
Challenges in Integrating the Analysis of Multiple
Non-Functional Properties in Model-Driven

Software Engineering
Dorina C. Petriu
Carleton University

Department of Systems and Computer Engineering
Ottawa ON, Canada, K1S 5B6
petriu@sce.carleton.ca

ABSTRACT
This vision paper discusses the challenges of integrating the
analysis of multiple Non-Functional Properties (NFP) in the
model-driven software engineering process, where formal
analysis models are generated by model transformations from
annotated software models. The paper proposes an integration
approach based on an ecosystem of inter-related heterogeneous
modeling artifacts intended to support consistent co-evolution of
the software and analysis models, cross-model traceability,
incremental propagation of changes across models and
(semi)automated software process steps. Another goal is to
investigate new metaheuristics approaches for reducing the size of
the design space to be explored in the search for a design solution
that will meet all the non-functional requirements.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques,
Performance Attributes; D.2.8 [Software Engineering]: Metrics -
performance measures.

General Terms
Performance, Design, Verification.

Keywords
Model-driven engineering, Non-functional properties, model-
driven analysis, ecosystem of models.

1. INTRODUCTION
This vision paper discusses some of the challenges raised by the
seamless integration of the analysis of multiple Non-Functional
Properties (NFPs), such as performance, reliability, availability,
fault-tolerance, scalability, security, maintainability, cost, etc.,
into the Model-Driven Engineering (MDE) process. The purpose
is to guide the design choices from an early stage and to insure
that the system under construction will meet all its nonfunctional
requirements. The NFP analysis uses formal models (also known
as quality models) based on existing formalisms and tools (e.g.,
queueing networks, stochastic Petri nets, stochastic process

algebras, Markov chains, fault trees, probabilistic time automata,
etc.). Such analysis models can be automatically generated by
model transformations from the software models built for
development.

The following ingredients are necessary when integrating the
analysis of a single NFP (for instance, performance) in the model-
driven software development process: a) modeling language
support for adding performance annotations to the software design
model; b) tool support for the forward path that includes model-
to-model transformation of the annotated software model to a
performance model, solving the performance model and obtaining
the performance results; c) tool support for the backward path that
includes analyzing the performance results, finding the problem,
suggesting changes for improvement in the performance model,
which are translated into refactoring advice for the software
model, and d) a software process describing the entire workflow
for model-driven software development, which integrates the
analysis of multiple NFPs. A more detailed discussion of the
above ingredients is presented in section 2.

The big picture becomes even more complex if we consider the
integration of the analysis of multiple NFPs. Developing software
systems that exhibit a good trade-off between multiple NFPs is
difficult because the design of the software under construction
and its underlying platforms have a large number of degrees of
freedom spanning a very large discontinuous design space that
cannot be exhaustively explored, so metaheuristic approaches are
employed. Another challenge is due to the fact that some NFPs
are conflicting (for example, security and performance).
Therefore, the developers must make trade-off decisions to
improve one property at the expense of the other, but also need to
balance the respective properties, so that eventually all non-
functional requirements are met.

This paper proposes an integration approach that addresses some
limitations in the existing work: i) there is little work on
automating the backward path; ii) the software and analysis
models are isolated and cross-model queries and constraints are
not supported; iii) there is no traceability support between the
elements of different types of models (e.g., between software
model elements and the performance model elements generated
from them); iv) co-evolution of software models and
corresponding analysis models is not supported; v) incremental
propagation of changes across models is not supported; and vi)
many software process task are manual, being slow and error
prone.

The proposed integration approach is based on an ecosystem of
inter-related heterogeneous modeling artifacts, such as: software
and analysis models and metamodels; model transformations;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
WOSP-C’15, January, 2015, Austin, TX, USA.
Copyright 2015 ACM 1-58113-000-0/00/0010 …$15.00.

solvers; inter-model traceability models and metamodels; analysis
results, etc. An important role of the ecosystem is to support
consistent co-evolution of the software and analysis models. The
ecosystem contains a top-level model that describes the modeling
artifacts contained in the ecosystem, their relationships, plus other
relevant metadata needed for model management. The ecosystem
and its top-level model help automating the software process steps
that involve multiple modeling artifacts, as the top-level model
describes the dependency relationships between models and other
necessary metadata. (An example of such a step is the derivation
of an analysis model for a given NFP, which requires retrieving
from a repository the necessary models and metamodels, invoking
one or more transformations, passing the right parameters, and
registering the newly produced model(s) into the repository). The
aim is to relieve the developers from manual model management
operations as much as possible during the software process,
asking for human intervention only when new information needs
to be provided by the designers or their judgement/decisions are
required. The purpose of this automation is two pronged: to raise
the efficiency and usability of the NFP analysis during MDE and
to enhance the quality of the software products.

