
Modeling Fault Tolerance Tactics with Reusable Aspects

Naif A. Mokhayesh Alzahrani , Dorina C. Petriu
Department of Systems and Computer Engineering

Carleton University
Canada K1S 5B6

nzahrani@sce.carleton.ca , petriu@sce.carleton.ca

ABSTRACT
This paper is part of a larger research project aiming to integrate
dependability analysis in the early phases of the software
development process, by generating and analyzing Stochastic
Reward Net (SRN) models from UML software models. The
paper is focused on adding fault tolerance to software designs by
using Aspect-Oriented Modeling. More specifically, single-
version fault tolerance tactics are modeled as generic reusable
aspects annotated with dependability attributes. The paper
describes how the generic aspects are instantiated, bound to the
context and composed with the original UML software model.
Since an SRN analysis model is generated from the UML model,
the paper discusses what kind of transformation rules are
necessary for translating fault tolerance tactics from UML to
SRN, giving as an example the transformation rule for checkpoint
synchronization. A case study illustrates the proposed approach.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
reliability; D.2.13 [Software Engineering]: Reusable Software –
reuse models.

Keywords
Fault Tolerance, Dependability Analysis, Model Transformation,
Aspect Modeling.

1. INTRODUCTION
The dependability of a system is defined as the ability to avoid
failures that are more frequent and severe than is acceptable [3]. It
encompasses a set of attributes such as availability and reliability.
Performing early quantitative dependability assessment and
reasoning based on annotated architectural and behavioral models
will help modelers to take the right design decisions for meeting
the requirements. Our ultimate objective is to integrate
dependability analysis in the model-driven software development
process, by deriving automatically analysis models (based on Petri
Net or other formalism) from UML software architectural and
behavioral models, and by using the analysis results to provide
feedback to the developer about dependability improvements. In
our previous work, we introduced an automated dependability
analysis framework that considers erroneous behavior and failure

propagation of component based systems, called Component
Erroneous Behavioral Aspect Modeling (CeBAM) [1]; we also
proposed a set of transformation rules [2] to automatically derive
Stochastic Reward Net (SRN) analysis models from UML
architecture and behavior models annotated with MARTE profile
and the dependability profile (DAM) [5, 19]. This paper is
continuing the work toward such an objective, with the focus on
using Aspect-Oriented Modeling (AOM) for adding fault
tolerance mechanisms to software designs. The paper presents the
Single Version Fault Tolerance Aspect Modeling (SvFTAM)
approach that capture architectural and behavioral models of
single fault tolerance tactics as generic reusable aspects annotated
with formal dependability attributes.

Fault avoidance and removal techniques help in designing and
building systems that anticipate, recognize and correct faults at
runtime. It is known that developing and deploying a software
system free of faults is hard to achieve, even for the most
experienced people using the best available tools [11, 14]. In
order to prevent system failures during operation, fault tolerance
techniques are introduced to tolerate erroneous states and recover
the system by bringing it back to a correct state. According to [3],
“fault tolerance means to avoid service failure in the presence of
faults”. Fault tolerance mechanisms applied to the software
architecture and behavior help to improve the overall system
dependability and to deal with unpredictable situations, ensuring
that the system behavior remains acceptable during operation.

Software fault tolerance techniques can be categorized in three
groups. The first is design diversity or multi-version techniques,
where many replicas with different implementations are
developed from the same specifications, but by different teams
and different programming languages. Examples are the recovery
block and N-version programming. The second group, data
diversity, uses identical replication, but each replica will be
executed with different data generated by data re-expression
mechanisms from the original data. Example of this category is N-
copy programming [14, 22]. Single-version fault tolerance (SV-
FT) is the third category, based on redundant software modules
that can detect faults and apply recovery actions, such as
restarting or switching to a redundant spare module deployed on a
different node. Exception handling, checkpoint, restart, and
process pairs are examples of SV-FT techniques [23].

Increasing redundancy by identical replication is a common
approach for fault tolerance in hardware. According to [14] this
approach is not applicable to software, which is deterministic and
thus each replica receives and processes the same data; instead,
design diversity needs to be used. However, the work in [10, 24]
introduces a new thinking in software fault tolerance based on
environmental diversity as opposed to design diversity. Software
bugs are classified into two categories: Bohrbugs and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
QoSA'15, May 04-08, 2015, Montreal, QC, Canada
Copyright © 2015 ACM 978-1-4503-3470-9/15/05…$15.00
http://dx.doi.org/10.1145/2737182.2737189

Mandelbugs. The former is manifested consistently under known
conditions and should be fixed during testing, while the later is
hard to reproduce and it has complex error propagation. In [24] it
is shown that the failures caused by Mandelbugs are more
predominant. Restart, reconfigure and reboot are techniques
employed to recover from Mandelbugs. In practice, availability
tactics presented in [4] depend on redundancy or retry of a single
version. Indeed, design diversity is not widely adopted in practice
due to its high cost and effort, being used only for mission critical
systems.

Adding any kind of fault tolerance mechanism is expected to
improve the system's reliability and availability, but the effects are
non-trivial due to the dependency of such mechanisms on the
software context [6]. In fact, each fault tolerance technique needs
to be customized and tailored to the application using it. Our
proposed approach aims to provide quantitative data for
supporting an easy comparison of different fault tolerance tactics,
in order to select the best solution for a given system.

In this paper, we address the above issues by introducing the
SvFTAM approach that models single version fault tolerance
tactics as generic reusable aspects. Our work has been inspired by
the new vision of software fault tolerance introduced in [4, 24].
We illustrate our approach with three reusable fault tolerance
tactics: spare with checkpoint, standby spare, and retry. A generic
aspect is instantiated and then its parameters are bound to the
application context. The resulting context-specific aspect models
are then composed with the original design model.

