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Abstract. A software model can be analyzed for non-functional requirements by extending it with suitable 

annotations and transforming it into analysis models for the corresponding non-functional properties. For 

quantitative performance evaluation, suitable annotations are standardized in the “UML Profile for 

Modeling and Analysis of Real-Time Embedded systems” (MARTE) and its predecessor, the “UML 

Profile for Schedulability, Performance and Time” (SPT). A range of different performance model types 

(such as queueing networks, Petri nets, stochastic process algebra) may be used for analysis. In this work, 

an intermediate “Core Scenario Model” (CSM) is used in the transformation from the source software 

model to the target performance model. CSM focuses on how the system behaviour uses the system 

resources. The semantic gap between the software model and the performance model must be bridged by 

(1) information supplied in the performance annotations, (2) in interpretation of the global behaviour 

expressed in the CSM and (3) in the process of constructing the performance model. Flexibility is required 

for specifying sets of alternative cases, for choosing where this bridging information is supplied, and for 

overriding values. It is also essential to be able to trace the source of values used in a particular 

performance estimate. The performance model in turn can be used to verify responsiveness and scalability 

of a software system, to discover architectural limitations at an early stage of development, and to develop 

efficient performance tests. This paper describes how the semantic gap between software models in 

UML+MARTE and performance models (based on queueing or Petri nets) can be bridged using 

transformations based on CSMs, and how the transformation challenges are addressed. 

1. Introduction 

Model-Driven Engineering (MDE) uses abstraction to separate the model of the software 

from underlying platform models, and automation to generate code from models. Models 

also facilitate the analysis of non-functional properties (NFPs), such as performance, 
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scalability, reliability, security, safety, etc. MDE can be applied to a variety of models 

related to software, including workflow models. To evaluate a software model for NFPs, 

analysis models are ideally generated automatically by model transformations and 

become part of the model suite which is maintained with the product. This paper 

describes a framework called PUMA (Performance from Unified Model Analysis) that 

automatically derives a variety of performance models from UML software 

specifications. 

For software performance evaluation, many modeling formalisms have been developed 

over the years, such as queueing networks (QN), Layered Queueing Networks (LQN) (a 

type of extended QN), stochastic Petri nets, stochastic process algebras and stochastic 

automata networks, as surveyed in  [2]. Simulation is also widely used. This paper 

addresses the creation of software models in UML  [24], for systems with stochastic 

workloads, to obtain performance measures such as capacity, throughput and response 

times. For brevity, we term the software models as Smodels, and the performance models 

as Pmodels.  

The benefits of using Pmodels during the software development process include 

discovery of performance limitations in system architecture, scalability analysis, design 

of efficient performance tests, capacity planning for deployed systems, and model-based 

configuration optimization  [42].  There is a well-established methodology called software 

performance engineering ( [19] [34] [36]) using  Pmodels derived from expert knowledge 

or from test data, throughout the software lifecycle. Unfortunately, its practical 

application is sometimes hindered by the effort of building the performance models by 

hand. PUMA is intended to automate this step. 

To facilitate the generation of Pmodels, UML Smodels have been extended with standard 

performance annotations defined in the “UML Profile for Modeling and Analysis of 

Real-Time and Embedded Systems” (MARTE)  [26] and its predecessor the “UML 

Profile for Schedulability, Performance and Time” (SPT)  [25]. The PUMA framework 

(first developed by the authors for UML+SPT models  [41]) integrates Pmodels into MDE 

as illustrated in Figure 1. (The numbered circles represent different transformation steps 

required to bridge the gap between Smodel and Pmodel, as described in Section 3).  
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Figure 1. The PUMA architecture, with four steps discussed in the paper 

 

This paper describes a new version of PUMA for UML+MARTE models, which 

addresses the following transformation challenges: 

 bridging the semantic gap between Smodels and Pmodels, which is due to their 

different domains; performance models are centered on resources and abstract away 

from details of function and data  [30]; 

 overcoming the complexity of dealing with several distinct kinds of Smodel and 

many kinds of Pmodel (an N-by-M problem); 

 inferring behaviour patterns over extended patches of system scenarios, including 

patterns of interaction between system components, and patterns of resource-holding, 

which require determination of resource contexts of behaviour  [39]; 

 incorporating system elements which are indicated but not fully described in the 

Smodel. 

These transformations are largely implemented in PUMA, covering Smodels expressed 

by Interaction, Activity and Deployment Diagrams (IDs, ADs, and DDs) and Pmodels in 

the form of queueing networks (QNs), layered queueing networks (LQNs), generalized 

stochastic Petri nets (GSPNs) and simulations. In this paper we will focus on the 

transformation to two types of Pmodels, LQNS (Section 7) and Petri nets (Section 8). 

PUMA addresses the N-by-M challenge by using an intermediate CSM model as 

illustrated in Figure 2. CSM captures the necessary information about the use of 
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resources by behavior, which is the essence of all performance models. Now to add a new 

type of Smodel or Pmodel requires only one additional transformation into or from CSM. 
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Figure  2. Transformation architecture using the CSM intermediate model 

2. Related work 

Many kinds of Pmodels can be used for performance analysis of software systems as 

described in  [2] and  [7]. The Pmodels are often constructed “by hand”, based on analyst 

insights and interactions with designers. To fit into MDE, the present purpose is to 

automate the derivation of the Pmodel from the Smodel used for software development. 

Several approaches have been proposed for this. 

In some research, a special restricted style of “performance Smodel” has been proposed, 

to specify only the software aspects that are relevant to performance models. An example 

is the pioneering “execution graph” of Smith  [34] [36], a kind of scenario model (as 

described in section 4) with performance parameters. The execution graph, which may 

have a UML front-end  [6] [21], is transformed directly to a Pmodel. Other examples of 

“performance Smodels” include a constrained style of UML  [18], including annotated 

structural definitions in code  [22] and the Palladio Component Model (PCM)  [14]. The 

latter is a modeling language intended for model-driven development of component-

based software systems and for the early evaluation of non-functional properties such as 

performance and reliability, which captures the software architecture with respect to 

static structure, behaviour, deployment/allocation, resource environment/execution 

environment, and usage profile. Although its metamodel is completely different from 
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UML, the Palladio Component Model has a UML-like graphical notation representing 

component diagrams, deployment and individual service behaviour models (similar to 

activity diagrams). 

The capabilities provided by some of the extensive research on automated transformation 

of UML Smodels to different PModels are summarized in Table 1, with references to 

papers.  

Table 1. Automated transformation of UML Smodels to Pmodels 

(UC= Use Case, SD= Sequence Diagram, AD= Activity Diagram, SM= State Machine, DD= Deployment 
Diagram) 

                     Source Smodel   
Target Pmodel 

UC + DD SD + DD AD + DD SM + DD

Queueing Network  [6] [12]   [6]  [12] [41]   [12] [21]  [41]   

Layered QN   [12]  [18]  [29]  [41]  [12]  [28]  [29]  [41]   

Stochastic Petri Net  [8]   [8] [12]  [41]   [8] [12] [20] [23]  [41]   [8] [17]  

Stochastic Process Algebra  [38]   [5]   

Markov Model     [19]  

Simulation   [29]   [21]  [29]   
 

Many of these approaches transform from one kind of UML behaviour diagram (plus 

deployment), to one kind of Pmodel. However there are many benefits in being able to 

start from any kind of UML behaviour diagram and to choose the most suitable Pmodel 

for a given project. The PUMA strategy in  [41] unifies performance evaluation in this 

sense, transforming multiple types of UML behaviour model into multiple types of 

Pmodel, via an intermediate (or pivot) language called Core Scenario Model (CSM)  [27]. 

