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Abstract The importance of assessing software non-functional properties
(NFP) beside the functional ones is well accepted in the software engineering
community. In particular, dependability is a NFP that should be assessed
early in the software life-cycle by evaluating the system behaviour under
different fault assumptions. Dependability-specific modeling and analysis
techniques include for example Failure Mode and Effect Analysis for quali-
tative evaluation, stochastic Petri nets for quantitative evaluation, and fault
trees for both forms of evaluation. Unified Modeling Language (UML) may
be specialized for different domains by using the profile mechanism. For ex-
ample, the MARTE profile extends UML with concepts for modeling and
quantitative analysis of real-time and embedded systems (more specifically,
for schedulability and performance analysis). This paper proposes to add to
MARTE a profile for dependability analysis and modeling (DAM). A case
study of an intrusion-tolerant message service will offer insight on how the
MARTE-DAM profile can be used to derive a stochastic Petri net model for
performance and dependability assessment.

1 Introduction

The dependability of a system, as defined in Laprie et al. [7] is the ability
to avoid failures that are more frequent and more severe than acceptable.
The dependability encompasses a set of non-functional properties, called
attributes of dependability, such as: a) availability, the readiness for correct
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service; b) reliability, the continuity of correct service; c) safety, the absence
of catastrophic consequences on the users and environment; d) maintain-
ability, the ability to undergo modifications and repairs.

The importance of assessing software non-functional properties (such as
dependability, performance, security) throughout the software development
process is well accepted in the software engineering community. In partic-
ular, dependability-specific modeling and analysis techniques include: Fail-
ure Mode and Effect Analysis (FMEA) for qualitative evaluation, stochastic
Petri nets for quantitative evaluation, and fault trees for both. A general
approach for analyzing a certain NFP of a software model expressed in UML
is to: a) annotate the UML specification with information needed for that
particular analysis, b) extract an analysis-domain model from the anno-
tated UML model, and c) determine the properties by using tools from that
domain.

Although there are several proposals in literature for extending UML
models with dependability annotations, as reviewed in Section 3 of this pa-
per, each covers only a subset of dependability aspects. The terminology and
concepts used in different publications are sometimes inconsistent with each
other, as there was no attempt to define a unified domain model for depend-
ability analysis. Compared with the performance and schedulability analysis
domains, which are supported by standard UML profiles such as “Schedula-
bility, Performance and Time Specification” (SPT) [37] and “Modeling and
Analysis of Real-Time Embedded Systems” (MARTE) [38], there is no simi-
lar standard profile for the dependability analysis of UML-based models yet.
There is another OMG standard specifying UML extensions for a variety of
non-functional properties, named the “Profile for Modeling Quality of Ser-
vice and Fault Tolerance Characteristics and Mechanisms” (QoS&FT) [39].
QoS&FT provides a flexible but heavy-weight mechanism to define prop-
erties such as performance, security or reliability by means of specific QoS
catalogs. The annotation mechanism is supported by a two-step process,
which implies catalog binding and either the creation of extra objects just
for annotation purposes, or the specification of long OCL expressions.

The main objective of this paper is to propose a UML profile for quanti-
tative dependability analysis of software systems modeled with UML, with
particular focus on the following facets of dependability: reliability, avail-
ability, maintainability and safety. One of our own requirements for defining
such a profile was to reuse the best practices reported in literature, and to
unify the terminology and concepts for different dependability aspects under
a common dependability domain model (which will be presented in Section
2). According to [44], the UML profile mechanism can be used to define
expressive domain-specific modeling languages (DSMLs). This means that
UML extended with the dependability profile proposed in this paper be-
comes, in fact, a domain specific modeling language for the dependability
analysis domain.

We realized that the recently adopted MARTE profile [38] contains many
features that would be also useful for the dependability profile, so we de-
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cided to make the latter compliant with the former. More specifically, we
used MARTE’s Non-Functional Properties (NFP) framework and its cor-
responding Value Specification Language (VSL) for defining dependability-
specific data types necessary for the profile definition, and specialized gen-
eral concepts from MARTE’s generic quantitative analysis model (GQAM)
for the dependability analysis domain. We adopted a systematic approach
for the definition of the dependability profile according to the recommen-
dations from Selic [44] (see also Lagarde et al. [29]). First we defined the
domain model for dependability analysis and modeling, which covers differ-
ent dependability aspects, and reuses and unifies the concepts from previ-
ous work. Secondly we mapped the domain concepts to elements of a UML
profile. The new proposed stereotypes either extend UML meta-classes or
specialize MARTE stereotypes, while the stereotype attribute definitions
use dependability-specific types defined in the DAM library. The paper ap-
plies the proposed dependability profile to a Message Redundancy Service
(MRS) case study and gives insight on how to derive from the annotated
UML model a Deterministic and Stochastic Petri Net (DSPN) [4] model,
which can be used for performance and dependability analysis and assess-
ment.

This paper is an extended version of [12], offering an in-depth descrip-
tion of the dependability domain model and of the DAM profile, as well
as the derivation of the latter from the former. Moreover, this paper in-
troduces a new case study, MRS, derives a dependability model from its
DAM-annotated design, then performs the quantitative dependability anal-
ysis and assessment of the MRS based on the derived model.

The paper is organized as follows: the next subsection presents briefly
the background of the paper, MARTE and stochastic Petri nets. Section 2
introduces the approach we followed for the dependability profile defini-
tion and Section 3 gives a survey of related work from literature. Section 4
presents the dependability domain model and Section 5 describes the pro-
posed DAM profile and library. Section 6 gives an example of profile ap-
plication to a Message Redundancy Service (MRS); Section 7 describes the
quantitative analysis and assessment of the MRS case study with the help
of a DSPN model, and Section 8 presents the conclusions.

1.1 Background

We briefly introduce the background for this paper: the MARTE profile,
which we propose to extend for dependability analysis, and the stochastic
Petri nets formalism, which is used in Section 7 as the dependability-specific
technique for the analysis and assessment of the MRS case study.

MARTE profile. The “UML Profile for Modeling and Analysis of Real-
Time and Embedded systems” [38] is a recently adopted standard profile
that specializes UML by adding domain-specific concepts for modeling and
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analysis of real-time and embedded systems. MARTE extends UML in a
lightweight fashion, i.e. through the use of stereotypes, tagged-values and
constraints. Two MARTE features are important for this paper. The first
is that MARTE enables the specification of quantitative and qualitative
nonfunctional properties (NFP) in UML models through its Value Specifica-
tion Language (VSL). VSL allows developers to attach annotations to UML
model elements, by providing the ability to express basic types, data types,
values (such as time and composite values), as well as variables, constants
and expressions. The second important feature is that MARTE provides a
general analysis framework called the General Quantitative Analysis Model
(GQAM) sub-profile. Although analysis domains have different terminology,
concepts, and semantics, they also share some foundation concepts which
are expressed in GQAM. The intent is to specialize GQAM for different kind
of quantitative analyses. However, MARTE addresses concretely only the
schedulability and performance analysis through two sub-profiles, SAM and
PAM, that are specializing GQAM. In this work we propose the sub-profile
DAM that specializes GQAM for dependability analysis.

Stochastic Petri Nets. Deterministic and Stochastic Petri Nets (DSPN)
which are used in this paper as a formal dependability model are an ex-
tended version of a well-known class of stochastic Petri nets named Gen-
eralized Stochastic Petri Nets (GSPN) [3]. GSPNs are Petri nets with pri-
ority in which two types of transitions are distinguished: immediate (that
fire in zero time) and timed (that fire with a delay that is an exponen-
tially distributed random variable). A GSPN system is a 8-tuple S =
(P, T,Π, I, O,H, W,M0), where P is the set of places, T is the set of im-
mediate and exponential transitions, P ∩ T = ∅; Π : T → IN is the prior-
ity function that maps transitions onto natural numbers representing their
priority level (by default timed transitions have priority equal to zero);
I, O, H : P × T → IN are the input, output, inhibition functions, respec-
tively, that assign to each arc a multiplicity; W : T → IR+ is a function
that defines the rate of the exponential distribution for timed transitions
and the weight for immediate transitions. Transition weights are used to
solve probabilistically the conflicts among immediate transitions with the
same priority. Finally, M0 : P → IN is the initial marking function. DSPN
is an extended version of GSPN, where timed transitions can be either de-
terministic (i.e., characterized by a constant firing delay), or exponential.
DSPN is a well-suited formalism for the analysis of systems in which events
occur either after a constant duration (like time-outs) or random durations,
like in the MRS case study.

2 Approach Overview

In this section, we introduce the process followed to define the proposed pro-
file. The goal of the process, shown in Figure 1, was to produce a technically
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Fig. 1 Approach for Profile definition

correct high-quality UML profile that covers the necessary concepts accord-
ing to the best practices reported in literature. The steps of the process are
described below.