Applying fault tolerance to software architecture usually requires
adding new components and modifying the existing ones,
therefore the overall architecture changes and becomes harder to
maintain. To overcome this issue, we replace a component
without fault tolerance with a single composite component which
contains the original component (possibly replicated) and a fault
tolerance manager, preserves the original interfaces and has fault
tolerance capabilities to recover from internal manifested failures
and to prevent failure propagation (as described in section 3).

The main contribution of this paper is threefold. First, we
introduce the SvFTAM approach that applies fault tolerance
tactics to the UML software architecture and behavior using the
AOM approach. In a simple case study, we show how to model
SV-FT tactics and then present an automated process for aspect
instantiation and composition with the basic UML model, which
represents not only the normal behavior, but also the erroneous
behavior and failure propagation following the CeBAM approach
introduced in our previous work (see sections 3 and 4). Secondly,
we discuss what new transformation rules are necessary to map
the elements of a fault-tolerance tactic to SRN, in order to extend
the original SRN analysis model with the respective fault-
tolerance tactic, giving the checkpoint transformation as an
example. Third, we illustrate how to approach the analysis by
solving and comparing the derived SRN models before and after
applying fault tolerance as explained in section five.

The paper is organized as follow. Section 2 presents the Vehicle
Tracking System (VTS) case study modeled according to
CeBAM. Section 3 describes SvFTAM by modeling three SV-FT
tactics. Section 4 illustrates the process of aspect instantiation and
composition, whose effect is to refactor the case study model by
adding the spare checkpoint tactic to the original design. Section 5
discusses how to approach the analysis of the derived model and
what transformation rules are necessary to map the elements of
the fault-tolerance tactic to SRN, giving as example the

checkpoint transformation. Section 6 discusses related works and
section 7 concludes and summarizes the future work.

2. CASE STUDY SYSTEM
Vehicle Tracking System (VTS) is used as an example throughout
this paper to illustrate the process of applying reusable single
version fault tolerance tactics to a software architecture and
behavior. The long-term objective is to automatically refactor the
initial software design by adding different fault tolerance
solutions, to generate the corresponding SRN analysis models and
to compare quantitatively their effects on dependability attributes,
such as availability and reliability.
The paper focuses on VTS systems used in vehicles to send
periodic status update to the central monitoring system, providing
vehicle location and other basic information. A system with
similar functionality can be installed in taxi, police patrol cars and
cargo trucks to provide the central control system with
information about the vehicle such as current location. We model
the VTS system according to the CeBAM approach introduced in
our previous work [1], which considers failure propagation
between components. We focus on periodically sending vehicle
location update as the most critical scenario.

(a) Components involved in update location scenario

(b) Internal behavior of Tracking Data Service Component

Figure 1. VTS case study
Any failure in this scenario will affect the system availability and
reliability. Figure 1(a) shows the components involved in the
scenario, as well as their deployment. Vehicle Location Tracker is
the active component that will periodically report the vehicle
location to the Tracking Data Service component by calling the
newUpdate() operation. Once Tracking Data Service component
receives the location update, it will perform a set of actions
depicted in Figure 1(b). For the sake of simplicity, we model only
one failure mode (represented by the states Update Map Error and
Unable to update). We annotate the model with MARTE+DAM
profiles with information to be used in the derived SRN model, as

explained in the last section of this paper. Note that we do not
show here the port behavior state machines as recommended in
CeBAM due to limited space. However, applying SvFTAM will
not modify the port behavior of the original components, that have
already passed the conformance and compatibility verification
phase [1, 2]. The VTS system reliability and availability is an
important non-functional property. Therefore, to achieve high
reliability and availability, we have to avoid any single point of
failure (such as Tracking Data Service component) by adding a
fault tolerance mechanism to the initial design, as described in the
following section.

3. SINGLE VERSION FAULT
TOLERANCE ASPECT MODELING
Single version fault tolerance tactics [4, 11] have been widely
used as best practices to improve system reliability and
availability. However, there is a lack of modeling approaches able
to represent these tactics in a generic reusable form, along with
dependability annotations, which can be used in early software
design phases. One of the main challenges is to customize and
tailor the generic models to the software context in order to get
accurate results in terms of dependability improvements. In order
to model SV-FT tactics as reusable models we use AOM [25] to
describe the structure and behavior of the selected tactics. In
SvFTAM the generic structure and behavior of fault tolerance
tactics is captured according to the CeBAM approach [1]. In
order to reuse these generic tactics, we employ model
transformations to automate the instantiation of context-specific
aspects and to compose them with the basic model.

In any fault tolerance mechanism, four basic actions are taken to
tolerate an erroneous state. First, the error detection action
determines the erroneous state. Next, during the processing phase,
two actions focus on assessing the damage, identifying the cause
of the error and restoring the system to its normal state. The last
action uses the recovered state to continue the service and the
normal operation [11, 14, 22]. All reusable single version fault
tolerance tactics in our approach are modeled according to
CeBAM [1] that captures normal and erroneous behavior. The
detecting mechanism in our approach is started by the primary
component, which sends a notification message (i.e., raising an
exception), to the fault tolerance manager component. In such a
case, a recovery action will be taken by switching the control to
the redundant component, which then resumes the request.

Figure 2. SvFTAM overall approach

We have created the AspectComponent UML2 profile to model
fault tolerance tactics as generic reusable aspects annotated with

dependability attributes. We consider single version fault
tolerance tactics as crosscutting concerns, which can be applied to
different components in the system. A point cut is a query that
identifies the join point(s) in the base model where the aspects
should be composed. To fully automate the process of selecting
and composing aspects, we specify a point cut as an OCL query
string in AspectComponent profile. During the composition
process, the OCL query will be passed to an OCL parser
implemented as a QVTO black-box module, for parsing and
executing the OCL query [20]. As shown in Figure 2, the generic
aspect template of a selected tactic will be instantiated and the
template parameters (parameters name start with “|” symbol) will
be bound to context values, thus obtaining an application-specific
aspect that will be composed with the base model.

