
  

From UML to LQN by XML algebra-based  
model transformations 

Gordon P. Gu, Dorina C. Petriu 
Department of Systems and Computer Engineering 

Carleton University, Ottawa, ON, Canada 

{pgu|petriu}@sce.carleton.ca 
  

ABSTRACT 
The change of focus from code to models promoted by OMG's 
Model Driven Development raises the need for verification of non-
functional characteristics of UML models, such as performance, 
reliability, scalability, security, etc. Many modeling formalisms, 
techniques and tools have been developed over the years for the 
analysis of different non-functional characteristics. The challenge is 
not to reinvent new analysis methods for UML models, but to bridge 
the gap between UML-based software development tools and 
different kinds of existing analysis tools. Traditionally, the analysis 
models were built "by hand".  However, a new trend is starting to 
emerge, that involves the automatic transformation of UML models 
(annotated with extra information) into various kinds of analysis 
models. This paper proposes a transformation method of an 
annotated UML model into a performance model. The mapping 
between the input model and the output model is defined at a higher 
level of abstraction based on graph transformation concepts, 
whereas the implementation of the transformation rules and 
algorithm uses lower-level XML trees manipulations techniques, 
such as XML algebra. The target performance model used as an 
example in this paper is the Layered Queueing Network (LQN); 
however, the transformation approach can be easily tailored to other 
performance modelling formalisms. 
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1. INTRODUCTION 
Model Driven Development (MDD), the new approach to software 
development proposed by OMG, promotes the idea that software 
development should be based on models throughout the entire 
software lifecycle. UML and other OMG standards play an 
important role in MDD. This change of focus from code to models 
raises the need for verifying non-functional (also known as extra-

functional) characteristics of UML models, such as performance, 
reliability, scalability, security, etc. Over the years, many modeling 
formalisms, techniques and tools have been developed for the 
analysis of different non-functional characteristics. The challenge is 
not to reinvent new analysis methods for UML models, but to bridge 
the gap between UML-based software development tools and 
different existing analysis tools. Traditionally, the analysis models 
were built "by hand" by specialists in the field, then solved and 
evaluated separately with known tools. However, with the change 
of focus on models brought by MDD, a new trend is emerging for 
the evaluation of non-functional properties of software systems 
under develop-ment, which involves the automatic transformation of 
UML models into different analysis models. For instance, such an 
approach was used for performance analysis of UML models in 
[6][15][21], and for security characteristics verification in [7]. 

Different kinds of analysis techniques may require additional 
annotations to the UML model to express, for instance non-
functional requirements and characteristics. OMG's solution to this 
problem is to define standard UML profiles for different purposes. 
Two examples of such profiles are the “UML Profile for 
Schedulability, Performance, and Time” (SPT) [11] and "UML 
Profile for Modeling Quality of Service and Fault Tolerance 
Characteristics and Mechanisms" [12]. 

Translations from UML into different performance models have 
been surveyed in [1], such as translations to queueing models in 
[18][5], to LQN in [6][15], to stochastic Petri nets in [3][10], to 
stochastic process algebra in [4], directly to simulation in [2]. More 
recently, a transformation framework from multiple input design 
models into different performance models was proposed in [21]. 
However, so far the transformation process itself has been ad-hoc, 
tailored to the source and target formalisms.  

The contribution of this paper is to formalize the transformation 
process from annotated UML design models to performance 
models, in order to make it more modular, easier to apply and 
specialize it for different performance models. The mapping 
between the input (source) model and the output (target) model is 
defined at a higher level of abstraction (i.e., at the metamodel level) 
by using graph transformation concepts, whereas the 
implementation of the transformation rules and algorithm is done at 
the XML level, using lower-level XML trees manipulations 
techniques, such as XMLgebra and XACT proposed in [8][9]. The 
target performance model used as an example in this paper is the 
Layered Queueing Network (LQN); however, the transformation 
approach can be easily tailored to other performance modelling 
formalisms. 
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2. BACKGROUND 
2.1 Annotated UML design models  
The input to the proposed transformation method is a UML 1.4 
design model annotated with performance information according to 
the SPT profile, as illustrated in Figure 1 by a very simple example 
of a 3-tier client/server model. The structure of the performance 
model is obtained from: a) high-level software architecture showing 
the concurrent components and their relationships, possibly through 
design patterns as in Figure1.a, and b) deployment information 
describing the allocation of software components to hardware 
devices, as in Figure1.b.  

The behaviour of the performance model is derived from key 
scenarios modeled as UML activity (as in Figure 1.c) or interaction 
diagrams, showing the activities executed by different components 
and the flow of control/data in the system. 