Literature Review The existing standard UML profiles for the analysis of
non-functional properties of software systems have been analyzed, in par-
ticular SPT [37], QoS& FT [39] and MARTE [38]. None of them provides a
comprehensive support for dependability analysis, especially from a quan-
titative point of view. We investigated the literature on dependability main
concepts and taxonomy (e.g., Avizienis et al. [7], Leveson [30], Lyu [31,
32]) as well as on standard methods used for the quantitative assessment
of dependability (e.g., [15,16]). We also surveyed the works from the liter-
ature proposing dependability modeling and analysis of UML system spec-
ifications (about twenty papers). The output of this preliminary step is a
checklist of information requirements that a UML profile for dependability
analysis and modeling should satisfy, reported in detail in [11].

Definition of DAM Domain Model. We defined a DAM domain model to
represent the main dependability concepts from the literature. Its construc-
tion required several refinement steps to consider all the surveyed works.
The final domain model is described in Section 4.

Completeness Assessment of the DAM Domain Model. We verified whether
each requirement of the checklist has been included in the DAM domain
model. The verification task has been a manual process. If we found that a
requirement was not included, we repeated the refinement step.

Design of the DAM Profile. The DAM profile was defined by mapping
the concepts from the DAM domain model to UML and MARTE. Using
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the DAM domain model we designed: a) the DAM extensions (stereotypes
and tags), and b) the DAM library containing dependability specific types.
The DAM library has been defined by importing the MARTE library and
consists of basic and complex dependability types. We followed an iterative
process for the profile definition, in which each domain class was examined,
together with its attributes, associations and constraints, to identify the
most suitable UML base concepts for it, as suggested in [44]. The objective
was to introduce a set of stereotypes small yet expressive, that can be easily
used by the software analyst. We then used guidelines from [29] to select the
subset of the domain classes that eventually were mapped to stereotypes.
Moreover, several patterns proposed in [29] were applied (e.g., the reference
association pattern), that enable the creation of a profile from the domain
model while keeping it consistent with the UML meta-model. Finally, to
keep track of the mapping between the domain model and the DAM profile,
we adopted the best practice from MARTE to name each introduced ex-
tension with the name of the mapped domain class prefixed by Da, namely
Dependability Analysis.

DAM Profile Assessment. We verified manually whether 1) the require-
ments from the checklist are satisfied, and 2) the extensions proposed by
each surveyed work on dependability analysis and modeling of UML-based
systems have been mapped to DAM extensions. If either a requirement was
not met or an extension was not mapped to a DAM extension, we went
back to the previous step in order to refine it. This activity enabled both a
completeness and a consistency checking of dependability extensions found
in the different surveyed works from literature.

3 Literature Review

We have selected the literature on dependability concepts and taxonomy,
focusing on the following facets of dependability: reliability, availability,
maintainability and safety. In particular, for the definition of the firsts three
concepts, we have used as references the papers [7,31,32], which precisely
provides the terminology according to a component-based view of a software
system. The Leveson book [30] has been used, instead, for the definition
of safety related concepts. The concepts have been collected in a draft of
information requirements checklist for the DAM profile (Table 1).

Table 1: Information requirement checklist

ID Requirement Description

R1 Identification of the dependability analysis and modeling context: reli-
ability, availability, maintainability or safety.

R2 Specification of dependability requirements in terms of upper/lower
bounds.

R3 Specification of dependability metrics to be estimated and properties
to be verified (to assess R2).

Continued on next page
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Table 1 – continued from previous page

ID Requirement Description

R4 Characterization of threats (fault, error, failure, hazard, accident) that
may affect both hw/sw resources and their relationships (fault-error-
failure chain, error propagation, hazard-accident).

R5 (For repairable systems) Characterization of repair/recovery processes
that remove basic or derived threats from the system.

R6 Specification of incorrect behaviour of the system affected by threats
as well as the recovery actions that restore the system state.

R7 (For fault tolerant (FT) systems) Specification of hw/sw redundant
structures.

We have surveyed the existing works from literature providing support
for dependability analysis of UML-based designs. In particular, we have
selected those works that: 1) address one or more of the considered depend-
ability facets, 2) focus on quantitative analysis, through metrics estimation,
and, possibly, 3) propose transformation techniques from UML-based design
to dependability formal models. The survey from this section focuses on the
works selected according to the above criteria. (A more detailed survey can
be found in [11]). The considered works have provided further inputs for
the refinement of the checklist in Table 1. In the following, we pinpoint the
requirements from the checklist addressed by each work.

Pataricza [41] extends the General Resource Modeling package of the
SPT profile with the notion of faults and errors to support the analysis of
the effect of local faults to the system dependability. The work includes per-
manent and transient faults in the resources and uses error propagation to
estimate which fault may lead to a failure (R4). Fault injection behavioural
models are also proposed to represent faults as special virtual clients; the
effect of their request causes a change of state in the system (R6).

Addouche et al. [1,2] define a profile for dependability analysis of real-
time systems compliant with the SPT resource modeling. The input param-
eters of system resources, i.e., reliability and maintainability, are specified
as tags (R1). The UML extensions are used to derive probabilistic timed
automata for the verification of dependability properties via temporal logic
formulas (R3). The static model of the system is enriched with new stereo-
typed classes associated with resources to specify state-based conditional
failures (R4) (but has the disadvantage that new classes are introduced in
the system model for dependability analysis purposes).

Mustafiz et al. [36] extend UML use cases to model all possible ex-
ceptional situations that can interrupt the system normal behaviour (R4).
Use cases are mapped into a kind of probabilistic state-charts to derive a
Markov chain for the quantitative assessment of safety and reliability (R1),
i.e., probability of system success. Their state-charts introduce a probability
annotation in the transitions that may lead the system to success or failure
states (R6).

Bernardi et al. [8,9] propose a set of UML Class Diagrams for collecting
dependability and real-time requirements and properties of automated em-
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bedded systems with the use of COTS fault-tolerance mechanisms (R2-4).
The approach was conceived within the TIRAN and DepAuDE projects1,
and provides support for a semi-automatic derivation of dependability anal-
ysis models, such as stochastic Petri nets and temporal logic.

In [10] a method is proposed to assess the quality of service of fault
tolerant (FT) distributed systems by deriving performability models from
UML+SPT models. State-machines are used to model faults behaviour
(R4).

The most comprehensive approach so far for reliability and availability
analysis (R1) of UML specifications has been proposed in [14,34]. A profile
for annotating software dependability properties compliant with the taxon-
omy and basic concepts from [7] is proposed (R3). A model transformation
process derives timed Petri net models via an intermediate model from the
annotated UML models. The approach supports the specification of error
propagation between components, as well as independent and dependent
failures (R4). In particular, it is possible to discriminate between normal
and failure states and events (R6), and to assign common failure mode
occurrence tags to redundant structures (R7). The main drawback of this
work is the introduction of unnecessary redundant information in the UML
model, as sometimes the joint use of more than one stereotype is needed.

Dal Cin [18] proposes a UML profile for specifying dependability mech-
anisms, aimed at supporting the quantitative evaluation of the effectiveness
of a fault tolerance strategy. The approach provides support for captur-
ing reliability and availability requirements of such mechanisms (R1-2).
However, the profile lacks support for modeling the interactions between
dependability mechanisms and system components.

Pai and Dugan [40] present a method to derive dynamic fault trees from
UML system models. The method supports the modeling and analysis of
sequence error propagations that lead to dependent failures, reconfiguration
activities and redundancies (R4-5,R7).

The papers [19,17,23,24] address specifically the reliability analysis of
UML-based design (R1). D’Ambrogio et al. [19] define a transformation of
UML models into fault tree models to predict the reliability of component-
based software. Cortellessa and Pompei [17] propose a UML annotation for
the reliability analysis of component-based systems (R4), within the frame-
works of the SPT and QoS&FT profiles. The annotations defined in [17] are
used by Grassi et al. [23,24] where a model-driven transformation frame-
work for the performance and reliability analysis of component-based sys-
tems is proposed. The method uses an intermediate model that acts as
bridge between the annotated UML models and the analysis-oriented mod-
els. In particular, discrete time Markov process models can be derived for
the computation of the service reliability (R3).

1 TIRAN (Tailorable fault tolerance framework for embedded applications), De-
pAuDE (Dependability for embedded Automation systems in Dynamic Environ-
ment with intra-site and inter-site distribution aspects).
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Jürjens et al. define a safety [28] and reliability [27] check list, based on
UML extension standard mechanisms, to support the specification of de-
pendability requirements and the identification of failure-prone components
in the software design (R1-2,R4).

The approaches [42,22,26] support the safety analysis of UML-based
system models (R1). Pataricza et al. [42] use UML stereotypes to identify
erroneous states and error correcting transitions in state machine diagrams,
integrating the normal and the faulty behaviour of a system component in
a single state machine (R6). Goseva et al. [22] devise a methodology for the
risk assessment of UML models at architectural level; a Markovian model is
constructed to estimate the scenario risk factor from risk factors associated
to software components and connectors (R3-4). Hassan et al. [26] intro-
duce a methodology for the severity analysis of software systems modeled
with UML, which integrates different hazard analysis techniques (Functional
Failure Analysis, Failure Modes and Effects Analysis and Fault Tree Anal-
ysis) to identify system level and component/connector level hazards (R4)
and to evaluate the cost of failure of system execution scenarios, software
components and connectors (R3).

