
Using Analytic Models for Predicting
Middleware Performance

Dorina Petriu(1)     Hoda Amer(2)     Shikharesh Majumdar(1)     Istabrak Abdull-Fatah(2)

(1) Dept. of Systems and Computer Eng. (2) Nortel Networks
Carleton University 3500 Carling Avenue

Ottawa, ON, Canada, K1S 5B6 Nepean, ON, Canada K2H 8E9
{petriu|majumdar}@sce.carleton.ca {hoda|istabrak}@nortelnetworks.com

ABSTRACT
The client-server paradigm is very popular in building distributed
computing applications. Heterogeneity is natural in client-server
systems, where components implemented using different
technologies must interact and collaborate with each other. Inter-
operability is provided through middleware on such a
heterogeneous system. Common Object Request Broker
Architecture (CORBA) is a standard for middleware-based
distributed object computing systems. This paper focuses on
analytic modeling of middleware-based systems that can be used
in the performance engineering of CORBA-based client server
applications. The paper applies the Layered Queuing Network
model to two types of middleware architectures: handle-driven
and forwarding. The model outputs are compared with measured
values to determine the accuracy of the modeling technique.

Keywords
Analytic performance model, CORBA, client-server performance,
Layered Queuing Networks.

1. INTRODUCTION
Concurrency, reliability and reusability are well-known attributes
of Distributed Object Computing  (DOC) systems. Heterogeneity
is natural in  DOC systems. When an existing system is upgraded
or when new features are added to an embedded application, the
new components are often implemented using a different
technology in comparison to the legacy components. In order to
remain economically viable it is crucial to reuse the existing
components. Inter-operability is provided through middleware on
such a heterogeneous system. Common Object Request Broker
Architecture (CORBA) is a standard for such middleware-based
DOC systems.

Scalability and latency are desirable properties of most distributed
systems and are crucial for the proper functioning of  performance

demanding applications that include various telecommunication
products. Most current practices in software design and
implementation are based on a “design now and fix performance
later” approach. That is, the functional design and implementation
of the system are done first and the performance techniques are
retrofitted at a later point in time. In many situations the prototype
fails to meet the performance requirements resulting in an
expensive redesign of the system. Software performance
engineering techniques that advocate the integration of
performance analysis with various steps in system design and
implementation have been proposed [11]. Analytic performance
models are often used in software performance engineering
because of its lower cost in comparison to simulation and
measurement-based approaches. Analytic models are also used in
system selection studies and in capacity planning  [7]. This paper
focuses on analytic modeling of middleware-based systems that
can be used in the performance engineering of CORBA-based
client server systems.

Queueing network modeling is a popular and widely used
technique for predicting the performance of computing systems.
Although queueing network models have been successfully used
in the context of traditional time sharing computers, they often fail
to capture complex interactions among various software and
hardware components in client-server distributed processing
systems. Modeling techniques such as Method of Layers [10] and
Layered Queueing Networks  (LQN) [12],  [9] are proposed for
handling such complex interactions.  We have used the LQN
modeling technique in this paper for analyzing the performance of
CORBA-based middleware systems. We have developed LQN
analytic models for two different types of middleware interaction
architectures that are discussed in the next section. Based on a
Commercial-Off-The-Shelf (COTS) middleware product called
Orbeline  [8] (currently sold as Visibroker by Inprise) and a
synthetic workload running on a network of Sun workstations
using Solaris we have implemented performance prototypes for
client-server systems. Using Solaris system calls buried into the
prototype software we have measured system throughput and
response times. The measured values are compared with the
model outputs to determine the accuracy of the modeling
technique.

The paper is organized as follows. The middleware interaction
architectures and the synthetic client server applications are
described in the following section. In order for the paper to be
self-contained, the LQN modeling features used in the paper are
briefly presented in Section 3. LQN analytic models for two types



of middleware-interaction architectures are described in section 4.
A comparison of the measured results and the output of the
analytic models is given in Section 5. Section 6 presents our
conclusions.

