

From UML to LQN by XML algebra-based
model transformations

Gordon P. Gu, Dorina C. Petriu
Department of Systems and Computer Engineering

Carleton University, Ottawa, ON, Canada

{pgu|petriu}@sce.carleton.ca

ABSTRACT
The change of focus from code to models promoted by OMG's
Model Driven Development raises the need for verification of non-
functional characteristics of UML models, such as performance,
reliability, scalability, security, etc. Many modeling formalisms,
techniques and tools have been developed over the years for the
analysis of different non-functional characteristics. The challenge is
not to reinvent new analysis methods for UML models, but to bridge
the gap between UML-based software development tools and
different kinds of existing analysis tools. Traditionally, the analysis
models were built "by hand". However, a new trend is starting to
emerge, that involves the automatic transformation of UML models
(annotated with extra information) into various kinds of analysis
models. This paper proposes a transformation method of an
annotated UML model into a performance model. The mapping
between the input model and the output model is defined at a higher
level of abstraction based on graph transformation concepts,
whereas the implementation of the transformation rules and
algorithm uses lower-level XML trees manipulations techniques,
such as XML algebra. The target performance model used as an
example in this paper is the Layered Queueing Network (LQN);
however, the transformation approach can be easily tailored to other
performance modelling formalisms.

General terms
Design, Performance.

Keywords
Software Performance Engineering, UML, performance profile,
automatic model building, model transformations, XML, XMI, LQN.

1. INTRODUCTION
Model Driven Development (MDD), the new approach to software
development proposed by OMG, promotes the idea that software
development should be based on models throughout the entire
software lifecycle. UML and other OMG standards play an
important role in MDD. This change of focus from code to models
raises the need for verifying non-functional (also known as extra-

functional) characteristics of UML models, such as performance,
reliability, scalability, security, etc. Over the years, many modeling
formalisms, techniques and tools have been developed for the
analysis of different non-functional characteristics. The challenge is
not to reinvent new analysis methods for UML models, but to bridge
the gap between UML-based software development tools and
different existing analysis tools. Traditionally, the analysis models
were built "by hand" by specialists in the field, then solved and
evaluated separately with known tools. However, with the change
of focus on models brought by MDD, a new trend is emerging for
the evaluation of non-functional properties of software systems
under develop-ment, which involves the automatic transformation of
UML models into different analysis models. For instance, such an
approach was used for performance analysis of UML models in
[6][15][21], and for security characteristics verification in [7].

Different kinds of analysis techniques may require additional
annotations to the UML model to express, for instance non-
functional requirements and characteristics. OMG's solution to this
problem is to define standard UML profiles for different purposes.
Two examples of such profiles are the “UML Profile for
Schedulability, Performance, and Time” (SPT) [11] and "UML
Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms" [12].

Translations from UML into different performance models have
been surveyed in [1], such as translations to queueing models in
[18][5], to LQN in [6][15], to stochastic Petri nets in [3][10], to
stochastic process algebra in [4], directly to simulation in [2]. More
recently, a transformation framework from multiple input design
models into different performance models was proposed in [21].
However, so far the transformation process itself has been ad-hoc,
tailored to the source and target formalisms.

The contribution of this paper is to formalize the transformation
process from annotated UML design models to performance
models, in order to make it more modular, easier to apply and
specialize it for different performance models. The mapping
between the input (source) model and the output (target) model is
defined at a higher level of abstraction (i.e., at the metamodel level)
by using graph transformation concepts, whereas the
implementation of the transformation rules and algorithm is done at
the XML level, using lower-level XML trees manipulations
techniques, such as XMLgebra and XACT proposed in [8][9]. The
target performance model used as an example in this paper is the
Layered Queueing Network (LQN); however, the transformation
approach can be easily tailored to other performance modelling
formalisms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP’05, July 11-14, 2005, Palma de Mallorca, Spain.
Copyright 2005 ACM 1-59593-087-6/05/0007 …$5.00.

2. BACKGROUND
2.1 Annotated UML design models
The input to the proposed transformation method is a UML 1.4
design model annotated with performance information according to
the SPT profile, as illustrated in Figure 1 by a very simple example
of a 3-tier client/server model. The structure of the performance
model is obtained from: a) high-level software architecture showing
the concurrent components and their relationships, possibly through
design patterns as in Figure1.a, and b) deployment information
describing the allocation of software components to hardware
devices, as in Figure1.b.

The behaviour of the performance model is derived from key
scenarios modeled as UML activity (as in Figure 1.c) or interaction
diagrams, showing the activities executed by different components
and the flow of control/data in the system.

 The activity diagram from Figure 1.c represents a key scenario of
the 3-tier client-server model. We make the assumption that each
software process from the high-level software architecture shown
in Figure 1.a is represented by a separate “swimlane” in the activity
diagram, which contains all the steps performed by that process.
We also assume that the transitions crossing the swimlane
boundaries represent an exchange of messages (signals) between
concurrent components (named cross-transitions in the paper) even
though UML 1.4 does not imply this interpretation. If we need to
model explicitly the content of a message, we can use an
ObjectFlowState (not shown in the example from Figure 1.c for the
sake of simplicity). In order to simplify the transformation, we also
assume that the cross-transition name is identical to the message
name shown in the high-level architecture (Figure 1.a). The type of
messages, either synchronous or asynchronous, is also denoted in
the collaboration diagram. We made the assumption that the
instance that initiates the scenario starts at the initial state of the
activity diagram and ends at its final state. All the other components
are assumed to have a cyclic behaviour, waiting in a state named
“idle” to receive their first signal that triggers them into action. At
the end of the scenario, these components will return to an
undefined state by default (which may or may not be the idle state).
By collecting the partial behaviours of a component from different
scenarios, one can build the complete behaviour for every
component; however, this is beyond the scope of the paper. In the
transformation to performance model presented here, the idle and
undefined states serve as begin/end indicators inside a partition, but
do not represent actual scenario steps and will not be translated into
the IM model.

Since we assume that processes (component) represented in
swimlanes are concurrent, we use the following convention inspired
from Petri Nets to represent the sending/receiving of messages
(signals) between components. On the sender’s side, the activity
sending a message (be it synchronous or asynchronous) is followed
by an explicit forking: one thread for the continuing execution of the
sender, and the other thread for the message just sent (e.g., fork f2
from Figure 1.c). On the receiver’s side, the message is accepted
through the joining of the receiver’s thread with the message thread
(e.g., join j3). A synchronous communication is composed from a
request and a reply, which can be represented by two related
messages (e.g., f2 and j3 represent a request from Y to Z, while
f4 and j2 represent the corresponding reply). Note that, in Figure
1.c, after sending a request to Z, the sender Y continues its
execution with the activities y2 and y3, and which will accept the
reply. In some cases, the sender of a synchronous request (e.g., X
in Fig. 1.c) may block immediately after sending the request, and
will continue only when the reply arrives. In this case, a simplified
representation may be used, in which the “sending” fork for the
request and the “receiving“ join for the reply are omitted.