In order to deal with the design space explosion problem
mentioned before, the proposed research will investigate new
metaheuristics approaches for reducing the size of the design
space to be explored in the search for an optimal solution (more
detail in sections 3 and 4).

The paper is organized as follows: section 2 discusses the related
work and current limitations, section 3 presents the objectives and
related research questions, section 4 discusses methods for the
proposed approach, and section 5 gives the conclusions.

2. RELATED WORK
2.1 Current state of the art
The emergence of model-driven software engineering, which is
based on abstraction and automation, has enabled not only the
generation of code from models, but also the generation of formal
analysis models for NFP verification. Such models are derived
from software models (or selected views thereof) annotated with
information specific to the property to verified. How to do such
annotations was a question already addressed by many
researchers and practitioners. In the UML world, such annotations
are done via UML profiles, which are a standard extension
mechanism supported by UML editors. OMG has adopted two
standard profiles for performance and schedulability annotations:
an earlier profile, SPT [21] for UML 1.x and a more recent
replacement, MARTE [22] for UML 2.x. The adoption of SPT
and MARTE has enabled research on the automatic generation of
different kinds of performance models from annotated UML, as
surveyed in [9]. In the case of security analysis, a UML profile
named UMLsec defined in [15] is used to model and
systematically verify the correctness of security protocols. In [13],
the Alloy Analyzer tool is used to analyze security assertions of
models written in UML and OCL, which are automatically
transformed into the Alloy language, a fully declarative first-order
logic language designed to model complex systems. In the case of
dependability and its many attributes (availability, reliability,
fault tolerance, safety, maintainability) there is a body of work
surveyed in [2] where different solutions proposed in literature for
dependability specifications via ad-hoc UML profiles and
approaches for generating analysis models are discussed. A
survey on architecture-based software reliability analysis is found

in [12]. In [3] it is proposed the DAM profile for dependability
analysis, specialized from MARTE.

In software engineering have been defined many software
development processes (also known as software development
methodologies), some of which have been adapted to the model-
driven paradigm. In our research we are interested in a subset of
software processes which include the verification of one or more
NFPs based on quantitative analysis models. Examples are the
Software Performance Engineering process proposed by Smith in
[25], the risk reduction-based process from [13] and the
performance antipattern-based process from [26][8].

A relevant research challenge is how to use multiple NFP analysis
models in order to find good design (preferably optimal)
solutions. A thorough survey on software architecture
optimization methods is found in [1]. In principle, the problem of
balancing multiple NFPs lends itself to multi-criteria
optimization, but in practice the complexity of the system and the
size of the design space make the problem intractable. According
to the literature, traditional optimization methods have been used
mostly in cases where a single NFP analysis model was required.
For instance, integer linear programming is used in [19] for the
optimization of application deployments across a cloud, based on
the use of a Layered Queueing Network (LQN) model [30]. When
multiple NFP models are considered, metaheuristic search
techniques (e.g., genetic algorithms, simulated annealing, etc.) are
used to find better (if not the best) design models. An example is
[20], where a multi-criteria genetic algorithm is applied to
software architectures modeled with the Palladio Component
Model (PCM), supporting quantitative performance, reliability,
and cost prediction, where the performance model is obtained by
a PCM-to-LQN transformation [17], the reliability model by a
PCM-to-Markov Chain transformation and the cost by a simple
additive model.

Another approach for balancing different NFPs is using decision
support systems for reasoning under uncertainty, based on
Bayesian Belief Network models to derive fitness scores for
alternative designs [13]. The uncertainty of the problem domain is
represented through conditional probabilities, which specify the
modeler’s belief about the strengths of the cause-effect relations
between different domain entities represented in the model. A
different approach for finding good design solutions when a
single NFP is considered at a time makes use of rule-based
techniques. For instance, in [31] diagnostic and design-change
rules are used to automate the performance analysis and to
explore design changes using an LQN model, until an acceptable
solution is found. The advantage is that this approach gives
insight into the causes for poor performance and how to fix them.