2.  MIDDLEWARE INTERACTION
ARCHITECTURES
One of the basic entities in a middleware system is one that maps
the name of an object to an object reference or handle and is
referred to as an agent in this paper. This handle is then used to
invoke the method in the appropriate server object. Middleware
interaction architectures refer to the way a request from the client
is routed to the server. In a Handle-Driven (HORB) architecture
when a client wants to request a service it sends the server name
to the agent in the middleware system. The agent performs a name
to object reference (IOR) mapping and sends a handle back to the
client. The client uses the handle to contact the server and receive
the desired service. A number of COTS ORBs that include
Visibroker [3] and Orbix-MT [6] use such a handle-driven
architecture. In a Forwarding   (F-ORB) architecture the client
sends the entire service request to the agent that locates the
appropriate server and forwards the request to it. The server
performs the desired service and sends a response back to the
client. A detailed discussion of the performance of these
architectures is presented in [2]. The H-ORB used in this research
is the basic Orbeline product whereas the F-ORB is built using
additional processes in conjunction with the Orbeline middleware
[1].

2.1 Synthetic Application
A simple client-server application is built, in which two distinct
services are using the ORB. A client executes a cycle repeatedly.
In each cycle it makes one request to Server A and one to Server
B. It performs a bind operation before every request. A
synchronous communication mechanism is used: after a request is
made, the client remains blocked until the response is received.
When a service is requested form a particular server the server
process executes a loop and consumes a pre-determined amount
of CPU time. The synthetic application is used because it provides
flexibility in experimentation with various levels of different
workload parameters such as the service time at each server, and
inter-node delay. Such an application is appropriate for
investigating the accuracy of the analytic models discussed in this
paper.  Two copies of A called A1 and A2 as well as two copies
of B called B1 and B2 are provided. The two copies of each
server enable the system to handle more load and allow us to
investigate the impact of load balancing that is provided by many
commercial ORB products. Experiments were performed by
executing the system on a local area network of Sun workstations
running under the Solaris 2.6 operating system. Each of the four
server processes is run on a separate machine. The agent is run on
a separate workstation, and the remaining workstations are used
for running the client processes. The synthetic application is
characterized by a number of parameters that are briefly
summarized.

Service Demands (SA, SB): The time required by server A and
server B respectively to provide the requested service. Whenever

a particular server A (or B) is invoked it consumes SA (or SB)
units of CPU time.

Inter-Node Delay (D): Clients, the agent, and servers may be
separated from each other by a number of intermediate nodes. The
inter-node delay between a client and a server, between a server
and the agent, as well as between a client and the agent are
characterized by D.  In our experiments, a sender process sleeps
for D units of time before sending a message in order to simulate
an inter-node delay due to the store and forward operations
performed by the intermediate nodes. However, in case of the H-
ORB agent we did not have access to the source code, and the
inter-node delay for the handle returning operation was simulated
by making the client sleep for D units of time before receiving the
message.

Message Length (L): The size of the message, L, sent by the client
for providing a method name along with its argument list or sent
by the server to return the results.

The measurement of end-to-end performance measures, such as
response times and throughput, specific for different combinations
of SA, SB, L and D, were repeated long enough to produce
confidence intervals less than +5% of the mean at a confidence
level of 95% for the performance measure of interest.

3. LQN MODEL
LQN was developed as an extension of the well-known Queueing
Network (QN) model, at first independently in [12] and [10], then
as a joint effort [4]. The LQN toolset presented in [4], [5]
includes both simulation and analytical solvers that merge the best
previous approaches. The main difference between LQN and QN
is that a server to which customer requests are arriving and
queueing for service may become a client to other servers, thus
giving rise to nested services. An LQN model is represented as an
acyclic graph whose nodes (named also tasks) are software
entities and hardware devices, and whose arcs denote service
requests (see Fig. 2 and 3). The word layered in the name of LQN
does not imply a strict layering of the tasks (for example, a task
may call other tasks in the same layer, or skip over layers). The
tasks are drawn as parallelograms, and the devices as circles. The
nodes with outgoing and no incoming arcs play the role of pure
clients (named also reference tasks, as they drive the system). The
intermediate nodes with incoming and outgoing arcs play both the
role of client and server, and the leaf nodes are pure servers. A
software or hardware server node can be either a single-server or a
multi-server (composed of more than one identical clones that
work in parallel and share the same request queue). An LQN task
may offer more than one kind of service, each modeled by a so-
called entry drawn as a parallelogram “slice”, (see F-agent in Fig.
3 for an example). An entry has its own execution times and
demands for other services (given as model parameters).
Although not explicitly illustrated in LQN notation, each server
has an implicit message queue, where the incoming requests are
waiting their turn to be served. Servers with more then one entry
still have a single input queue, where requests for different entries
wait together. The default scheduling policy of the queue is FIFO,
but other policies are also supported.