Observe that each surveyed work provides some contributions to a subset
of requirements from the checklist given in Table 1, and the whole literature
survey covers all the information requirements. The checklist was used in
our approach to test for the completeness of both the DAM domain model
and the DAM profile. As a final result, the proposed DAM profile addresses
all the information requirements from the checklist. Hence, it becomes pos-
sible to conceptually reuse the transformation approaches for generating
dependability analysis models proposed in the surveyed works, under the
common UML extension framework proposed in the paper.

4 DAM Domain Model

The DAM domain model has been constructed considering the main de-
pendability concepts from the literature as well as standard methods used
for dependability assessment. It is organized into a set of packages, as shown
in Figure 2, where the top-level package includes:

– The System model provides a description of the system to be analyzed,
according to a component-based view [7,31]. The model includes also
additional concepts to describe redundancy structures that may charac-
terize a fault tolerant (FT) system [32].

– The Threats model introduces the threats [7,31,30] that may affect the
system at different levels as well as the relationships between threats.

– The Maintenance model introduces repair/recovery actions undertaken
in case of repairable systems [7,32].

Figures 3, 4, 5, and 6 show the DAM domain model; the different gray
scale used for the classes will be explained in Section 5. The Core model
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Maintenance

DAMdomainModel

Threats

System

Redundancy

L0 L1

System Core

Fig. 2 DAM domain model: Top-level package (L0), System Core package (L1)

(Figure 3) represents the context for carrying out dependability analysis.
Actually, it is a component-based description of the system to be analyzed
that includes both structural and behavioural views. From the structural
point of view, the system consists of a set of hardware and software com-
ponents that are bound together through connectors, i.e., logical/physical
links, in order to interact. A component can be a sub-system consisting of
sub-components. The structure of the system is what enables it to generate
the behaviour. The system delivers a set of high-level services, in response
to user service requests. Each high-level service is a part of the system be-
haviour as perceived by its users and it is carried out by the interaction of
system components, which provide and request basic services to each other.
A component must either provide or request at least one basic service. A
service is implemented by a sequence of steps that may represent component
states and actions.

The Core model acts as a bridge between the DAM concepts and the
concepts introduced in MARTE for general quantitative analysis and mod-
eling (GQAM). Indeed, several classes of the Core model will be mapped
to stereotypes that specialize the ones from the GQAM profile.

Observe that some classes of the DAM domain model have attributes
that represent requirements, metrics, properties or input parameters. A de-
tailed description of the attributes is given in [11]. Table 2 shows an excerpt
of the definition of such attributes, along with the references to the surveyed
works from literature and to the standard dependability analysis methods
which use them.

A system may be characterized by redundancy structures. Software and
hardware redundancy are typical means used to increase the fault tolerance
(FT) of software systems, e.g., by eliminating single points of failure. The
Redundancy model (Figure 4) represents FT components [32], which can
play different roles in a redundant structure [34]. In particular, a redundant
structure may consist of several variants, i.e, modules with different design
that provide the same services, allocated over different spares, a controller,
that is responsible for the co-ordination of the variants, an adjudicator,
that either looks for a consensus of two or more outputs among the variants
(“N-version software” scheme) or applies an acceptance test to the variant
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Fig. 3 DAM Domain Model: Core package

outputs (“recovery block” scheme). A spare may substitute for one or more
components and, depending on the adopted FT strategy, can be unpowered
until needed (cold), continually powered (hot) or partially powered in the
standby mode until it is needed (warm). The type of spare can be specified
by its dormancyFactor, which is the ratio between the spare failure rates in
standby mode and in operational mode, respectively. (For instance, a cold
spare has a dormancy factor equal to zero, since it cannot fail in standby
mode).

Note that it is out of scope in this work to provide full support for the
modeling of FT architectures. Rather, the introduction of the System Re-
dundancy model is motivated by the objective of providing specific support
for the quantitative dependability analysis of the FT systems characterized
by redundant structures.

The Threats model (Figure 5) includes the threats that may affect the
system, namely the faults, errors, failures [7,31] and hazards [30]. We have
introduced an abstract concept of impairment, that can be specialized de-
pending of the type of analysis domain, i.e., failure for reliability/availability
analysis and hazard for safety. The model represents also the cause-effect
relationships between the threats and the relationships between the threats
and the system core concepts. Then, a fault is the original cause of errors
and impairments, and affects system components. A fault generator concept
is added to represent a mechanism, used for example in [10,41], to inject
faults in the system and to specify the max number of concurrent faults.
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Errors are related to steps (i.e., states or actions) of the basic services
provided by the faulty components. When an error affects an external state
of a faulty component, that is the service interface of that component, then
error propagations may occur from the faulty component to other compo-
nents it interacts with, via the corresponding connectors. A series of error
propagations may be inter-related, for example they may occur in a given or-
der [40]; ordered sequences of error propagations as well as non trivial error
propagation relations can be specified as logical expressions (attribute prop-
agationExpr). Errors may cause impairments at different system level: 1) at
service step level, leading to failure/hazard steps, when the service provided
by the component becomes incorrect; 2) at component level, when the com-
ponent is unable to provide any basic service; 3) at system level, when the
impairment is perceived by the system users. Finally, multiple dependent
impairments can affect a redundant structure, such as when several redun-
dant components fail in the same mode (i.e., common mode failures [32]).

Table 2: DAM domain model: Example of attribute description.

Component DAMdomainModel::System::Core
stateful (true) Faulty components can be characterized by an error

latency, so they can be restored before failure. (false) Faulty
components are considered as failed [14,34].

origin Hardware/software component [14,34].
isActive (true) The component can perform its behaviour au-

tonomously and trigger behaviour of other components [17].
failureCoverage Percentage of failure coverage [40].
/percPermFault Percentage of permanent faults [14,34]. Derived from fault

association-end and persistency attribute of Threats::Fault
class.

/ssAvail Steady state availability (percentage) [8,9,43]. Derived
from MTTF (Threats::Failure) and MTTR (Mainte-
nance::Repair) attributes.

unreliability Probability that the time to failure random variable is less
or equal than time t (time dependent) [43].

/reliability Survival function [21]: probability that the component is
functioning correctly during the time interval (0, t] [43] (time
dependent).

missionTime Time interval in which the component unreliability is lower
than a preassigned threshold.

availLevel Availability level associated to the nines of availability. E.g.,
very high corresponds to 99,9% of ssAvail, etc. (application
specific).

reliabLevel Reliability level (application specific).
safetyLevel Safety level (application specific).
complexity Complexity metric [8,9,28,27,22] quantifies the component

failure proneness.

Failure DAMdomainModel::Threats

Continued on next page
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Table 2 – continued from previous page

occurrenceRate Number of failures per unit time [19,40,23,24,8,9].
MTTF Mean Time To Failure [8,9,34,14].
MTBF Mean Time Between Failures [8,9].
occurrenceDist Failure occurrence distribution (time dependent) [34,14,19,

40,23,24].
domain Content, early timing, late timing, halt or erratic [7]. Used

in [41,8–10,27,28].
detectability Signaled or unsignaled [7].
consistency Consistent or inconsistent [7].
consequence Minor, marginal, major, or catastrophic [7]. Used in [8,9,22,

26].
condition Logical condition that leads to the failure. Used to express

relationships among component failure states [1,2,13].

Fault DAMdomainModel::Threats
occurrenceRate Number of faults per unit time [34,14,10].
latency Time elapsing between a fault occurrence and the instant in

which it is perceived by the component(s) [10].
occurrenceProb Fault occurrence probability (time independent) [17].
occurrenceDist Fault occurrence distribution (time dependent).
persistency Transient or permanent [7]. Used in [41,10].
duration Fault duration from its occurrence. It can be used to dis-

criminate the fault persistency [8,9].