PUMA is capable of transformations in every cell of Table 1 and also supports non-UML 

Smodels (e.g. Use Case Maps  [45]).  

CSM represents sequences of operations, based on the concepts in the SPT/MARTE 

profiles, and exploits several standards: MARTE, UML and its model-interchange 

standard, performance model standards  [15] [35], and the CSM metamodel  [27]. Other 

intermediate models from literature include IM in  [29] and PCM in  [8], which are similar 

to CSM. KLAPER is another intermediate language that supports performance and 

reliability analysis of component-based systems based  [12]. KLAPER is more oriented 

toward representing calls and services rather than scenarios and has a more limited view 

of resources (i.e., no basic distinction between hardware/software, active/passive). It has 
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also been applied as intermediate model for transformation from different types of 

Smodels to different types of Pmodels. 

For PUMA, the preliminary paper  [41] outlined transformations from sequence and 

activity diagrams extended with the SPT profile to CSM, and from CSM to queueing, 

layered queueing and stochastic Petri net models. The limitations in these original 

transformations mean that some valid designer options for expressing the Smodel cause 

failure to produce a Pmodel. This work describes a significantly enhanced PUMA 

framework based on MARTE, which addresses the transformation challenges listed in the 

Section 1 and detailed in Section 3. 

3. Bridging the semantic gap between Smodel and Pmodel 

The Smodel contains a wealth of design specification that is summarized or ignored in 

the Pmodel, and the Pmodel extends outside the normal content of an Smodel, in its focus 

on the use of resources. There is overlap in the structural, behavioral and resource 

specifications that are common to both, but their central features are quite separate, 

creating a semantic gap between them. The Smodel is function-centric, while the Pmodel 

is resource-centric. This gap is crossed by using the common elements, which describe 

the resources and the units of behaviour that use these resources (called steps in this 

work). Starting from a typical Smodel, tone must first complete the description of 

behavior and the execution platform, and then add performance annotations which 

specify how the behaviour uses the resources in executing the functions, and perhaps 

some additional resources. The relationships between the elements of a UML Smodel and 

its corresponding Pmodel are illustrated as subsets of model elements in Figure 3.  

                                                                                      P = Pmodel  
 
     S = Annotated Smodel      SBR (behaviour + resources in Smodel)      
  
               S \ SBR                   SBR \ BRusage             BRusage        
             (everything                     (outside the              (included in the 
             not in SBR)                  usage profile)              usage profile)         
  
 
                                                                                          Pext 
                                                                                     (from outside 
                                                                                     the Smodel) 

 
Figure 3. Conceptual groupings of the semantic content of the Smodel and Pmodel 
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SBR is the subset of the Smodel model elements that specifies behaviour and its use of 

resources, while BRusage is the subset of SBR that is related to the usage profile for the 

Pmodel (the set of system-level responses that are to be modeled). The Pmodel is 

extracted from BRusage plus additional specifications of system components outside the 

Smodel altogether, shown as Pext.  

The Pmodel is more abstract than the Smodel  [30]: 

 Functional operations are abstracted using the MARTE annotations: 

- control  decisions are abstracted to random choices governed by probabilities 

which must be supplied; 

- functional execution is represented abstractly by probability distributions or 

average demand values for CPU time, message lengths, and sizes of storage 

operations. 

The parts that are kept are included in the set SBR. 

 The effect of data on behaviour is abstracted, since the run-time data is not 

represented in the Pmodel. The effect of variations in the data is represented within 

the distribution of demand values noted above; 

 Some operations may be omitted from the Pmodel. Performance analysis focuses on 

the use cases which are regarded as important for performance, and for which there 

are performance requirements, called the usage profile of the system. This restricts to 

the Pmodel to the subset BRusage in Figure 3;  

 Information may have to be added to the model, shown as set Pext in Figure 3: 

- similar to a transformation to a platform-dependent model, the performance model 

must include abstractions of the execution platform, parts of which may be ignored 

in the Smodel (if it is platform-independent). Examples include middleware, 

databases and storage subsystems. These have been termed performance 

completions  [40], and may be represented by additional overhead execution 

demand, or by pre-built Pmodel elements defined in Pext; 

- the system may include components that are already developed or are separately 

specified. These may also be represented by Pmodel elements defined in Pext. 
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Transformation Steps and Road Map 

The paper describes the transformation from SModel to Pmodel in four steps, indicated 

by numbered circles in Figure 1:  

Preliminary Step: identify the operations to be analyzed (the usage profile) and ensure 

that the Smodel includes their behavior description; 

1. in the Smodel, add the performance annotations using MARTE stereotypes and 

attributes, to complete SBR (MARTE is described in the remainder of this Section); 

2. extract BRUsage from the Smodel into the CSM, which eliminates the unused parts 

of the Smodel (CSM in Section 4, the S2C transformations in Section 5); 

3. analyze the CSM for extended resource properties (interaction patterns and resource 

use patterns across the scenario; they are needed by the LQN Pmodel, not by the QN 

or GSPN Pmodels) (Section 6); 

4. transform the CSM to the chosen Pmodel (Section 7). 

The preliminary step and Step 1 are manual, while Steps 2, 3 and 4 are automated in 

PUMA. 

3.1. MARTE performance annotations  
UML extensions to specify information about time and resources, to bridge the semantic 

gap, are defined in the MARTE standard profile  [26]. Important packages of MARTE for 

our purposes are the Non-Functional Properties (NFP), General Resource Model (GRM), 

Generic Quantitative Analysis Model (GQAM), and Performance Analysis Model 

(PAM). Quantities are specified by NFPs (non-functional properties), which have a 

compact form (value, units), where value may be a number, a variable, or an expression 

in the Value Specification Language ( [26], Annex B), and units are described in Annex 

D.2. Some NFP types support ranges of values, or probability distributions. There is also 

a long form which specifies additional properties of the NFP value ( [26], sec 8.3.3).  

Highlights of MARTE will be introduced via the UML interaction diagram (ID) and 

deployment diagram (DD) in Figures 4 and 5, which are based loosely on the TPC-W 

benchmark  [37] representing an electronic bookstore. The ID in Figure 4 defines 

behaviour to get the home page of the bookstore. This single response will make up the 

usage profile for this small example. The stereotype «GaAnalysisContext» identifies the 
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ID as a subject for analysis and its contextParams attribute declares four parameters for 

the analysis: 

 Nusers, the number of concurrent users in a closed workload 

 thinkTime, between the end of a response and the next request by the same user, 

 Images, the average number of images in a web page, 

 R, the required 95th percentile of the response time  

In the stereotype attributes, the “$” sign signifies the declaration of a variable; 

NFP_Duration is the NFP type for time values, NFP_Integer is for integers. These four 

parameters can be varied during the Pmodel evaluation to provide sensitivity analysis. 

MARTE stereotypes are based mainly on the concepts of scenarios, workloads and 

resources. A scenario is a behaviour specified by an AD, ID or state machine diagram 

(SMD) (which are not considered here). A scenario is triggered by an event pattern 

defining its “workload” and is made up of Steps which are either elementary actions that 

take time and use resources, or containers for nested sub-scenarios. The software process 

instances (each of which gives one lifeline in the ID) are logical resources, while the 

hosts and the network are physical resources shown in the DD of Figure 5. Other 

resources may be active or passive, logical or physical, software or hardware. In the 

example, we shall consider the MARTE annotations for the scenario and workload first, 

then consider the resources.  