4. LQN MODEL FOR H-ORB AND F-ORB
ARCHITECTURES
Fig. 2 represents the LQN model for the H-ORB architecture. The
top node named Clients contains the reference tasks driving the
system. The multiplicity of the node represents the population of
the model, and is a parameter in our experiments. Each client
loops endlessly and sends synchronous requests to the lower level
tasks: 2 requests per cycle to the Agent, one to a server A and one
to a server B. Each client task runs on its own CPU (the node
CPUc which is a multi-server).  The system contains two identical
servers of type A, and two of type B, each with its own queue.
Therefore, each server is modeled as a separate task.
busy                  phase1                 phase2                          idle

phase1 (service)

Client

Server

synchronous

busy

reply

included services
phase2

(autonomous phase)

idle

Client

Server

a) LQN  synchronous  message

forwarding

Client
synchronous

reply to original client

Server1

Client

Server1

b) LQN  forwarding  message

Server2
busy                       idle               phase1            phase2        idle

Server2

Figure 1. Synchronous and forwarding LQN requests
There are three types of LQN request messages: synchronous,
asynchronous and forwarding. Fig.1 illustrates the first and the
last type, which are used in this paper. A synchronous message
represents a request for service sent by a client to a server, where
the client remains blocked until it receives a reply from the
provider of service (see Fig.1.a). If the server is busy when a
request arrives, the request is queued. After accepting a request
for one of its entries, the server starts to process it by executing a
sequence of one or more phases of that entry. At the end of phase
1, the server replies to the client, which is unblocked and
continues its work. The server continues with the following
phases, if any, working in parallel with the client, until the
completion of the last phase. After finishing the last phase, the
server begins to serve a new request from the queue, or becomes
idle if the queue is empty. During any phase, the server may act as
a client to other servers, asking for  “included services”. The
forwarding message (represented by a dotted request arc) is
associated with a synchronous request that is served by a chain of
servers, as illustrated in Fig. 1.b.  The client sends a synchronous
request to Server1, which begins to process the request. At the
end of its phase1, it forwards the request to Server2.  Sever1
proceeds normally with the remaining phases in parallel with
Server2. The client, however, remains blocked until the forwarded
request is served by Server2, which replies to the client at the end
of its phase 1. A forwarding chain can contain any number of
servers, in which case the client waits until it receives a reply from
the last server in the chain. A phase may be “deterministic” or
“stochastic”, and is subject to the following assumptions:
a) The total CPU demand of a phase (whose mean is given as a
parameter) is divided up into exponentially distributed slices, each
of which is delimited by a request to lower level servers. The
mean execution time is the same for all slices.
b) Requests to lower level servers are geometrically distributed
with a specified mean (given as a parameter) in a stochastic
phases, and occur for a fixed number of times in a deterministic
phase.

erB2

CPUn5

e

Clients

net1

Agent ServerA1 ServerA2 ServerB1 Serv

net2 net3

net4 net5

CPUn4 CPUn5

CPU_B2CPU_B1CPU_A2CPU_A1

CPUag

CPUn5CPUn5

CPUc

2 1 1

1

1

0.5 0.5 0.5 0.5

1 1 11

Figure 2. LQN model of the H-ORB architectur
The measured system was built such that, before sending a request
to the Agent or a server, a client “sleeps” for a duration D to
simulate the inter-node delay. In the LQN model, this delay is
represented by the tasks net1 to net5 (which are infinite servers).
Note that delay servers such as net1 are LQN tasks and execute on
their own CPUs. Therefore, a request/reply sequence between a
client and the agent follows a forwarding chain: the client sends a
synchronous request to net1 and blocks; net1 forwards it to Agent,
which forwards it to net4. The client remains blocked until the
arrival of the reply from net4, the last task on the forwarding
chain. A similar request path is used between the client and a
server, with two differences. First, the network delay server net2
(net3) chooses each server randomly with a probability of 0.5.
This models the behaviour of the load balancing agent. The
second difference is that the servers call net5 synchronously,
whereas the agent forwards to net4. This corresponds to the
behaviour of the system that was implemented and measured: the
servers were built to sleep before sending the reply to the client,
whereas the agent (a COTS component) did not wait artificially
for a network delay.