The Maintenance model (Figure 6) concerns repairable systems and in-
cludes concepts that are necessary to support the evaluation of system avail-
ability, that is the maintenance actions undertaken to restore the system
affected by threats. Indeed, during the execution of maintenance actions,
the services provided by the system are either partially or entirely not de-
livered to the user, so the time to perform maintenance has an impact on the
system availability. The execution rate and the execution time distribution
characterize, from a quantitative point of view, the maintenance actions.
According to [7,32], we distinguish repairs of system components, that in-
volve the participation of external agents (e.g., repairman, test equipment,
etc) and recovery strategies, usually implemented in FT systems, that aim
at transforming the system anomalous states into correct states. In par-
ticular, the reconfiguration steps imply the use of spare components [40].
The model represents replacement and reallocation steps. The former con-
sist in actions in which a set of faulty components are replaced with a set
of spares. In reallocation steps, a set of software components is reallocated
onto a collection of spares. To represent the new system reconfiguration,
after the system recovery, the set of replaced/reallocated components and
the spares must be ordered and have the same size.
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DAMdomainModel::Maintenance

System::Core::
Service

System::Core::
Component

System::Core::
Step

 Repair  Recovery 
*

1..*

*

External
Agent

 MTTR   duration 
 coverageFactor

executes *

Reconfiguration
Step

Replacement
Step

Reallocation
Step

System::
Redundancy::

Spare

replace
{ordered}

with
{ordered}

map
{origin=sw,

 ordered}

onto
{origin=hw,
 sequence}

*

repair

recovery

recovery

1..*

1..*

1..*

1..*

1..*

1..*

Maintenance
Action

rate
distribution

*

*

1..* *

*

{(ReplacementStep.replace->size()=
  ReplacementStep.with->size()}

{(ReallocationStep.map->size()=
  ReallocationStep.onto->size()}

Fig. 6 Maintenance model

5 Design of the DAM Profile

Once the DAM domain model has been defined, the process of mapping
it to a concrete profile could be addressed. We have followed an iterative
process, in which each class has been examined, together with its attributes,
associations and constraints, to identify the most suitable UML base con-
cepts for it, as suggested in [44]. Moreover, following the general guidelines
in [44], we aim at designing a technically correct and effective profile which
takes advantage of the new UML2 profile mechanisms.

Figure 7(a) gives the big picture of the DAM profile proposal. It consists
of a UML package stereotyped as <<profile>>, which includes the set of
UML extensions and a model library. The first is a package containing a
set of dependability stereotypes, their attributes (also called tags) and con-
straints. Most of the DAM stereotypes specialize the ones of MARTE [38].
The library, detailed in Figure 7(b), is made of basic and complex de-
pendability types used to define the stereotype attributes. In the design of
the profile, we have also applied several suggestions and patterns proposed
in [29] that enable the creation of a profile from the domain model, while
keeping it consistent with the UML meta-model. Moreover, we adopted the
best practice from MARTE to keep track of the mapping between the do-
main model and the DAM profile.
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<<profile>>
DAM

DAM_UML_Extensions

<<modelLibrary>>
DAM_Library

<<import>>

<<import>> <<modelLibrary>>
DAM::DAM_Library

Complex_DA_Types

Basic_DA_Types

<<import>>

<<modelLibrary>>
MARTE::MARTE_Library::

BasicNFP_Types

<<profile>>
MARTE::NFPs

<<import>>

<<apply>>

(a) (b)

<<profile>>
MARTE::VSL::DataType

<<apply>>

<<profile>>
MARTE

Fig. 7 (a) DAM profile and (b) DAM library

5.1 DAM UML extensions

The DAM extensions package provides the domain expert with a set of
stereotypes to be applied at model specification level, i.e., the stereotypes
necessary to represent the dependability system view in a concrete UML
model. Domain classes are natural candidates for becoming stereotypes.
However, as in [29], we aim at providing a small yet sufficient set of stereo-
types to be actually used in practical modeling situations. Eventually, only
a subset of the domain classes have been mapped to stereotypes (i.e., the
pale gray classes in Figures 3, 4, 5 and 6). In order to maintain a trace-
able mapping, the name of each stereotype will be the name of the domain
class prefixed by Da, namely Dependability Analysis, as shown in Figures 8
and 9. Table 3 gives as an example the description of the DaComponent
stereotype, while the complete stereotypes list can be found in [11].

Table 3: Example of stereotype description

DaComponent maps the System::Core::Component domain class

Generalization MARTE::GRM::Resource
Extension none
Attributes

stateful Boolean[0..1]
origin Origin[0..1]
isActive Boolean[0..1] - Inherited from Resource
failureCoverage NFP Percentage[*]
percPermFault NFP Percentage[*]
ssAvail NFP Percentage[*]
unreliability NFP CommonType[*]
reliability NFP CommonType[*]
missionTime NFP CommonType[*]
availLevel DaLevel[*] - Application specific
reliabLevel DaLevel[*] - Application specific
safetyLevel DaLevel[*] - Application specific
complexity NFP Real[*]

Continued on next page
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Table 3 – continued from previous page

fault DaFault[*] - Faults affecting the component
error DaError[*] - Errors affecting the component
failure DaFailure[*] - Failures affecting the component
hazard DaHazard[*] - Hazards affecting the component
repair DaRepair[*] - Repairs undergone by the component

In the process of selecting a minimum set of stereotypes, we visited each
package in the domain model, characterizing their classes as abstract, firm,
uncertain or parametric, according to [29]. This criterion aims to clearly
characterize the role of each DSML concept. Abstract classes refer to ac-
cessory concepts, firm classes are used as language constructs, uncertain
classes sort indeterminate concepts, and parametric classes categorize con-
cepts that can change depending on the sub-problem domain. For example,
in the Core model package, we identified the classes Component, Connector,
Service, ServiceRequest and Step as firm, and mapped them to stereotypes
(Figure 8, pale grey), while the class DepAnalysisContext was regarded as
uncertain. As for the classes regarded as abstract, e.g., FT Component (Fig-
ure 4), they don’t have to be mapped to stereotypes, as indicated in [29].

In a second stage, for each stereotype obtained from a firm class, we
searched for suitable extensions, i.e., the actual UML meta-classes to be
extended by the stereotype. To facilitate the extension process, we con-
sulted the proposals in the surveyed literature, identifying the UML model
elements annotated with the same dependability properties as the ones char-
acterizing the stereotype. In other words, we applied the general guidelines
from [44], based on the semantic similarity between the UML meta-classes
and stereotypes. Finally, if a semantically equivalent stereotype did exist
in MARTE, then we defined the DAM stereotype as a sub-stereotype of
the MARTE one (depicted in dark grey in Figures 8 and 9). For the final
result of this stage, see Table 3 showing as an example the definition of
the stereotype DaComponent. It specializes the MARTE stereotype shown
in the “Generalization” row, does not extend directly any UML meta-class
(the “Extensions” row is empty) and extends indirectly the same UML
meta-classes as the stereotype from which it inherits.

The stereotypes attributes, which characterize their properties, are ob-
tained from the original class in the domain model, either from its attributes
or from navigable association ends. The type of the first kind of attributes is
a basic UML type, a MARTE NFP type or a basic dependability type (de-
scribed in Section 5.2.2). To define the type of the attributes obtained from
association ends, we introduced the complex dependability types (described
in Section 5.2.1). Since the mapping of association ends is less trivial than
that of attributes, we often applied the reference association pattern in [29].
An example of such pattern is given in Figure 5, where the Component class
is associated with the Fault class through the association-end fault. The lat-
ter is used to define the attribute fault of DaComponent (with complex type
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<<stereotype>>
DaComponent

stateful: Boolean[0..1]
origin: Origin[0..1]
failureCoverage: NFP_Percentage[*]
percPermFault: NFP_Percentage[*]
ssAvail:NPF_Percentage[*]
unreliability: NFP_CommonType[*]
reliability: NFP_CommonType[*]
missionTime: NFP_CommonType[*]
availLevel: DaLevel[*]
reliabLevel: DaLevel[*]
safetyLevel: DaLevel[*]
complexity: NFP_Real[*]
fault: DaFault [*]
error:DaError [*]
failure: DaFailure [*]
hazard: DaHazard [*]
repair: DaRepair [*]

<<stereotype>>
MARTE::GRM::Resource

isActive: Boolean[0..1]

<<stereotype>>
DaService

<<stereotype>>
MARTE::GQAM::GaScenario

<<profile>>
DAM_UML_Extensions::System::Core

execProb: NFP_Real[*]
ssAvail:NPF_Percentage[*]
instAvail: NFP_CommonType[*]
unreliability: NFP_CommonType[*]
reliability: NFP_CommonType[*]
missionTime: NFP_CommonType[*]
availLevel: DaLevel[*]
reliabLevel: DaLevel[*]
safetyLevel: DaLevel[*]
complexity: NFP_Real[*]
failure: DaFailure [*]
hazard: DaHazard [*]
recovery: DaRecovery [*]

<<stereotype>>
DaStep

kind: StepKind
error: DaError[*]
failure: DaFailure[*]
hazard: DaHazard[*]
recovery: DaRecovery[*]

<<stereotype>>
MARTE::GQAM::GaStep

<<stereotype>>
DaServiceRequest

accessProb: NFP_Real[*]
serviceProb: NFP_Real[1.*]{ordered}
requests: DaService[1..*]{ordered}

<<stereotype>>
DaConnector

coupling: NFP_Real[*]
errorProp: DaErrorPropagation[*]
failure: DaFailure[*]
hazard: DaHazard[*]

<<stereotype>>
DaConnector

<<metaclass>>
UML::Classes::Kernel::

Classifier

<<metaclass>>
UML::Interactions::

BasicInteractions::Lifeline

<<metaclass>>
UML::Interaction::

BasicInteractions::Interaction

<<metaclass>>
UML::Classes::Kernel::
InstanceSpecification

<<metaclass>>
UML::Classes::Kernel::

Association

<<metaclass>>
UML::Components::

BasicComponents::Connector

<<metaclass>>
UML::Actions::BasicActions::

InvocationAction

<<metaclass>>
UML::Interactions::

BasicInteractions::Message

<<metaclass>>
UML::Classes::Dependencies::

Dependency

<<metaclass>>
UML::UseCases::

Extend

<<metaclass>>
UML::Usecases::

Include

Fig. 8 DAM stereotypes from Core

DaFault, see Table 3). On the other hand, when an abstract class, e.g., Im-
pairment in Figure 5, is the target of associations ends, e.g., impairment
from Component, then all the specialized classes (Failure and Hazard) in-
herit the associations ends but renamed. Thus, Table 3 shows failure and
hazard as attributes of DaComponent. Finally, when defining the attribute
multiplicity, we retained for the attributes obtained from association ends
their multiplicity values from the domain model.