In Figure 4 the Scenario is implicitly the entire ID. Its workload is defined by the 

«GaWorkloadEvent» stereotype applied to the beginning of the scenario, with attributes 

pattern (describing the events that trigger responses) and respT (the response time to the 

event). The pattern defined here is closed, with a fixed population of Nusers users, who 

wait for thinkTime seconds between requests (notice the use of variables Nusers and 

thinkTime). An alternative is an open pattern, defining a flow of requests at a given rate. 

respT is defined with two values with different sources, one for the required value and 

one defining the variable R as a placeholder for the calculated value obtained from the 

Pmodel. To define the different sources, the long-form specification of respT is used. The 

statQ field declares the value to be a percentile (the 95th in this case). 

The Scenario is defined implicitly by the sequence of «PaStep», in which the stereotype 

may be attached to either an ExecutionSpecification (drawn as a narrow rectangle along 
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the lifeline) or to the message which triggers it. A «PaStep» has an attribute hostDemand 

which defines its host execution time. «PaStep» is also applied to the 

CombinedFragments in Figure 4, as a container for an implicit nested Scenario 

representing the fragment content. «PaStep»  has an attribute prob for the probability of 

optional or alternative fragments (prob is 0.2 for the opt fragment, and 0.4 and 0.6 for 

the two alt fragments in Figure 4), or rep for repetitions of a loop (rep is the number of 

images to be retrieved, given by the variable Images, for the loop fragment). In a par 

CombinedFragment the attribute noSync on a fragment indicates that the joining of the 

parallel behaviour does not wait for this branch. 

Some messages in the Scenario may have an additional stereotype «PaCommStep» 

conveying an attribute msgSize, which may be used in the Pmodel to determine the 

message delay. The first message has a size of 2.7 KB; the final one has a size given by 

an expression depending on the number of images in the homepage (the variable Images). 

The logical resources in this system are the «PaRunTInstances» (deployed processes) 

associated with each lifeline in the ID, with thread pools of size poolSize and an attribute 

instance that identifies the process instance (a «SchedulableResource» whose deployment 

is shown in the DD). The physical resources are «GaExecHosts» (compute nodes) and the 

«GaCommHost» (network). Each «GaExecHost» has attributes resMult (for its number of 

cores or processors), and transmission and reception overheads per message as shown. 

The «GaCommHost» has a transmission capacity and a latency attribute named blockT. 

Going beyond this example, a «PaStep» may identify the invocation of additional 

behaviour by explicitly nesting a scenario defined by another behaviour diagram within 

it, or by defining demands for operations defined elsewhere using the «PaStep» attributes 

behavDemand (for nested scenarios), servDemand (for operations defined by a software 

component with its own scenarios), or extOpDemand (for operations defined in a library). 

Also a scenario may explicitly define the use of logical resources, with a stereotype 

«PaAcqStep» for a step which acquires a resource, and «PaRelStep» for a Step which 

releases one.   

UML ADs use the same annotations, with «PaStep» applied to Actions; an example is 

shown in Figure 16. State Machine Diagrams can also be annotated (see e.g.  [20]).  
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{contextParams = ($Nusers: NFP_Integer, $thinkTime: NFP_Duration,  
          $Images: NFP_Real, $R: NFP_Duration)} 
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«PaCommStep» {msgSize= “(2.9, KB)”}  
«PaStep» {hostDemand= “(1, ms)”, respT = ((value=1.0, units=s, statQ=percent, source=req),  

1: getHomePage () 
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11: storeCustomerData 10: updateAck

8: 
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9: updateCustomerData ()
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{prob = "0.4”} 

{prob = "0.6”} 

«PaStep»

{hostDemand= “(10, ms)”} 

«PaStep»
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5: 
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12: getHomePage 

{msgSize = “(3.4+5*Images, KB)”}

«PaCommStep» 

[ ]

[ ]

[ ]

Figure 4. A UML2 Interaction Diagram for the GetHomePage Scenario of the TPC-W benchmark  [37]. 
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Figure 5. Software Components and their Deployment 

 

The many additional annotations in MARTE include identification of logical resources 

such as semaphores, locks or buffer pools. They can be modeled by declaring a logical 

resource, and where it is acquired and released. 

As a minimum input for performance analysis the annotated Smodel must include: 

 the usage of the system, defined by «GaAnalysisContexts» which define behaviour, 

with their «GaWorkloadEvents» and «PaRunTInstances»; 

 annotations for hostDemands of «PaSteps»;  

 deployment connecting «PaRunTInstances» to «SchedulableResources» and these to 

«GaExecHosts»;  

 modeling of those logical resources that are expected to affect performance. 

4. Intermediate Modeling Language: the Core Scenario Model 

The Core Scenario Model (CSM) extracts the behaviour and resource information from 

the Smodel (called the subset BRusage in Figure 3) using a metamodel shown (without 

attributes) in Figure 6; details are described in  [27] and its XML schema is available at 

 [31]. The metamodel is based closely on MARTE, with corresponding elements as shown 

in Table 2. 



 13

External
Operation

Join

CSM

Step
General

Resource
Scenario

Passive
Resource

Active
Resource

Processing
Resource

Path
Connection

Branch ForkMerge StartEnd

Resource
Acquire

Resource
Release

Workload

1..*

Sequence

Component

1
1..*

1..*

0..1

0..1

*

*

(m = 1, n = 1) (m = 1, n = 2..*) (m = 2..*, n = 1) (m = 1, n = 2..*) (m = 2..*, n = 1)

+host

(m = 1, n = 0) (m = 0, n = 1)

Open
Workload

Closed
Workload

Message

1..*

m

+s
ou

rc
e +target

n

Resource
Pass

*

CommStep

*

Logical
Resource

0..1

 
Figure 6. Simplified Metamodel of the Core Scenario Model 

 

Table 2. Correspondences between MARTE Stereotypes and CSM Elements 

(Note: (1) = subtype of «PaStep» in MARTE; (2) subtype of «Resource» in MARTE) 

MARTE CSM MARTE CSM 

«GaWorkloadEvent» Closed/OpenWorkload «PaResPass» (1) ResourcePass 

«GaScenario» Scenario «GaExecHost» (2) ProcessingResource 

«PaStep» Step «PaCommHost» (2) ProcessingResource 

«PaCommStep» (1) CommStep  «PaRunTInstance»(2) Component 

«GaResAcq» (1) ResourceAcquire «PaLogicalResource» (2) LogicalResource  

«GaResRel» (1) ResourceRelease   

  

The implicit sequence relationships in the Smodel map to explicit CSM PathConnectors 

(Start, Sequence, Branch, Merge, Fork, Join, End), called PCs here for brevity. 

Acquisition and release of process resources are implicit in MARTE and map to 

ResourceAcquire and ResourceRelease steps in CSM. 