There are two existing directions of research relevant to
ecosystems of models: global model management [5] [11] and
multi-paradigm modeling [18] [23]. Both consider a system of
inter-dependent heterogeneous models, described by a top-level
“model of models” (named megamodel in [5]) intended to support
the inter-working of models and inter-operation of languages.

Different types of models and modeling artifacts are involved in
the MDE process, which include software development models
and formal analysis models for different NFPs. A software model
may have many views representing different structural and
behavioural aspects of the system. Each analysis model for a
given NFP is derived from a specific set of system views
extended with extra information characteristic to the NFP of

interest. For instance, a performance model is derived from
structural views representing the high-level software architecture
and the software to hardware allocation, as well as a few
behavioural views representing key performance scenarios; all
views are annotated with performance information using MARTE
[29]. After the performance analysis, changes in the performance
model for improving the system performance must be propagated
back to the corresponding software views and eventually to the
main software model and all its other views.

2.2 Current Limitations
The proposed integration approach addresses a number of
limitations listed below, which are found in the existing work:

a) Although there is a lot of work on transforming software
models into analysis models, there is much less work on
automatic analysis and diagnosis of NFP problems, and on giving
feedback for improvement to the software developers.

b) The models are isolated and their relationships, although
known by the developers, are not formally recorded, so they
cannot be used for automation.

c) There is no traceability support between the software and
analysis models, which makes it impossible to automate the
import of analysis results in the software model context.

d) There is no support for (semi)automatic co-evolution of the
software and analysis models, so the co-evolution has to be done
manually or is not considered at all.

e) There is no support for incremental propagation of small
changes between the software and analysis models.

f) Many software process tasks are performed manually, which
makes the whole process inefficient and error-prone.

3. OBJECTIVES AND RESEARCH
QUESTIONS
The overall objective of the proposed integration approach is to
add more “engineering” to model-driven software engineering by
supporting the seamless integration of the analysis of multiple
NFPs into the MDE process. Different NFP analysis models based
on appropriate existing formalisms can be automatically derived
by model transformations from the software models built for
development, as explored in previous research. The software
models built for development and the NFP analysis models must
co-evolve together. An important research effort will go into
investigating how multiple NFP analysis models can be used to
find a good (preferably optimal) design solution, in which all non-
functional requirements are met. Another important aspect of the
proposed research is concerned with automating the software
process tasks/activities related to NFP analysis as much as
possible, asking for human intervention only when the developers
need to provide new information and/or their judgement or
decisions are required. The intended purpose of such automation
is two pronged: a) to raise the efficiency and usability of the NFP
analysis during MDE by eliminating error-prone manual model
manipulations, and b) to enhance the quality of the software
products by verifying the NFPs throughout the development
process, from its early phases.

The proposed approach has a number of specific objectives that
are described in the rest of the section.

3.1 Ecosystem of modeling artifacts
Objective A. Development of an ecosystem of modeling artifacts
which can support synchronized co-evolution of the software and
analysis models.

Such an ecosystem contains a large number of heterogeneous
inter-related modeling artifacts (such as models, metamodels,
transformations, trace-links, solvers, parameters and analysis
results) and is described by a top-level model that specifies the
modeling artifacts that are the members of the ecosystem, their
relationships and additional information (such as location) for
manipulating them. The following research questions are related
to this objective:

RQ-A1. What kind of information should be specified in the
ecosystem’s top-level model in order to describe the various kind
of modeling artifacts contained in the ecosystem, their
relationships, the activities to be enacted in order to realize such
relationships and the model management operations required for
each type of modeling artifact? What is the metamodel of the top-
level model?

RQ-A2. How to synchronize the co-evolution of the software
model and the corresponding NFP analysis models in the context
of an ecosystem specified as in the previous question?

RQ-A3. How can incremental propagation of changes help the
co-evolution of two models whose relationship is defined by a
model transformation? Can changes be propagated in any
direction (e.g., from the software model to an analysis model and
vice-versa) even if the transformation is unidirectional?

3.2 Inter-model traceability
Objective B. Develop support for inter-model traceability
between the elements of two models related by a relationship
defined by a model transformation.