As illustrated in Figure 2, the original design (architecture and
behavior) is built by the developer according to the user
requirements. A dependability expert will augment the initial
design in two phases. First, he/she will capture the erroneous
behavior and will apply the required dependability attributes using
the CeBAM, MARTE, and DAM profiles [1, 5, 19]. As shown in
our previous work, erroneous behavior will be modeled as a
context specific aspect, which is composed with the normal
behavior using model transformation techniques. The next phase –
which is the focus of this paper - is to refactor the software
architecture and behavior by applying fault tolerance tactics to the
most critical components. Different fault tolerance reusable
aspects can be selected from a predefined library. A SV-FT
weaver implemented in QVTO automates the process of obtaining
the context-specific aspect and composing it with the basic model.
The composed model (architecture and behavior) will be passed to
another transformation chain (SM2SRN) to derive the SRN
analysis model.

Adding fault tolerance will introduce more complexity in the
software models. To mitigate this issue, SvFTAM will replace the
most critical component in the scenario with a composite
component, preserving the original interfaces; the new component
embeds a set of components working together to provide fault
tolerance capabilities. In the following examples, it contains two
identical replicated components offering functional services,
which are copies of the replaced simple component. These
replicas are deployed on different nodes and their internal
behavior is refactored to support fault tolerance actions (i.e.,
failure notification). In addition, the new component contains a
fault tolerance manager component dedicated to managing fault
tolerance behavior by detecting failure notifications and switching
between replicas in case of hardware and software failure.

3.1 Spare with Checkpoint Tactic
This tactic, also known as warm spare, was originally described in
[4]. It has an active component that periodically updates the state
of the redundant spare using a checkpoint mechanism. The
architecture changes include a new auxiliary component for
detecting failure, as well as modifications to the component
internal behavior to send checkpoint synchronization to the other
replica. Our proposed SvFTAM approach will limit the changes to
just one component and keep all the other dependent components
unchanged. Figure 3(a) captures the structure of this tactic as a
generic reusable aspect model.

As already mentioned, the aspect model is a single composite
component including two replicas that provide the functional
services specific to the application. The fault tolerance manager
component manages fault the tolerance behavior, detecting

failures and switching requests between replicas. The primary
replica will send a checkpoint update to the secondary replica. In
case of a failure, the primary component will notify the fault
tolerance manager about the manifested failure. As a recovery
action, the fault tolerance manger will switch the control to the
second component, which will resume the execution from the
most recent updated checkpoint. The fault tolerance behavior is
executed inside the composite component and does not affect the
other components from the original software architecture. In
modeling this tactic’s structure, we use the AspectComponent
profile that is a part of CeBAM profiles set, as well as the DAM
profile for dependability annotations [5]. The main composite
component stereotyped PointCut is used by the transformation
tool to identify the critical component, as specified in the
OCLQuery attribute. It is also stereotyped as Refactor, which will
guide the transformation to replace the selected component in the
base architecture model with a composite component. Note that
the port(s) of the replaced component will not change and we just
add delegation connections from the main port to each replica to
pass the incoming or outgoing messages. Therefore, there are no
changes in the other original component(s), which are unaware of
the component replacement which is the effect of the aspect
application. New activities and actions must be added to the
original behavior of both replicated components to support fault
tolerance. In order to automate refactoring the internal behavior of
the replicated component we develop four generic aspects models
as shown in Figure 3 (b, c, d, e).

First, the standby refactor aspect will be instantiated once to
modify the behavior of both replicas to start initially in standby
mode and remain in that mode until receiving a setPrimary
message from the fault tolerance manager. This aspect model has
two states stereotyped with pointCut that are used to identify the
source and target states in the base model. As explained earlier,
the string value of the OCLQuery attribute will be passed to the
OCL parser, which returns the join point in the base model. A
similar technique is used for the transition stereotyped by Refactor
to either replace a model element or to modify its attributes. It
starts by identifying the transition in the base model using
OCLQuery and then modifies its destination to the new added
state (i.e., Standby). In addition, any model element stereotyped
with Add will be treated by the transformation as a new behavior
that needs to be added to the base model. Figure 3(c) shows the
second refactor aspect, dedicated to refactoring failure modes
states by adding an entry operation, which is used to notify the
fault tolerance manger about the failure. In consequence, the
control is either switched to the spare, or failure propagation is
allowed in the case of failure in the spare component.

The Role interface is implemented by each replica to provide a
service invoked by the fault tolerance manager to set the primary
component. The main difference between setPrimary() and
setPrimary(ChcekpointName) operations is that the former will be
called during the initialization of the component, while the later
will be called after a failure to resume the service from the last
updated checkpoint. In fact, the implementation of these interfaces
depends on the fault tolerance manager behavior. For instance, in
our case the first replica will be always the primary component,
until a failure occurs, in which case the second replica will resume
the service from the most recently updated checkpoint.

In this tactic, the primary component will keep the spare
component updated by sending periodic state updates. Figure 3(a)
shows the checkpoint interface implemented by the second
replica, which is the checkpoint receiver. In order to capture this

behavior, we need to refactor the internal behavior of both
replicas, by adding a checkpoint state in similar join points.
However, the first replica will act as checkpoint sender, while the
second will act as receiver. Therefore, we develop two refactor
checkpoint aspects. It is the responsibility of the dependability
modeler to insure that the checkpoint states are added in similar
join points using OCL queries. Figure 3(d) shows the sender
refactor aspect, which has an entry action for sending a
checkpoint synchronization request to its counterpart.

