
Applying the UML Performance Profile:
Graph Grammar-based Derivation

of LQN Models from UML Specifications ∗

Dorina C. Petriu and Hui Shen

Carleton University,
Systems and Computer Engineering

Ottawa ON Canada, K1S 5B6

petriu@sce.carleton.ca

February 2002

Abstract

The Object Management Group (OMG) is in the process of defining a UML Profile
for Schedulability, Performance and Time that will enable the construction of models
for making quantitative predictions regarding these characteristics. The paper pro-
poses a graph-grammar based method for transforming automatically a UML model
annotated with performance information into a Layered Queueing Network (LQN)
performance model. The input to our transformation algorithm is an XML file that
contains the UML model in XML format according to the standard XMI interface. The
output is the corresponding LQN model description file, which can be read directly by
existing LQN solvers. The LQN model structure is generated from the high-level soft-
ware architecture and from deployment diagrams indicating the allocation of software
components to hardware devices. The LQN model parameters are obtained from de-
tailed models of key performance scenarios, represented as UML interaction or activity
diagrams.

1 Introduction

The Object Management Group (OMG) is in the process of defining a UML Profile for
Schedulability, Performance and Time [10] that would enable the construction of models
that can be used for making quantitative predictions regarding these characteristics. The
original RFP issued in March 1999 was followed by the first ”Response to RFP” submis-
sion in August 2000, and by a revised submission in June 2001 [10]. The later includes

∗To be presented at Performance TOOLS’2002, London, UK, April 2002

1

some additional aspects not covered in the former, among which is a section dealing with
performance analysis. The proposed performance profile extends the UML metamodel with
stereotypes, tagged values and constraints, which make it possible to attach performance an-
notations (such as resource demands and visit ratios) to a UML model. In order to conduct
quantitative performance analysis of an annotated UML model, one must first translate it
into a performance model, use an existing performance analysis tool for solving the perfor-
mance model and then import the performance analysis results back in the UML model.
The focus of this paper is the first step of the process. The paper proposes a graph-grammar
based method for transforming a UML model annotated with performance information into
a Layered Queueing Network (LQN) performance model [20], [21]. The input to our trans-
formation algorithm is an XML file that contains an annotated UML model in XML format
according to the standard XMI interface [9], and the output is the corresponding LQN model
description file, which can be read directly by existing LQN solvers [5]. The transformation
algorithm described in the paper was completely implemented in Java on top of a rather large
open source Java library that implements and manipulates the UML metamodel [23]. More
work is necessary for the present implementation to become a tool prototype, especially the
addition of a suitable GUI.

The transformation approach is as follows: the LQN model structure is generated from the
high-level software architecture, more exactly from the architectural patterns showing high-
level software components and their relationships, and from deployment diagrams indicating
the allocation of software components to hardware devices. The LQN model parameters are
obtained from detailed models of key performance scenarios, represented as UML interaction
or activity diagrams, annotated with performance information.

The paper continues previous work of the authors from [12], [11], [13], [1]. In [12] the
system’s architectural patterns were used to build LQN performance models, but the model
derivation was not automated. In [11] an automated graph transformation was proposed
to derive the LQN model structure from the high-level architecture and the architectural
patterns. The transformation was implemented by using an existing graph rewriting tool
named PROGRES [17]. The PROGRES-based transformation was extended in [1] to ob-
tain the whole LQN model (including its parameters) from a UML model represented as
a PROGRES input graph. The merit of the PROGRES-based approach is that it repre-
sents a proof of concept that graph-transformation techniques can be applied successfully
to the derivation of performance models from UML models. Although PROGRES had the
advantage of freeing us from low-level operations of graph matching and manipulation, it
also brought the disadvantage of introducing additional steps in the process. For example,
we had to express the UML metamodel as a PROGRES schema, and to convert each UML
model into a PROGRES input-graph format. The solution presented in this paper eliminates
the general-purpose graph rewriting tool from the loop by performing the manipulation and
transformation of the UML model directly at the metamodel level. This solution is more ef-
ficient than the PROGRES-based one, as it has fewer steps; also, the ad-hoc transformation
is faster, as it is tailored to the problem at hand. Another advantage of working directly
at the UML metamodel level is that it becomes possible to merge the performance model
builder with a UML tool.

Since the introduction of the Software Performance Engineering technique in [18], there

2

ClosedWorkload
population
externalDelay

OpenWorkload
occurencePattern

PScenario
hostExecDemand
responseTime

0..n

1

1

1

1..n

0..n

0..n

+successor

+predecessor

+root

PerformanceContext

PStep
probability
repetition
delay
operations
interval
executionTime

1..n

1

1

{ordered}

PPassiveResource
waitingTime
responseTime
capacity
accessTime

1..n

1..n
Workload

responseTime
priority

PProcessingResource
processingRate
contextSwitchTime
priorityRange
isPreeemptible

0..1 +host

1..n

0..n PResource
utilization
schedulingPolicy
throughput

0..n

0..n

ClosedWorkload
population
externalDelay

OpenWorkload
occurencePattern

PScenario
hostExecDemand
responseTime

PScenario
hostExecDemand
responseTime

0..n

1

1

1

1..n

0..n

0..n

+successor

+predecessor

+root

PerformanceContext

PStep
probability
repetition
delay
operations
interval
executionTime

1..n

1

1

{ordered}

PPassiveResource
waitingTime
responseTime
capacity
accessTime

PPassiveResource
waitingTime
responseTime
capacity
accessTime

1..n

1..n
Workload

responseTime
priority

Workload
responseTime
priority

PProcessingResource
processingRate
contextSwitchTime
priorityRange
isPreeemptible

0..1 +host

1..n

0..n PResource
utilization
schedulingPolicy
throughput

0..n

0..n

Figure 1: Domain model in the UML Performance Profile

has been a significant effort to integrate performance analysis into the software development
process throughout all lifecycle phases. This requires the ability to derive performance models
from software design specifications. A survey of the techniques developed in the recent years
for deriving performance models from UML models is given in [2]. Among the techniques
surveyed, the one from [3] follows the SPE methodology very closely. Information from UML
use case, deployment, and sequence diagrams is used to generate SPE scenario descriptions
in the form of flow diagrams similar to those used in [18], [19]. The work presented in [8]
introduces an UML-based notation and framework for describing performance models, and a
set of special techniques for modelling component-based distributed systems. In [4] the idea
of patterns is used to investigate the design and performance modelling of interconnection
patterns for client/server systems.

