerance tactics in terms of reliability and 
availability. 

We developed a tool based on QVTO and Acceleo [18, 20] that 
perform a set of model-to-model and model-to-text transfor-
mations to derive an SRN dependability analysis model. The 
proposed analysis approach is carried out through the following 
steps: 1) apply erroneous aspect to the normal behavior of each 
component; 2) iteratively derive SRN models for each component 
and compose them according to the system architecture; 3) verify 
conformance and compatibility between software components by 
analyzing the structure of the derived SRN; 4) extend the SRN 
model by adding deployment SRN subnet; 5) generate CSPL code 
from SRN model (where CSPL is the input language to the SPNP 
solver [8]). The SvFTAM patterns can be instantiated and applied 
to the original design after applying erroneous behavior aspects. 

DAM profile allows software engineers to specify the output 
dependability measures of interest [5]. These measures are 
computed by solving the derived analysis model to get results that 
can be interpreted to improve the system design. We are interested 
here in unreliability and instantaneous availability of the system. 
According to our approach, the derived SRN model describes the 
healthy states along with erroneous behavior and failure 
propagation. Considering unreliability, i.e., the probability that the 
system has failed by time t, we just focus on failure mode states of 
the system. On the other hand, for the instantaneous availability 
we need to compute the probability that the system does not arrive 
to any failure mode by time t. Both of these measures are 
computed using transient analysis. For instance, if Pi(t) is the 
probability of the system being in state i at time t, then the 
unreliability is computed by summing the probabilities that the 
system is in any state i whose corresponding marking contains at 
least one token in a failure mode place [15]. 

One of the advantages of SRN is the ability to define a reward rate 
function for the system states of interest. To compute the 
unreliability of the system, we define a reward rate function as: 
URi = if (#(P_failureMode_i) >= 1 || (#(P_failureMode_j) >= 1) 
1 else 0. This function includes all possible failure modes in the 
system. The unreliability is determined by performing first 
transient analysis to compute Pi(t) of each state and then compute 
the reward rate function given above. The reliability is given by 
R(t)=1-UR(t). The instantaneous availability and mean time to 
failure measures are computed in a similar way, by defining a 
reward rate for each measure of interest. In SRN, rewards can be 
used in conjunction for both transient or steady state analysis. 

5.1 SRN Derivation Rules 
SRN is a variety of stochastic Petri nets that has some interesting 
features such as reward rates and marking dependency. In SRN 
any tangible marking can be associated with a reward rate. 
Moreover, the marking dependency is an essential characteristic 
of SRN that allows for defining model parameters as a function of 
the number of tokens in particular places [17]. Marking 
dependency was introduced for the convenience of the modeler, as 
it may simplify the model specification. For instance, arc 
multiplicity, transition guard and firing rate can be defined with 
marking-dependent feature to simplify the graphical model. 

As mentioned in the introduction, the long-term objective of our 
research is to automatically derive dependability analysis models 
from annotated UML software models, in order to predict 



dependability properties (such as reliability and availability) of the 
software architecture in the early development stages. In our 
previous work [2] we proposed a set of transformation rules for 
deriving SRN analysis model from an annotated UML software 
model without fault tolerance capabilities and without considering 
the fault assumption of the deployment nodes.  

 
Figure 7. Derived SRN model for Tracking Data Service with 

deployment 
 

Table 1. Hardware failure propagation SRN guards 

Guard Name Function 

Gf if (#(P2_node1Down) == 1) 1 else 0  
Gr if (#(P1_node1Up) == 1) 1 else 0  

 

In this paper we propose an aspect-based approach for extending a 
software model with fault tolerance tactics. Since we intend to 
derive also the SRN model of such a system, we need new 
transformation rules for translating from UML to SRN the 
elements of the fault tolerance tactic added to the original 
software model. For instance, if we consider the “spare with 
checkpoint” tactic, we need transformation rules for the following 
elements of the tactic: setting the primary component, checkpoint 
synchronization, failure notification, and switching control to 
other replica. Among these transformation rules, the one for 
failure propagation from a deployment node to the hosted 
software behavior and checkpoint synchronization are the most 
complex rules, so we will briefly discuss both in this section. 