 The activity diagram from Figure 1.c represents a key scenario of 
the 3-tier client-server model. We make the assumption that each 
software process from the high-level software architecture shown 
in Figure 1.a is represented by a separate “swimlane” in the activity 
diagram, which contains all the steps performed by that process. 
We also assume that the transitions crossing the swimlane 
boundaries represent an exchange of messages (signals) between 
concurrent components (named cross-transitions in the paper) even 
though UML 1.4 does not imply this interpretation. If we need to 
model explicitly the content of a message, we can use an 
ObjectFlowState (not shown in the example from Figure 1.c for the 
sake of simplicity). In order to simplify the transformation, we also 
assume that the cross-transition name is identical to the message 
name shown in the high-level architecture (Figure 1.a). The type of 
messages, either synchronous or asynchronous, is also denoted in 
the collaboration diagram. We made the assumption that the 
instance that initiates the scenario starts at the initial state of the 
activity diagram and ends at its final state. All the other components 
are assumed to have a cyclic behaviour, waiting in a state named 
“idle” to receive their first signal that triggers them into action. At 
the end of the scenario, these components will return to an 
undefined state by default (which may or may not be the idle state). 
By collecting the partial behaviours of a component from different 
scenarios, one can build the complete behaviour for every 
component; however, this is beyond the scope of the paper. In the 
transformation to performance model presented here, the idle and 
undefined states serve as begin/end indicators inside a partition, but 
do not represent actual scenario steps and will not be translated into 
the IM model. 

Since we assume that processes (component) represented in 
swimlanes are concurrent, we use the following convention inspired 
from Petri Nets to represent the sending/receiving of messages 
(signals) between components. On the sender’s side, the activity 
sending a message (be it synchronous or asynchronous) is followed 
by an explicit forking: one thread for the continuing execution of the 
sender, and the other thread for the message just sent (e.g., fork f2 
from Figure 1.c). On the receiver’s side, the message is accepted 
through the joining of the receiver’s thread with the message thread 
(e.g., join j3). A synchronous communication is composed from a 
request and a reply, which can be represented by two related 
messages (e.g., f2 and j3 represent a request from Y to Z, while 
f4 and j2 represent the corresponding reply). Note that, in Figure 
1.c, after sending a request to Z, the sender Y continues its 
execution with the activities y2 and y3, and which will accept the 
reply. In some cases, the sender of a synchronous request (e.g., X 
in Fig. 1.c) may block immediately after sending the request, and 
will continue only when the reply arrives. In this case, a simplified 
representation may be used, in which the “sending” fork for the 
request and the “receiving“ join for the reply are omitted.  

The hardware resources represented as nodes in deployment 
diagrams are stereotyped either as <<PAhost>> for processors, 
or <<PAresource>> for other devices (disk, network, etc). 
Concurrent processes participating in scenarios are also stereotyped 
as <<PAresource>>. A scenario is composed of steps 
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Fig.1. Annotated UML model of a 3-tier client/server 



  

stereotyped as <<PAstep>>, which are either the effect of 
messages in UML interaction diagrams, or activities in UML 
activity diagrams. Among the attributes of a <<PAstep>> is 
PAdemand that gives the “host demand” as a PAperfValue 
type. For example, the step y2 has an assumed mean CPU demand 
of 3 ms expressed as: 

PAdemand=('asmd', 'mean', (3, 'ms')) 

The first step of a scenario has the scenario workload information 
associated to it: in this case a closed workload with $N users. More 
details on how to use the SPT performance annotations can be 
found in [16].  

The proposed transformation reads the input UML model in XML 
format, produced by an existing UML/XMI tool according to the 
standard XML Metadata Interchange (XMI). 

2.2 XMLgebra 
XMLgebra was introduced in [9] to resolve the problem of static 
validation of dynamically constructed XML documents used in web 
services. It is a theoretical foundation on top of which XML 
becomes a first-class data type in any modern programming 
language (e.g., Java). It was implemented in the XACT framework 
[8], which allows programmers to manipulate XML templates as 
first-class data types in a Java program.  The XMLgebra operations 
are based on the XPath and DTD standards. In this work, 
XMLgebra is used to express higher-level transformation rules from 
an input to an output model.  

In XMLgebra, the processing of documents is done in terms of 
XML templates [8][9]. An XML template (as shown in Figure 3) is 
a well-formed XML fragment, containing named gaps that may 
appear in place of elements and attributes. 

Definition. An XML template is defined as t = (domt; labt; (λa
t) a 

∈ A) where: 
      Σ = a finite set of vertex labels,  
      A = a set of attribute names,  
      G = a set of gap names,  
      N* = a set of strings of natural numbers,  
      D = an infinite (recursively enumerable) domain of values, 
      domt = a finite template domain over N*, 
      labt: domt à Σ  is a labeling function, 
      for every attribute name a ∈ A, λa

t: domt àD ∪ G is a partial 
attribute value function. 
The set of all such templates is denoted as T(Σ;A;G).  

The domain domt encapsulates the structure of an XML template 
(tree); every tree vertex ν is represented by a value from N* 
converted to a string that encodes information similar to XPath (see 
Figure2). 

Let ν ∈  domt be a vertex corresponding to a given XML node; the 
i’th child of ν has the string value w = ν⋅i. When assigning ν values, 

the order in which different elements appear in the XML document 
is respected. The labeling function is defined to attach a label from 
Σ to a vertex in domt. Attribute value functions λa

t are defined to 
extract the value of an attribute a from the XML element v given as 
a parameter. 

 The character data of an XML template is listed in sequence, each 
element representing a node labeled with PCDATA ∈ Σ. The 
character sequence is represented by a special attribute named PC 
∈ A, together with a partial function λPC

t mapping PC to the 
corresponding data value at each PCDATA node. The gaps of an 
XML template are represented using nodes labeled with another 
special symbol GAP ∈ Σ. A gap has a name represented by a 
special attribute named GN ∈ A, together with a partial function 
λGN

t mapping GN to the corresponding gap name for each GAP 
node.  