Compared to the existing research, our paper is a unique combination of the following
characteristics: a) it accepts as input XML files produced by UML tools, b) it generates LQN
performance models by applying graph transformation techniques to graphs of metaobjects
that represent different UML diagrams of the input model, and c) it uses the UML perfor-
mance profile for adding performance annotations to the input model.

2 Background

2.1 UML Performance Profile

According to [10], the UML Performance Profile provides facilities for:
• capturing performance requirements within the design context,
• associating performance-related Q0S characteristics with selected elements of the UML

model,

3

• specifying execution parameters which can be used by modelling tools to compute
predicted performance characteristics,

• presenting performance results computed by modelling tools or found by measurement.
The Profile describes a domain model, shown in Fig. 1, which identifies basic abstractions

used in performance analysis. Scenarios define response paths through the system, and can
have QoS requirements such as response times or throughputs. Each scenario is executed
by a job class, called here a workload, which can be closed or open and has the usual
characteristics (number of clients or arrival rate, etc.) Scenarios are composed of scenario
steps that can be joined in sequence, loops, branches, fork/joins, etc. A scenario step may
be an elementary operation at the lowest level of granularity, or may be a complex sub-
scenario composed of many basic steps. Each step has a mean number of repetitions, a host
execution demand, other demand to resources and its own QoS characteristics. Resources
are another basic abstraction, and can be active or passive, each with their own attributes.
The Performance profile maps the classes from Fig. 1 to a stereotype that can be applied to
a number of UML model elements, and each class attribute to a tagged value. For example,
the basic abstraction PStep is mapped to the stereotype <<PAstep>> that can be applied to
the following UML model elements:Message and Stimulus (when the scenario is represented
by an interaction diagram) or ActionState and SubactivityState (when the scenario is
represented by an activity diagram).

In our implementation, we process XML files produced by current UML tools, which
obviously do not support the Performance Profile yet. Therefore, we have attached the
tagged values associated with the stereotypes ”by hand” to different model elements.

Fig. 2 illustrates the inter-operability of the different tools involved: a UML tool (such
as Rational Rose or ArgoUML [22]), a performance model solver (LQN analytical solver
or simulator) and our UML to LQN transformation implementation. So far we have made
progress on the forward path (represented with black arrows) but have not attempted the
backward path yet (represented with gray arrows).

UML Tool UML Model
(in XML format)

import perf.
results into
UML model

Analisys
results

Performance
Model

UML to LQN
Transformation

LQN Tool

Figure 2: Tool inter-operability

4

2.2 The LQN model

LQN was developed as an extension of the well-known QN model, at first independently
in [20], [21] and [15], then as a joint effort [5]. The LQN toolset presented in [5] includes
both simulation and analytical solvers. The main difference with respect to QN is that LQN
can easily represent nested services: a server which receives and serves client requests, may
become in turn a client to other servers from which it requires nested services while serving
its own clients.

A LQN model is represented as an acyclic graph, whose nodes represent software en-
tities and hardware devices, and arcs denote service requests. The software entities (also
known as tasks) are drawn as parallelograms, and the hardware devices as circles. The
nodes with outgoing but no incoming arcs play the role of clients, the intermediate nodes
with both incoming and outgoing arcs are usually software servers and the leaf nodes are
hardware servers (such as processors, I/O devices, communication network, etc.) A software
or hardware server node can be either a single-server or a multi-server. Fig. 3 shows a simple
example of a LQN model of a web server: at the top there is a customer class with a given
number of stochastical identical clients. Each client sends demands for different services of
the WebServer. Each kind of service offered by a LQN task is modelled as a so-called entry,
drawn as a parallelogram ”slice” in the figure. Every entry has its own execution times and
demands for other services, given as model parameters. In this case, the WebServer entries
require services from different entries of the Database task. Each software task is running on
a processor shown as a circle. Also as circles are shown the communication network delays
and the disk device used by the Database.

It is worth mentioning that the word layered in the LQN name does not imply a strict
layering of tasks (for example, tasks in a layer may call each other or skip over layers). All
the arcs used in this example represent synchronous requests, where the sender of a request
message is blocked until it receives a reply from the provider of service. It is possible to
have also asynchronous request messages, where the sender does not block after sending a
request and the server does not send any reply back. Another communication style in LQN
allows for a client request to be processed by a chain of servers instead of a single server,
as shown in section 4. The first server in the chain will forward the request to the second,
etc., and the last server will reply to the client. Although not explicitly illustrated in the
LQN notation, every server, be it software or hardware, has an implicit message queue where
incoming requests are waiting their turn to be served. Servers with more then one entry have
a single input queue, where requests for different entries wait together.

A server entry may be decomposed in two or more sequential phases of service. Phase
1 is the portion of service during which the client is blocked, waiting for a reply from the
server (it is assumed that the client has made a synchronous request). At the end of phase
1, the server will reply to the client, which will unblock and continue its execution. The
remaining phases, if any, will be executed in parallel with the client. A recent extension
to LQN [6] allows for an entry to be further decomposed into activities if more details are
required to describe its execution. The activities are connected together to form a directed
graph, which may branch into parallel threads of control, or may choose randomly between
different branches. Just like phases, activities have execution time demands, and can make

5

ProcS

ProcC
Modem

Internet

LAN

ProcDB

Disk1

Client

WebServer

Database

ProcSProcS

ProcCProcC
ModemModem

InternetInternet

LANLAN

ProcDBProcDB

Disk1Disk1

Client

WebServer

Database

Figure 3: LQN model example

service requests to other tasks. Examples of LQN with activities are given in Fig. 8 and
Fig. 10.