(a) Composite component aspect of spare with checkpoint
tactic

(b) Standby refactor aspect

(c) Failure mode refactor aspect

(d) Sender checkpoint refactor aspect

(e) Receiver checkpoint refactor aspect

Figure 3. Spare with checkpoint tactic: structural and
behavior aspects models

The call is synchronous, as the checkpoint sender waits for an
acknowledgment from the receiver. A special transformation rule
that maps the checkpoint behavior to SRN is presented in section
5.1.The fault tolerance manager has two main tasks: it acts as a
failure detector receiving failure notifications from the replicas
and it decides which component is the primary and when to
switch the control to the standby component in case of

unrecovered failure. Both replicas start in the standby mode, until
the fault tolerance manager sends the setPrimary message to the
first replica. The primary replica keeps the standby replica
updated by sending checkpoint updates, as already mentioned.
Any incoming message will be passed to both replicas, but only
the primary component will handle the request and the standby
component will simply ignore it. A failure will propagate to other
outside components only if the second replica fails, too. Software
repair behavior is not considered in this tactic. However, the failed
component due software failure will be repaired only if the
hardware restarted. The fault tolerance manager behavior and the
number of checkpoints can be customized according to the
software context. For instance, it can detect the failure of the
primary component due to hardware failure and then it switches to
the second active redundant component.

3.2 Standby Spare Tactic
The structure of the standby spare tactics has two identical
redundant components: one of them active and the second in
standby mode. If the primary replica fails, then the fault tolerance
manager will switch the control to the standby component to start
handling the request form the beginning. Indeed, such behavior is
suitable for systems with high reliability requirements [4]. The
structure is modeled as a reusable aspect template by following
similar concepts as in the previous tactic (see section 3.1), but
without adding checkpoint interface between the two replicas.
For the behavior we apply the same standby refactor aspect and
failure mode aspect from Figure 3(b) and Figure 3(c),
respectively. During fail over to standby component, the fault
tolerance manager will call the setPriamry(serviceName) method
implemented by the second replica to change its mode to primary
and to start over the processing for the failed service from the
beginning based on the service name passed as a parameter. A
special transformation rules is implement to capture this behavior
in the analysis model.

3.3 Retry and Restart Tactics
In principle, the previous tactics depends on replicating identical
software components on different deployment nodes, without
modifying the software behavior. It helps to avoid the effects of
Mandelbugs by masking the failure and trying to process the
request again on a different node hosting another instance of the
same software component. However, the retry tactic depends on
an error detection mechanism that identifies the erroneous state
and retries the failed action before the failure mode manifested.
This behavior can be modeled using CeBAM by including the
retry action in the erroneous aspect model.

Figure 4. Restart aspect

The restarting tactic is a similar single version FT tactic that
forces the software component to restart if any local failure mode
is manifested. The restart behavior is modeled as a separate aspect
that can be applied to the component internal behavior as shown
in Figure 4. In this aspect the source state point cut will be the
failure mode state while the target point cut state will be the initial
state of the component internal behavior.

4. ASPECT COMPOSITION
The proposed process of using aspects for refactoring the software
architectural and behavioral models in order to add fault tolerance
capabilities is illustrated in Figure 5. As discussed in the previous
sections, single version fault tolerance tactics can be modeled as
generic reusable aspect models, which are then instantiated and
their parameters bound to application specific values, producing
context specific aspect models.

Figure 5. Refactoring Aspect to add fault tolerance

We choose to specify the point cuts as OCL queries, represented
by string attribute of the stereotype PointCut. For instance, Figure
3(a) shows a parameterized OCL query expression as a string.
Before the instantiation, the modeler will provide values for the
template parameters to build up the complete query (e.g., the
component name). During the aspect composition, the refactoring
engine will invoke the OCLParser to parse and execute the OCL
expression for finding the join points.

In the case of the VTS system we refactor the base model
(architecture and behavior) by adding the fault tolerance tactic
“spare with checkpoint”. At the architecture level we just need to
replace the Tracking Data Service component with a composite
component that supports fault tolerance, keeping all the other
dependent components unchanged. The modeler is expected to
provide values for the template parameters such as component
name and OCL query parameters. The refactoring engine will use
the AspectComponent profile stereotypes as composition
directives to guide the refactoring process. It starts by looking for
PointCut stereotype and passes the OCLQuery string to the
OCLParser black-box code to parse and execute the OCL
expression for identifying the join points in the base model. In this
case, the query should return at least one component (i.e.,
Tracking Data Service).

The next step in the transformation algorithm is to replace the join
point element with a composite component (instantiated as a
context specific aspect) which is stereotyped with Refactor. Note
that this replacement will preserve the existing ports and
connections with the other original components. An internal
redundant component stereotyped with Refactor is in fact a copy
of the replaced component in the original model. Every model
element stereotyped with Add will be added as a new model
element in the final woven model. Figure 6(a) shows the
refactored architectural model obtained as a result.

The internal behavior of both replicated components is similar. It
is refactored by three aspects. The first aspect will add a standby
state after the initial PseudoState and a new transition triggered by
the event setPrimary sent by the fault tolerance manager. The
second aspect will refactor all failure mode states by adding an
entry operation to notify the fault tolerance manager about the
failure manifestation. The last aspect is the checkpoint aspect,
which will be added in the same joint point to each replica, but
with different behavior. Tracking Data Service Replica1 acts as a
checkpoint sender, while Tracking Data Service Replica2 acts as a
receiver. To ensure that the checkpoint is added in the same join
point in each replicas we verify the result of PointCut OCL query
during composition. Figure 6(b) shows the internal behavior of the
contained primary redundant component. The behavior of the
second redundant component will be identical to the primary
component, except for the checkpoint state, which receives
updates rather than sending them.