In this model, each task has a single entry, as it offers a single
service, and each entry has a single phase. All phases are
“deterministic”, which means that the number of requests given
on each arc specifies the exact number of requests performed. For
example, a client makes exactly two requests to the agent, one to
either A1 or A2, and one to either B1 or B2. However, the order
of these requests is random in the LQN model, as opposed to the



measured system where the calls were made in a fixed order.
Another difference between the real system and the LQN model
concerns the CPU demand distribution. In the measured system,
all execution times and network delays are deterministic, whereas
in the LQN model the execution times between two requests are
exponentially distributed.

In a Forwarding (F-ORB) architecture the client sends the entire
service request to the agent that locates the appropriate server and
forwards the request to it. The server performs the desired service
and sends a response back to the client. The forwarding
architecture was built by using an additional process named F-
agent in conjunction with the Orbeline agent [1]. F-agent accepts
a request from the client, calls the default COTS agent (named D-
agent) to get the server handle, then sends the requests to the
chosen server. F-agent (which was later cloned) is running on the

same CPU as D-agent. The LQN model is given in Fig. 3.

The communication between F-agent and servers deserves some
discussion. First, F-agent sleeps D units of time before sending
the message to the server, after which it sends the message
pseudo-asynchronously. This means that F-agent is blocked until
the message is received on the server side, but is not waiting for
the server to perform its service. The LQN model contains for
each server an additional task PStack running on the server’s
CPU. It models the protocol stack process responsible for
receiving and sending messages. In the LQN model, the sending
of a message by F-agent to a server is decomposed in three steps:
i) a synchronous request from F-agent to net2 for the inter-node
delay; ii) a synchronous request from F-agent to PStack of the
designated server; and iii) a forwarding request from F-agent to
the server. The communication between a server and a client is
also modeled in three steps: i) a synchronous request from server
to net3 for the inter-node delay; ii) a synchronous call from the
server to its Pstack process for the execution of  a send operation;
and iii) the replay sent back by the server to the client (due to the
fact that the server is the last in the forwarding chain).  It must be
noted that in the H-ORB model there was no need to represent the
processor stack separately; its CPU demand for each receive and
send operation was included in the CPU demand of the server
process instead. F-agent has two entries in order to capture more
closely the behaviour of the measured system: one entry chooses

between the server A1 and A2, the other between the server B1
and B2. Each entry is represented in the graph by a parallelogram
“slice”. The incoming requests targeting a given entry arrive at the
top of the parallelogram slice, and the outgoing requests leaving a
given entry depart from the bottom. The arcs leaving from the
sides (to D-agent, net2 and CPUag) represent requests that are
common to both entries.

The F-agent node is an LQN multi-server because the effect of
cloning the F-agent is studied in some of the experiments. As in
the case of the H-ORB model, each entry has a deterministic first
phase only.

5. COMPARING THE MEASUREMENTS
AND MODEL RESULTS
As mentioned previously, the synthetic application that was built
and measured is characterized by the following factors: service
demands (SA, SB), inter-node delay (D) and message length (L).
We have conducted experiments that varied a single factor at a
time. The results of the analytic model are compared in this
section with measured values.

a) The effect of service demands. Fix D=10 ms, L=150 bytes and
vary the service demands (SA, SB): {(10, 15),    (50, 75) and
(250, 375)} ms. The measured response times and those predicted
by the model are given in Fig.4. As expected, the response time
grows with the service demands. The errors are quite low for
small demands, but grow up for a large number of clients,
reaching –18% in the case where SA, SB take the largest values.
The analytic model tends to predict shorter response times,
especially when the servers are strongly saturated. We believe that
the cause is a “convoy effect” that appears in the real system due
to its strong deterministic behaviour. The client processes follow
the same order of visits, and the service demands and delays are
all deterministic. The clients move “in convoy” through the
system, and thus the queueing delays are larger. The LQN model
does not capture this effect due to its assumptions that the service
times are exponentially distributed and the order of visits is
random. We have performed a few simulation experiments that
confirm this hypothesis.