The parameters of a LQN model are as follows:
• customer (client) classes and their associated populations or arrival rates,
• for each phase (activity) of a software task entry: average execution time,
• for each phase (activity) making a request to a device: average service time at the

device, and average number of visits,
• for each phase (activity) making a request to another task entry: average number of

visits,
• for each request arc: average communication delay,
• for each software and hardware server: scheduling discipline.

2.3 Architectural Patterns

In our approach, the structure of the LQN model is generated from the high-level archi-
tecture, and more exactly from the architectural patterns used in the system. Frequently
used architectural solutions are identified in literature as architectural patterns (such as
pipeline and filters, client/server, broker, layers, master-slave, blackboard, etc.) A pattern
introduces a higher-level of abstraction design artifact by describing a specific type of collab-
oration between a set of prototypical components playing well-defined roles, and helps our
understanding of complex systems. Each architectural pattern describes two inter-related
aspects: its structure (what are the components) and behaviour (how they interact). In
the case of high-level architectural patterns, the components are usually concurrent entities
that are executed in different threads of control, compete for resources, and their interaction
may require some synchronization. The patterns are represented as UML collaborations [9].

6

Client

continue
work

request
service

serve request
and reply

waiting

undefined

Server

complete
service (opt)

Client is blocked
waiting for reply

b) ClientSever with a

synchronous message

Client

continue
work

request
service

serve request
and reply

waiting

undefined

Server

complete
service (opt)

wait for
reply

do something
else

c) ClientSever with two

asynchronous messages

Client
Sever

ClientServer

Client Server1..n 1

a) ClientSever collaboration

Client

continue
work

request
service

serve request
and reply

waiting

undefined

Server

complete
service (opt)

Client is blocked
waiting for reply

b) ClientSever with a

synchronous message

Client

continue
work

request
service

serve request
and reply

waiting

undefined

Server

complete
service (opt)

Client is blocked
waiting for reply

b) ClientSever with a

synchronous message

Client

continue
work

request
service

serve request
and reply

waiting

undefined

Server

complete
service (opt)

wait for
reply

do something
else

c) ClientSever with two

asynchronous messages

Client

continue
work

request
service

serve request
and reply

waiting

undefined

Server

complete
service (opt)

wait for
reply

do something
else

c) ClientSever with two

asynchronous messages

Client
Sever

ClientServer

Client Server1..n 1

a) ClientSever collaboration

Figure 4: Client Server architectural pattern

The symbol for a collaboration is an ellipse with dashed lines that may have an ”embedded”
square showing the roles played by different pattern participants.

In Fig. 4 and Fig. 5 are shown the structure and behaviour of two patterns used in our
case study: Client Server and Forwarding Server Chain. The Client Server pattern has two
alternatives: the one shown in Fig. 4.b is using a synchronous communication style (where
the client sends the request then remains blocked until the sender replies), whereas the one
from Fig. 4.c is using an asynchronous communication style (where the client continues its
work after sending the request, and will accept the server’s replay later). The Forwarding
Server Chain, shown in Fig. 5, is an extension of the Client Server pattern, where the client’s
request is served by a series of servers instead of a single one. There may be more than two
servers in the chain (only two are shown in Fig. 5) . The servers in the middle play the role
of ForwardingServer, as each one forwards the request to the next server in the chain after
doing their part of service. The last server in the chain plays the role of ReplyingServer,

7

Client
FwdServer
RplServerFwdServerChain

Client FwdServer1..n 1

a) Forwarding Server Chain

collaboration

RplServer

1..n 1

11

Client

continue
work

request
service

serve request
and forward

waiting

undefined

FwdServer

complete
service (opt)

Client is blocked
waiting for reply

b) Behaviour of the FwdServerChain pattern

RplServer

serve request
and reply

waiting

undefined

complete
service (opt)

Client
FwdServer
RplServerFwdServerChain

Client FwdServer1..n 1

a) Forwarding Server Chain

collaboration

RplServer

1..n 1

11

Client
FwdServer
RplServerFwdServerChain

Client FwdServer1..n 1

a) Forwarding Server Chain

collaboration

RplServer

1..n 1

11

Client

continue
work

request
service

serve request
and forward

waiting

undefined

FwdServer

complete
service (opt)

Client is blocked
waiting for reply

b) Behaviour of the FwdServerChain pattern

RplServer

serve request
and reply

waiting

undefined

complete
service (opt)

Client

continue
work

request
service

serve request
and forward

waiting

undefined

FwdServer

complete
service (opt)

Client is blocked
waiting for reply

b) Behaviour of the FwdServerChain pattern

RplServer

serve request
and reply

waiting

undefined

complete
service (opt)

Figure 5: Forwarding Server Chain architectural pattern

as it sends the reply back to the client. In this paper we show how these two patterns are
converted into LQN models. More architectural patterns and the corresponding rules for
translating them into LQN are described by the authors of the present paper in [10, 11].