(a) Components involved in the update location scenario with

fault tolerance tactic

(b) Internal behavior of Tracking Data Service Replica1

Figure 6. Applying spare with checkpoint tactic to VTS case
study

5. DEPENDABILITY ANALYSIS
The dependability model of a system describes the failure and
repair process of each component and also captures the failure
propagation between software components, as well as failure
propagation from a hardware node to the hosted software. In
practice, software engineers model the normal behavior of the
system and ignore the erroneous behavior due to its complexity.
In our previous work [1, 2] we introduced a modeling approach
that utilizes Aspect Modeling to separately model component
erroneous behavior annotated with dependability information
using the MARTE and DAM profiles [5, 19]. We extend this
approach here to model fault tolerance patterns as generic aspects
that can be applied automatically to any design. The purpose is to

help developers to quantitatively compare different design
alternatives, in order to estimate the improvement brought by
different fault tolerance tactics in terms of reliability and
availability.

We developed a tool based on QVTO and Acceleo [18, 20] that
perform a set of model-to-model and model-to-text transfor-
mations to derive an SRN dependability analysis model. The
proposed analysis approach is carried out through the following
steps: 1) apply erroneous aspect to the normal behavior of each
component; 2) iteratively derive SRN models for each component
and compose them according to the system architecture; 3) verify
conformance and compatibility between software components by
analyzing the structure of the derived SRN; 4) extend the SRN
model by adding deployment SRN subnet; 5) generate CSPL code
from SRN model (where CSPL is the input language to the SPNP
solver [8]). The SvFTAM patterns can be instantiated and applied
to the original design after applying erroneous behavior aspects.

DAM profile allows software engineers to specify the output
dependability measures of interest [5]. These measures are
computed by solving the derived analysis model to get results that
can be interpreted to improve the system design. We are interested
here in unreliability and instantaneous availability of the system.
According to our approach, the derived SRN model describes the
healthy states along with erroneous behavior and failure
propagation. Considering unreliability, i.e., the probability that the
system has failed by time t, we just focus on failure mode states of
the system. On the other hand, for the instantaneous availability
we need to compute the probability that the system does not arrive
to any failure mode by time t. Both of these measures are
computed using transient analysis. For instance, if Pi(t) is the
probability of the system being in state i at time t, then the
unreliability is computed by summing the probabilities that the
system is in any state i whose corresponding marking contains at
least one token in a failure mode place [15].

One of the advantages of SRN is the ability to define a reward rate
function for the system states of interest. To compute the
unreliability of the system, we define a reward rate function as:
URi = if (#(P_failureMode_i) >= 1 || (#(P_failureMode_j) >= 1)
1 else 0. This function includes all possible failure modes in the
system. The unreliability is determined by performing first
transient analysis to compute Pi(t) of each state and then compute
the reward rate function given above. The reliability is given by
R(t)=1-UR(t). The instantaneous availability and mean time to
failure measures are computed in a similar way, by defining a
reward rate for each measure of interest. In SRN, rewards can be
used in conjunction for both transient or steady state analysis.

5.1 SRN Derivation Rules
SRN is a variety of stochastic Petri nets that has some interesting
features such as reward rates and marking dependency. In SRN
any tangible marking can be associated with a reward rate.
Moreover, the marking dependency is an essential characteristic
of SRN that allows for defining model parameters as a function of
the number of tokens in particular places [17]. Marking
dependency was introduced for the convenience of the modeler, as
it may simplify the model specification. For instance, arc
multiplicity, transition guard and firing rate can be defined with
marking-dependent feature to simplify the graphical model.

As mentioned in the introduction, the long-term objective of our
research is to automatically derive dependability analysis models
from annotated UML software models, in order to predict

dependability properties (such as reliability and availability) of the
software architecture in the early development stages. In our
previous work [2] we proposed a set of transformation rules for
deriving SRN analysis model from an annotated UML software
model without fault tolerance capabilities and without considering
the fault assumption of the deployment nodes.

Figure 7. Derived SRN model for Tracking Data Service with

deployment

Table 1. Hardware failure propagation SRN guards

Guard Name Function

Gf if (#(P2_node1Down) == 1) 1 else 0
Gr if (#(P1_node1Up) == 1) 1 else 0

In this paper we propose an aspect-based approach for extending a
software model with fault tolerance tactics. Since we intend to
derive also the SRN model of such a system, we need new
transformation rules for translating from UML to SRN the
elements of the fault tolerance tactic added to the original
software model. For instance, if we consider the “spare with
checkpoint” tactic, we need transformation rules for the following
elements of the tactic: setting the primary component, checkpoint
synchronization, failure notification, and switching control to
other replica. Among these transformation rules, the one for
failure propagation from a deployment node to the hosted
software behavior and checkpoint synchronization are the most
complex rules, so we will briefly discuss both in this section.

The initial derived analysis model represents only the software
Platform Independent Model (PIM) since it does not include the
failure specification from the hardware nodes. The derived SRN
model needs to be refactored to derive Platform Specific Model
(PSM). We use UML component and deployment diagram to add

a SRN subnet for each node as shown in Figure 7(b). Each
software component is allocated to a hardware node, therefore a
hardware failure propagates to the software, causing the loss of
any request that is being processed or cashed. In such a case, the
two SRN subnets must be synchronized in a way that the software
SRN subnet model goes to the failure mode if the hardware node
is down and it goes back to the initial state if the hardware node is
repaired. In order to represent this synchronization without any
additional complexity, we make use of a SRN feature that can
simplify our model, namely guards to model failure propagation
from the SRN hardware subnet to the allocated software subnet.