It is worth noting that the domain model is characterized by several con-
straints, which have been assigned to the DAM extensions using OCL. They
represent constraints for the use of the profile at model specification level.
Some constraints already expressed in OCL in the domain model (Figure 6)
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<<stereotype>>
Core::DaComponent

<<profile>>
DAM_UML_Extensions::System::Redundancy

<<stereotype>>
DaRedundantStructure <<metaclass>>

UML::Classes::Kernel::
Package

<<stereotype>>
DaController

<<stereotype>>
DaVariant

multiplicity: NFP_Integer[*]

<<stereotype>>
DaAdjudicator

errorDetecCoverage: NFP_Percentage[*]

<<stereotype>>
DaSpare

multiplicity: NFP_Integer[*
dormancyFactor: NFP_Real[*]
substituteFor: DaComponent[1..*]

commonModeFailure: DaFailure[*]
commonModeHazard:DaHazard[*]

<<profile>>
DAM_UML_Extensions::Maintenance

kind = (replacement)
replace: DaComponent[1..*]{ordered}
with: DaSpare[1..*]{ordered}

<<stereotype>>
DaReplacementStep

<<stereotype>>
Core::DaStep

kind = (reallocation)
map: DaComponent[1..*]{ordered}
onto: DaSpare[1..*]{ordered}

<<stereotype>>
DaReallocationStep

self.map.size() = self.onto.size()self.replace.size() = self.with.size()

<<profile>>
DAM_UML_Extensions::Threats

propagationExpr: PropExpression
errorProp: DaErrorPropagation[2..*]{ordered}

numberOfFaults: NFP_Integer[*]
fault: DaFault

<<stereotype>>
DaErrorPropRelation

<<metaclass>>
UML::Classes::Kernel::

Constraint

<<stereotype>>
DaFaultGenerator

<<stereotype>>
MARTE::GQAM::

GaWorkloadGenerator

1) self.ownedElements.size() >=2
2) self.ownedElements ->  
        forall(e| e.oclIsKindOf(DaController or 
DaVariant or DaAdjudicator or DaSpare) )

Fig. 9 DAM stereotypes from System Redundancy, Threats and Maintenance



20 Simona Bernardi et al.

are directly inherited in the profile, while others have been extracted from
the domain model. For example, the DaRedundantStructure stereotype has
two OCL constraints attached (Figure 9), one for mapping (Figure 4) the
cardinality of the RedundantStructure aggregation, and the other for forcing
the types of the elements in the Package.

5.2 DAM library

Figure 7(b) depicts a high-level view of the DAM library, which contains
basic and complex dependability types. We have imported the basic NFP
types from the MARTE library for the definition of these types. In particu-
lar, the MARTE NFPs sub-profile is applied to the definition of new basic
dependability types and the VSL sub-profile to the definition of the complex
ones.

5.2.1 Complex dependability types The complex dependability types are
MARTE data-types used to type DAM extensions. They are characterized
by attributes, whose type can be a basic NFP type from the MARTE library,
a basic dependability type, or a complex dependability type. The set of com-
plex types has been obtained by mapping classes which model threats or
maintenance actions (i.e., the faint grey classes of Figures 5 and 6). A com-
plex dependability type is prefixed by Da. Table 4 describes the DaFailure
complex dependability type, the rest can be found in [11]. As for stereo-
types, their attributes can map either an attribute of the (mapped) do-
main class (e.g., occurrenceRate in DaFailure), or an attribute inherited
from an abstract class (e.g., occurenceProb) or an association-end. Also
the association-ends from the abstract classes are inherited and renamed,
causeF in DaFailure maps the cause association-end between Impairment
and Fault in Figure 5.

Table 4: Complex dependability type description.

DaFailure maps the Threats::Failure domain class

Attribute
occurrenceRate DaFrequency[*]
MTTF NFP Duration[*]
MTBF NFP Duration[*]
occurrenceProb NFP Real[*]
occurrenceDist NFP CommonType[*]
domain Domain[0..1]
detectability Detectability[0..1]
consistency Consistency[0..1]
consequence DaCriticalLevel[*]
risk NFP Real[*]
cost DaCurrency[*]

Continued on next page
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<<modelLibrary>>
DAM_Library::Basic_DA_Types

MARTE::MARTE_Library::
BasicNFP_Types::NFP_Real

<<dataType>>  <<nfpType>>

value:Real

{valueAttr=value}

MARTE::MARTE_Library::
BasicNFP_Types::NFP_CommonType

<<dataType>>   <<nfpType>>

expr:VSL_Expression
source: Source
statQ:StatisticalQualifierKind
dir:DirectionKind

{exprAttr=expr}

DaFrequency

<<dataType>> 
<<nfpType>>

unit: DaFrequencyUnitKind
precision:Real

{unitAttr=unit}

 <<tupleType>>
Repair

DaFrequencyUnitKind
<<unit>> ft/s
<<unit>> ft/ms {baseUnit=ft/s,convFactor=1E-3}
<<unit>> ft/min{baseUnit=ft/s,convFactor=1/60}
<<unit>> ft/hr {baseUnit=ft/min,convFactor=1/60}
<<unit>> ft/day {baseUnit=ft/hr,convFactor=1/24}
<<unit>> ft/month{baseUnit=ft/day,convFactor=1/30}
<<unit>> ft/yr {baseUnit=ft/month,convFactor=1/12}
<<unit>> fail/s
<<unit>> fail/ms {baseUnit=ft/s,convFactor=1E-3}
<<unit>> fail/min{baseUnit=ft/s,convFactor=1/60}
<<unit>> fail/hr {baseUnit=ft/min,convFactor=1/60}
<<unit>> fail/day {baseUnit=ft/hr,convFactor=1/24}
<<unit>> fail/month{baseUnit=ft/day,convFactor=1/30}
<<unit>> fail/yr {baseUnit=ft/month,convFactor=1/12}
<<unit>> repair/s
<<unit>> repair/ms {baseUnit=ft/s,convFactor=1E-3}
<<unit>> repair/min{baseUnit=ft/s,convFactor=1/60}
<<unit>> repair/hr {baseUnit=ft/min,convFactor=1/60}
<<unit>> repair/day {baseUnit=ft/hr,convFactor=1/24}
<<unit>> repair/month{baseUnit=ft/day,convFactor=1/30}
<<unit>> repair/yr {baseUnit=ft/month,convFactor=1/12}
<<unit>> rec/s
<<unit>> rec/ms {baseUnit=ft/s,convFactor=1E-3}
<<unit>> rec/min{baseUnit=ft/s,convFactor=1/60}
<<unit>> rec/hr {baseUnit=ft/min,convFactor=1/60}
<<unit>> rec/day {baseUnit=ft/hr,convFactor=1/24}
<<unit>> rec/month{baseUnit=ft/day,convFactor=1/30}
<<unit>> rec/yr {baseUnit=ft/month,convFactor=1/12}

<<enumeration>>

euro
dollar

DAM_Library::Basic_DA_Types::Enumeration_Types

DAM_Library::Basic_DA_Types::Data_Types

Origin
hw
sw

<<enumeration>>

Detectability
signaled
unsignaled

<<enumeration>>

DaCurrKind
<<enumeration>>

<<enumeration>>

FactorOrigin
endogenous
exogenous

Consistency
consistent
inconsistent

<<enumeration>>

Persistency
transient
permanent

<<enumeration>>

<<enumeration>>

Level

very high
high
medium
low

CriticalLevel

minor
marginal
major
catastrophic

<<enumeration>>

Guideword

value
omission
commission
...

<<enumeration>>

Domain
content
earlyTiming
lateTiming
halt 
erratic

<<enumeration>>

StepKind
error
failure
hazard
reallocation
replacement

<<enumeration>>

Likelihood
frequent
moderate
occasional
remote
unlikely
impossible

<<enumeration>>

...

DaCriticalLevel

<<dataType>> 
<<nfpType>>

value: CriticalLevel

{valueAttr=value}
DaLevel

<<dataType>> 
<<nfpType>>

value: Level

{valueAttr=value}
DaLikelihood

<<dataType>> 
<<nfpType>>

value: Likelihood

{valueAttr=value}
DaCurrency

<<dataType>> 
<<nfpType>>

value: DaCurrKind

{valueAttr=value}

Fig. 10 DAM basic types

Table 4 – continued from previous page

condition FailureExpression[0..1]
causeF DaFault[1..*]
causeE DaError[1..*]

5.2.2 Basic dependability types Basic dependability types, see Figure 10,
can be either simple enumeration types or data-types. An example of enu-
meration type is the DaFrequencyUnitKind, which includes a set of fre-
quency units of fault/failure occurrence rates and of repair/recovery rates.
An example of data-type is the DaFrequency introduced to specify, e.g., a
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failure occurrence rate as a real value together with a failure frequency unit
(e.g., 0.1−2 failures per hour).