The hardware resources represented as nodes in deployment
diagrams are stereotyped either as <<PAhost>> for processors,
or <<PAresource>> for other devices (disk, network, etc).
Concurrent processes participating in scenarios are also stereotyped
as <<PAresource>>. A scenario is composed of steps

x1

idle_y idle_z

y1

y2

y3

y4

y5x2

undef_y

z1

z2

undef_z

z3

X Y Z

f2

f4

f3

j1

j2

j3

init

fin

req1

reply1

req2

reply2

<<PAresource>>
X

<<PAresource>>

Y
<<PAresource>>

Z

<<PAresource>>

X
<<PAresource>>

Y
<<PAresource>>

Z

<<PAhost>>
Proc1

<<PAhost>>
Proc2

<<Paresource>>
LAN

<<deploys>>
<<deploys>>

ClientServer

Client
Server

ClientServer

Client
Server

req1
client client serverserver

req2

a) High-level software architecture

b) Deployment

c) Annotated scenario

<<PAstep>>
{PAdemand=(‘est’ ,

‘mean’, 2, ‘ms’),
PAextop=(LAN, $P)}

<<PAclosedLoad>>
{Papopulation = $N}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 3, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 1, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 2.5, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 1.8, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 2, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’ ,
‘mean’, 1.7, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’ ,
‘mean’, 2.1, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 2.7, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 1.5, ‘ms)’}

reply2

x1

idle_y idle_z

y1

y2

y3

y4

y5x2

undef_y

z1

z2

undef_z

z3

X Y Z

f2

f4

f3

j1

j2

j3

init

fin

req1

reply1

req2

reply2

<<PAresource>>
X

<<PAresource>>

Y
<<PAresource>>

Z

<<PAresource>>

X
<<PAresource>>

Y
<<PAresource>>

Z

<<PAhost>>
Proc1

<<PAhost>>
Proc2

<<Paresource>>
LAN

<<deploys>>
<<deploys>>

<<PAresource>>

X
<<PAresource>>

Y
<<PAresource>>

Z

<<PAhost>>
Proc1

<<PAhost>>
Proc2

<<Paresource>>
LAN

<<deploys>>
<<deploys>>

ClientServer

Client
Server

ClientServer

Client
Server

ClientServer

Client
Server

ClientServer

Client
Server

req1
client client serverserver

req2

a) High-level software architecture

b) Deployment

c) Annotated scenario

<<PAstep>>
{PAdemand=(‘est’ ,

‘mean’, 2, ‘ms’),
PAextop=(LAN, $P)}

<<PAstep>>
{PAdemand=(‘est’ ,

‘mean’, 2, ‘ms’),
PAextop=(LAN, $P)}

<<PAclosedLoad>>
{Papopulation = $N}
<<PAclosedLoad>>
{Papopulation = $N}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 3, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 3, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 1, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 1, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 2.5, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 2.5, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 1.8, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 1.8, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 2, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 2, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’ ,
‘mean’, 1.7, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’ ,
‘mean’, 1.7, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’ ,
‘mean’, 2.1, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’ ,
‘mean’, 2.1, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 2.7, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 2.7, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 1.5, ‘ms)’}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 1.5, ‘ms)’}

reply2

Fig.1. Annotated UML model of a 3-tier client/server

stereotyped as <<PAstep>>, which are either the effect of
messages in UML interaction diagrams, or activities in UML
activity diagrams. Among the attributes of a <<PAstep>> is
PAdemand that gives the “host demand” as a PAperfValue
type. For example, the step y2 has an assumed mean CPU demand
of 3 ms expressed as:

PAdemand=('asmd', 'mean', (3, 'ms'))

The first step of a scenario has the scenario workload information
associated to it: in this case a closed workload with $N users. More
details on how to use the SPT performance annotations can be
found in [16].

The proposed transformation reads the input UML model in XML
format, produced by an existing UML/XMI tool according to the
standard XML Metadata Interchange (XMI).

2.2 XMLgebra
XMLgebra was introduced in [9] to resolve the problem of static
validation of dynamically constructed XML documents used in web
services. It is a theoretical foundation on top of which XML
becomes a first-class data type in any modern programming
language (e.g., Java). It was implemented in the XACT framework
[8], which allows programmers to manipulate XML templates as
first-class data types in a Java program. The XMLgebra operations
are based on the XPath and DTD standards. In this work,
XMLgebra is used to express higher-level transformation rules from
an input to an output model.

In XMLgebra, the processing of documents is done in terms of
XML templates [8][9]. An XML template (as shown in Figure 3) is
a well-formed XML fragment, containing named gaps that may
appear in place of elements and attributes.

Definition. An XML template is defined as t = (domt; labt; (λa
t) a

∈ A) where:
 Σ = a finite set of vertex labels,
 A = a set of attribute names,
 G = a set of gap names,
 N* = a set of strings of natural numbers,
 D = an infinite (recursively enumerable) domain of values,
 domt = a finite template domain over N*,
 labt: domt à Σ is a labeling function,
 for every attribute name a ∈ A, λa

t: domt àD ∪ G is a partial
attribute value function.
The set of all such templates is denoted as T(Σ;A;G).

The domain domt encapsulates the structure of an XML template
(tree); every tree vertex ν is represented by a value from N*
converted to a string that encodes information similar to XPath (see
Figure2).

Let ν ∈ domt be a vertex corresponding to a given XML node; the
i’th child of ν has the string value w = ν⋅i. When assigning ν values,

the order in which different elements appear in the XML document
is respected. The labeling function is defined to attach a label from
Σ to a vertex in domt. Attribute value functions λa

t are defined to
extract the value of an attribute a from the XML element v given as
a parameter.

 The character data of an XML template is listed in sequence, each
element representing a node labeled with PCDATA ∈ Σ. The
character sequence is represented by a special attribute named PC
∈ A, together with a partial function λPC

t mapping PC to the
corresponding data value at each PCDATA node. The gaps of an
XML template are represented using nodes labeled with another
special symbol GAP ∈ Σ. A gap has a name represented by a
special attribute named GN ∈ A, together with a partial function
λGN

t mapping GN to the corresponding gap name for each GAP
node.

Figure 3. Example of a XMLgebra template

Figure 3 shows an example of template fragment where [Send] is
a template GAP and[entryname] an attribute GAP. The label
function labt maps domt to Σ and the attribute functions returns the
value of an attribute.

The detailes ofT(Σ;A;G) are as follows:

 domt = {ε;1;11;111;112;1121;1122},

 Σ={ Root; IM:Task; IM:Service; GAP; IM:Step; IM:From;
IM:To }

 A={name; hardwareref; GN}

 G = {entryname; Send}

 labt = [ε à ROOT; 1 à IM:Task; 11 à IM:Service;111 à
GAP; 112 à IM:Step; 1121 à IM:From; 1122 à IM:To]

 λt
name (1) = T1; λt

hardwareref (1) = procA;
 λt

name (11) = entryname; λt
GN (111) = Send; λt

name (112) = f1;
 λt

name (1121) = b1; λt
name (1122) = b3.