Figure 7 illustrates the mapping of sequence relationships and resource operations, using 

the shorthand ra and rr for Resource Acquire and Resource Release steps. 
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Figure 7. An Interaction Diagram and the corresponding CSM (with subscenario loopBody) 

(Notes: «PaRunTI» means «PaRunTInstance». The CSM uses Roman font for Steps, 

bold arrows for Sequence PathConnectors, and italics for other PathConnectors. “ra/rr: 

Resource” specifies a ResourceAcquire/Release Step applied here to a named PaRunTI 

process resource). A forked branch that will not re-join is indicated with {noSync}  

 

Other scenario models lack the generality of CSM regarding resource modeling. For 

example Execution Graphs in  [34] indicate resource acquisition/release for processes and 

locks, but not for units of multiple resources like a pool of buffers. PCM  [8] requires that 

fork/join sections join all branches, and fork/join and branch/merge sections be fully 

nested. KLAPER  [12] has a more limited view of resources, considering that hardware 

and software resources offer services, which can be detailed in terms of behaviour. This 

represents process resources but not pure logical resources. 

Nested Subscenarios in MARTE and CSM 

MARTE can associate a subscenario with a «PaStep» in three ways: 

1. as a subscenario stereotyped «GaScenario» which refines the «PaStep»; the step 

is an abstraction for the subscenario; 

(a) ID (b) CSM 
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read1 «PaStep» 

read2 «PaStep» 

log «PaStep»{noSync} 

reply 
output «PaStep» 

«PaStep»

«PaStep»

«PaStep»

«PaStep» 

«PaStep» 

«PaRunTI» «PaRunTI» «PaRunTI» «PaRunTI» «PaRunTI» 
start 

«PaStep» 

rr: App 

end 

getData 

branch 

ra:App ra:Cache 

init 

rr: DB2 

read2 read1 

ra: DB2 

rr: DB1 

ra: DB1 

rr: DB1 

log 

ra: DB1

join 

start 

ra: Server 

request 

loopBody 

output 

end 

rr: Server 

merge 

readCache 

rr: Cache fork 

 end 
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2. as  a behaviour included in the «PaStep», defined by an attribute behavDemand, 

with a repetition count behavCount; 

3. as the behaviour of a Service invoked by the «PaStep» with a demand 

servDemand and a repetition count servCount. 

Normalized and Flattened CSM  

A normalized CSM has certain properties which make it easier to process further: 

 there should be a PC between every pair of Steps (including ResourceAcquire 

/Release/Pass Steps); 

 every primitive Step (which excludes ResourceAcquire/Release/Pass Steps and Steps 

with nested subscenarios) should have some non-zero execution demand and an 

associated Component to execute it; 

 every Component (essentially, a process) should have an associated host processor. 

A CSM which violates these properties can be normalized to satisfy them.  

One CSM may include several separate independent top-level Scenarios representing 

different externally available system operations, each with its own Workload to describe 

how it is driven. If a top-level Scenario is also used as a nested sub-scenario, then its 

Workload is ignored when it is nested. A top-level Scenario is flattened by recursively 

replacing its Steps containing nested subscenarios with instances of the subscenarios. 

5. Transformation from Smodel to Core Scenario Model (S2C) 

One Smodel scenario is transformed at a time, by identifying a scenario and following it, 

using the causal implications from the UML scenario. In an AD, causality is implied by 

ActivityEdges between Actions, in a SM by state transitions, but in an ID causality is 

more complex and is addressed in Section 5.1. The implemented transformations cover 

IDs, ADs and their associated DDs. Instead of a DD, a MARTE user can define 

deployments using special allocation stereotypes (see chapter 11 in  [26]). 

5.1. Causality and sequence in a UML ID 
In UML2, in Activity Diagrams and State Machine Diagrams the sequence of Steps is 

explicitly defined by transitions which establish causality. Interaction Diagrams however 

only define event traces which must be satisfied in some sense by the behaviour; there 
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may be events which are not shown in the ID. Several semantic interpretations of IDs are 

discussed in  [32], and this work uses the “UML2 interpretation” defined there. 

Transformation of an ID to a performance model treats the precedence relationships as 

causal, based on the time order which is given by their vertical position in the diagram. 

An ID is a list of interaction fragments (IFs) such as MessageEnds, CombinedFragments 

(CFs), ExecutionSpecifications, and OccurenceSpecifications. Fragment IFa is inferred 

as a causal predecessor of IFb in the following conditions:  

 if IFa immediately precedes IFb on the same lifeline;  

 or if IFa is the event of sending a message and IFb is the event of receiving the same 

message.  

An IF with no predecessor is a Start fragment; IFs with no successor are End fragments. 

Dubious Causality 

For a pair of IFs (IFa, IFb), if IFb is a CF with multiple operands it may not be possible 

to infer causality from its vertical position, and we say the causality is dubious. This is 

analyzed by the causality inference algorithm in Figure 8, by considering the first IFs 

within each operand of the CF. 

1. if CF has just one operand, or if all first IFs are on the same lifeline, then the causal predecessor IFa is 

the last IF before IFb (the CF) on that lifeline;  

2. else if there is only one “active” lifeline with an IF within at least one operand, IFa is the last IF before 

the CF, on that lifeline. A lifeline is termed “active” after receiving a message, and it becomes “inactive” 

after a blocking message send, or the end of an ExecutionInstance; 

3. else if CF is par or seq, IFa is taken arbitrarily to be the last IF before the CF, on those lifelines with an 

IF within at least one operand;  

4. else the causality is dubious, and IFa is taken arbitrarily to be the last IF on any lifeline with operand 

IFs, before the CF. 

Figure 8. Algorithm for establishing causality between interaction fragments in an ID 

 

Figure 9 illustrates dubious causality. The first and third lifelines are both active after the 

asynchronous message (equivalent to a fork in the flow). Before the alt CF in the ID, 

the previous IF is IFx, and this will be taken as the predecessor. However it is not clear 

how IFx causes IFy. IFy must be caused by means that are hidden in the diagram (such 

as by inspection of shared data set by the Printer). Dubious causality does not prevent 
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building  Pmodels, but raises a question about behaviour completeness in the generated 

Pmodels. 

 
Figure 9. Dubious causality for an alt CombinedFragment (CF) 

 

PathGraph for Navigation in IDs 

For the IDD2C transformation, the causal sequences in an ID are represented by a 

notional directed PathGraph, with a node (e.g., node a) for each interaction fragment IFa 

and a directed arc (a,b) if IFa is connected by a causal predecessor sequence to IFb. If 

IFa has multiple stereotypes which are subtypes of «PaStep», then it is treated as if it 

were a sequence of separate interaction fragments in this order: «PaCommStep», 

«PaResourceAcquire», «PaStep», «PaResourceRelease». (It is assumed that missing 

stereotypes have been inserted as described in Section 5.2). Interaction fragments within 

a combined fragment (CF) are treated separately, and each operand gives a separate 

PathGraph. A node with no predecessor is the Start node of a PathGraph, and a node with 

no successor is an End node.  If for node a, IFa is a «PaStep» with a subscenario, node a 

is linked to the PathGraph for the subscenario.  

Let inOrder(a) and outOrder(a)) be the number of arcs into and out of node a, 

respectively. An arc (a, b) may not have inOrder(a)>1 and outOrder(b)>1 at the same 

time. If this occurs, then the condition is enforced by replacing arc (a,b) by a dummy 

node a’ and single arcs (a,a’) and (a’,b). Each PathGraph generates a CSM Scenario.  