The initial derived analysis model represents only the software 
Platform Independent Model (PIM) since it does not include the 
failure specification from the hardware nodes. The derived SRN 
model needs to be refactored to derive Platform Specific Model 
(PSM). We use UML component and deployment diagram to add 

a SRN subnet for each node as shown in Figure 7(b). Each 
software component is allocated to a hardware node, therefore a 
hardware failure propagates to the software, causing the loss of 
any request that is being processed or cashed. In such a case, the 
two SRN subnets must be synchronized in a way that the software 
SRN subnet model goes to the failure mode if the hardware node 
is down and it goes back to the initial state if the hardware node is 
repaired. In order to represent this synchronization without any 
additional complexity, we make use of a SRN feature that can 
simplify our model, namely guards to model failure propagation 
from the SRN hardware subnet to the allocated software subnet.  

In Figure 7 we have two SRN subnets: subnet (a) is the derived 
SRN model of the Tracking Data Service component internal 
behavior and subnet (b) the failure and repair behavior model of 
the hardware node hosting this component. To model the failure 
propagation between hardware node and hosted software we add a 
set of guarded transitions as shown in Table 1. For instance, the 
t6_node1Down transition that has Gf guard is fired only if the 
hosted node SRN subnet is in failure mode (i.e. P2_node1Down 
has a token). During the normal operation the software the SRN 
subnet will be in one state at a time; if the hardware node goes 
down the guarded transition attached to that state will be enabled 
causing the loss of the request and switching to failure mode. 
Moreover, once the hardware node recovers, the guarded 
transition t11_node1Up is fired, allowing the software SRN 
subnet to be started again from the initial place to model software 
starting up after hardware recovery. 

The striped places in subnet (a) will be used to compose the 
component internal behavior with its port protocol state machine. 
These places represent the event pool of the component internal 
state machine and it may contain many tokens that represent 
incoming and outgoing requests. Failure of the host node will 
trigger the flushing out transition of all pending requests. This is 
modeled by a guarded immediate transition with an input arc with 
marking dependent multiplicity, to be enabled once the host node 
is down.  

As explained in section 3, a checkpoint may be added in different 
places of the main behavior of the replicas in order to synchronize 
their data state. In software, a checkpoint synchronization 
message is periodically sent from the primary replica to the spare 
replica along with the checkpoint name as a parameter. We need 
to map this semantic to the SRN model, to have a generic 
checkpoint mechanism without introducing extra complexity in 
the analysis model. Tokens in SRN models do not carry any 
information, so we cannot use them to carry parameters. However, 
we use SRN guards again for synchronizing transitions. Figure 8 
shows a generic SRN model for checkpoint synchronization using 
a set of transition guards.  

The transition T_entry_updateCheckpoint1R1 of the sender 
component (Replica1) will send a checkpoint synchronization 
request by depositing a token in the shared place called 
P_request_checkpoint. We assume that the communication 
between replicas is immediate and never lost.  In the software 
model the type of checkpoint message is synchronous, therefore 
the sender component will wait for an acknowledgment from the 
replicated component. To map this semantic, we add the guard 
Gs1 to T_Ack1R1 transition of the sender component that will 
prevent it from firing until a token is deposited in the 
P_init_Checkpoint1R2 place of the receiver component. Another 
approach to model the acknowledgement could use a return path 
from Replica1 to Replica2, but this would add more places and 
transitions to the model.  