Using strings to represents the values in domt has the drawback that
it fails to handle unambiguously very large templates. For instance, a
string expression "1111" may be interpreted as {"1","1","1","1"},
{"1","1","11"}, {"1","11", "1"}, etc., which are different vertices. To
avoid such confusion, we proposed to use an array of integers for
domt values, instead of strings. This small change affects the formal
definition of all the operations for template manipulations, so we use
the name eXMLgebra to indicate this extension.

As already mentioned, eXMLgebra contains a number of operation
(functions) for template manipulation. Only the effects of some such
operations are briefly described here. Figure 4.a illustrates the
effect of operation select, which uses the input template t ∈ T(Σ ,A ,G)
and the input XPath v to extract and return the subtree rooted at v

<IM:Task name="T1" hardwareref="procA">
<IM:Service name=[entryname]>

<[Send]>
<IM:Step name="f1">

<IM:From name="b1"/>
<IM:To name="b3"/>

</IM:Step>
</IM:Service>

</IM:Task>

ε

1

11

111 112

1121 1122

Root

IM:Task

IM:Service

GAP IM:Step

IM:ToIM:From

<IM:Task name="T1" hardwareref="procA">
<IM:Service name=[entryname]>

<[Send]>
<IM:Step name="f1">

<IM:From name="b1"/>
<IM:To name="b3"/>

</IM:Step>
</IM:Service>

</IM:Task>

εε

11

1111

111111 112112

11211121 11221122

Root

IM:Task

IM:Service

GAP IM:Step

IM:ToIM:From

c
c

c

ε
… …

……

……

layer 1

layer 2

layer n

v = (c1 c2 … ci …cn)

layer 0

ci gives the position of the ancestor
situated on layer i among its own siblings

Figure2. Notation for a vertex ν ∈ domt

as a new template t', while the original template t remains
unchanged. XML templates can be constructed using the special
tplug operation, illustrated in Figure 4.b, which inserts an existing
XML template into the gaps of another XML template. A similar
operation named splug (not shown here) inserts string values into
gaps, be they nodes or attributes. Figure 4.c shows the effect of
operation remove, which removes a node from a template, but not
its corresponding subtree. In fact, the children of the removed nodes
are brought one level up. It is also possible to insert gaps (nodes or
attributes) in desired places by using gapify operations (not shown
here).

3. TRANSFORMATION CONCEPTS
3.1 General Approach
The proposed transformation method accepts an XML file

representing the input model that is compliant with the input
DTD/schema, and generates an output XML tree that is compliant
with the output DTD/schema. The input and output DTD (schemas)
describe formalisms from different domains, so the semantic gap
between them may be quite important. Optionally, the output XML
data structure may be further converted into a text file, if the
analysis tool requires a text format. However, this latest step is
simpler and will not be discussed in the paper. The challenge is to
define the mapping and to bridge the semantic gap between the
input and output models at a higher level of abstraction. This step is

based on graph transformation concepts[19][20], which have proven
to be powerful enough for such applications in previous work by the
authors of this paper [14][15][6].

The essential idea of graph grammars or graph rewriting systems
is that they are generalization of the string grammars that are used
in compilers. The terms “graph grammars” and “graph rewriting
systems” are often considered synonymous. However, the first is a
set of production rules that generates a language of terminal graphs
and produces nonterminal graphs as intermediate results, whereas
the second is a set of rules that transforms one instance of a given
class of graphs into another instance of the same class of graphs,
without distinguishing between terminals and nonterminals graphs.
The main component of a graph grammar is a finite set of
production rules. A production is a triple (L,R,E), where L and R are
graphs (the left-hand side and right-hand side, respectively) and E is
an embedding mechanism. Such a production rule can be applied to
a host graph H as follows: when an occurrence of L is found in H, it
is removed end replaced with a copy of R; finally, the embedding
mechanism E is applied to attach R to the remainder of the host
graph H

What is new in this paper is that, although the mapping between the
input and output model are defined at the metamodel level, the
detailed definition and implementation of the transformation rules
and algorithms happens at the XML level, using XML tree
manipulations based on eXMLgebra. In this way, we can take
advantage of numerous XML technologies and tools that have been
developed in the past year. More specifically, our implementation of
the proposed method uses XSLT.

The role of each transformation rule is to map a concept from the
input model, represented as a template compliant to the input DTD,
to an output concept represented by an output template. Also, a rule
defines how to compute the output node attributes based on the
input nodes. Besides the rules, a transformation algorithm is needed
to decide in what order to invoke the transformation rules over a
given input tree for generating output subtrees, and how to "glue"
these subtrees together to construct the complete output tree.
Conceptually, the "gluing" of subtrees is a label-based process,
where the labels are node attributes of the output subtrees. More
details are given in Sections 4 and 5.

3.2 Two-step transformation from UML to
LQN
One of our goals is to develop a generic modular transformation
method, easy to specialize for accepting several kinds of input
models (such as UML 1.4 and UML 2.0) and for generating
different kinds of output models. (We have tried so far LQN and
CSIM-based simulation, but the later is not discussed in this paper).
The PUMA project [21] makes a strong argument for solving this
type of N-by-M problem by introducing a common intermediate
format named the Core Scenario Model (CSM) [13]. PUMA's
CSM captures the essence of performance specifications from a
UML design as expressed in the SPT Profile [11] and strips away
the design detail that is irrelevant to performance analysis. In this
work we have adopted a similar approach.

a2

A

a3a1

c5

b2

c6c4c2

b1

c3c1

e2

d1

e3e1

e2

d1

e3e1

t’ = select (t, vd1)

λ GN = g

e2

d1

e3e1

a2

A

GAPa1

c2

b1

c3c1

t

t” = tplug (t, g, t’)
a2

A

a1

c2

b1

c3c1

e2

d1

e3e1

a2

A

a1

e2

d1

e3e1

a3

t’ = remove (t, vd1)

a2

A

a1 e2 e3e1 a3

upgraded children

t’

t

t’

t”

t

a) Effect of function select

b) Effect of function tplug

c) Effect of function remove

t’

a2

A

a3a1

c5

b2

c6c4c2

b1

c3c1

e2

d1

e3e1

e2

d1

e3e1

t’ = select (t, vd1)

λ GN = g

e2

d1

e3e1

a2

A

GAPa1

c2

b1

c3c1

t

t” = tplug (t, g, t’)
a2

A

a1

c2

b1

c3c1

e2

d1

e3e1

a2

A

a1

e2

d1

e3e1

a3

t’ = remove (t, vd1)

a2

A

a1 e2 e3e1 a3

upgraded children

t’

t

t’

t”

t

a) Effect of function select

b) Effect of function tplug

c) Effect of function remove

t’

Figure 4. Some template manipulation operations

Our proposed Intermediate Model (IM) mirrors the Performance
Subprofile concepts, was developed in parallel with CSM and has
many of the same features.