In Figure 7 we have two SRN subnets: subnet (a) is the derived
SRN model of the Tracking Data Service component internal
behavior and subnet (b) the failure and repair behavior model of
the hardware node hosting this component. To model the failure
propagation between hardware node and hosted software we add a
set of guarded transitions as shown in Table 1. For instance, the
t6_node1Down transition that has Gf guard is fired only if the
hosted node SRN subnet is in failure mode (i.e. P2_node1Down
has a token). During the normal operation the software the SRN
subnet will be in one state at a time; if the hardware node goes
down the guarded transition attached to that state will be enabled
causing the loss of the request and switching to failure mode.
Moreover, once the hardware node recovers, the guarded
transition t11_node1Up is fired, allowing the software SRN
subnet to be started again from the initial place to model software
starting up after hardware recovery.

The striped places in subnet (a) will be used to compose the
component internal behavior with its port protocol state machine.
These places represent the event pool of the component internal
state machine and it may contain many tokens that represent
incoming and outgoing requests. Failure of the host node will
trigger the flushing out transition of all pending requests. This is
modeled by a guarded immediate transition with an input arc with
marking dependent multiplicity, to be enabled once the host node
is down.

As explained in section 3, a checkpoint may be added in different
places of the main behavior of the replicas in order to synchronize
their data state. In software, a checkpoint synchronization
message is periodically sent from the primary replica to the spare
replica along with the checkpoint name as a parameter. We need
to map this semantic to the SRN model, to have a generic
checkpoint mechanism without introducing extra complexity in
the analysis model. Tokens in SRN models do not carry any
information, so we cannot use them to carry parameters. However,
we use SRN guards again for synchronizing transitions. Figure 8
shows a generic SRN model for checkpoint synchronization using
a set of transition guards.

The transition T_entry_updateCheckpoint1R1 of the sender
component (Replica1) will send a checkpoint synchronization
request by depositing a token in the shared place called
P_request_checkpoint. We assume that the communication
between replicas is immediate and never lost. In the software
model the type of checkpoint message is synchronous, therefore
the sender component will wait for an acknowledgment from the
replicated component. To map this semantic, we add the guard
Gs1 to T_Ack1R1 transition of the sender component that will
prevent it from firing until a token is deposited in the
P_init_Checkpoint1R2 place of the receiver component. Another
approach to model the acknowledgement could use a return path
from Replica1 to Replica2, but this would add more places and
transitions to the model.

Figure 8. Checkpoint synchronization SRN model

Table 2. Checkpoint synchronization SRN guards

Guard Name Function

Gs1 if (#(P_init_Checkpoint1) == 1) 1 else 0

Gc1 if (#(P_finish_Checkpoint1)== 1) 1 else 0

Gr1 if (#(P_inti_Primary) == 1) 1 else 0

Gf1 if (#(P_init_Checkpoint2) == 1 or ..
 #(P_init_CheckpointN) == 1) 1 else 0

In the receiver (Replica2), a token will be placed in
P_request_checkpoint place that represents the receiving of a
checkpoint update message, but this token does not carry
information indicating which checkpoint place should take it. In
order to deposit the received token in the correct checkpoint place
that matches the place in the sender component, we add a
T_checkpointiR2 transition (where i=1,N) for each checkpoint
place in the receiver component. Each transition has a guard that
checks the marking of the corresponding checkpoint in the sender
component, as shown in Figure 8 and Table 2. Now just one
T_checkpointiR2 transition will fire to receive the message.
Transition T_cleani (where i=1,N) and its associated guard is
added for each checkpoint transition to flush out the token once a
new checkpoint update was received from the sender component
and for every new request processed by the primary replica.

In case of failure manifested in the primary replica, the fault
tolerance manager will change the state of the second replica to
primary and then a T_resumei transition will be enabled to
complete the execution of the request from the last updated
checkpoint.

5.2 Setting the SRN Parameters
We use different UML diagrams to model the system. Component
diagram(s) along with deployment diagram capture how the
software components are composed and what are the provided and
required services. Moreover, it shows the deployment of the
software component instances on hardware nodes (see Figure 7).
Behavioral state machine describe component internal behavior,
while extended protocol state machine describe the provided and
required services along with failure propagation. The component
diagram will be used to guide the composition of the derived SRN
model from each component state machine. MARTE and DAM
profiles are used in our approach to augment the UML design
with annotation dependability specifications that will be mapped
to SRN parameters [5, 19]

Each deployment node is transformed to an SRN subnet that
models the failure and repair of each node in the system, as shown
in Figure 7(b). The annotations applied on this model are
DaComponent, DaConnector and GaCommHost. DaComponent
is applied to a hardware node to describe the aspect failure and
repair. The transition rate of T2_fail is mapped to the
failure.occurenceRate, and the rate of T1_repair to repair tagged-
value. DaConnector and GaCommHost both describe connector
specification: that the first captures the failure rate of the
connector, while the second describes the connector capacity that
is used to compute the transfer time between software
components.

In our approach, the behavior model encompasses component
normal and erroneous behavior. According to CeBAM, all the
transitions are atomic transitions without any action. Figure 7
show the internal behavior state machine of Tracking Data
Service component. This model is transformed to a SRN model as
shown in Figure 7(a). The striped places will be used to compose
the component internal behavior with the port’s protocol state
machine. In fact, all of these places together model the event pool
of the state machine. DaStep and GaStep are applied on state
activities such as entry, do, exit to annotate them with the
processing demand, as well as with fault activation occurrences
rate if an error propagation chain is attached to the state. For
example, “Update Operator Map” state has do/ updateMap
activity and an output transition to the error propagation state
starting with “Update Map Error” state until the failure mode is
manifested. In this state we use hostDemand attribute of GaStep
stereotype to specify the processing time of the updateMap
activity. This activity will be transformed into a timed transition
called T2_do_updateMap as shown in Figure 7(a), whose rate is
mapped to the value of hostDemand. Additionally, DaStep
stereotype is applied to the same activity (updateMap) to annotate
the fault activation rate. According to the transformation rules
presented in [2] the fault activation of an activity is transformed to
a time transition. In VTS case study, the timed transition
T3_localFaultOccurrence represents the fault activation
occurrence rate of updateMap activity and its rate is mapped to
occurrenceRate. In some cases, a state is annotated with GaStep
only, since the error propagation is not modeled (e.g., “Log New
Location” state).