Figure 3. Example of a XMLgebra template 

Figure 3 shows an example of template fragment where [Send] is 
a template GAP and[entryname] an attribute GAP. The label 
function labt maps domt to Σ and the attribute functions returns the 
value of an attribute.  

The detailes ofT(Σ;A;G) are as follows:  

    domt = {ε;1;11;111;112;1121;1122}, 

    Σ={ Root; IM:Task; IM:Service; GAP; IM:Step; IM:From; 
IM:To } 

    A={name; hardwareref; GN} 

    G = {entryname; Send} 

    labt = [ ε  à ROOT; 1 à IM:Task; 11 à IM:Service;111 à 
GAP; 112 à IM:Step; 1121 à IM:From; 1122 à IM:To ] 

    λt
name (1) = T1; λt

hardwareref (1) = procA;  
    λt

name (11) = entryname; λt
GN (111) = Send; λt

name (112) = f1; 
    λt

name (1121) = b1;  λt
name (1122) = b3. 

Using strings to represents the values in domt has the drawback that 
it fails to handle unambiguously very large templates. For instance, a 
string expression "1111" may be interpreted as {"1","1","1","1"}, 
{"1","1","11"}, {"1","11", "1"}, etc., which are different vertices. To 
avoid such confusion, we proposed to use an array of integers for 
domt values, instead of strings. This small change affects the formal 
definition of all the operations for template manipulations, so we use 
the name eXMLgebra to indicate this extension.  

As already mentioned, eXMLgebra contains a number of operation 
(functions) for template manipulation. Only the effects of some such 
operations are briefly described here. Figure 4.a illustrates the 
effect of operation select, which uses the input template t ∈ T(Σ ,A ,G) 
and the input XPath v to extract and return the subtree rooted at v 
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as a new template t', while the original template t remains 
unchanged. XML templates can be constructed using the special 
tplug operation, illustrated in Figure 4.b, which inserts an existing 
XML template into the gaps of another XML template. A similar 
operation named splug (not shown here) inserts string values into 
gaps, be they nodes or attributes. Figure 4.c shows the effect of 
operation remove, which removes a node from a template, but not 
its corresponding subtree. In fact, the children of the removed nodes 
are brought one level up. It is also possible to insert gaps (nodes or 
attributes) in desired places by using gapify operations (not shown 
here).  

3. TRANSFORMATION CONCEPTS 
3.1 General Approach 
The proposed transformation method accepts an XML file 

representing the input model that is compliant with the input 
DTD/schema, and generates an output XML tree that is compliant 
with the output DTD/schema. The input and output DTD (schemas) 
describe formalisms from different domains, so the semantic gap 
between them may be quite important. Optionally, the output XML 
data structure may be further converted into a text file, if the 
analysis tool requires a text format. However, this latest step is 
simpler and will not be discussed in the paper. The challenge is to 
define the mapping and to bridge the semantic gap between the 
input and output models at a higher level of abstraction. This step is 

based on graph transformation concepts[19][20], which have proven 
to be powerful enough for such applications in previous work by the 
authors of this paper [14][15][6].  

The essential idea of graph grammars or graph rewriting systems 
is that they are generalization of the string grammars that are used 
in compilers. The terms “graph grammars” and “graph rewriting 
systems” are often considered synonymous. However, the first is a 
set of production rules that generates a language of terminal graphs 
and produces nonterminal graphs as intermediate results, whereas 
the second is a set of rules that transforms one instance of a given 
class of graphs into another instance of the same class of graphs, 
without distinguishing between terminals and nonterminals graphs. 
The main component of a graph grammar is a finite set of 
production rules. A production is a triple (L,R,E), where L and R are 
graphs (the left-hand side and right-hand side, respectively) and E is 
an embedding mechanism. Such a production rule can be applied to 
a host graph H as follows: when an occurrence of L is found in H, it 
is removed end replaced with a copy of R; finally, the embedding 
mechanism E is applied to attach R to the remainder of the host 
graph H  

What is new in this paper is that, although the mapping between the 
input and output model are defined at the metamodel level, the 
detailed definition and implementation of the transformation rules 
and algorithms happens at the XML level, using XML tree 
manipulations based on eXMLgebra. In this way, we can take 
advantage of numerous XML technologies and tools that have been 
developed in the past year. More specifically, our implementation of 
the proposed method uses XSLT.  

The role of each transformation rule is to map a concept from the 
input model, represented as a template compliant to the input DTD, 
to an output concept represented by an output template. Also, a rule 
defines how to compute the output node attributes based on the 
input nodes. Besides the rules, a transformation algorithm is needed 
to decide in what order to invoke the transformation rules over a 
given input tree for generating output subtrees, and how to "glue" 
these subtrees together to construct the complete output tree. 
Conceptually, the "gluing" of subtrees is a label-based process, 
where the labels are node attributes of the output subtrees. More 
details are given in Sections 4 and 5. 