3 Transformation from UML to LQN

Similar to the SPE methodology from [16, 17], the starting point for our algo rithm is a set
of key performance scenarios annotated with performance inform ation. For each scenario
we derive a LQN submodel, then merge the submodels together. The approach for merging
is similar with the one used in [6], where LQN submodels were derived from execution traces.
The derivation of each LQN submodel is done in two big steps:

a) The submodel structure (i.e., the software and hardware tasks and their connecting
arcs) is obtained from the high-level architecture of the UML model and from the
deployment of software components to hardware devices. Two kinds of UML diagrams
are taken into account in this step: a high-level collaboration diagram that shows
the concurrent/distributed high-level component instances and the patterns in which
they participate, and the deployment diagram. Fig. 6 shows these two diagrams for
the web server model that was used to derive the LQN model from Fig. 3 (devices
and tasks without entries.) Each high-level software component is mapped to a LQN
software task, and each hardware device (processor, disk, communication network,
etc.) is mapped to a LQN hardware task. The arcs between LQN nodes correspond
to the links from the UML diagrams. It is important to mention that in the first
transformation step from UML to LQN we take into account only the structural aspect

8

Client1 Clientn

<<Internet>>

<<Modem>> <<Modem>>

ProcC1 ProcCn

Server
<<LAN>>

ProcS

Database <<disk>>

ProcDB

<<process>>

Client

1..n

Client Server

CLIENT SERVER

Client
Server

<<process>>

Server

<<process>>

Database

Client Server

CLIENT SERVER

Client
Server

a) High-level software architecture

b) Deployment diagram

Client1 Clientn

<<Internet>>

<<Modem>> <<Modem>>

ProcC1 ProcCn

Server
<<LAN>>

ProcS

Database <<disk>>

ProcDB

<<process>>

Client

1..n

Client Server

CLIENT SERVER

Client
Server

<<process>>

Server

<<process>>

Database

Client Server

CLIENT SERVER

Client
Server

a) High-level software architecture

b) Deployment diagram

Figure 6: UML diagrams used to generate the structure of the LQN model from Fig.3

9

of the architectural patterns; their behavioural aspect will be considered in the next
step.

b) LQN task details are obtained from UML scenario models represented as activity di-
agrams, over which we overlay the behavioural aspect of the architectural pattern,
making sure that the scenario is consistent with the patterns. By ”LQN details” we
understand the following elements of each task: entries, phases, activities (if any) and
their execution time demands and visit ratio parameters, as described in section 2.2.
A task entry is generated for each kind of service offered by the corresponding software
component instance. The services offered by each instance are identified by looking
at the messages received by it in every scenario taken into account for performance
analysis.

Scenarios can be represented in UML by sequence, collaboration or activity diagrams. (The
first two are very close as descriptive power and have similar metamodel representation).
UML statecharts are another kind of diagrams for behaviour description, but are not appro-
priate for describing scenarios. A statechart describes the behaviour of an object, not the
cooperation between several objects, as needed in a scenario.

In the proposed approach, we decided to use activity diagrams for translation to LQN.
The main reason is that sequence (collaboration) diagrams are not well defined in UML yet, as
they are lacking convenient features for representing loops, branches and fork/join structures.
Other authors who are building performance models from UML designs have pointed out this
deficiency of the present UML standard, and are using instead extended sequence diagrams
that look like the Message Sequence Chart standard (see [19] for a well known example).
We did not take the approach of extending the sequence diagrams with the missing features
because our algorithm takes in XML files generated by UML tools, and parses graphs of UML
metaobjects. Our implementation is consistent with the present UML metamodel and XMI
interface; moreover, it uses an open-source library, named Novosoft Metadata Framework
and UML Library [23], which implements the standard UML metamodel as defined in [9].
Therefore, our choice was to use activity diagrams that are able to represent branch/merge,
fork/join and activity composition without any extensions.

However, the activity diagrams have a disadvantage with respect to sequence (collabo-
ration) diagrams: they do not show what objects are responsible for different actions. An
attempt to counterbalance this weakness was the introduction of ”swimlanes” (or partitions)
in the UML standard. A swimlane contains actions that are performed by a certain instance
or set of instances (for example, a swimlane can be associated to a whole department when
modeling a work flow problem). In our approach, we associate a swimlane with each con-
current (distributed) component, which will be translated into a LQN task (see Figures 4,
5 and 9.c). Since many UML modellers prefer sequence diagrams for expressing the coop-
eration between objects, we proposed in [13] an algorithm based on graph transformations
for converting automatically sequence diagrams into activity diagrams. The transformation
associates a swimlane to all the objects that belong to a concurrent (distributed) component,
and therefore adjusts the level of abstraction of the model to our needs.

10

4 From Activity Diagrams to LQN entries, phases and

activities

This section presents the graph grammar-based transformation of activity diagrams into
LQN detailed features (i.e., the realization of step (b) from the previous section). The
graph-grammar formalism is appropriate in this case because both UML and LQN mod-
els are described by graphs. The essential idea of all graph grammars or graph rewriting
systems is that they are generalization of the string grammars that are used in compilers.
The terms ”graph grammars” and ”graph rewriting systems” are often considered synony-
mous. However, a graph grammar is a set of production rules that generates a language of
terminal graphs and produces nonterminal graphs as intermediate results, whereas a graph
rewriting system is a set of rules that transforms one instance of a given class of graphs into
another instance of the same class of graphs, without distinguishing between terminals and
nonterminals graphs. The main component of a graph grammar is a finite set of production
rules. A production is a triple (L, R, E), where L and R are graphs (the left-hand side and
right-hand side, respectively) and E is some embedding mechanism. Such a production rule
can be applied to a host graph H as follows: when an occurrence of L is found in H , it is
removed end replaced with a copy of R; finally, the embedding mechanism E is applied to
attach R to the remainder of H [14].

In our case, the initial host graph is the set of metaobjects that represents a given
activity diagram (the metaobjects are the nodes and the links between them are the edges
of the graph). According to the UML metamodel, the nodes (i.e., metaobjects) are of type
StateVertex and Transition. A StateVertex type has a number of subtypes, among
which State and Pseudostate are the most important. State is associated eventually with
the actions represented in the diagram, whereas the special diagram blocks such as ”fork”,
”join”, ”choice”, etc., are Pseudostates (see [9] for more details).