The Performance Subprofile from SPT [11] describes a domain
model that contains the basic abstractions used in performance
analysis, including scenarios, resources and workload. Scenarios
define response paths through the system, and can have QoS
requirements such as response times or throughputs. Scenarios are
executed by either closed or open workloads. Each scenario is
composed of scenario steps that can be joined in sequence, loops,
branches, forks and joins. A scenario step may be an elementary
operation at the lowest level of granularity, or may be a complex
sub-scenario composed of many basic steps. Each step has a mean
number of repetitions, a host execution demand, other demands to
resources and its own QoS characteristics. Resources are another
basic abstraction, and can be active or passive, each with their own
attributes.

Figure 5 shows the IM schema. Its top node, IM:Model contains
IM:HardwareEntity (hardware devices and processors), IM:Task
(software components), IM:Service (scenario), and smaller
elements such as IM:Step, IM:Join, IM:Fork , IM:Branch,
IM:merge, IM:ReqestArc, IM:ReplyArc, etc. IM can also model
logical resource, patterns and other supporting information.

The main difference between CSM and IM is that the first is a
scenario-based model (i.e., the steps are grouped in accordance
with the scenario they belong to, regardless of who executes them)
whereas IM is task-based (i.e., the steps are grouped by tasks). IM
was developed separately from CSM only for practical reasons, to
allow for independent work by different researchers in the same
larger group. We have not migrated IM to CSM yet, because the
SPT Profile, the very basis of both of them, will undergo a
substantial upgrade in the near future. We foresee that IM will be
eventually replaced with CSM.

Similar to the PUMA approach, the transformation from UML to
LQN discussed in this paper is done in two steps:

1. Extract the relevant UML model information and.
performance annotations from the XMI input file obtained from
an UML tool, and generate the corresponding Intermediate
Model. IM is another XML file that contains only the
information required to build a performance model, filtering out
a lot of UML model details unrelated to performance.

2. Generate a LQN model in XML format from the IM obtained
in the previous step. After the XML tree is generated, it is very
easy to traverse it and produced the textual LQN format
expected by some of the LQN tools.

Figure 5. XML Schema of the Intermediate Model

A concrete example of a partial IM model is given in Figure 6. It
corresponds to the scenario steps from Figure 1.c executed in the
swimlane Z by the concurrent process with the same name. In IM
the steps appear in the same sequential order as in the activity
diagram swimlane (i.e., the sequence relationship between steps is
implied by their position). Only fork/join and branch/merge are
represented explicitly as IM nodes.

4. FROM UML TO IM
The mapping of the main concepts from UML to IM and LQN is
shown in Table 1. The mapping is not always straightforward, and
depends on certain model-wide conditions. For instance, all UML
activity diagram transitions are modelled by the same metaclass, but
only some of them will have a special meaning in our transformation
(i.e., the cross-transitions discussed in section 2.1).

Table 1. Mapping of modelling concepts

UML Model IM LQN

Node
<<PAresource>>

Hardware
Resource

Hardware Device

Node <<PAhost>> Processor Processor

Class/Object/
Component
<<PAresource>>

Logical Resource Task or logical
resource

Partition Logical Resource Task

Partition containing
Initial/End
Pseudostate

Task containing
Initial/End Step

Reference Task

Cross-transition Request and/or
Reply Arc

LQN request arc

ActionState or
SubactivityState
<<PAstep>>

Step

Selected group of
States

Service Entry

Selected group of
States

Selected set of
Steps

Activity or Phase

Join/Fork Pseudostate Join/ Fork “AND” Join/Fork

Branch/Merge
Pseudostate

Branch/ Merge “OR” Join/ Fork

Another example of complex mapping requires the identification of
groups of steps that will be mapped to LQN entries, phases and
activities, as discussed in section 4.1. All these mappings are
expressed as transformation rules, and each rule applies in certain
conditions.

4.1 Transformation Rules
Some transformations rules from UML to IM are simple to
understand, as they map one UML concept to a corresponding IM
concept (e.g., UML:Node to IM:HardwareResource,
UML:Object to IM:LogicalResource; UML:ActionState to
IM:Step, etc.) Even so, one-to-one mappings at the conceptual level
do not necessarily translate into a simple node-to-node
transformation at the XML tree level, as each modelling concept
may be represented by a XML template, not just by a node.

Figure 7. Aggregation of scenario steps

A transformation rule becomes more complex if it represents a one-
to-many or many-to-one mapping. To understand the need for such
mappings, let us consider the activity diagram from Figure 1.c
redrawn in Figure 7, with shaded areas representing groups of
activities (i.e., scenario steps) that will be eventually aggregated
together in the LQN domain. For instance, the group of steps
executed by a process in response to a service request will become
an LQN:Entry, which in turn may be split into Phases or Activities.
In an entry, the subgroup of steps executed in a single thread of
control between the receiving of a service request until the sending
of the reply will generate a single LQN element, namely Phase1 of
the LQN:Entry modelling the service. All the steps executed by the
same objects after sending the reply until it reaches the last state
will generate Phase2 of the same LQN:Entry. For example, steps
z1 and z2 will be grouped together to generate phase1 of entry
req2, whereas step Z3 will generate phase2 (see also Figures
9 and 10). If, however, a forking occurs between the receiving of a

x1

idle_y idle_z

y1

y2

y3

y4

y5x2

undef_y

z1

z2

undef_z

z3

X Y Z

f2

f4

f3

j1

j2

j3

init

fin

eX1, ph1

req2, ph1

req2, ph2

req1, a2

req1, a1

req1, a4

req1, a5

req1

reply1

req2

reply2

x1

idle_y idle_z

y1

y2

y3

y4

y5x2

undef_y

z1

z2

undef_z

z3

X Y Z

f2

f4

f3

j1

j2

j3

init

fin

eX1, ph1

req2, ph1

req2, ph2

req1, a2

req1, a1

req1, a4

req1, a5

req1

reply1

req2

reply2

 IM:Task
Information

IM:Task
name=Z

IM:Service
name=Z1

IM:Join
name=j3

IM:Step
name=z1

IM:Step
name=z2

IM:Fork
name=f4

IM:ReplyArc
name=reply2

IM:Step
name=z3

IM:From
name=req2

IM:To
name=z1

IM:From
name=j3

IM:To
name=z2

IM:From
name=z1

IM:To
name=f4

IM:From
name=z2

IM:To
name=reply2

IM:To
name=z3

IM:From
name=f4

IM:To
name=j2

IM:From
name=f4

IM:Task
name=Y

IM:Task
name=X

...
...