The aim is to generate traceability links (stored externally in a
new model) between the elements of the two models according to
the mapping performed by the transformation. Three research
questions correspond to this objective:

RQ-B1. How to extend the current trace-link concept with the
capability of mapping expressions that calculate/aggregate
quantitative NFP measures in the analysis and software models,
by taking into account that each analysis formalism has specific
ways of computing the NFP results.

RQ-B2. How to express and execute NFP-related user-defined
cross-model queries, which seamlessly navigate between models
via inter-model trace links?

RQ-B3. How does inter-model traceability support incremental
model transformation? How are the trace-links themselves
updated during an incremental model transformation?

3.3 Metaheuristics for multi-NFP
optimization
Objective C. Define and verify metaheuristic approaches for
multi-NFP optimization.

 In principle, multi-NFP analysis lends itself to multi-criteria
optimization, but there are severe practical limitations to applying
traditional optimization techniques due to the very large size of
the problem. Researchers use instead metaheuristic search

techniques (e.g., genetic algorithms, simulated annealing, etc.) to
find good (preferably optimal) design solutions. However, the few
metaheuristics approaches reported so far do not scale up well
enough to analyze more than three or four NFPs for models of
realistic size. The following research questions are related to this
objective:

RQ-C1. Investigate automated diagnosis techniques for a given
NFP, which identify not only the cases where the NFP is poor, but
also what the causes are and how to fix the problem. How to use
such diagnosis techniques as metaheuristics to exclude design
space zones where the respective NFP is poor from the search
space that considers all NFPs? Alternatively, how to use such
diagnosis techniques to identify design space zones where the
respective NFP is good, so that such zones would be explicitly
included in the search space considering all NFPs?

RQ-C2. How effective are the new metaheuristic approaches
from the previous question in reducing the design space to be
explored in the search of a better design solution where all NFP
meet their requirements?

Of particular interest are metaheuristics based on performance
bottleneck diagnosis, which points very effectively to good design
solutions obtained by removing the bottleneck.

3.4 Software process automation
Objective D. Automate as much as possible the software process
tasks related to NFP analysis.

The intent is to develop techniques and tool support for semi-
automated process tasks or activities related to NFP analysis for
any model-driven software process, by eliminating manual
operations that are error-prone and slow. Examples of process
tasks to be automated are: a) generation of a given analysis model
and of the corresponding traceability model from the software
model or views thereof; b) solving an analysis model with an
existing solver and producing analysis results; c) performing an
NFP diagnosis, d) performing a design space search, etc. The
following research questions are related to this objective:

RQ-D1. Considering all the actions, queries, and model
manipulations performed in a software process task, what part of
the task can be executed automatically based on information
found in the top-level model or in any other artifact contained in
the ecosystem? When is human intervention absolutely necessary
(for instance, to provide new information or to make a
judgement/decision)?

RQ-D2. Based on the results of the previous question, how to
automate the execution of all process steps that take place
between two necessary human interventions?

4. PROPOSED APPROACH
In general, the research methodology for the proposed integration
approach will make use of principles, methods and technologies
for model-driven engineering, such as software modeling
languages, metamodeling, model transformations, model
management (including model persistence, co-evolution, global
model management, versioning) [5]. We will also use models for
different NFPs (e.g., Layered Queueing Networks, General
Stochastic Petri Nets, Stochastic Reward Nets, fault trees, etc.),
their metamodels (some of which we may have to define) and will
invoke existing solvers as a black-box.

In terms of technical space, we will focus on the open-source
Eclipse platform, which offers implementations of the OMG
standards we intend to use: UML and MARTE, XMI, OCL
constraint language and QVT transformation language. A
challenge for this research (where inter-model navigation and
support for cross-model queries and constraints are needed) is that
the standard languages mentioned above do not cross the
boundaries of a single model. Therefore, we will consider also the
family of transformation languages Epsilon [18] developed over
Eclipse, which can express cross-model constraints and queries.

All the objectives described in section 3 include a thorough
evaluation of the approaches and methods that will be developed.
We will select appropriate case studies to see how effectively the
developed methods work, and to identify their advantages and
limitations. Below we discuss methodological issues specific to
each objective.