5.2. Scenario preprocessing exceptions and special cases 

Missing Information  

In practice users may forget to insert some annotations or attributes. Before performing 

the actual transformation, a robust transformation process should detect and report 

App PrintService Printer

alt

IFx

IFy

IFz

IFw
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missing information, but continue on as far as possible, and provide the richest possible 

diagnostics. Some missing MARTE stereotypes and attributes may simply be provided: 

 many attributes of MARTE stereotypes have default values which are used if no value 

is assigned; 

 the «PaStep» stereotype can be assigned to those entities that may normally support it, 

if it is not defined (e.g., Message, ExecutionSpecification and combined fragment 

operands in IDs, Actions in ADs}; 

 the «ExecHost» stereotype can be assigned to any NodeInstance or Node, and  

«CommHost» to any link in a DD.  

Additionally, at user’s discretion, some more aggressive fill-ins may also be desirable: 

 to interpret all behaviour diagrams as AnalysisContexts with Scenarios;  

 to supply a «GaWorkloadEvent» stereotype to a Scenario that lacks one, with 

attributes {pattern = closed (population = 1, thinkTime = (0.0, s))}. This defines an 

artificial workload that will at least provide a solvable model, which can be corrected 

later;  

 to supply a «PaRunTInstance» stereotype to any ID lifeline or AD partition that lacks 

one. The name attribute can be assigned from the lifeline/region, and an artificial host 

DefaultHost can be introduced as its deployment. We have found this artifice to be 

useful; DefaultHost has infinite multiplicity so it can host any number of 

«PaRunTInstances» without introducing artificial congestion in the resulting 

performance model. 

Nested Behaviour in a «PaStep»    

Besides a hostDemand indicating CPU execution demand, a Step has three other 

attributes which (if defined) indicate additional behaviour in the form of a nested 

Scenario. One is a direct reference to a nested Scenario by the association behaviour; the 

second is an invocation (n times) of a Scenario named by the attribute behavDemand with 

n given by attribute behavCount, the third is the invocation (n times) of an operation 

named by the attribute servDemand (which will normally in turn have a behaviour 

defined by a scenario in the Smodel), with n given by the attribute servCount. 
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Multiple resource demands in one «PaStep»    

If more than one of the attributes hostDemand, behaviour, behavDemand, and 

servDemand is defined, then a separate Step is created in the CSM for each of them (in 

arbitrary order). The Steps created for the nested scenarios for behavDemand and 

servDemand have rep set to the value (rep of the original «Step»)*(behavCount or 

servCount for the invoked behaviour). 

5.3. Transformations to CSM (IDD2C, ADD2C)   
The IDD2C and ADD2C transformations are implemented separately because the UML 

metamodel for interaction and activity diagrams are very different. However, the 

transformations follow the same high-level approach, which is described in this section. 

The transformation begins by creating a CSM ProcessingResource, Component or 

LogicalResource for each «GaExecHost», «SchedulableResource» or «PaLogical-

Resource» respectively, and associating the Components to ProcessingResources. Then 

the starting points of scenarios are identified as entities with a «WorkLoadEvent» 

stereotype which are also the start of a PathGraph in an ID, or a Start node of an AD. One 

UML model may contain both ADs and IDs. 

One scenario is transformed at a time. The behaviour is traced forwards along the 

PathGraph (in an ID) or following the ActivityEdges (in an AD), with PCs inferred from 

the UML presentation. For an AD the Start/End/Branch/Merge/Fork/Join PCs correspond 

identically, while for an ID they must be inferred. For an ID the Start is inserted before 

the first Smodel entity, the End is inserted after the last, Branch/Merge are implied by an 

opt or alt CF or by sending and receiving asynchronous messages, and Fork/Join are 

implied by a par CF. In a CF the operand(s) generate CSM Steps, with nested 

subscenarios for the operand behaviour. Nested subscenarios are inferred from a ref CF 

(in an ID) or a StructuredActivityNode (in an AD). 

«Steps» and «CommSteps» are translated to CSM Steps and CommSteps with the 

corresponding attributes, except where multiple CSM Steps are created as described 

above. Implicit resource acquisition and release of process resources (e.g. threads) is 

inferred wherever the behaviour crosses from a «Step» in one process to a «Step» in 

another (from one lifeline to another (for an ID), or from one ActivityPartition 

(swimlane) to another (for an AD). 
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Figure 10 shows the pseudocode for the IDD2C transformation algorithm. 

 

1. For each PathGraph create a CSM Scenario. The C(a) of its Start node a is a Start PCon. If IFa has 

a «GaWorkloadEvent» stereotype, then it is a top-level Scenario; 

2. Traverse the PathGraph and process its nodes; after processing node a, consider each successor 

node b; 

2.1. if IFb is of type «PaStep» or one of its subtypes as shown in Table 2, C(b) is the 

corresponding CSM type in the Table 2, with attributes copied from IFb (including any nested 

sub-scenario); 

2.2. if IFb is of type «PaCommStep» then C(b) is the following sequence: 

2.2.1. Step (for transmission overhead by the sending Component), with hostDemand 

commTxOvhd * msgSize; 

2.2.2. Seq, ResourceAcquire for «CommHost», Seq; 

2.2.3. Step (for communication link transmission) on component «CommHost», with 

attributes delay = blockT, hostDemand = msgSize/capacity, (msgSize from 

«CommStep», blockT (= link latency) and capacity from «CommHost»);  

2.2.4. Seq, ResourceRelease for «CommHost», Seq; 

2.2.5. Step (for receive overhead by the receiving Component), with hostDemand 

commRxOvhd * msgSize, where «CommHost» is the link between the sending and 

receiving «ExecHosts» in the deployment. There are two special cases: 

      (i) if (msgSize = 0 and blockT = 0), or if the hosts are the same, C(b) is null; 

      (ii) if msgSize = 0 and blockT > 0, only item 2.2.3 is created to show the latency; 

2.3. if IFb is an alt CF, C(b) is a Step with an associated subscenario with a Branch PCon 

attached to a Step for each operand, and a Merge. The CSM Step for each operand has the 

probability attribute of the operand «PaStep» and is associated to the subscenario for the 

operand; 

2.4. if IFb is a par CF, C(b) is a Step with an associated subscenario with a Fork PCon attached 

to a Step for each operand, and a Join connected to all those Steps which do not have the 

attribute noSync set true. The CSM Step for each operand is associated to the subscenario for 

the operand; 

3. Between C(a) and C(b): 

3.1. if C(a) ends with a PCon, nothing more is necessary; 

3.2. if outOrder(a)>1, then C(a) should be followed by a PCon of  type Fork (create if it does not 

exist already); 

3.3. elseif inOrder(b)>1, then C(a) should be followed by a PCon of  type Join (create if it does not 

exist already);  

3.4. else C(a) is followed by a Sequence PCon. 

   

 

Figure 10. IDD2C Transformation Algorithm 
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Figure 11 shows a screen shot of the generated CSM for the UML GetHomePage 

scenario given in Figure 4, with comments showing the transformation of CFs, and 

indicating six sub-scenarios for CF operands, which are not shown in detail. Notice the 

R_Acquire and R_Release Steps to acquire and release the process resources for the 

SchedulableResources, inferred from a message from one lifeline to another. 

 

Scenario: operand1_if_customer_is_logged_in 

 Scenario: operand2_else 

Scenario: operand1_first_promo 

 Scenario: operand1_log 

Scenario: operand3_get_Home_Images 

Scenario: operand2_ get_User_Images 

 {prob = 0.6} 

 {noSync = True} 

 from alt CF 

 {prob = 0.4}

 {prob = 0.2}

 from par CF 

 from opt CF 

Six sub-scenarios (not shown)

 Step with 
sub-scenario 

 

Figure 11. CSM for the GetHomePage Scenario, excluding resources.  