 
Figure 8. Checkpoint synchronization SRN model 

 
Table 2. Checkpoint synchronization SRN guards 

Guard Name Function 

Gs1 if (#(P_init_Checkpoint1) == 1) 1 else 0  

Gc1 if (#(P_finish_Checkpoint1)== 1) 1 else 0 

Gr1 if (#(P_inti_Primary) == 1) 1  else 0 

Gf1 if (#(P_init_Checkpoint2) == 1 or ..    
     #(P_init_CheckpointN) == 1 ) 1 else 0 

 

In the receiver (Replica2), a token will be placed in 
P_request_checkpoint place that represents the receiving of a 
checkpoint update message, but this token does not carry 
information indicating which checkpoint place should take it. In 
order to deposit the received token in the correct checkpoint place 
that matches the place in the sender component, we add a 
T_checkpointiR2 transition (where i=1,N) for each checkpoint 
place in the receiver component. Each transition has a guard that 
checks the marking of the corresponding checkpoint in the sender 
component, as shown in Figure 8 and Table 2. Now just one 
T_checkpointiR2 transition will fire to receive the message. 
Transition T_cleani (where i=1,N) and its associated guard is 
added for each checkpoint transition to flush out the token once a 
new checkpoint update was received from the sender component 
and for every new request processed by the primary replica.  

In case of failure manifested in the primary replica, the fault 
tolerance manager will change the state of the second replica to 
primary and then a T_resumei transition will be enabled to 
complete the execution of the request from the last updated 
checkpoint. 

5.2 Setting the SRN Parameters 
We use different UML diagrams to model the system. Component 
diagram(s) along with deployment diagram capture how the 
software components are composed and what are the provided and 
required services. Moreover, it shows the deployment of the 
software component instances on hardware nodes (see Figure 7). 
Behavioral state machine describe component internal behavior, 
while extended protocol state machine describe the provided and 
required services along with failure propagation. The component 
diagram will be used to guide the composition of the derived SRN 
model from each component state machine. MARTE and DAM 
profiles are used in our approach to augment the UML design 
with annotation dependability specifications that will be mapped 
to SRN parameters [5, 19] 

Each deployment node is transformed to an SRN subnet that  
models the failure and repair of each node in the system, as shown 
in Figure 7(b). The annotations applied on this model are 
DaComponent, DaConnector and GaCommHost. DaComponent 
is applied to a hardware node to describe the aspect failure and 
repair. The transition rate of T2_fail is mapped to the 
failure.occurenceRate, and the rate of T1_repair to repair tagged-
value. DaConnector and GaCommHost both describe connector 
specification: that the first captures the failure rate of the 
connector, while the second describes the connector capacity that 
is used to compute the transfer time between software 
components. 

In our approach, the behavior model encompasses component 
normal and erroneous behavior. According to CeBAM, all the 
transitions are atomic transitions without any action. Figure 7 
show the internal behavior state machine of Tracking Data 
Service component. This model is transformed to a SRN model as 
shown in Figure 7(a). The striped places will be used to compose 
the component internal behavior with the port’s protocol state 
machine. In fact, all of these places together model the event pool 
of the state machine. DaStep and GaStep are applied on state 
activities such as entry, do, exit to annotate them with the 
processing demand, as well as with fault activation occurrences 
rate if an error propagation chain is attached to the state. For 
example, “Update Operator Map” state has do/ updateMap 
activity and an output transition to the error propagation state 
starting with “Update Map Error” state until the failure mode is 
manifested. In this state we use hostDemand attribute of GaStep 
stereotype to specify the processing time of the updateMap 
activity. This activity will be transformed into a timed transition 
called T2_do_updateMap as shown in Figure 7(a), whose rate is 
mapped to the value of hostDemand. Additionally, DaStep 
stereotype is applied to the same activity (updateMap) to annotate 
the fault activation rate.  According to the transformation rules 
presented in [2] the fault activation of an activity is transformed to 
a time transition. In VTS case study, the timed transition  
T3_localFaultOccurrence represents the fault activation 
occurrence rate of updateMap activity and its rate is mapped to 
occurrenceRate. In some cases, a state is annotated with GaStep 
only, since the error propagation is not modeled (e.g., “Log New 
Location” state). 

DaStep is applied to two other model elements of the component 
internal behavior state machine: a) to the propagation transition 
specifying the time between the switching to erroneous state and 
the failure manifestation (translated to the SRN timed transition 
T4_propagate); and b) to the failure mode state specifying the 
occurrence probability of failure model state).  