Our purpose is to parse the activity diagram graph to check first whether it is correct, then
to divide it into subgraphs that correspond to various LQN elements (entries, phases, etc.). In
general, it is quite difficult to parse graph grammars, and in some cases even impossible [14].
In the case discussed in this paper we have found a shortcut by decomposing the original host
graph into a set of subgraphs, each corresponding to a swimlane from the activity diagram.
Each subgraph is described by a simpler graph-grammar, very similar to the string grammars
used in compilers. This is not so surprising, since a swimlane describes the behaviour of
a single component, dealing with sequences of scenario steps and nested structures such
as loops, alternative branches and fork/joins. After disconecting the swimlanes as shown
below, each swimlane subgraph has a structure known as an AND/OR graph. We defined a
context-free grammar describing these subgraphs and implemented a top-down parser with
recursive methods for parsing them. Our algorithm for the step (b) from the previous section
contains two substeps:

b.1) Overlay the behaviour of the architectural patterns extracted in step (a) from the
high-level collaboration diagram over the activity diagram, and verify whether the
communication between concurrent components is consistent with the pattern. This is
done by traversing the graph, by identifying the cross-transitions between swimlanes,

11

Sequence

Partition

A SendReq RcvRply

SyncReq

B

m1 m2

Sequence Sequence

Sequence

b) Parse tree for the Client’s partition

waitin

g RcvReq SendRply

RcvServRply

undefine

d

m1 m2

Sequence

Sequence

Phase1

Partition

Phase2

c) Parse tree for the Client’s partition

B

A

Client

waiting

undefined

Server

SendReq RcvReq

RcvRply

SendRply

m1

m2 B

A

Client

waiting

undefined

Server

Phase1

Phase2

SyncReq

a) Graph transformation rule for the Client Server pattern with synchronous communication

complete service
(optional)

serve request

[n]

Client

Server

d) Generated LQN elements

new entry
[s1, s2]

Sequence

Partition

A SendReq RcvRply

SyncReq

B

m1 m2

Sequence Sequence

Sequence

b) Parse tree for the Client’s partition

Partition

A SendReq RcvRply

SyncReq

B

m1 m2

Sequence Sequence

Sequence

b) Parse tree for the Client’s partition

waitin

g RcvReq SendRply

RcvServRply

undefine

d

m1 m2

Sequence

Sequence

Phase1

Partition

Phase2

c) Parse tree for the Client’s partition

waitin

g RcvReq SendRply

RcvServRply

undefine

d

m1 m2

Sequence

Sequence

Phase1

Partition

Phase2

c) Parse tree for the Client’s partition

B

A

Client

waiting

undefined

Server

SendReq RcvReq

RcvRply

SendRply

m1

m2 B

A

Client

waiting

undefined

Server

Phase1

Phase2

SyncReq

a) Graph transformation rule for the Client Server pattern with synchronous communication

complete service
(optional)

serve request

[n]

Client

Server

d) Generated LQN elements

new entry
[s1, s2]

[n]

Client

Server

d) Generated LQN elements

new entry
[s1, s2]

Figure 7: Transformation rule and parsing trees for the ClientServer pattern with syn-
chronous communication

12

and by checking if they follow the protocol defined by the pattern. Then, apply a
graph transformation rule corresponding to the respective pattern, and attach appro-
priate nonterminal symbols to the subgraphs identified (see Fig. 7 and Fig. 8). This
disconnects practically the subgraphs corresponding to each swimlane from its neigh-
bors. Repeat this step for all inter-component communication (we assume that all are
covered by some architectural pattern).

b.2) Parse separately the subgraph within each swimlane. This will deal with sequences,
loops, alternative branches and fork/join structures. When parsing a subgraph cor-
responding to a certain LQN element (phase or activity) identified in the previous
step, compute its execution time S from the execution times of the contained scenario
steps as follows: S =

∑n
i=1 risi, where ri is the number of repetitions and si the host

execution time of scenario step i.

The graph transformation rule and parsing tree for the ClientServer pattern with synchronous
communication are illustrated in Fig. 7, whereas those for the variant with asynchronous
communication are illustrated in Fig. 8. The right-hand side R of the rule from Fig. 7.a
contains some nodes and edges carried over from the left-hand side L (which will be kept
in the graph), and some new ones (which will be added). Also, some nodes and edges from
L do not appear in R, meaning that they will be deleted from the graph. The embedding
mechanism assumes that (i) all the nodes that are kept in R from L will keep also their links
with the remaining of the graph, (ii) the links of the deleted nodes with the remaining of the
graph will be deleted as well, and (iii) the new nodes are explicitly connected only to nodes
from R as shown in R.

According to Fig. 7.a, two subgraphs are identified on the server side. One corresponds
to the phase 1 of service and is found between the ”join” Pseudostate marking the receiving
of the client request and the ”fork” Pseudostate marking the sending of the reply. The other
subgraph corresponds to the second phase of service, is optional, and can found between the
”fork” marking the sending of the reply and either a ”waiting” state for a new request or the
”undefined” state used by default to mark the end of the respective component behaviour
on behalf of the current scenario. The subgraphs will be labeled with the nonterminal
symbols Phase1 and Phase2, respectively, and will be parsed after step (b.1). On the client
side a new node SyncRec, which symbolizes the making of the request, will replace the
transitions m1 and m2, which represent the sending of the request and the receiving of the
reply, respectively. The partial parsing trees for the client and server side are shown in
Fig. 7.b and 7.c. It is important to emphasize that the semantic of the nonterminals in italic
is related to the abstraction level represented by the high-level pattern. These nonteminals
are used to identify and label the subgraphs that correspond to smaller LQN elements, such
as phases and activities.

Fig. 7.d illustrates the LQN elements generated in this case. A new entry of the Server
task is generated for each new type of request accepted by the server. In the case shown in
the figure, the entry has two phases, and their service times are computed as explained in
step (b.2). A LQN request arc is generated between the Clients phase (or activity) containing
the new SyncRec node inserted by the rule from Fig. 7.a and the new server entry. Its visit

13

ratio n is identical with the number of repetitions of state A that originates the synchronous
request.