A. Ecosystem of modeling artifacts. We will use as a basis two
existing directions of research relevant to ecosystems of models:
global model management [5] [11] and multi-paradigm modeling
[18] [23].

A software model may have many views representing different
structural and behavioural aspects of the system. Each analysis
model for a given NFP is derived from a specific set of system
views extended with extra information characteristic to the NFP
of interest. For instance, a performance model is derived from
structural views representing the high-level software architecture
and the software to hardware allocation, as well as a few
behavioural views representing key performance scenarios; all
views are annotated with performance information using
MARTE. After the performance analysis, changes in the
performance model for improving the system performance must
be propagated back to the corresponding software views and
eventually to the main software model and all its other views. The
propagation of changes could take place in the opposite direction
too, from the software to the analysis model.

Another issue specific to this objective is the co-evolution of
heterogeneous models whose relationship is defined by a
transformation, as in the case of software and analysis models. At
a minimum, the support for co-evolution should automatically
flag the set of model elements that should be changed in a model
in order to keep it consistent with changes in a related model.
Previous research considered different co-evolution cases with a
smaller semantic gap: a) the co-evolution of model instances with
metamodel changes [6] [7], or b) the co-evolution of a
transformation with metamodel changes [11]. In both cases there
are situations where designer intervention is necessary, so we
expect to find something similar, i.e. only some of the changes
may be propagated automatically, while others require human
intervention. We will also investigate how the properties of the
transformation affect the co-evolution.

B. Inter-model traceability. We will start by investigating the
traceability modeling techniques proposed by Paige et al.
[24][27], and will extend them with the capability of tracing
NFPs. We will consider two cases: a) building the traceability
model between two entire models at once, or b) incrementally
updating the trace-links for small changes in the related models.

An example of evaluation case study is to use the traceability
between the software and analysis model for mapping expressions
that calculate/aggregate quantitative NFP measures in the analysis
and software models. A good understanding of how performance

measures are calculated for different types of models and different
tools is required. Even if the formulas for different results are
formalism- and tool-dependent, we aim for a general approach for
mapping NFP results from the analysis domain to the software
domain based on inter-model traces. A second case study will
consider user-defined cross-model queries that seamlessly
navigate between models via inter-model trace links. A third case
study will apply the traceability solutions to queries that detect
the presence of performance antipatterns in a system. Such a
query navigates between different ecosystem elements: a
repository of antipattern specifications, different views of the
software model (structure, behaviour and deployment) and
performance analysis results [8].

C. Metaheuristics for multi-NFP optimization. An important
challenge is to define the “design state” of the system, by
selecting a few significant design, configuration and allocation
variables out of a very large set of possibilities. The selected
variables must have a strong impact on the NFPs, while the ones
left aside should be less important. We aim to find general criteria
for what is to be included in the design state space and why.
Another important challenge is to find metaheuristics that reduce
significantly the search space. For instance, we know from recent
experience with a design space search related to performance
antipatterns that bottleneck analysis reduces the search space in
combination with the removal of performance antipatterns [28]. In
the proposed research, we will investigate how to cast
performance diagnosis results obtained from the bottleneck
analysis as metaheuristics for the multi-dimensional space search,
either to explicitly exclude the sub-space where performance is
bad from the search, or to explicitly include the sub-space where
performance is good. We will evaluate how much the strength of
the bottleneck matters and how often we should repeat the
bottleneck diagnosis during the search for a multi-dimensional
solution.

D. Software process automation. For a successful automation of
the software process tasks concerned with NFP analysis, we need
to minimize first the number of human interventions. The process
should wait for designer input only if it requires new information
that cannot be found anywhere in the ecosystem of modeling
artifacts. If the information is hidden in an artifact or the top
model, then it should be retrieved by asking the right query. This
means that the script automating the software process should be
written in a language capable of asking queries that navigate from
artifact to artifact, of launching activities (such as model
transformations, model solvers or analyzers) by passing the right
parameters, which may need to be assembled from different
places. The research will investigate the expressive capabilities of
different scripting languages for automating the software process
and will extend them if necessary. For evaluation we will use
different software processes as case studies, with different
activities and different kind of information required. An example
is the process for reducing risk by selecting appropriate security
solutions [13], while at the same time taking into account other
NFPs, such as performance, reliability, scalability, availability,
reliability, and cost.