3.2 Two-step transformation from UML to 
LQN 
One of our goals is to develop a generic modular transformation 
method, easy to specialize for accepting several kinds of input 
models (such as UML 1.4 and UML 2.0) and for generating 
different kinds of output models. (We have tried so far LQN and 
CSIM-based simulation, but the later is not discussed in this paper). 
The PUMA project [21] makes a strong argument for solving this 
type of N-by-M problem by introducing a common intermediate 
format named the Core Scenario Model (CSM) [13]. PUMA's 
CSM captures the essence of performance specifications from a 
UML design as expressed in the SPT Profile [11] and strips away 
the design detail that is irrelevant to performance analysis. In this 
work we have adopted a similar approach.  
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Our proposed Intermediate Model (IM) mirrors the Performance 
Subprofile concepts, was developed in parallel with CSM and has 
many of the same features.  

The Performance Subprofile from SPT [11] describes a domain 
model that contains the basic abstractions used in performance 
analysis, including scenarios, resources and workload. Scenarios 
define response paths through the system, and can have QoS 
requirements such as response times or throughputs. Scenarios are 
executed by either closed or open workloads. Each scenario is 
composed of scenario steps that can be joined in sequence, loops, 
branches, forks and joins. A scenario step may be an elementary 
operation at the lowest level of granularity, or may be a complex 
sub-scenario composed of many basic steps. Each step has a mean 
number of repetitions, a host execution demand, other demands to 
resources and its own QoS characteristics. Resources are another 
basic abstraction, and can be active or passive, each with their own 
attributes. 

Figure 5 shows the IM schema. Its top node, IM:Model contains 
IM:HardwareEntity (hardware devices and processors), IM:Task  
(software components), IM:Service (scenario), and smaller 
elements such as IM:Step, IM:Join, IM:Fork , IM:Branch, 
IM:merge, IM:ReqestArc, IM:ReplyArc, etc. IM can also model 
logical resource, patterns and other supporting information.  

The main difference between CSM and IM is that the first is a 
scenario-based model (i.e., the steps are grouped in accordance 
with the scenario they belong to, regardless of who executes them) 
whereas IM is task-based (i.e., the steps are grouped by tasks). IM 
was developed separately from CSM only for practical reasons, to 
allow for independent work by different researchers in the same 
larger group. We have not migrated IM to CSM yet, because the 
SPT Profile, the very basis of both of them, will undergo a 
substantial upgrade in the near future. We foresee that IM will be 
eventually replaced with CSM. 

Similar to the PUMA approach, the transformation from UML to 
LQN discussed in this paper is done in two steps: 

1. Extract the relevant UML model information and.  
performance annotations from the XMI input file obtained from 
an UML tool, and generate the corresponding Intermediate 
Model. IM is another XML file that contains only the 
information required to build a performance model, filtering out 
a lot of UML model details unrelated to performance. 

2. Generate a LQN model in XML format from the IM obtained 
in the previous step. After the XML tree is generated, it is very 
easy to traverse it and produced the textual LQN format 
expected by some of the LQN tools. 

Figure 5. XML Schema of the Intermediate Model 



  

A concrete example of a partial IM model is given in Figure 6. It 
corresponds to the scenario steps from Figure 1.c executed in the 
swimlane Z by the concurrent process with the same name. In IM 
the steps appear in the same sequential order as in the activity 
diagram swimlane (i.e., the sequence relationship between steps is 
implied by their position). Only fork/join and branch/merge are 
represented explicitly as IM nodes.  

4. FROM UML TO IM 
The mapping of the main concepts from UML to IM and LQN is 
shown in Table 1. The mapping is not always straightforward, and 
depends on certain model-wide conditions. For instance, all UML 
activity diagram transitions are modelled by the same metaclass, but 
only some of them will have a special meaning in our transformation 
(i.e., the cross-transitions discussed in section 2.1).   

Table 1. Mapping of modelling concepts 

UML Model IM LQN 

Node 
<<PAresource>> 

Hardware 
Resource 

Hardware Device 

Node <<PAhost>> Processor Processor 

Class/Object/ 
Component 
<<PAresource>> 

Logical Resource Task or logical 
resource 

Partition  Logical Resource Task 

Partition containing 
Initial/End 
Pseudostate 

Task containing 
Initial/End Step 

Reference Task 

Cross-transition Request and/or 
Reply Arc 

LQN request arc 

ActionState or 
SubactivityState 
<<PAstep>> 

Step  

Selected group of 
States 

Service Entry 

Selected group of 
States 

Selected set of 
Steps 

Activity or Phase 

Join/Fork Pseudostate Join/ Fork “AND” Join/Fork  

Branch/Merge 
Pseudostate 

Branch/ Merge “OR” Join/ Fork 

Another example of complex mapping requires the identification of 
groups of steps that will be mapped to LQN entries, phases and 
activities, as discussed in section 4.1. All these mappings are 
expressed as transformation rules, and each rule applies in certain 
conditions. 

4.1 Transformation Rules 
Some transformations rules from UML to IM are simple to 
understand, as they map one UML concept to a corresponding IM 
concept (e.g., UML:Node to IM:HardwareResource, 
UML:Object to IM:LogicalResource; UML:ActionState to 
IM:Step, etc.) Even so, one-to-one mappings at the conceptual level 
do not necessarily translate into a simple node-to-node 
transformation at the XML tree level, as each modelling concept 
may be represented by a XML template, not just by a node.   