5.3 Analysis of Results 
We used the SPNP tool for solving the derived SRN model [8]. 
For the case study of this paper we use the analytical solver to 
compute the unreliability using transient analysis. The values 
assigned to the input parameters of the Tracking Data Service 
component and its deployment node is shown in Table 3. Similar 
parameters are assigned to each similar component and 
connectors. All timed transitions have exponential distributions.  

The generated SRN model is based on the following assumptions: 

• Components fault occurrences are independent; 
• Failure modes of each component are mutually exclusive, 

therefore, if the component fails with a given failure mode 
then it is considered failed and no other failure mode may 
occur until it is repaired; 

• Once a local fault occurs with a given rate, it switches to the 
erroneous state immediately; 

• The fault tolerance manager is deployed on a node that has 
negligible failure rate; 

• Communication between the internal components of the 
composite component is immediate with no delay;  

• Network failure is recoverable. 

In this example we focus on unreliability (failure probability) 
analysis, trying to answer two questions: First, what impact have 
the different SvFTAM tactics on the system unreliability . Second, 
what is the best SvFTAM tactics to be applied for the particular 
system in terms of reliability improvement. As explained in the 
previous sections, the analysis model is automatically derived 
before and after applying fault tolerance tactics and then solved to 
get quantitative data for comparison. Figure 9 shows the 
unreliability (failure probability) results of VTS case study before 
and after applying SvFTAM tactics. It is clear that the system 
failure probability is lower after applying any SvFTAM tactics. 
This answers the first question and the quantitative results will 
encourage the designers to consider such tactics for improving the 
reliability of the system. 

In addition, the collected results will guide the developers in the 
comparison of different SvFTAM tactics and help them select the 
best one in terms of reliability improvement. For instance, for the 
values chosen for the failure and repair rates, the retry tactic is the 
best option for the VTS case study. For different failure and repair 
rates, the comparison results may be different. 

Table 3. Parameters of TrackingDataService component 

SRN  
Transition 

DAM Parameter Assumed  
Rate 

T1_do_logVehicleLoc  $Rate1 1/(15 s) 
T2_do_updateMap $Rate2 1/(40 s) 
T3_locaFaultActivation $FaultRate1 1/(2700 s) 
T4_propagate $PropagateRate1 1/(10 s) 
T1_repair $RepairFreq1 1/(300 s) 
T2_fail $FailFreq1 1/(604800 s) 

 

Checkpoint tactic shows a slight improvement compared to the 
standby spare tactic. The difference is not very significant in this 
particular case study due to the fact that the size and simplicity of 
VTS case study that has only single checkpoint synchronization 
between the two redundant components. According to these 
values the noticeable improvement will be much clear in a bigger 
system that has multiple checkpoints. Standby spare tactic is 
ranked low compared to other tactics. In this tactic after switching 

to the second redundant component, the failed request starts from 
the beginning and fault may again reappear in any operation. On 
the other hand, retry and checkpoint tactics continue from the last 
failed operation. 

 

Figure 9. Unreliability of VTS case study with SvFTAM 
tactics comparison as function of time  

6. RELATED WORKS 
Software fault tolerance was addressed heavily in the literature 
from different perspectives. For example, in [22] are explained 
fault tolerance techniques and implementations, while in [11] are 
presented over sixty software fault tolerance patterns that cover all 
fault tolerance phases and were modeled as UML profiles in [21]. 
Availability tactics using redundancy were introduced in [4]. In 
[12] it is studied the effect of applying fault tolerance tactics to 
software architecture patterns, but the approach was qualitative, 
based on interviews with expert developers to evaluate how much 
change is needed in order to incorporate fault tolerance to the set 
of existing software design. The work in [24] shows how the 
recovery process is implemented in real IT systems for different 
kinds of Mandelbugs. The effects of applying software fault 
tolerance mechanisms to Palladio Component model was 
presented in [6]. A validation approach to achieve fault tolerance 
requirements in component based system is proposed in [7] .  