The data-types specialize the NFP CommonType from MARTE library,
which allowed us to reuse several properties of the super-type that enrich the
annotation capabilities at system model level. In particular, the expression
property supports the specification of expressions using the Value Specifica-
tion Language (VSL). The source property can be used to define the origin
of the specification (required, a requirement to be satisfied; estimated, a met-
ric to be computed; or assumed, an input parameter). The statQ property
defines the type of statistical measure (e.g., maximum, minimum, mean).
Finally, the direction, defines the type of the quality order relation in the
allowed value domain of the NFP, for comparative analysis purposes.

5.3 Usage of the DAM profile

At model specification level, a software analyst may apply a DAM stereotype
provided that the target model element belongs to a meta-class extended
by that stereotype. For example, in Figure 12 the DaService stereotype is
applied to a Use Case model-element. This is possible because DaService
specializes the MARTE::GQAM::GaScenario stereotype (Figure 8), which
in turns specializes the MARTE::TimeModels::TimedProcessing stereotype.
Since TimedProcessing extends the UML::CommonBehaviours::Behaviour
meta-class, then DaService can be applied to a wide set of behaviour-related
elements such as Use Cases. Although this is the “normal” way of usage, the
DAM profile also provides support for the specification of non trivial threat
assumptions. In particular, two such examples deserve special attention: the
state-based failure conditions and the common mode impairments of a set
of redundant components.

State-based failure conditions State-based failure conditions can be spec-
ified for either components or services. Note that both classes have an as-
sociation with the Impairment abstract class (Threats model, Figure 5).
As shown in Table 3, we have converted association-end impairment of
component class into two attributes (failure and hazard) of complex types
(DaFailure and DaHazard). Regarding DaFailure type (Table 4), its con-
dition attribute (FailureExpression type) let us specify a logical expression
that accounts for the state-base failure condition. The syntax is given in Ta-
ble 5. For example, let us assume that the failure of component A depends
on the state of component B, in particular when component B is either in
state degraded or failed. Then, we can stereotype both components as Da-
Component and annotate the failure condition on component A, as shown
in Figure 11(a).

Common mode failures/hazards Stereotype DaRedundantStructure in Fig-
ure 9 is used to characterize the impairments affecting simultaneously the
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condition-value ::= ‘(’ failure-body ‘)’

failure-body ::= fail-term | ‘not’ fail-term |

‘not’ ‘(’ failure-body ‘)’ |

failure-body logical-op fail-term

logical-op ::= ‘and’ | ‘or’ | ‘xor’ | ‘implies’

fail-term ::= ‘(’ ‘component’ ‘=’ component,

‘state’ ‘=’state)

component ::= string

state ::= string

Table 5 BNF syntax for the specification of state-based failure conditions

A B

<<DaComponent>>
{origin=sw;
failure=(condition=
(component=B,state=degraded) or
(component=B,state=failed))}

<<DaComponent>>

<<DaRedundantStructure>>
{commonModeFailure=
(occurrenceProb=0.01)}

(a) (b)

A B

<<DaComponent>><<DaVariant>>

Fig. 11 DAM profile usage

set of FT components belonging to a redundant structure (that is com-
ponents stereotyped as DaVariant, or DaController, or DaAdjudicator or
DaSpare). These impairments account for the failures and the hazards.
The association-end between the RedundantStructure and the Impairment
classes (Threats model, Figure 5) is mapped onto two attributes (common-
ModeFailure and commonModeHazard) belonging to the DaRedundantStruc-
ture stereotype. They will allow to specify among others the common mode
failure/hazard probability. The annotation is carried out by including the
set of FT components into a package stereotyped as DaRedundantStructure
and then specifying the desired attributes. See Figure 11(b) for an example.

6 Modeling with MARTE-DAM

In this section we consider the case study of a Message Redundancy Service
(MRS), which aims at improving the dependability of distributed systems
that have to provide their services even in the presence of malicious attacks.
In particular, the goal of the MRS is to enhance a system with intrusion-
tolerance capabilities by delivering only uncorrupted messages to the target
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LAN
Message
Replicator

Client

Redundancy
Manager

Payload

<<DaVariant>>
{resMult=$M; origin=sw;
 fault=(
 occurrenceRate=(value=$ft_rate,unit=s,source=assm)}

Receiver

WAN

Client Receiver

Message Redundacy
     Service (MRS)

<<DaService>>
{availability=(expr=$Xack/$Xrequest, source=pred)}

<<GaAnalysisContext>>
{contextParams=(in$N,in$M,in$K,in$TO,in$pb_NoOK,in$ft_rate,
                                   out$Xfilter,out$Xrequest,out$Xack)}

UCD

DD
<<DaComponent>>
{resMult=$N}

<<DaController>>
{resMult=$M}

Fig. 12 Message Redundancy Service overview (UCD) and architecture (DD).

destination. For this purpose, as well as to attain a fault-tolerant MRS,
some well-known fault-tolerance mechanisms are applied, such as hardware
and software redundancy and voting [32]. By using them, MRS should be
able to mask software faults that otherwise could lead to service failure.
Usually, these mechanisms are implemented along with recovery strategies
that restore the system services. For the sake of simplicity, we will not
consider recovery in this example.

The UML specification of MRS is shown in Figures 12, 13 and 14. The
Use Case Diagram (UCD) shows the main use case realized by the service
scenario given in the Sequence Diagram (SD) in Figure 13. MRS receives
messages from Clients, specifying the target receiver and the file to deliver.
The Message Replicator (MR) is an interface agent of MRS, which creates
for each message another agent, the Redundancy Manager (RM), which is in
charge of the actual delivery. RM creates N replicas (software redundancy),
called Payloads, which scan and decipher the file. Each Payload sends back
to RM a result, that can be of approval (if the file was found clean) or of
rejection otherwise. RM ends up killing the Payloads and deciding with a
majority voting algorithm, to deliver or not the message to its final receiver.
In any case, MR is informed about the service outcome: the message has
been correctly delivered (value=OK) or it has been detected as corrupted
(value with others values), or a time-out exception occurred and no decision
was taken by the RM then producing a noResult message.

The Deployment Diagram (DD) specifies the system architecture. The
Payloads, when created, will be deployed on N different nodes to improve
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<<actor>>
Client

MessageReplicator

message(receiver,file) create(receiver,file)

s&d(file)
result(myRes)

[value=OK] message(file)

destroy

<<GaWorkloadEvent>>
{pattern=(closed =
     (population=$M))}

destroy()

    <<actor>>
receiver:Receiver

sd

loop[$N]
create(file)

MRS

alt

noResult()
[TimeOut expired and less than $K Payloads results]

result(value)
ack()

noack()

decide()

[($N PayLoads results) or (TimeOut expired and $K Payloads results)]

loop[$N]

loop[$N]

<<GaScenario>>
{respT=
(expr=$M/$Xack,unit=s,statQ=mean,source=pred)))}

<<DaVariant>>
{multiplicity=(value=$N)}

Payload

<<DaController>>
RedundancyMan

Fig. 13 MRS scenario.

dependability (hardware redundancy), while the unique MR and the RMs
execute on the same node to avoid transmission delays. The local area net-
work (LAN) is a secured one, so the messages can be trustily delivered.