Figure 7. Aggregation of scenario steps  

 

A transformation rule becomes more complex if it represents a one-
to-many or many-to-one mapping. To understand the need for such 
mappings, let us consider the activity diagram from Figure 1.c 
redrawn in Figure 7, with shaded areas representing groups of 
activities (i.e., scenario steps) that will be eventually aggregated 
together in the LQN domain. For instance, the group of steps 
executed by a process in response to a service request will become 
an LQN:Entry, which in turn may be split into Phases or Activities. 
In an entry, the subgroup of steps executed in a single thread of 
control between the receiving of a service request until the sending 
of the reply will generate a single LQN element, namely Phase1 of 
the LQN:Entry modelling the service. All the steps executed by the 
same objects after sending the reply until it reaches the last state 
will generate Phase2 of the same LQN:Entry. For example, steps 
z1 and z2 will be grouped together to generate phase1 of entry 
req2, whereas step Z3 will generate phase2 (see also Figures 
9 and 10). If, however, a forking occurs between the receiving of a 
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Figure 6. IM submodel example  

 



  

request and the sending of the reply, the LQN feature LQN:Activity  
will be used instead of LQN:Phase. For example, the shaded areas 
from Figure 7 show the groups of steps contained in swimlane Y 
that generate activities a1 to a5. More explanations on how these 
groups are generated can be found in [15]. However, the point we 
are trying to make here is that the mapping from one domain to 
another is not always straightforward. The mapping depends usually 
on conditions that may be simple or complex, local or global. The 
conditions for applying a given transformation rule need to be 
expressed either as a part of the transformation rule itself, or to be 
included in the transformation algorithm that controls the 
applications of the rules. In this work, both the rules and the 
transformation algorithm are expressed at the XML level, with the 
help of eXMLgebra. 

Figure 8 shows an example of a transformation rule that is mapping 
synchronizations bars from the activity diagrams (i.e., 
UML:Pseudostate) into IM:Fork  or IM:Join connectors. The left-

hand side XML template contains a Pseudostate  of kind "fork" or 
"join", which has a number of UML:State.Vertex.outgoing and  
UML:State.Vertex.incoming. Each State.Vertex has one or more 
children of type State.Transition, each one with an xmi.idref 
attribute that refers to an activity diagram transition.  

Two versions of the left-hand side template are shown at the top of 
Figure 8, one for "join" and the other for "fork". The 
transformation rule definition given below indicates the conditions 
for choosing one case or the other. The symbol “à” expresses a 
direct node-to-node mapping. For instance:  

UML:Pseudostate(xmi.id, name, visibility, isSpecification, kind)  
 à IM:Join (name, taskname) 

indicates that a node with four attributes labeled Pseudostate  from 
the UML domain is mapped to a node with two attributes labeled 
Join from the IM domain. The transformation rule defines also the 
attribute conversions by λa functions defined in section 2.2. 

   

    UML:Pseudostate(xmi.id, name, visibility, isSpecification, kind)  
 à IM:Join(name, taskname)   if   λkind(vpseudostate) = ‘join’ ; 
 à IM:Fork(name, taskname)  if   λkind(vpseudostate) = ‘fork’ ; 
    UML:StateVertex.outgoing à null; 
    UML:StateVertex.incoming à null;  
    BehavioralElements.StateMachines.Transition (xmi.idref) 
 à IM:To(name)      if  (vstate_machine.transition) ∈ children(vstatevertex.outgoing); 
 à IM:From(name) if  (vstate_machine.transition) ∈ children(vstatevertex.incoming); 
    λname(vfork) = λname(vpseudostate); 
    λname(vjoin) = λname(vpseudostate); 
    λtaskname(vfork), = λname(vpartition), ∃ λname(v) = λname(vfrom) ^ v ∈ descendants(vpartition) ^ vfrom ∈ children(vfork);  
    λtaskname(vjoin), = λname(vpartition), ∃ λname(v) = λname(vto) ^ v ∈ descendants(vpartition) ^ vto ∈ children(vfork);  
    λname(vfrom) = λname(v | v ∈ descendants(vcompositstate.subvertex) ^ λxmi.idref(v) =  
             λxmi.id(vtransition | wtransition.source ∈ descendants(vtransition)^ λxmi.idref(w) = λxmi.idref(vstate.transition))); 
    λname(vto) = λname(v | v ∈ descendants(vcompositstate.subvertex)^ λxmi.idref(v) =  
            λxmi.id(vtransition | wtransition.target ∈ descendants(vtransition)^ λxmi.idref(w) = λxmi.idref(vstate.transition))); 
 

Figure 8. Transformation rule example
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4.2 Execution Sequence in IM  
The execution sequence shown in the UML activity diagram is not 
explicitly expressed by the individual transformation rules. However, 
IM needs to generate in order from left to right the steps that are 
executed sequentially, as there is no sequence connector between 
IM steps, only branch/merge and fork/join connectors. More 
specifically, an IM:Service template must reflect the execution step 
sequence from the UML activity diagram (see Figure 6 as an 
example). The generation of a IM:Service template is based on the 
information contained in the corresponding UML:Partition 
template.  