IM:Task
Information

IM:Task
name=Z
IM:Task
name=Z

IM:Service
name=Z1

IM:Join
name=j3
IM:Join
name=j3

IM:Step
name=z1
IM:Step
name=z1

IM:Step
name=z2
IM:Step

name=z2
IM:Fork
name=f4
IM:Fork
name=f4

IM:ReplyArc
name=reply2
IM:ReplyArc
name=reply2

IM:Step
name=z3
IM:Step
name=z3

IM:From
name=req2
IM:From

name=req2

IM:To
name=z1
IM:To

name=z1

IM:From
name=j3
IM:From
name=j3

IM:To
name=z2
IM:To

name=z2

IM:From
name=z1
IM:From
name=z1

IM:To
name=f4
IM:To

name=f4

IM:From
name=z2
IM:From
name=z2

IM:To
name=reply2

IM:To
name=reply2

IM:To
name=z3

IM:From
name=f4
IM:From
name=f4

IM:To
name=j2
IM:To

name=j2

IM:From
name=f4
IM:From
name=f4

IM:Task
name=Y
IM:Task
name=Y

IM:Task
name=X
IM:Task
name=X

...
...

Figure 6. IM submodel example

request and the sending of the reply, the LQN feature LQN:Activity
will be used instead of LQN:Phase. For example, the shaded areas
from Figure 7 show the groups of steps contained in swimlane Y
that generate activities a1 to a5. More explanations on how these
groups are generated can be found in [15]. However, the point we
are trying to make here is that the mapping from one domain to
another is not always straightforward. The mapping depends usually
on conditions that may be simple or complex, local or global. The
conditions for applying a given transformation rule need to be
expressed either as a part of the transformation rule itself, or to be
included in the transformation algorithm that controls the
applications of the rules. In this work, both the rules and the
transformation algorithm are expressed at the XML level, with the
help of eXMLgebra.

Figure 8 shows an example of a transformation rule that is mapping
synchronizations bars from the activity diagrams (i.e.,
UML:Pseudostate) into IM:Fork or IM:Join connectors. The left-

hand side XML template contains a Pseudostate of kind "fork" or
"join", which has a number of UML:State.Vertex.outgoing and
UML:State.Vertex.incoming. Each State.Vertex has one or more
children of type State.Transition, each one with an xmi.idref
attribute that refers to an activity diagram transition.

Two versions of the left-hand side template are shown at the top of
Figure 8, one for "join" and the other for "fork". The
transformation rule definition given below indicates the conditions
for choosing one case or the other. The symbol “à” expresses a
direct node-to-node mapping. For instance:

UML:Pseudostate(xmi.id, name, visibility, isSpecification, kind)
 à IM:Join (name, taskname)

indicates that a node with four attributes labeled Pseudostate from
the UML domain is mapped to a node with two attributes labeled
Join from the IM domain. The transformation rule defines also the
attribute conversions by λa functions defined in section 2.2.

 UML:Pseudostate(xmi.id, name, visibility, isSpecification, kind)
 à IM:Join(name, taskname) if λkind(vpseudostate) = ‘join’ ;
 à IM:Fork(name, taskname) if λkind(vpseudostate) = ‘fork’ ;
 UML:StateVertex.outgoing à null;
 UML:StateVertex.incoming à null;
 BehavioralElements.StateMachines.Transition (xmi.idref)
 à IM:To(name) if (vstate_machine.transition) ∈ children(vstatevertex.outgoing);
 à IM:From(name) if (vstate_machine.transition) ∈ children(vstatevertex.incoming);
 λname(vfork) = λname(vpseudostate);
 λname(vjoin) = λname(vpseudostate);
 λtaskname(vfork), = λname(vpartition), ∃ λname(v) = λname(vfrom) ^ v ∈ descendants(vpartition) ^ vfrom ∈ children(vfork);
 λtaskname(vjoin), = λname(vpartition), ∃ λname(v) = λname(vto) ^ v ∈ descendants(vpartition) ^ vto ∈ children(vfork);
 λname(vfrom) = λname(v | v ∈ descendants(vcompositstate.subvertex) ^ λxmi.idref(v) =
 λxmi.id(vtransition | wtransition.source ∈ descendants(vtransition)^ λxmi.idref(w) = λxmi.idref(vstate.transition)));
 λname(vto) = λname(v | v ∈ descendants(vcompositstate.subvertex)^ λxmi.idref(v) =
 λxmi.id(vtransition | wtransition.target ∈ descendants(vtransition)^ λxmi.idref(w) = λxmi.idref(vstate.transition)));

Figure 8. Transformation rule example

UML:Pseudo
state

kind=‘join’

UML:State
Vertex.outgoing

UML:State
Vertex.incoming

State.Transition State.Transition State.Transition

IM:Join

IM:To IM:From IM:From… …

UML:Pseudo
state

kind=‘fork’

UML:State
Vertex.incoming

UML:State
Vertex. outgoing

State.Transition State.Transition State.Transition

IM:Fork

IM:From IM:To IM:To… …

UML:Pseudo
state

kind=‘join’

UML:State
Vertex.outgoing

UML:State
Vertex.incoming

State.Transition State.Transition State.Transition

IM:Join

IM:To IM:From IM:From… …

UML:Pseudo
state

kind=‘join’

UML:State
Vertex.outgoing

UML:State
Vertex.incoming

State.Transition State.Transition State.Transition

IM:Join

IM:To IM:From IM:From… …

UML:Pseudo
state

kind=‘fork’

UML:State
Vertex.incoming

UML:State
Vertex. outgoing

State.Transition State.Transition State.Transition

IM:Fork

IM:From IM:To IM:To… …

UML:Pseudo
state

kind=‘fork’

UML:State
Vertex.incoming

UML:State
Vertex. outgoing

State.Transition State.Transition State.Transition

IM:Fork

IM:From IM:To IM:To… …

4.2 Execution Sequence in IM
The execution sequence shown in the UML activity diagram is not
explicitly expressed by the individual transformation rules. However,
IM needs to generate in order from left to right the steps that are
executed sequentially, as there is no sequence connector between
IM steps, only branch/merge and fork/join connectors. More
specifically, an IM:Service template must reflect the execution step
sequence from the UML activity diagram (see Figure 6 as an
example). The generation of a IM:Service template is based on the
information contained in the corresponding UML:Partition
template.

The algorithm shown below determines what kind of gaps to
generate in the output template according to the scenario steps from
the input UML:Partition template. The algorithm traverses each
element in the UML:Partition template starting from the initial
vertex of each partition. It creates a corresponding gap in the
IM:Service template and plugs in the IM:Step template that was
generated previously by the appropriate transformation rule. The
following UML scenario steps generate IM:Steps: a) activities
sterotyped as <<PAstep>> with a defined service time; b) fork
and join Pseudostates, c) branch and merge Pseudostates, and d)
cross-transitions representing a message exchange between
concurrent processes. In the IM domain, each of the plugged
templates contains also information on its predecessor and
successor nodes, so that the generated IM maintains the scenario
sequence described in the UML activity diagram.

construct(Ttask, Tcollection, Tpatition){
 v = first(Tpatition);
 t1 = Tservice ; t2 = Tpatition ; t3 = Tcollection ;
 Ttask = traverse(v, t1, t2, t3)
}
traverse(v, t1, t2, t3) { // recursive function
 if (descendantst2(v) = {0})

return; // this vertex has
 // no outgoing transition
 if(ν ∉ t2) return; //this vertex is not in this partition
 if (labt2(ν) = s| s ∈ S) {
 g = labt2(ν);
 gapifyAChild(t1, u|labt1(u) = ‘Service’, g);
 t = select(w| w ∈ t3, λt3

name(w) = λt2
name(v));

 tplug(t1, g, t);
 }
 ∀ vi| vi= descendantst2(v) ^ labt2(vi) = ‘To’) {
 // outgoing transition
 if(v|λt3

name(v) = λt2
target(vi) ̂v ∉ t2)