b) The effect of inter-node delay. Fix (SA, SB) at (10, 15) ms,
L=150 bytes and vary D: {250, 500, 1000} ms. The model and
measured response times are given in Fig.5. As expected, the
response time depends strongly on the inter-node delay. A 96.8%
increase in response time is observed when D doubles from 250 to
500 ms, and a 290% increase when D quadruples from 250 to
1000 ms. Even for large populations, the errors are quite low for
smaller D (–2.26% error for D=250 ms), and grow a little for
larger D (–5.5% for D=1000 ms).

c) The effect of message size. Fix (SA, SB) at (10, 15) ms, D =
200 ms, and vary L: {150, 4800, 9600, 19200} bytes. The
overheads for sending/receiving the messages, and for
marshaling/unmarshaling the parameters grow with the message
size, which leads to an increase in the response time. However,
the increase is not substantial (only 11.9% increase in response
time when L changes from 150 to 19200 bytes, for large
populations). Fig. 6 shows the response time predicted by the
model as a function of number of clients for all the L values, but
only one measured case, due to the fact that the curves were too
close. The errors are small (less than 1%).

Clients

net1

net2
CPUn2CPUag

net3
CPUn3

CPUn1

CPUc

D-agent

PStackA1

CPU_A1
ServerA1

PStackA2

CPU_A2
ServerA2 ServerB1

PStackB1

CPU_B1
ServerB2

PStackB2

CPU_B2

F-agent

Figure 3. LQN model of the F-ORB architecture



F
f
T
a
u
p
b
c
f
b
t
b
i
s

5
I
c
p
r
e

a
(
m
C
t
c
t
t

H -OR B : D iffe re nt cas e s  of s e rve r de mand  H -O R B : Effe ct of inte r-node  de lays
ig.7 shows the utilization of different processes and processors
or the base case (SA=10ms, SB=15ms, D=10ms, L=150 bytes).
he server processes B and A have the highest utilization (95.7%
nd 85%, respectively). Their dedicated CPUs have a lower
tilization (74.4% and 63.8%, respectively). The agent and its
rocessor have the lowest utilization. The system is characterized
y a software bottleneck, where the CPUs are not used at their full
apacity because some of the software servers approach saturation
aster. We consider this a mild case of software bottlenecking
ecause the difference between the software server utilization and
heir CPU is quite small. A more severe case of software
ottlenecking (where all the CPUs are utilized at a very low level)
s illustrated in Fig.10 and will be discussed in the next
ubsection.

.1 The F-ORB model
n the case of F-ORB, there is another factor to consider: the
loning degree C (i.e., the number of copies) for the F-agent
rocess. It has an important effect on performance because it
emoves a strong software bottleneck that appears for C=1, as
xplained below.

) Effect of F-ORB cloning degree. Fix the service demand
SA=10 ms, SB=15 ms), the inter-node delay (D=10 ms) and the
essage size (L=150 bytes) and vary the F-agent cloning degree
: {1, 4, 8}. The measured response times and those predicted by

he model are shown in Fig.8. The response time for 24 clients is
ut by 49% when the number of clones goes from 1 to 8, even
hough no hardware resource is added to the system. This is due
o the fact that at C=1 the system exhibits a strong software

bottleneck.(see Fig.10). F-agent reaches saturation very early, for
N=4 clients, preventing the hardware resources from being
utilized at a reasonable level (CPUagent is utilized 54.8%,
CPU_B only 26% and CPU_A only 22%).  By adding F-agent
copies to the system, the software bottleneck is removed and
moves to hardware. At C=8 and 24 clients, the utilization of all
CPUs is almost doubled (CPUagent is utilized 100%, CPU_B
53.5% and CPU_A 44.7%) and the system bottleneck moves to
CPUagent (see Fig.11). As in the case of the H-ORB, the F-ORB
model also tends to predict lower response times than the
measured values, due to the same reasons (i.e., deterministic
behaviour of the real system). At large populations, the error is   -
12.8% for C=1, -12.2% for C=4 and –3.7% for C=8. The model
correctly identifies the system bottleneck.