DaStep is applied to two other model elements of the component
internal behavior state machine: a) to the propagation transition
specifying the time between the switching to erroneous state and
the failure manifestation (translated to the SRN timed transition
T4_propagate); and b) to the failure mode state specifying the
occurrence probability of failure model state).

5.3 Analysis of Results
We used the SPNP tool for solving the derived SRN model [8].
For the case study of this paper we use the analytical solver to
compute the unreliability using transient analysis. The values
assigned to the input parameters of the Tracking Data Service
component and its deployment node is shown in Table 3. Similar
parameters are assigned to each similar component and
connectors. All timed transitions have exponential distributions.

The generated SRN model is based on the following assumptions:

• Components fault occurrences are independent;
• Failure modes of each component are mutually exclusive,

therefore, if the component fails with a given failure mode
then it is considered failed and no other failure mode may
occur until it is repaired;

• Once a local fault occurs with a given rate, it switches to the
erroneous state immediately;

• The fault tolerance manager is deployed on a node that has
negligible failure rate;

• Communication between the internal components of the
composite component is immediate with no delay;

• Network failure is recoverable.

In this example we focus on unreliability (failure probability)
analysis, trying to answer two questions: First, what impact have
the different SvFTAM tactics on the system unreliability . Second,
what is the best SvFTAM tactics to be applied for the particular
system in terms of reliability improvement. As explained in the
previous sections, the analysis model is automatically derived
before and after applying fault tolerance tactics and then solved to
get quantitative data for comparison. Figure 9 shows the
unreliability (failure probability) results of VTS case study before
and after applying SvFTAM tactics. It is clear that the system
failure probability is lower after applying any SvFTAM tactics.
This answers the first question and the quantitative results will
encourage the designers to consider such tactics for improving the
reliability of the system.

In addition, the collected results will guide the developers in the
comparison of different SvFTAM tactics and help them select the
best one in terms of reliability improvement. For instance, for the
values chosen for the failure and repair rates, the retry tactic is the
best option for the VTS case study. For different failure and repair
rates, the comparison results may be different.

Table 3. Parameters of TrackingDataService component

SRN
Transition

DAM Parameter Assumed
Rate

T1_do_logVehicleLoc $Rate1 1/(15 s)
T2_do_updateMap $Rate2 1/(40 s)
T3_locaFaultActivation $FaultRate1 1/(2700 s)
T4_propagate $PropagateRate1 1/(10 s)
T1_repair $RepairFreq1 1/(300 s)
T2_fail $FailFreq1 1/(604800 s)

Checkpoint tactic shows a slight improvement compared to the
standby spare tactic. The difference is not very significant in this
particular case study due to the fact that the size and simplicity of
VTS case study that has only single checkpoint synchronization
between the two redundant components. According to these
values the noticeable improvement will be much clear in a bigger
system that has multiple checkpoints. Standby spare tactic is
ranked low compared to other tactics. In this tactic after switching

to the second redundant component, the failed request starts from
the beginning and fault may again reappear in any operation. On
the other hand, retry and checkpoint tactics continue from the last
failed operation.

Figure 9. Unreliability of VTS case study with SvFTAM
tactics comparison as function of time

6. RELATED WORKS
Software fault tolerance was addressed heavily in the literature
from different perspectives. For example, in [22] are explained
fault tolerance techniques and implementations, while in [11] are
presented over sixty software fault tolerance patterns that cover all
fault tolerance phases and were modeled as UML profiles in [21].
Availability tactics using redundancy were introduced in [4]. In
[12] it is studied the effect of applying fault tolerance tactics to
software architecture patterns, but the approach was qualitative,
based on interviews with expert developers to evaluate how much
change is needed in order to incorporate fault tolerance to the set
of existing software design. The work in [24] shows how the
recovery process is implemented in real IT systems for different
kinds of Mandelbugs. The effects of applying software fault
tolerance mechanisms to Palladio Component model was
presented in [6]. A validation approach to achieve fault tolerance
requirements in component based system is proposed in [7] .

Using AOM for refactoring the software architecture by adding
fault tolerance techniques has been suggested by several authors.
For instance, in [16] is presented an approach for modeling and
integrating AOM into CBD. The paper also illustrates how AOM
can be used to model component's dependability aspects
separately, by modeling a template for fault tolerance that
provides error detection and recovery services. This template can
be customized and composed with base models through a weaving
process. However, this approach does not consider internal
behavior to derive an analysis model, as we have proposed. A
similar approach presented in [9] uses AOM to construct and
build fault tolerance systems. New notations are introduced to
capture dependability aspects. The authors created a library of
fault tolerance mechanisms along with its dependability analysis
model template that is not derived from the software model. A
model weaver is designed to integrate the fault tolerance aspect
with the base software model, as well as to perform the model
analysis, which is done separately. Role-Based Metamodeling
language was employed in [13] to generalize modeling
architectural tactics, i.e., performance and availability that can be
reused to refactor existing designs.

7. CONCLUSION AND FUTURE WORK
The work presented here is part of a larger research project aiming
to integrate dependability analysis in the early phases of software
development process, by generating and analyzing Stochastic
Reward Net (SRN) models from UML software models. The
paper is based on our previous work: a) an framework for
modeling normal and erroneous behavior and failure propagation
of component based systems (CeBAM) [1]; and b) a set of
transformation rules [2] to automatically derive SRN analysis
models from UML architecture and behavior models.