(The CSM on the left is a screenshot from the tool, which uses different presentation 

conventions from Figure 7. Arrows represent Sequence PCs except for those surrounding 

Branch/Merge/Fork/Join/Start/End PCs, which just indicate associations.) 
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6. CSM Analysis for Resource-holding and Component Interactions 

For an LQN Pmodel additional properties of the CSM are needed, which are described in 

this section. For other types of Pmodel these analyses are not required. 

6.1. Logical Resource Context of a Step    
To determine the holding time of a logical resource, the operations that are carried out 

during its holding times must be identified. This is done by first finding what resources 

are held in executing each Step (this is its resource context  [39]). Resource context 

inconsistencies, which may be logical errors in defining the resource use, are discussed 

below. 

The resource context R(S) of Step S in a CSM is an ordered set (a stack) of logical 

resources held during the execution of S, including blocked and held process threads and 

pure logical resources. For a context with n resources: 

R(S) = {(r1, m1), (r2, m2), ... (rn, mn)   }, where resource r1 is the first one acquired, rn is 

the last one acquired, and for resource ri, mi units are held at Step S. 

R is readily determined by traversing a CSM which has been normalized and flattened, 

adding/removing resources as they are acquired/released. At a Fork, the previous context 

is normally passed to all successors. However a special case has been provided in 

MARTE for a parallel subpath which has a resource like a lock or buffer explicitly passed 

into it: the first Step has a «PaResPassStep» stereotype, which leads to a ResourcePass 

entity in the CSM. The identified resource then enters the context only in the one 

subpath. In the special case of a parallel subpath resulting from an asynchronous 

message, only explicitly passed resources enter the context. 

Resource Context Inconsistencies  

Context inconsistency at a Merge. Before a Merge PC the contexts may be different, 

giving a resource context inconsistency. This can occur in a specification, but represents 

bad practice. For example, suppose a certain condition gives a branch path in which a 

buffer is obtained, and the same condition gives a later distinct branch path in which it is 

filled, used and released. If the buffer is accessed between these branches, there will be 

an error in the cases where it has not previously been obtained. Our solution is to abort 

the transformation and treat the inconsistency as a specification error. The Smodel can be 
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corrected by extending the alternative paths to cover both branches, or by obtaining the 

buffer just before using it. 

Resources in Parallel Sub-Paths. Parallel sub-paths inherit the resource context from 

before the fork. This creates consistency questions if a sub-path releases a resource; do 

the other sub-paths retain it, or not? If they also release it, are two units released? To 

resolve this question, one sub-path is chosen as the “owner” of the resource, and only this 

sub-path can release it (the other sub-paths however retain it in their contexts). Passing a 

resource to one sub-path explicitly designates its owner. 

Non-deterministic order of some resources at a Join: Resources obtained on different 

sub-paths are not ordered among themselves. When one of these resources is released, its 

holding time is arbitrarily determined to be nested (see below) unless the determined part 

of the resource order contradicts it. 

Non-determinism of resource context due to nested scenarios:  A sub-scenario that is 

nested in a Step can modify the resource context due to probabilistic behaviour in the 

sub-scenario. Thus it is preferred that a nested Scenario should release any logical 

resources that it acquires, so it ends with the same resource context that it starts with. 

Without this “well-structured resource usage” the transformation is aborted. 

6.2. Nesting of Holding Times and Ordered Use of Resources    
Whenever resources are released in the reverse order to which they were acquired, their 

holding times are nested (each resource holding time is contained within the holding 

times of resources acquired earlier and released later). Full nesting also has a global 

ordering of resources that is respected by all resource acquisitions, and guarantees 

freedom from resource deadlock. Thus, full nesting may be regarded as a “well-

structured” resource discipline, although it is often not the case in correct software. For 

example, when a buffer manager returns a buffer, the holding time of the buffer is not 

nested in the holding time of the manager process.  

Full nesting also corresponds to layering of resource queues in LQN. However, even 

without it, a correct LQN model can be constructed and solved. The algorithm for 

generating LQN models detects full nesting as a standard simple case, and accommodates 

exceptions either as “second phases” of a service time which gives analytical solutions 
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 [9], or by using a special resource-token task (which requires simulation for solving the 

model). 

6.3. Discovering Calls between Components 
Wherever the CSM makes a transition between Components, there is implicitly a 

message passed (there may or may not be an explicit message description attached to a 

CommStep). An important feature of LQN is its ability to estimate the performance effect 

of blocking calls, in which the caller waits for a reply. A blocking call/reply pair of 

messages is identified where: 

 the message is explicitly identified by attributes in the CSM; 

 the scenario transfers from one Component to another, with a given prior R(S), and 

later returns to the first Component, with the identical R(S), and there is no parallel 

subpath between these points defining non-zero execution by the sending Component. 

An advanced LQN feature that arises in real software is a forwarded request, in which a 

sequence of messages traverses several tasks, ending with a reply back to the originating 

task, again with no parallel subpath defining non-zero execution by the sending 

Component.  

Messages are thus categorized as part of blocking call/replies or of forwarding chains, or 

as asynchronous (the remainder). 

7. Transformation from CSM to LQN (C2LQN) 

The types of Pmodels used involve different approximations to the behaviour and to 

contention management, which should be considered by the user but are outside the 

present scope. The viewpoint of PUMA is that a user should be free to use the 

performance formalism of their choice, perhaps the one they are most used to, or with 

available tooling. This paper focuses on transformations from CSM to two Pmodels: 

Layered Queueing Networks (LQN) presented in this section and Generalized Stochastic 

Petri Nets (GSPNs) in Section 8. These two PModels differ greatly in the way they model 

resources and how the resources are used by the behaviour, so each section concentrates 

on the nature of the challenges that had to be addressed for the particular transformation.  
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Whereas the CSM is a kind of projection of the Smodel extended with MARTE 

annotations, the Pmodel is formulated in different terms altogether (a large semantic gap). 

In particular, resources, which are a small part of the Smodel, are central to the Pmodel.  

7.1. LQN Pmodel and Metamodel  

The LQN model  [9] is a form of Extended QN particularly designed to represent software 

systems. A simplified LQN metamodel is shown in Figure 12, and the concepts are 

illustrated by the example in Figure 13 below. Software resources (e.g. process thread 

pools) are represented as Tasks (in the graphical notation, the bold rectangles labeled by 

the thread pool size) each providing a set of operations called Entries (shown as attached 

rectangles). Each task has a host Processor (shown as an oval). The detailed execution of 

an entry is described by Activities (a graph of small rectangles inside the task), with the 

same precedence relationships as CSM. For each entry there is a firstActivity to begin the 

execution and a replyFwdActivity to send a reply to the caller, or to forward the request to 

another entry.  An  Activity  has execution  attributes  similar to  CSM  Steps:  processing  

 
Figure 12. Simplified LQN metamodel 
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demand, loop repetition, branching probability, and calls for other operations. Calls are 

shown as arrows from an activity to an entry, labeled with the mean number of requests. 

A Call may be blocking (the caller waits for a reply, indicated by a solid arrowhead), 

asynchronous (no reply) or forwarding (after providing an operation, the receiver 

forwards the request to another task entry).  An operation may be executed in two phases, 

with the second phase following the reply.  