We can get a better understanding of the MRS behaviour with a closer
look at the State Machines (SMs) specification (Figure 14). MR processes
the Client requests (message(receiver,file) transition) and receives the
service outcomes from RM, both when the service success (result(value))
and when the service fails due to a time-out exception (noResult()). MR
ends up acknowledging (ack()) or not (noack()) the Client about the de-
livery of the message. Observe that MR sends an ack to the Client even if
the file had been considered corrupted. After processing the message, MR
creates an RM that, in turn, creates the N Payloads and sends the file to
them for analysis. RM sets then a time-out and, concurrently, waits for the
Payloads to reply. Just in case the N Payloads answer before the time-out
expires, the RM destroys them, aborts the time-out and starts deciding. On
the other hand, if the time-out is raised while RM is still waiting for results
from the Payloads, then the latters are destroyed and RM checks if at least
K Payloads have sent the results ([count>=$K]). In a positive case, RM is
allowed to decide about the integrity of the file. Therefore, the MRS can
mask at most N−K concurrent software faults, i.e., the service can tolerate
up to N−K Payloads down per message. When the time-out expires and the
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DO:scan&decipher()
Wait4Msg

PayloadMessageReplicator

Checking

message(receiver,file)
/RM.create(receiver,file)

/RM.result(myRes)

create(file)

destroy

<<GaStep>>
{throughput=
(value=$Xrequest,unit=msg/s,
  statQ=mean,source=pred)}

Wait4Destroy

result(value)
/Client.ack()

noResult()/Client.noack()

<<GaStep>>
{hostDemand=
(value=0.2,unit=s,statQ=mean,source=assm)}

Deciding

Wait4Results

entry:decide()

create(receiver,file)/Payload.create(file)

Redundancy manager

CountingDown

[count<$N-1]result(myRes)/count++

[count=$N-1]
result(myRes)/count++

/count=0

[value=OK] 
/receiver.message(file)

1 1

/self.destroy

[value!=OK]

<<GaStep>>
{hostDemand=
(value=$TO,unit=s, source=assm)}

[count<$K]/MR.noResult()

<<GaStep>>
{prob= (value=$pb_NoOK,source=assm);
throughput=(value=$Xfilter,unit=msg/s,
statQ=mean,source=pred)}

[count>=$K]

/Payload.destroy

/Payload.destroy

entry:MR.result(value)
Sending

after($TO sec)

Message broadcasted 
to the $N Payloads

Message broadcasted 
to the $N Payloads

<<GaStep>>
{throughput=
(value=$Xack,unit=msg/s,
  statQ=mean,source=pred)}

<<DaStep>>
{kind=failure;
 failure=(Fcause=((occurrenceRate=
(value=$ft_rate,unit=s,source=assm))))}

Fig. 14 MRS state machines.

number of results received from the Payloads is less than K ([count<$K]),
RM does not take any decision and sends a message noResult() to MR.

6.1 The annotated model

So far we have modeled the MRS behaviour as a set of UML diagrams, now
we can annotate them with the dependability system properties by using
the MARTE-DAM profile. The annotated model will allow us to perform
both dependability and performance analysis. Indeed, the MARTE-DAM
profile enables UML to define both performance metrics, (e.g., scenario
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response time, activity throughput), and dependability metrics (e.g., relia-
bility, availability, safety). In this example, we are interested in computing
the steady state availability of the MRS (see the pale grey annotation in
Figure 12(UCD)). We interpret the steady state availability in the problem
domain as the percentage of messages that the system can process (not
only those delivered, also those detected as corrupted) out of all messages
requested by the clients. So, the steady state availability is expressed as a
ratio of two SM transition throughputs ($Xack and $Xrequest). These two
parameters, being quantitative, are annotated using the GQAM, concretely
the GaStep stereotype (see the MR state-machine). Note that these through-
puts are output parameters, i.e., metrics to be computed, as indicated by
the modifier source=pred. The DD defines the type of the resource, variant
or controller, and its multiplicity. Note that some multiplicities are equal
to the number of messages $M, while others define the software redundancy
$N.

On the other hand, we need to define the system fault assumption in
terms of 1) which MRS components can be affected by faults and in which
states, 2) the fault occurrence rate, and 3) the maximum number of faults
that can concurrently affect the MRS. The Payloads are the identified com-
ponents where the faults can occur, so they are annotated in the DD with
the fault occurrence rate ($ft rate). Moreover, in the Payload SM, we
identified the states where the fault can lead to a failure. Consequently, we
introduced a new transition, the one stereotyped as DaStep. Note that its
occurrence rate annotation is just a duplicate of the one in the DD, since
they refer to the same value. Finally, we do not need an explicit annotation
for the maximum number of faults, since the design per se allows MRS to
mask up to N −K software faults.

The rest of the annotations (dark grey ones) concern the quantitative
MARTE stereotypes needed for carrying out the analysis. The SD sup-
ports the MRS workload definition, which is closed with population $M,
which is the number of requests from the clients. The SD is stereotyped as
GaScenario and the scenario mean response time is specified. The response
time accounts for the time elapsed from the client request until a positive
ack is replied. The timing duration of the activities are annotated in the
SCs with the hostDemand tag (GaStep stereotype). For the GaStep activi-
ties, we have specified either constant durations, e.g., the time-out, or mean
duration, e.g., scan & decipher. Moreover, to evaluate the robustness of the
MRS, we annotate in the MR state-machine the throughput ($Xfilter)
of the GaStep transition [value != OK]. This metric corresponds to the
number of corrupted files per second the service can detect. All the input
and output parameters are gathered in the analysis context of the UCD.

Finally, it is worth to note that some input parameters, such as the fault
occurrence rate ($ft rate), will allow us to carry out sensitivity analysis
by assuming different values during the analysis.
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7 Analysis and Assessment with MARTE-DAM

In this section we describe the quantitative analysis and the assessment of
the MRS case study. In general, the analysis aims to evaluate numerically
the dependability and performance metrics, specified in the UML annotated
model, and to interpret the metric values in the application domain. On the
other hand, the assessment provides an indication on how to change the
design or set the service parameters to guarantee that the system meets its
non-functional requirements. In MRS, the metrics of interest are the service
steady state availability and response time, and the rate of filtered messages.
The latter used to evaluate robustness of the MRS under different payloads
fault assumptions. The objective of the MRS assessment is to find a (range
of) value(s) to be assigned to the time-out duration parameter to ensure a
good trade-off between the service availability level (dependability metric)
and the service response time (performance metric).

7.1 Getting a formal model from the UML specification

The analysis of the MRS has been carried out customizing the approach
in [35] to the dependability analysis domain. In [35], a transformation method
from UML SMs to Generalized Stochastic Petri Nets (GSPN) [3] was pro-
posed. The method aims at obtaining a performance model, amenable to be
analysed with GSPN solution techniques, from the annotated UML speci-
fication and provides a formal semantics of UML SMs in terms of GSPNs.
The proposed semantics is compositional: the GSPN model of the system is
obtained by composing the GSPN sub-models of the single SMs, by using
standard Petri net operators.

The detailed translation of UML SMs into GSPN sub-models is beyond
the scope of this paper. Instead, we focus on the most interesting aspects
of the previous approach, and on their customization, in order to get a
Deterministic and Stochastic Petri Net (DSPN) [4] model for the MRS case
study. DSPN is an extended version of GSPN, where timed transitions can
be either deterministic (i.e., characterized by a constant firing delay), or
exponential (i.e., with firing delay represented by a random variable with
negative exponential distribution).

The DSPN model of the MRS is shown in Figure 15, where the DSPN
sub-models representing the three SMs in Figure 14 (i.e., Message Replica-
tor, Redundancy Manager and Payload), can be identified. Besides, there
are DSPN sub-models representing the closed workload and the fault-failure
propagation in the payloads. All DSPN sub-models are characterized by in-
terface places, labeled as e ev, that represent mailboxes of events ev. The
DSPN model has been obtained by merging the interface places with match-
ing labels of the different DSPN sub-models.

The Message Replicator, Redundancy Manager and Payload of the DSPN
model have been automatically derived using the ArgoSPE [6] tool, which
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Fig. 15 DSPN model of the message redundancy service.
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implements the approach in [35]. Considering that by default ArgoSPE cre-
ates exponentially distributed transitions, according to the GSPN definition,
only one minor manual change was necessary to set the (dotted) transition
Timeout as deterministic. However, the rest of the DSPN model was man-
ually derived since it contains the MARTE-DAM extensions (i.e., closed
workload and fault-failure propagation sub-models) which are not currently
implemented in ArgoSPE. Some details of interest regarding this manual
derivation are discussed in the following paragraph.

The closed workload DSPN sub-model, for example, is derived from the
MARTE annotation GaWorkloadEvent, in the SD in Figure 13: the initial
population variable $M has been used to define the initial marking M of
place requesting. On the other hand, the fault-failure propagation DSPN
sub-model represents the fault occurrence in the payloads together with
its effect (i.e., failure) in the affected components. This sub-model results
from the mapping of the DAM annotations in the DD and in the payload
SM. The fault occurrence (DaVariant fault.occurrenceRate tagged-value,
DD) is represented by the timed transition fault occ. Its firing produces a
token in the e failure place, which may enable the e failure transitions when
the payload is either scanning & deciphering the message or waiting for a
destroy event (DaStep kind and failure tagged-values, payload SM).

Observe that, the DSPN model is characterized by several parameters,
summarized in the legend in Figure 15. In particular, transition firing de-
lays are defined by the MARTE hostDemand tagged-values attached to
the SM do-activities GaSteps: mean values are mapped to mean firing de-
lays of exponential transitions (e.g., scan&decipher in the payload DSPN
sub-model) and constant values are mapped to firing delays of determin-
istic transitions (e.g., TimeOut in the RM DSPN sub-model). In [35], a
probabilistic translation of SM guarded transitions is proposed: e.g., the
SM guarded transitions [value!=OK] and [value=OK] in the RM SM, are
mapped onto a free-choice conflict between DSPN immediate transitions val-
ueNoOK and valueOK (RM DSPN sub-model), whose weights (pb NoOK
and 1-pb NoOK, respectively) are defined considering the MARTE GaStep
tagged-value prob (i.e., the variable $pb NoOK).