In this paper, we present the Single-Version Fault Tolerance
Aspect Modeling (SvFTAM) approach, which is an aspect-based
technique for modeling structural and behavioral fault tolerance
tactics as reusable models. The following examples of fault
tolerance tactics have been modeled using SvFTAM: spare with
checkpoint, standby spare, retry and restart. We show how to
model in UML the “spare with checkpoint” tactic and illustrate
with the help of a case study how to use it for adding fault
tolerance capabilities to the original design.

Since the automatic derivation of the SRN model of a system with
fault tolerance from the software model is part of the proposed
approach, new transformation rules are needed for translating
from UML to SRN the fault tolerance tactics added to the original
software model. We discuss how to map the semantics of the
checkpoint mechanism from UML to SRN. Moreover, we solve
the derived model to study the effect of applying fault tolerance to
the VTS case study and compare different SvFTAM tactics in
terms of reliability. Currently, we are working on completing the
QVT transformation that implements the UML to SRN translation
proposed in the paper.

Future work will address the problem of solving the SRN model
for reasonable large systems. State space grows exponentially
with the model size. To avoid that we are planning on using
software architecture decomposition to guide the solution of the
corresponding SRN model by Petri Nets decomposition.

8. ACKNOWLEDGMENTS
Authors acknowledge the support provided by the Albaha
University and Ministry of Education, KSA. This research was
partially supported by NSERC, Canada.

9. REFERENCES
[1] Alzahrani, N. and Petriu, D.C. 2013. Modeling Component

Erroneous Behavior and Error Propagation for
Dependability Analysis. 16th International SDL Forum on
Model-Driven Dependability Engineering. LNCS, vol.7916,
124-143. Springer (2013).

 [2] Alzahrani, N. and Petriu, D.C. 2013. Derivation of
Stochastic Reward Net for Compatibility and Conformance
Verification of Component Erroneous Behavior Model.
Proceedings of IEEE 19th Pacific Rim International
Symposium on Dependable Computing - PRDC2013, 142-
151.

[3] Avizienis, A., Laprie, J.C., Randell, B. and Landwehr, C.
2004. Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and
Secure Computing, 11–33 (2004).

[4] Bass, L., Clements, P. and Kazman, R. 2012. Software
Architecture in Practice. Addison-Wesley.

[5] Bernardi, S., Merseguer, J. and Petriu, D.C. 2011. A

dependability profile within MARTE. Software and Systems
Modeling. (2011).

[6] Brosch, F., Buhnova, B. and Koziolek, H. 2011. Reliability
prediction for fault-tolerant software architectures.
Proceedings of the Federated Events on Component-Based
Software Engineering and Software Architecture -
QoSA+ISARCS'11, 75–84 (2011).

[7] Bucchiarone, A., Muccini, H. and Pelliccione, P. 2007.
Architecting Fault-tolerant Component-based Systems: from
requirements to testing. Electronic Notes in Theoretical
Computer Science. 168, 77–90 (2007)..

[8] Ciardo, G., Muppala, J. and Trivedi, T. 1989. SPNP:
stochastic Petri net package. Petri Nets and Performance.

[9] Domokos, P. and Majzik, I. 2005. Design and analysis of
fault tolerant architectures by model weaving. High-
Assurance Systems Engineering, 2005. HASE 2005. Ninth
IEEE International Symposium on. (2005).

[10] Grottke, M. and Trivedi, K.S. 2007. Fighting Bugs:
Remove, Retry, Replicate, and Rejuvenate. Computer. 40, 2,
107–109 (Feb. 2007).

[11] Hanmer, R. 2007. Patterns for Fault Tolerant Software. John
Wiley & Sons.

[12] Harrison, N.B. and Avgeriou, P. 2008. Incorporating fault
tolerance tactics in software architecture patterns.
RISE/EFTS Joint International Workshop on Software
Engineering for Resilient Systems-SERENE'08, 9-18 (2008).

[13] Kim, S., Kim, D.-K., Lu, L. and Park, S. 2009. Quality-
driven architecture development using architectural tactics.
Journal of Systems and Software. 82, 8 (Aug. 2009).

[14] Knight, J. 2012. Fundamentals of Dependable Computing
for Software Engineers. Chapman and Hall CRC Press.

[15] Lyu, M.R. 1994. Software Fault Tolerance. John Wiley &
Sons Inc.

[16] Michotte, L., France, R.B., Fleurey,F. 2007. Modeling and
Integrating Aspects into Component Architectures. 11th
IEEE International Enterprise Distributed Object
Computing Conference, 181-190 (2007)

[17] Muppala, J., Ciardo, G. and Trivedi, K.S. 1994. Stochastic
reward nets for reliability prediction. Communications in
reliability, maintainability and serviceability., 9–20 (1994).

[18] Object Management Group: MOF Model to Text
Transformation Language, v1.0. (Feb. 2008).

[19] Object Management Group: UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems.
(Jun. 2011).

[20] Object Management Group: Query View Transformation
(QVT) v1.1 formal/2011- 01-01. (Jan. 2011).

[21] Ongsiriporn, O. and Senivongse, T. 2013. UML profile for
fault tolerance patterns for service-based systems. 10th
International Joint Conference on Computer Science and
Software Engineering, 240-245 (2013).

[22] Pullum, L.L. 2001. Software Fault Tolerance Techniques
and Implementation. Artech House Publishers.

[23] Torres-Pomales, W. 2000. Software Fault Tolerance: A
Tutorial, NASA.

[24] Trivedi, K.S.,Mansharamani, R., Kim, D.S., Grottke, M. and
Nambiar, M. 2011. Recovery from Failures Due to
Mandelbugs in IT Systems. Proceedings of IEEE Pacific
Rim International Symposium on Dependable Computing -
PRDC2011, 224–233 (2011).

[25] Yedduladoddi, R. 2009. Aspect Oriented Software
Development: An Approach to Composing UML Design
Models. VDM Publishing.