Service requests may be produce a chain of tasks waiting for replies; this chain is called 

resource context of an operation, and the operation duration is part of the service time of 

each blocked task in the calling chain. Pure logical resources are also modeled as tasks. 

An LQN model can be solved either with the numerical solver LQNS  [9] or by a 

simulator. 

7.2. C2LQN Transformation Details    

The implemented CSM-to-LQN transformation begins by generating a LQN Task or 

Host for each CSM Component or ProcessingResource, and a UserTask for each 

Workload of each top-level scenario, with (for closed Workloads) the given population 

and thinkTime. For open Workloads the UserTask has an arrival rate, an infinite 

population and zero thinkTime. 

The scenarios are normalized as described in Sec 4.1, and flattened. In  [43] the concept of 

subscenario was enlarged to include aspects, defined as a kind of parameterized 

subscenario with roles and RoleBindings. Aspect subscenarios are bound into the CSM 

using the approach of  [43], before flattening, and then treated as normal subscenarios.  

CSM cycles constructed with Branch/Merge are reduced to subscenarios nested in a 

repeated Step. This is always possible if the loops are structured (that is, fully nested 

within each other, as provided by structured programming languages). Structured loops 

that start with a Merge and end at a Branch back to the Merge are found by inspection 

and reduced, until no structured loop can be found; if there is still a cycle, an LQN cannot 

be produced. 

LQN PModel Construction 

Starting from the CSM top-level Scenario Start points, and from the LQN User tasks, for 

each inferred message that is not a reply there is a Call created to a target entry (call it 

entry E) created in the task created from target Component of the message (call it task T). 
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The Call frequency is the product of the repetitions attribute of the last Step before the 

call, and the probability attribute of the first Step after. If the Call is in a forwarding chain 

its forwarding probability is set to unity. From the first Step after the message, the first 

Activity is created in the entry E.  

Subsequent Steps and PCs (until the next message) generate activity graph entities in the 

task T which mirror one-to-one the CSM entities. When a message is detected, an 

Activity A is created in task T to be its sender, and (if the message is not asynchronous) 

the traversal of the CSM proceeds to the next Component; eventually it will return with a 

reply message and further LQN additions will continue from Activity A. If the message is 

from A is asynchronous, there is a fork before A and one subpath continues in task T, 

while the other subpath proceeds to the next Component. 

7.3. LQN Pmodel as Assembly of Multiple Scenarios 

Figure 13 shows the LQN model obtained by applying the algorithm to the 

GetHomePage scenario in Figure 4. An LQN task is generated for each concurrent 

component corresponding to the lifeline roles stereotyped «PaRunTInstance». Note that 

four LQN tasks in Figure 13 correspond to the lifeline roles from Figure 4, while the fifth 

LQN task, PromoProc, corresponds to a lifeline role inside the two ref CFs, Promotion 

1 and 2. Each task has one or more entries and for each entry, the first activity is shown 

within the entry rectangle. The graph of additional activities (if any) is shown in a shaded 

rectangle attached to the task.  

Real systems include several scenarios for different responses, modeled in separate 

behaviour diagrams, and they are converted separately. TPC-W for example defines 14 

scenarios, with a fraction of requests being directed to each one  [37]. These scenarios 

share common resources and may have a performance impact on each other. To cover the 

usage profile, the Pmodels for all the scenarios should be combined into a single Pmodel. 

In LQN for a closed Workload, the UserTasks can be combined together, using the 

request fractions to derive a weighted average thinkTime and the probability of 

requesting each scenario; then the LQN models found separately are attached to these 

requests. Each task collects together its entries that were found from the separate 

scenarios.  
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Figure 13. LQN model for the GetHomePage scenario   

 

This approach was used to model 10 of the 14 scenarios in TPC-W, with the same 

software components and deployment as shown in Fig 5, giving the LQN Pmodel shown 

in Figure 14 in a simplified form without parameters and processors. The LoadGenerator 

task chooses the scenario in the proportions defined in  [37], and drives the Browser task 

(called here EB) with an entry corresponding to each of the 10 scenarios. It would be a 

long and error-prone process to produce such a large model manually.  

 

Figure 14. The LQN model created by merging sub-models for ten TPC-W scenario 
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To provide an illustration of the end-to-end application of a Pmodel, experiments were 

performed on the LQN shown in Figure 14 for different numbers of users (Nusers from 1 

to 2000). The LQN solver solves this model in less than one second. Some model results 

are shown in Figure 15. The first case with single processors, single-threaded tasks, an 

external user delay (think time) of 7 s, and up to 2000 users gives the curves for high 

response times and low throughputs in the two graphs. Examination showed that 

WebServer saturation limited the throughput to about 23 responses/sec and a capacity of 

about 30 users (for the desired 1 s mean response time), which was unsatisfactory. An 

improved “base” case was defined with 10 WebServer threads, 2 DB threads and 2 DB 

processors, giving the other curves (lower response time, higher throughputs, and a 

capacity of about 1200 users). The additional concurrency gave a satisfactory solution.  

A deeper use of the model is to evaluate design changes such as execution in parallel, 

replication, modified concurrency, and reduced demands and delays. The results evaluate 

the potential of these changes, which can then be mapped to possible software solutions 

 [34] [44]. The choice of the greatest performance improvement for the smallest cost or 

effort is finally made by the designer. 
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Figure 15. Results for the “preliminary case” with limited concurrency, and the improved “base case”  

8. Transformation from CSM to Stochastic Petri Nets (C2PN) 

This section presents the transformation from CSM to Stochastic Petri nets, and 

illustrates it with an example of bioinformatics workflow model.  
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8.1. Transformation approach 

Petri net models can represent complex logic, which is impossible in queueing models. 

They represent system state by tokens in places, and model behaviour by transitions 

which fire and move tokens from place to place. Time delays are modeled in Generalized 

Stochastic Petri Nets (GSPNs)  [46] by stochastic firing delays. An algorithm has been 

created for Labeled GSPNs in which subnets are composed based on labels attached to  

places and transitions  [3] [4] [23]. The GSPN model must be solved by generating its state 

space, and its main disadvantage is state explosion in the solver. Petri net tools can also 

carry a variety of correctness analysis, which are beyond the scope of this work.  

Patterns for Translation 

The algorithm is based on subnets, illustrated in Figure 16, for translating a Step. Places 

and transitions are labeled as “patternName|CSMName”. Part (a) shows the subnet for a 

simple Step, part (b) includes a probability of execution with the additional transition t1, 

(c) shows a preceding multiway branch, and (d) shows repetition. 

 

Figure 16. LGSPN patterns for a Step 

 

Figure 17 shows sequential composition for two Steps s1 and s2. Part (a) is the CSM, (b) 

the subnets for the two Steps and the Sequence PathConnector, and (c) the composition in 

LGSPN terms, based on labels t1|s1 and p2|s2. The patterns for the Branch, Merge, Fork 

and Join are similar. A Start PathConnector for a closed workload gives a pattern that 

cycles tokens from the end of a response back to the beginning, after the external delay. 