Using AOM for refactoring the software architecture by adding 
fault tolerance techniques has been suggested by several authors. 
For instance, in [16] is presented an approach for modeling and 
integrating AOM into CBD. The paper also illustrates how AOM 
can be used to model component's dependability aspects 
separately, by modeling a template for fault tolerance that 
provides error detection and recovery services. This template can 
be customized and composed with base models through a weaving 
process. However, this approach does not consider internal 
behavior to derive an analysis model, as we have proposed. A 
similar approach presented in [9] uses AOM to construct and 
build fault tolerance systems. New notations are introduced to 
capture dependability aspects. The authors created a library of 
fault tolerance mechanisms along with its dependability analysis 
model template that is not derived from the software model. A 
model weaver is designed to integrate the fault tolerance aspect 
with the base software model, as well as to perform the model 
analysis, which is done separately. Role-Based Metamodeling 
language was employed in [13] to generalize modeling 
architectural tactics, i.e., performance and availability that can be 
reused to refactor existing designs. 



7. CONCLUSION AND FUTURE WORK 
The work presented here is part of a larger research project aiming 
to integrate dependability analysis in the early phases of software 
development process, by generating and analyzing Stochastic 
Reward Net (SRN) models from UML software models. The 
paper is based on our previous work: a) an framework for 
modeling normal and erroneous behavior and failure propagation 
of component based systems (CeBAM) [1]; and b) a set of 
transformation rules [2] to automatically derive SRN analysis 
models from UML architecture and behavior models.  

In this paper, we present the Single-Version Fault Tolerance 
Aspect Modeling (SvFTAM) approach, which is an aspect-based 
technique for modeling structural and behavioral fault tolerance 
tactics as reusable models. The following examples of fault 
tolerance tactics have been modeled using SvFTAM: spare with 
checkpoint, standby spare, retry and restart. We show how to 
model in UML the “spare with checkpoint” tactic and illustrate 
with the help of a case study how to use it for adding fault 
tolerance capabilities to the original design.  

Since the automatic derivation of the SRN model of a system with 
fault tolerance from the software model is part of the proposed 
approach, new transformation rules are needed for translating 
from UML to SRN the fault tolerance tactics added to the original 
software model. We discuss how to map the semantics of the 
checkpoint mechanism from UML to SRN. Moreover, we solve 
the derived model to study the effect of applying fault tolerance to 
the VTS case study and compare different SvFTAM tactics in 
terms of reliability. Currently, we are working on completing the 
QVT transformation that implements the UML to SRN translation 
proposed in the paper. 

Future work will address the problem of solving the SRN model 
for reasonable large systems. State space grows exponentially 
with the model size. To avoid that we are planning on using 
software architecture decomposition to guide the solution of the 
corresponding SRN model by Petri Nets decomposition. 

8. ACKNOWLEDGMENTS 
Authors acknowledge the support provided by the Albaha 
University and Ministry of Education, KSA. This research was 
partially supported by NSERC, Canada. 

9. REFERENCES 
[1] Alzahrani, N. and Petriu, D.C. 2013. Modeling Component 

Erroneous Behavior and Error Propagation for 
Dependability Analysis. 16th International SDL Forum on 
Model-Driven Dependability Engineering. LNCS, vol.7916, 
124-143. Springer (2013). 

 [2] Alzahrani, N. and Petriu, D.C. 2013. Derivation of 
Stochastic Reward Net for Compatibility and Conformance 
Verification of Component Erroneous Behavior Model. 
Proceedings of IEEE 19th Pacific Rim International 
Symposium on Dependable Computing - PRDC2013, 142-
151. 

[3] Avizienis, A., Laprie, J.C., Randell, B. and Landwehr, C. 
2004. Basic concepts and taxonomy of dependable and 
secure computing. IEEE Transactions on Dependable and 
Secure Computing, 11–33 (2004). 