b) Effect of message length. Fix the service demand (SA=10 ms,
SB=15 ms), the inter-node delay (D=200 ms) and the number of
clones (C=8) and vary the message size L: {4800, 9600, 19200)
bytes. As in the case of the H-ORB, the overhead for
sending/receiving the messages, and for marshaling/ unmarshaling
the parameters grows with the message size. However, the
response time increase is not substantial (only 2% increase when
L doubles from 4800 to 9600 bytes, and 5.6% increase when L
quadruples from 4800 to 19200 bytes). Fig. 9 shows the model
response time Vs. the measured values L=9600. At a large
population, the errors grow with the message size (from -6.22%
for L=4800 bytes to -14.6% for  L=19200 bytes).

S1:(S A=10, SB =15),  S2:(SA=50, SB =75),  S3:(SA=250, SB =375) 

0

1

2

3

4

5

6

7

0 5 1 0 1 5 2 0 2 5

N u m be r  O f C l i e n ts

T
ot

al
 R

es
po

ns
e 

T
im

e 
in

 S
ec

on
ds M eas u re (S3)

M od e l(S3)

M eas u re (S2)

M od e l(S2)

M eas u re (S1)

M od e l(S1)

Figure 4. H -ORB : M easured and model response time
Vs load for different server demands

D 3 = 1000 ms , D 2 =  500  ms , D 1 =  250  ms

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

0 5 1 0 1 5 2 0 2 5

N u m be r O f  C l i e n ts

T
ot

al
 R

es
po

ns
e 

T
im

e 
in

 S
ec

on
ds

M o d e l(D3)

M ea s u re (D3)
M ea s u re (D2)

M o d e l(D2)

M ea s u re (D1)
M o d e l(D1)

Figure 5. H -O RB : M easured and model response time
Vs load for different inter-node delays

H -O R B :  M e s s a g e  s ize   L 0  =  1 5 0  b y te s ,  L 1  =  4 8 0 0  b y te s ,  
L 2  =  9 6 0 0  b y te s ,  L 4  =  1 9 2 0 0  b y te s

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

0 5 1 0 1 5 2 0 2 5

N u m b e r  O f  C l i e n t s

To
ta

l R
es

po
ns

e 
Ti

m
e 

in
 S

ec
on

ds

M o d e l(L 3 )

M o d e l(L 2 )

M o d e l(L 1 )

M o d e l(L 0 )

M e a s u re (L 0 )

Figure 6. H -O RB : M easured and model response time
Vs load for different message sizes

H-OR B  mode l: Proce s s  and CPU utilization

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

N u m be r o f  cl i e n ts

U
til

iz
at

io
n

serverB

serverA

CPU_B

CPU_A

agent

CPU_agent

Figure 7. H -O RB : process and CPU utilization for
SA=10, SB =15 D=10, L=150



6
T
s
C
L
i
f
w
s
o
p
p
e
d
r
m
s
i
u
a
a

A
T
S
a
(

. CONCLUSIONS
his paper focuses on analytic modeling of middleware-based
ystems that can be used in the performance engineering of
ORBA-based client server applications. The paper applies the
ayered Queuing Network model to two types of middleware

nteraction: handle-driven and forwarding architectures. We have
ound that the LQN model predictions are reasonably acceptable,
ith most of the errors less than 12%. The bottleneck in the

ystem was also correctly predicted. The largest error of –18%
ccurred when both the service demand at the servers and the
opulation was large. In such cases, the analytic model tends to
redict shorter response times because it cannot capture a “convoy
ffect” that appears in the real system due to its strong
eterministic behaviour (the processes follows the same pattern of
equests and the service demands are deterministic). The LQN
odel cannot capture this effect due to its assumptions that the

ervice times are exponentially distributed and the order of visits
s random. Despite those differences, the LQN model can be quite
seful in the performance engineering of CORBA-based
pplication, due to its speed, facility of use and reasonable
ccuracy.