 // this transition crosses boundary
 g = labt2(vi);
 gapifyAChild(t1, v|labt1(v) = ‘Service’, g);
 t = select(w| w ∈ t3, λt3

name(w) = λt2
name(v));

 tplug(t1, g, t);
 }
 else{ //a local transition
 vt =(v|λt3

name(v) = λt2
target(vi) ̂v ∈ t2);

 traverse(vt, t1, t2);
 }
 }
 if(∃ v| v∈ t2 ^ v∉ t1) traverse(v, t1, t2, t3);
}

4.3 Algorithm for gluing the output IM tree
From the application of transformation rules we obtain a set of
templates {T} = {T1, T2, T3, …,Ti} where Ti is a collection set that
contains the required fragments for constructing the intermediate
file template. Also, the transformation needs the DTD for IM, Tdtd,
to check whether all nodes v are defined in Tdtd. The construction of
the output IM tree becomes a function of {T} × Tdtd à Tim. In other
words, we use the template fragments in {T} to construct the
intermediate model template in accordance with a given DTD
template. The "gluing" algorithm is given below:

Tim= {ε};
∀v | v ∈ Tdtd
 f(v);

f(v){ // recursive function
{St} = {w| w∈ {T}, labw(1) = labdtd(v)};
if {St} = {0} return;
else ∀Si ∈ {St}
 pi = findparent({T},Si);
 if pi ∈ Tim {
 if Si ∈ Tim
 return;
 else {
 g = λname(Si);
 gapifyAChild(Tim, pi, g);
 tplug(Tim, g, Si);
 }
 }
 else //pi ∉ Tim;
 f(p|labdtd(p) = labt{pi},p ∈ Tdtd ^ pi ∈ {T});
}

This algorithm provides a generic method to construct an output
template from a given set of template fragments and an input DTD
template. All the smaller templates in {T} must be compliant with
the given input DTD. The fragments in {T} can either be a single
vertex or a subtree. The function f(v) is a recursive function. It
takes a vertex from the Tdtd and tries to match it with template
fragments in {T}. If matches are found, it takes the parent vertex of
the matching template to check if the parent is already in the new
template Tim. If the parent vertex exists and the matching child does
not exist, a gap is created and the matching vertex is plugged into
the new template Tim; otherwise the algorithm returns. If the parent
vertex is not found in the new template, then use the parent vertex
as the matching vertex and repeat the steps. Moreover, the
findparent({T}, v) function returns a vertex whose attribute name
is the same as the attribute “pname” of v, e.g., λname(w) = λpname(v).

Note that the IM subtree from Figure 6 is obtained by the
transformation described in this section.

5. FROM IM TO LQN
This section describes how to transform IM to LQN. Before getting
into the transformation details and rule definitions, it is necessary to
understand the mappings between the IM and LQN models, as
shown in Table 1. It should be noted that, while the mapping from
UML to IM is independent of the target performance model, the
mapping from IM to a certain performance model is highly specific
to that performance model. Our goal is to limit the dependency of

the proposed algorithms on the specific model details as much as
possible, for achieving reusability and flexibility.

5.1 IM à LQN Rules
The first step is to define the mapping rules between the two
domains. Each rule has a left-hand side template from the IM
domain, and a right-hand side template from the LQN domain. The
following list gives only the root node labels for the input and output
templates.

 IM:TaskInformation à LQN:TASKINFO;
 IM:HardwareEntity à LQN:P;
 IM:Hardware à LQN:P_DECL;
 IM:LogicalEntity à LQN:T;
 IM:LogicalResource à LQN:T_DECL;
 IM:Task à LQN:TASK;
 IM:Service à (LQN: PH_DECL,

 LQN: A_DECL(LQN: ACTIVITY(LQN:ACONNECTION)));
 IM:Step à (LQN:PHASE, LQN:AS);
 IM:Fork à (NULL, LQN:SPLIT);
 IM:Join à (NULL, LQN:JOIN);
 IM:ReqstArc à (LQN:PCALL, LQN: ACALL);
 IM:ReplyArc à (NULL, NULL);
 IM:Branch à (NULL, LQN:SPLIT);
As mentioned in section 4.2 and illustrated in Figure 7, one of the
most challenging rules from IM to LQN has to deal with identifying
groups of IM:Steps and mapping them to LQN:Phases or
LQN:Activities, depending on rather complex conditions. This
problem was inherited from the UML model, but was not solved in
the UML-to-LQN transformation, as each IM:Step corresponds
exactly to one UML step. Therefore, the problem of grouping the
IM:Steps and mapping them to the LQN domain (entries, phases
and activities) has to be solved now.
The solution is encapsulated in the following rule:
 IM:Service à (LQN:PH_DECL, LQN:A_DECL (LQN:ACTIVITY

 (LQN:ACONNECTION)));
The choice is further delegated to the transformation function
select-apply , which takes a vertex from the input template (in the
IM domain), verifies all the application conditions and returns the
corresponding vertex, which is the root of the output template (in the
LQN domain). The purpose of the select-apply function is even
more far-reaching. Its goal is to encapsulate the verification of all
conditions for rule applications, which are specific to the
performance target model, leaving the transformation algorithm that
invokes select-apply and controls the application of the IMàLQN
transformation rules as generic as possible. The pseudo-code for the
select-apply function used in the transformation from IM to LQN is
given below:

select-apply(v)
{
 if (v ∉ V) return null;
 if (lab(v) = 'Service'){
 if (∃ vi,| vi ∈ descendants(v), u=lab(vi)=Fork
 ^ ∃ ui,| ui ∈ descendants(u), lab(ui)?≠ReplyArc)
 return w=lookup(v(1)) ;// it is an activity
 else return w=lookup(v(0)) ;// it is a phase
 } // end if
 else{
 if (p = parentService(v)==null)
 return w=lookup(v);
 else{

 if (lab(select-apply(p) = ‘A_DECL’)
 return w=lookup(v(1));
 if (lab(select-apply(p) = ‘P_DECL’){
 if(lab(v) = ‘Step’ ^ ∃ vc,| vc =children(v)
 ^ lab(vc) =’From’ ^λname(vc) = λpname(v)) {
 while(u = p.i ∈ Tim){
 if(lab(u) = ‘Step’ ^ λpname(u)= λpname(v))
 st = st + λservicetime(u);
 i=i+1;
 } // end while
 λservicetime(w)=st;
 if(λname(vc) = ‘Join’) λname(w)=phase1;
 if(λname(vc) = ‘Fork’) λname(w)=phase2;
 return w;
 }
 else
 return null;
 return w=lookup(v(0));
 }
 }
 }
} // end select-apply