[4] Bass, L., Clements, P. and Kazman, R. 2012. Software 
Architecture in Practice. Addison-Wesley. 

[5] Bernardi, S., Merseguer, J. and Petriu, D.C. 2011. A 

dependability profile within MARTE. Software and Systems 
Modeling. (2011). 

[6] Brosch, F., Buhnova, B. and Koziolek, H. 2011. Reliability 
prediction for fault-tolerant software architectures. 
Proceedings of the Federated Events on Component-Based 
Software Engineering and Software Architecture - 
QoSA+ISARCS'11, 75–84 (2011). 

[7] Bucchiarone, A., Muccini, H. and Pelliccione, P. 2007. 
Architecting Fault-tolerant Component-based Systems: from 
requirements to testing. Electronic Notes in Theoretical 
Computer Science. 168, 77–90 (2007).. 

[8] Ciardo, G., Muppala, J. and Trivedi, T. 1989. SPNP: 
stochastic Petri net package. Petri Nets and Performance. 

[9] Domokos, P. and Majzik, I. 2005. Design and analysis of 
fault tolerant architectures by model weaving. High-
Assurance Systems Engineering, 2005. HASE 2005. Ninth 
IEEE International Symposium on. (2005). 

[10] Grottke, M. and Trivedi, K.S. 2007. Fighting Bugs: 
Remove, Retry, Replicate, and Rejuvenate. Computer. 40, 2, 
107–109 (Feb. 2007). 

[11] Hanmer, R. 2007. Patterns for Fault Tolerant Software. John 
Wiley & Sons. 

[12] Harrison, N.B. and Avgeriou, P. 2008. Incorporating fault 
tolerance tactics in software architecture patterns. 
RISE/EFTS Joint International Workshop on Software 
Engineering for Resilient Systems-SERENE'08, 9-18 (2008). 

[13] Kim, S., Kim, D.-K., Lu, L. and Park, S. 2009. Quality-
driven architecture development using architectural tactics. 
Journal of Systems and Software. 82, 8 (Aug. 2009). 

[14] Knight, J. 2012. Fundamentals of Dependable Computing 
for Software Engineers. Chapman and Hall CRC Press. 

[15] Lyu, M.R. 1994. Software Fault Tolerance. John Wiley & 
Sons Inc. 

[16] Michotte, L., France, R.B., Fleurey,F. 2007. Modeling and 
Integrating Aspects into Component Architectures. 11th 
IEEE International Enterprise Distributed Object 
Computing Conference, 181-190 (2007) 

[17] Muppala, J., Ciardo, G. and Trivedi, K.S. 1994. Stochastic 
reward nets for reliability prediction. Communications in 
reliability, maintainability and serviceability., 9–20 (1994). 

[18] Object Management Group: MOF Model to Text 
Transformation Language, v1.0. (Feb. 2008). 

[19] Object Management Group: UML Profile for MARTE: 
Modeling and Analysis of Real-Time Embedded Systems. 
(Jun. 2011). 

[20] Object Management Group: Query View Transformation 
(QVT) v1.1 formal/2011- 01-01. (Jan. 2011).  

[21] Ongsiriporn, O. and Senivongse, T. 2013. UML profile for 
fault tolerance patterns for service-based systems. 10th 
International Joint Conference on Computer Science and 
Software Engineering, 240-245 (2013). 

[22] Pullum, L.L. 2001. Software Fault Tolerance Techniques 
and Implementation. Artech House Publishers. 

[23] Torres-Pomales, W. 2000. Software Fault Tolerance: A 
Tutorial, NASA. 

[24] Trivedi, K.S.,Mansharamani, R., Kim, D.S., Grottke, M. and 
Nambiar, M. 2011. Recovery from Failures Due to 
Mandelbugs in IT Systems. Proceedings of IEEE Pacific 
Rim International Symposium on Dependable Computing - 
PRDC2011, 224–233 (2011). 

[25] Yedduladoddi, R. 2009. Aspect Oriented Software 
Development: An Approach to Composing UML Design 
Models. VDM Publishing. 

 