The algorithm shown below determines what kind of gaps to 
generate in the output template according to the scenario steps from 
the input UML:Partition template. The algorithm traverses each 
element in the UML:Partition template starting from the initial 
vertex of each partition. It creates a corresponding gap in the 
IM:Service template and plugs in the IM:Step template that was 
generated previously by the appropriate transformation rule. The 
following UML scenario steps generate IM:Steps: a) activities 
sterotyped as <<PAstep>> with a defined service time; b) fork 
and join Pseudostates, c) branch and merge Pseudostates, and d) 
cross-transitions representing a message exchange between 
concurrent processes. In the IM domain, each of the plugged 
templates contains also information on its predecessor and 
successor nodes, so that the generated IM maintains the scenario 
sequence described in the UML activity diagram.  

construct(Ttask, Tcollection, Tpatition){  
   v = first(Tpatition); 
   t1 = Tservice ; t2 = Tpatition ; t3 = Tcollection ; 
   Ttask = traverse(v, t1, t2, t3) 
}  
traverse(v, t1, t2, t3 ) {              // recursive function 
   if ( descendantst2(v) = {0})  

return;    // this vertex has 
                              // no outgoing transition 
   if(ν ∉ t2) return; //this vertex is not in this partition 
   if (labt2(ν) =  s| s ∈ S ) { 
       g = labt2(ν); 
       gapifyAChild(t1, u|labt1(u) = ‘Service’, g); 
       t = select(w| w ∈  t3, λt3

name(w) = λt2
name(v)); 

       tplug(t1, g, t); 
   } 
   ∀ vi| vi= descendantst2(v) ^ labt2(vi) = ‘To’) { 
                            // outgoing transition 
       if(v|λt3

name(v) = λt2
target(vi)  ̂v ∉ t2)  

                           // this transition crosses boundary 
               g = labt2(vi); 
               gapifyAChild(t1, v|labt1(v) = ‘Service’, g); 
               t = select(w| w ∈  t3, λt3

name(w) = λt2
name(v)); 

               tplug(t1, g, t); 
              } 
       else{           //a local transition  
            vt =( v|λt3

name(v) = λt2
target(vi)  ̂v ∈ t2); 

             traverse(vt, t1, t2 ); 
           } 
   } 
  if(∃ v| v∈ t2 ^ v∉ t1) traverse(v, t1, t2, t3 ); 
} 

4.3 Algorithm for gluing the output IM tree 
From the application of transformation rules we obtain a set of 
templates {T} = {T1, T2, T3, …,Ti} where Ti is a collection set that 
contains the required fragments for constructing the intermediate 
file template. Also, the transformation needs the DTD for IM, Tdtd, 
to check whether all nodes v are defined in Tdtd. The construction of 
the output IM tree becomes a function of {T} × Tdtd à Tim. In other 
words, we use the template fragments in {T} to construct the 
intermediate model template in accordance with a given DTD 
template. The "gluing" algorithm is given below: 

Tim= {ε}; 
∀v | v ∈ Tdtd 
   f(v); 
 
f(v){                      // recursive function 
{St} = {w| w∈  {T}, labw(1) = labdtd(v)}; 
if {St} = {0} return; 
else ∀Si ∈ {St} 
   pi = findparent({T},Si); 
   if pi ∈ Tim { 
     if Si ∈ Tim 
        return; 
     else { 
        g = λname(Si); 
        gapifyAChild(Tim, pi, g); 
       tplug(Tim, g, Si); 
      } 
    } 
   else        //pi ∉ Tim; 
      f(p|labdtd(p) = labt{pi},p ∈ Tdtd ^ pi ∈ {T}); 
} 

This algorithm provides a generic method to construct an output 
template from a given set of template fragments and an input DTD 
template. All the smaller templates in {T} must be compliant with 
the given input DTD. The fragments in {T} can either be a single 
vertex or a subtree. The function f(v) is a recursive function. It 
takes a vertex from the Tdtd and tries to match it with template 
fragments in {T}. If matches are found, it takes the parent vertex of 
the matching template to check if the parent is already in the new 
template Tim. If the parent vertex exists and the matching child does 
not exist, a gap is created and the matching vertex is plugged into 
the new template Tim; otherwise the algorithm returns. If the parent 
vertex is not found in the new template, then use the parent vertex 
as the matching vertex and repeat the steps. Moreover, the 
findparent({T}, v) function returns a vertex whose attribute name 
is the same as the attribute “pname” of v, e.g., λname(w) = λpname(v).  

Note that the IM subtree from Figure 6 is obtained by the 
transformation described in this section. 

5. FROM IM TO LQN  
This section describes how to transform IM to LQN. Before getting 
into the transformation details and rule definitions, it is necessary to 
understand the mappings between the IM and LQN models, as 
shown in Table 1. It should be noted that, while the mapping from 
UML to IM is independent of the target performance model, the 
mapping from IM to a certain performance model is highly specific 
to that performance model. Our goal is to limit the dependency of 



  

the proposed algorithms on the specific model details as much as 
possible, for achieving reusability and flexibility. 

5.1 IM à LQN Rules  
The first step is to define the mapping rules between the two 
domains. Each rule has a left-hand side template from the IM 
domain, and a right-hand side template from the LQN domain. The 
following list gives only the root node labels for the input and output 
templates.  