Fig. 8.a shows a similar transformation rule for the ClientServer pattern with asyn-
chronous communication. The difference here is that the client does not block immediately
after sending the reply to the server. A fork/join structure is inserted in the client side, as
seen in Fig. 8.a and 8.b. The LQN elements generated are shown in Fig. 8.c. The new entry
contains LQN activities and a similar fork/join structure. The transformation rules for other
patterns are not given here due to space limitations.

5 Case study: group communication server

In this section is presented the application of the proposed UML to LQN transformation al-
gorithm to a case study [16]. A group communication server accepts two classes of documents
from its subscribers, private and public, each with its own access rights. The documents are
kept in two different files: the private documents on disk1 and the public ones on disk2. Five
use cases were analyzed for the system: subscribe, unsubscribe, submit document, retrieve
document and update document. However, only one scenario, namely Retrieve, is presented
here. Fig. 9.a shows the architectural patterns in which are participating the components
involved in this scenario, and Fig. 9.b gives the deployment diagram. The activity diagram
with performance annotations describing the scenario is given in Fig. 9.c. A User process
sends a request for a specific document to the Main process of the server, which determines
the request type and forwards it to another process named RetrieveProc. This process is
rctually esponsible for retrieving the documents. Half of all the requests will refer to docu-
ments found in the buffer, so no disk access is necessary. The other half is split as follows:
20% of the requests will refer to private documents, and 30% to public documents. In each
case, RetrievProc delegates the responsibility of reading the document to the corresponding
disk process.

Disk1Proc reads private documents from a sequential file, so it makes a number of F
accesses to an external operation named ”readDisk1” in order to find the desired document.
On the other hand, Disk2Proc reads public documents from an indexed file, so it will make
only one access to the external operation ”readDisk2”. The performance characteristics
and the resources required for the external operations are described elsewhere. The external
operations were specially provided in the UML performance profile to allow the UML modeler
to describe the system at the right level of abstraction.

After getting the desired document either from file or from memory, RetrieveProc sends it
back to the user. The scenario steps that send messages over the Internet invoke an external
operation ”network” once for every packet transmitted . This will allow to introduce in the
performance model communication network delays that are not fully represented in the UML
model.

Every scenario step in Fig. 9.c has a PAdemand tagged value indicating its estimated mean
execution time on the host processor. The workload for the Retrieve scenario is closed, with
a number of $Nusers clients. A user ”thinks” for a mean delay of 15s. (The identifiers
starting with ’$’ indicate variables that must be assigned concrete values before doing the

14

a) Graph transformation rule for the Client Server pattern with asynchronous communication

c) LQN elements generated for the Client

request arc
to Server

Client

waiting

undefined

Server

SendReq
RcvReq

RcvRply

SendRply

m1

m2

complete service
(optional)

B

A

wait for reply

Client

waiting

undefined

Server

Phase1

Phase2

SyncReq

B

A

Partition

A B

Sequence Sequence

Sequence

b) Parse tree for the Client’s partition

SendReq RcvRply

SyncReq

m1 m2

Fork/Join

Branch2Branch1

Sequence

serve requestdo something
else Branch1

C

Branch1

&

Branch2

D

&

C

Branch1

&

Branch2

D

&

A

Branch1

&

Branch2

B

&

a) Graph transformation rule for the Client Server pattern with asynchronous communication

c) LQN elements generated for the Client

request arc
to Server

Client

waiting

undefined

Server

SendReq
RcvReq

RcvRply

SendRply

m1

m2

complete service
(optional)

B

A

wait for reply

B

A

wait for reply

Client

waiting

undefined

Server

Phase1

Phase2

SyncReq

B

A

Partition

A B

Sequence Sequence

Sequence

b) Parse tree for the Client’s partition

SendReq RcvRply

SyncReq

m1 m2

Fork/Join

Branch2Branch1

Sequence

serve requestdo something
else Branch1

C

Branch1

&

Branch2

D

&

C

Branch1

&

Branch2

D

&

A

Branch1

&

Branch2

B

&

Figure 8: Transformation rule and parsing trees for the ClientServer pattern with asyn-
chronous communication

15

UserT MainProc RetrieveProc

Disk1 Proc

Disk2 Proc

<<PAhost>>
User

Workstation

<<PAhost>>
CommPInternet

<<PAhost>>
FileSeverP

<<deploys>> <<deploys>> <<deploys>>

b) Deployment diagram for the components involved in "Retrieve" scenario

Forwarding
server
chain

UserT MainProc RetrieveProc

Disk1 Proc

Client
Server

Disk2 Proc

Client
Server

Client Client

Client

Forwarding
server

Replying
server

Server

Server

a) High-level architecture for "retrieve" scenario

request
document

wait_M wait_R

undef_M undef_R

UserT MainProc RetrieveProc

receive
document

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 12.5, ‘ms),
PAextOp=

(‘network’, $R)}

<<PAclosedLoad>>
{PApopulation =

$Nusers,
Padelay=(‘mean’,

‘assgn’, 15, ‘s’)}

receive
request

get doc.
info

delegate doc.
retrieval accept

retrieve rqst

get private
document

get public
document

get doc.
from buffer

send
document

read doc
from disk1

wait_D1

undef_D1

Disk1Proc

read doc
from disk2

wait_D2

undef_D2

Disk2Proc

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 13.5, ‘ms’)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.3, ‘ms’)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’,15, ‘ms’),

PAextOp=(‘network’,$P)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.2, ‘ms’),

PAprob=0.5}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 1.3, ‘ms’)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 5, ‘ms’)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.9, ‘ms’),

PAprob=0.2}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 1.8, ‘ms’)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.9, ‘ms’),