The lookup function returns an element from the right side of the
rule table. The select-apply function takes an input node and
returns one of the following: null, node or tree, depending whether a
match with the left-hand side of a rule from the set IMàLQN rules
was found or not. The choice of whether to convert an IM:Service
template to LQN:Phases or LQN:Activities is made as follows.
The IM input model is traversed to determine whether a fork
operation, which is not a reply, exists. A conversion to “phase” is
applied if there is no such a fork, otherwise a conversion to
“activity” is considered. The fork operation is further examined to
determine if it is an inter-fork (inside a swimlane) or an intra-fork
(one that sends a message across swimlanes). The service demand
is set to zero for the inter-fork. Moreover, a task entry is generated
for each kind of service offered by the corresponding software
component instance. The service demands of all the aggregated
steps are added together to produce the service demand for the
generated phases or activities The above function can also
distinguish between LQN activity and phase by checking if there is
a fork operation which does not involves a reply. If the condition is
true, then the corresponding entry is treated as having LQN
activities; otherwise it is transformed to phases.

Figure 9 traces the problem of deciding on activities and phases
from UML to IM, and then to LQN. It illustrates how a swimlane of
the activity diagram is transformed to the corresponding IM, and
then further to LQN. The steps z1 and z2 are grouped into
phase1, while step z3 becomes phase2.

5.2 Generic Transformation Algorithm from
IM to a Performance Model
This section introduces a generic algorithm that controls the
application of a given set of transformation rules. The purpose is to
decouple the transformation control from the details related to the
target model. This algorithm can convert a template compliant to a
source DTD to another template compliant to a target DTD. The

conversion algorithm takes an input template t1 and the rule set M
and constructs the corresponding output template t2.

The generic conversion algorithm T(Σ ,A ,G) × M à T(Σ ,A ,G) is given
below. The essence of this algorithm is to traverse the input tree
and look for a match between different subtrees (i.e., templates)
and the left-hand side of a transformation rule from the set M, via
the select-apply function described in the previous section. If such
a match is found in the input template, a gap will be created in the
output template, in which the result returned by select-apply will be
plugged in. The recursive operation internalconversion repeats
itself for each child vertex.

conversion(t1,m){
 t2 = {ε}; internalconversion(t1,m,t2); return t2;
}
internalconversion(t1,m,t2){
 v= first(t1)
 t’ = select-apply(v);
 if (t’≠ null) {
 v’= gaplocation(v);
 g = lab(v);
 gapifyAChild(t2, v’, g);
 tplug(t2, g, t’);
 }
 if (subtreet1(v)= {0}) return;
 else{
 S = ti | ti ∈ subtreet1(v);
 ∀ ti ∈ S

 internalconversion (ti,m,t2);
 return;
 } // end else
} // end internalconversion

The above transformation algorithm does not require any specific
information on the target template, because the select-apply
function provides what to plug in, and the gaplocation function tells
us where to plug it in. More exactly, select-apply(v) takes a vertex
as parameter and returns one of the following: a null, a vertex or a
tree. A null return means that the input vertex has no matching
mapping rule. If a vertex is returned, it is a one-to-one mapping. If a
tree is returned, it indicates a one-to-n mapping. A null or one-to-n
mapping will result in template structure changes.

On the other hand, the gaplocation(v) returns a vertex where the
newly generated template will be plugged in. It should be noted that
both ‘select-apply” and “gaplocation” functions are target
templates specific, since each target template has its different
transformation rules and plug-in rules.

Tow other functions used in the conversion algorithm are first(t)
and subtreest(v):

subtreest (v) = {select(t,wi| wi ∈ children(v)} and
children(v) = {(v1, v2, …,vn).1, …, (v1, v2, …,vn).k }

The former returns the first vertex of a given template, i.e., v =
first(t)= v(1) ∈ t. The latter returns all the child templates of v as a
set.

The LQN model given in Figure 10 can be obtained by applying the
conversion algorithm described above to the input UML model from
Figure 1. This algorithm can be used to transform a IM model to

different performance models, provided that a specific rule set M
and a select-apply function are given for each target model.

phase1

phase2

z1

z2

z3

f4

j3

undef_z

req2

reply2

a) Activity diagram

idle_z

IM:Task
Information

IM:Task
name=Z

IM:Service
name=req2

IM:Join
name=j3

IM:Step
name=z1

servucetime=1.7

IM:Step
name=z2

servucetime =2.1
IM:Fork
name=f4

IM:ReplyArc
name=reply2

IM:Step
name=z3

servicetime=2.8

…

...
...

...
...

...
...

b) IM model

LQN:E
name=req2

LQN:PH_DCL
name=req2

LQN:Phase
name=phase1

servicetime=3.8

LQN:Phase
name=phase2

servicetime=2.8

c) LQN model

phase1

phase2

z1

z2

z3

f4

j3

undef_z

req2

reply2

a) Activity diagram

idle_z

z1

z2

z3

f4

j3

undef_z

req2

reply2

a) Activity diagram

idle_z

IM:Task
Information

IM:Task
name=Z

IM:Task
name=Z

IM:Service
name=req2

IM:Join
name=j3

IM:Step
name=z1

servucetime=1.7

IM:Step
name=z2

servucetime =2.1
IM:Fork
name=f4

IM:ReplyArc
name=reply2

IM:Step
name=z3

servicetime=2.8

…

...
...

...
...

...
...

b) IM model

LQN:E
name=req2

LQN:PH_DCL
name=req2

LQN:Phase
name=phase1

servicetime=3.8

LQN:Phase
name=phase2

servicetime=2.8

LQN:E
name=req2

LQN:PH_DCL
name=req2

LQN:Phase
name=phase1

servicetime=3.8

LQN:Phase
name=phase2

servicetime=2.8

c) LQN model

Figure 9. From UML to IM to LQN: aggregating scenario steps into LQN phases

The LQN model contains three tasks (represented by
parallelograms), one for each process X, Y and Z. The processors
and network resources are modelled as hardware devices
(represented by circles). The tasks Y and Z are co-allocated on the
same processor. Each task has a single entry (drawn as a smaller
parallelogram inside the task), according to the grouping of scenario
steps illustrated in Figure 7. Entry req1 of Y is composed of
activities due to the fact that it contains an internal fork/join,
whereas entry req2 of Z is composed of two sequential phases.
The LQN model can be used to analyze the performance
characteristics of the systems, but this is outside of the scope of the
paper, which focuses on proposing a new model transformation
method. The use of LQN models for performance analysis of UML
designs is discussed in other publications, such as [16].

6. CONCLUSIONS
The main contribution of the paper is a model transformation
method that combines concepts from graph transformations with
XML transformation techniques, such as XMLgebra. More
specifically, the mapping between the input model and the output
model is defined at a higher level of abstraction (i.e., at metamodel
level) based on graph transformation concepts, whereas the
implementation of the transformation rules and algorithm is done at
the XML level, using lower-level XML trees manipulations
techniques

In order to test the flexibility and modularity of the proposed
technique, we have defined transformations from UML 1.4 to two
performance target models, LQN and CSIM-based simulation (only
the first is discussed in the paper). Current work is under way to
update the definition of the transformation rules such that the input
models are in UML 2.0. This impacts only the first transformation
step UMLàIM.