  IM:TaskInformation  à LQN:TASKINFO; 
  IM:HardwareEntity à LQN:P; 
  IM:Hardware à LQN:P_DECL; 
  IM:LogicalEntity à LQN:T; 
  IM:LogicalResource à LQN:T_DECL; 
  IM:Task à LQN:TASK; 
  IM:Service à (LQN: PH_DECL, 

 LQN: A_DECL(LQN: ACTIVITY(LQN:ACONNECTION))); 
  IM:Step à (LQN:PHASE, LQN:AS); 
  IM:Fork  à (NULL, LQN:SPLIT); 
  IM:Join  à (NULL, LQN:JOIN); 
  IM:ReqstArc à (LQN:PCALL, LQN: ACALL); 
  IM:ReplyArc à (NULL, NULL); 
  IM:Branch à (NULL, LQN:SPLIT); 
As mentioned in section 4.2 and illustrated in Figure 7, one of the 
most challenging rules from IM to LQN has to deal with identifying 
groups of IM:Steps  and mapping them to LQN:Phases or 
LQN:Activities, depending on rather complex conditions. This 
problem was inherited from the UML model, but was not solved in 
the UML-to-LQN transformation, as each IM:Step corresponds 
exactly to one UML step. Therefore, the problem of grouping the 
IM:Steps and mapping them to the LQN domain (entries, phases 
and activities) has to be solved now.  
The solution is encapsulated in the following rule: 
  IM:Service à (LQN:PH_DECL, LQN:A_DECL (LQN:ACTIVITY 

                                   (LQN:ACONNECTION))); 
The choice is further delegated to the transformation function 
select-apply , which takes a vertex from the input template (in the 
IM domain), verifies all the application conditions and returns the 
corresponding vertex, which is the root of the output template (in the 
LQN domain). The purpose of the select-apply  function is even 
more far-reaching. Its goal is to encapsulate the verification of all 
conditions for rule applications, which are specific to the 
performance target model, leaving the transformation algorithm that 
invokes select-apply  and controls the application of the IMàLQN 
transformation rules as generic as possible. The pseudo-code for the 
select-apply  function used in the transformation from IM to LQN is 
given below: 
 
select-apply(v) 
{ 
    if (v ∉ V) return null; 
    if (lab(v) = 'Service'){  
      if (∃ vi,| vi ∈ descendants(v), u=lab(vi)=Fork 
                 ^  ∃ ui,| ui ∈ descendants(u), lab(ui)?≠ReplyArc)  
          return w=lookup(v(1))     ;// it is an activity 
      else return w=lookup(v(0))  ;// it is a phase 
    } // end if 
   else{ 
       if (p = parentService(v)==null)  
           return w=lookup(v); 
      else{ 

          if (lab(select-apply(p) = ‘A_DECL’)  
              return w=lookup(v(1)); 
          if (lab(select-apply(p) = ‘P_DECL’){  
              if(lab(v) = ‘Step’ ^ ∃ vc,| vc =children(v)  
                  ^ lab(vc) =’From’ ^λname(vc) = λpname(v)) { 
                  while(u = p.i ∈ Tim){ 
                     if(lab(u) = ‘Step’ ^ λpname(u)= λpname(v)) 
                        st = st + λservicetime(u); 
                    i=i+1; 
                   } // end while 
                  λservicetime(w)=st; 
                   if(λname(vc) = ‘Join’) λname(w)=phase1; 
                   if(λname(vc) = ‘Fork’) λname(w)=phase2; 
                   return w; 
               }  
               else 
                  return null; 
             return w=lookup(v(0)); 
          } 
       } 
   } 
} // end select-apply 
 
The lookup function returns an element from the right side of the 
rule table. The select-apply  function takes an input node and 
returns one of the following: null, node or tree, depending whether a 
match with the left-hand side of a rule from the set IMàLQN rules 
was found or not. The choice of whether to convert an IM:Service 
template to LQN:Phases or LQN:Activities is made as follows. 
The IM input model is traversed to determine whether a fork 
operation, which is not a reply, exists. A conversion to “phase” is 
applied if there is no such a fork, otherwise a conversion to 
“activity” is considered. The fork operation is further examined to 
determine if it is an inter-fork (inside a swimlane) or an intra-fork 
(one that sends a message across swimlanes). The service demand 
is set to zero for the inter-fork. Moreover, a task entry is generated 
for each kind of service offered by the corresponding software 
component instance. The service demands of all the aggregated 
steps are added together to produce the service demand for the 
generated phases or activities The above function can also 
distinguish between LQN activity and phase by checking if there is 
a fork operation which does not involves a reply. If the condition is 
true, then the corresponding entry is treated as having LQN 
activities; otherwise it is transformed to phases. 

Figure 9 traces the problem of deciding on activities and phases 
from UML to IM, and then to LQN. It illustrates how a swimlane of 
the activity diagram is transformed to the corresponding IM, and 
then further to LQN. The steps z1 and z2 are grouped into 
phase1, while step z3 becomes phase2. 