5. CONCLUSIONS
The proposed approach will contribute to the integration of NFP
analysis techniques into the model-driven software engineering
process. It aims to improve the quality of both the software
products and the software process, by raising the efficiency and
usability of the MDE tool support for NFP analysis.

The proposed research is aligned with the goals of a recent
industrial initiative called PolarSys (polarsys.org), an Eclipse
Industry Working Group created by large industry players and by
tools providers to collaborate on the creation and support of Open
Source tools for model-based development of embedded systems
for domains such as aerospace, defense & security, energy, health
care, telecommunications, transportation. Given that many
software companies have adopted some forms of MDE as shown
in [4][14] the following benefits to the software industry will flow
from the integration:

 Improved quality of the software products, since NFP
problems will be detected and solved at an early
development stage. Meeting the non-functional requirements
is an important and critical attribute for the quality of real-
time and/or distributed applications.

 Avoid cancellation of projects because of NFP failures.
Although NFP shortfalls are not often documented and
publicized, it is common knowledge that many projects fail
because they don't meet their non-functional requirements.

 Better productivity in the software industry by automating
error-prone steps of the software process and avoiding late
fixing of NFP problems. Late fixes are very time-consuming
and tend to produce badly structured software, which is
difficult to understand and expensive to maintain. Software
engineering based on late fixes is unsystematic, costly and
cannot give any early indication whether the project is on the
right track.

ACKNOWLEDGMENTS
This research was partially supported by the Natural Sciences and
Engineering Research Council (NSERC), through the Discovery
and Strategic Projects programs.

6. REFERENCES
[1] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, I.

Meedeniya. 2013. Software architecture optimization
methods: A systematic literature review, IEEE Transactions
on Software Engineering, Vol 39, No. 5, pp. 658-683.

[2] Bernardi S, Merseguer J, Petriu D. 2012. Dependability
modeling and analysis of software systems specified with
UML. ACM Computing Surveys. 45(1): 1-48.

[3] Bernardi S, Merseguer J, Petriu D. 2013. Model-Driven
Dependability Assessment of Software Systems. Springer.

[4] F. Bordeleau, 2014. Model-Based Engineering: A New Era
Based on Papyrus and Open Source Tooling, First Workshop
on Open Source Software for Model Driven Engineering
(OSS4MDE’14), co-located with MODELS’2014, Valencia,
Spain, September 2014.

[5] M. Brambilla, J. Cabot, M.Wimmer, 2012. Model-Driven
Software Engineering in Practice, Morgan & Claypool.

[6] A.Cicchetti, D. Di Ruscio, R. Eramo, A. Pierantonio. 2008.
Automating co-evolution in model-driven engineering,
Proceedings of 12th International IEEE Conference on
Enterprise Distributed Object Computing Conference,
EDOC'08 pp. 222-231.

[7] A.Cicchetti, D. Di Ruscio, R. Eramo, A. Pierantonio, 2009.
Managing Dependent Changes in Coupled Evolution, In

Proceedings of Second International Conference of Theory
and Practice of Model Transformations ICMT 2009,
(Richard F. Paige, Ed.), Springer LNCS Vol.5563, pp.35-51.

[8] V. Cortellessa, A. Martens, R. Reussner, C. Trubiani, 2010.
A Process to Effectively Identify “Guilty” Performance
Antipatterns, In Proc. of Fundamental Approaches to
Software Engineering, Springer, LNCS Vol. 6013, pp 368-
382.

[9] V. Cortellessa, A. Di Marco, P. Inverardi, 2011. Model-
based Software Performance Analysis, Springer.

[10] J.M. Favre, T. Nguyen, 2005. Towards a Megamodel to
Model Software Evolution Through Transformations,
Electronic Notes in Theoretical Computer Science, Vol. 127,
pp. 59–74.

[11] J. García, O. Diaz, and M. Azanza, 2013. Model
Transformation Co-evolution: A Semi-automatic Approach,
In Proceedings of Int. Conference on Software Language
Engineering SLE 2012 (K. Czarnecki and G. Hedin, Eds.),
Springer, LNCS Vol. 7745, pp. 144–163.

[12] S. S. Gokhale. 2007. Architecture-based software reliability
analysis: Overview and limitations. IEEE Trans. on
Dependable and Secure Computing, 4(1), pp. 32-40.