CKNOWLEDGMENTS
his work was partially supported by grants from the Natural
ciences and Engineering Research Council of Canada (NSERC)
nd Communications and Information Technology Ontario
CITO).

REFERENCES
[1] Abdul-Fatah, I., “Performance of CORBA-based client-server

architectures”, Master Thesis, Carleton University,  Dept. of
Systems and Computer Engineering, (June 1998).

[2] Abdul-Fatah, I., Majumdar, S., “Performance Comparison of
Architectures for Client-Server Interactions in CORBA”, Proc.
IEEE 18th Conf. on Distributed Computing Systems, 2-11, (May
1998).

[3] Borland Inprise, “Visibroker: CORBA Technology from Inprise”,
http://www.borland.com/visibroker, (1999).

[4] Franks, G., Hubbard, A., Majumdar, S., Petriu, D., Rolia, J.,
Woodside, M., “A toolset for Performance Engineering and Software
Design of Client-Server Systems”, Performance Evaluation, 24(1-
2), 117-135, (Nov. 1995).

[5] G. Franks, “Performance Analysis of Distributed Server Systems”,
Ph.D. Thesis, Carleton University, Ottawa, (December 1999).

[6] Iona Technologies, Orbix Programmers’ Guide, Dublin, (1997).
[7] Menasce, D.A., Almeida, V.A.F., Dowdy, L.W., Capacity Planning

and Performance Modeling, Prentice Hall, (1994).
[8] PostModern Computing Technologies Inc., ORBeline Reference

Guide, Mountain View, CA 94043, (1994).
[9] Ramesh, S., Perros, H.G., “A Multi-Layer Client-Server Queueing

Network Model with Synchronous and Asynchronous Messages”,
Proc.of  First Int. Workshop on Software and Performance, Santa
Fe, 107-119,  (Oct. 1998).

[10] Rolia, J.A., Sevcik, K.C., “The Method of Layers”, IEEE Trans. on
Software Engineering, 21(8), 689-700, (Aug. 1995).

[11] Smith, C.U.  Performance Engineering of Software Systems, (1990).
[12] Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S., “The

Stochastic Rendezvous Network Model  for Performance of
Synchronous Client-Server-like Distributed Software”, IEEE Trans.
on Computers, 44(1), 20-34, Jan. 1995.

C={1,4, 8} SA=10, SB=15, D=10, L=150

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25

Nu m be r O f C l ie nts

T
ot

al
 R

es
po

ns
e 

T
im

e 
 [s

ec
]

Measure(C=1)

Model(C=1)

Measure(C=4)

Model(C=4)

Measure(C=8)

Model(C=8)

Figure 8. Measured and model response time Vs load
for different cloning degrees of F-agent (C=1, 4, 8)

Mes s age length = 9600 bytes .

0
0 .5

1
1 .5

2
2 .5

3
3 .5

4

0 10 20 30

Nu m be r O f C l i e n ts

To
ta

l R
es

po
ns

e 
Ti

m
e 

[s
ec

]

M easure

M odel

Figure 9. Measured and model response time Vs load
for a message size of  9600 bytes

Process and CPU utilization when the agent is not cloned
SA=10, SB=15, D=10, L=150

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
Nu m be r O f C l i e n ts

Pr
oc

es
s U

til
iz

at
io

n

Fagent
CPUagent
serverB
serverA
CPU_B
CPU_A
Dagent

Figure 10. Software bottleneck example: F-ORB with
a single F-agent copy

Process and CPU utilization for model with 8 F-agents 
SA=10, SB=15, D=10, L=150

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Nu m be r O f C l ie n ts

Pr
oc

es
s U

til
iz

at
io

n

CPUagent
Fagent
Dagent
serverB
serverA
CPU_B
CPU_A

 S

Figure 11. Hardware bottleneck example: F-ORB with
eight F-agent copies

http://www.borland.com/visibroker

	INTRODUCTION
	MIDDLEWARE INTERACTION ARCHITECTURES
	Synthetic Application

	LQN MODEL
	LQN MODEL FOR H-ORB AND F-ORB ARCHITECTURES
	COMPARING THE MEASUREMENTS AND MODEL RESULTS
	The F-ORB model

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