According to the objective of the analysis, the metrics of interest are the
service steady state availability and response time, and the rate of filtered
messages. The steady state availability is a dependability metric and repre-
sents the percentage of times the system is able to provide the MRS when
requested. The service is correctly performed when either the message is
eventually delivered to the receiver or the message is filtered by the redun-
dancy manager (since it is considered corrupted). The service downtime cor-
responds to each time RM is not able to decide after a time-out, due to an in-
sufficient number of results (less than three) provided by the Payloads. The
metric can be computed as the ratio between the throughput of the GaSteps
result(value)/Client.ack() and message(receiver,file)/RM.create
(receiver,file) (see the MARTE annotations in Figure 12 - UCD - and
in Figure 14 - Message Replicator SM). In the DSPN model (Figure 15 -
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MR DSPN sub-model), this metric is mapped onto the ratio between the
throughputs of transition e result - that represents the reception of the ser-
vice outcome from the RM, i.e., either delivered or filtered - and transition
e message - that models the reception of the service request from the client.

The response time is a performance metric and corresponds to the mean
time from client request to the reception of a positive ack. It is defined, by
applying Little’s operational law [20], as the ratio between the workload M
and the throughput of the GaStep result(value)/Client.ack() (see the
MARTE annotations in Figure 13 and in Figure 14 - Message Replicator
SM). In the DSPN model (Figure 15), the metric is mapped onto the ra-
tio between the initial marking of place requesting and the throughput of
transition e result (MR DSPN sub-model).

Finally, the rate of filtered messages is a performance metric that gives
the number of incorrect messages per second detected by the RM, and
then not delivered to the final destination. It provides an indication on the
robustness of the MRS and it is specified as the throughput of the GaStep
[value != OK] of the RM SM (Figure 14). In the DSPN model (Figure 15
- RM DSPN sub-model), the metric is mapped onto the throughput of
transition valueNoOK.

7.2 Simulation of the DSPN model and initial assessment of the MRS

The DSPN model has been used to compute the metrics of interest via
simulation: in particular, we run the steady-state discrete-event simulator
implemented in the GreatSPN tool [25] and all the metrics have been com-
puted setting a confidence interval of 99% and an accuracy of 15%. The
simulated DSPN model assumed an implementation of the service with a
4-redundancy level (N = 4), a 1-fault tolerance level (K = 3) and one client
requesting the MRS (M = 1).

Considering first, the steady state availability and response time metrics,
we carried out sensitivity analysis by varying the values of the fault occur-
rence rate (ft rate ∈ [1ft/s, 1ft/yr]) and the time-out duration (TO ∈
[0.1s, 1s]). The probability of invalid message detection has been set to a
fixed value pb NoOK = 0.5; indeed, this parameter does not affect the
metrics above. In the light of the simulation results obtained for these met-
rics, we will assess certain aspects of the system. This assessment is now a
manual process and requires knowledge about the problem domain where
the results are interpreted (MRS in this case). However, specific assessment
techniques able to automate decisions about setting parameters or design
changes will be addressed in future work.

Figure 16(A) shows the steady state availability of the MRS versus the
time-out duration and the payloads fault occurrence rate. Considering that
the mean time to scan and decipher the message by a payload is set to 0.2
seconds, we can observe that the longer the time-out duration is, the greater
the system availability; and it becomes closer to 100% when TO ≥ 0.5 sec-
onds. Indeed, the longer the time-out duration is, the lower the probability
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Fig. 16 (A) availability, (R) response time.

of false alarms becomes, that is, a time-out expires but no failure has ac-
tually occurred in the payloads. On the other hand, when fixing a time-out
value and moving along the fault occurrence rate axis in Figure 16(A), the
curve is basically a constant line. This fact leads to the conclusion that the
fault occurrence rate in the payloads does not significantly affect the ser-
vice availability. Certainly, this suggests to the software analyst to set the
TO parameter to a value greater than 0.5 seconds, in order to guarantee a
service availability of at least 91%.

Figure 16(R) shows the response time of the MRS versus the time-out
duration and the payloads fault occurrence rate. At first sight, the result
seems to be counter-intuitive: the longer is the time-out duration w.r.t. the
time required by the payloads to scan and decipher a message (0.2 seconds),
the smaller should be the response time: indeed, no false alarms should occur
and the response time should be influenced only by the time to send a pos-
itive ack. Nevertheless, the computed results can be explained considering
the possibility of payload failures. Indeed, when several payloads concur-
rently fail, the system can send a (negative) ack to the client only after the
time-out expiration. So, under payload fault assumption, the longer is the
time-out duration the longer it takes to send a final response to the client,
therefore increasing the overall (positive) response time. On the other hand,
the observed metric is influenced by the payloads fault occurrence rate when
the time-out duration is greater than 0.6 seconds. The assessment suggests
to set the TO parameter to a value less than 0.6 seconds to guarantee a
reasonable response time (i.e., less than 0.4 seconds), independently of the
assumption on payload fault occurrence rate. Then, considering both the de-
pendability and performance requirements (under the stated assumptions
for redundancy and fault-tolerance levels, and the system workload), the
optimal assessed values for the time-out duration should fall in the interval
[0.5s, 0.6s].
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Fig. 17 Rate of filtered messages

Unlike the aforementioned metrics, the rate of filtered messages is af-
fected by the pb NoOK parameter: so we have conducted sensitivity anal-
ysis with pb NoOK ranging between [0.1, 0.9] and under different fault oc-
currence rate assumptions. As a result of the time-out duration previously
assessed, the TO parameter has been set to 0.5 seconds, since this value pro-
vides a good trade-off between the service availability and response time.
Figure 17 shows the metric versus the probability of incorrect message detec-
tion and the payloads fault occurrence rate. As expected, the rate of filtered
messages is in direct proportion to the pb NoOK parameter, i.e., it increases
when the probability of detecting an incorrect message becomes higher. We
can observe, also, that the higher the fault occurrence rate is, the lower the
rate of filtered messages: the number of filtered messages/second decreases
by about 45% when the fault occurrence rate changes from one fault/year
to one fault/s. This result is due to the impossibility of deciding on the
message integrity because of payload failures; indeed, since the payloads
fail more frequently, Redundancy Manager does not receive enough results
from the payloads to formulate a decision. In this case, it is impossible
to assess how to set the parameters for optimizing the number of filtered
messages, because such parameters (i.e., probability of incorrect message
and fault occurrence rate) are not managed by the software analyst.

8 Conclusion

In this paper we have proposed a profile to support dependability modeling
and analysis of UML designs. The proposed profile is compliant with the
standard MARTE profile, and has been built considering current depend-
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ability standards. We have defined the profile by following the approach
proposed by Selic [44] and applying the patterns from Lagarde [29]. We have
applied the MARTE-DAM profile to the modelling, analysis and assessment
of a message redundancy system (MRS). Such a case study gives an insight
on how the MARTE-DAM profile can be used to derive a Deterministic
and Stochastic Petri Net (DSPN) model for quantitative performance and
dependability assessment.

The case study showed why dependability annotations for UML are
needed, and illustrated the usefulness of the proposed DAM profile. In or-
der to assess the availability of MRS, we had to consider fault and failure
assumptions, as well as software and hardware redundancies. This kind of
metrics and input parameters were defined using DAM extensions, while
MARTE worked for performance extensions. As expected, both notations
easily fit together into the UML design. No current standard profile would
have been able to carry out the case study annotations: MARTE because
of its lack of dependability concepts and QoS&FT because of its complex
heavy-weight annotation mechanism.

To the best of our knowledge, this is the first attempt to provide a com-
mon domain model for different dependability communities. We consider the
profile as an open proposal, subject to future refinements and extensions to
address particular issues for the different dependability aspects.

We envision a great potential for our proposal, which offers a common
modeling support intended to cover many existing approaches that have
been developed separately. For instance, the existing UML-based approaches
for analyzing dependability aspects of software systems surveyed in Section 3
can benefit directly from the proposed profile.

8.1 Future work

Among the challenges raised by a rich profile such as MARTE, one could
mention the large amount of stereotypes and tags, and the richness of VSL
for expressing non-functional properties. Obviously, extending MARTE by
DAM only increases such challenges. From our point of view, tools are ab-
solutely necessary in order to manage the complexities of the profiles and
of the analysis techniques. We have started to develop a prototype with the
tool [33] to manage our profile. From this implementation, we hope to learn
lessons about real world applications, and to gain insight on how to effec-
tively manage a UML model with a large number of NFPs, and to discern
among annotations with different analysis purposes.

Future work also includes the implementation of model transformations
taking as input UML+DAM models and producing different dependability
models. We will follow some of the existing approaches from those surveyed
in literature. On the other hand, there are works that although focussed
exclusively on modeling dependability, can also benefit from the profile by
using its annotations or even by extending it. Among such works, there
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are methodologies for collecting dependability requirements, (e.g., safety
domain requirements in [5]), or others targeting certification according to
standard software requirements [45]. Finally, there exist traditional works
in dependability analysis of software systems outside the UML umbrella. In
this case, the challenge is not how to integrate the DAM profile, but rather
how to integrate the UML within the respective methodologies.
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