We are in the process of implementing the proposed UML à IM
àLQN transformation in XSLT. First are implemented the
eXMLgebra tree-manipulation primitives, then the transformation
rules and the overall transformation algorithm. In principle, the
implementation could be also done in a general-purpose
programming language, such as Java. The disadvantage would be
that such an approach would require a Java library to read in a
UML model from an XMI file and to traverse and manipulate the

UML metamodel. Such libraries do exist, but they are specific to
different UML tools, and many are proprietary.

The choice of XSLT allows us to take advantage of many existing
XML transformation techniques and tools, and avoids the need for a
library able to manipulate the UML metamodel. However, XSLT is
not as powerful as a general-purpose language, and raises its own
challenges. We expect that the experience gained with this method
will help us understand better conceptual and practical issues in
model transformations. The long-term goal is to build an XML-
based model transformation framework that could be used for a
large class of model transformations required in the context of
MDA.

ACKNOWLEDGEMENTS
This research was supported by Discovery and Strategic grants
from the Natural Sciences and Engineering Research Council of
Canada (NSERC).

REFERENCES
[1] Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M., "Model-

based performance prediction in software development: a
survey" IEEE Transactions on Software Engineering, Vol 30,
N.5, pp.295-310, May 2004.

[2] S. Balsamo and M. Marzolla. "Simulation Modeling of UML
Software Architectures", Proc. ESM'03, Nottingham (UK),
June 2003

[3] S. Bernardi, S. Donatelli, and J. Merseguer, "From UML
sequence diagrams and statecharts to analysable Petri net
models," in Proc. 3rd Int. Workshop on Software and
Performance (WOSP02), Rome, July 2002, pp. 35-45.

[4] C. Cavenet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens,
"Analysing UML 2.0 activity diagrams in the software
performance engineering process," in Proc. 4th Int.
Workshop on Software and Performance (WOSP 2004),
Redwood City, CA, Jan 2004, pp. 74-83.

[5] V. Cortellessa and R. Mirandola, "Deriving a Queueing
Network based Performance Model from UML Diagrams," in
Proc. Second Int. Workshop on Software and Performance
(WOSP2000), Ottawa, Canada, September 17-20, 2000, pp.
58-70.

[6] Gordon Gu, D. C. Petriu, "XSLT Transformation from UML
Models to LQN Performance Models", Proc. of 3rd Int.
Workshop on Software and Performance WOSP'2002, pp.227-
234, Rome, Italy, 2002.

[7] Jan Jürjens, Pasha Shabalin, "Automated Verification of
UMLsec Models for Security Requirements", Proceedings of
UML 2004, Lisbon, Portugal Oct. 11–15,

[8] Christian Kirkegaard, Anders Møller and Michael I.
Schwartzbach, “Static Validation of XML Transformations in
Java”, In IEEE Transactions on Software Engineering, 30(3),
pp.181-192, March 2004.

[9] Christian Kirkegaard, “Dynamic XML Processing with Static
Validation (Masters Thesis), University of Aarhus, 2003.

[10] J. P. Lopez-Grao, J. Merseguer, and J. Campos, "From UML
Activity Diagrams To Stochastic Petri Nets" in Fourth Int.

&

a1
{ 1.8 }

&
a4 [req1]
{ 2.5 }

eX1
{ 4, 0 }

a2
{ 4 }

a3
{ 0 }

a5
{ 1.5 }

X

Y

req1

req2
{ 3.8, 2.7}

Z

Proc2

LANProc1

Figure 10. The LQN model for the UML model from Fig.1.

&

a1
{ 1.8 }

&
a4 [req1]
{ 2.5 }

eX1
{ 4, 0 }

a2
{ 4 }

a3
{ 0 }

a5
{ 1.5 }

X

Y

req1

req2
{ 3.8, 2.7}

Z

Proc2

LANProc1

&

a1
{ 1.8 }

&
a4 [req1]
{ 2.5 }

eX1
{ 4, 0 }

a2
{ 4 }

a3
{ 0 }

a5
{ 1.5 }

X

Y

req1

req2
{ 3.8, 2.7}

Z

req2
{ 3.8, 2.7}

Z

Proc2Proc2

LANLANProc1Proc1

Figure 10. The LQN model for the UML model from Fig.1.

Workshop on Software and Performance (WOSP 2004),
Redwood City, CA, pp. 25-36, Jan. 2004.

[11] OMG, UML Profile for Schedulability, Performance, and
Time (SPT), Version 1.0, formal/03-09-01, September 2003.

[12] OMG, "UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms (QoS)", Adopted
Specification, ptc/2004-06-01, June 2004.

[13] D. B. Petriu and M. Woodside, “A Metamodel for Generating
Performance Models from UML Designs”, in Proc UML
2004, LNCS vol.3273 Springer, pp. 41-53. Lisbon, Oct 2004,
(An extended version is to appear in the Journal of Software
and Systems in 2005).

[14] D.C. Petriu, X. Wang "From UML descriptions of High-Level
Software Architectures to LQN Performance Models by
Graph Transformations" in Proc. of AGTIVE'99, LNCS 1779,
pp. 47-62, Springer, 1999

[15] D.C. Petriu, H.Shen, “Applying the UML Performance Profile:
Graph Grammar based derivation of LQN models from UML
specifications”, in Computer Performance Evaluation:
Modelling Techniques and Tools, (T. Fields, P. Harrison, J.
Bradley, U. Harder, Eds.) LNCS 2324, pp.159-177, Springer,
2002.

[16] D. C. Petriu, C. M. Woodside, "Performance Analysis with
UML," in UML for Real, B. Selic, L. Lavagno, and G. Martin,
pp. 221-240 Kluwer, 2003.

[17] Smith, C.U. Performance Engineering of Software
Systems. Addison-Wesley Publishing Co., New York, NY,
1990.

[18] C. U. Smith and L. G. Williams, Performance Solutions.
Addison-Wesley, 2002.

[19] Schürr, A., “Introduction to PROGRES, an attribute graph
grammar based specification language”, in Graph-Theoretic
Concepts in Computer Science, M. Nagl (ed), LNCS Vol. 411,
pp 151-165, Springer, 1990

[20] Schürr, A., Programmed Graph Replacement Systems, in
G.Rozenberg (ed): Handbook of Graph Grammars and
Computing by Graph Transformations (1997) 479-546.

[21] C.M. Woodside, Dorina C. Petriu, Dorin B. Petriu, Hui Shen,
Toqeer Israr, Jose Merseguer, " Performance by Unified
Model Analysis (PUMA)", accepted at the 5th Workshop on
Software and performance WOSP’2005, Palma de Mallorca,
Spain, July 11-14, 2005.