Open workloads give infinite state spaces and are not modeled. 
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(c)

p1|s1

t1|s1

p2|s2

t2|s2

p1|s2

t1|s1

Step::s1

Step::s2

SEQUENCE

(a)

(b)

PNs1 PNseq PNs2
{s1} {s2}

p1|s1

t1|s1

p1|s2

t1|s2

Step::s1

Step::s2

 
Figure 17. LGSPN patterns for Sequence, and for composing it 

 

Each resource subnet has a place with tokens equal to its multiplicity, and transitions for 

each requester to allocate and de-allocate tokens. It is composed with patterns 

representing acquisition and release. Processor resources are handled in the same way, by 

introducing acquisition and release transitions before and after each Step. 

The translation algorithm first creates a LGSPN pattern subnet for every CSM element. 

Then it composes Steps with their host resources, and resources with acquisition/release. 

Finally it composes subnets for Start, End and Sequence, followed by other 

PathConnectors. 

8.2. Workflow Case Study    

Petri Nets can capture well workflow models, which can fork/join or branch/merge 

concurrent branches at will. We have chosen as an example a real workflow model from 

bioinformatics, found at the archive web site myExperiment  [12]. The workflow 

represents the computation of “Get Pathway-Genes by Entrez gene id” (GPGE). Given a 

specific “entrez” gene id, GPGE returns the set of pathways that this gene participates in, 

a pathway map, and the genes associated with each pathway.  

The workflow model is represented as a UML activity diagram with MARTE annotations 

in Figure 18. The activities are stereotyped as PaStep; the ones with white background 

are executed by the Taverna workflow engine at the user’s site, while five activities 

shown in gray are executed by external web services. These five PaSteps were identified 

as external operations with the attribute extOpDemand (with a count of 1, not shown).  
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{contextParams = ($ws_convert: NFP_Duration, $ws_getpathways: NFP_Duration, 
$ws_getgenes: NFP_Duration, $ws_color: NFP_Duration, $ws_getPathway: NFP_Duration}

«GaWorkloadEvent» {pattern = ”closed (population=1, extDelay=(0.0, s))”} 

   

The stereotype «GaAnalysisContext» identifies the AD as a subject for performance 

analysis and its contextParams attribute declares five parameters which correspond to the 

external services delays. A closed workload with a population of 1 and zero think time is 

associated to the Start node corresponds to repeated executions of the workflow, one at a 

time. The transformation to CSM and then to GSPN had the results shown in Figures 19 

and 20. The sequences of steps in the workflow can easily be traced in each of these 

models. 

The GSPN model was validated against measurements, in order to see how effective the 

GSPN model is in predicting the end-to-end delay. The workflow computation was 

executed and measured, with some tens of executions at each of five times of day, which 

were labeled T1 to T5. The average delay found for each step in the workflow is shown 

Figure 18. Annotated Activity Diagram for the GPGE Workflow 
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in Table 3. Clearly, the mean values varied greatly with the time of day. The delays for 

all the workflow steps are given in Table 3. 

Table 3. Average workflow operation times and end-to-end delays at five different times of day   

Web service or local activity T1 T2 T3 T4 T5 

add ncbi to string  111 1700 42 96 75 

convertToKEGGid  1.000 1400 982 1100 1300 
splitOnTab  14 2000 1 15 21 
splitAndSendOnlyKEGGgeneID 74 116 50 94 48 
splitOnNewLine 33 1.900 1 35 3 

lister 72 84 52 78 60 
get_pathways_by_genes 997 1000 897 1000 931 
get_genes_by_path_way 1100 1000 918 1100 946 

separators_value 21 1900 1 7 2 
color_pathway_by_objects 1800 1700 1700 1800 1500 
getPathwayDescription 972 983 867 923 894 
Clean_List_of_Strings_by_separator 520 450 108 340 92 
Get_image_from_URL 1700 1800 2100 1400 1700 
End-to-end workflow delay 7800 11600 8800 7400 9900 
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Figure 20. CSM Model of the GPGE Workflow  
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Figure 20. GSPN Pmodel for the GPGE Workflow 

 

The measured step delays were inserted in the GSPN model as the average delay to fire 

the transitions corresponding to the external services. The model was solved for each of 

the five times-of-day. The results in Table 4 show that the error was always less than 

10%. Given that the external web services used had other unknown workloads, that we 

knew only their average delay but not the distribution and that we approximated each 

delay with exponentially distributed transitions in GSPN, the results are reasonably good. 



 35

 

Table 4 Prediction Error of the GSPN Model 

 Response Time (sec) 

Real system (average) 7.8 11.6 8.8 7.4 9.9 

GSPN model (prediction) 8.16 10.98 8.14 7.22 9.12 

% prediction error 4.41% -5.56% -8.11% -2.49% -8.55% 

9. Conclusions  

The PUMA transformations have successfully automated the creation of the types of 

Pmodel described here (QN, LQN, or GSPN) from a UML Smodel and the information in 

its MARTE annotations, for systems with statistical workloads and performance 

measures. They can do what a performance specialist would do with the same 

information; user judgment is still required in determining the annotations and the choice 

of Pmodel. The transformations can claim a useful level of “completeness” in covering 

the problem of building a Pmodel because:  

 the CSM captures and PUMA uses all the information in the Smodel and the 

annotations which is relevant to Pmodels for these systems (with a few exceptions 

noted below), and  

 the transformations then extract from the CSM all the properties that can be applied in 

building the target Pmodel.  

Some useful properties in the MARTE annotations which are not yet included in CSM 

(such as Step priority and arrival patterns other than open and closed), however 

extensions to CSM are planned to cover these and pose no difficulty. Many other 

properties in MARTE are less useful for the class of systems with stochastic timing 

properties that we model; such examples are discrete-time clocked behavior, time-

bounded non-deterministic hostDemands, host clock overhead, Step hostDemand defined 

as an operation count and property “isAtomic”, and some detailed properties for 

describing operating systems and systems on chip. These are not planned for inclusion. 

Performance modeling transformations like PUMA are unusual in that they transform 

between quite different semantic domains, with different levels of abstraction. The 

differences have been described in some detail in the context of each stage of the 

transformations. A second aspect which is not common in software transformation is the 
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need to analyze extensive CSM properties to identify types of messaging interactions 

between components, and relationships between resource holding times (the analysis in 

Section 6). 

The transformation scalability is good. The complexity of the transformations is 

dominated by the cost of traversing the Smodel and the CSM, which is linear in the 

number N of CSM Steps in a single top-level scenario (or the number of annotated 

elements in the Smodel scenario, which is roughly proportional to N). So the complexity 

of S2C transformations is O(PN), where P is the number of scenarios in the usage profile 

and N the number of steps in a scenario, which means it is linear in the number of Steps 

in the Smodel.  

The analysis of the CSM described in Section 6, which is needed for creating the LQN 

Pmodel, flags some cases that cannot be handled. These are not shortcomings of PUMA, 

but warnings of possible problems in the Smodel. One of these, non-deterministic 

resource contexts, is due to a part of a scenario where some resource may or may not be 

allocated to the process, depending on its history, and may lead to resource allocation 

errors or deadlocks. A second case, dubious causality, is due to a limitation in UML in 

identifying causality in alt CFs. The third case, called unstructured loops, is simply due 

to a limitation of LQN in modeling looping behaviour; some other Pmodel can be applied 

instead. However unstructured loops are essentially the “goto” behaviour that was 

eliminated by structured programming long ago, and perhaps they should be eliminated 

in these cases too. 

The key to real progress in software performance engineering lies in the more intelligent 

use of performance models  [34], by themselves and in combination with measurements 

 [42].  Practical automation of performance model-building as achieved by PUMA is an 

important step towards this goal. 
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