5.2 Generic Transformation Algorithm from 
IM to a Performance Model 
This section introduces a generic algorithm that controls the 
application of a given set of transformation rules. The purpose is to 
decouple the transformation control from the details related to the 
target model. This algorithm can convert a template compliant to a 
source DTD to another template compliant to a target DTD. The 



  

conversion algorithm takes an input template t1 and the rule set M 
and constructs the corresponding output template t2. 

The generic conversion algorithm T(Σ ,A ,G) × M à T(Σ ,A ,G) is given 
below. The essence of this algorithm is to traverse the input tree 
and look for a match between different subtrees (i.e., templates) 
and the left-hand side of a transformation rule from the set M, via 
the select-apply  function described in the previous section. If such 
a match is found in the input template, a gap will be created in the 
output template, in which the result returned by select-apply  will be 
plugged in. The recursive operation internalconversion repeats 
itself for each child vertex. 

conversion(t1,m){ 
   t2 = {ε}; internalconversion(t1,m,t2);  return t2; 
} 
internalconversion(t1,m,t2){ 
   v= first(t1) 
   t’ = select-apply(v); 
   if (t’≠ null) { 
      v’= gaplocation(v); 
      g = lab(v); 
      gapifyAChild(t2, v’, g); 
      tplug(t2, g, t’); 
   } 
   if (subtreet1(v)= {0}) return; 
   else{ 
      S = ti | ti ∈  subtreet1(v); 
     ∀ ti ∈  S  

        internalconversion (ti,m,t2); 
      return; 
   } // end else 
} // end internalconversion 

The above transformation algorithm does not require any specific 
information on the target template, because the select-apply  
function provides what to plug in, and the gaplocation function tells 
us where to plug it in. More exactly, select-apply(v) takes a vertex  
as parameter and returns one of the following: a null, a vertex or a 
tree. A null return means that the input vertex has no matching 
mapping rule. If a vertex is returned, it is a one-to-one mapping. If a 
tree is returned, it indicates a one-to-n mapping. A null or one-to-n 
mapping will result in template structure changes.  

On the other hand, the gaplocation(v) returns a vertex where the 
newly generated template will be plugged in. It should be noted that 
both ‘select-apply” and “gaplocation” functions are target 
templates specific, since each target template has its different 
transformation rules and plug-in rules.  

Tow other functions used in the conversion algorithm are first(t) 
and subtreest(v): 

subtreest (v) = {select(t,wi| wi ∈ children(v)} and  
children(v) = {(v1, v2, …,vn).1, …, (v1, v2, …,vn).k } 

The former returns the first vertex of a given template, i.e., v = 
first(t)= v(1) ∈ t. The latter returns all the child templates of v as a 
set. 

The LQN model given in Figure 10 can be obtained by applying the 
conversion algorithm described above to the input UML model from 
Figure 1. This algorithm can be used to transform a IM model to 

different performance models, provided that a specific rule set M 
and a select-apply  function are given for each target model. 
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The LQN model contains three tasks (represented by 
parallelograms), one for each process X, Y and Z. The processors 
and network resources are modelled as hardware devices 
(represented by circles). The tasks Y and Z are co-allocated on the 
same processor. Each task has a single entry (drawn as a smaller 
parallelogram inside the task), according to the grouping of scenario 
steps illustrated in Figure 7. Entry req1 of Y is composed of 
activities due to the fact that it contains an internal fork/join, 
whereas entry req2 of Z is composed of two sequential phases. 
The LQN model can be used to analyze the performance 
characteristics of the systems, but this is outside of the scope of the 
paper, which focuses on proposing a new model transformation 
method. The use of LQN models for performance analysis of UML 
designs is discussed in other publications, such as [16]. 
 

6. CONCLUSIONS 
The main contribution of the paper is a model transformation 
method that combines concepts from graph transformations with 
XML transformation techniques, such as XMLgebra. More 
specifically, the mapping between the input model and the output 
model is defined at a higher level of abstraction (i.e., at metamodel 
level) based on graph transformation concepts, whereas the 
implementation of the transformation rules and algorithm is done at 
the XML level, using lower-level XML trees manipulations 
techniques 

In order to test the flexibility and modularity of the proposed 
technique, we have defined transformations from UML 1.4 to two 
performance target models, LQN and CSIM-based simulation (only 
the first is discussed in the paper). Current work is under way to 
update the definition of the transformation rules such that the input 
models are in UML 2.0. This impacts only the first transformation 
step UMLàIM. 

We are in the process of implementing the proposed UML à IM 
àLQN transformation in XSLT. First are implemented the 
eXMLgebra tree-manipulation primitives, then the transformation 
rules and the overall transformation algorithm. In principle, the 
implementation could be also done in a general-purpose 
programming language, such as Java. The disadvantage would be 
that such an approach would require a Java library to read in a 
UML model from an XMI file and to traverse and manipulate the 

UML metamodel. Such libraries do exist, but they are specific to 
different UML tools, and many are proprietary.  

The choice of XSLT allows us to take advantage of many existing 
XML transformation techniques and tools, and avoids the need for a 
library able to manipulate the UML metamodel. However, XSLT is 
not as powerful as a general-purpose language, and raises its own 
challenges. We expect that the experience gained with this method 
will help us understand better conceptual and practical issues in 
model transformations. The long-term goal is to build an XML-
based model transformation framework that could be used for a 
large class of model transformations required in the context of 
MDA. 
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