PAprob=0.3}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.5, ‘ms),
PAextOp=(‘readDisk1’, $F)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.5, ‘ms),
PAextOp=(‘readDisk2’, 1)}

c) Activity Diagram with performance annotations for “Retrieve” scenario

request
document

wait_M wait_R

undef_M undef_R

UserT MainProc RetrieveProc

receive
document

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 12.5, ‘ms),
PAextOp=

(‘network’, $R)}

<<PAclosedLoad>>
{PApopulation =

$Nusers,
Padelay=(‘mean’,

‘assgn’, 15, ‘s’)}

receive
request

get doc.
info

delegate doc.
retrieval accept

retrieve rqst

get private
document

get public
document

get doc.
from buffer

send
document

read doc
from disk1

wait_D1

undef_D1

Disk1Proc

read doc
from disk2

wait_D2

undef_D2

Disk2Proc

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 13.5, ‘ms’)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.3, ‘ms’)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’,15, ‘ms’),

PAextOp=(‘network’,$P)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.2, ‘ms’),

PAprob=0.5}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 1.3, ‘ms’)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 5, ‘ms’)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.9, ‘ms’),

PAprob=0.2}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 1.8, ‘ms’)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.9, ‘ms’),

PAprob=0.3}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.5, ‘ms),
PAextOp=(‘readDisk1’, $F)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.5, ‘ms),
PAextOp=(‘readDisk2’, 1)}

request
document
request

document

wait_M wait_R

undef_M undef_Rundef_R

UserT MainProc RetrieveProc

receive
document

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 12.5, ‘ms),
PAextOp=

(‘network’, $R)}

<<PAstep>>
{PAdemand=(‘est’,

‘mean’, 12.5, ‘ms),
PAextOp=

(‘network’, $R)}

<<PAclosedLoad>>
{PApopulation =

$Nusers,
Padelay=(‘mean’,

‘assgn’, 15, ‘s’)}

receive
request
receive
request

get doc.
info

delegate doc.
retrieval accept

retrieve rqst

get private
document
get private
document

get public
document
get public
document

get doc.
from buffer

get doc.
from buffer

send
document

send
document

read doc
from disk1
read doc

from disk1
read doc

from disk1

wait_D1

undef_D1undef_D1

Disk1Proc

read doc
from disk2
read doc

from disk2
read doc

from disk2

wait_D2

undef_D2undef_D2

Disk2Proc

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 13.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘est’,
‘mean’, 13.5, ‘ms’)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.3, ‘ms’)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’,15, ‘ms’),

PAextOp=(‘network’,$P)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.2, ‘ms’),

PAprob=0.5}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.2, ‘ms’),

PAprob=0.5}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 1.3, ‘ms’)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 5, ‘ms’)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.9, ‘ms’),

PAprob=0.2}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.9, ‘ms’),

PAprob=0.2}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 1.8, ‘ms’)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 1.8, ‘ms’)}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.9, ‘ms’),

PAprob=0.3}

<<PAstep>>{PAdemand=
(‘est’,‘mean’, 0.9, ‘ms’),

PAprob=0.3}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.5, ‘ms),
PAextOp=(‘readDisk1’, $F)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.5, ‘ms),
PAextOp=(‘readDisk1’, $F)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.5, ‘ms),
PAextOp=(‘readDisk2’, 1)}

<<PAstep>> {PAdemand=
(‘est’, ‘mean’, 2.5, ‘ms),
PAextOp=(‘readDisk2’, 1)}

c) Activity Diagram with performance annotations for “Retrieve” scenario

Figure 9: Group communication server: high-level architecture, deployment and activity
diagram for ”Retrieve” scenario

16

1

Disk2Proc

UserP Think
[15s]

CommP

File
ServerP

Retrieve
[8.6ms]

Read
[2.5ms]

UserT
[26ms]

RetrieveProc
+

1.8ms

+

15ms

0.9ms 0.2ms 0.9ms

MainProc

network

$R

$P

readDisk1 readDisk2

Read
[2.5ms]

Disk1Proc

1

1$F

1

1

1

Disk2Proc

UserPUserP Think
[15s]

CommPCommP

File
ServerP

File
ServerP

Retrieve
[8.6ms]
Retrieve
[8.6ms]

Read
[2.5ms]

UserT
[26ms]

RetrieveProc
+

1.8ms

+

15ms

0.9ms 0.2ms 0.9ms

+

1.8ms

++

1.8ms1.8ms

+

15ms

++

15ms15ms

0.9ms0.9ms 0.2ms0.2ms 0.9ms0.9ms

MainProc

networknetwork

$R

$P

readDisk1readDisk1 readDisk2readDisk2

Read
[2.5ms]

Disk1Proc

1

1$F

1

1

Figure 10: LQN submodel generated for the scenario ”Retrieve”

actual performance analysis).
The LQN model obtained by applying our method is shown in Fig. 10. A LQN task was

generated for each of the five software components from Fig. 9. Additional tasks were gen-
erated for the external operations readDisk1, readDisk2 and network. The task MainProc

has many entries, one for each type of requests it accepts. However, only one of its entries
is determined from this scenario. This entry forwards the client request to RetrieveProc

(forwarding is represented by a dotted request arc). RetrieveProc has one entry with in-
ternal branching, represented as a LQN activity graph that mirrors the scenario steps from
the activity diagram from fig.9.c.

The purpose of this paper is to present the proposed UML to LQN transformation, so no
performance analysis results are presented here. Our experience with the UML Performance
Profile shows that it is relatively easy to understand, and that it provides enough performance
annotations for generating working LQN models. However, we would like to add a few
items on the ”wish list” for the Performance Profile. Firstly, an additional tagged value is
needed for expressing the size of messages, which is necessary for calculating the network
delays. Secondly, it would be very useful to use parameterized expressions instead of concrete
numbers for the tagged values. Thirdly, sometime it’s useful to be able to define a workload
over a set of scenarios that are composed in a certain way (sequentially, random choice, etc.)