[13] Houmb S, Georg G, Petriu D, Bordbar B., Ray I, Anastasakis
K, and France R. 2011. Balancing Security and Performance
Properties During System Architectural Design. In
Mouratidis H. (Ed) Software Engineering for Secure
Systems: Industrial and Research Perspectives. pp. 155-192.
ICI Global.

[14] J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen,
2011. Empirical Assessment of MDE in Industry,
Proceedings of the 33rd International Conference on
Software Engineering ICSE '11, pp. 471-480.

[15] J. Jürjens, 2005. Secure Systems Development with UML,
ISBN: 978-3-540-00701-2. Springer.

[16] D. Kolovos, L. Rose, R. Paige, 2010.The Epsilon Book,
https://eclipse.org/epsilon/doc/book/.

[17] H. Koziolek and R. Reussner.2008. A Model Transformation
from the Palladio Component Model to Layered Queueing
Networks, In Proc. of Performance Evaluation: Metrics,
Models and Benchmarks, SIPEW 2008, Springer, LNCS Vol.
5119, pp. 58-78.

[18] J. de Lara, T. Levendovszky, P. J. Mosterman, H.
Vangheluwe, 2008.Second International Workshop on Multi-
Paradigm Modeling: Concepts and Tools, In Models in
Software Engineering, Springer LNCS Vol. 5002, pp 237-
246.

[19] Z.W. Li, C. M. Woodside, J.W. Chinneck, M. Litoiu, 2011.
CloudOpt: Multi-goal optimization of application

deployments across a cloud, Proc. of Int. Conference on
Network and Service Management CNSM 2011, pp.1-9.

[20] A. Martens, H. Koziolek, S. Becker, R. Reussner, 2010.
Automatically improve software architecture models for
performance, reliability, and cost using evolutionary
algorithms, In Proc. of 1st joint WOSP/SIPEW International
Conference on Performance Engineering ICPE2010, pp.
105-116.

[21] Object Management Group, 2005. UML Profile for
Scheduling, Performance and Time, Version 1.1, formal/05-
01-02.

[22] Object Management Group, 2009. UML Profile for
Modeling and Analysis of Real-Time and Embedded systems
(MARTE) Version 1.0, OMG doc. formal/2009-11-02.

[23] P. Mosterman, H. Vangheluwe, 2004. Computer Automated
Multi-Paradigm Modeling: An Introduction, Simulation, Vol.
80, Issue 9, pp. 433-450.

[24] R. Paige, N. Drivalos, D. Kolovos, K. Fernandes, C. Power,
G. Olsen, S. Zschaler, 2011. Rigorous identification and
encoding of trace-links in model-driven engineering,
Software and Systems Modeling, Volume 10, Issue 4, pp.
469-487.

[25] C.U. Smith. 1990. Performance Engineering of Software
Systems, Addison Wesley.

[26] C.U. Smith, L.G. Williams. 2001. Software Performance
AntiPatterns, Proc. of Int. CMG Conference, pp 797-806.

[27] M. Taromirad, N.D. Matragkas, R. Paige, 2013. Towards a
Multi-Domain Model-Driven Traceability Approach, In
Proceedings of the 7th Workshop on Multi-Paradigm
Modeling co-located with MODELS’2013, Miami, Florida,
pp. 27-36.

[28] Trubiani C, Di Marco A, Cortellessa V, Mani N, Petriu D.
2014. Exploring synergies between bottleneck analysis and
performance antipatterns. Proceedings of The 5th
ACM/SPEC International Conference on Performance
Engineering (ICPE 2014), Dublin, Ireland, pp. 75-86.

[29] C.M.Woodside, D.C. Petriu, J. Merseguer, D. B. Petriu, M.
Alhaj, 2014. Transformation challenges: from software
models to performance models, Software and Systems
Modeling, Volume 13, Issue 4, Page 1529-1552, DOI:
10.1007/s10270-013-0385-x.

[30] C.M. Woodside, J.E. Neilson, D.C. Petriu and S. Majumdar,
1995.The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-Like Distributed
Software, IEEE Tranactions on Computers, Vol. 44, No. 1,
pp. 20-34.

[31] J. Xu, 2010. Rule-based automatic software performance
diagnosis and improvement, Performance Evaluation,
Vol.67, Issue 8, pp. 585-611.