17

6 Conclusions

Our experience with the graph-grammar formalism shows that it is very powerful and mod-
ularized by nature. The rule-based transformation approach lends itself rather easily to
extensions. We are working right now on adding new transformation rules for other archi-
tectural patterns, such as pipeline and filters, critical section, blackboard, master-slave, etc.
Another kind of extension we are planning on doing is the addition of a suitable GUI. An
area that is completely uncovered is the backward path to bring back into the UML model
the results from the performance analysis solver (represented with gray arrows in Fig. 2).

Regarding the inter-operability with UML tools, we have met with some problems due
to the fact that the present UML tools do not support entirely the current UML standard.
For example, Rational Rose does not support yet the following features: collaborations (i.e.,
the dashed ellipse symbol), object flow in activity diagrams and tagged values. Another tool
we have been using, ArgoUML[22], does not support swimlanes and object flow in activity
diagrams, etc. In order to test our algorithm, we have obtained XML files from the existing
UML tools, but had to change them by hand in order to add the missing features. We hope
that this problem will disappear with time, so that tool inter-operability will become a true
reality.

Acknowledgements

This work was partially supported by grants from the Natural Sciences and Engineering
Research Council of Canada (NSERC) and Communications and Information Technology
Ontario (CITO).

References

[1] Amer, H., Petriu, D.C.: Software Performance Evaluation: Graph Grammar-based
Transformation of UML Design Models into Performance Models. submitted for publi-
cation, 33 pages (2002)

[2] Balsamo, S., Simeoni, M.: On transforming UML models into performance models. In:
Proc. of Workshop on Transformations in the Unified Modeling Language, Genova, Italy
(2001)

[3] Cortellessa, V., Mirandola, R.: Deriving a Queueing Network based Performance Model
from UML Diagrams. In: Proc. of 2nd ACM Workshop on Software and Performance,
Ottawa, Canada (2000) 58–70

[4] Gomaa, H., Menasce, D.A.: Design and Performance Modeling of Component Inter-
connections Patterns for Distributed Software Architectures. In: Proc. of 2nd ACM
Workshop on Software and Performance, Ottawa, Canada (2000) 117–126

[5] Franks, G., Hubbard, A., Majumdar, S., Petriu, D.C., Rolia, J., Woodside, C.M: A
toolset for Performance Engineering and Software Design of Client-Server Systems. Per-
formance Evaluation, Vol. 24, Nb. 1-2 (1995) 117–135

[6] Franks, G.: Performance Analysis of Distributed Server Systems. Report OCIEE-00-01,
Ph.D. Thesis, Carleton University, Ottawa, Canada (2000)

18

[7] Hrischuk, C.E., Woodside, C.M., Rolia, J.A.: Trace-Based Load Characterization for
Generating Software Performance Models. IEEE Trans. on Software Eng., V.25, No.1
(1999) 122–135

[8] Kähkipuro, P.: UML-Based Performance Modeling Framework for Component-Based
Distributed Systems. In: R.Dumke et al.(eds): Performance Engineering, Lecture Notes
in Computer Science, Vol. 2047. Springer-Verlag, Berlin Heidelberg New York (2001)
167–184

[9] Object Management Group: UML Specification Version 1.3. OMG Doc. ad/99-06-08
(1999)

[10] Object Management Group: UML Profile for Schedulability, Performance and Time.
OMG Document ad/2001-06-14, http://www.omg.org/cgi-bin/doc?ad/2001-06-14
(2001)

[11] Petriu, D.C., Wang, X.: From UML Description of High-Level Software Architecture
to LQN performance models. In: Nagl, M., et al.(eds): Applications of Graph Trans-
formations with Industrial Relevance AGTIVE’99. Lecture Notes in Computer Science,
Vol. 1779. Springer-Verlag, Berlin Heidelberg New York (2000) 47–62

[12] Petriu, D.C., Shousha, C., Jalnapurkar, A.: Architecture-Based Performance Analysis
Applied to a Telecommunication System. In: IEEE Transactions on Software Eng.,
Vol.26, No.11 (2000) 1049–1065

[13] Petriu, D.C., Sun, Y.: Consistent Behaviour Representation in Activity and Sequence
Diagrams. In: Evans, A., et al.(eds): UML’2000 The Unified Modeling Language -
Advancing the Standard. Lecture Notes in Computer Science, Vol. 1939 (2000) 369–382

[14] G.Rozenberg (ed): Hanbook of Graph Grammars and Computing by Graph Transfor-
mation, Vol.1. World Scientific (1997)

[15] Rolia, J.A., Sevcik, K.C.: The Method of Layers. EEE Trans. on Software Engineering,
Vol. 21, Nb. 8 (1995) 689–700

[16] Scratchley, W.C.: Evaluation and Diagnosis of Concurrency Architectures. Ph.D Thesis,
Carleton University, Dept. of Systems and Computer Eng. (2000)

[17] Schürr, A.: Programmed Graph Replacement Systems. In G.Rozenberg (ed): Handbook
of Graph Grammars and Computing by Graph Transformation. (1997) 479–546

[18] Smith, C.U.: Performance Engineering of Software Systems. Addison Wesley (1990)

[19] Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison Wesley (2001)

[20] Woodside, C.M.: Throughput Calculation for Basic Stochastic Rendezvous Networks.
In: Performance Evaluation, Vol.9, No.2 (1998) 143–160

[21] Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The Stochastic Rendezvous
Network Model for Performance of Synchronous Client-Server-like Distributed Software.
In: IEEE Transactions on Computers, Vol.44, Nb.1 (1995) 20-34

[22] ArgoUML tool. to be found at http://argouml.tigris.org/

[23] Novosoft Metadata Framework and UML Library, open source library to be found at
http://nsuml.sourceforge.net/

19

